1
|
Liu Y, Xu Q, Liu Y, Cao S, Luo J, Zheng Z, Zhou J, Lu X, Zhang L, Tan Y, Chen Q, Zuo D. Hepatocyte-Targeted Lipid Nanoparticle Delivery of HERC2 Plasmid Controls Drug-Induced Hepatotoxicity by Limiting β-Catenin-Regulated CYP2E1 Expression. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2401633. [PMID: 39440550 DOI: 10.1002/advs.202401633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 10/06/2024] [Indexed: 10/25/2024]
Abstract
Understanding the molecular mechanisms that bridge hepatic inflammation and liver injury is crucial for developing effective therapeutic strategies for drug-induced liver injury (DILI) management. HECT domain and RCC1-like domain 2 (HERC2) belongs to the large Herc family of ubiquitin E3 ligases, which are implicated in tissue development and inflammation. The observation reveals a pronounced HERC2 expression in specific hepatocyte subsets that proliferate in response to DILI in humans, prompting an investigation into the role of HERC2 in distinct DILI progression. Under the APAP challenge, liver-specific HERC2-deficient mice suffer more severe liver damage. Integrated single-cell RNA sequencing analysis unveils a negative correlation between HERC2 and CYP2E1, a vital metabolic enzyme for xenobiotics, in hepatocytes from APAP-challenged mice. Mechanistically, HERC2 interacts with β-catenin to promote its ubiquitination, thereby governing CYP2E1 transcriptional regulation. Targeted hepatic delivery of lipid nanoparticle-encapsulated HERC2-overexpressing plasmid markedly reduces liver damage caused by APAP overdose. Collectively, these findings elucidate a previously unrecognized protective role of HERC2 in protecting against acute liver injury associated with drug metabolism disorders, highlighting its potential as a therapeutic target in treating DILI.
Collapse
Affiliation(s)
- Yunzhi Liu
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, 510515, China
- Clinical Oncology Center, Shenzhen Key Laboratory for cancer metastasis and personalized therapy, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, 518053, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Qishan Xu
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, 510515, China
- Department of Precision Laboratory, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 510180, China
| | - Yan Liu
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Sihang Cao
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, 510515, China
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, 999077, China
| | - Jialiang Luo
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, 510515, China
- Guangdong Province Key Laboratory of Proteomics, Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Zhuojun Zheng
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, 510515, China
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510080, China
- Guangdong Province Key Laboratory of Immune Regulation and Immunotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Jia Zhou
- Guangdong Province Key Laboratory of Proteomics, Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Xiao Lu
- Guangdong Province Key Laboratory of Proteomics, Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Liyun Zhang
- Guangdong Province Key Laboratory of Proteomics, Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Yanan Tan
- Clinical Oncology Center, Shenzhen Key Laboratory for cancer metastasis and personalized therapy, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, 518053, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, Guangdong, 516001, China
| | - Qingyun Chen
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510080, China
| | - Daming Zuo
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, 510515, China
- Guangdong Province Key Laboratory of Immune Regulation and Immunotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, 510515, China
| |
Collapse
|
2
|
Kashyap VK, Nagesh PKB, Singh AK, Massey A, Darkwah GP, George A, Khan S, Hafeez BB, Zafar N, Kumar S, Sinha N, Yallapu MM, Jaggi M, Chauhan SC. Curcumin attenuates smoking and drinking activated NF-κB/IL-6 inflammatory signaling axis in cervical cancer. Cancer Cell Int 2024; 24:343. [PMID: 39428480 PMCID: PMC11492755 DOI: 10.1186/s12935-024-03513-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 09/19/2024] [Indexed: 10/22/2024] Open
Abstract
BACKGROUND High-risk strains of HPV are known to cause cervical cancer. Multiple clinical studies have emphasized that smoking and drinking are critical risk factors for cervical cancer and its high-grade precursors. In this study, we investigated if smoking and/or drinking augment the molecular mechanisms of cervical carcinogenesis and defined a potential therapeutic approach for their attenuation. METHODS The impact of benzo[a]pyrene (B[a]P) and/or ethanol (EtOH) exposure on cervical cancer cells was assessed by measuring changes in their cell migration and invasion characteristics. Expression of HPV16 E6/E7, NF-κB, cytokines, and inflammation mediators was determined using qRT-PCR, immunoblotting, ELISA, luciferase reporter assay, and confocal microscopy. Herein, we used curcumin (Cur), and PLGA nanoparticle formulation of curcumin (PLGA-Cur) and determined effectiveness of free Cur and PLGA-Cur formulation on smoking and drinking activated NF-κB/IL-6 mediated inflammatory signaling pathways using in vitro cervical cancer models. RESULTS Treatments with B[a]P and/or EtOH altered the expression of HPV16 E6/E7 oncogenes and EMT markers in cervical cancer cells; it also enhanced migration and invasion. In addition, B[a]P and/or EtOH exposure promoted inflammation pathways through TNF-α and NF-κB signaling, leading to IL-6 upregulation and activation of VEGF. The molecular effects caused by B[a]P and/or EtOH exposure were effectively attenuated by curcumin (Cur)/PLGA-Cur treatment. CONCLUSIONS These data suggest a molecular link between smoking, drinking, and HPV infectivity in cervical carcinogenesis. In addition, attenuation of these effects by treatment with Cur/PLGA-Cur treatment, implies the role of curcumin in cervical cancer prevention and treatment.
Collapse
Affiliation(s)
- Vivek K Kashyap
- Division of Cancer Immunology and Microbiology, Medicine and Oncology Integrated Service Unit, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, 78504, USA
- South Texas Center of Excellence in Cancer Research (ST-CECR), McAllen, TX, 78504, USA
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Prashanth K B Nagesh
- Division of Cancer Immunology and Microbiology, Medicine and Oncology Integrated Service Unit, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, 78504, USA
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
- Laboratory of Signal Transduction, Memorial Sloan Kettering Cancer Center, New York, 10065, USA
| | - Ajay K Singh
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Andrew Massey
- Division of Cancer Immunology and Microbiology, Medicine and Oncology Integrated Service Unit, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, 78504, USA
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
- National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health, Bethesda, MD, 20892, USA
| | - Godwin P Darkwah
- Division of Cancer Immunology and Microbiology, Medicine and Oncology Integrated Service Unit, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, 78504, USA
| | - Aaron George
- South Texas Center of Excellence in Cancer Research (ST-CECR), McAllen, TX, 78504, USA
| | - Sheema Khan
- Division of Cancer Immunology and Microbiology, Medicine and Oncology Integrated Service Unit, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, 78504, USA
- South Texas Center of Excellence in Cancer Research (ST-CECR), McAllen, TX, 78504, USA
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Bilal B Hafeez
- Division of Cancer Immunology and Microbiology, Medicine and Oncology Integrated Service Unit, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, 78504, USA
| | - Nadeem Zafar
- Department of Pathology, University of Washington, Seattle, DC, 98195, USA
| | - Santosh Kumar
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Namita Sinha
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Murali M Yallapu
- Division of Cancer Immunology and Microbiology, Medicine and Oncology Integrated Service Unit, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, 78504, USA
- South Texas Center of Excellence in Cancer Research (ST-CECR), McAllen, TX, 78504, USA
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Meena Jaggi
- Division of Cancer Immunology and Microbiology, Medicine and Oncology Integrated Service Unit, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, 78504, USA
- South Texas Center of Excellence in Cancer Research (ST-CECR), McAllen, TX, 78504, USA
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Subhash C Chauhan
- Division of Cancer Immunology and Microbiology, Medicine and Oncology Integrated Service Unit, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, 78504, USA.
- South Texas Center of Excellence in Cancer Research (ST-CECR), McAllen, TX, 78504, USA.
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
| |
Collapse
|
3
|
Jiang W, Zhang M, Cao R, Wang X, Zuo Y. Different ethanol exposure durations affect cytochrome P450 2E1-mediated sevoflurane metabolism in rat liver. BMC Anesthesiol 2024; 24:321. [PMID: 39256673 PMCID: PMC11384694 DOI: 10.1186/s12871-024-02704-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 08/27/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Chronic alcohol users often exhibit an increased minimum alveolar concentration (MAC) of sevoflurane, yet the specific mechanism remains unclear. It has been reported that ethanol exposure can upregulate the protein expression and enzyme activity of cytochrome P450 2E1 (CYP2E1). CYP2E1 is a key enzyme that converts 2-5% of sevoflurane into equimolar amounts of hexafluoroisopropanol (HFIP) and F-. This study aims to explore whether ethanol exposure could alter sevoflurane metabolism through CYP2E1 modulation, potentially explaining the increased MAC observed in alcohol users. METHODS Eighty adult male Sprague-Dawley (SD) rats were randomly divided into two groups and received either 50% ethanol (dose: 3 g/kg) or 0.9% saline twice daily by gavage. After 1, 2, 3, and 4 weeks of gavage, ten rats were randomly selected from each group to undergo 1-hour anesthesia with 2.3% sevoflurane. Blood samples were collected after anesthesia to measure the concentration of free HFIP using gas chromatography. Additionally, the left lobe tissue of the liver was collected for the analysis of CYP2E1 protein expression by Western blot and CYP2E1 enzyme activity by colorimetric assay. Correlations between these parameters were analyzed using Pearson's correlation. RESULTS In the ethanol group, CYP2E1 expression, activity, and the concentration of free HFIP were significantly higher at all time points compared to the control group (P < 0.05), except for protein expression in the first week (P > 0.05). Within-group comparisons indicated no significant changes in any of the parameters for the control group (P > 0.05). In the ethanol group, there was no difference in free HFIP concentration between the first and second weeks (P > 0.05), but a significant increase was observed in the third and fourth weeks (P < 0.01); protein expression and enzyme activity significantly varied over time, especially showing a notable increase from the first to the third and fourth weeks (P < 0.05). Correlation analysis revealed strong positive correlations between free HFIP concentration and CYP2E1 activity (r = 0.7898), free HFIP concentration and CYP2E1 expression (r = 0.8418), and CYP2E1 activity and expression (r = 0.8740), all with P < 0.001. CONCLUSIONS Ethanol exposure increased both the expression and enzymatic activity of CYP2E1, consequently enhancing the metabolism of sevoflurane.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Anesthesiology, School of Clinical Medicine of North Sichuan Medical College, Nanchong, 637000, Sichuan, China
| | - Min Zhang
- Department of Anesthesiology, School of Clinical Medicine of North Sichuan Medical College, Nanchong, 637000, Sichuan, China
| | - Rui Cao
- Department of Anesthesiology, School of Clinical Medicine of North Sichuan Medical College, Nanchong, 637000, Sichuan, China
| | - Xinghao Wang
- Department of Anesthesiology, School of Clinical Medicine of North Sichuan Medical College, Nanchong, 637000, Sichuan, China
| | - Youbo Zuo
- Department of Anesthesiology, School of Clinical Medicine of North Sichuan Medical College, Nanchong, 637000, Sichuan, China.
- Department of Anesthesiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, China.
| |
Collapse
|
4
|
Kong EQZ, Subramaniyan V, Lubau NSA. Uncovering the impact of alcohol on internal organs and reproductive health: Exploring TLR4/NF-kB and CYP2E1/ROS/Nrf2 pathways. Animal Model Exp Med 2024; 7:444-459. [PMID: 38853347 PMCID: PMC11369036 DOI: 10.1002/ame2.12436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 05/10/2024] [Indexed: 06/11/2024] Open
Abstract
This review delves into the detrimental impact of alcohol consumption on internal organs and reproductive health, elucidating the underlying mechanisms involving the Toll-like receptor 4 (TLR4)/Nuclear factor kappa light chain enhancer of activated B cells (NF-kB) pathway and the Cytochrome P450 2E1 (CYP2E1)/reactive oxygen species (ROS)/nuclear factor erythroid 2-related factor 2 (Nrf2) pathways. The TLR4/NF-kB pathway, crucial for inflammatory and immune responses, triggers the production of pro-inflammatory agents and type-1 interferon, disrupting the balance between inflammatory and antioxidant responses when tissues are chronically exposed to alcohol. Alcohol-induced dysbiosis in gut microbes heightens gut wall permeability to pathogen-associated molecular patterns (PAMPs), leading to liver cell infection and subsequent inflammation. Concurrently, CYP2E1-mediated alcohol metabolism generates ROS, causing oxidative stress and damaging cells, lipids, proteins, and deoxyribonucleic acid (DNA). To counteract this inflammatory imbalance, Nrf2 regulates gene expression, inhibiting inflammatory progression and promoting antioxidant responses. Excessive alcohol intake results in elevated liver enzymes (ADH, CYP2E1, and catalase), ROS, NADH, acetaldehyde, and acetate, leading to damage in vital organs such as the heart, brain, and lungs. Moreover, alcohol negatively affects reproductive health by inhibiting the hypothalamic-pituitary-gonadal axis, causing infertility in both men and women. These findings underscore the profound health concerns associated with alcohol-induced damage, emphasizing the need for public awareness regarding the intricate interplay between immune responses and the multi-organ impacts of alcohol consumption.
Collapse
Affiliation(s)
- Eason Qi Zheng Kong
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health SciencesMonash University MalaysiaSubang JayaSelangorMalaysia
| | - Vetriselvan Subramaniyan
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health SciencesMonash University MalaysiaSubang JayaSelangorMalaysia
- Center for Global Health Research, Saveetha Medical CollegeSaveetha Institute of Medical and Technical SciencesChennaiTamil NaduIndia
| | - Natasha Sura Anak Lubau
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health SciencesMonash University MalaysiaSubang JayaSelangorMalaysia
| |
Collapse
|
5
|
Kumar M, Swanson N, Ray S, Buch S, Saraswathi V, Sil S. Astrocytes in Amyloid Generation and Alcohol Metabolism: Implications of Alcohol Use in Neurological Disorder(s). Cells 2024; 13:1173. [PMID: 39056755 PMCID: PMC11274690 DOI: 10.3390/cells13141173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/29/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
As per the National Survey on Drug Use and Health, 10.5% of Americans aged 12 years and older are suffering from alcohol use disorder, with a wide range of neurological disorders. Alcohol-mediated neurological disorders can be linked to Alzheimer's-like pathology, which has not been well studied. We hypothesize that alcohol exposure can induce astrocytic amyloidosis, which can be corroborated by the neurological disorders observed in alcohol use disorder. In this study, we demonstrated that the exposure of astrocytes to ethanol resulted in an increase in Alzheimer's disease markers-the amyloid precursor protein, Aβ1-42, and the β-site-cleaving enzyme; an oxidative stress marker-4HNE; proinflammatory cytokines-TNF-α, IL1β, and IL6; lncRNA BACE1-AS; and alcohol-metabolizing enzymes-alcohol dehydrogenase, aldehyde dehydrogenase-2, and cytochrome P450 2E1. A gene-silencing approach confirmed the regulatory role of lncRNA BACE1-AS in amyloid generation, alcohol metabolism, and neuroinflammation. This report is the first to suggest the involvement of lncRNA BACE1-AS in alcohol-induced astrocytic amyloid generation and alcohol metabolism. These findings will aid in developing therapies targeting astrocyte-mediated neurological disorders and cognitive deficits in alcohol users.
Collapse
Affiliation(s)
- Mohit Kumar
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Natalie Swanson
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Sudipta Ray
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Viswanathan Saraswathi
- VA Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
- Department of Internal Medicine, Division of Diabetes, Endocrinology, and Metabolism, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Susmita Sil
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
6
|
Babuta M, Morel C, de Carvalho Ribeiro M, Datta AA, Calenda C, Copeland C, Nasser I, Szabo G. A novel experimental model of MetALD in male mice recapitulates key features of severe alcohol-associated hepatitis. Hepatol Commun 2024; 8:e0450. [PMID: 38896082 PMCID: PMC11186819 DOI: 10.1097/hc9.0000000000000450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 03/23/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND The recent increase in the incidence of alcohol-associated hepatitis (AH) coincides with the obesity epidemic in the United States. However, current mouse models do not fully replicate the combined insults of obesity, metabolic dysfunction-associated steatohepatitis, and alcohol. The aim of this study was to develop a new mouse model that recapitulates the robust inflammatory and fibrotic phenotype characteristic of human MetALD. METHODS Eight- to 10-week-old male C57BL/6 mice were fed chow or high fat-cholesterol-sugar diet (metabolic dysfunction-associated steatohepatitis diet) and in each group, some received alcohol in drinking water (ad libitum) and weekly alcohol binges (EtOH) for 3 months. The liver was assessed for features of AH. RESULTS MetALD mice displayed increased liver damage indicated by highly elevated ALT and bilirubin levels compared to all other groups. Liver steatosis was significantly greater in the MetALD mice compared to all other experimental groups. The inflammatory phenotype of MetALD was also recapitulated, including increased IL-6 and IL-1β protein levels as well as increased CD68+ macrophages and Ly6G+ neutrophils in the liver. Sirius red staining and expression of collagen 1, alpha-smooth muscle actin indicated advanced fibrosis in the livers of MetALD mice. In addition, indicators of epithelial-to-mesenchymal transition markers were increased in MetALD mice compared to all other groups. Furthermore, we found increased ductular reaction, dysregulated hedgehog signaling, and decreased liver synthetic functions, consistent with severe AH. CONCLUSIONS Alcohol administration in mice combined with metabolic dysfunction-associated steatohepatitis diet recapitulates key characteristics of human AH including liver damage, steatosis, robust systemic inflammation, and liver immune cell infiltration. This model results in advanced liver fibrosis, ductular reaction, decreased synthetic function, and hepatocyte dedifferentiation, suggesting a robust model of MetALD in mice.
Collapse
Affiliation(s)
- Mrigya Babuta
- Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Caroline Morel
- Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Marcelle de Carvalho Ribeiro
- Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Aditi Ashish Datta
- Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Charles Calenda
- Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Christopher Copeland
- Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Imad Nasser
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Gyongyi Szabo
- Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
7
|
Yang J, Zhuang Q, Tang K, Liu X. Exploring the action mechanism of Gegensan in the treatment of alcoholic liver disease based on network pharmacology and bioinformatics. Medicine (Baltimore) 2024; 103:e38315. [PMID: 38905402 PMCID: PMC11191986 DOI: 10.1097/md.0000000000038315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 04/30/2024] [Indexed: 06/23/2024] Open
Abstract
Gegensan (GGS) has been reported for the treatment of alcoholic liver disease (ALD), but its therapeutic mechanism is still unclear. This paper aims to determine the therapeutic mechanism and targets of action of GGS on alcoholic liver disease utilizing network pharmacology and bioinformatics. The active ingredients in GGS were screened in the literature and databases, and common targets of ALD were then obtained from public databases to construct the network diagram of traditional Chinese medicine-active ingredient targets. Based on the common targets, Gene Ontology enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were performed to find target enrichment pathways, and the core targets were screened out by combining differential analysis and protein-protein interaction network analysis. Molecular docking was performed to verify the binding effect between the core targets and the corresponding active ingredients. ALD and GGS have 84 common targets, corresponding to 91 active ingredients. After subsequent differential analysis and protein-protein interaction network analysis, 10 core targets were identified. Gene Ontology and KEGG enrichment analyses showed that the main BPs corresponding to the common targets included the response to lipopolysaccharide, inflammatory response, etc. The KEGG pathways involved in the regulation of the common targets included the lipid-atherosclerosis pathway and the alcoholic liver disease pathway, etc. Further molecular docking showed that the core targets CYP1A1, CYP1A2, CXCL8, ADH1C, MMP1, SERPINE1, COL1A1, APOB, MMP1, and their corresponding 4 active ingredients, Naringenin, Kaempferol, Quercetin, and Stigmasterol, have a greater docking potential. The above results suggest that GGS can regulate lipid metabolism and inflammatory response in the ALD process, and alleviate the lipid accumulation and oxidative stress caused by ethanol. This study analyzed the core targets and mechanisms of action of GGS on ALD, which provides certain theoretical support for the further development of GGS in the treatment of ALD, and provides a reference for the subsequent research on the treatment of ALD.
Collapse
Affiliation(s)
- Jiakai Yang
- Department of Biological Engineering, Qilu University of Technology, Jinan, Shandong Province 250303, China
| | - Qianqian Zhuang
- Department of Biological Engineering, Qilu University of Technology, Jinan, Shandong Province 250303, China
| | - Ke Tang
- Department of Biological Engineering, Qilu University of Technology, Jinan, Shandong Province 250303, China
| | - Xinli Liu
- Department of Biological Engineering, Qilu University of Technology, Jinan, Shandong Province 250303, China
| |
Collapse
|
8
|
Yoo N, Thomas S, Bender M, Cheng XJC. A Case of Hepatotoxicity Induced by Therapeutic Ketamine Use for Sedation. Case Rep Crit Care 2024; 2024:8366034. [PMID: 38505599 PMCID: PMC10950395 DOI: 10.1155/2024/8366034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/23/2024] [Accepted: 02/19/2024] [Indexed: 03/21/2024] Open
Abstract
Ketamine, initially developed as an anesthetic, has shown versatility in medical applications, including pain management, treatment-resistant depression, and sedation in the intensive care unit (ICU). While generally well-tolerated, long-term use at high doses raises concerns about potential toxicities, particularly in the liver. We present a case of a 27-year-old female with a complex medical history who received ketamine infusion for ICU sedation and experienced a sudden rise in liver function tests (LFTs), indicating possible ketamine-induced liver injury (KILI). The patient's liver function normalized after ketamine discontinuation. KILI is infrequent with short-term ketamine use, but emerging case reports suggest it may be associated with chronic or intermittent exposure. The underlying mechanisms for KILI are not fully understood but may involve the accumulation of ketamine metabolites, causing direct toxic effects on the liver. As ketamine's use expands, especially in critical care settings, clinicians should be vigilant for the potential development of KILI. Further research is needed to better understand its risk factors and mechanisms, as early detection and management of KILI are crucial to ensuring patient safety and optimizing ketamine's therapeutic benefits.
Collapse
Affiliation(s)
- Noah Yoo
- NYU Langone Health Long Island, Mineola, NY, USA
| | - Sarun Thomas
- NYU Langone Health Long Island, Mineola, NY, USA
| | | | | |
Collapse
|
9
|
Reis-Mendes A, Vitorino-Oliveira C, Ferreira M, Carvalho F, Remião F, Sousa E, de Lourdes Bastos M, Costa VM. Comparative In Vitro Study of the Cytotoxic Effects of Doxorubicin's Main Metabolites on Cardiac AC16 Cells Versus the Parent Drug. Cardiovasc Toxicol 2024; 24:266-279. [PMID: 38347287 PMCID: PMC10937802 DOI: 10.1007/s12012-024-09829-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 01/10/2024] [Indexed: 03/14/2024]
Abstract
Doxorubicin (DOX; also known as adriamycin) serves as a crucial antineoplastic agent in cancer treatment; however, its clinical utility is hampered by its' intrinsic cardiotoxicity. Although most DOX biotransformation occurs in the liver, a comprehensive understanding of the impact of DOX biotransformation and its' metabolites on its induced cardiotoxicity remains to be fully elucidated. This study aimed to explore the role of biotransformation and DOX's main metabolites in its induced cardiotoxicity in human differentiated cardiac AC16 cells. A key discovery from our study is that modulating metabolism had minimal effects on DOX-induced cytotoxicity: even so, metyrapone (a non-specific inhibitor of cytochrome P450) increased DOX-induced cytotoxicity at 2 µM, while diallyl sulphide (a CYP2E1 inhibitor) decreased the 1 µM DOX-triggered cytotoxicity. Then, the toxicity of the main DOX metabolites, doxorubicinol [(DOXol, 0.5 to 10 µM), doxorubicinone (DOXone, 1 to 10 µM), and 7-deoxydoxorubicinone (7-DeoxyDOX, 1 to 10 µM)] was compared to DOX (0.5 to 10 µM) following a 48-h exposure. All metabolites evaluated, DOXol, DOXone, and 7-DeoxyDOX caused mitochondrial dysfunction in differentiated AC16 cells, but only at 2 µM. In contrast, DOX elicited comparable cytotoxicity, but at half the concentration. Similarly, all metabolites, except 7-DeoxyDOX impacted on lysosomal ability to uptake neutral red. Therefore, the present study showed that the modulation of DOX metabolism demonstrated minimal impact on its cytotoxicity, with the main metabolites exhibiting lower toxicity to AC16 cardiac cells compared to DOX. In conclusion, our findings suggest that metabolism may not be a pivotal factor in mediating DOX's cardiotoxic effects.
Collapse
Affiliation(s)
- Ana Reis-Mendes
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
- Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, UCIBIO - Applied Molecular Biosciences Unit, University of Porto, 4050-313, Porto, Portugal
| | - Cláudia Vitorino-Oliveira
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
- Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, UCIBIO - Applied Molecular Biosciences Unit, University of Porto, 4050-313, Porto, Portugal
| | - Mariana Ferreira
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
- Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, UCIBIO - Applied Molecular Biosciences Unit, University of Porto, 4050-313, Porto, Portugal
| | - Félix Carvalho
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
- Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, UCIBIO - Applied Molecular Biosciences Unit, University of Porto, 4050-313, Porto, Portugal
| | - Fernando Remião
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
- Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, UCIBIO - Applied Molecular Biosciences Unit, University of Porto, 4050-313, Porto, Portugal
| | - Emília Sousa
- Laboratory of Organic and Pharmaceutical Chemistry, Chemistry Department, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, 4450-208, Porto, Portugal
| | - Maria de Lourdes Bastos
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
- Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, UCIBIO - Applied Molecular Biosciences Unit, University of Porto, 4050-313, Porto, Portugal
| | - Vera Marisa Costa
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.
- Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, UCIBIO - Applied Molecular Biosciences Unit, University of Porto, 4050-313, Porto, Portugal.
- Toxicology Laboratory, Faculty of Pharmacy, UCIBIO, University Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
| |
Collapse
|
10
|
Popova D, Sun J, Chow HM, Hart RP. A critical review of ethanol effects on neuronal firing: A metabolic perspective. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2024; 48:450-458. [PMID: 38217065 DOI: 10.1111/acer.15266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/22/2023] [Accepted: 01/02/2024] [Indexed: 01/14/2024]
Abstract
Ethanol metabolism is relatively understudied in neurons, even though changes in neuronal metabolism are known to affect their activity. Recent work demonstrates that ethanol is preferentially metabolized over glucose as a source of carbon and energy, and it reprograms neurons to a state of reduced energy potential and diminished capacity to utilize glucose once ethanol is exhausted. Ethanol intake has been associated with changes in neuronal firing and specific brain activity (EEG) patterns have been linked with risk for alcohol use disorder (AUD). Furthermore, a haplotype of the inwardly rectifying potassium channel subunit, GIRK2, which plays a critical role in regulating excitability of neurons, has been linked with AUD and shown to be directly regulated by ethanol. At the same time, overexpression of GIRK2 prevents ethanol-induced metabolic changes. Based on the available evidence, we conclude that the mechanisms underlying the effects of ethanol on neuronal metabolism are a novel target for developing therapies for AUD.
Collapse
Affiliation(s)
- Dina Popova
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey, USA
| | - Jacquelyne Sun
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Hei-Man Chow
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong, Hong Kong
- Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Ronald P Hart
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey, USA
| |
Collapse
|
11
|
Ishteyaque S, Yadav KS, Verma S, Washimkar KR, Mugale MN. CYP2E1 triggered GRP78/ATF6/CHOP signaling axis inhibit apoptosis and promotes progression of hepatocellular carcinoma. Arch Biochem Biophys 2023; 745:109701. [PMID: 37499993 DOI: 10.1016/j.abb.2023.109701] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/09/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
Hepatocellular carcinoma (HCC) is the leading cause of cancer-related death worldwide. Cytochrome P450 2E1 (CYP2E1) is an enzyme, primarily involved in the metabolism of xenobiotics and procarcinogens. The present study was designed to investigate the potential role of CYP2E1 triggered endoplasmic reticulum stress in the progression of HCC through inhibition of apoptosis. In vitro CYP2E1 promotes HepG2 cell migration, reduced chromatin condensation, enhanced intracellular ROS accumulation and induce cell cycle progression. Conversely this effect was averted by CYP2E1 siRNA, selective inhibitor Diallyl sulphide (DAS) and antioxidants (vitamin C and E). In vivo Diethylnitrosamine (DEN) induced HCC rats showed decreased body weight and increased relative liver weight. Moreover, macro trabecular-massive HCC (MTM-HCC) histological subtyping showed pathological features like well-differentiated tumors, micro-trabecular and pseudo glandular patterns, megakaryocytes and cholestasis. Masson's trichrome staining revealed an intensive accumulation of collagen fibers in the extracellular matrix (ECM). Increased CYP2E1, VEGF and PCNA enhance the carcinogenicity as revealed in immunohistochemistry results. Immunoblot analysis showed reduced expression of copper-zinc superoxide dismutase (CuZnSOD) and manganese superoxide dismutase (MnSOD) in cytosolic as well as mitochondrial fraction of rat liver tissue respectively. Also, increased level of CYP2E1 stimulated the upregulation of unfolded proteins response (UPR) and ER stress-related proteins such as Glucose regulatory protein 78 (GRP78), activating transcription factor 6 (ATF6) and CCAAT enhancer-binding protein (C/EBP) homologous protein (CHOP). Meanwhile, CYP2E1 stimulated ER-stress reduces BCL2 and downregulates the cleaved caspase 3 thus suppresses apoptosis. in. Furthermore, immunofluorescence revealed increased expression level of α-SMA in the HCC rat liver tissue. The level of CYP2E1 mRNA was significantly increased. Altogether, these findings indicate that CYP2E1 has a dynamic role in the pathogenesis of HCC and might be a budding agent in liver carcinogenesis therapy.
Collapse
Affiliation(s)
- Sharmeen Ishteyaque
- Division of Cancer Biology CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Karan Singh Yadav
- Division of Cancer Biology CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Smriti Verma
- Division of Cancer Biology CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Kaveri R Washimkar
- Division of Cancer Biology CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Madhav Nilakanth Mugale
- Division of Cancer Biology CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
12
|
Kukowka A, Brzuchalski B, Kurzawski M, Malinowski D, Białecka MA. ADH1B, ADH1B/C and CYP2E1 Gene Polymorphism and the Risk of Fetal Alcohol Spectrum Disorder. Genes (Basel) 2023; 14:1392. [PMID: 37510297 PMCID: PMC10379323 DOI: 10.3390/genes14071392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/24/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Increasing alcohol consumption by women of childbearing age contributes to more frequent cases of fetal alcohol spectrum disorder. The cause of the syndrome is fetal alcohol exposure, particularly what is referred to as high prenatal alcohol exposure. Low metabolic activity of fetal enzymes shifts the burden of ethanol removal to maternal metabolism. One of the factors influencing the pathogenesis of FASD is the genetic background. It can determine the rate of elimination of ethanol, thus increasing or decreasing the time of fetal exposure to ethanol and also decreasing its concentration. Genetic polymorphisms could potentially play a significant role in these processes. In the present study, we considered three polymorphisms of genes implicated in the synthesis of enzymes involved in ethanol metabolism, i.e., ADH1b (rs1229984), ADH1b/c (rs1789891), and CYP2E1 (rs3813867). The studied group consisted of 303 children and 251 mothers. Both mothers' and children's genotypes were considered in our analysis. There were no statistically significant differences between the respective groups of genotypes of the studied polymorphisms. However, the genetic background of FASD is still elusive.
Collapse
Affiliation(s)
- Arnold Kukowka
- Department of Pharmacokinetics and Therapeutic Drug Monitoring, Pomeranian Medical University, Aleja Powstanców Wielkopolskich 72 St., 70-111 Szczecin, Poland (D.M.)
| | - Bogusław Brzuchalski
- Department of Pharmacokinetics and Therapeutic Drug Monitoring, Pomeranian Medical University, Aleja Powstanców Wielkopolskich 72 St., 70-111 Szczecin, Poland (D.M.)
| | - Mateusz Kurzawski
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, Aleja Powstanców Wielkopolskich 72 St., 70-111 Szczecin, Poland;
| | - Damian Malinowski
- Department of Pharmacokinetics and Therapeutic Drug Monitoring, Pomeranian Medical University, Aleja Powstanców Wielkopolskich 72 St., 70-111 Szczecin, Poland (D.M.)
| | - Monika Anna Białecka
- Department of Pharmacokinetics and Therapeutic Drug Monitoring, Pomeranian Medical University, Aleja Powstanców Wielkopolskich 72 St., 70-111 Szczecin, Poland (D.M.)
| |
Collapse
|
13
|
Lin MY, Damron TA, Horton JA. Cell cycle arrest and apoptosis are early events in radiosensitization of EWS::FLI1 + Ewing sarcoma cells by Mithramycin A. Int J Radiat Biol 2023; 99:1570-1583. [PMID: 36913323 DOI: 10.1080/09553002.2023.2188930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 02/23/2023] [Indexed: 03/14/2023]
Abstract
PURPOSE The oncogenic fusion protein EWS::FLI1 is an attractive therapeutic target in Ewing sarcoma (ES). Mithramycin A (MithA) is a potent and specific inhibitor of EWS::FLI1 that can selectively radiosensitize ES cells through transcriptional inhibition of DNA double-strand break (DSB) repair. Here, we evaluate temporal changes in cell cycle progression and apoptosis in ES cells treated with MithA and/or ionizing radiation (RTx), testing the hypothesis that combining MithA with ionizing radiation would synergistically impair cell cycle progression and enhance apoptotic elimination to a greater extent than either agent alone. MATERIALS AND METHODS Four EWS::FLI1+ ES cell lines TC-71, RD-ES, SK-ES-1, and A673, and one EWS::ERG cell line (CHLA-25) were exposed to 10nM MithA or vehicle and followed 24 h later by exposure to 2 Gy x-radiation or sham irradiation. Reactive oxygen species (ROS) activity was evaluated by cytometric assay, and assay of antioxidant gene expression by RT-qPCR. Cell cycle changes were evaluated by flow cytometry of nuclei stained with propidium iodide. Apoptosis was assessed by cytometric assessment of Caspase-3/7 activity and by immunoblotting of PARP-1 cleavage. Radiosensitization was evaluated by clonogenic survival assay. Proliferation (EdU) and apoptosis (TUNEL) were evaluated in SK-ES-1 xenograft tumors following pretreatment with 1 mg/kg MithA, followed 24 h later by a single 4 Gy fraction of x-radiation. RESULTS MithA-treated cells showed reduced levels of ROS, and were associated with increased expression of antioxidant genes SOD1, SOD2, and CAT. It nonetheless induced persistent G0/G1 arrest and a progressive increase of the sub-G1 fraction, suggesting apoptotic degeneration. In vitro assays of Caspase-3/7 activity and immunoblotting of Caspase-3/7 dependent cleavage of PARP-1 indicated that apoptosis began as early as 24 h after MithA exposure, reducing clonogenic survival. Tumors from xenograft mice treated with either radiation alone, or in combination with MithA showed a significant reduction of tumor cell proliferation, while apoptosis was significantly increased in the group receiving the combination of MithA and RTx. CONCLUSIONS Taken together, our data show that the anti-proliferative and cytotoxic effects of MithA are the prominent components of radiosensitization of EWS::FLI1+ ES, rather than the result of acutely enhanced ROS levels.
Collapse
Affiliation(s)
- Mei Yun Lin
- Department of Orthopedic Surgery, SUNY Upstate Medical University, Syracuse, NY, USA
- Cell & Developmental Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Timothy A Damron
- Department of Orthopedic Surgery, SUNY Upstate Medical University, Syracuse, NY, USA
- Cell & Developmental Biology, SUNY Upstate Medical University, Syracuse, NY, USA
- Department of Radiation Oncology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Jason A Horton
- Department of Orthopedic Surgery, SUNY Upstate Medical University, Syracuse, NY, USA
- Cell & Developmental Biology, SUNY Upstate Medical University, Syracuse, NY, USA
- Department of Radiation Oncology, SUNY Upstate Medical University, Syracuse, NY, USA
| |
Collapse
|
14
|
Zhai Z, Yamauchi T, Shangraw S, Hou V, Matsumoto A, Fujita M. Ethanol Metabolism and Melanoma. Cancers (Basel) 2023; 15:1258. [PMID: 36831600 PMCID: PMC9954650 DOI: 10.3390/cancers15041258] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
Malignant melanoma is the deadliest form of skin cancer. Despite significant efforts in sun protection education, melanoma incidence is still rising globally, drawing attention to other socioenvironmental risk factors for melanoma. Ethanol and acetaldehyde (AcAH) are ubiquitous in our diets, medicines, alcoholic beverages, and the environment. In the liver, ethanol is primarily oxidized to AcAH, a toxic intermediate capable of inducing tumors by forming adducts with proteins and DNA. Once in the blood, ethanol and AcAH can reach the skin. Although, like the liver, the skin has metabolic mechanisms to detoxify ethanol and AcAH, the risk of ethanol/AcAH-associated skin diseases increases when the metabolic enzymes become dysfunctional in the skin. This review highlights the evidence linking cutaneous ethanol metabolism and melanoma. We summarize various sources of skin ethanol and AcAH and describe how the reduced activity of each alcohol metabolizing enzyme affects the sensitivity threshold to ethanol/AcAH toxicity. Data from the Gene Expression Omnibus database also show that three ethanol metabolizing enzymes (alcohol dehydrogenase 1B, P450 2E1, and catalase) and an AcAH metabolizing enzyme (aldehyde dehydrogenase 2) are significantly reduced in melanoma tissues.
Collapse
Affiliation(s)
- Zili Zhai
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Takeshi Yamauchi
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Sarah Shangraw
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Vincent Hou
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Akiko Matsumoto
- Department of Social Medicine, School of Medicine, Saga University, Saga 849-8501, Japan
| | - Mayumi Fujita
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Veterans Affairs Medical Center, VA Eastern Colorado Health Care System, Aurora, CO 80045, USA
| |
Collapse
|
15
|
Reis-Mendes A, Carvalho F, Remião F, Sousa E, de Lourdes Bastos M, Costa VM. Autophagy (but not metabolism) is a key event in mitoxantrone-induced cytotoxicity in differentiated AC16 cardiac cells. Arch Toxicol 2023; 97:201-216. [PMID: 36216988 DOI: 10.1007/s00204-022-03363-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/11/2022] [Indexed: 01/19/2023]
Abstract
Mitoxantrone (MTX) is an antineoplastic agent used to treat advanced breast cancer, prostate cancer, acute leukemia, lymphoma and multiple sclerosis. Although it is known to cause cumulative dose-related cardiotoxicity, the underlying mechanisms are still poorly understood. This study aims to compare the cardiotoxicity of MTX and its' pharmacologically active metabolite naphthoquinoxaline (NAPHT) in an in vitro cardiac model, human-differentiated AC16 cells, and determine the role of metabolism in the cardiotoxic effects. Concentration-dependent cytotoxicity was observed after MTX exposure, affecting mitochondrial function and lysosome uptake. On the other hand, the metabolite NAPHT only caused concentration-dependent cytotoxicity in the MTT reduction assay. When assessing the effect of different inhibitors/inducers of metabolism, it was observed that metyrapone (a cytochrome P450 inhibitor) and phenobarbital (a cytochrome P450 inducer) slightly increased MTX cytotoxicity, while 1-aminobenzotriazole (a suicide cytochrome P450 inhibitor) decreased fairly the MTX-triggered cytotoxicity in differentiated AC16 cells. When focusing in autophagy, the mTOR inhibitor rapamycin and the autophagy inhibitor 3-methyladenine exacerbated the cytotoxicity caused by MTX and NAPHT, while the autophagy blocker, chloroquine, partially reduced the cytotoxicity of MTX. In addition, we observed a decrease in p62, beclin-1, and ATG5 levels and an increase in LC3-II levels in MTX-incubated cells. In conclusion, in our in vitro model, neither metabolism nor exogenously given NAPHT are major contributors to MTX toxicity as seen by the residual influence of metabolism modulators used on the observed cytotoxicity and by NAPHT's low cytotoxicity profile. Conversely, autophagy is involved in MTX-induced cytotoxicity and MTX seems to act as an autophagy inducer, possibly through p62/LC3-II involvement.
Collapse
Affiliation(s)
- Ana Reis-Mendes
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.,Department of Biological Sciences, UCIBIO - Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Félix Carvalho
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.,Department of Biological Sciences, UCIBIO - Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Fernando Remião
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.,Department of Biological Sciences, UCIBIO - Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Emília Sousa
- Laboratory of Organic and Pharmaceutical Chemistry, Chemistry Department, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.,CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, 4450-208, Porto, Portugal
| | - Maria de Lourdes Bastos
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.,Department of Biological Sciences, UCIBIO - Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Vera Marisa Costa
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal. .,Department of Biological Sciences, UCIBIO - Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
| |
Collapse
|
16
|
Alcohol use patterns and risk of incident cataract surgery: a large scale case-control study in Japan. Sci Rep 2022; 12:20142. [PMID: 36418504 PMCID: PMC9684480 DOI: 10.1038/s41598-022-24465-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 11/15/2022] [Indexed: 11/24/2022] Open
Abstract
To examine the risk of incident cataract surgery associated with alcohol use patterns among Japanese adults. This was a case-control study evaluating 14,861 patients with incident cataract surgery and 14,861 matched controls. Subjects admitted to any of the 34 hospitals in Japan and aged between 40 and 69 years were included. Drinking patterns (drinking frequency, daily average drinks, and total amount of lifetime drinking), smoking history, lifestyle-related comorbidities, and occupational factors were surveyed by trained interviewers. Odds ratios (ORs) and 95% confidence intervals (CIs) were estimated using conditional logistic regression models. For drinking frequency, ORs in the 1-3 days/week and 4-7 days/week groups were 1.10 (95% CI 1.03-1.17) and 1.30 (1.21-1.40), respectively. For average drinks, ORs in > 0-2 drinks/day, > 2-4 drinks/day, and > 4 drinks/day were 1.13 (1.06-1.20), 1.23 (1.12-1.35), and 1.16 (1.03-1.31), respectively. Both men and women had an increased risk of incident cataract surgery with increased total lifetime drinking, with a significant increase in risk occurring at > 90 drink-years for men and > 40 drink-years for women. A positive dose-response relationship was observed between alcohol consumption and cataract. Restricted drinking may help to reduce the progression of cataracts.
Collapse
|
17
|
Yamauchi T, Shangraw S, Zhai Z, Ravindran Menon D, Batta N, Dellavalle RP, Fujita M. Alcohol as a Non-UV Social-Environmental Risk Factor for Melanoma. Cancers (Basel) 2022; 14:5010. [PMID: 36291794 PMCID: PMC9599745 DOI: 10.3390/cancers14205010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 12/24/2022] Open
Abstract
Although cancer mortality has declined among the general population, the incidence of melanoma continues to rise. While identifying high-risk cohorts with genetic risk factors improves public health initiatives and clinical care management, recognizing modifiable risk factors such as social-environmental risk factors would also affect the methods of patient outreach and education. One major modifiable social-environmental risk factor associated with melanoma is ultraviolet (UV) radiation. However, not all forms of melanoma are correlated with sun exposure or occur in sun-exposed areas. Additionally, UV exposure is rarely associated with tumor progression. Another social-environmental factor, pregnancy, does not explain the sharply increased incidence of melanoma. Recent studies have demonstrated that alcohol consumption is positively linked with an increased risk of cancers, including melanoma. This perspective review paper summarizes epidemiological data correlating melanoma incidence with alcohol consumption, describes the biochemical mechanisms of ethanol metabolism, and discusses how ethanol and ethanol metabolites contribute to human cancer, including melanoma.
Collapse
Affiliation(s)
- Takeshi Yamauchi
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Sarah Shangraw
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Zili Zhai
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Dinoop Ravindran Menon
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Nisha Batta
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Robert P Dellavalle
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Veterans Affairs Medical Center, VA Eastern Colorado Health Care System, Aurora, CO 80045, USA
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Mayumi Fujita
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Veterans Affairs Medical Center, VA Eastern Colorado Health Care System, Aurora, CO 80045, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
18
|
Ryu T, Kim K, Choi SE, Chung KPS, Jeong WI. New insights in the pathogenesis of alcohol-related liver disease: The metabolic, immunologic, and neurologic pathways. LIVER RESEARCH 2022. [DOI: 10.1016/j.livres.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
19
|
Martín-Estal I, Fajardo-Ramírez ÓR, Bermúdez de León M, Zertuche-Mery C, Benavides-Guajardo R, García-Cruz MI, Rodríguez De Ita J, Castilla-Cortázar I, Castorena-Torres F. Effect of Ethanol Consumption on the Placenta and Liver of Partially IGF-1-Deficient Mice: The Role of Metabolism via CYP2E1 and the Antioxidant Enzyme System. BIOLOGY 2022; 11:biology11091264. [PMID: 36138743 PMCID: PMC9495332 DOI: 10.3390/biology11091264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/16/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022]
Abstract
Simple Summary Ethanol is the most consumed drug worldwide, even during pregnancy. One of its adverse outcomes is fetal growth restriction, an alteration in development due to decreased IGF-1 levels. Several studies have shown that ethanol can impair the IGF-1 signaling pathway, thus exacerbating IGF-1 adverse effects in both intrauterine and postnatal growth and development. In this manuscript, we used a partially IGF-1-deficient mouse model to demonstrate the key role of IGF-1 in fetal development, as well as ethanol’s adverse effects on CYP2E1 expression levels and the antioxidant enzyme system during pregnancy. Abstract Ethanol use during pregnancy is a risk factor for developing adverse outcomes. Its metabolism by cytochrome P450 2E1 (CYP2E1) produces radical oxygen species (ROS), promoting cellular injury and apoptosis. To date, no studies have been conducted to elucidate the teratogenic effects due to both IGF-1 deficiency and ethanol consumption in mice placentas. The aim of this study is to determine the effect of ethanol consumption on the placenta and liver of partially IGF-1-deficient mice, the role of metabolism via CYP2E1, and the antioxidant enzyme system. Heterozygous (HZ, Igf1+/−) pregnant female mice were given water or 10% ethanol. Wild-type (WT, Igf1+/+) female mice were used as controls. At gestational day 19, pregnant dams were euthanized, and maternal liver and placentas were collected. Pregnant HZ dams were smaller than controls, and this effect was higher due to ethanol consumption. Cyp2e1 gene was overexpressed in the liver of HZ pregnant dams exposed to ethanol; at the protein level, CYP2E1 is reduced in placentas from all genotypes. The antioxidant enzymatic system was altered by ethanol consumption in both the maternal liver and placenta. The results in this work hint that IGF-1 is involved in intrauterine development because its deficiency exacerbates ethanol’s effects on both metabolism and the placenta.
Collapse
Affiliation(s)
- Irene Martín-Estal
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000, Monterrey 64710, N.L., Mexico
| | - Óscar R. Fajardo-Ramírez
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000, Monterrey 64710, N.L., Mexico
| | - Mario Bermúdez de León
- Departamento de Biología Molecular, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Monterrey 64720, N.L., Mexico
| | - Carolina Zertuche-Mery
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000, Monterrey 64710, N.L., Mexico
| | - Rodolfo Benavides-Guajardo
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000, Monterrey 64710, N.L., Mexico
| | - María Isabel García-Cruz
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000, Monterrey 64710, N.L., Mexico
| | - Julieta Rodríguez De Ita
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000, Monterrey 64710, N.L., Mexico
| | - Inma Castilla-Cortázar
- Fundación de Investigación HM Hospitales, 28015 Madrid, Spain
- Correspondence: (I.C.-C.); (F.C.-T.)
| | - Fabiola Castorena-Torres
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000, Monterrey 64710, N.L., Mexico
- Correspondence: (I.C.-C.); (F.C.-T.)
| |
Collapse
|
20
|
Hepatic, Extrahepatic and Extracellular Vesicle Cytochrome P450 2E1 in Alcohol and Acetaminophen-Mediated Adverse Interactions and Potential Treatment Options. Cells 2022; 11:cells11172620. [PMID: 36078027 PMCID: PMC9454765 DOI: 10.3390/cells11172620] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/03/2022] [Accepted: 08/19/2022] [Indexed: 12/15/2022] Open
Abstract
Alcohol and several therapeutic drugs, including acetaminophen, are metabolized by cytochrome P450 2E1 (CYP2E1) into toxic compounds. At low levels, these compounds are not detrimental, but higher sustained levels of these compounds can lead to life-long problems such as cytotoxicity, organ damage, and cancer. Furthermore, CYP2E1 can facilitate or enhance the effects of alcohol-drug and drug-drug interactions. In this review, we discuss the role of CYP2E1 in the metabolism of alcohol and drugs (with emphasis on acetaminophen), mediating injury/toxicities, and drug-drug/alcohol-drug interactions. Next, we discuss various compounds and various nutraceuticals that can reduce or prevent alcohol/drug-induced toxicity. Additionally, we highlight experimental outcomes of alcohol/drug-induced toxicity and potential treatment strategies. Finally, we cover the role and implications of extracellular vesicles (EVs) containing CYP2E1 in hepatic and extrahepatic cells and provide perspectives on the clinical relevance of EVs containing CYP2E1 in intracellular and intercellular communications leading to drug-drug and alcohol-drug interactions. Furthermore, we provide our perspectives on CYP2E1 as a druggable target using nutraceuticals and the use of EVs for targeted drug delivery in extrahepatic and hepatic cells, especially to treat cellular toxicity.
Collapse
|
21
|
Pravda J. Evidence-based pathogenesis and treatment of ulcerative colitis: A causal role for colonic epithelial hydrogen peroxide. World J Gastroenterol 2022; 28:4263-4298. [PMID: 36159014 PMCID: PMC9453768 DOI: 10.3748/wjg.v28.i31.4263] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/19/2022] [Accepted: 07/22/2022] [Indexed: 02/06/2023] Open
Abstract
In this comprehensive evidence-based analysis of ulcerative colitis (UC), a causal role is identified for colonic epithelial hydrogen peroxide (H2O2) in both the pathogenesis and relapse of this debilitating inflammatory bowel disease. Studies have shown that H2O2 production is significantly increased in the non-inflamed colonic epithelium of individuals with UC. H2O2 is a powerful neutrophilic chemotactic agent that can diffuse through colonic epithelial cell membranes creating an interstitial chemotactic molecular “trail” that attracts adjacent intravascular neutrophils into the colonic epithelium leading to mucosal inflammation and UC. A novel therapy aimed at removing the inappropriate H2O2 mediated chemotactic signal has been highly effective in achieving complete histologic resolution of colitis in patients experiencing refractory disease with at least one (biopsy-proven) histologic remission lasting 14 years to date. The evidence implies that therapeutic intervention to prevent the re-establishment of a pathologic H2O2 mediated chemotactic signaling gradient will indefinitely preclude neutrophilic migration into the colonic epithelium constituting a functional cure for this disease. Cumulative data indicate that individuals with UC have normal immune systems and current treatment guidelines calling for the suppression of the immune response based on the belief that UC is caused by an underlying immune dysfunction are not supported by the evidence and may cause serious adverse effects. It is the aim of this paper to present experimental and clinical evidence that identifies H2O2 produced by the colonic epithelium as the causal agent in the pathogenesis of UC. A detailed explanation of a novel therapeutic intervention to normalize colonic H2O2, its rationale, components, and formulation is also provided.
Collapse
Affiliation(s)
- Jay Pravda
- Disease Pathogenesis, Inflammatory Disease Research Centre, Palm Beach Gardens, FL 33410, United States
| |
Collapse
|
22
|
Hanna C, Boily M, Jumarie C. Pesticides Inhibit Retinoic Acid Catabolism in PLHC-1 and ZFL Fish Hepatic Cell Lines. Chem Res Toxicol 2022; 35:1045-1058. [PMID: 35608517 PMCID: PMC9214766 DOI: 10.1021/acs.chemrestox.2c00050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The population of yellow perch (Perca flavescens) in lake Saint-Pierre (QC, Canada) has been dramatically declining since 1995 without any sign of recovery. Previous studies have shown disrupted retinoid (vitamin A) metabolic pathways in these fish, possibly due to the influence of pesticides. Our study aimed to evaluate the impact of some herbicides and neonicotinoids on retinoic acid catabolism in the fish hepatic cell lines PLHC-1 and ZFL. We hypothesized that pesticides accelerate the catabolism of retinoic acid through oxidative stress that exacerbates the oxidation of retinoic acid. Results obtained with talarozole, a specific CYP26A1 inhibitor, and ketoconazole, a generalist inhibitor of cytochrome-P450 enzymes, revealed that CYP26A1 is mainly responsible for retinoic acid catabolism in ZFL but not PLHC-1 cells. The impacts of pesticides on retinoic acid catabolism were evaluated by incubating the cells with all-trans-retinoic acid and two herbicides, atrazine and glyphosate, or three neonicotinoids, clothianidin, imidacloprid, and thiamethoxam. Intracellular thiols and lipid peroxidation were measured following pesticide exposure. The possible causal relation between oxidative stress and the perturbation of retinoic acid catabolism was investigated using the antioxidant N-acetylcysteine. The data revealed that pesticides inhibit retinoic acid catabolism, with the involvement of oxidative stress in the case of atrazine, imidacloprid, and thiamethoxam but not with clothianidin and glyphosate. Pesticides also affected the isomerization of all-trans-retinoic acid over time, leading to an increased proportion of active isomers. These results hint at a possible perturbation of retinoic acid catabolism in fish living in pesticide-contaminated waters, as suggested by several in vivo studies. Such a disruption of retinoid metabolism is worrying, given the numerous physiological pathways driven by retinoids.
Collapse
Affiliation(s)
- Charbel Hanna
- Département des sciences biologiques, Groupe TOXEN, Université du Québec à Montréal, C.P. 8888, Succursale Centre-Ville, Montréal, Quebec H3C 3P8, Canada
| | - Monique Boily
- Département des sciences biologiques, Groupe TOXEN, Université du Québec à Montréal, C.P. 8888, Succursale Centre-Ville, Montréal, Quebec H3C 3P8, Canada
| | - Catherine Jumarie
- Département des sciences biologiques, Groupe TOXEN, Université du Québec à Montréal, C.P. 8888, Succursale Centre-Ville, Montréal, Quebec H3C 3P8, Canada
| |
Collapse
|
23
|
Roles of homopolymeric apoferritin in alleviating alcohol-induced liver injury. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
24
|
Abu-Bakar A, Tan BH, Halim H, Ramli S, Pan Y, Ong6 CE. Cytochromes P450: Role in Carcinogenesis and Relevance to Cancers. Curr Drug Metab 2022; 23:355-373. [DOI: 10.2174/1389200223666220328143828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/06/2021] [Accepted: 01/25/2022] [Indexed: 11/22/2022]
Abstract
Abstracts:
Cancer is a leading factor of mortality globally. Cytochrome P450 (CYP) enzymes play a pivotal role in the biotransformation of both endogenous and exogenous compounds. Evidence from numerous epidemiological, animal, and clinical studies points to instrumental role of CYPs in cancer initiation, metastasis, and prevention. Substantial research has found that CYPs are involved in activating different carcinogenic chemicals in the environment, such as polycyclic aromatic hydrocarbons and tobacco-related nitrosamines. Electrophilic intermediates produced from these chemicals can covalently bind to DNA, inducing mutation and cellular transformation that collectively result in cancer development. While bioactivation of procarcinogens and promutagens by CYPs has long been established, the role of CYP-derived endobiotics in carcinogenesis has emerged in recent years. Eicosanoids derived from arachidonic acid via CYP oxidative pathways have been implicated in tumorigenesis, cancer progression and metastasis. The purpose of this review is to update on the current state of knowledge about the cancer molecular mechanism involving CYPs with focus on the biochemical and biotransformation mechanisms in the various CYP-mediated carcinogenesis, and the role of CYP-derived reactive metabolites, from both external and endogenous sources, on cancer growth and tumour formation.
Collapse
Affiliation(s)
- A’edah Abu-Bakar
- Product Stewardship and Toxicology, Group Health, Safety, Security and Environment, PETRONAS, Kuala Lumpur, Malaysia
| | - Boon Hooi Tan
- Division of Applied Biomedical Sciences and Biotechnology, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Hasseri Halim
- Faculty of Pharmacy, Universiti Teknologi MARA, Selangor, 42300 Puncak Alam, Selangor, Malaysia
| | - Salfarina Ramli
- Faculty of Pharmacy, Universiti Teknologi MARA, Selangor, 42300 Puncak Alam, Selangor, Malaysia
| | - Yan Pan
- Department of Biomedical Science, University of Nottingham Malaysia Campus, Semenyih, Selangor, Malaysia
| | - Chin Eng Ong6
- School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| |
Collapse
|
25
|
Ahmad SB, Rashid SM, Wali AF, Ali S, Rehman MU, Maqbool MT, Nadeem A, Ahmad SF, Siddiqui N. Myricetin (3,3 ',4 ',5,5 ',7-hexahydroxyflavone) prevents ethanol-induced biochemical and inflammatory damage in the liver of Wistar rats. Hum Exp Toxicol 2022; 41:9603271211066843. [PMID: 35156864 DOI: 10.1177/09603271211066843] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Purpose: The current investigation was carried out to evaluate the efficacy of myricetin in ethanol-induced liver toxicity in Wistar rats. Research Design: Twenty-four rats were randomly divided into four groups with six animals per group. Group-I animals were administered with vehicle (distilled water), Group II, III, and IV were treated orally with sequential (per week) increase in the dose of ethanol (5, 8, 10, and 12 g/kg b wt per week in each group) for 28 days. Myricetin was treated orally to Group-III and IV animals at the respective doses of 25 mg/kg b wt. and 50 mg/kg b wt. Results: Our results showed that myricetin prevented hepatotoxicity by modulating the production of free radicals, ethanol metabolizing enzymes, and inflammatory markers in vivo. Myricetin also helped maintain lipid membrane integrity, oxidant-antioxidant status, and histoarchitecture. Ethanol administration caused elevation in XO, ADH, and CYP2E1 in hepatic tissue, which significantly normalized with myricetin administration. After ethanol administration, there was a steep increase in the hepatotoxicity biomarkers, including ALT, MDA, and AST. The level of cytotoxicity marker LDH also increased after ethanol administration; myricetin administration decreased the level of all these markers. Moreover, myricetin treatment also reduced ethanol-induced inflammatory markers such as NF-κB and IL-6. Conclusion: Findings from the current study demonstrate that myricetin administration prevents alcohol-induced hepatic injury by influencing the metabolism of ethanol, inhibiting oxidative stress, maintaining lipid profile, and suppressing inflammatory markers.
Collapse
Affiliation(s)
- Sheikh Bilal Ahmad
- Division of Veterinary Biochemistry, Faculty of Veterinary Science and Animal Husbandry, 77177SKUAST-Kashmir, Srinagar, J&K, India
| | - Shahzada Mudaisr Rashid
- Division of Veterinary Biochemistry, Faculty of Veterinary Science and Animal Husbandry, 77177SKUAST-Kashmir, Srinagar, J&K, India
| | - Adil Farooq Wali
- Department of Pharmaceutical Chemistry, RAK College of Pharmaceutical Sciences, 286661RAK Medical and Health Sciences University, Ras Al Khaimah, UAE
| | - Shafat Ali
- Department of Biochemistry, Government Medical College, (GMC-Srinagar), KaranNagar Srinagar, J&K, India
| | - Muneeb U Rehman
- Department of Clinical Pharmacy, College of Pharmacy, 37850King Saud University, Riyadh, Saudi Arabia
| | - Mir Tahir Maqbool
- National Center for Natural Products Research, School of Pharmacy, 8083University of Mississippi, University, MS, USA
| | - Ahmed Nadeem
- Department of Pharmacology & Toxicology, College of Pharmacy, 37850King Saud University, Riyadh, Saudi Arabia
| | - Sheikh Fayaz Ahmad
- Department of Pharmacology & Toxicology, College of Pharmacy, 37850King Saud University, Riyadh, Saudi Arabia
| | - Nahid Siddiqui
- Amity Institute of Biotechnology, 77282Amity University, Noida, Uttar Pradesh, India
| |
Collapse
|
26
|
Abstract
At-risk alcohol use is a major contributor to the global health care burden and leads to preventable deaths and diseases including alcohol addiction, alcoholic liver disease, cardiovascular disease, diabetes, traumatic injuries, gastrointestinal diseases, cancers, and fetal alcohol syndrome. Excessive and frequent alcohol consumption has increasingly been linked to alcohol-associated tissue injury and pathophysiology, which have significant adverse effects on multiple organ systems. Extensive research in animal and in vitro models has elucidated the salient mechanisms involved in alcohol-induced tissue and organ injury. In some cases, these pathophysiological mechanisms are shared across organ systems. The major alcohol- and alcohol metabolite-mediated mechanisms include oxidative stress, inflammation and immunometabolic dysregulation, gut leak and dysbiosis, cell death, extracellular matrix remodeling, endoplasmic reticulum stress, mitochondrial dysfunction, and epigenomic modifications. These mechanisms are complex and interrelated, and determining the interplay among them will make it possible to identify how they synergistically or additively interact to cause alcohol-mediated multiorgan injury. In this article, we review the current understanding of pathophysiological mechanisms involved in alcohol-induced tissue injury.
Collapse
Affiliation(s)
- Liz Simon
- Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA;
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Flavia M Souza-Smith
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Patricia E Molina
- Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA;
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| |
Collapse
|
27
|
Koga T, Peters JM. Targeting Peroxisome Proliferator-Activated Receptor-β/δ (PPARβ/δ) for the Treatment or Prevention of Alcoholic Liver Disease. Biol Pharm Bull 2021; 44:1598-1606. [PMID: 34719638 DOI: 10.1248/bpb.b21-00486] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Excessive, chronic alcohol consumption can lead to alcoholic liver disease. The etiology of alcoholic liver disease is multifactorial and is influenced by alterations in gene expression and changes in fatty acid metabolism, oxidative stress, and insulin resistance. These events can lead to steatosis, fibrosis, and eventually to cirrhosis and liver cancer. Many of these functions are regulated by peroxisome proliferator-activated receptors (PPARs). Thus, it is not surprising that PPARs can modulate the mechanisms that cause alcoholic liver disease. While the roles of PPARα and PPARγ are clearer, the role of PPARβ/δ in alcoholic liver disease requires further clarification. This review summarizes the current understanding based on recent studies that indicate that PPARβ/δ can likely be targeted for the treatment and/or the prevention of alcoholic liver disease.
Collapse
Affiliation(s)
- Takayuki Koga
- Laboratory of Hygienic Chemistry, Department of Health Science and Hygiene, Daiichi University of Pharmacy
| | - Jeffrey M Peters
- Department of Veterinary and Biomedical Sciences and the Center of Molecular Toxicology and Carcinogenesis, The Pennsylvania State University
| |
Collapse
|
28
|
Gárate-Rascón M, Recalde M, Jimenez M, Elizalde M, Azkona M, Uriarte I, Latasa MU, Urtasun R, Bilbao I, Sangro B, Garcia-Ruiz C, Fernandez-Checa JC, Corrales FJ, Esquivel A, Pineda-Lucena A, Fernández-Barrena MG, Ávila MA, Arechederra M, Berasain C. Splicing Factor SLU7 Prevents Oxidative Stress-Mediated Hepatocyte Nuclear Factor 4α Degradation, Preserving Hepatic Differentiation and Protecting From Liver Damage. Hepatology 2021; 74:2791-2807. [PMID: 34170569 DOI: 10.1002/hep.32029] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/09/2021] [Accepted: 06/09/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND AIMS Hepatocellular dedifferentiation is emerging as an important determinant in liver disease progression. Preservation of mature hepatocyte identity relies on a set of key genes, predominantly the transcription factor hepatocyte nuclear factor 4α (HNF4α) but also splicing factors like SLU7. How these factors interact and become dysregulated and the impact of their impairment in driving liver disease are not fully understood. APPROACH AND RESULTS Expression of SLU7 and that of the adult and oncofetal isoforms of HNF4α, driven by its promoter 1 (P1) and P2, respectively, was studied in diseased human and mouse livers. Hepatic function and damage response were analyzed in wild-type and Slu7-haploinsufficient/heterozygous (Slu7+/- ) mice undergoing chronic (CCl4 ) and acute (acetaminophen) injury. SLU7 expression was restored in CCl4 -injured mice using SLU7-expressing adeno-associated viruses (AAV-SLU7). The hepatocellular SLU7 interactome was characterized by mass spectrometry. Reduced SLU7 expression in human and mouse diseased livers correlated with a switch in HNF4α P1 to P2 usage. This response was reproduced in Slu7+/- mice, which displayed increased sensitivity to chronic and acute liver injury, enhanced oxidative stress, and marked impairment of hepatic functions. AAV-SLU7 infection prevented liver injury and hepatocellular dedifferentiation. Mechanistically we demonstrate a unique role for SLU7 in the preservation of HNF4α1 protein stability through its capacity to protect the liver against oxidative stress. SLU7 is herein identified as a key component of the stress granule proteome, an essential part of the cell's antioxidant machinery. CONCLUSIONS Our results place SLU7 at the highest level of hepatocellular identity control, identifying SLU7 as a link between stress-protective mechanisms and liver differentiation. These findings emphasize the importance of the preservation of hepatic functions in the protection from liver injury.
Collapse
Affiliation(s)
| | - Miriam Recalde
- Hepatology Program, CIMA, University of Navarra, Pamplona, Spain
| | - Maddalen Jimenez
- Hepatology Program, CIMA, University of Navarra, Pamplona, Spain
| | - María Elizalde
- Hepatology Program, CIMA, University of Navarra, Pamplona, Spain
| | - María Azkona
- Hepatology Program, CIMA, University of Navarra, Pamplona, Spain
| | - Iker Uriarte
- Hepatology Program, CIMA, University of Navarra, Pamplona, Spain.,CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - M Uxue Latasa
- Hepatology Program, CIMA, University of Navarra, Pamplona, Spain
| | - Raquel Urtasun
- Hepatology Program, CIMA, University of Navarra, Pamplona, Spain
| | - Idoia Bilbao
- Hepatology Unit, Clínica Universidad de Navarra, Pamplona, Spain
| | - Bruno Sangro
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain.,Hepatology Unit, Clínica Universidad de Navarra, Pamplona, Spain.,Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
| | - Carmen Garcia-Ruiz
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain.,Cell Death and Proliferation, IIBB-CSIC, Barcelona, Spain.,Liver Unit, Hospital Clinic, IDIBAPS and CIBEREHD, Barcelona, Spain
| | - José C Fernandez-Checa
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain.,Cell Death and Proliferation, IIBB-CSIC, Barcelona, Spain.,Liver Unit, Hospital Clinic, IDIBAPS and CIBEREHD, Barcelona, Spain
| | - Fernando J Corrales
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain.,Functional Proteomics Laboratory, National Center for Biotechnology, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Argitxu Esquivel
- Molecular Therapeutics Program, CIMA, University of Navarra, Pamplona, Spain
| | | | - Maite G Fernández-Barrena
- Hepatology Program, CIMA, University of Navarra, Pamplona, Spain.,CIBERehd, Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
| | - Matías A Ávila
- Hepatology Program, CIMA, University of Navarra, Pamplona, Spain.,CIBERehd, Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
| | - María Arechederra
- Hepatology Program, CIMA, University of Navarra, Pamplona, Spain.,Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
| | - Carmen Berasain
- Hepatology Program, CIMA, University of Navarra, Pamplona, Spain.,CIBERehd, Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
| |
Collapse
|
29
|
Nie W, Du YY, Xu FR, Zhou K, Wang ZM, Al-Dalali S, Wang Y, Li XM, Ma YH, Xie Y, Zhou H, Xu BC. Oligopeptides from Jinhua ham prevent alcohol-induced liver damage by regulating intestinal homeostasis and oxidative stress in mice. Food Funct 2021; 12:10053-10070. [PMID: 34515716 DOI: 10.1039/d1fo01693h] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The current study aimed to evaluate the protective activity of peptides isolated from Jinhua ham (JHP) against alcoholic liver disease (ALD) and the mechanisms by which JHP prevents against ALD. The tangential flow filtration (TFF) combined with size exclusion chromatography (SEC) and reversed-phase high performance liquid chromatography (RP-HPLC) were used to isolate the JHP. Then the hepatoprotective activity of peptides was evaluated through experiments in mice. The primary structure of the peptide with the strongest liver protective activity was Lys-Arg-Gln-Lys-Tyr-Asp (KRQKYD) and the peptide was derived from the myosin of Jinhua ham, which were both identified by LC-MS/MS. Furthermore, the mechanism of KRQKYD prevention against ALD was attributed to the fact that KRQKYD increases the abundance of Akkermansia muciniphila in the gut and decreases the abundance of Proteobacteria (especially Escherichia_Shigella). The LPS-mediated liver inflammatory cascade was reduced by protecting the intestinal barrier, increasing the tight connection of intestinal epithelial cells and reducing the level of LPS in the portal venous circulation. KRQKYD could inhibit the production of ROS by upregulating the expression of the NRF2/HO-1 antioxidant defense system and by reducing oxidative stress injury in liver cells. This study can provide a theoretical foundation for the application of JHP in the protection of liver from ALD.
Collapse
Affiliation(s)
- Wen Nie
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China. .,Engineering Research Center of Bioprocess, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Ye-Ye Du
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, P.R. China
| | - Fei-Ran Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China. .,Engineering Research Center of Bioprocess, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Kai Zhou
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China. .,Engineering Research Center of Bioprocess, Ministry of Education, Hefei University of Technology, Hefei 230601, China.,Anhui QiangWang Flavouring Food Co., Ltd, Fuyang 236500, Anhui, P. R. China
| | - Zhao-Ming Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China. .,Engineering Research Center of Bioprocess, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Sam Al-Dalali
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China. .,Engineering Research Center of Bioprocess, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Ying Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China. .,Engineering Research Center of Bioprocess, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Xiao-Min Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China. .,Engineering Research Center of Bioprocess, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Yun-Hao Ma
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China. .,Engineering Research Center of Bioprocess, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Yong Xie
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China. .,Engineering Research Center of Bioprocess, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Hui Zhou
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China. .,Engineering Research Center of Bioprocess, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Bao-Cai Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China. .,Engineering Research Center of Bioprocess, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| |
Collapse
|
30
|
Pang S, Dong W, Liu N, Gao S, Li J, Zhang X, Lu D, Zhang L. Diallyl sulfide protects against dilated cardiomyopathy via inhibition of oxidative stress and apoptosis in mice. Mol Med Rep 2021; 24:852. [PMID: 34651661 PMCID: PMC8532119 DOI: 10.3892/mmr.2021.12492] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/26/2021] [Indexed: 11/21/2022] Open
Abstract
Cytochrome P450 family 2 subfamily E member 1 (CYP2E1) is a member of the cytochrome P450 enzyme family and catalyzes the metabolism of various substrates. CYP2E1 is upregulated in multiple heart diseases and causes damage mainly via the production of reactive oxygen species (ROS). In mice, increased CYP2E1 expression induces cardiac myocyte apoptosis, and knockdown of endogenous CYP2E1 can attenuate the pathological development of dilated cardiomyopathy (DCM). Nevertheless, targeted inhibition of CYP2E1 via the administration of drugs for the treatment of DCM remains elusive. Therefore, the present study aimed to investigate whether diallyl sulfide (DAS), a competitive inhibitor of CYP2E1, can be used to inhibit the development of the pathological process of DCM and identify its possible mechanism. Here, cTnTR141W transgenic mice, which developed typical DCM phenotypes, were used. Following treatment with DAS for 6 weeks, echocardiography, histological analysis and molecular marker detection were conducted to investigate the DAS-induced improvement on myocardial function and morphology. Biochemical analysis, western blotting and TUNEL assays were used to detected ROS production and myocyte apoptosis. It was found that DAS improved the typical DCM phenotypes, including chamber dilation, wall thinning, fibrosis, poor myofibril organization and decreased ventricular blood ejection, as determined using echocardiographic and histopathological analyses. Furthermore, the regulatory mechanisms, including inhibition both of the oxidative stress levels and the mitochondria-dependent apoptosis pathways, were involved in the effects of DAS. In particular, DAS showed advantages in terms of improved chamber dilation and dysfunction in model mice, and the improvement occurred in the early stage of the treatment compared with enalaprilat, an angiotensin-converting enzyme inhibitor that has been widely used in the clinical treatment of DCM and HF. The current results demonstrated that DAS could protect against DCM via inhibition of oxidative stress and apoptosis. These findings also suggest that inhibition of CYP2E1 may be a valuable therapeutic strategy to control the development of heart diseases, especially those associated with CYP2E1 upregulation. Moreover, the development of DAS analogues with lower cytotoxicity and metabolic rate for CYP2E1 may be beneficial.
Collapse
Affiliation(s)
- Shuo Pang
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100021, P.R. China
| | - Wei Dong
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100021, P.R. China
| | - Ning Liu
- Beijing Engineering Research Center for Experimental Animal Models of Human Diseases, Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100021, P.R. China
| | - Shan Gao
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100021, P.R. China
| | - Jing Li
- Beijing Engineering Research Center for Experimental Animal Models of Human Diseases, Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100021, P.R. China
| | - Xu Zhang
- Beijing Engineering Research Center for Experimental Animal Models of Human Diseases, Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100021, P.R. China
| | - Dan Lu
- Beijing Engineering Research Center for Experimental Animal Models of Human Diseases, Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100021, P.R. China
| | - Lianfeng Zhang
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100021, P.R. China
| |
Collapse
|
31
|
Singh D, Yadav A, Singh C. Autonomous regulation of inducible nitric oxide synthase and cytochrome P450 2E1-mediated oxidative stress in maneb- and paraquat-treated rat polymorphs. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 178:104944. [PMID: 34446210 DOI: 10.1016/j.pestbp.2021.104944] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/28/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
Maneb (MB)- and paraquat (PQ)-induced oxidative stress in rat polymorphonuclear leukocytes (PMNs) is regulated in parallel by cytochrome P450 2E1 (CYP2E1) and inducible nitric oxide synthase (iNOS). However, mechanism underlying their regulation is not yet understood. The study investigated the role of nuclear factor- kappa B (NF-κB) and mitogen-activated protein kinase/extracellular signal regulated kinase/protein kinase C (MEK/ERK/PKC) pathway in the regulation of iNOS- and CYP2E1-induced oxidative stress in PMNs. MB + PQ-induced changes in nitrite content, lipid peroxidation (LPO), iNOS expression/activity and inflammatory mediators were alleviated by aminoguanidine (AG), an iNOS inhibitor, without any change in CYP2E1. Alternatively, diallyl sulphide (DAS), a CYP2E1 inhibitor, rescued from MB + PQ-induced changes in CYP2E1 activity/expression, free radical generation, superoxide dismutase (SOD) activity, LPO and pro-inflammatory cytokines without any alterations in nitrite content and iNOS activity/expression. Pyrrolidine dithiocarbamate (PDTC), NF-κB inhibitor, did not alter CYP2E1 but mitigated free radical generation, SOD activity, LPO, nitrite content, iNOS activity/expression and levels of pro-inflammatory cytokines (tumor necrosis factor-α, interleukine-1β and interleukine-4). Ex-vivo treatment with MEK inhibitor (PD98059), ERK1/2 inhibitor (AG126) or PKC inhibitor (rottlerin) ameliorated MB + PQ-induced increase in free radical generation and CYP2E1 activity/expression in PMNs. While PD98059 and AG126 abated MB + PQ-induced increase in ERK1/2, PKC-α/δ and CYP2E1 levels, rottlerin restored PKC-α/δ and CYP2E1 towards normalcy without affecting ERK1/2 level in MB + PQ-treated group. The results suggest that iNOS and CYP2E1 contributing to MB + PQ-induced oxidative stress in rat PMNs exhibit differential regulatory mechanisms. The inflammatory mediators regulate iNOS expression while CYP2E1 expression is triggered via MEK-ERK1/2-PKC pathway.
Collapse
Affiliation(s)
- Deepali Singh
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow 226 001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, Uttar Pradesh, India
| | - Archana Yadav
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow 226 001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, Uttar Pradesh, India
| | - Chetna Singh
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow 226 001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, Uttar Pradesh, India.
| |
Collapse
|
32
|
Sadighi A, Leggio L, Akhlaghi F. Development of a Physiologically Based Pharmacokinetic Model for Prediction of Ethanol Concentration-Time Profile in Different Organs. Alcohol Alcohol 2021; 56:401-414. [PMID: 33316031 DOI: 10.1093/alcalc/agaa129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/25/2020] [Accepted: 11/07/2020] [Indexed: 11/15/2022] Open
Abstract
AIMS A physiologically based pharmacokinetic (PBPK) modeling approach was used to simulate the concentration-time profile of ethanol (EtOH) in stomach, duodenum, plasma and other tissues upon consumption of beer and whiskey under fasted and fed conditions. METHODS A full PBPK model was developed for EtOH using the advanced dissolution, absorption and metabolism (ADAM) model fully integrated into the Simcyp Simulator® 15 (Simcyp Ltd., Sheffield, UK). The prediction performance of the developed model was verified and the EtOH concentration-time profile in different organs was predicted. RESULTS Simcyp simulation showed ≤ 2-fold difference in values of EtOH area under the concentration-time curve (AUC) in stomach and duodenum as compared to the observed values. Moreover, the simulated EtOH maximum concentration (Cmax), time to reach Cmax (Tmax) and AUC in plasma were comparable to the observed values. We showed that liver is exposed to the highest EtOH concentration, faster than other organs (Cmax = 839.50 mg/L and Tmax = 0.53 h), while brain exposure of EtOH (AUC = 1139.43 mg·h/L) is the highest among all other organs. Sensitivity analyses (SAs) showed direct proportion of EtOH rate and extent of absorption with administered EtOH dose and inverse relationship with gastric emptying time (GE) and steady-state volume of distribution (Vss). CONCLUSIONS The current PBPK model approach might help with designing in vitro experiments in the area of alcohol organ damage or alcohol-drug interaction studies.
Collapse
Affiliation(s)
- Armin Sadighi
- Clinical Pharmacokinetics Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, 7 Greenhouse Road, Kingston, RI 02881, USA
| | - Lorenzo Leggio
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, National Institute on Alcohol Abuse and Alcoholism and National Institute on Drug Abuse, 10 Center Drive (10CRC/15330), Bethesda, MD 20892, USA.,Medication Development Program, National Institute on Drug Abuse Intramural Research Program, 251 Bayview Blvd., Baltimore, MD 21224, USA.,Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences, Brown University, 121 South Main Street, Providence, RI 02912, USA.,Division of Addiction Medicine, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.,Department of Neuroscience, Georgetown University Medical Center, 4000 Reservoir Road, Washington D.C., DC 20007, USA
| | - Fatemeh Akhlaghi
- Clinical Pharmacokinetics Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, 7 Greenhouse Road, Kingston, RI 02881, USA
| |
Collapse
|
33
|
Quintana M, Saavedra E, del Rosario H, González I, Hernández I, Estévez F, Quintana J. Ethanol Enhances Hyperthermia-Induced Cell Death in Human Leukemia Cells. Int J Mol Sci 2021; 22:ijms22094948. [PMID: 34066632 PMCID: PMC8125413 DOI: 10.3390/ijms22094948] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/04/2021] [Accepted: 05/04/2021] [Indexed: 12/23/2022] Open
Abstract
Ethanol has been shown to exhibit therapeutic properties as an ablative agent alone and in combination with thermal ablation. Ethanol may also increase sensitivity of cancer cells to certain physical and chemical antitumoral agents. The aim of our study was to assess the potential influence of nontoxic concentrations of ethanol on hyperthermia therapy, an antitumoral modality that is continuously growing and that can be combined with classical chemotherapy and radiotherapy to improve their efficiency. Human leukemia cells were included as a model in the study. The results indicated that ethanol augments the cytotoxicity of hyperthermia against U937 and HL60 cells. The therapeutic benefit of the hyperthermia/ethanol combination was associated with an increase in the percentage of apoptotic cells and activation of caspases-3, -8 and -9. Apoptosis triggered either by hyperthermia or hyperthermia/ethanol was almost completely abolished by a caspase-8 specific inhibitor, indicating that this caspase plays a main role in both conditions. The role of caspase-9 in hyperthermia treated cells acquired significance whether ethanol was present during hyperthermia since the alcohol enhanced Bid cleavage, translocation of Bax from cytosol to mitochondria, release of mitochondrial apoptogenic factors, and decreased of the levels of the anti-apoptotic factor myeloid cell leukemia-1 (Mcl-1). The enhancement effect of ethanol on hyperthermia-activated cell death was associated with a reduction in the expression of HSP70, a protein known to interfere in the activation of apoptosis at different stages. Collectively, our findings suggest that ethanol could be useful as an adjuvant in hyperthermia therapy for cancer.
Collapse
|
34
|
Abstract
The increasing prevalence of non-alcoholic fatty liver disease (NAFLD) poses a growing challenge in terms of its prevention and treatment. The 'multiple hits' hypothesis of multiple insults, such as dietary fat intake, de novo lipogenesis, insulin resistance, oxidative stress, mitochondrial dysfunction, gut dysbiosis and hepatic inflammation, can provide a more accurate explanation of the pathogenesis of NAFLD. Betaine plays important roles in regulating the genes associated with NAFLD through anti-inflammatory effects, increased free fatty oxidation, anti-lipogenic effects and improved insulin resistance and mitochondrial function; however, the mechanism of betaine remains elusive.
Collapse
|
35
|
Xia T, Zhang B, Li S, Fang B, Duan W, Zhang J, Song J, Wang M. Vinegar extract ameliorates alcohol-induced liver damage associated with the modulation of gut microbiota in mice. Food Funct 2021; 11:2898-2909. [PMID: 32242560 DOI: 10.1039/c9fo03015h] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Vinegar extract is rich in phenolic compounds, which can prevent free radical-induced diseases. The aim of the present study was to explore the effects of vinegar extract on gut microbiota in alcohol-treated mice and their correlation with alcohol-induced liver damage. These results showed that vinegar extract regulated the gut microbiota composition and improved intestinal homeostasis through increasing the expression levels of ZO-1, occludin, claudin-1, Reg3b, and Reg3g in alcohol-treated mice. In addition, vinegar extract inhibited the alcohol-induced production of ROS and inflammatory factors. Moreover, Bacteroidetes, Verrucomicrobia, Akkermansia, and Lactobacillus showed a significant positive correlation with Reg3b, Reg3g, ZO-1, occludin, and claudin-1 and a negative correlation with hepatic inflammation and oxidative stress parameters. However, Firmicutes, Proteobacteria, Butyricimonas, Parabacteroides, and Bilophila exhibited the opposite effect. These findings suggest that vinegar extract modulates gut microbiota and improves intestinal homeostasis, and can be used as a novel gut microbiota manipulator against alcohol-induced liver damage.
Collapse
Affiliation(s)
- Ting Xia
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China.
| | - Bo Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China.
| | - Shaopeng Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China.
| | - Bin Fang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China.
| | - Wenhui Duan
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China.
| | - Jin Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China.
| | - Jia Song
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China.
| | - Min Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China.
| |
Collapse
|
36
|
Lua YH, Ong WW, Wong HK, Chew CH. Ethanol-induced CYP2E1 Expression is Reduced by Lauric Acid via PI3K Pathway in HepG2 Cells. Trop Life Sci Res 2020; 31:63-75. [PMID: 33214856 PMCID: PMC7652244 DOI: 10.21315/tlsr2020.31.3.5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The metabolism of alcohol involves cytochrome P450 2E1 (CYP2E1)-induced oxidative stress, with the association of phosphatidylinositol-3-kinases (PI3K) and nuclear factor kappa B (NFκB) signalling pathways. CYP2E1 is primarily involved in the microsomal ethanol oxidising system, which generates massive reactive oxygen species (ROS) and ultimately leads to oxidative stress and tissue damage. Lauric acid, a major fatty acid in palm kernel oil, has been shown as a potential antioxidant. Here, we aimed to evaluate the use of lauric acid as a potential antioxidant against ethanol-mediated oxidative stress by investigating its effect on CYP2E1 mRNA expression and the signalling pathway in ethanol-induced HepG2 cells. HepG2 cells were firstly treated with different concentrations of ethanol, and subsequently co-treated with different concentrations of lauric acid for 24 h. Total cellular RNA and total protein were extracted, and qPCR and Western blot was carried out. Ethanol induced the mRNA expression of CYP2E1 significantly, but lauric acid was able to downregulate the induced CYP2E1 expression in a dose-dependent manner. Similarly, Western blot analysis and densitometry analysis showed that the phosphorylated PI3K p85 (Tyr458) protein was significantly elevated in ethanol-treated HepG2 cells, but co-treatment with lauric acid repressed the activation of PI3K. However, there was no significant difference in NFκB pathway, in which the normalised NFκB p105 (Ser933) phosphorylation remained constant in any treatment conditions in this study. This suggests that ethanol induced CYP2E1 expression by activating PI3K p85 (Tyr458) pathway, but not the NFκB p105 (Ser933) pathway in HepG2 cells.
Collapse
Affiliation(s)
- Ying-Huan Lua
- Department of Allied Health Sciences, Faculty of Science, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia
| | - Wei-Wah Ong
- Department of Allied Health Sciences, Faculty of Science, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia
| | - Hong-Kin Wong
- Department of Allied Health Sciences, Faculty of Science, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia
| | - Choy-Hoong Chew
- Department of Allied Health Sciences, Faculty of Science, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia
| |
Collapse
|
37
|
Nie W, Zhou K, Wang Y, Wang ZM, Xie Y, Zhou H, Xu BC. Isolation and identification of bioactive peptides from Xuanwei ham that rescue oxidative stress damage induced by alcohol in HHL-5 hepatocytes. Food Funct 2020; 11:9710-9720. [PMID: 33057513 DOI: 10.1039/d0fo02329a] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Peptides extracted from Xuanwei ham (XHP) can prevent free radical-induced diseases. The aim of the present study was to isolate and identify bioactive peptides from Xuanwei hams that rescue the oxidative stress damage induced by alcohol in HHL-5 hepatocytes. Alcohol-treated HHL-5 human hepatocytes were utilized as the alcohol-induced hepatocyte damage model to evaluate the effects of XHP on amounts of aminotransferase (ALT), aspartate aminotransferase (AST) and malondialdehyde (MDA). The result showed that XHP could significantly reduce ALT, AST and MDA, the major biomarkers of liver damage. The crude XHP was separated by size exclusion chromatography, followed by the evaluation of respective activities. Then, the most active components were further separated by RP-HPLC, and their activities were evaluated according to the above method. The peptide was identified as a hexapeptide with the sequence of Asn-Pro-Pro-Lys-Phe-Asp (NPPKFD) through LC-MS/MS. Further, the molecular mechanisms by which NPPKFD prevents alcohol-induced oxidative stress damage were revealed. Results showed that the hexapeptide could downregulate CYP2E1 expression, reduce generation of ROS and enhance oxidant defense systems via the activation of NrF2/HO-1 pathway. The findings suggest that Xuanwei ham can be used as a new source of bioactive peptides for protection from alcohol-induced liver damage.
Collapse
Affiliation(s)
- Wen Nie
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China.
| | | | | | | | | | | | | |
Collapse
|
38
|
Garland MA, Reynolds K, Zhou CJ. Environmental mechanisms of orofacial clefts. Birth Defects Res 2020; 112:1660-1698. [PMID: 33125192 PMCID: PMC7902093 DOI: 10.1002/bdr2.1830] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/07/2020] [Accepted: 10/13/2020] [Indexed: 12/11/2022]
Abstract
Orofacial clefts (OFCs) are among the most common birth defects and impart a significant burden on afflicted individuals and their families. It is increasingly understood that many nonsyndromic OFCs are a consequence of extrinsic factors, genetic susceptibilities, and interactions of the two. Therefore, understanding the environmental mechanisms of OFCs is important in the prevention of future cases. This review examines the molecular mechanisms associated with environmental factors that either protect against or increase the risk of OFCs. We focus on essential metabolic pathways, environmental signaling mechanisms, detoxification pathways, behavioral risk factors, and biological hazards that may disrupt orofacial development.
Collapse
Affiliation(s)
- Michael A. Garland
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817
| | - Kurt Reynolds
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Biochemistry, Molecular, Cellular, and Developmental Biology (BMCDB) graduate group, University of California, Davis, CA 95616
| | - Chengji J. Zhou
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Biochemistry, Molecular, Cellular, and Developmental Biology (BMCDB) graduate group, University of California, Davis, CA 95616
| |
Collapse
|
39
|
Siregar AS, Nyiramana MM, Kim EJ, Shin EJ, Woo MS, Kim JM, Kim JH, Lee DK, Hahm JR, Kim HJ, Kim CW, Kim NG, Park SH, Choi YJ, Kang SS, Hong SG, Han J, Kang D. Dipeptide YA is Responsible for the Positive Effect of Oyster Hydrolysates on Alcohol Metabolism in Single Ethanol Binge Rodent Models. Mar Drugs 2020; 18:md18100512. [PMID: 33050644 PMCID: PMC7601867 DOI: 10.3390/md18100512] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/05/2020] [Accepted: 10/07/2020] [Indexed: 12/15/2022] Open
Abstract
Accumulative alcohol hangovers cause liver damage through oxidative and inflammatory stress. Numerous antioxidant and anti-inflammatory reagents have been developed to reduce alcohol hangovers, but these reagents are still insignificant and have limitations in that they can cause liver toxicity. Oyster hydrolysate (OH), another reagent that has antioxidant and anti-inflammatory activity, is a product extracted through an enzymatic hydrolysis process from oysters (Crassostrea gigas), which can be easily eaten in meals. This study was aimed at determining the effects of OH on alcohol metabolism, using a single high dose of ethanol (EtOH) administered to rodents, by monitoring alcohol metabolic enzymes, oxidative stress signals, and inflammatory mediators. The effect of tyrosine-alanine (YA) peptide, a main component of OH, on EtOH metabolism was also identified. In vitro experiments showed that OH pretreatment inhibited EtOH-induced cell death, oxidative stress, and inflammation in liver cells and macrophages. In vivo experiments showed that OH and YA pre-administration increased alcohol dehydrogenase, aldehyde dehydrogenase, and catalase activity in EtOH binge treatment. In addition, OH pre-administration alleviated CYP2E1 activity, ROS production, apoptotic signals, and inflammatory mediators in liver tissues. These results showed that OH and YA enhanced EtOH metabolism and had a protective effect against acute alcohol liver damage. Our findings offer new insights into a single high dose of EtOH drinking and suggest that OH and YA could be used as potential marine functional foods to prevent acute alcohol-induced liver damage.
Collapse
Affiliation(s)
- Adrian S. Siregar
- Department of Physiology and Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea; (A.S.S.); (M.M.N.); (E.-J.K.); (E.-J.S.); (M.S.W.); (D.K.L.); (S.-G.H.); (J.H.)
- Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Korea; (H.J.K.); (S.S.K.)
| | - Marie Merci Nyiramana
- Department of Physiology and Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea; (A.S.S.); (M.M.N.); (E.-J.K.); (E.-J.S.); (M.S.W.); (D.K.L.); (S.-G.H.); (J.H.)
- Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Korea; (H.J.K.); (S.S.K.)
| | - Eun-Jin Kim
- Department of Physiology and Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea; (A.S.S.); (M.M.N.); (E.-J.K.); (E.-J.S.); (M.S.W.); (D.K.L.); (S.-G.H.); (J.H.)
| | - Eui-Jung Shin
- Department of Physiology and Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea; (A.S.S.); (M.M.N.); (E.-J.K.); (E.-J.S.); (M.S.W.); (D.K.L.); (S.-G.H.); (J.H.)
- Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Korea; (H.J.K.); (S.S.K.)
| | - Min Seok Woo
- Department of Physiology and Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea; (A.S.S.); (M.M.N.); (E.-J.K.); (E.-J.S.); (M.S.W.); (D.K.L.); (S.-G.H.); (J.H.)
- Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Korea; (H.J.K.); (S.S.K.)
| | - Jin-Mok Kim
- Department of Clinical Laboratory Science, Masan University, Changwon 2640, Korea;
| | - Jung Hwan Kim
- Department of Premedicine, College of Medicine, Gyeongsang National University, Jinju 52727, Korea;
| | - Dong Kun Lee
- Department of Physiology and Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea; (A.S.S.); (M.M.N.); (E.-J.K.); (E.-J.S.); (M.S.W.); (D.K.L.); (S.-G.H.); (J.H.)
- Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Korea; (H.J.K.); (S.S.K.)
| | - Jong Ryeal Hahm
- Department of Internal Medicine, Hospital and Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea;
| | - Hyun Joon Kim
- Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Korea; (H.J.K.); (S.S.K.)
- Department of Anatomy and Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea
| | - Chang-Woon Kim
- Department of Obstetrics and Gynecology, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon 51353, Korea;
| | - Nam-Gil Kim
- Department of Marine Biology and Aquaculture and Institute of Marine Industry, Gyeongsang National University, Tongyeong 53064, Korea;
| | - Si-Hyang Park
- Sunmarin Biotech, Jinju Bioindustry Foundation, Jinju 52839, Korea;
| | - Yeung Joon Choi
- Ocean-Pep, Jinju Bioindustry Foundation, Jinju 52839, Korea;
| | - Sang Soo Kang
- Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Korea; (H.J.K.); (S.S.K.)
- Department of Anatomy and Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea
| | - Seong-Geun Hong
- Department of Physiology and Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea; (A.S.S.); (M.M.N.); (E.-J.K.); (E.-J.S.); (M.S.W.); (D.K.L.); (S.-G.H.); (J.H.)
| | - Jaehee Han
- Department of Physiology and Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea; (A.S.S.); (M.M.N.); (E.-J.K.); (E.-J.S.); (M.S.W.); (D.K.L.); (S.-G.H.); (J.H.)
| | - Dawon Kang
- Department of Physiology and Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea; (A.S.S.); (M.M.N.); (E.-J.K.); (E.-J.S.); (M.S.W.); (D.K.L.); (S.-G.H.); (J.H.)
- Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Korea; (H.J.K.); (S.S.K.)
- Correspondence:
| |
Collapse
|
40
|
Ethanol-Induced Oxidative Stress Modifies Inflammation and Angiogenesis Biomarkers in Retinal Pigment Epithelial Cells (ARPE-19): Role of CYP2E1 and its Inhibition by Antioxidants. Antioxidants (Basel) 2020; 9:antiox9090776. [PMID: 32825644 PMCID: PMC7555214 DOI: 10.3390/antiox9090776] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/15/2020] [Accepted: 08/19/2020] [Indexed: 12/22/2022] Open
Abstract
The retinal pigment epithelium (RPE) plays a key role in retinal health, being essential for the protection against reactive oxygen species (ROS). Nevertheless, excessive oxidative stress can induce RPE dysfunction, promoting visual loss. Our aim is to clarify the possible implication of CYP2E1 in ethanol (EtOH)-induced oxidative stress in RPE alterations. Despite the increase in the levels of ROS, measured by fluorescence probes, the RPE cells exposed to the lowest EtOH concentrations were able to maintain cell survival, measured by the Cell Proliferation Kit II (XTT). However, EtOH-induced oxidative stress modified inflammation and angiogenesis biomarkers, analyzed by proteome array, ELISA, qPCR and Western blot. The highest EtOH concentration used stimulated a large increase in ROS levels, upregulating the cytochrome P450-2E1 (CYP2E1) and promoting cell death. The use of antioxidants such as N-acetylcysteine (NAC) and diallyl sulfide (DAS), which is also a CYP2E1 inhibitor, reverted cell death and oxidative stress, modulating also the upstream angiogenesis and inflammation regulators. Because oxidative stress plays a central role in most frequent ocular diseases, the results herein support the proposal that CYP2E1 upregulation could aggravate retinal degeneration, especially in those patients with high baseline oxidative stress levels due to their ocular pathology and should be considered as a risk factor.
Collapse
|
41
|
Transcriptional Regulation in Non-Alcoholic Fatty Liver Disease. Metabolites 2020; 10:metabo10070283. [PMID: 32660130 PMCID: PMC7408131 DOI: 10.3390/metabo10070283] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 12/12/2022] Open
Abstract
Obesity is the primary risk factor for the pathogenesis of non-alcoholic fatty liver disease (NAFLD), the worldwide prevalence of which continues to increase dramatically. The liver plays a pivotal role in the maintenance of whole-body lipid and glucose homeostasis. This is mainly mediated by the transcriptional activation of hepatic pathways that promote glucose and lipid production or utilization in response to the nutritional state of the body. However, in the setting of chronic excessive nutrition, the dysregulation of hepatic transcriptional machinery promotes lipid accumulation, inflammation, metabolic stress, and fibrosis, which culminate in NAFLD. In this review, we provide our current understanding of the transcription factors that have been linked to the pathogenesis and progression of NAFLD. Using publicly available transcriptomic data, we outline the altered activity of transcription factors among humans with NAFLD. By expanding this analysis to common experimental mouse models of NAFLD, we outline the relevance of mouse models to the human pathophysiology at the transcriptional level.
Collapse
|
42
|
Yu L, Yang Z, Liu Y, Liu F, Shang W, Shao W, Wang Y, Xu M, Wang YN, Fu Y, Xu X. Identification of SPRR3 as a novel diagnostic/prognostic biomarker for oral squamous cell carcinoma via RNA sequencing and bioinformatic analyses. PeerJ 2020; 8:e9393. [PMID: 32596058 PMCID: PMC7305774 DOI: 10.7717/peerj.9393] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 05/29/2020] [Indexed: 12/18/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) has always been one of the most aggressive and invasive cancers among oral and maxillofacial malignancies. As the morbidity and mortality of the disease have increased year by year, the search for a promising diagnostic and prognostic biomarker for the disease is becoming increasingly urgent. Tumorous and adjacent tissues were collected from three OSCC sufferers and we obtained 229 differentially expressed genes (DEGs) between tumor and normal tissues via high-throughput RNA sequence. Function and pathway enrichment analyses for DEGs were conducted to find a correlation between tumorigenesis status and DEGs. Protein interaction network and molecular complex detection (MCODE) were constructed to detect core modules. Two modules were enriched in MCODE. The diagnostic and prognostic values of the candidate genes were analyzed, which provided evidence for the candidate genes as new tumor markers. Small Proline Rich Protein 3 (SPRR3), a potential tumor marker that may be useful for the diagnosis of OSCC, was screened out. The survival analysis showed that SPRR3 under expression predicted the poor prognosis of OSCC patients. Further experiments have also shown that the expression of SPRR3 decreased as the malignancy of OSCC increased. Therefore, we believe that SPRR3 could be used as a novel diagnostic and prognostic tumor marker.
Collapse
Affiliation(s)
- Lu Yu
- Department of Implantology, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Shandong University, Jinan, Shandong, China
| | - Zongcheng Yang
- Department of Implantology, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Shandong University, Jinan, Shandong, China
| | - Yingjiao Liu
- School of Philosophy, Psychology and Language Sciences, College of Humanities and Social Science, The University of Edinburgh, Edinburgh, UK
| | - Fen Liu
- Department of Microbiology, Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Shandong University, Jinan, Shandong, China
| | - Wenjing Shang
- Department of Microbiology, Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Shandong University, Jinan, Shandong, China
| | - Wei Shao
- Department of Microbiology, Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Shandong University, Jinan, Shandong, China
| | - Yue Wang
- Department of Microbiology, Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Shandong University, Jinan, Shandong, China
| | - Man Xu
- School of Medicine, Shandong University, Jinan, Shandong, China
| | - Ya-Nan Wang
- Department of Implantology, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Shandong University, Jinan, Shandong, China
| | - Yue Fu
- School of Medicine, Shandong University, Jinan, Shandong, China
| | - Xin Xu
- Department of Implantology, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Shandong University, Jinan, Shandong, China
| |
Collapse
|
43
|
Lee YJ, Kim JY, Lee DY, Park KJ, Kim GH, Kim JE, Roh GS, Lim JY, Koo S, Lim NK, Park HY, Kim WH. Alcohol consumption before pregnancy causes detrimental fetal development and maternal metabolic disorders. Sci Rep 2020; 10:10054. [PMID: 32572070 PMCID: PMC7308355 DOI: 10.1038/s41598-020-66971-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 05/26/2020] [Indexed: 12/15/2022] Open
Abstract
Alcohol consumption before or during pregnancy poses serious health risks to the fetus; however, the underlying mechanisms involved remain obscure. Here, we investigated whether ethanol consumption before pregnancy affects maternal or fetal health and whether pharmacological inhibition of CYP2E1, a major ethanol oxidation enzyme, by 4-methylpyrazole (4-MP) has therapeutic effects. We found that ethanol consumption (5%) 2 weeks before pregnancy resulted in a decrease in the number of viable fetuses and abnormal fetal development, and these effects were accompanied by impaired maternal glucose homeostasis and hepatic steatosis during pregnancy. Neonates of ethanol-fed mice had postnatal macrosomia and significantly decreased growth rates during the lactation period. However, treatment with 4-MP, a CYP2E1 inhibitor, markedly ameliorated the reduction in insulin action and glucose disposal responsiveness in the livers of ethanol-fed mice. Blockage of CYP2E1 significantly reduced the alteration in hepatic lipid deposition, fatty acid oxidation, mitochondrial energy status, and macrophage infiltration observed in ethanol-fed mice. Finally, there was a positive correlation between postnatal macrosomia or growth retardation and increased inflammatory responses. Collectively, our study suggests that even moderate ethanol intake may be detrimental to fetal development and may cause growth retardation through maternal metabolic disorders.
Collapse
Affiliation(s)
- Yoo Jeong Lee
- Division of Endocrine and Metabolic Disease, Center for Biomedical Sciences, Korea National Institute of Health, Cheongju, Chungbuk, 28159, Republic of Korea
| | - Ji Yeon Kim
- Division of Cardiovascular Disease, Center for Biomedical Sciences, Korea National Institute of Health, Cheongju, Chungbuk, 28159, Republic of Korea.,Division of Endocrine and Metabolic Disease, Center for Biomedical Sciences, Korea National Institute of Health, Cheongju, Chungbuk, 28159, Republic of Korea
| | - Dae Yeon Lee
- Division of Cardiovascular Disease, Center for Biomedical Sciences, Korea National Institute of Health, Cheongju, Chungbuk, 28159, Republic of Korea.,Division of Endocrine and Metabolic Disease, Center for Biomedical Sciences, Korea National Institute of Health, Cheongju, Chungbuk, 28159, Republic of Korea.,Department of Biotechnology, Korea University, Seoul, Republic of Korea
| | - Keon Jae Park
- Division of Endocrine and Metabolic Disease, Center for Biomedical Sciences, Korea National Institute of Health, Cheongju, Chungbuk, 28159, Republic of Korea
| | - Gyu Hee Kim
- Division of Endocrine and Metabolic Disease, Center for Biomedical Sciences, Korea National Institute of Health, Cheongju, Chungbuk, 28159, Republic of Korea
| | - Jeong Eun Kim
- Division of Endocrine and Metabolic Disease, Center for Biomedical Sciences, Korea National Institute of Health, Cheongju, Chungbuk, 28159, Republic of Korea
| | - Gu Seob Roh
- Department of Anatomy, College of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea
| | - Joong Yeon Lim
- Division of Cardiovascular Disease, Center for Biomedical Sciences, Korea National Institute of Health, Cheongju, Chungbuk, 28159, Republic of Korea
| | - Seul Koo
- Division of Cardiovascular Disease, Center for Biomedical Sciences, Korea National Institute of Health, Cheongju, Chungbuk, 28159, Republic of Korea
| | - Nam Kyoo Lim
- Division of Cardiovascular Disease, Center for Biomedical Sciences, Korea National Institute of Health, Cheongju, Chungbuk, 28159, Republic of Korea
| | - Hyun Young Park
- Division of Cardiovascular Disease, Center for Biomedical Sciences, Korea National Institute of Health, Cheongju, Chungbuk, 28159, Republic of Korea
| | - Won-Ho Kim
- Division of Cardiovascular Disease, Center for Biomedical Sciences, Korea National Institute of Health, Cheongju, Chungbuk, 28159, Republic of Korea. .,Division of Endocrine and Metabolic Disease, Center for Biomedical Sciences, Korea National Institute of Health, Cheongju, Chungbuk, 28159, Republic of Korea.
| |
Collapse
|
44
|
Priya Dharshini LC, Vishnupriya S, Sakthivel KM, Rasmi RR. Oxidative stress responsive transcription factors in cellular signalling transduction mechanisms. Cell Signal 2020; 72:109670. [PMID: 32418887 DOI: 10.1016/j.cellsig.2020.109670] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/06/2020] [Accepted: 05/06/2020] [Indexed: 11/18/2022]
Abstract
Oxidative stress results from the imbalances in the development of reactive oxygen species (ROS) and antioxidants defence system resulting in tissue injury. A key issue resulting in the modulation of ROS is that it alters hosts molecular, structural and functional properties which is accomplished via various signalling pathways which either activate or inhibit numerous transcription factors (TFs). Some of the regulators include Nuclear erythroid-2 related factors (Nrf-2), CCAAT/enhancer-binding protein delta (CEBPD), Activator Protein-1 (AP-1), Hypoxia-inducible factor 1(HIF-1), Nuclear factor κB (NF-κB), Specificity Protein-1 (SP-1) and Forkhead Box class O (FoxO) transcription factors. The expression of these transcription factors are dependent upon the stress signal and are sometimes interlinked. They are highly specific having their own regulation cellular events. Depending upon the transcription factors and better knowledge on the type of the oxidative stress help researchers develop safe, novel targets which can serve as efficient therapeutic targets for several disease conditions.
Collapse
Affiliation(s)
| | - Selvaraj Vishnupriya
- Department of Biotechnology, PSG College of Arts & Science, Civil Aerodrome Post, Coimbatore, Tamil Nadu 641 014, India
| | - Kunnathur Murugesan Sakthivel
- Department of Biochemistry, PSG College of Arts & Science, Civil Aerodrome Post, Coimbatore, Tamil Nadu 641 014, India
| | - Rajan Radha Rasmi
- Department of Biotechnology, PSG College of Arts & Science, Civil Aerodrome Post, Coimbatore, Tamil Nadu 641 014, India.
| |
Collapse
|
45
|
Elkomy NMIM, Ibrahim IAAEH, El-Fayoumi HM, Elshazly SM. Effect of imidazoline-1 receptor agonists on renal dysfunction in rats associated with chronic, sequential fructose and ethanol administration. Clin Exp Pharmacol Physiol 2020; 47:609-619. [PMID: 31869439 DOI: 10.1111/1440-1681.13232] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 11/28/2022]
Abstract
Insulin resistance and chronic alcoholism are risk factors for renal dysfunction. This study investigated the therapeutic effects of two imidazoline-1 receptor (I1R) agonists on renal dysfunction in rats after chronic, sequential fructose and ethanol administration. Daily drinking water was supplemented with fructose (10%, w/v) for 12 weeks and then with ethanol (20%, v/v) for another 8 weeks. Rats were treated with rilmenidine and clonidine in the last two weeks of the study. Blood glucose and serum insulin (sIns) levels, lipid profiles, kidney function and renal histopathology were evaluated at the end of the experiment. Additionally, renal gene expression of nischarin, phosphatidylcholine-specific phospholipase C (PC-PLC) and prostaglandin E2 (PGE2) were measured. Renal levels of superoxide dismutase (SOD), malondialdehyde (MDA), myeloperoxidase (MPO), inducible nitric oxide synthase (iNOS) and total NO (tNO) were detected, and we determined the relative renal gene expression levels of alpha smooth muscle actin (α-SMA), hydroxyproline, interleukin 10 (IL-10), tumour necrosis factor alpha (TNF-α) and caspase-3. The results showed significant deterioration of blood glucose, sIns, lipid profiles, kidney function and renal histopathology in fructose/ethanol-fed rats. Additionally, markers of inflammation, fibrosis, apoptosis and oxidative stress were upregulated. The administration of rilmenidine or clonidine significantly improved blood glucose and sIns levels and reduced renal dysfunction. Our work showed that chronic, sequential fructose and ethanol administration induced fasting hyperglycaemia and renal impairment, and these effects were ameliorated by I1R agonists.
Collapse
Affiliation(s)
- Nesreen M I M Elkomy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Islam A A E-H Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Hassan M El-Fayoumi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kantara Sinai University, Arish, Egypt
| | - Shimaa M Elshazly
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| |
Collapse
|
46
|
NF-κB-mediated regulation of rat CYP2E1 by two independent signaling pathways. PLoS One 2019; 14:e0225531. [PMID: 31881060 PMCID: PMC6934272 DOI: 10.1371/journal.pone.0225531] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 11/05/2019] [Indexed: 01/14/2023] Open
Abstract
Cytochrome P450 2E1 (CYP2E1) plays an important role in both alcohol-induced and immune-mediated liver injury. However, the mechanism underlying CYP2E1 transcriptional regulation has not been clarified. This study focused on the NF-κB-mediated transcriptional regulation of rat CYP2E1 by two independent signaling pathways in alcohol-induced and immune-mediated liver injury rat models. Male Sprague-Dawley rats were used in pharmacokinetic, molecular pharmacology, and morphology experiments. A rat model of alcohol-induced liver injury (AL) was established by feeding an ethanol-containing diet (42 g/kg/day) for 5 weeks as indicated. A rat immune-mediated liver injury (IM) model was established by the sequential injection of bacillus Calmette-Guérin (BCG, 125 mg/kg, once) via the tail vein after test day 21 and 10 μg/kg LPS 13 days later. HPLC, real-time PCR, western blot and ELISA analyses were performed. CYP2E1 expression was enhanced during the process of alcohol-induced liver injury (increased by 56%, P < 0.05) and significantly reduced during that of immune-mediated liver injury (reducedby52%, P < 0.05). NF-κB was activated in both the AL and IM groups (increased by 56% and76%, respectively, P < 0.05). Compared to those in the livers of AL model rats, the interleukin (IL)-1β, tumor necrosis factor (TNF)-α, and iNOS levels in IM model rat livers were increased (increased by 26%, 21% and 101%, respectively, P < 0.05). The differential changes in CYP2E1 in the processes of alcohol-induced and immune-mediated liver injury may result from the differential expression of inflammatory cytokines and iNOS after NF-κB activation, leading to the NF-κB-mediated transcriptional regulation of rat CYP2E1 by two independent signaling pathways.
Collapse
|
47
|
Circulating Extracellular Vesicles Containing Xenobiotic Metabolizing CYP Enzymes and Their Potential Roles in Extrahepatic Cells Via Cell-Cell Interactions. Int J Mol Sci 2019; 20:ijms20246178. [PMID: 31817878 PMCID: PMC6940889 DOI: 10.3390/ijms20246178] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/27/2019] [Accepted: 12/04/2019] [Indexed: 02/06/2023] Open
Abstract
The cytochrome P450 (CYP) family of enzymes is known to metabolize the majority of xenobiotics. Hepatocytes, powerhouses of CYP enzymes, are where most drugs are metabolized into non-toxic metabolites. Additional tissues/cells such as gut, kidneys, lungs, blood, and brain cells express selective CYP enzymes. Extrahepatic CYP enzymes, especially in kidneys, also metabolize drugs into excretable forms. However, extrahepatic cells express a much lower level of CYPs than hepatocytes. It is possible that the liver secretes CYP enzymes, which circulate via plasma and are eventually delivered to extrahepatic cells (e.g., brain cells). CYP circulation likely occurs via extracellular vesicles (EVs), which carry important biomolecules for delivery to distant cells. Recent studies have revealed an abundance of several CYPs in plasma EVs and other cell-derived EVs, and have demonstrated the role of CYP-containing EVs in xenobiotic-induced toxicity via cell–cell interactions. Thus, it is important to study the mechanism for packaging CYP into EVs, their circulation via plasma, and their role in extrahepatic cells. Future studies could help to find novel EV biomarkers and help to utilize EVs in novel interventions via CYP-containing EV drug delivery. This review mainly covers the abundance of CYPs in plasma EVs and EVs derived from CYP-expressing cells, as well as the potential role of EV CYPs in cell–cell communication and their application with respect to novel biomarkers and therapeutic interventions.
Collapse
|
48
|
Gamma-oryzanol prevents ethanol-induced liver injury by ameliorating oxidative stress and modulating apoptosis-related protein expression in mice. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103532] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
49
|
Upregulation of CYP2E1 expression causes oxidative damage induced by 2-chloroethanol in primary cultured rat astrocytes. Neurotoxicology 2019; 75:233-244. [PMID: 31585129 DOI: 10.1016/j.neuro.2019.09.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/29/2019] [Accepted: 09/30/2019] [Indexed: 12/21/2022]
Abstract
Brain edema caused by subacute poisoning with 1,2-dichloroethane (1,2-DCE) has gained much attention during recent years, but its underlying mechanism is poorly understood. As an intermediate metabolite of 1,2-DCE in vivo, 2-chloroethanol (2-CE) can be transformed into chloroacetaldehyde and reactive oxygen species (ROS) through cytochrome P450 2E1 (CYP2E1) mediated metabolism. In previous studies, it was found that CYP2E1 expression is enhanced in the brain of mice treated with 1,2-DCE. This study was designed to verify the roles of CYP2E1 overexpression in 2-CE induced cytotoxicity in rat astrocytes, and the contribution of specific signaling molecules to the upregulation of CYP2E1 expression caused by 2-CE. The results of this study demonstrate that treatment with 2-CE can enhance CYP2E1 protein and mRNA levels, cause an increase in ROS and MDA levels, and higher percentages of apoptotic cells in rat astrocytes. Pretreatment with either diallyl sulfide or vitamin C, the inhibitor of CYP2E1 or scavenger of ROS, respectively, can suppress the levels of CYP2E1 expression, ROS and MDA, ameliorate cell apoptosis, and attenuate phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) in these cells. Additionally, pretreatment with the inhibitor of either ERK1/2 or transcriptional factor specificity protein 1 (SP1) can suppress the CYP2E1 expression, and alleviate the oxidative damage caused to these cells. In conclusion, our findings demonstrate that CYP2E1 overexpression plays a crucial role in 2-CE induced oxidative damage of rat astrocytes, and that CYP2E1 expression is upregulated partially through the activation of the ERK1/2 and SP1 signaling pathways by ROS generated during CYP2E1-mediated 2-CE metabolism. This study provides novel information that can be used in elucidating the mechanism by which 1,2-DCE induces brain edema.
Collapse
|
50
|
Sp1 in Astrocyte Is Important for Neurite Outgrowth and Synaptogenesis. Mol Neurobiol 2019; 57:261-277. [PMID: 31317491 DOI: 10.1007/s12035-019-01694-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 07/03/2019] [Indexed: 02/04/2023]
Abstract
In this study, we found that Sp1 was highly expressed in astrocytes, implying that Sp1 might be important for the function of astrocytes. Sp1/GFAP-Cre-ERT2 conditional knockout mice were constructed to study the role of Sp1 in astrocytes. Knockout of Sp1 in astrocytes altered astrocytic morphology and decreased GFAP expression in the cortex and hippocampus but did not affect cell viability. Loss of Sp1 in astrocytes decreased the number of neurons in the cortex and hippocampus. Conditioned medium from primary astrocytes with Sp1 knockout disrupted neuronal dendritic outgrowth and synapse formation, resulting in abnormal learning, memory, and motor behavior. Sp1 knockout in astrocytes altered gene expression, including decreasing the expression of Toll-like receptor 2 and Cfb and increasing the expression of C1q and C4Bp, thereby affecting neurite outgrowth and synapse formation, resulting in disordered neuron function. Studying these gene regulations might be beneficial to understanding neuronal development and brain injury prevention.
Collapse
|