1
|
Yan M, Cai L, Duan X, Tycksen ED, Rai MF. Carbonic anhydrase 2 is important for chondrocyte function and metabolic homeostasis. Bone 2024:117313. [PMID: 39488239 DOI: 10.1016/j.bone.2024.117313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024]
Abstract
OBJECTIVES Aberrant chondrocyte metabolism significantly contributes to cartilage degeneration and osteoarthritis (OA) genesis. However, the mechanisms driving the metabolic shift in OA chondrocytes remain unclear. Interestingly, carbonic anhydrase 2 (CA2) is implicated in metabolic regulation, and its expression dramatically increases in OA chondrocytes, but its exact role and mechanism are poorly understood. This study investigates the mechanistic role of CA2 in chondrocyte metabolic homeostasis under inflammatory conditions. METHODS RNA-seq was performed on CA2-deficient C28/I2 cells to identify pathways affected by the loss of CA2 function. We examined CA2's impact on chondrocyte metabolism, anabolism, and catabolism using C28/I2 cells and primary chondrocytes under normoxia and hypoxia and in a model of inflammatory OA. RESULTS RNA-seq revealed enrichment of glycolysis, apoptosis, and TNF signaling pathways in CA2-deficient cells. Under hypoxia, CA2 expression increased 10-fold in a HIF-1α-independent manner. Knockdown of CA2 reduced extracellular lactate production, increased ADP/ATP ratio, impaired glycolysis, reduced glycolytic capacity, and lowered expression of glycolysis rate-limiting enzymes but did not disrupt pHi and ROS production. CA2 deficiency altered chondrocyte anabolic and catabolic equilibrium by affecting PI3K/AKT and RELA/p65 signaling. Chondrocyte migration was impeded, proliferation suppressed, and the cell cycle arrested at G0/G1 in cells lacking CA2. Forced expression of CA2 stabilized chondrocyte metabolism and restored cellular functions. CONCLUSIONS Our research uncovered a novel mechanistic role for CA2 in regulating chondrocyte energy metabolism and inflammation, underscoring its potential as a critical mediator in OA pathogenesis. Further research using a murine model of experimental OA is warranted to capture the functional implications of CA2.
Collapse
Affiliation(s)
- Mingming Yan
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, USA; Department of Orthopaedic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Lei Cai
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Xin Duan
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Eric D Tycksen
- Genome Technology Access Center, McDonell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Muhammad Farooq Rai
- Department of Biological Sciences, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates; Center for Biotechnology, Khalifa University, Abu Dhabi, United Arab Emirates; Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA; Department of Biomedical Engineering, Saint Louis University School of Science and Engineering, St. Louis, MO, USA.
| |
Collapse
|
2
|
Huang Y, Zhu Q, Sun Y, Zhang W, Zou J. Alterations in genes involved in glycolysis and hypoxia affect the prognosis of pancreatic cancer. Heliyon 2024; 10:e34104. [PMID: 39100466 PMCID: PMC11295968 DOI: 10.1016/j.heliyon.2024.e34104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 07/03/2024] [Indexed: 08/06/2024] Open
Abstract
Purpose To construct a prognostic model for pancreatic cancer based on glycolytic and hypoxic metabolic subtypes. To analyze the biological characteristics of these subtypes and explore potential therapeutic options. Methods We obtained mRNA, simple nucleotide variation (SNP), and clinical data for pancreatic cancer from The Cancer Genome Atlas (TCGA). Patients were classified into four metabolic subtypes. We focused on glycolysis and hypoxia subtypes. Single-sample gene set enrichment analysis (ssGSEA) assessed immune cell infiltration. We evaluated the effects of immunotherapy and chemotherapy on these subtypes. Cox regression and random survival forest algorithms were used to build a prognostic model. Validation was performed using data from the International Cancer Genome Consortium (ICGC) and ArrayExpress database. Results We identified four subtypes. Kaplan-Meier survival analysis showed the glycolytic subtype had the longest survival, while the hypoxic subtype had the shortest. The glycolytic subtype exhibited higher immune cell infiltration. Immunotherapy and chemotherapy appeared more beneficial for the glycolytic subtype. KRAS mutations were more frequent in the hypoxic subtype. Our prognostic model indicated a worse prognosis for high-risk groups, validated by external data. Conclusion The glycolytic metabolic subtype of pancreatic cancer is associated with longer survival and better response to chemotherapy and immunotherapy compared to the hypoxic subtype.
Collapse
Affiliation(s)
- Yujie Huang
- Department of Emergency Medicine, The First Affiliated Hospital of Soochow University, No. 899 Pinghai Road, Suzhou, 215006, Jiangsu Province, China
| | - Qilu Zhu
- Institute: Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu Province, China
| | - Yizhang Sun
- Department of Urinary Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu Province, China
| | - Weigang Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The First Affiliated Hospital of Soochow University, No. 899 Pinghai Road, Suzhou, 215006, Jiangsu Province, China
| | - Jiayue Zou
- Department of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The First Affiliated Hospital of Soochow University, No. 899 Pinghai Road, Suzhou, 215006, Jiangsu Province, China
| |
Collapse
|
3
|
Kim JY, Hong N, Ham SW, Park S, Seo S, Kim H. Cancer-wide in silico analyses using differentially expressed genes demonstrate the functions and clinical relevance of JAG, DLL, and NOTCH. PLoS One 2024; 19:e0307943. [PMID: 39074091 DOI: 10.1371/journal.pone.0307943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 07/16/2024] [Indexed: 07/31/2024] Open
Abstract
Notch ligands [jagged (JAG) and, delta-like (DLL) families] and receptors [NOTCH family] are key regulators of Notch signaling. NOTCH signaling contributes to vascular development, tissue homeostasis, angiogenesis, and cancer progression. To elucidate the universal functions of the JAG, DLL, and NOTCH families and their connections with various biological functions, we examined 15 types of cancer using The Cancer Genome Atlas clinical database. We selected the differentially expressed genes (DEGs), which were positively correlated to the JAG, DLL, and NOTCH families in each cancer. We selected positive and negative hallmark signatures across cancer types. These indicated biological features associated with angiogenesis, hypoxia, KRAS signaling, cell cycle, and MYC targets by gene ontology and gene set enrichment analyses using DEGs. Furthermore, we analyzed single-cell RNA sequencing data to examine the expression of JAG, DLL, and NOTCH families and enrichment of hallmark signatures. Positive signatures identified using DEGs, such as KRAS signaling and hypoxia, were enriched in clusters with high expression of JAG, DLL, and NOTCH families. We subsequently validated the correlation between the JAG, DLL, and NOTCH families and clinical stages, including treatment response, metastasis, and recurrence. In addition, we performed survival analysis to identify hallmark signatures that critically affect patient survival when combining the expression of JAG, DLL, and NOTCH families. By combining the DEG enrichment and hallmark signature enrichment in survival analysis, we suggested unexplored regulatory functions and synergistic effects causing synthetic lethality. Taken together, our observations demonstrate the functions of JAG, DLL, and NOTCH families in cancer malignancy and provide insights into their molecular regulatory mechanisms.
Collapse
Affiliation(s)
- Jung Yun Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
- Institute of Animal Molecular Biotechnology, Korea University, Seoul, Republic of Korea
| | - Nayoung Hong
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
- Institute of Animal Molecular Biotechnology, Korea University, Seoul, Republic of Korea
| | - Seok Won Ham
- MEDIFIC Inc., Hwaseong-si, Gyeonggi-do, Republic of Korea
| | - Sehyeon Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
- Institute of Animal Molecular Biotechnology, Korea University, Seoul, Republic of Korea
| | - Sunyoung Seo
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
- Institute of Animal Molecular Biotechnology, Korea University, Seoul, Republic of Korea
| | - Hyunggee Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
- Institute of Animal Molecular Biotechnology, Korea University, Seoul, Republic of Korea
| |
Collapse
|
4
|
Mustafa M, Abbas K, Alam M, Habib S, Zulfareen, Hasan GM, Islam S, Shamsi A, Hassan I. Investigating underlying molecular mechanisms, signaling pathways, emerging therapeutic approaches in pancreatic cancer. Front Oncol 2024; 14:1427802. [PMID: 39087024 PMCID: PMC11288929 DOI: 10.3389/fonc.2024.1427802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024] Open
Abstract
Pancreatic adenocarcinoma, a clinically challenging malignancy constitutes a significant contributor to cancer-related mortality, characterized by an inherently poor prognosis. This review aims to provide a comprehensive understanding of pancreatic adenocarcinoma by examining its multifaceted etiologies, including genetic mutations and environmental factors. The review explains the complex molecular mechanisms underlying its pathogenesis and summarizes current therapeutic strategies, including surgery, chemotherapy, and emerging modalities such as immunotherapy. Critical molecular pathways driving pancreatic cancer development, including KRAS, Notch, and Hedgehog, are discussed. Current therapeutic strategies, including surgery, chemotherapy, and radiation, are discussed, with an emphasis on their limitations, particularly in terms of postoperative relapse. Promising research areas, including liquid biopsies, personalized medicine, and gene editing, are explored, demonstrating the significant potential for enhancing diagnosis and treatment. While immunotherapy presents promising prospects, it faces challenges related to immune evasion mechanisms. Emerging research directions, encompassing liquid biopsies, personalized medicine, CRISPR/Cas9 genome editing, and computational intelligence applications, hold promise for refining diagnostic approaches and therapeutic interventions. By integrating insights from genetic, molecular, and clinical research, innovative strategies that improve patient outcomes can be developed. Ongoing research in these emerging fields holds significant promise for advancing the diagnosis and treatment of this formidable malignancy.
Collapse
Affiliation(s)
- Mohd Mustafa
- Department of Biochemistry, J.N. Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, India
| | - Kashif Abbas
- Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Mudassir Alam
- Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Safia Habib
- Department of Biochemistry, J.N. Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, India
| | - Zulfareen
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Gulam Mustafa Hasan
- Department of Basic Medical Science, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Sidra Islam
- Department of Inflammation & Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Anas Shamsi
- Center of Medical and Bio-Allied Health Sciences Research (CMBHSR), Ajman University, Ajman, United Arab Emirates
| | - Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
5
|
Delrue C, Speeckaert R, Delanghe JR, Speeckaert MM. Breath of fresh air: Investigating the link between AGEs, sRAGE, and lung diseases. VITAMINS AND HORMONES 2024; 125:311-365. [PMID: 38997169 DOI: 10.1016/bs.vh.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Advanced glycation end products (AGEs) are compounds formed via non-enzymatic reactions between reducing sugars and amino acids or proteins. AGEs can accumulate in various tissues and organs and have been implicated in the development and progression of various diseases, including lung diseases. The receptor of advanced glycation end products (RAGE) is a receptor that can bind to advanced AGEs and induce several cellular processes such as inflammation and oxidative stress. Several studies have shown that both AGEs and RAGE play a role in the pathogenesis of lung diseases, such as chronic obstructive pulmonary disease, asthma, idiopathic pulmonary fibrosis, cystic fibrosis, and acute lung injury. Moreover, the soluble form of the receptor for advanced glycation end products (sRAGE) has demonstrated its ability to function as a decoy receptor, possessing beneficial characteristics such as anti-inflammatory, antioxidant, and anti-fibrotic properties. These qualities make it an encouraging focus for therapeutic intervention in managing pulmonary disorders. This review highlights the current understanding of the roles of AGEs and (s)RAGE in pulmonary diseases and their potential as biomarkers and therapeutic targets for preventing and treating these pathologies.
Collapse
Affiliation(s)
- Charlotte Delrue
- Department of Nephrology, Ghent University Hospital, Ghent, Belgium
| | | | - Joris R Delanghe
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Marijn M Speeckaert
- Department of Nephrology, Ghent University Hospital, Ghent, Belgium; Research Foundation-Flanders (FWO), Brussels, Belgium.
| |
Collapse
|
6
|
Hua Y, Yang S, Zhang Y, Li J, Wang M, Yeerkenbieke P, Liao Q, Liu Q. Modulating ferroptosis sensitivity: environmental and cellular targets within the tumor microenvironment. J Exp Clin Cancer Res 2024; 43:19. [PMID: 38217037 PMCID: PMC10787430 DOI: 10.1186/s13046-023-02925-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/06/2023] [Indexed: 01/14/2024] Open
Abstract
Ferroptosis, a novel form of cell death triggered by iron-dependent phospholipid peroxidation, presents significant therapeutic potential across diverse cancer types. Central to cellular metabolism, the metabolic pathways associated with ferroptosis are discernible in both cancerous and immune cells. This review begins by delving into the intricate reciprocal regulation of ferroptosis between cancer and immune cells. It subsequently details how factors within the tumor microenvironment (TME) such as nutrient scarcity, hypoxia, and cellular density modulate ferroptosis sensitivity. We conclude by offering a comprehensive examination of distinct immunophenotypes and environmental and metabolic targets geared towards enhancing ferroptosis responsiveness within the TME. In sum, tailoring precise ferroptosis interventions and combination strategies to suit the unique TME of specific cancers may herald improved patient outcomes.
Collapse
Affiliation(s)
- Yuze Hua
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 1# Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Sen Yang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 1# Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Yalu Zhang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 1# Shuaifuyuan, Dongcheng District, Beijing, 100730, China
- Department of General Surgery, Anhui Provincial Hospital, Division of Life Science and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230027, China
| | - Jiayi Li
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 1# Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Mengyi Wang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 1# Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Palashate Yeerkenbieke
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 1# Shuaifuyuan, Dongcheng District, Beijing, 100730, China
- Department of General Surgery, Xinjiang Yili Kazak Autonomous Prefecture Friendship Hospital, Xinjiang, 835099, China
| | - Quan Liao
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 1# Shuaifuyuan, Dongcheng District, Beijing, 100730, China.
| | - Qiaofei Liu
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 1# Shuaifuyuan, Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
7
|
Senavirathna L, Pan S, Chen R. Protein Advanced Glycation End Products and Their Implications in Pancreatic Cancer. Cancer Prev Res (Phila) 2023; 16:601-610. [PMID: 37578815 PMCID: PMC10843555 DOI: 10.1158/1940-6207.capr-23-0162] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/14/2023] [Accepted: 08/10/2023] [Indexed: 08/15/2023]
Abstract
Protein advanced glycation end products (AGE) formed by nonenzymatic glycation can disrupt the normal structure and function of proteins, and stimulate the receptor for AGEs (RAGE), triggering intricate mechanisms that are etiologically related to various chronic diseases, including pancreatic cancer. Many common risk factors of pancreatic cancer are the major sources for the formation of protein AGEs and glycative stress in the human body. Abnormal accumulation of protein AGEs can impair the cellular proteome and promote AGE-RAGE driven pro-inflammatory signaling cascades, leading to increased oxidative stress, protease resistance, protein dysregulation, transcription activity of STAT, NF-κB, and AP-1, aberrant status in ubiquitin-proteasome system and autophagy, as well as other molecular events that are susceptible for the carcinogenic transformation towards the development of neoplasms. Here, we review studies to highlight our understanding in the orchestrated molecular events in bridging the impaired proteome, dysregulated functional networks, and cancer hallmarks initiated upon protein AGE formation and accumulation in pancreatic cancer.
Collapse
Affiliation(s)
- Lakmini Senavirathna
- The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Sheng Pan
- The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Ru Chen
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
8
|
Muthyalaiah YS, Arockiasamy S, P A A. Exploring the molecular interactions and binding affinity of resveratrol and calcitriol with RAGE and its intracellular proteins and kinases involved in colorectal cancer. J Biomol Struct Dyn 2023; 42:10800-10823. [PMID: 37732363 DOI: 10.1080/07391102.2023.2258993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/07/2023] [Indexed: 09/22/2023]
Abstract
Colorectal cancer (CRC) burden is progressively increasing in young population due to dietary and lifestyle pattern. Advanced glycation end products (AGEs), one of the dietary compounds, form complex aggregates with proteins, lipids, and nucleic acids distorting their structure and function. AGE's pro-tumorigenic role is mediated through the receptor for AGEs (RAGE) triggering an array of signaling pathways. The current study aimed to target AGE-RAGE axis signaling proteins and kinases at multiple levels with calcitriol (CAL) and trans-resveratrol (RES) through in silico analysis using molecular docking (MD), molecular dynamic simulation(MDS), MM-PBSA analysis, and in vitro study. In silico analysis of CAL and RES showed significant binding affinity toward RAGE and its signaling proteins such as NF-kB, PI3K/AKT, ERK1/2, and PKC compared to its reference inhibitors through better hydrogen, hydrophobic, pi-pi stacking interactions. MD and MDS studies have revealed stable and compact protein-ligand complexes. Binding free energies of protein-ligand complex were estimated using MM/PBSA analysis thatprovided an assessment of overall interacting free energies of complexes and revealed the presence of low binding energy within the active site. Furthermore, in the in vitro study, methylglyoxal (MG), an AGE-precursor showed a proliferative effect on HCT116, however, CAL and RES showed an inhibitory effect against MG induced effect with an IC50 value of 51 nM and 110 µM respectively. Thus, the study suggests the possible target binding sites of AGE-RAGE signaling proteins and kinases with CAL and RES, thereby exploiting it for developing CAL with RES as adjuvant therapy along with chemo drug for CRC.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Yadav Sangeeta Muthyalaiah
- Department of Biomedical Sciences, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Sumathy Arockiasamy
- Department of Biomedical Sciences, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Abhinand P A
- Department of Bioinformatics, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| |
Collapse
|
9
|
Zhou H, Zhao C, Shao R, Xu Y, Zhao W. The functions and regulatory pathways of S100A8/A9 and its receptors in cancers. Front Pharmacol 2023; 14:1187741. [PMID: 37701037 PMCID: PMC10493297 DOI: 10.3389/fphar.2023.1187741] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 08/07/2023] [Indexed: 09/14/2023] Open
Abstract
Inflammation primarily influences the initiation, progression, and deterioration of many human diseases, and immune cells are the principal forces that modulate the balance of inflammation by generating cytokines and chemokines to maintain physiological homeostasis or accelerate disease development. S100A8/A9, a heterodimer protein mainly generated by neutrophils, triggers many signal transduction pathways to mediate microtubule constitution and pathogen defense, as well as intricate procedures of cancer growth, metastasis, drug resistance, and prognosis. Its paired receptors, such as receptor for advanced glycation ends (RAGEs) and toll-like receptor 4 (TLR4), also have roles and effects within tumor cells, mainly involved with mitogen-activated protein kinases (MAPKs), NF-κB, phosphoinositide 3-kinase (PI3K)/Akt, mammalian target of rapamycin (mTOR) and protein kinase C (PKC) activation. In the clinical setting, S100A8/A9 and its receptors can be used complementarily as efficient biomarkers for cancer diagnosis and treatment. This review comprehensively summarizes the biological functions of S100A8/A9 and its various receptors in tumor cells, in order to provide new insights and strategies targeting S100A8/A9 to promote novel diagnostic and therapeutic methods in cancers.
Collapse
Affiliation(s)
- Huimin Zhou
- State Key Laboratory of Respiratory Health and Multimorbidity, Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Cong Zhao
- State Key Laboratory of Respiratory Health and Multimorbidity, Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rongguang Shao
- State Key Laboratory of Respiratory Health and Multimorbidity, Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanni Xu
- NHC Key Laboratory of Biotechnology of Antibiotics, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wuli Zhao
- State Key Laboratory of Respiratory Health and Multimorbidity, Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
10
|
Mandarino A, Thiyagarajan S, Martins ACF, Gomes RDS, Vetter SW, Leclerc E. S100s and HMGB1 Crosstalk in Pancreatic Cancer Tumors. Biomolecules 2023; 13:1175. [PMID: 37627239 PMCID: PMC10452588 DOI: 10.3390/biom13081175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/18/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Pancreatic cancer remains a disease that is very difficult to treat. S100 proteins are small calcium binding proteins with diverse intra- and extracellular functions that modulate different aspects of tumorigenesis, including tumor growth and metastasis. High mobility group box 1 (HMGB1) protein is a multifaceted protein that also actively influences the development and progression of tumors. In this study, we investigate the possible correlations, at the transcript level, between S100s and HMGB1 in pancreatic cancer. For this purpose, we calculated Pearson's correlations between the transcript levels of 13 cancer-related S100 genes and HMGB1 in a cDNA array containing 19 pancreatic cancer tumor samples, and in 8 human pancreatic cancer cell lines. Statistically significant positive correlations were found in 5.5% (5 out of 91) and 37.4% (34 of 91) of the possible S100/S100 or S100/HMGB1 pairs in cells and tumors, respectively. Our data suggest that many S100 proteins crosstalk in pancreatic tumors either with other members of the S100 family, or with HMGB1. These newly observed interdependencies may be used to further the characterization of pancreatic tumors based on S100 and HMGB1 transcription profiles.
Collapse
Affiliation(s)
| | | | | | | | | | - Estelle Leclerc
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58105, USA
| |
Collapse
|
11
|
Han C, Zhai L, Shen H, Wang J, Guan Q. Advanced Glycation End-Products (AGEs) Promote Endothelial Cell Pyroptosis Under Cerebral Ischemia and Hypoxia via HIF-1α-RAGE-NLRP3. Mol Neurobiol 2023; 60:2355-2366. [PMID: 36652049 DOI: 10.1007/s12035-023-03228-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/06/2023] [Indexed: 01/19/2023]
Abstract
This work mainly aimed to explore the role and mechanism of advanced glycation end-products (AGEs) in inducing cerebrovascular endothelial cell pyroptosis under oxygen glucose deprivation (OGD) condition. The mouse cerebral microvascular endothelial cells (BMECs and bEnd.3) were used as the objects to construct the OGD model in vitro. Then, cells were pretreated with AGE-modified human serum albumin (AGE-HSA). Thereafter, CCK-8 assay was conducted to detect cell viability, and flow cytometry (FCM) was performed to measure cell pyroptosis level. Meanwhile, the expression of inflammatory factors was detected by enzyme-linked immunosorbent assay (ELISA). The expression of HIF-α, NLRP3, and RAGE was detected by fluorescence staining. The opening status of cell membrane pore was observed under the electron microscope, and the expression levels of FL-GSDMD, NT-GSDMD, and caspase-1 were measured through Western Blot (WB) assay. Moreover, bEnd.3 cells were treated with siRAN-silenced NLRP3 and HIF-α inhibitor, so as to observe the effect of AGEs on cell pyroptosis level. In the mouse model, the middle cerebral artery occlusion (MCAO) model was constructed by the suture-occluded method. After intraperitoneal injection of AGEs, the pathological changes in mouse brain tissues were detected; the expression levels of NLRP3, ZO-1, and CD31 were determined by histochemical staining, and the levels of inflammatory factors and pyroptosis-related proteins were also detected. Under OGD condition, AGEs induced the pyroptosis of bEnd.3 cells, and the cell pyroptosis rate increased, higher than that of the OGD group. Meanwhile, the levels of inflammatory factors were up-regulated; the expression of HIF-α, NLRP3, and RAGE in cells increased; and the levels of NT-GSDMD and caspase-1 were markedly higher than those of the control and OGD groups. siRNA-NLRP3 or HIF-α inhibitor treatment suppressed pyroptosis and reduced the inflammatory factor levels. In mouse experiments, AGE injection aggravated brain injury in the MCAO mouse model, decreased the expression of ZO-1 and CD31, and elevated the levels of NLRP3 and inflammatory factors. Under cerebral ischemia condition, AGEs can induce endothelial cell pyroptosis via HIF-α-RAGE-NLRP3, thereby further aggravating brain injury.
Collapse
Affiliation(s)
- Chenyang Han
- The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Liping Zhai
- The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Heping Shen
- The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Jin Wang
- The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Qiaobing Guan
- The Second Affiliated Hospital of Jiaxing University, Jiaxing, China.
| |
Collapse
|
12
|
Ruze R, Song J, Yin X, Chen Y, Xu R, Wang C, Zhao Y. Mechanisms of obesity- and diabetes mellitus-related pancreatic carcinogenesis: a comprehensive and systematic review. Signal Transduct Target Ther 2023; 8:139. [PMID: 36964133 PMCID: PMC10039087 DOI: 10.1038/s41392-023-01376-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 01/31/2023] [Accepted: 02/15/2023] [Indexed: 03/26/2023] Open
Abstract
Research on obesity- and diabetes mellitus (DM)-related carcinogenesis has expanded exponentially since these two diseases were recognized as important risk factors for cancers. The growing interest in this area is prominently actuated by the increasing obesity and DM prevalence, which is partially responsible for the slight but constant increase in pancreatic cancer (PC) occurrence. PC is a highly lethal malignancy characterized by its insidious symptoms, delayed diagnosis, and devastating prognosis. The intricate process of obesity and DM promoting pancreatic carcinogenesis involves their local impact on the pancreas and concurrent whole-body systemic changes that are suitable for cancer initiation. The main mechanisms involved in this process include the excessive accumulation of various nutrients and metabolites promoting carcinogenesis directly while also aggravating mutagenic and carcinogenic metabolic disorders by affecting multiple pathways. Detrimental alterations in gastrointestinal and sex hormone levels and microbiome dysfunction further compromise immunometabolic regulation and contribute to the establishment of an immunosuppressive tumor microenvironment (TME) for carcinogenesis, which can be exacerbated by several crucial pathophysiological processes and TME components, such as autophagy, endoplasmic reticulum stress, oxidative stress, epithelial-mesenchymal transition, and exosome secretion. This review provides a comprehensive and critical analysis of the immunometabolic mechanisms of obesity- and DM-related pancreatic carcinogenesis and dissects how metabolic disorders impair anticancer immunity and influence pathophysiological processes to favor cancer initiation.
Collapse
Affiliation(s)
- Rexiati Ruze
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China
- Key Laboratory of Research in Pancreatic Tumors, Chinese Academy of Medical Sciences, 100023, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dongdan Santiao, Beijing, China
| | - Jianlu Song
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China
- Key Laboratory of Research in Pancreatic Tumors, Chinese Academy of Medical Sciences, 100023, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dongdan Santiao, Beijing, China
| | - Xinpeng Yin
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China
- Key Laboratory of Research in Pancreatic Tumors, Chinese Academy of Medical Sciences, 100023, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dongdan Santiao, Beijing, China
| | - Yuan Chen
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China
- Key Laboratory of Research in Pancreatic Tumors, Chinese Academy of Medical Sciences, 100023, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dongdan Santiao, Beijing, China
| | - Ruiyuan Xu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China
- Key Laboratory of Research in Pancreatic Tumors, Chinese Academy of Medical Sciences, 100023, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dongdan Santiao, Beijing, China
| | - Chengcheng Wang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China.
- Key Laboratory of Research in Pancreatic Tumors, Chinese Academy of Medical Sciences, 100023, Beijing, China.
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China.
- Key Laboratory of Research in Pancreatic Tumors, Chinese Academy of Medical Sciences, 100023, Beijing, China.
| |
Collapse
|
13
|
Glimmers of hope for targeting oncogenic KRAS-G12D. Cancer Gene Ther 2023; 30:391-393. [PMID: 36414681 DOI: 10.1038/s41417-022-00561-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 11/23/2022]
Abstract
KRAS mutations are one of the most common genetic abnormalities in cancer, especially lung, colon, and pancreatic cancers. Strategies targeting the oncogenic KRAS pathway include direct and indirect approaches. KRAS-G12C inhibitors developed based on binding to the switch II pocket structure of KRAS mutant protein represent a breakthrough in the development of targeted therapeutic strategies against oncogenic proteins previously considered undruggable. The covalent KRAS-G12C inhibitors sotorasib (AMG510) and adagrasib (MRTX849) are used to treat patients with KRAS-G12C-mutated non-small cell lung cancer. Emerging research shows that other host point mutations in KRAS can also be directly targeted by small-molecule compounds. Recently, through extensive structure-based drug design from Mirati Therapeutics, a novel non-covalent KRAS-G12D inhibitor, MRTX1133, showed significant preclinical antitumor activity in KRAS-G12D-bearing tumor cells, especially pancreatic ductal adenocarcinoma. Here, we discuss the selectivity, efficacy, toxicity, and potential application challenges of this novel targeted protein inhibitor.
Collapse
|
14
|
Rojas A, Lindner C, Schneider I, González I, Morales MA. Contributions of the receptor for advanced glycation end products axis activation in gastric cancer. World J Gastroenterol 2023; 29:997-1010. [PMID: 36844144 PMCID: PMC9950863 DOI: 10.3748/wjg.v29.i6.997] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/26/2022] [Accepted: 01/12/2023] [Indexed: 02/10/2023] Open
Abstract
Compelling shreds of evidence derived from both clinical and experimental research have demonstrated the crucial contribution of receptor for advanced glycation end products (RAGE) axis activation in the development of neoplasms, including gastric cancer (GC). This new actor in tumor biology plays an important role in the onset of a crucial and long-lasting inflammatory milieu, not only by supporting phenotypic changes favoring growth and dissemination of tumor cells, but also by functioning as a pattern-recognition receptor in the inflammatory response to Helicobacter pylori infection. In the present review, we aim to highlight how the overexpression and activation of the RAGE axis contributes to the proliferation and survival of GC cells as and their acquisition of more invasive phenotypes that promote dissemination and metastasis. Finally, the contribution of some single nucleotide polymorphisms in the RAGE gene as susceptibility or poor prognosis factors is also discussed.
Collapse
Affiliation(s)
- Armando Rojas
- Biomedical Research Laboratories, Medicine Faculty, Catholic University of Maule, Talca 34600000, Chile
| | - Cristian Lindner
- Medicine Faculty, Catholic University of Maule, Talca 34600000, Chile
| | - Iván Schneider
- Medicine Faculty, Catholic University of Maule, Talca 34600000, Chile
| | - Ileana González
- Biomedical Research Laboratories, Medicine Faculty, Catholic University of Maule, Talca 34600000, Chile
| | - Miguel Angel Morales
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, University of Chile, Santiago 8320000, Chile
| |
Collapse
|
15
|
Huang M, Hou W, Zhang J, Li M, Zhang Z, Li X, Chen Z, Wang C, Yang L. Evaluation of AMG510 Therapy on KRAS-Mutant Non-Small Cell Lung Cancer and Colorectal Cancer Cell Using a 3D Invasive Tumor Spheroid System under Normoxia and Hypoxia. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9120792. [PMID: 36550998 PMCID: PMC9774149 DOI: 10.3390/bioengineering9120792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
A 3D tumor spheroid has been increasingly applied in pharmaceutical development for its simulation of the tumor structure and microenvironment. The embedded-culture of a tumor spheroid within a hydrogel microenvironment could help to improve the mimicking of in vivo cell growth and the development of 3D models for tumor invasiveness evaluation, which could enhance its drug efficiency prediction together with cell viability detection. NCI-H23 spheroids and CT-26 spheroids, from a non-small cell lung cancer and colorectal cancer cell line, respectively, together with extracellular matrix were generated for evaluating their sensitivity to AMG510 (a KRASG12C inhibitor) under normoxia and hypoxia conditions, which were created by an on-stage environmental chamber. Results demonstrated that NCI-H23, the KRASG12C moderate expression cell line, only mildly responded to AMG510 treatment in normal 2D and 3D cultures and could be clearly evaluated by our system in hypoxia conditions, while the negative control CT-26 (G12D-mutant) spheroid exhibited no significant response to AMG510 treatment. In summary, our system, together with a controlled microenvironment and imaging methodology, provided an easily assessable and effective methodology for 3D in vitro drug efficiency testing and screenings.
Collapse
Affiliation(s)
- Meng Huang
- Medical Center for Digestive Disease, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Wei Hou
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- Department of Oncology, School of Medicine, Southeast University, Nanjing 210009, China
| | - Jing Zhang
- Institute of Medical Devices (Suzhou), Southeast University, Suzhou 215163, China
- Jiangsu Avatarget Biotechnology Co., Ltd., Suzhou 215163, China
| | - Menglan Li
- Jiangsu Avatarget Biotechnology Co., Ltd., Suzhou 215163, China
| | - Zilin Zhang
- Jiangsu Avatarget Biotechnology Co., Ltd., Suzhou 215163, China
| | - Xiaoran Li
- Jiangsu Avatarget Biotechnology Co., Ltd., Suzhou 215163, China
| | - Zaozao Chen
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- Institute of Medical Devices (Suzhou), Southeast University, Suzhou 215163, China
- Jiangsu Avatarget Biotechnology Co., Ltd., Suzhou 215163, China
- Correspondence: (Z.C.); (C.W.); (L.Y.)
| | - Cailian Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- Department of Oncology, School of Medicine, Southeast University, Nanjing 210009, China
- Correspondence: (Z.C.); (C.W.); (L.Y.)
| | - Lihua Yang
- Medical Center for Digestive Disease, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210009, China
- Correspondence: (Z.C.); (C.W.); (L.Y.)
| |
Collapse
|
16
|
Yue Q, Song Y, Liu Z, Zhang L, Yang L, Li J. Receptor for Advanced Glycation End Products (RAGE): A Pivotal Hub in Immune Diseases. Molecules 2022; 27:molecules27154922. [PMID: 35956875 PMCID: PMC9370360 DOI: 10.3390/molecules27154922] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/21/2022] [Accepted: 07/31/2022] [Indexed: 02/07/2023] Open
Abstract
As a critical molecule in the onset and sustainment of inflammatory response, the receptor for advanced glycation end products (RAGE) has a variety of ligands, such as advanced glycation end products (AGEs), S100/calcium granule protein, and high-mobility group protein 1 (HMGB1). Recently, an increasing number studies have shown that RAGE ligand binding can initiate the intracellular signal cascade, affect intracellular signal transduction, stimulate the release of cytokines, and play a vital role in the occurrence and development of immune-related diseases, such as systemic lupus erythematosus, rheumatoid arthritis, and Alzheimer’s disease. In addition, other RAGE signaling pathways can play crucial roles in life activities, such as inflammation, apoptosis, autophagy, and endoplasmic reticulum stress. Therefore, the strategy of targeted intervention in the RAGE signaling pathway may have significant therapeutic potential, attracting increasing attention. In this paper, through the systematic induction and analysis of RAGE-related signaling pathways and their regulatory mechanisms in immune-related diseases, we provide theoretical clues for the follow-up targeted intervention of RAGE-mediated diseases.
Collapse
Affiliation(s)
- Qing Yue
- Hebei Key Laboratory for Organ Fibrosis Research, School of Public Health, North China University of Science and Technology, Tangshan 063210, China; (Q.Y.); (Y.S.); (Z.L.); (L.Y.)
| | - Yu Song
- Hebei Key Laboratory for Organ Fibrosis Research, School of Public Health, North China University of Science and Technology, Tangshan 063210, China; (Q.Y.); (Y.S.); (Z.L.); (L.Y.)
| | - Zi Liu
- Hebei Key Laboratory for Organ Fibrosis Research, School of Public Health, North China University of Science and Technology, Tangshan 063210, China; (Q.Y.); (Y.S.); (Z.L.); (L.Y.)
| | - Lin Zhang
- Department of Internal Medicine Nursing, School of Nursing, Wannan Medical College, 22 Wenchang West Road, Higher Education Park, Wuhu 241002, China;
| | - Ling Yang
- Hebei Key Laboratory for Organ Fibrosis Research, School of Public Health, North China University of Science and Technology, Tangshan 063210, China; (Q.Y.); (Y.S.); (Z.L.); (L.Y.)
| | - Jinlong Li
- Hebei Key Laboratory for Organ Fibrosis Research, School of Public Health, North China University of Science and Technology, Tangshan 063210, China; (Q.Y.); (Y.S.); (Z.L.); (L.Y.)
- Correspondence: ; Tel.: +86-0315-8805572
| |
Collapse
|
17
|
Hypoxia-induced HMGB1 promotes glioma stem cells self-renewal and tumorigenicity via RAGE. iScience 2022; 25:104872. [PMID: 36034219 PMCID: PMC9399482 DOI: 10.1016/j.isci.2022.104872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 06/10/2022] [Accepted: 07/29/2022] [Indexed: 11/23/2022] Open
Abstract
Glioma stem cells (GSCs) in the hypoxic niches contribute to tumor initiation, progression, and recurrence in glioblastoma (GBM). Hypoxia induces release of high-mobility group box 1 (HMGB1) from tumor cells, promoting the development of tumor. Here, we report that HMGB1 is overexpressed in human GBM specimens. Hypoxia promotes the expression and secretion of HMGB1 in GSCs. Furthermore, silencing HMGB1 results in the loss of stem cell markers and a reduction in self-renewal ability of GSCs. Additionally, HMGB1 knockdown inhibits the activation of RAGE-dependent ERK1/2 signaling pathway and arrests the cell cycle in GSCs. Consistently, FPS-ZM1, an inhibitor of RAGE, downregulates HMGB1 expression and the phosphorylation of ERK1/2, leading to a reduction in the proliferation of GSCs. In xenograft mice of GBM, HMGB1 knockdown inhibits tumor growth and promotes mouse survival. Collectively, these findings uncover a vital function for HMGB1 in regulating GSC self-renewal potential and tumorigenicity. Glioma stem cells overexpress HMGB1 in human glioblastoma Hypoxia induces the upregulation and release of HMGB1 in glioma stem cells HMGB1 promotes the self-renewal of glioma stem cells via RAGE Targeting HMGB1 inhibits the tumorigenesis of glioma stem cells
Collapse
|
18
|
Dong H, Zhang Y, Huang Y, Deng H. Pathophysiology of RAGE in inflammatory diseases. Front Immunol 2022; 13:931473. [PMID: 35967420 PMCID: PMC9373849 DOI: 10.3389/fimmu.2022.931473] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/06/2022] [Indexed: 12/24/2022] Open
Abstract
The receptor for advanced glycation end products (RAGE) is a non-specific multi-ligand pattern recognition receptor capable of binding to a range of structurally diverse ligands, expressed on a variety of cell types, and performing different functions. The ligand-RAGE axis can trigger a range of signaling events that are associated with diabetes and its complications, neurological disorders, cancer, inflammation and other diseases. Since RAGE is involved in the pathophysiological processes of many diseases, targeting RAGE may be an effective strategy to block RAGE signaling.
Collapse
|
19
|
George S, Jean-Baptiste W, Yusuf Ali A, Inyang B, Koshy FS, George K, Poudel P, Chalasani R, Goonathilake MR, Waqar S, Mohammed L. The Role of Type 2 Diabetes in Pancreatic Cancer. Cureus 2022; 14:e26288. [PMID: 35898377 PMCID: PMC9308974 DOI: 10.7759/cureus.26288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 06/24/2022] [Indexed: 11/05/2022] Open
Abstract
The incidence of type 2 diabetes mellitus (T2DM) and its potential complications, such as cancers, are increasing worldwide at an astounding rate. There are many factors such as obesity, diabetes, alcohol consumption, and the adoption of sedentary lifestyles that are driving pancreatic cancer (PC) to become one of the leading causes of cancer mortality in the United States. PC is notorious for its generic symptoms and late-stage presentation with rapid metastasis. The connection between T2DM and the risk of PC development is multifaceted and complex. Some of the proposed theories reveal that chronic inflammation, insulin resistance, hyperinsulinemia, hyperglycemia, and abnormalities in the insulin and insulin-like growth factor axis (IGF) contribute to the disease association between these two conditions. This literature review aims to highlight relevant studies and explore the molecular mechanisms involved in the etiology of diabetes and its impact on PC development, as well as the role of anti-diabetic agents on PC. Despite extensive studies, the exact interaction between T2DM and PC remains obscure and will need further investigation. According to current knowledge, there is a substantial link between diabetes, obesity, and dietary patterns in the development and progression of PC. Consequently, focusing our efforts on preventive measures by reducing modifiable risk factors remains the most effective strategy to reduce the risk of PC at this time. Antidiabetic drugs can have various effects on the occurrence and prognosis of PC with metformin offering a clear benefit of inhibiting PC and insulin increasing the risk of PC. The development of future novel therapies will require a deeper knowledge of the triggering mechanisms and interplay between these two disease states.
Collapse
|
20
|
The RAGE/multiligand axis: a new actor in tumor biology. Biosci Rep 2022; 42:231455. [PMID: 35727208 PMCID: PMC9251583 DOI: 10.1042/bsr20220395] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/02/2022] [Accepted: 06/21/2022] [Indexed: 01/06/2023] Open
Abstract
The receptor for advanced glycation end-products (RAGE) is a multiligand binding and single-pass transmembrane protein which actively participates in several chronic inflammation-related diseases. RAGE, in addition to AGEs, has a wide repertoire of ligands, including several damage-associated molecular pattern molecules or alarmins such as HMGB1 and members of the S100 family proteins. Over the last years, a large and compelling body of evidence has revealed the active participation of the RAGE axis in tumor biology based on its active involvement in several crucial mechanisms involved in tumor growth, immune evasion, dissemination, as well as by sculpturing of the tumor microenvironment as a tumor-supportive niche. In the present review, we will detail the consequences of the RAGE axis activation to fuel essential mechanisms to guarantee tumor growth and spreading.
Collapse
|
21
|
Kadonosono T, Miyamoto K, Sakai S, Matsuo Y, Kitajima S, Wang Q, Endo M, Niibori M, Kuchimaru T, Soga T, Hirota K, Kizaka-Kondoh S. AGE/RAGE axis regulates reversible transition to quiescent states of ALK-rearranged NSCLC and pancreatic cancer cells in monolayer cultures. Sci Rep 2022; 12:9886. [PMID: 35701529 PMCID: PMC9198021 DOI: 10.1038/s41598-022-14272-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/03/2022] [Indexed: 12/17/2022] Open
Abstract
Cancer recurrence due to tumor cell quiescence after therapy and long-term remission is associated with cancer-related death. Previous studies have used cell models that are unable to return to a proliferative state; thus, the transition between quiescent and proliferative states is not well understood. Here, we report monolayer cancer cell models wherein the human non-small cell lung carcinoma cell line H2228 and pancreatic cancer cell line AsPC-1 can be reversibly induced to a quiescent state under hypoxic and serum-starved (HSS) conditions. Transcriptome and metabolome dual-omics profiles of these cells were compared with those of the human lung adenocarcinoma cell line A549, which was unable to enter a quiescent state under HSS conditions. The quiescence-inducible cells had substantially lower intracellular pyruvate and ATP levels in the quiescent state than in the proliferative state, and their response to sudden demand for energy was dramatically reduced. Furthermore, in quiescence-inducible cells, the transition between quiescent and proliferative states of these cells was regulated by the balance between the proliferation-promoting Ras and Rap1 signaling and the suppressive AGE/RAGE signaling. These cell models elucidate the transition between quiescent and proliferative states, allowing the development of drug-screening systems for quiescent tumor cells.
Collapse
Affiliation(s)
- Tetsuya Kadonosono
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Kotaro Miyamoto
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Shiori Sakai
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Yoshiyuki Matsuo
- Department of Human Stress Response Science, Institute of Biomedical Science, Kansai Medical University, Hirakata, 573-1010, Japan
| | - Shojiro Kitajima
- Institute for Advanced Biosciences, Keio University, Tsuruoka, 997-0052, Japan
| | - Qiannan Wang
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Minori Endo
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Mizuho Niibori
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Takahiro Kuchimaru
- Center for Molecular Medicine, Jichi Medical University, Shimotsuke, 329-0498, Japan
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, Tsuruoka, 997-0052, Japan
| | - Kiichi Hirota
- Department of Human Stress Response Science, Institute of Biomedical Science, Kansai Medical University, Hirakata, 573-1010, Japan
| | - Shinae Kizaka-Kondoh
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan.
| |
Collapse
|
22
|
Revisiting Methodologies for In Vitro Preparations of Advanced Glycation End Products. Appl Biochem Biotechnol 2022; 194:2831-2855. [PMID: 35257316 DOI: 10.1007/s12010-022-03860-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 02/24/2022] [Indexed: 11/02/2022]
Abstract
Chronic elevation of sugar and oxidative stress generally results in development of advanced glycation end products (AGEs) in diabetic individuals. Accumulation of AGEs in an individual can give rise to the activation of several pathways that will ultimately lead to various complications. Such AGEs can also be prepared in an in vitro environment. For an in vitro preparation of advanced glycation end products (AGEs), proteins, lipids, or nucleic acids are generally required to be incubated with reducing sugars at a physiological temperature or higher depending upon the protocol optimized for its preparation. Certain other factors are also optimized and added to the buffer to hasten its preparation or alter the properties of prepared AGEs. Through this review, we intend to highlight the various studies related to the experimental procedures for the preparation of different types of AGEs. In addition, we present the comparative study of methodologies optimized for the preparation of AGEs.
Collapse
|
23
|
Redding A, Aplin AE, Grabocka E. RAS-mediated tumor stress adaptation and the targeting opportunities it presents. Dis Model Mech 2022; 15:dmm049280. [PMID: 35147163 PMCID: PMC8844456 DOI: 10.1242/dmm.049280] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cellular stress is known to function in synergistic cooperation with oncogenic mutations during tumorigenesis to drive cancer progression. Oncogenic RAS is a strong inducer of a variety of pro-tumorigenic cellular stresses, and also enhances the ability of cells to tolerate these stresses through multiple mechanisms. Many of these oncogenic, RAS-driven, stress-adaptive mechanisms have also been implicated in tolerance and resistance to chemotherapy and to therapies that target the RAS pathway. Understanding how oncogenic RAS shapes cellular stress adaptation and how this functions in drug resistance is of vital importance for identifying new therapeutic targets and therapeutic combinations to treat RAS-driven cancers.
Collapse
Affiliation(s)
| | | | - Elda Grabocka
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
24
|
Cuyler J, Murthy P, Spada NG, McGuire TF, Lotze MT, Xie XQ. Sequestsome-1/p62-targeted small molecules for pancreatic cancer therapy. Drug Discov Today 2022; 27:362-370. [PMID: 34592447 DOI: 10.1016/j.drudis.2021.09.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/24/2021] [Accepted: 09/22/2021] [Indexed: 12/27/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by heightened autophagy and systemic immune dysfunction. Modest improvements in clinical outcomes have been demonstrated in completed clinical trials targeting autophagy with combination hydroxychloroquine (HCQ) and chemotherapy. Recent mechanistic insights into the role of autophagy-dependent immune evasion have prompted the need for more precise and druggable targets of autophagy inhibition. Sequestosome-1 (SQSTM-1) is a multidomain scaffold protein with well-established roles in autophagy, tumor necrosis factor alpha (TNFα)- and NF-κB-related signaling pathways. SQSTM1 overexpression is frequently observed in PDAC, correlating with clinical stage and outcome. Given the unique molecular structure of SQSTM-1 and its diverse activity, identifying means of limiting SQSTM-1-dependent autophagy to promote an effective immune response in PDAC could be a promising treatment strategy.
Collapse
Affiliation(s)
- Jacob Cuyler
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA; National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, PA 15261, USA; Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Pranav Murthy
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Neal G Spada
- Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Terence F McGuire
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA; National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, PA 15261, USA; Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Michael T Lotze
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Immunology and Bioengineering, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | - Xiang-Qun Xie
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA; National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, PA 15261, USA; Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Computational Biology and Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|
25
|
Mortezaee K, Majidpoor J. The impact of hypoxia on immune state in cancer. Life Sci 2021; 286:120057. [PMID: 34662552 DOI: 10.1016/j.lfs.2021.120057] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/10/2021] [Accepted: 10/12/2021] [Indexed: 12/14/2022]
Abstract
Hypoxia is a known feature of solid tumors and a critical promoter of tumor hallmarks. Hypoxia influences tumor immunity in a way favoring immune evasion and resistance. Extreme hypoxia and aberrant hypoxia-inducible factor-1 (HIF-1) activity in tumor microenvironment (TME) is a drawback for effective immunotherapy. Infiltration and activity of CD8+ T cells is reduced in such condition, whereas regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs) show high activities. Highly hypoxic TME also impairs maturation and activity of dendritic cell (DCs) and natural killer (NK) cells. In addition, the hypoxic TME positively is linked positively with metabolic changes in cells of immune system. These alterations are indicative of a need for hypoxia modulation as a complementary targeting strategy to go with immune checkpoint inhibitor (ICI) therapy.
Collapse
Affiliation(s)
- Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| | - Jamal Majidpoor
- Department of Anatomy, School of Medicine, Infectious Disease Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| |
Collapse
|
26
|
Li J, Chen X, Kang R, Zeh H, Klionsky DJ, Tang D. Regulation and function of autophagy in pancreatic cancer. Autophagy 2021; 17:3275-3296. [PMID: 33161807 PMCID: PMC8632104 DOI: 10.1080/15548627.2020.1847462] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/26/2020] [Accepted: 11/02/2020] [Indexed: 12/12/2022] Open
Abstract
Oncogenic KRAS mutation-driven pancreatic ductal adenocarcinoma is currently the fourth-leading cause of cancer-related deaths in the United States. Macroautophagy (hereafter "autophagy") is one of the lysosome-dependent degradation systems that can remove abnormal proteins, damaged organelles, or invading pathogens by activating dynamic membrane structures (e.g., phagophores, autophagosomes, and autolysosomes). Impaired autophagy (including excessive activation and defects) is a pathological feature of human diseases, including pancreatic cancer. However, dysfunctional autophagy has many types and plays a complex role in pancreatic tumor biology, depending on various factors, such as tumor stage, microenvironment, immunometabolic state, and death signals. As a modulator connecting various cellular events, pharmacological targeting of nonselective autophagy may lead to both good and bad therapeutic effects. In contrast, targeting selective autophagy could reduce potential side effects of the drugs used. In this review, we describe the advances and challenges of autophagy in the development and therapy of pancreatic cancer.Abbreviations: AMPK: AMP-activated protein kinase; CQ: chloroquine; csc: cancer stem cells; DAMP: danger/damage-associated molecular pattern; EMT: epithelial-mesenchymal transition; lncRNA: long noncoding RNA; MIR: microRNA; PanIN: pancreatic intraepithelial neoplasia; PDAC: pancreatic ductal adenocarcinoma; PtdIns3K: phosphatidylinositol 3-kinase; SNARE: soluble NSF attachment protein receptor; UPS: ubiquitin-proteasome system.
Collapse
Affiliation(s)
- Jingbo Li
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Xin Chen
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Herbert Zeh
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Daniel J. Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
27
|
Sionov RV. Leveling Up the Controversial Role of Neutrophils in Cancer: When the Complexity Becomes Entangled. Cells 2021; 10:cells10092486. [PMID: 34572138 PMCID: PMC8465406 DOI: 10.3390/cells10092486] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/12/2021] [Accepted: 09/15/2021] [Indexed: 12/13/2022] Open
Abstract
Neutrophils are the most abundant immune cell in the circulation of human and act as gatekeepers to discard foreign elements that have entered the body. They are essential in initiating immune responses for eliminating invaders, such as microorganisms and alien particles, as well as to act as immune surveyors of cancer cells, especially during the initial stages of carcinogenesis and for eliminating single metastatic cells in the circulation and in the premetastatic organs. Since neutrophils can secrete a whole range of factors stored in their many granules as well as produce reactive oxygen and nitrogen species upon stimulation, neutrophils may directly or indirectly affect carcinogenesis in both the positive and negative directions. An intricate crosstalk between tumor cells, neutrophils, other immune cells and stromal cells in the microenvironment modulates neutrophil function resulting in both anti- and pro-tumor activities. Both the anti-tumor and pro-tumor activities require chemoattraction towards the tumor cells, neutrophil activation and ROS production. Divergence is seen in other neutrophil properties, including differential secretory repertoire and membrane receptor display. Many of the direct effects of neutrophils on tumor growth and metastases are dependent on tight neutrophil–tumor cell interactions. Among them, the neutrophil Mac-1 interaction with tumor ICAM-1 and the neutrophil L-selectin interaction with tumor-cell sialomucins were found to be involved in the neutrophil-mediated capturing of circulating tumor cells resulting in increased metastatic seeding. On the other hand, the anti-tumor function of neutrophils was found to rely on the interaction between tumor-surface-expressed receptor for advanced glycation end products (RAGE) and Cathepsin G expressed on the neutrophil surface. Intriguingly, these two molecules are also involved in the promotion of tumor growth and metastases. RAGE is upregulated during early inflammation-induced carcinogenesis and was found to be important for sustaining tumor growth and homing at metastatic sites. Cathepsin G was found to be essential for neutrophil-supported lung colonization of cancer cells. These data level up the complexity of the dual role of neutrophils in cancer.
Collapse
Affiliation(s)
- Ronit Vogt Sionov
- Hadassah Medical School, The Hebrew University of Jerusalem, Ein Kerem Campus, P.O.B. 12272, Jerusalem 9112102, Israel
| |
Collapse
|
28
|
Hypoxia and the Receptor for Advanced Glycation End Products (RAGE) Signaling in Cancer. Int J Mol Sci 2021; 22:ijms22158153. [PMID: 34360919 PMCID: PMC8348933 DOI: 10.3390/ijms22158153] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 02/06/2023] Open
Abstract
Hypoxia is characterized by an inadequate supply of oxygen to tissues, and hypoxic regions are commonly found in solid tumors. The cellular response to hypoxic conditions is mediated through the activation of hypoxia-inducible factors (HIFs) that control the expression of a large number of target genes. Recent studies have shown that the receptor for advanced glycation end products (RAGE) participates in hypoxia-dependent cellular adaptation. We review recent evidence on the role of RAGE signaling in tumor biology under hypoxic conditions.
Collapse
|
29
|
Li ZY, Chen SY, Weng MH, Yen GC. Ursolic acid restores sensitivity to gemcitabine through the RAGE/NF-κB/MDR1 axis in pancreatic cancer cells and in a mouse xenograft model. J Food Drug Anal 2021; 29:262-274. [PMID: 35696208 PMCID: PMC9261828 DOI: 10.38212/2224-6614.3346] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/16/2021] [Indexed: 12/02/2022] Open
Abstract
Gemcitabine (GEM) is a first-line drug for pancreatic cancer therapy, but GEM resistance is easily developed in patients. Growing evidence suggests that cancer chemoprevention and suppression are highly associated with dietary phytochemical and microbiota composition. Ursolic acid (UA) has anti-inflammatory and anticancer effects; however, its role in improving cancer drug resistance in vivo remains unclear. In this study, the aim was to explore the role of UA in managing drug resistance-associated molecular mechanisms and the influence of gut microbiota. The in vitro results showed that receptor for advanced glycation end products (RAGE), nuclear factor kappa B p65 (NF-κB/p65), and multidrug resistance protein 1 (MDR1) protein levels were significantly increased in GEM-resistant pancreatic cancer cells (named MIA PaCa-2 GEMR) compared to MIA PaCa-2 cells. Downregulation of RAGE, pP65, and MDR1 protein expression not only was observed following UA treatment but also was seen in MIA PaCa-2 GEMR cells after transfection with a RAGE siRNA. Remarkably, the enhanced effects of UA coupled with GEM administration dramatically suppressed the RAGE/NF-κB/MDR1 cascade and consequently inhibited subcutaneous tumor growth. Moreover, UA could increase alpha diversity and regulate the composition of gut microbiota, especially in Ruminiclostridium 6. Taken together, these results provide the first direct evidence of MDR1 attenuation and chemosensitivity enhancement through inhibition of the RAGE/NF-κB signaling pathway in vitro and in vivo, implying that UA may be used as an adjuvant for the treatment of pancreatic cancer in the future.
Collapse
Affiliation(s)
| | | | - Ming-Hong Weng
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Road, Taichung, 40227,
Taiwan
| | - Gow-Chin Yen
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Road, Taichung, 40227,
Taiwan
| |
Collapse
|
30
|
Li H, Liang J, Wang J, Han J, Li S, Huang K, Liu C. Mex3a promotes oncogenesis through the RAP1/MAPK signaling pathway in colorectal cancer and is inhibited by hsa-miR-6887-3p. Cancer Commun (Lond) 2021; 41:472-491. [PMID: 33638620 PMCID: PMC8211350 DOI: 10.1002/cac2.12149] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/30/2021] [Accepted: 02/17/2021] [Indexed: 12/22/2022] Open
Abstract
Background Although Mex3 RNA‐binding family member A (Mex3a) has demonstrated an important role in multiple cancers, its role and regulatory mechanism in CRC is unclear. In this study, we aimed to investigate the role and clinical significance of Mex3a in CRC and to explore its underlying mechanism. Methods Western blotting and quantitative real‐time polymerase chain reaction (qRT‐PCR) were performed to detect the expression levels of genes. 5‐Ethynyl‐2'‐deoxyuridine (EDU) and transwell assays were utilized to examine CRC cell proliferation and metastatic ability. The R software was used to do hierarchical clustering analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Overexpression and rescue experiments which included U0126, a specific mitogen activated protein kinase kinase/extracellular regulated protein kinase (MEK/ERK) inhibitor, and PX‐478, a hypoxia‐inducible factor 1 subunit alpha (HIF‐1α) inhibitor, were used to study the molecular mechanisms of Mex3a in CRC cells. Co‐immunoprecipitation (Co‐IP) assay was performed to detect the interaction between two proteins. Bioinformatics analysis including available public database and Starbase software (starbase.sysu.edu.cn) were used to evaluate the expression and prognostic significance of genes. TargetScan (www.targetscan.org) and the miRDB (mirdb.org) website were used to predict the combination site between microRNA and target mRNA. BALB/c nude mice were used to study the function of Mex3a and hsa‐miR‐6887‐3p in vivo. Results Clinicopathological and immunohistochemical (IHC) studies of 101 CRC tissues and 79 normal tissues demonstrated that Mex3a was a significant prognostic factor for overall survival (OS) in CRC patients. Mex3a knockdown substantially inhibited the migration, invasion, and proliferation of CRC cells. Transcriptome analysis and mechanism verification showed that Mex3a regulated the RAP1 GTPase activating protein (RAP1GAP)/MEK/ERK/HIF‐1α pathway. Furthermore, RAP1GAP was identified to interact with Mex3a in Co‐IP experiments. Bioinformatics and dual‐luciferase reporter experiments revealed that hsa‐miR‐6887‐3p could bind to the 3'‐untranslated regions (3'‐UTR) of the Mex3a mRNA. hsa‐miR‐6887‐3p downregulated Mex3a expression and inhibited the tumorigenesis of CRC both in vitro and in vivo. Conclusions Our study demonstrated that the hsa‐miR‐6887‐3p/Mex3a/RAP1GAP signaling axis was a key regulator of CRC and Mex3a has the potential to be a new diagnostic marker and treatment target for CRC.
Collapse
Affiliation(s)
- Haixia Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, P. R. China
| | - Jinghui Liang
- Department of Thoracic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, P. R. China
| | - Jiang Wang
- Weifang People's Hospital, Weifang, Shandong, 261000, P. R. China
| | - Jingyi Han
- Department of Thoracic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, P. R. China
| | - Shuang Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, P. R. China
| | - Kai Huang
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, P. R. China
| | - Chuanyong Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, P. R. China.,Provincial Key Lab of Mental Disorder, Shandong University, Jinan, Shandong, 250012, P. R. China
| |
Collapse
|
31
|
Menini S, Iacobini C, Vitale M, Pesce C, Pugliese G. Diabetes and Pancreatic Cancer-A Dangerous Liaison Relying on Carbonyl Stress. Cancers (Basel) 2021; 13:313. [PMID: 33467038 PMCID: PMC7830544 DOI: 10.3390/cancers13020313] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/09/2021] [Accepted: 01/14/2021] [Indexed: 02/06/2023] Open
Abstract
Both type 2 (T2DM) and type 1 (T1DM) diabetes mellitus confer an increased risk of pancreatic cancer in humans. The magnitude and temporal trajectory of the risk conferred by the two forms of diabetes are similar, suggesting a common mechanism. Carbonyl stress is a hallmark of hyperglycemia and dyslipidemia, which accompanies T2DM, prediabetes, and obesity. Accumulating evidence demonstrates that diabetes promotes pancreatic ductal adenocarcinoma (PDAC) in experimental models of T2DM, a finding recently confirmed in a T1DM model. The carbonyl stress markers advanced glycation end-products (AGEs), the levels of which are increased in diabetes, were shown to markedly accelerate tumor development in a mouse model of Kras-driven PDAC. Consistently, inhibition of AGE formation by trapping their carbonyl precursors (i.e., reactive carbonyl species, RCS) prevented the PDAC-promoting effect of diabetes. Considering the growing attention on carbonyl stress in the onset and progression of several cancers, including breast, lung and colorectal cancer, this review discusses the mechanisms by which glucose and lipid imbalances induce a status of carbonyl stress, the oncogenic pathways activated by AGEs and their precursors RCS, and the potential use of carbonyl-scavenging agents and AGE inhibitors in PDAC prevention and treatment, particularly in high-risk diabetic individuals.
Collapse
Affiliation(s)
- Stefano Menini
- Department of Clinical and Molecular Medicine, “La Sapienza” University, 00189 Rome, Italy; (S.M.); (C.I.); (M.V.)
| | - Carla Iacobini
- Department of Clinical and Molecular Medicine, “La Sapienza” University, 00189 Rome, Italy; (S.M.); (C.I.); (M.V.)
| | - Martina Vitale
- Department of Clinical and Molecular Medicine, “La Sapienza” University, 00189 Rome, Italy; (S.M.); (C.I.); (M.V.)
| | - Carlo Pesce
- Department of Neurosciences, Rehabilitation, Ophtalmology, Genetic and Maternal Infantile Sciences (DINOGMI), Department of Excellence of MIUR, University of Genoa Medical School, 16132 Genoa, Italy;
| | - Giuseppe Pugliese
- Department of Clinical and Molecular Medicine, “La Sapienza” University, 00189 Rome, Italy; (S.M.); (C.I.); (M.V.)
| |
Collapse
|
32
|
Beeraka NM, Bovilla VR, Doreswamy SH, Puttalingaiah S, Srinivasan A, Madhunapantula SV. The Taming of Nuclear Factor Erythroid-2-Related Factor-2 (Nrf2) Deglycation by Fructosamine-3-Kinase (FN3K)-Inhibitors-A Novel Strategy to Combat Cancers. Cancers (Basel) 2021; 13:cancers13020281. [PMID: 33466626 PMCID: PMC7828646 DOI: 10.3390/cancers13020281] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Aim of this review is to provide an overview on (a) Fructosamine-3-Kinase (FN3K) and its role in regulating Nuclear Factor Erythorid-2-Related Factor-2 (Nrf2); (b) the role of glycation and deglycation mechanisms in modulating the functional properties of proteins, in particular, the Nrf2; (c) the dual role of Nrf2 in the prevention and treatment of cancers. Since controlling the glycation of Nrf2 is one of the key mechanisms determining the fate of a cell; whether to get transformed into a cancerous one or to stay as a normal one, it is important to regulate Nrf2 and deglycating FN3K using pharmacological agents. Inhibitors of FN3K are being explored currently to modulate Nrf2 activity thereby control the cancers. Abstract Glycated stress is mediated by the advanced glycation end products (AGE) and the binding of AGEs to the receptors for advanced glycation end products (RAGEs) in cancer cells. RAGEs are involved in mediating tumorigenesis of multiple cancers through the modulation of several downstream signaling cascades. Glycated stress modulates various signaling pathways that include p38 mitogen-activated protein kinase (p38 MAPK), nuclear factor kappa–B (NF-κB), tumor necrosis factor (TNF)-α, etc., which further foster the uncontrolled proliferation, growth, metastasis, angiogenesis, drug resistance, and evasion of apoptosis in several cancers. In this review, a balanced overview on the role of glycation and deglycation in modulating several signaling cascades that are involved in the progression of cancers was discussed. Further, we have highlighted the functional role of deglycating enzyme fructosamine-3-kinase (FN3K) on Nrf2-driven cancers. The activity of FN3K is attributed to its ability to deglycate Nrf2, a master regulator of oxidative stress in cells. FN3K is a unique protein that mediates deglycation by phosphorylating basic amino acids lysine and arginine in various proteins such as Nrf2. Deglycated Nrf2 is stable and binds to small musculoaponeurotic fibrosarcoma (sMAF) proteins, thereby activating cellular antioxidant mechanisms to protect cells from oxidative stress. This cellular protection offered by Nrf2 activation, in one way, prevents the transformation of a normal cell into a cancer cell; however, in the other way, it helps a cancer cell not only to survive under hypoxic conditions but also, to stay protected from various chemo- and radio-therapeutic treatments. Therefore, the activation of Nrf2 is similar to a double-edged sword and, if not controlled properly, can lead to the development of many solid tumors. Hence, there is a need to develop novel small molecule modulators/phytochemicals that can regulate FN3K activity, thereby maintaining Nrf2 in a controlled activation state.
Collapse
Affiliation(s)
- Narasimha M. Beeraka
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka 570015, India; (N.M.B.); (V.R.B.); (S.H.D.); (S.P.)
| | - Venugopal R. Bovilla
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka 570015, India; (N.M.B.); (V.R.B.); (S.H.D.); (S.P.)
- Public Health Research Institute of India (PHRII), Mysuru, Karnataka 570020, India
| | - Shalini H. Doreswamy
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka 570015, India; (N.M.B.); (V.R.B.); (S.H.D.); (S.P.)
| | - Sujatha Puttalingaiah
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka 570015, India; (N.M.B.); (V.R.B.); (S.H.D.); (S.P.)
| | - Asha Srinivasan
- Division of Nanoscience and Technology, Faculty of Life Sciences, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka 570015, India;
| | - SubbaRao V. Madhunapantula
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka 570015, India; (N.M.B.); (V.R.B.); (S.H.D.); (S.P.)
- Special Interest Group in Cancer Biology and Cancer Stem Cells, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka 570015, India
- Correspondence: ; Tel.: +91-810-527-8621
| |
Collapse
|
33
|
Cao L, Wu J, Qu X, Sheng J, Cui M, Liu S, Huang X, Xiang Y, Li B, Zhang X, Cui R. Glycometabolic rearrangements--aerobic glycolysis in pancreatic cancer: causes, characteristics and clinical applications. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:267. [PMID: 33256814 PMCID: PMC7708116 DOI: 10.1186/s13046-020-01765-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 11/05/2020] [Indexed: 12/11/2022]
Abstract
Pancreatic cancer is one of the most malignant tumors worldwide, and pancreatic ductal adenocarcinoma is the most common type. In pancreatic cancer, glycolysis is the primary way energy is produced to maintain the proliferation, invasion, migration, and metastasis of cancer cells, even under normoxia. However, the potential molecular mechanism is still unknown. From this perspective, this review mainly aimed to summarize the current reasonable interpretation of aerobic glycolysis in pancreatic cancer and some of the newest methods for the detection and treatment of pancreatic cancer. More specifically, we reported some biochemical parameters, such as newly developed enzymes and transporters, and further explored their potential as diagnostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Lidong Cao
- Department of Hepatobiliary and Pancreatic Surgery, Second Hospital of Jilin University, Changchun, 130041, China.,Jilin Engineering Laboratory for Translational Medicine of Hepatobiliary and Pancreatic Diseases, Changchun, 130041, China
| | - Jiacheng Wu
- Department of Hepatobiliary and Pancreatic Surgery, Second Hospital of Jilin University, Changchun, 130041, China.,Jilin Engineering Laboratory for Translational Medicine of Hepatobiliary and Pancreatic Diseases, Changchun, 130041, China
| | - Xianzhi Qu
- Department of Hepatobiliary and Pancreatic Surgery, Second Hospital of Jilin University, Changchun, 130041, China.,Jilin Engineering Laboratory for Translational Medicine of Hepatobiliary and Pancreatic Diseases, Changchun, 130041, China
| | - Jiyao Sheng
- Department of Hepatobiliary and Pancreatic Surgery, Second Hospital of Jilin University, Changchun, 130041, China.,Jilin Engineering Laboratory for Translational Medicine of Hepatobiliary and Pancreatic Diseases, Changchun, 130041, China
| | - Mengying Cui
- Department of Hepatobiliary and Pancreatic Surgery, Second Hospital of Jilin University, Changchun, 130041, China.,Jilin Engineering Laboratory for Translational Medicine of Hepatobiliary and Pancreatic Diseases, Changchun, 130041, China
| | - Shui Liu
- Department of Hepatobiliary and Pancreatic Surgery, Second Hospital of Jilin University, Changchun, 130041, China.,Jilin Engineering Laboratory for Translational Medicine of Hepatobiliary and Pancreatic Diseases, Changchun, 130041, China
| | - Xu Huang
- Department of Hepatobiliary and Pancreatic Surgery, the First Bethune Hospital of Jilin University, Changchun, 130021, China
| | - Yien Xiang
- Department of Hepatobiliary and Pancreatic Surgery, Second Hospital of Jilin University, Changchun, 130041, China.,Jilin Engineering Laboratory for Translational Medicine of Hepatobiliary and Pancreatic Diseases, Changchun, 130041, China
| | - Bingjin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, China
| | - Xuewen Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Second Hospital of Jilin University, Changchun, 130041, China. .,Jilin Engineering Laboratory for Translational Medicine of Hepatobiliary and Pancreatic Diseases, Changchun, 130041, China.
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, China.
| |
Collapse
|
34
|
Dai E, Han L, Liu J, Xie Y, Kroemer G, Klionsky DJ, Zeh HJ, Kang R, Wang J, Tang D. Autophagy-dependent ferroptosis drives tumor-associated macrophage polarization via release and uptake of oncogenic KRAS protein. Autophagy 2020; 16:2069-2083. [PMID: 31920150 PMCID: PMC7595620 DOI: 10.1080/15548627.2020.1714209] [Citation(s) in RCA: 356] [Impact Index Per Article: 89.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 12/04/2019] [Accepted: 12/28/2019] [Indexed: 02/07/2023] Open
Abstract
KRAS is the most frequently mutated oncogene in human neoplasia. Despite a large investment to understand the effects of KRAS mutation in cancer cells, the direct effects of the oncogenetic KRAS activation on immune cells remain elusive. Here, we report that extracellular KRASG12D is essential for pancreatic tumor-associated macrophage polarization. Oxidative stress induces KRASG12D protein release from cancer cells succumbing to autophagy-dependent ferroptosis. Extracellular KRASG12D packaged into exosomes then is taken up by macrophages through an AGER-dependent mechanism. KRASG12D causes macrophages to switch to an M2-like pro-tumor phenotype via STAT3-dependent fatty acid oxidation. Consequently, the disruption of KRASG12D release and uptake can abolish the macrophage-mediated stimulation of pancreatic adenocarcinomas in mouse models. Importantly, the level of KRASG12D expression in macrophages correlates with poor survival in pancreatic cancer patients. These findings not only identify extracellular KRASG12D as a key mediator of cancer cell-macrophage communication, but also provide a novel KRAS-targeted anticancer strategy. Abbreviations: DAMP, damage-associated molecular pattern; PBMCMs, peripheral blood mononuclear cell-derived macrophages; PDAC, pancreatic ductal adenocarcinoma; s.c., subcutaneously; TAMs, tumor-associated macrophages; TME, tumor microenvironment.
Collapse
Affiliation(s)
- Enyong Dai
- Department of Oncology and Hematology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Leng Han
- Department of Oncology and Hematology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Jiao Liu
- The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yangchun Xie
- Department of Oncology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Guido Kroemer
- Equipe Labellisée Par La Ligue Contre Le Cancer, Université De Paris, Sorbonne Université, INSERM U1138, Centre De Recherche Des Cordeliers, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Pôle De Biologie, Hôpital Européen Georges Pompidou, Paris, France
- Suzhou Institute for Systems Medicine, Chinese Academy of Sciences, Suzhou, China
- Department of Women’s and Children’s Health, Karolinska University Hospital, Stockholm, Sweden
| | - Daniel J. Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Herbert J. Zeh
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Jing Wang
- Department of Respiratory Medicine, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Daolin Tang
- The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
35
|
Waghela BN, Vaidya FU, Ranjan K, Chhipa AS, Tiwari BS, Pathak C. AGE-RAGE synergy influences programmed cell death signaling to promote cancer. Mol Cell Biochem 2020; 476:585-598. [PMID: 33025314 DOI: 10.1007/s11010-020-03928-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/23/2020] [Indexed: 12/11/2022]
Abstract
Advanced glycation end products (AGEs) are formed as a result of non-enzymatic reaction between the free reducing sugars and proteins, lipids, or nucleic acids. AGEs are predominantly synthesized during chronic hyperglycemic conditions or aging. AGEs interact with their receptor RAGE and activate various sets of genes and proteins of the signal transduction pathway. Accumulation of AGEs and upregulated expression of RAGE is associated with various pathological conditions including diabetes, cardiovascular diseases, neurodegenerative disorders, and cancer. The role of AGE-RAGE signaling has been demonstrated in the progression of various types of cancer and other pathological disorders. The expression of RAGE increases manifold during cancer progression. The activation of AGE-RAGE signaling also perturbs the cellular redox balance and modulates various cell death pathways. The programmed cell death signaling often altered during the progression of malignancies. The cellular reprogramming of AGE-RAGE signaling with cell death machinery during tumorigenesis is interesting to understand the complex signaling mechanism of cancer cells. The present review focus on multiple molecular paradigms relevant to cell death particularly Apoptosis, Autophagy, and Necroptosis that are considerably influenced by the AGE-RAGE signaling in the cancer cells. Furthermore, the review also attempts to shed light on the provenience of AGE-RAGE signaling on oxidative stress and consequences of cell survival mechanism of cancer cells.
Collapse
Affiliation(s)
- Bhargav N Waghela
- Cell Biology Laboratory, School of Biological Sciences & Biotechnology, Indian Institute of Advanced Research, Koba Institutional Area, Gandhinagar, Gujarat, 382426, India
| | - Foram U Vaidya
- Cell Biology Laboratory, School of Biological Sciences & Biotechnology, Indian Institute of Advanced Research, Koba Institutional Area, Gandhinagar, Gujarat, 382426, India
| | - Kishu Ranjan
- Department of Internal Medicine, Section of Digestive Diseases, Yale University, New Haven, CT, 06519, USA
| | - Abu Sufiyan Chhipa
- Cell Biology Laboratory, School of Biological Sciences & Biotechnology, Indian Institute of Advanced Research, Koba Institutional Area, Gandhinagar, Gujarat, 382426, India
| | - Budhi Sagar Tiwari
- Cell Biology Laboratory, School of Biological Sciences & Biotechnology, Indian Institute of Advanced Research, Koba Institutional Area, Gandhinagar, Gujarat, 382426, India
| | - Chandramani Pathak
- Cell Biology Laboratory, School of Biological Sciences & Biotechnology, Indian Institute of Advanced Research, Koba Institutional Area, Gandhinagar, Gujarat, 382426, India.
| |
Collapse
|
36
|
Reprogramming of Mesothelial-Mesenchymal Transition in Chronic Peritoneal Diseases by Estrogen Receptor Modulation and TGF-β1 Inhibition. Int J Mol Sci 2020; 21:ijms21114158. [PMID: 32532126 PMCID: PMC7312018 DOI: 10.3390/ijms21114158] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/31/2020] [Accepted: 06/04/2020] [Indexed: 12/14/2022] Open
Abstract
In chronic peritoneal diseases, mesothelial-mesenchymal transition is determined by cues from the extracellular environment rather than just the cellular genome. The transformation of peritoneal mesothelial cells and other host cells into myofibroblasts is mediated by cell membrane receptors, Transforming Growth Factor β1 (TGF-β1), Src and Hypoxia-inducible factor (HIF). This article provides a narrative review of the reprogramming of mesothelial mesenchymal transition in chronic peritoneal diseases, drawing on the similarities in pathophysiology between encapsulating peritoneal sclerosis and peritoneal metastasis, with a particular focus on TGF-β1 signaling and estrogen receptor modulators. Estrogen receptors act at the cell membrane/cytosol as tyrosine kinases that can phosphorylate Src, in a similar way to other receptor tyrosine kinases; or can activate the estrogen response element via nuclear translocation. Tamoxifen can modulate estrogen membrane receptors, and has been shown to be a potent inhibitor of mesothelial-mesenchymal transition (MMT), peritoneal mesothelial cell migration, stromal fibrosis, and neoangiogenesis in the treatment of encapsulating peritoneal sclerosis, with a known side effect and safety profile. The ability of tamoxifen to inhibit the transduction pathways of TGF-β1 and HIF and achieve a quiescent peritoneal stroma makes it a potential candidate for use in cancer treatments. This is relevant to tumors that spread to the peritoneum, particularly those with mesenchymal phenotypes, such as colorectal CMS4 and MSS/EMT gastric cancers, and pancreatic cancer with its desmoplastic stroma. Morphological changes observed during mesothelial mesenchymal transition can be treated with estrogen receptor modulation and TGF-β1 inhibition, which may enable the regression of encapsulating peritoneal sclerosis and peritoneal metastasis.
Collapse
|
37
|
Haque E, Kamil M, Hasan A, Irfan S, Sheikh S, Khatoon A, Nazir A, Mir SS. Advanced glycation end products (AGEs), protein aggregation and their cross talk: new insight in tumorigenesis. Glycobiology 2020; 30:49-57. [PMID: 31508802 DOI: 10.1093/glycob/cwz073] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 08/21/2019] [Accepted: 08/28/2019] [Indexed: 12/15/2022] Open
Abstract
Protein glycation and protein aggregation are two distinct phenomena being observed in cancer cells as factors promoting cancer cell viability. Protein aggregation is an abnormal interaction between proteins caused as a result of structural changes in them after any mutation or environmental assault. Protein aggregation is usually associated with neurodegenerative diseases like Alzheimer's and Parkinson's, but of late, research findings have shown its association with the development of different cancers like lung, breast and ovarian cancer. On the contrary, protein glycation is a cascade of irreversible nonenzymatic reaction of reducing sugar with the amino group of the protein resulting in the modification of protein structure and formation of advanced glycation end products (AGEs). These AGEs are reported to obstruct the normal function of proteins. Lately, it has been reported that protein aggregation occurs as a result of AGEs. This aggregation of protein promotes the transformation of healthy cells to neoplasia leading to tumorigenesis. In this review, we underline the current knowledge of protein aggregation and glycation along with the cross talk between the two, which may eventually lead to the development of cancer.
Collapse
Affiliation(s)
- Ejazul Haque
- Department of Biosciences, Faculty of Science, Integral University, Kursi Road, Lucknow 226026, India.,Department of Immunology and Medical Genetics, School of Medicine, University of Split, Soltanskaul. 2, 21000, Split, Croatia
| | - Mohd Kamil
- Department of Biosciences, Faculty of Science, Integral University, Kursi Road, Lucknow 226026, India.,Department of Immunology and Medical Genetics, School of Medicine, University of Split, Soltanskaul. 2, 21000, Split, Croatia.,Department of Microbiology, Beykoz Life Sciences and Biotechnology Institute (BILSAB), Bezmialem Vakif University, Istanbul, Turkey
| | - Adria Hasan
- Department of Bioengineering, Faculty of Engineering, Integral University, Kursi Road, Lucknow 226026, India
| | - Safia Irfan
- Department of Bioengineering, Faculty of Engineering, Integral University, Kursi Road, Lucknow 226026, India
| | - Saba Sheikh
- Department of Biosciences, Faculty of Science, Integral University, Kursi Road, Lucknow 226026, India
| | - Aisha Khatoon
- Department of Bioengineering, Faculty of Engineering, Integral University, Kursi Road, Lucknow 226026, India
| | - Aamir Nazir
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram extension, Sitapur Road, Lucknow, 226031, India
| | - Snober S Mir
- Department of Bioengineering, Faculty of Engineering, Integral University, Kursi Road, Lucknow 226026, India
| |
Collapse
|
38
|
Xie L, Xia L, Klaiber U, Sachsenmaier M, Hinz U, Bergmann F, Strobel O, Büchler MW, Neoptolemos JP, Fortunato F, Hackert T. Effects of neoadjuvant FOLFIRINOX and gemcitabine-based chemotherapy on cancer cell survival and death in patients with pancreatic ductal adenocarcinoma. Oncotarget 2019; 10:7276-7287. [PMID: 31921387 PMCID: PMC6944451 DOI: 10.18632/oncotarget.27399] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 12/05/2019] [Indexed: 12/19/2022] Open
Abstract
Background: The progression and response to systemic treatment of cancer is substantially dependent on the balance between cancer cell death (apoptosis and necroptosis) and cancer cell survival (autophagy). Although well characterized in experimental systems, the status of cancer cell survival and cell death in human pancreatic ductal adenocarcinoma (PDAC), especially in response to chemotherapy and different types of chemotherapy is poorly described.
Results: The median (95% confidence interval) survival was 31.6 (24.5–44.5) months after FOLFIRINOX versus 15.8 (2.0–20.5) months after gemcitabine-based therapy (p = 0.039). PDAC tissue autophagy was reduced compared to normal pancreata based on reduced BECLIN-1 expression and LC3-Lamp-2 colocalization, whilst necroptosis (RIP-1) was increased. Neoadjuvant therapy was associated with further reduced autophagy based on p62/SQSTM-1 accumulation, and increased necroptosis (RIP3 and pMLKL) and apoptosis (BAX, cleaved CASPASE-9 and CASPASE-3) markers, increased nuclear p65 (NF-κB) and extracellular HMGB1 expression, with greater CD8+ lymphocyte infiltration. Survival was associated with reduced autophagy and increased apoptosis. Necroptosis (RIP-3, pMLKL) and apoptosis (BAX and cleaved CASPASE-9) markers were higher after FOLFIRINOX than gemcitabine-based treatment.
Patients and methods: Cancer cell autophagy, apoptosis, and necroptosis marker expression was compared in pancreatic tissue samples from 51 subjects, comprising four groups: (1) surgical resection for PDAC after FOLFIRINOX (n = 11), or (2) after gemcitabine-based (n = 14) neoadjuvant therapy, (3) patients undergoing PDAC resection without prior chemotherapy (n = 13), and (4) normal pancreata from 13 organ donors. Marker expression was undertaken using semi-automated immunofluorescence-FACS-like analysis, defining PDAC cells by CK-7+ expression.
Collapse
Affiliation(s)
- Li Xie
- Department of General, Visceral and Transplantation Surgery, University Clinic, Heidelberg, Germany.,Section Surgical Research, University Clinic, Heidelberg, Germany
| | - Leizhou Xia
- Department of General, Visceral and Transplantation Surgery, University Clinic, Heidelberg, Germany.,Section Surgical Research, University Clinic, Heidelberg, Germany
| | - Ulla Klaiber
- Department of General, Visceral and Transplantation Surgery, University Clinic, Heidelberg, Germany
| | - Milena Sachsenmaier
- Department of General, Visceral and Transplantation Surgery, University Clinic, Heidelberg, Germany
| | - Ulf Hinz
- Department of General, Visceral and Transplantation Surgery, University Clinic, Heidelberg, Germany
| | - Frank Bergmann
- Institute of Pathology, University Clinic, Heidelberg, Germany
| | - Oliver Strobel
- Department of General, Visceral and Transplantation Surgery, University Clinic, Heidelberg, Germany
| | - Markus W Büchler
- Department of General, Visceral and Transplantation Surgery, University Clinic, Heidelberg, Germany
| | - John P Neoptolemos
- Department of General, Visceral and Transplantation Surgery, University Clinic, Heidelberg, Germany.,Section Surgical Research, University Clinic, Heidelberg, Germany
| | - Franco Fortunato
- Department of General, Visceral and Transplantation Surgery, University Clinic, Heidelberg, Germany.,Section Surgical Research, University Clinic, Heidelberg, Germany.,Co-senior authors
| | - Thilo Hackert
- Department of General, Visceral and Transplantation Surgery, University Clinic, Heidelberg, Germany.,Co-senior authors
| |
Collapse
|
39
|
Sionov RV, Fainsod-Levi T, Zelter T, Polyansky L, Pham CT, Granot Z. Neutrophil Cathepsin G and Tumor Cell RAGE Facilitate Neutrophil Anti-Tumor Cytotoxicity. Oncoimmunology 2019; 8:e1624129. [PMID: 31428521 DOI: 10.1080/2162402x.2019.1624129] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 05/08/2019] [Accepted: 05/22/2019] [Indexed: 12/21/2022] Open
Abstract
Neutrophils are a heterogeneous population of myeloid cells which may either promote or hinder tumor growth and progression. Anti-tumor neutrophils have the capacity to kill tumor cells in a contact-dependent manner. However, the molecular mechanisms underlying tumor cell recognition by neutrophils remained unexplored. Tumor cells were shown to express aberrant glycosylation patterns and neutrophils are equipped with receptors capable of recognizing such glycosylations. Accordingly, we hypothesized that the receptor for advanced glycation end products (RAGE) may facilitate neutrophil recognition of tumor cells. Indeed, RAGE decoy receptors and RAGE-specific blocking antibodies dramatically reduce tumor cell susceptibility to neutrophil cytotoxicity. Unexpectedly, we found that tumor cell RAGE rather than neutrophil RAGE is important for the killing process. We further identified neutrophil Cathepsin G as the neutrophil component interacting with tumor cell RAGE. Cathepsin G-deficient neutrophils show impaired ability to kill tumor cells, suggesting that RAGE-Cathepsin G interaction is required for neutrophil cytotoxicity. These data unravel new aspects of neutrophil anti-tumor activity and identify a novel role for RAGE and Cathepsin G in neutrophil-mediated cytotoxicity.
Collapse
Affiliation(s)
- Ronit Vogt Sionov
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel Canada, Hebrew University Medical School, Jerusalem, Israel
| | - Tanya Fainsod-Levi
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel Canada, Hebrew University Medical School, Jerusalem, Israel
| | - Tamir Zelter
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel Canada, Hebrew University Medical School, Jerusalem, Israel
| | - Lola Polyansky
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel Canada, Hebrew University Medical School, Jerusalem, Israel
| | - Christine T Pham
- Division of Rheumatology, Washington University in St. Louis, St. Louis, MO, USA
| | - Zvi Granot
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel Canada, Hebrew University Medical School, Jerusalem, Israel
| |
Collapse
|
40
|
|
41
|
Kang R, Tang D. The Dual Role of HMGB1 in Pancreatic Cancer. JOURNAL OF PANCREATOLOGY 2018; 1:19-24. [PMID: 33442484 PMCID: PMC7802798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most common type of exocrine pancreatic cancer with a 9% five-year survival rate. High mobility group box 1 (HMGB1) is a nuclear protein that can act as a DNA chaperone in the sustainment of chromosome structure and function. When released into the extracellular space, HMGB1 becomes the most well-characterized damage-associated molecular pattern (DAMP) to trigger immune responses. Recent evidence indicates that intracellular HMGB1 is a novel tumor suppressor in PDAC, which is connected to its role in the prevention of oxidative stress, genomic instability, and histone release. However, since extracellular HMGB1 is a DAMP and pro-inflammatory cytokine, cancer cells can also exploit it to survive through the receptor for advanced glycation endproducts (RAGE) in the pancreatic tumor microenvironment. Interestingly, targeting the HMGB1-RAGE pathway has become a new anticancer therapy strategy for PDAC.
Collapse
Affiliation(s)
- Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, USA
| |
Collapse
|
42
|
Abbruzzese JL, Andersen DK, Borrebaeck CA, Chari ST, Costello E, Cruz-Monserrate Z, Eibl G, Engleman EG, Fisher WE, Habtezion A, Kim SK, Korc M, Logsdon C, Lyssiotis CA, Pandol SJ, Rustgi A, Wolfe BM, Zheng L, Powers AC. The Interface of Pancreatic Cancer With Diabetes, Obesity, and Inflammation: Research Gaps and Opportunities: Summary of a National Institute of Diabetes and Digestive and Kidney Diseases Workshop. Pancreas 2018; 47:516-525. [PMID: 29702529 PMCID: PMC6361376 DOI: 10.1097/mpa.0000000000001037] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A workshop on "The Interface of Pancreatic Cancer with Diabetes, Obesity, and Inflammation: Research Gaps and Opportunities" was held by the National Institute of Diabetes and Digestive and Kidney Diseases on October 12, 2017. The purpose of the workshop was to explore the relationship and possible mechanisms of the increased risk of pancreatic ductal adenocarcinoma (PDAC) related to diabetes, the role of altered intracellular energy metabolism in PDAC, the mechanisms and biomarkers of diabetes caused by PDAC, the mechanisms of the increased risk of PDAC associated with obesity, and the role of inflammatory events and mediators as contributing causes of the development of PDAC. Workshop faculty reviewed the state of the current knowledge in these areas and made recommendations for future research efforts. Further knowledge is needed to elucidate the basic mechanisms contributing to the role of hyperinsulinemia, hyperglycemia, adipokines, and acute and chronic inflammatory events on the development of PDAC.
Collapse
Affiliation(s)
- James L. Abbruzzese
- Division of Medical Oncology, Department of Medicine, Duke University, Durham, NC
| | - Dana K. Andersen
- Division of Digestive Diseases and Nutrition, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | | | - Suresh T. Chari
- Division of Gastroenterology, Department of Medicine, Mayo Clinic, Rochester, MN
| | - Eithne Costello
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Zobeida Cruz-Monserrate
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Ohio State University, Columbus, OH
| | - Guido Eibl
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles
| | - Edgar G. Engleman
- Departments of Pathology and Medicine, Stanford University, Palo Alto, CA
| | | | - Aida Habtezion
- Division of Gastroenterology, Department of Medicine, Stanford University, Palo Alto, CA
| | - Seung K. Kim
- Departments of Developmental Biology and Internal Medicine, Stanford University, Palo Alto, CA
| | - Murray Korc
- Department of Medicine, Indiana University Simon Cancer Center, Indianapolis, IN
| | - Craig Logsdon
- Departments of Cancer Biology and Gastrointestinal Medical Oncology, MD Anderson Cancer Center, Houston, TX
| | - Costas A. Lyssiotis
- Division of Gastroenterology, Departments of Molecular and Integrative Physiology and Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Stephen J. Pandol
- Department of Medicine and Biomedical Sciences, Cedars Sinai Medical Center
- Department of Medicine, University of California at Los Angeles, Los Angeles, CA
| | - Anil Rustgi
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Bruce M. Wolfe
- Department of Surgery, Oregon Health and Science University, Portland, OR
| | - Lei Zheng
- Departments of Oncology and Surgery, Johns Hopkins University, Baltimore, MD
| | - Alvin C. Powers
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center
- Department of Molecular Physiology & Biophysics, Vanderbilt University, VA Tennessee Valley Healthcare, Nashville, TN
| |
Collapse
|
43
|
Hu C, Chen M, Jiang R, Guo Y, Wu M, Zhang X. Exosome-related tumor microenvironment. J Cancer 2018; 9:3084-3092. [PMID: 30210631 PMCID: PMC6134819 DOI: 10.7150/jca.26422] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 07/05/2018] [Indexed: 12/29/2022] Open
Abstract
The tumor microenvironment (tumor cells are located in the internal and external environment) is vital for the occurrence, growth and metastasis of tumors. An increasing number of studies have shown that exosomes are closely related to the tumor microenvironment. The mechanisms involved, however, are unclear. The focus of this review is on the exosome-related tumor microenvironment and other relevant factors, such as hypoxia, inflammation and angiogenesis. Many studies have suggested that exosomes are important mediators of metastasis, angiogenesis, and immune modulation in the tumor microenvironment. Additionally, exosomes can be isolated from bodily fluids of cancer patients, including urine, blood, saliva, milk, tumor effusion, cerebrospinal fluid, amniotic fluid and so on. Consequently, exosomes are potential biomarkers for clinical predictions and are also good drug carriers because they can cross the biofilm without triggering an immune response. Collectively, these findings illustrate that exosomes are crucial for developing potential targets for a new generation of pharmaceutical therapies that would improve the tumor microenvironment.
Collapse
Affiliation(s)
- Cheng Hu
- School of Medicine and Life Sciences , Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, P.R. China.,Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, P.R. China
| | - Meijuan Chen
- School of Medicine and Life Sciences , Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, P.R. China.,Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, P.R. China
| | - Rilei Jiang
- School of Medicine and Life Sciences , Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, P.R. China.,Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, P.R. China
| | - Yuanyuan Guo
- School of Medicine and Life Sciences , Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, P.R. China.,Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, P.R. China
| | - Mianhua Wu
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, P.R. China
| | - Xu Zhang
- School of Medicine and Life Sciences , Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, P.R. China.,Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, P.R. China
| |
Collapse
|
44
|
Palanissami G, Paul SFD. RAGE and Its Ligands: Molecular Interplay Between Glycation, Inflammation, and Hallmarks of Cancer—a Review. Discov Oncol 2018; 9:295-325. [DOI: 10.1007/s12672-018-0342-9] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 06/25/2018] [Indexed: 12/15/2022] Open
|
45
|
Anunobi R, Boone BA, Cheh N, Tang D, Kang R, Loux T, Lotze MT, Zeh HJ. Extracellular DNA promotes colorectal tumor cell survival after cytotoxic chemotherapy. J Surg Res 2018; 226:181-191. [DOI: 10.1016/j.jss.2018.02.042] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/09/2018] [Accepted: 02/20/2018] [Indexed: 12/15/2022]
|
46
|
Murthy D, Attri KS, Singh PK. Phosphoinositide 3-Kinase Signaling Pathway in Pancreatic Ductal Adenocarcinoma Progression, Pathogenesis, and Therapeutics. Front Physiol 2018; 9:335. [PMID: 29670543 PMCID: PMC5893816 DOI: 10.3389/fphys.2018.00335] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 03/19/2018] [Indexed: 12/11/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy characterized by its sudden manifestation, rapid progression, poor prognosis, and limited therapeutic options. Genetic alterations in key signaling pathways found in early pancreatic lesions are pivotal for the development and progression of pancreatic intraepithelial neoplastic lesions into invasive carcinomas. More than 90% of PDAC tumors harbor driver mutations in K-Ras that activate various downstream effector-signaling pathways, including the phosphoinositide-3-kinase (PI3K) pathway. The PI3K pathway also responds to stimuli from various growth factor receptors present on the cancer cell surface that, in turn, modulate downstream signaling cascades. Thus, the inositide signaling acts as a central node in the complex cellular signaling networks to impact cancer cell growth, motility, metabolism, and survival. Also, recent publications highlight the importance of PI3K signaling in stromal cells, whereby PI3K signaling modifies the tumor microenvironment to dictate disease outcome. The high incidence of mutations in the PI3K signaling cascade, accompanied by activation of parallel signaling pathways, makes PI3K a promising candidate for drug therapy. In this review, we describe the role of PI3K signaling in pancreatic cancer development and progression. We also discuss the crosstalk between PI3K and other major cellular signaling cascades, and potential therapeutic opportunities for targeting pancreatic ductal adenocarcinoma.
Collapse
Affiliation(s)
- Divya Murthy
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, United States
| | - Kuldeep S Attri
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, United States
| | - Pankaj K Singh
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, United States.,Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States.,Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, United States.,Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
47
|
Menini S, Iacobini C, de Latouliere L, Manni I, Ionta V, Blasetti Fantauzzi C, Pesce C, Cappello P, Novelli F, Piaggio G, Pugliese G. The advanced glycation end-product N ϵ -carboxymethyllysine promotes progression of pancreatic cancer: implications for diabetes-associated risk and its prevention. J Pathol 2018. [PMID: 29533466 DOI: 10.1002/path.5072] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Diabetes is an established risk factor for pancreatic cancer (PaC), together with obesity, a Western diet, and tobacco smoking. The common mechanistic link might be the accumulation of advanced glycation end-products (AGEs), which characterizes all of the above disease conditions and unhealthy habits. Surprisingly, however, the role of AGEs in PaC has not been examined yet, despite the evidence of a tumour-promoting role of receptor for advanced glycation end-products (RAGE), the receptor for AGEs. Here, we tested the hypothesis that AGEs promote PaC through RAGE activation. To this end, we investigated the effects of the AGE Nϵ -carboxymethyllysine (CML) in human pancreatic ductal adenocarcinoma (PDA) cell lines and in a mouse model of Kras-driven PaC interbred with a bioluminescent model of proliferation. Tumour growth was monitored in vivo by bioluminescence imaging and confirmed by histology. CML promoted PDA cell growth and RAGE expression, in a concentration-dependent and time-dependent manner, and activated downstream tumourigenic signalling pathways. These effects were counteracted by RAGE antagonist peptide (RAP). Exogenous AGE administration to PaC-prone mice induced RAGE upregulation in pancreatic intraepithelial neoplasias (PanINs) and markedly accelerated progression to invasive PaC. At 11 weeks of age (6 weeks of CML treatment), PaC was observed in eight of 11 (72.7%) CML-treated versus one of 11 (9.1%) vehicle-treated [control (Ctr)] mice. RAP delayed PanIN development in Ctr mice but failed to prevent PaC promotion in CML-treated mice, probably because of competition with soluble RAGE for binding to AGEs and/or compensatory upregulation of the RAGE homologue CD166/ activated leukocyte cell adhesion molecule, which also favoured tumour spread. These findings indicate that AGEs modulate the development and progression of PaC through receptor-mediated mechanisms, and might be responsible for the additional risk conferred by diabetes and other conditions characterized by increased AGE accumulation. Finally, our data suggest that an AGE reduction strategy, instead of RAGE inhibition, might be suitable for the risk management and prevention of PaC. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Stefano Menini
- Department of Clinical and Molecular Medicine, 'La Sapienza' University, Rome, Italy
| | - Carla Iacobini
- Department of Clinical and Molecular Medicine, 'La Sapienza' University, Rome, Italy
| | - Luisa de Latouliere
- Department of Clinical and Molecular Medicine, 'La Sapienza' University, Rome, Italy
| | - Isabella Manni
- Department of Research, Advanced Diagnostics, and Technological Innovation, Regina Elena National Cancer Institute, Rome, Italy
| | - Vittoria Ionta
- Department of Clinical and Molecular Medicine, 'La Sapienza' University, Rome, Italy
| | | | - Carlo Pesce
- DINOGMI, University of Genoa Medical School, Genoa, Italy
| | - Paola Cappello
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Francesco Novelli
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Giulia Piaggio
- Department of Research, Advanced Diagnostics, and Technological Innovation, Regina Elena National Cancer Institute, Rome, Italy
| | - Giuseppe Pugliese
- Department of Clinical and Molecular Medicine, 'La Sapienza' University, Rome, Italy
| |
Collapse
|
48
|
White DL, Hoogeveen RC, Chen L, Richardson P, Ravishankar M, Shah P, Tinker L, Rohan T, Whitsel EA, El-Serag HB, Jiao L. A prospective study of soluble receptor for advanced glycation end products and adipokines in association with pancreatic cancer in postmenopausal women. Cancer Med 2018; 7:2180-2191. [PMID: 29573228 PMCID: PMC5943487 DOI: 10.1002/cam4.1426] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 01/30/2018] [Accepted: 02/09/2018] [Indexed: 12/23/2022] Open
Abstract
Advanced glycation end products (AGEs) dysregulate adipokines and induce inflammation by binding to their adipocyte receptor (RAGE). Soluble RAGE (sRAGE) prevents AGEs/RAGE signaling. We performed a nested case–control study of the association between sRAGE, adipokines, and incident pancreatic cancer risk in the prospective Women's Health Initiative Study. We individually matched controls (n = 802) to cases (n = 472) on age, race, and blood draw date. We evaluated serum concentrations of sRAGE, adiponectin, leptin, monocyte chemotactic protein 1 (MCP1), and plasminogen activator inhibitor‐1 (PAI1) using immunoassay. We used conditional logistic regression model to estimate adjusted odds ratios (aORs) and 95% confidence intervals (CIs) for pancreatic cancer over biomarker quartiles (Q1–Q4). We used principal component analysis to create two composite biomarkers and performed a confirmatory factor analysis to examine the association between composite biomarker scores (CBS) and pancreatic cancer risk. Baseline serum sRAGE concentrations were inversely associated with pancreatic cancer risk (aORQ4 vs. Q1 = 0.70, 95% CI: 0.50–0.99). High MCP1 (aOR Q4 vs. Q1 = 2.55, 95% CI: 1.41–4.61) and the higher CBS including MCP1, PAI1, and leptin (aORQ4 vs. Q1 = 1.82, 95% CI = 1.04–3.18) were also associated with increased pancreatic cancer risk among women with BMI <25 kg/m2 (P values for interaction <0.05). We found an inverse association between prediagnostic sRAGE concentrations and risk of incident pancreatic cancer in postmenopausal women. A proinflammatory CBS was associated with increased risk only in women with normal BMI. MCP1 was not modulated by sRAGE.
Collapse
Affiliation(s)
- Donna L White
- Department of Medicine, Baylor College of Medicine, Houston, Texas.,Center for Innovations in Quality, Effectiveness and Safety (IQuESt), Michael E. DeBakey VA Medical Center, Houston, Texas.,Texas Medical Center Digestive Disease Center, Houston, Texas.,Dan L. Duncan Cancer Center at Baylor College of Medicine, Houston, Texas.,Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey VA Medical Center, Houston, Texas
| | - Ron C Hoogeveen
- Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Liang Chen
- Department of Medicine, Baylor College of Medicine, Houston, Texas.,Center for Innovations in Quality, Effectiveness and Safety (IQuESt), Michael E. DeBakey VA Medical Center, Houston, Texas
| | - Peter Richardson
- Department of Medicine, Baylor College of Medicine, Houston, Texas.,Center for Innovations in Quality, Effectiveness and Safety (IQuESt), Michael E. DeBakey VA Medical Center, Houston, Texas
| | | | - Preksha Shah
- Department of Medicine, Baylor College of Medicine, Houston, Texas.,Center for Innovations in Quality, Effectiveness and Safety (IQuESt), Michael E. DeBakey VA Medical Center, Houston, Texas
| | - Lesley Tinker
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Thomas Rohan
- Albert Einstein College of Medicine, Bronx, New York
| | - Eric A Whitsel
- Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Hashem B El-Serag
- Department of Medicine, Baylor College of Medicine, Houston, Texas.,Center for Innovations in Quality, Effectiveness and Safety (IQuESt), Michael E. DeBakey VA Medical Center, Houston, Texas.,Texas Medical Center Digestive Disease Center, Houston, Texas.,Dan L. Duncan Cancer Center at Baylor College of Medicine, Houston, Texas
| | - Li Jiao
- Department of Medicine, Baylor College of Medicine, Houston, Texas.,Center for Innovations in Quality, Effectiveness and Safety (IQuESt), Michael E. DeBakey VA Medical Center, Houston, Texas.,Texas Medical Center Digestive Disease Center, Houston, Texas.,Dan L. Duncan Cancer Center at Baylor College of Medicine, Houston, Texas.,Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey VA Medical Center, Houston, Texas
| |
Collapse
|
49
|
Receptor for advanced glycation end product blockade enhances the chemotherapeutic effect of cisplatin in tongue squamous cell carcinoma by reducing autophagy and modulating the Wnt pathway. Anticancer Drugs 2017; 28:187-196. [PMID: 27831944 DOI: 10.1097/cad.0000000000000451] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Tongue squamous cell carcinoma (TSCC) is one of the most severe types of cancer with poor outcomes. Cisplatin is used widely to treat cancer cells, but many patients develop acquired drug resistance. The receptor for advanced glycation end products (RAGE) is expressed widely in TSCC and associated with drug-induced chemotherapy resistance. However, the effect of RAGE and cisplatin on Tca-8113 cells remains unknown. We assayed the combined use of RAGE blockade and cisplatin effect on Tca-8113 cells' viability by MTT and apoptosis rate of Tca-8113 cells on RAGE blockade+cisplatin treatment; cisplatin alone; or RAGE blockade alone by flow cytometry. We observed the expressions of autophagy-related proteins beclin1, LC3II, p62; Wnt signaling-related proteins β-catenin, GSK3β, WNT5A, ROR-2; and apoptosis-related protein cleaved caspase-3, bcl-2-associated X proteins using western blot. We determined WNT5A and beclin1 expression on Tca-8113 cells by immunofluorescence. We further observed autophagy vacuoles by monodansylcadaverine staining. We found that RAGE blockade and cisplatin significantly decreased cell viability and increased the cell apoptosis rate compared with cisplatin alone. Furthermore, RAGE blockade suppressed the canonical Wnt pathway proteins β-catenin and GSK-3β, but upregulated noncanonical WNT5A and receptor ROR-2. We show that RAGE blockade suppressed the levels of autophagy-related protein LC3II/I, beclin1, accelerated degradation of autophagy for the increasing p62 expression, and increased cell apoptosis for the increasing expressions of cleaved caspase-3 and bcl-2-associated X proteins. We observed the location of WNT5A and beclin1 expressions on cells by immunofluorescence and their trends were consistent with western blotting. Taken together, our findings suggested that RAGE blockade+cisplatin improved chemotherapeutic effects by reducing autophagy and regulating Wnt/β-catenin to suppress the progression of TSCC.
Collapse
|
50
|
Azizan N, Suter MA, Liu Y, Logsdon CD. RAGE maintains high levels of NFκB and oncogenic Kras activity in pancreatic cancer. Biochem Biophys Res Commun 2017; 493:592-597. [PMID: 28867179 DOI: 10.1016/j.bbrc.2017.08.147] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 08/30/2017] [Indexed: 01/31/2023]
Abstract
Oncogenic KRas activity is central to several cancer types including pancreatic ductal adenocarcinoma (PDAC) but has been determined to be "undruggable". Recent studies have indicated that oncogenic KRas is not constitutively active but relies on a feed-forward stimulatory mechanism involving NFκB mediated inflammation. In the current study, we investigated the role of the receptor for advanced glycation end-products (RAGE) in maintaining oncogenic signaling in PDAC. We observed that there was a shift in the levels of specific RAGE isoforms and altered cellular localization in PDAC. Furthermore, inhibition of RAGE using a pharmacological antagonist, FPS-ZM1, or a blocking antibody, decreased phosphorylation of IKBα and inhibited Erk activity down-stream of Kras in PDAC cell lines. In vivo, inhibition of RAGE using FPS-ZM1 reduced the growth of PDAC syngeneic orthotopic xenografts and prolonged survival. These data indicate that RAGE plays a central role in maintaining inflammatory signaling in PDAC that benefits tumor growth. These observations support the development of approaches to inhibit the carcinogenic actions of Kras indirectly by blocking the mechanisms which maintain its activity.
Collapse
Affiliation(s)
- Nancy Azizan
- Department of Cancer Biology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Melissa A Suter
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, 77030, USA
| | - Yan Liu
- Department of Cancer Biology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Craig D Logsdon
- Department of Cancer Biology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|