1
|
Han Y, Dong C, Hu M, Wang X, Wang G. Unlocking the adenosine receptor mechanism of the tumour immune microenvironment. Front Immunol 2024; 15:1434118. [PMID: 38994361 PMCID: PMC11236561 DOI: 10.3389/fimmu.2024.1434118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 06/17/2024] [Indexed: 07/13/2024] Open
Abstract
The suppressive tumour microenvironment significantly hinders the efficacy of immunotherapy in treating solid tumors. In this context, stromal cells, such as tumour-associated fibroblasts, undergo changes that include an increase in the number and function of immunosuppressive cells. Adenosine, a factor that promotes tumour growth, is produced from ATP breakdown and is markedly elevated in the tumour microenvironment. It acts through specific binding to adenosine receptors, with A2A and A2B adenosine receptor being primary drivers of immunosuppression. This paper presents the roles of various adenosine receptors in different tumour microenvironments. This review focus on the function of adenosine receptors in the stromal cells and non-cellular components of the tumour microenvironment. Additionally, we summarize and discuss recent advances and potential trends in using adenosine receptor antagonists combined with immunotherapy.
Collapse
Affiliation(s)
- Yecheng Han
- General Affairs Office of Shenyang Hongqiao Hospital of Traditional Chinese Medicine, Shenyang, China
| | - Chenshuang Dong
- Key Laboratory of Cell Biology, Department of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Mingwang Hu
- Key Laboratory of Cell Biology, Department of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Xinmiao Wang
- Key Laboratory of Cell Biology, Department of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Guiling Wang
- Key Laboratory of Cell Biology, Department of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| |
Collapse
|
2
|
Gonzalez-Llerena JL, Espinosa-Rodriguez BA, Treviño-Almaguer D, Mendez-Lopez LF, Carranza-Rosales P, Gonzalez-Barranco P, Guzman-Delgado NE, Romo-Mancillas A, Balderas-Renteria I. Cordycepin Triphosphate as a Potential Modulator of Cellular Plasticity in Cancer via cAMP-Dependent Pathways: An In Silico Approach. Int J Mol Sci 2024; 25:5692. [PMID: 38891880 PMCID: PMC11171877 DOI: 10.3390/ijms25115692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/14/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Cordycepin, or 3'-deoxyadenosine, is an adenosine analog with a broad spectrum of biological activity. The key structural difference between cordycepin and adenosine lies in the absence of a hydroxyl group at the 3' position of the ribose ring. Upon administration, cordycepin can undergo an enzymatic transformation in specific tissues, forming cordycepin triphosphate. In this study, we conducted a comprehensive analysis of the structural features of cordycepin and its derivatives, contrasting them with endogenous purine-based metabolites using chemoinformatics and bioinformatics tools in addition to molecular dynamics simulations. We tested the hypothesis that cordycepin triphosphate could bind to the active site of the adenylate cyclase enzyme. The outcomes of our molecular dynamics simulations revealed scores that are comparable to, and superior to, those of adenosine triphosphate (ATP), the endogenous ligand. This interaction could reduce the production of cyclic adenosine monophosphate (cAMP) by acting as a pseudo-ATP that lacks a hydroxyl group at the 3' position, essential to carry out nucleotide cyclization. We discuss the implications in the context of the plasticity of cancer and other cells within the tumor microenvironment, such as cancer-associated fibroblast, endothelial, and immune cells. This interaction could awaken antitumor immunity by preventing phenotypic changes in the immune cells driven by sustained cAMP signaling. The last could be an unreported molecular mechanism that helps to explain more details about cordycepin's mechanism of action.
Collapse
Affiliation(s)
- Jose Luis Gonzalez-Llerena
- Laboratory of Molecular Pharmacology and Biological Models, School of Chemistry, Autonomous University of Nuevo Leon, San Nicolas de los Garza 66451, Mexico; (J.L.G.-L.); (B.A.E.-R.); (D.T.-A.); (P.G.-B.)
- Center for Research on Nutrition and Public Health, School of Public Health and Nutrition, Autonomous University of Nuevo Leon, Monterrey 66460, Mexico;
| | - Bryan Alejandro Espinosa-Rodriguez
- Laboratory of Molecular Pharmacology and Biological Models, School of Chemistry, Autonomous University of Nuevo Leon, San Nicolas de los Garza 66451, Mexico; (J.L.G.-L.); (B.A.E.-R.); (D.T.-A.); (P.G.-B.)
| | - Daniela Treviño-Almaguer
- Laboratory of Molecular Pharmacology and Biological Models, School of Chemistry, Autonomous University of Nuevo Leon, San Nicolas de los Garza 66451, Mexico; (J.L.G.-L.); (B.A.E.-R.); (D.T.-A.); (P.G.-B.)
| | - Luis Fernando Mendez-Lopez
- Center for Research on Nutrition and Public Health, School of Public Health and Nutrition, Autonomous University of Nuevo Leon, Monterrey 66460, Mexico;
| | - Pilar Carranza-Rosales
- Laboratory of Cell Biology, Northeast Biomedical Research Center, Mexican Social Security Institute, Monterrey 64720, Mexico;
| | - Patricia Gonzalez-Barranco
- Laboratory of Molecular Pharmacology and Biological Models, School of Chemistry, Autonomous University of Nuevo Leon, San Nicolas de los Garza 66451, Mexico; (J.L.G.-L.); (B.A.E.-R.); (D.T.-A.); (P.G.-B.)
| | - Nancy Elena Guzman-Delgado
- Health Research Division, High Specialty Medical Unit, Cardiology Hospital N. 34. Mexican Social Security Institute, Monterrey 64360, Mexico;
| | - Antonio Romo-Mancillas
- Computer Aided Drug Design and Synthesis Group, School of Chemistry, Autonomous University of Queretaro, Queretaro 76010, Mexico
| | - Isaias Balderas-Renteria
- Laboratory of Molecular Pharmacology and Biological Models, School of Chemistry, Autonomous University of Nuevo Leon, San Nicolas de los Garza 66451, Mexico; (J.L.G.-L.); (B.A.E.-R.); (D.T.-A.); (P.G.-B.)
| |
Collapse
|
3
|
Joghataei MT, Bakhtiarzadeh F, Dehghan S, Ketabforoush AHME, Golab F, Zarbakhsh S, Ahmadirad N. The role of neurotransmitters in glioblastoma multiforme-associated seizures. Int J Dev Neurosci 2023; 83:677-690. [PMID: 37563091 DOI: 10.1002/jdn.10294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/20/2023] [Accepted: 07/26/2023] [Indexed: 08/12/2023] Open
Abstract
GBM, or glioblastoma multiforme, is a brain tumor that poses a great threat to both children and adults, being the primary cause of death related to brain tumors. GBM is often associated with epilepsy, which can be debilitating. Seizures and the development of epilepsy are the primary symptoms that have a severe impact on the quality of life for GBM patients. It is increasingly apparent that the nervous system plays an essential role in the tumor microenvironment for all cancer types, including GBM. In recent years, there has been a growing understanding of how neurotransmitters control the progression of gliomas. Evidence suggests that neurotransmitters and neuromodulators found in the tumor microenvironment play crucial roles in the excitability, proliferation, quiescence, and differentiation of neurons, glial cells, and neural stem cells. The involvement of neurotransmitters appears to play a significant role in various stages of GBM. In this review, the focus is on presenting updated knowledge and emerging ideas regarding the interplay between neurotransmitters and neuromodulators, such as glutamate, GABA, norepinephrine, dopamine, serotonin, adenosine, and their relationship with GBM and the seizures induced by this condition. The review aims to explore the current understanding and provide new insights into the complex interactions between these neurotransmitters and neuromodulators in the context of GBM-related seizures.
Collapse
Affiliation(s)
| | - Fatemeh Bakhtiarzadeh
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Samaneh Dehghan
- Eye Research Center, The Five Senses Institute, Rasool Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | - Fereshteh Golab
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Sam Zarbakhsh
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Nooshin Ahmadirad
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Nuñez-Rios JD, Ulrich H, Díaz-Muñoz M, Lameu C, Vázquez-Cuevas FG. Purinergic system in cancer stem cells. Purinergic Signal 2023:10.1007/s11302-023-09976-5. [PMID: 37966629 DOI: 10.1007/s11302-023-09976-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 10/25/2023] [Indexed: 11/16/2023] Open
Abstract
Accumulating evidence supports the idea that cancer stem cells (CSCs) are those with the capacity to initiate tumors, generate phenotypical diversity, sustain growth, confer drug resistance, and orchestrate the spread of tumor cells. It is still controversial whether CSCs originate from normal stem cells residing in the tissue or cancer cells from the tumor bulk that have dedifferentiated to acquire stem-like characteristics. Although CSCs have been pointed out as key drivers in cancer, knowledge regarding their physiology is still blurry; thus, research focusing on CSCs is essential to designing novel and more effective therapeutics. The purinergic system has emerged as an important autocrine-paracrine messenger system with a prominent role at multiple levels of the tumor microenvironment, where it regulates cellular aspects of the tumors themselves and the stromal and immune systems. Recent findings have shown that purinergic signaling also participates in regulating the CSC phenotype. Here, we discuss updated information regarding CSCs in the purinergic system and present evidence supporting the idea that elements of the purinergic system expressed by this subpopulation of the tumor represent attractive pharmacological targets for proposing innovative anti-cancer therapies.
Collapse
Affiliation(s)
- J D Nuñez-Rios
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla #3001, Juriquilla Querétaro, Querétaro, CP 76230, México
| | - H Ulrich
- Department of Biochemistry, Chemistry Institute, University of São Paulo (USP), São Paulo, Brazil
| | - M Díaz-Muñoz
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla #3001, Juriquilla Querétaro, Querétaro, CP 76230, México
| | - C Lameu
- Department of Biochemistry, Chemistry Institute, University of São Paulo (USP), São Paulo, Brazil
| | - F G Vázquez-Cuevas
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla #3001, Juriquilla Querétaro, Querétaro, CP 76230, México.
| |
Collapse
|
5
|
de Ruiter Swain J, Michalopoulou E, Noch EK, Lukey MJ, Van Aelst L. Metabolic partitioning in the brain and its hijacking by glioblastoma. Genes Dev 2023; 37:681-702. [PMID: 37648371 PMCID: PMC10546978 DOI: 10.1101/gad.350693.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The different cell types in the brain have highly specialized roles with unique metabolic requirements. Normal brain function requires the coordinated partitioning of metabolic pathways between these cells, such as in the neuron-astrocyte glutamate-glutamine cycle. An emerging theme in glioblastoma (GBM) biology is that malignant cells integrate into or "hijack" brain metabolism, co-opting neurons and glia for the supply of nutrients and recycling of waste products. Moreover, GBM cells communicate via signaling metabolites in the tumor microenvironment to promote tumor growth and induce immune suppression. Recent findings in this field point toward new therapeutic strategies to target the metabolic exchange processes that fuel tumorigenesis and suppress the anticancer immune response in GBM. Here, we provide an overview of the intercellular division of metabolic labor that occurs in both the normal brain and the GBM tumor microenvironment and then discuss the implications of these interactions for GBM therapy.
Collapse
Affiliation(s)
- Jed de Ruiter Swain
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
- Cold Spring Harbor Laboratory School of Biological Sciences, Cold Spring Harbor, New York 11724, USA
| | | | - Evan K Noch
- Department of Neurology, Division of Neuro-oncology, Weill Cornell Medicine, New York, New York 10021, USA
| | - Michael J Lukey
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA;
| | - Linda Van Aelst
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA;
| |
Collapse
|
6
|
Karami Fath M, Garousi S, Mottahedi M, Ghasemzadeh N, Salmani K, Olfati F, Beit Saeed M, Sotoudeh S, Barati G. The role of hypoxia-inducible factors in breast cancer stem cell specification. Pathol Res Pract 2023; 243:154349. [PMID: 36791562 DOI: 10.1016/j.prp.2023.154349] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/24/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023]
Abstract
Breast tumor is heterogeneous cancer with high morbidity and mortality rates, particularly in developing countries. Despite new efforts to reduce the breast cancer implications, the number of newly diagnosed cases is increasing worldwide. It is believed that cancer stem cells (CSCs) are responsible for the implication of cancers including breast cancer. Although CSCs compose a small population in tumor bulks, they play a crucial role in tumor initiation, progression, metastasis, and chemotherapeutic resistance. These events are mediated by the hypoxia-inducible factor (HIF) pathway which regulates the transcription of genes involved in CSC maintenance and tumorigenesis. In this review, we discussed the mechanisms by which hypoxia- or chemotherapy-induced HIFs promote breast CSC specification.
Collapse
Affiliation(s)
- Mohsen Karami Fath
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Setareh Garousi
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehran Mottahedi
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Kiana Salmani
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Fatemeh Olfati
- Department of Reproductive Health, Faculty of Nursing and Midwifery, Tehran University of Medical Sciences, Tehran, Iran
| | - Miad Beit Saeed
- Faculty of Nursing and Midwifery, Abadan Islamic Azad University, Abadan, Iran
| | - Sina Sotoudeh
- Faculty of Nursing and Midwifery, Guilan University of Medical Sciences, Guilan, Iran
| | | |
Collapse
|
7
|
Zeynali P, Jazi MS, Asadi J, Jafari SM. A1 adenosine receptor antagonist induces cell apoptosis in KYSE-30 and YM-1 esophageal cancer cell lines. Biomedicine (Taipei) 2023; 13:54-61. [PMID: 37168725 PMCID: PMC10166249 DOI: 10.37796/2211-8039.1394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/21/2022] [Indexed: 02/25/2023] Open
Abstract
Background and aim Adenosine A1 receptor (AA1R) has been shown to have an inhibitory effect on cell growth in several cancers; however, its function in esophageal cancer is still unclear. In this study, we examined the effect of AA1R on cell growth and apoptosis in esophageal cancer cells. Materials and methods In this study, YM-1 and KYSE-30 esophageal cancer cell lines were cultured. AA1R gene expression was determined by quantitative Real-time Polymerase Chain Reaction (qRT-PCR). As well, the AA1R antagonist (DPCPX) effect on cell viability was evaluated by the MTT assay. Moreover, apoptosis was assessed by annexin-V and propidium iodide staining, and the caspase-3/7 activity assay kit. Result qRT-PCR results indicated that the AA1R was expressed in YM-1 and KYSE-30 cells. In addition, DPCPX significantly decreased cell proliferation in both cell lines. Furthermore, the A1AR antagonist induced apoptosis in KYSE-30 and YM-1 cells. After treatment of both cell lines with DPCPX, the caspase 3/7 activity was increased. Conclusion Our finding indicates the AA1R antagonist induces apoptosis through caspase 3/7 activation and can be considered a potential target in esophageal cancer therapy.
Collapse
Affiliation(s)
- Parisa Zeynali
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan,
Iran
| | - Marie Saghaeian Jazi
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan,
Iran
| | - Jahanbakhsh Asadi
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan,
Iran
- Department of Biochemistry and Biophysics, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan,
Iran
| | - Seyyed Mehdi Jafari
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan,
Iran
- Department of Biochemistry and Biophysics, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan,
Iran
| |
Collapse
|
8
|
Zanoni M, Pegoraro A, Adinolfi E, De Marchi E. Emerging roles of purinergic signaling in anti-cancer therapy resistance. Front Cell Dev Biol 2022; 10:1006384. [PMID: 36200041 PMCID: PMC9527280 DOI: 10.3389/fcell.2022.1006384] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/29/2022] [Indexed: 11/20/2022] Open
Abstract
Cancer is a complex disease with a rapid growing incidence and often characterized by a poor prognosis. Although impressive advances have been made in cancer treatments, resistance to therapy remains a critical obstacle for the improvement of patients outcome. Current treatment approaches as chemo-, radio-, and immuno-therapy deeply affect the tumor microenvironment (TME), inducing an extensive selective pressure on cancer cells through the activation of the immune system, the induction of cell death and the release of inflammatory and damage-associated molecular patterns (DAMPS), including nucleosides (adenosine) and nucleotides (ATP and ADP). To survive in this hostile environment, resistant cells engage a variety of mitigation pathways related to metabolism, DNA repair, stemness, inflammation and resistance to apoptosis. In this context, purinergic signaling exerts a pivotal role being involved in mitochondrial function, stemness, inflammation and cancer development. The activity of ATP and adenosine released in the TME depend upon the repertoire of purinergic P2 and adenosine receptors engaged, as well as, by the expression of ectonucleotidases (CD39 and CD73) on tumor, immune and stromal cells. Besides its well established role in the pathogenesis of several tumors and in host–tumor interaction, purinergic signaling has been recently shown to be profoundly involved in the development of therapy resistance. In this review we summarize the current advances on the role of purinergic signaling in response and resistance to anti-cancer therapies, also describing the translational applications of combining conventional anticancer interventions with therapies targeting purinergic signaling.
Collapse
Affiliation(s)
- Michele Zanoni
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
- *Correspondence: Michele Zanoni,
| | - Anna Pegoraro
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Elena Adinolfi
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Elena De Marchi
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
9
|
Bova V, Filippone A, Casili G, Lanza M, Campolo M, Capra AP, Repici A, Crupi L, Motta G, Colarossi C, Chisari G, Cuzzocrea S, Esposito E, Paterniti I. Adenosine Targeting as a New Strategy to Decrease Glioblastoma Aggressiveness. Cancers (Basel) 2022; 14:cancers14164032. [PMID: 36011024 PMCID: PMC9406358 DOI: 10.3390/cancers14164032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Given the rising mortality rate caused by GBM, current therapies do not appear to be effective in counteracting tumor progression. The role of adenosine and its interaction with specific receptor subtypes in various physiological functions has been studied for years. Only recently, adenosine has been defined as a tumor-protective target because of its accumulation in the tumor microenvironment. Current knowledge of the adenosine pathway and its involvement in brain tumors would support research in the development of adenosine receptor antagonists that could represent alternative treatments for glioblastoma, used either alone and/or in combination with chemotherapy, immunotherapy, or both. Abstract Glioblastoma is the most commonly malignant and aggressive brain tumor, with a high mortality rate. The role of the purine nucleotide adenosine and its interaction with its four subtypes receptors coupled to the different G proteins, A1, A2A, A2B, and A3, and its different physiological functions in different systems and organs, depending on the active receptor subtype, has been studied for years. Recently, several works have defined extracellular adenosine as a tumoral protector because of its accumulation in the tumor microenvironment. Its presence is due to both the interaction with the A2A receptor subtype and the increase in CD39 and CD73 gene expression induced by the hypoxic state. This fact has fueled preclinical and clinical research into the development of efficacious molecules acting on the adenosine pathway and blocking its accumulation. Given the success of anti-cancer immunotherapy, the new strategy is to develop selective A2A receptor antagonists that could competitively inhibit binding to its endogenous ligand, making them reliable candidates for the therapeutic management of brain tumors. Here, we focused on the efficacy of adenosine receptor antagonists and their enhancement in anti-cancer immunotherapy.
Collapse
Affiliation(s)
- Valentina Bova
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31-98166 Messina, Italy
| | - Alessia Filippone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31-98166 Messina, Italy
| | - Giovanna Casili
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31-98166 Messina, Italy
| | - Marika Lanza
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31-98166 Messina, Italy
| | - Michela Campolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31-98166 Messina, Italy
| | - Anna Paola Capra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31-98166 Messina, Italy
| | - Alberto Repici
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31-98166 Messina, Italy
| | - Lelio Crupi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31-98166 Messina, Italy
| | - Gianmarco Motta
- Istituto Oncologico del Mediterraneo, Via Penninazzo 7, 95029 Viagrande, Italy
| | - Cristina Colarossi
- Istituto Oncologico del Mediterraneo, Via Penninazzo 7, 95029 Viagrande, Italy
| | - Giulia Chisari
- Istituto Oncologico del Mediterraneo, Via Penninazzo 7, 95029 Viagrande, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31-98166 Messina, Italy
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31-98166 Messina, Italy
- Correspondence: ; Tel.: +39-090-676-5208
| | - Irene Paterniti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31-98166 Messina, Italy
| |
Collapse
|
10
|
Iser IC, Vedovatto S, Oliveira FD, Beckenkamp LR, Lenz G, Wink MR. The crossroads of adenosinergic pathway and epithelial-mesenchymal plasticity in cancer. Semin Cancer Biol 2022; 86:202-213. [PMID: 35779713 DOI: 10.1016/j.semcancer.2022.06.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/24/2022] [Accepted: 06/26/2022] [Indexed: 10/31/2022]
Abstract
Epithelial-mesenchymal transition (EMT) is a key mechanism related to tumor progression, invasion, metastasis, resistance to therapy and poor prognosis in several types of cancer. However, targeting EMT or partial-EMT, as well as the molecules involved in this process, has remained a challenge. Recently, the CD73 enzyme, which hydrolyzes AMP to produce adenosine (ADO), has been linked to the EMT process. This relationship is not only due to the production of the immunosuppressant ADO but also to its role as a receptor for extracellular matrix proteins, being involved in cell adhesion and migration. This article reviews the crosstalk between the adenosinergic pathway and the EMT program and the impact of this interrelation on cancer development and progression. An in silico analysis of RNAseq datasets showed that several tumor types have a significant correlation between an EMT score and NT5E (CD73) and ENTPD1 (CD39) expressions, with the strongest correlations in prostate adenocarcinoma. Furthermore, it is evident that the cooperation between EMT and adenosinergic pathway in tumor progression is context and tumor-dependent. The increased knowledge about this topic will help broaden the view to explore new treatments and therapies for different types of cancer.
Collapse
Affiliation(s)
- Isabele Cristiana Iser
- Department of Basics Health Sciences and Laboratory of Cell Biology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Samlai Vedovatto
- Department of Biophysics and Center of Biotechnology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Fernanda Dittrich Oliveira
- Department of Biophysics and Center of Biotechnology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Liziane Raquel Beckenkamp
- Department of Basics Health Sciences and Laboratory of Cell Biology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Guido Lenz
- Department of Biophysics and Center of Biotechnology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Márcia Rosângela Wink
- Department of Basics Health Sciences and Laboratory of Cell Biology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil.
| |
Collapse
|
11
|
Mohammadi Z, Asadi J, Jafari SM. Synergistic effects of BAY606583 on docetaxel in esophageal cancer through modulation of ERK1/2. Cell Biochem Funct 2022; 40:569-577. [PMID: 35758556 DOI: 10.1002/cbf.3726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/30/2022] [Accepted: 06/09/2022] [Indexed: 11/08/2022]
Abstract
Docetaxel (DTX) is a taxane chemotherapy agent used to treat many types of cancers, including esophageal squamous cell carcinoma. Adenosine is a purinergic signaling molecule that contributes to cancer cell proliferation via A2B adenosine receptor (A2BAR) activation. Extracellular signal-regulated protein kinase (ERK) plays a crucial role in cell proliferation in various types of cancers. Stimulation of A2BAR involves a regulated ERK signaling pathway, and might provide a fascinating approach for treatment, leading to decreased proliferation in certain tumors that express A2BAR. Recent studies demonstrated that DTX and A2BAR have anticancer effects. The current study was designed to investigate the synergistic effect of the A2BAR agonist (BAY606583) on DTX in inducing antiproliferation effects on esophageal squamous cells carcinoma (ESCCs). The cell viability was assessed using the MTT assay in KYSE-30 and Ym-1 cells. In addition, the synergistic effect of DTX on the A2BAR agonist was evaluated. Subsequently, apoptosis was assessed by Annexin-V and propidium iodide staining, and Bcl-2, Bax, and ERK1/2 protein-level expressions were evaluated by Western blot. Use of BAY606583 and cotreatment of DTX and BAY606583 significantly decreased cell proliferation in KYSE-30 and Ym-1 cell lines. The use of BAY606583 and cotreatment of DTX with the A2BAR agonist induced apoptosis in KYSE-30 and Ym-1 cells. Western blot analysis revealed that the use of the A2BAR agonist and cotreatment of DTX with the A2BAR agonist inhibited the expression of apoptotic regulatory proteins as well as the expression of ERK1/2 proteins. Our findings suggested that use of BAY606583 and cotreatment of BAY606583/DTX have an antiproliferative effect on ESCC cell lines through ERK signaling pathway inhibition. BAY606583 has a synergistic effect on DTX, which could be used as an adjuvant for esophageal cancer therapy.
Collapse
Affiliation(s)
- Zinab Mohammadi
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran.,Department of Biochemistry and Biophysics, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Jahanbakhsh Asadi
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Seyyed Mehdi Jafari
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran.,Department of Biochemistry and Biophysics, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
12
|
Shang L, Huang Y, Xie X, Ye S, Chen C. Effect of Adenosine Receptor Antagonists on Adenosine-Pretreated PC12 Cells Exposed to Paraquat. Dose Response 2022; 20:15593258221093411. [PMID: 35431696 PMCID: PMC9005745 DOI: 10.1177/15593258221093411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/23/2022] [Indexed: 11/15/2022] Open
Abstract
Previous studies evaluated the adenosine receptor antagonists alone to determine
their effects on oxidative stress, but little is known about adenosine’s
protective efficacy when oxidative injury occurs in vivo. Adenosine is a crucial
signaling molecule recognized by four distinct G-protein-coupled receptors
(GPCRs) (i.e., A1R, A2AR, A2BR, and A3R) and protects cells against pathological
conditions. The present study was performed to evaluate the role of antagonist
modulation in the setting of paraquat toxicity with adenosine pretreatment.
First, PC12 cells were exposed to paraquat (850 μM) and adenosine (30 μM) to
develop an in vitro model for the antagonist effect assay. Second, we found that
the A1R antagonist DPCPX enhanced the viability of paraquat-induced PC12 cells
that underwent adenosine pretreatment. Moreover, the A2AR antagonist ZM241385
decreased the viability of paraquat-induced PC12 cells that underwent adenosine
pretreatment. Our findings indicate that adenosine protection requires a dual
blockade of A1R and activation of A2AR to work at its full potential, and the
A2B and A3 adenosine receptor antagonists increased paraquat-induced oxidative
damage. This represents a novel pharmacological strategy based on A1/A2A
interactions and can assist in clarifying the role played by AR antagonists in
the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Liangcheng Shang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, Engineering Training Centre, China Jiliang University, Hangzhou, China
| | - Yaobiao Huang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, Engineering Training Centre, China Jiliang University, Hangzhou, China
| | - Xin Xie
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, Engineering Training Centre, China Jiliang University, Hangzhou, China
| | - Sudan Ye
- Zhejiang Institute of Economic and Trade, Hangzhou, China
| | - Chun Chen
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, Engineering Training Centre, China Jiliang University, Hangzhou, China
| |
Collapse
|
13
|
Bausart M, Préat V, Malfanti A. Immunotherapy for glioblastoma: the promise of combination strategies. J Exp Clin Cancer Res 2022; 41:35. [PMID: 35078492 PMCID: PMC8787896 DOI: 10.1186/s13046-022-02251-2] [Citation(s) in RCA: 101] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 01/11/2022] [Indexed: 12/11/2022] Open
Abstract
Glioblastoma (GBM) treatment has remained almost unchanged for more than 20 years. The current standard of care involves surgical resection (if possible) followed by concomitant radiotherapy and chemotherapy. In recent years, immunotherapy strategies have revolutionized the treatment of many cancers, increasing the hope for GBM therapy. However, mostly due to the high, multifactorial immunosuppression occurring in the microenvironment, the poor knowledge of the neuroimmune system and the presence of the blood-brain barrier, the efficacy of immunotherapy in GBM is still low. Recently, new strategies for GBM treatments have employed immunotherapy combinations and have provided encouraging results in both preclinical and clinical studies. The lessons learned from clinical trials highlight the importance of tackling different arms of immunity. In this review, we aim to summarize the preclinical evidence regarding combination immunotherapy in terms of immune and survival benefits for GBM management. The outcomes of recent studies assessing the combination of different classes of immunotherapeutic agents (e.g., immune checkpoint blockade and vaccines) will be discussed. Finally, future strategies to ameliorate the efficacy of immunotherapy and facilitate clinical translation will be provided to address the unmet medical needs of GBM.
Collapse
Affiliation(s)
- Mathilde Bausart
- UCLouvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier 73 B1.73.12, 1200, Brussels, Belgium
| | - Véronique Préat
- UCLouvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier 73 B1.73.12, 1200, Brussels, Belgium.
| | - Alessio Malfanti
- UCLouvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier 73 B1.73.12, 1200, Brussels, Belgium
| |
Collapse
|
14
|
Kotulová J, Hajdúch M, Džubák P. Current Adenosinergic Therapies: What Do Cancer Cells Stand to Gain and Lose? Int J Mol Sci 2021; 22:12569. [PMID: 34830449 PMCID: PMC8617980 DOI: 10.3390/ijms222212569] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/18/2021] [Accepted: 11/18/2021] [Indexed: 12/12/2022] Open
Abstract
A key objective in immuno-oncology is to reactivate the dormant immune system and increase tumour immunogenicity. Adenosine is an omnipresent purine that is formed in response to stress stimuli in order to restore physiological balance, mainly via anti-inflammatory, tissue-protective, and anti-nociceptive mechanisms. Adenosine overproduction occurs in all stages of tumorigenesis, from the initial inflammation/local tissue damage to the precancerous niche and the developed tumour, making the adenosinergic pathway an attractive but challenging therapeutic target. Many current efforts in immuno-oncology are focused on restoring immunosurveillance, largely by blocking adenosine-producing enzymes in the tumour microenvironment (TME) and adenosine receptors on immune cells either alone or combined with chemotherapy and/or immunotherapy. However, the effects of adenosinergic immunotherapy are not restricted to immune cells; other cells in the TME including cancer and stromal cells are also affected. Here we summarise recent advancements in the understanding of the tumour adenosinergic system and highlight the impact of current and prospective immunomodulatory therapies on other cell types within the TME, focusing on adenosine receptors in tumour cells. In addition, we evaluate the structure- and context-related limitations of targeting this pathway and highlight avenues that could possibly be exploited in future adenosinergic therapies.
Collapse
Affiliation(s)
| | | | - Petr Džubák
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University Olomouc, 779 00 Olomouc, Czech Republic; (J.K.); (M.H.)
| |
Collapse
|
15
|
Iser IC, de Andrade Mello P, Davies S, de Souza Santos JF, Pilger DA, Buffon A, Bertoni APS, Wink MR. A three-dimensional microenvironment alters CD73 expression in cervical cancer. Cell Biochem Funct 2021; 39:780-790. [PMID: 34031899 DOI: 10.1002/cbf.3649] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/23/2021] [Accepted: 05/10/2021] [Indexed: 12/24/2022]
Abstract
Stem-like cells (CSCs) have a tumour-initiating capacity and play critical role in tumour metastasis, relapse and resistance to therapy. The ectoenzyme CD73, encoded by the NT5E gene, which catalyses the hydrolysis of AMP into adenosine, has been associated to an immunosuppressive tumour microenvironment, tumour cell adhesion and migration. Therefore, we investigated the expression and activity of CD73 in sphere-forming cells from cervical cancer in comparison to monolayer cells in vitro. In addition, in silico analysis was performed to determine the expression of CD73 and other members of purinergic signalling in CSC-like population derived from different tumour types in comparison to monolayer cells. CD73 protein expression levels and functionality in SiHa cells were analysed by flow cytometry and enzymatic assay, respectively. In silico investigation was performed through the analysis of seven datasets from different tumour types using GEO database. In vitro analysis showed a decreased CD73 protein expression and enzymatic activity in cervical spheres, when compared to monolayers. In addition, when sphere-derived cells are re-plated as monolayer culture, the CD73 expression and activity are restored. Supporting the in vitro results, in silico analysis showed that three-dimensional spheres derived from cervical, thyroid and breast cancer presented decreased expression of CD73, when compared to their adherent counterparts. The decreased expression of CD73 in sphere-derived cells or CSC-enriched population reinforce its important role in cell adhesion, tumour spreading ability and metastasis, suggesting CD73 as potential target to be further investigated in cervical cancer.
Collapse
Affiliation(s)
- Isabele Cristiana Iser
- Departamento de Ciências Básicas da Saúde and Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
| | - Paola de Andrade Mello
- Departments of Medicine and Anesthesia, Beth Israel Deaconess Medical Center (BIDMC), Harvard Medical School (HMS), Harvard University, Boston, Massachusetts, USA
| | - Samuel Davies
- Laboratório de Análises Bioquímicas e Citológicas, Departamento de Análises, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Jacqueline Fraga de Souza Santos
- Departamento de Ciências Básicas da Saúde and Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
| | - Diogo André Pilger
- Laboratório de Análises Bioquímicas e Citológicas, Departamento de Análises, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil
| | - Andreia Buffon
- Laboratório de Análises Bioquímicas e Citológicas, Departamento de Análises, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Ana Paula Santin Bertoni
- Departamento de Ciências Básicas da Saúde and Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
| | - Marcia Rosângela Wink
- Departamento de Ciências Básicas da Saúde and Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
| |
Collapse
|
16
|
Marcelino H, Carvalho TMA, Tomás J, Teles FI, Honório AC, Rosa CB, Costa AR, Costa BM, Santos CRA, Sebastião AM, Cascalheira JF. Adenosine Inhibits Cell Proliferation Differently in Human Astrocytes and in Glioblastoma Cell Lines. Neuroscience 2021; 467:122-133. [PMID: 34033870 DOI: 10.1016/j.neuroscience.2021.05.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 05/10/2021] [Accepted: 05/16/2021] [Indexed: 11/17/2022]
Abstract
Glioblastoma (GBM) is the most common brain primary tumour. Hypoxic regions in GBM are associated to tumour growth. Adenosine accumulates in hypoxic regions and can affect cell proliferation and survival. However, how proliferating GBM cells respond/adapt to increased adenosine levels compared to human astrocytes (HA) is not clarified and was addressed in the present work. GBM cell lines and HA were treated for 3 days with test drugs. Thirty Adenosine (30 µM) caused a 43% ± 5% (P < 0.05) reduction of cell proliferation/viability in HA, through an adenosine receptor-independent mechanism, but had no effect in GBM cell lines U87MG, U373MG and SNB19. Contrastingly, inhibition of adenosine phosphorylation (using the adenosine kinase (ADK) inhibitor 5-iodotubercidin (ITU) (25 µM)), produced a strong and similar decrease on cell proliferation in both HA and GBM cells. The effect of adenosine on HA proliferation/viability was potentiated by 100 µM-homocysteine. Combined application of 30 µM-adenosine and 100 µM-homocysteine reduced the cell proliferation/viability in all three GBM cell lines, but this reduction was much lower than that observed in HA. Adenosine alone did not induce cell death, assessed by lactate dehydrogenase (LDH) release, both in HA and GBM cells, but potentiated the cytotoxic effect of homocysteine in HA and in U87MG and U373MG cells. Results show a strong attenuation of adenosine anti-proliferative effect in GBM cells compared to HA, probably resulting from increased adenosine elimination by ADK, suggesting a proliferative-prone adaptation of tumour cells to increased adenosine levels.
Collapse
Affiliation(s)
- Helena Marcelino
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal; Department of Chemistry, University of Beira Interior, Covilhã, Portugal
| | - Tiago M A Carvalho
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Joana Tomás
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Francisca I Teles
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Ana C Honório
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Carolina B Rosa
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Ana R Costa
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Bruno M Costa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Cecília R A Santos
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Ana M Sebastião
- Institute of Pharmacology and Neurosciences, Faculty of Medicine, University of Lisbon, Lisboa, Portugal; Institute of Molecular Medicine, University of Lisbon, Lisboa, Portugal
| | - José F Cascalheira
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal; Department of Chemistry, University of Beira Interior, Covilhã, Portugal.
| |
Collapse
|
17
|
Lin X, Wang ZY, Xue G, Qin XJ, Wu JF, Zhang G. ADORA1 is a diagnostic-related biomarker and correlated with immune infiltrates in papillary thyroid carcinoma. J Cancer 2021; 12:3997-4010. [PMID: 34093805 PMCID: PMC8176250 DOI: 10.7150/jca.50743] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 04/25/2021] [Indexed: 12/24/2022] Open
Abstract
Background: Adenosine A1 Receptor (ADORA1) is an adenosine receptor particularly relevant to the immunomodulatory process of malignant tumors. There are growing evidences that dysregulated overexpression of ADORA1 can promote many types of tumorigenesis. However, the expression and prognostic value and mechanism of ADORA1 in thyroid papillary carcinoma have not been reported. Methods: TCGA, ONCOMINE, UALCAN, cBioPortal, GeneMANIA, LinkedOmics, TIMER, GSCALite, TISIDB and EPIC tools were used in this study. Results: ADORA1 was overexpressed in papillary thyroid carcinoma compared to paracancerous tissue. And ADORA1 was positively correlated with lymph node metastasis as well as pathological stage in PTC. ADORA1 had diagnostic and prognostic value for PTC. The functions of ADORA1 co-expressed genes were mainly enriched in immune response, immune response-regulation signaling pathway, regulation of leukocyte activation and cancer-related pathways. Besides, ADORA1 expression was significantly correlated with tumor-infiltrating cells and immune biomarkers in PTC. Finally, the high expression of ADORA1 was sensitive to JW-55 drug. Conclusion: ADORA1 is a diagnostic and a prognostic biomarker for PTC. The expression of ADORA1 is positively correlated with many immunoregulatory factors in PTC.
Collapse
Affiliation(s)
- Xu Lin
- Zhangjiakou Key Laboratory of Thyroid Cancer Precision Diagnosis, Hebei North University, Zhangjiakou, 075000, China.,Department of Histology and Embryology, Hebei North University, Zhangjiakou, 075000, China
| | - Zhi-Yong Wang
- Zhangjiakou Key Laboratory of Thyroid Cancer Precision Diagnosis, Hebei North University, Zhangjiakou, 075000, China.,Department of Histology and Embryology, Hebei North University, Zhangjiakou, 075000, China
| | - Gang Xue
- Zhangjiakou Key Laboratory of Thyroid Cancer Precision Diagnosis, Hebei North University, Zhangjiakou, 075000, China.,Department of Histology and Embryology, Hebei North University, Zhangjiakou, 075000, China.,Department of Otorhinolaryngology Head and Neck Surgery, Hebei North University, Zhangjiakou, 075000, China
| | - Xiao-Jing Qin
- Zhangjiakou Key Laboratory of Thyroid Cancer Precision Diagnosis, Hebei North University, Zhangjiakou, 075000, China.,Department of Histology and Embryology, Hebei North University, Zhangjiakou, 075000, China
| | - Jing-Fang Wu
- Zhangjiakou Key Laboratory of Thyroid Cancer Precision Diagnosis, Hebei North University, Zhangjiakou, 075000, China.,Department of Histology and Embryology, Hebei North University, Zhangjiakou, 075000, China
| | - Geng Zhang
- Zhangjiakou Key Laboratory of Thyroid Cancer Precision Diagnosis, Hebei North University, Zhangjiakou, 075000, China.,Department of Histology and Embryology, Hebei North University, Zhangjiakou, 075000, China
| |
Collapse
|
18
|
Cruz Da Silva E, Mercier MC, Etienne-Selloum N, Dontenwill M, Choulier L. A Systematic Review of Glioblastoma-Targeted Therapies in Phases II, III, IV Clinical Trials. Cancers (Basel) 2021; 13:1795. [PMID: 33918704 PMCID: PMC8069979 DOI: 10.3390/cancers13081795] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/19/2021] [Accepted: 03/26/2021] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma (GBM), the most frequent and aggressive glial tumor, is currently treated as first line by the Stupp protocol, which combines, after surgery, radiotherapy and chemotherapy. For recurrent GBM, in absence of standard treatment or available clinical trials, various protocols including cytotoxic drugs and/or bevacizumab are currently applied. Despite these heavy treatments, the mean overall survival of patients is under 18 months. Many clinical studies are underway. Based on clinicaltrials.org and conducted up to 1 April 2020, this review lists, not only main, but all targeted therapies in phases II-IV of 257 clinical trials on adults with newly diagnosed or recurrent GBMs for the last twenty years. It does not involve targeted immunotherapies and therapies targeting tumor cell metabolism, that are well documented in other reviews. Without surprise, the most frequently reported drugs are those targeting (i) EGFR (40 clinical trials), and more generally tyrosine kinase receptors (85 clinical trials) and (ii) VEGF/VEGFR (75 clinical trials of which 53 involving bevacizumab). But many other targets and drugs are of interest. They are all listed and thoroughly described, on an one-on-one basis, in four sections related to targeting (i) GBM stem cells and stem cell pathways, (ii) the growth autonomy and migration, (iii) the cell cycle and the escape to cell death, (iv) and angiogenesis.
Collapse
Affiliation(s)
- Elisabete Cruz Da Silva
- CNRS, UMR 7021, Laboratoire de Bioimagerie et Pathologies, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France; (E.C.D.S.); (M.-C.M.); (N.E.-S.); (M.D.)
| | - Marie-Cécile Mercier
- CNRS, UMR 7021, Laboratoire de Bioimagerie et Pathologies, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France; (E.C.D.S.); (M.-C.M.); (N.E.-S.); (M.D.)
| | - Nelly Etienne-Selloum
- CNRS, UMR 7021, Laboratoire de Bioimagerie et Pathologies, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France; (E.C.D.S.); (M.-C.M.); (N.E.-S.); (M.D.)
- Service de Pharmacie, Institut de Cancérologie Strasbourg Europe, 67200 Strasbourg, France
| | - Monique Dontenwill
- CNRS, UMR 7021, Laboratoire de Bioimagerie et Pathologies, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France; (E.C.D.S.); (M.-C.M.); (N.E.-S.); (M.D.)
| | - Laurence Choulier
- CNRS, UMR 7021, Laboratoire de Bioimagerie et Pathologies, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France; (E.C.D.S.); (M.-C.M.); (N.E.-S.); (M.D.)
| |
Collapse
|
19
|
Daniele S, La Pietra V, Piccarducci R, Pietrobono D, Cavallini C, D'Amore VM, Cerofolini L, Giuntini S, Russomanno P, Puxeddu M, Nalli M, Pedrini M, Fragai M, Luchinat C, Novellino E, Taliani S, La Regina G, Silvestri R, Martini C, Marinelli L. CXCR4 antagonism sensitizes cancer cells to novel indole-based MDM2/4 inhibitors in glioblastoma multiforme. Eur J Pharmacol 2021; 897:173936. [PMID: 33581134 DOI: 10.1016/j.ejphar.2021.173936] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 01/28/2021] [Accepted: 02/05/2021] [Indexed: 12/13/2022]
Abstract
Glioblastoma Multiforme (GBM) is a highly invasive primary brain tumour characterized by chemo- and radio-resistance and poor overall survival. GBM can present an aberrant functionality of p53, caused by the overexpression of the murine double minute 2 protein (MDM2) and its analogue MDM4, which may influence the response to conventional therapies. Moreover, tumour resistance/invasiveness has been recently attributed to an overexpression of the chemokine receptor CXCR4, identified as a pivotal mediator of glioma neovascularization. Notably, CXCR4 and MDM2-4 cooperate in promoting tumour invasion and progression. Although CXCR4 actively promotes MDM2 activation leading to p53 inactivation, MDM2-4 knockdown induces the downregulation of CXCR4 gene transcription. Our study aimed to assess if the CXCR4 signal blockade could enhance glioma cells' sensitivity to the inhibition of the p53-MDMs axis. Rationally designed inhibitors of MDM2/4 were combined with the CXCR4 antagonist, AMD3100, in human GBM cells and GBM stem-like cells (neurospheres), which are crucial for tumour recurrence and chemotherapy resistance. The dual MDM2/4 inhibitor RS3594 and the CXCR4 antagonist AMD3100 reduced GBM cell invasiveness and migration in single-agent treatment and mainly in combination. AMD3100 sensitized GBM cells to the antiproliferative activity of RS3594. It is noteworthy that these two compounds present synergic effects on cancer stem components: RS3594 inhibited the growth and formation of neurospheres, AMD3100 induced differentiation of neurospheres while enhancing RS3594 effectiveness preventing their proliferation/clonogenicity. These results confirm that blocking CXCR4/MDM2/4 represents a valuable strategy to reduce GBM proliferation and invasiveness, acting on the stem cell component too.
Collapse
Affiliation(s)
- Simona Daniele
- Department of Pharmacy, University of Pisa, 56126, Pisa, Italy
| | - Valeria La Pietra
- Department of Pharmacy, University of Naples "Federico II", 80131, Napoli, Italy
| | | | | | | | | | - Linda Cerofolini
- Magnetic Resonance Center (CERM), University of Florence, And Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (C.I.R.M.M.P), 50019, Sesto Fiorentino (FI), Italy
| | - Stefano Giuntini
- Department of Chemistry "Ugo Schiff″, University of Florence, 50019, Sesto Fiorentino (FI), Italy
| | - Pasquale Russomanno
- Department of Pharmacy, University of Naples "Federico II", 80131, Napoli, Italy
| | - Michela Puxeddu
- Laboratory Affiliated to Istituto Pasteur Italia, Fondazione Cenci Bolognetti, Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185, Roma, Italy
| | - Marianna Nalli
- Laboratory Affiliated to Istituto Pasteur Italia, Fondazione Cenci Bolognetti, Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185, Roma, Italy
| | - Martina Pedrini
- Department of Chemistry, University of Milan, 20133, Milano, Italy
| | - Marco Fragai
- Magnetic Resonance Center (CERM), University of Florence, And Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (C.I.R.M.M.P), 50019, Sesto Fiorentino (FI), Italy; Department of Chemistry "Ugo Schiff″, University of Florence, 50019, Sesto Fiorentino (FI), Italy
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM), University of Florence, And Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (C.I.R.M.M.P), 50019, Sesto Fiorentino (FI), Italy; Department of Chemistry "Ugo Schiff″, University of Florence, 50019, Sesto Fiorentino (FI), Italy
| | - Ettore Novellino
- Department of Pharmacy, University of Naples "Federico II", 80131, Napoli, Italy
| | - Sabrina Taliani
- Department of Pharmacy, University of Pisa, 56126, Pisa, Italy
| | - Giuseppe La Regina
- Laboratory Affiliated to Istituto Pasteur Italia, Fondazione Cenci Bolognetti, Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185, Roma, Italy
| | - Romano Silvestri
- Laboratory Affiliated to Istituto Pasteur Italia, Fondazione Cenci Bolognetti, Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185, Roma, Italy
| | - Claudia Martini
- Department of Pharmacy, University of Pisa, 56126, Pisa, Italy.
| | - Luciana Marinelli
- Department of Pharmacy, University of Naples "Federico II", 80131, Napoli, Italy.
| |
Collapse
|
20
|
Giuliani P, Carluccio M, Ciccarelli R. Role of Purinome, A Complex Signaling System, In Glioblastoma Aggressiveness. Front Pharmacol 2021; 12:632622. [PMID: 33613296 PMCID: PMC7892952 DOI: 10.3389/fphar.2021.632622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/07/2021] [Indexed: 12/13/2022] Open
Affiliation(s)
- Patricia Giuliani
- Department of Medical, Oral and Biotechnological Sciences, 'G. D'Annunzio' University of Chieti-Pescara, Chieti, Italy.,Center for Advanced Studies and Technology (CAST), 'G. D'Annunzio' University of Chieti-Pescara, Chieti, Italy
| | - Marzia Carluccio
- Department of Medical, Oral and Biotechnological Sciences, 'G. D'Annunzio' University of Chieti-Pescara, Chieti, Italy.,Center for Advanced Studies and Technology (CAST), 'G. D'Annunzio' University of Chieti-Pescara, Chieti, Italy
| | - Renata Ciccarelli
- Department of Medical, Oral and Biotechnological Sciences, 'G. D'Annunzio' University of Chieti-Pescara, Chieti, Italy.,Center for Advanced Studies and Technology (CAST), 'G. D'Annunzio' University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
21
|
Jin K, Mao C, Chen L, Wang L, Liu Y, Yuan J. Adenosinergic Pathway: A Hope in the Immunotherapy of Glioblastoma. Cancers (Basel) 2021; 13:E229. [PMID: 33435205 PMCID: PMC7826839 DOI: 10.3390/cancers13020229] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 12/12/2022] Open
Abstract
Brain tumors comprise different types of malignancies, most of which are originated from glial cells. Glioblastoma multiforme (GBM) is the most aggressive type of brain tumor with a poor response to conventional therapies and dismal survival rates (15 months) despite multimodal therapies. The development of immunotherapeutic strategies seems to be necessary to enhance the overall survival of GBM patients. So far, the immunotherapies applied in GBM had promising results in the primary phases of clinical trials but failed to continue their beneficial effects in later phases. GBM-microenvironment (GME) is a heterogenic and rigorously immunosuppressive milieu wrapping by an impenetrable blood-brain barrier. Hence, in-depth knowledge about the dominant immunosuppressive mechanisms in the GME could foster GBM immunotherapy. Recently, the adenosinergic pathway (AP) is found to be a major player in the suppression of antitumor immune responses in the GME. Tumor cells evolve to metabolize pro-inflammatory ATP to anti-inflammatory adenosine. Adenosine can suppress immune responses through the signaling of adenosine receptors on immune cells. The preclinical results targeting AP in GBM showed promising results in reinvigorating antitumor responses, overriding chemoresistance, and increasing survival. We reviewed the current GBM immunotherapies and elaborated on the role of AP in the immunopathogenesis, treatment, and even prognosis of GBM. We suggest that future clinical studies should consider this pathway in their combination therapies along with other immunotherapeutic approaches.
Collapse
Affiliation(s)
- Ketao Jin
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, No. 365, Renmin Eastern Road, Jinhua 321000, Zhejiang, China; (C.M.); (L.C.); (Y.L.)
| | - Chunsen Mao
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, No. 365, Renmin Eastern Road, Jinhua 321000, Zhejiang, China; (C.M.); (L.C.); (Y.L.)
| | - Lin Chen
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, No. 365, Renmin Eastern Road, Jinhua 321000, Zhejiang, China; (C.M.); (L.C.); (Y.L.)
- Central Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, Zhejiang, China;
| | - Lude Wang
- Central Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, Zhejiang, China;
- Department of Neurosurgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, No. 365, Renmin Eastern Road, Jinhua 321000, Zhejiang, China
| | - Yuyao Liu
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, No. 365, Renmin Eastern Road, Jinhua 321000, Zhejiang, China; (C.M.); (L.C.); (Y.L.)
| | - Jianlie Yuan
- Department of Neurosurgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, No. 365, Renmin Eastern Road, Jinhua 321000, Zhejiang, China
| |
Collapse
|
22
|
Meyer AV, Klein D, de Leve S, Szymonowicz K, Stuschke M, Robson SC, Jendrossek V, Wirsdörfer F. Host CD39 Deficiency Affects Radiation-Induced Tumor Growth Delay and Aggravates Radiation-Induced Normal Tissue Toxicity. Front Oncol 2020; 10:554883. [PMID: 33194619 PMCID: PMC7649817 DOI: 10.3389/fonc.2020.554883] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 09/10/2020] [Indexed: 12/24/2022] Open
Abstract
The ectonucleoside triphosphate diphosphohydrolase (CD39)/5′ ectonuclotidase (CD73)-dependent purinergic pathway emerges as promising cancer target. Yet, except for own previous work revealing a pathogenic role of CD73 and adenosine in radiation-induced lung fibrosis, the role of purinergic signaling for radiotherapy outcome remained elusive. Here we used C57BL/6 wild-type (WT), CD39 knockout (CD39−/−), and CD73 knockout (CD73−/−) mice and hind-leg tumors of syngeneic murine Lewis lung carcinoma cells (LLC1) to elucidate how host purinergic signaling shapes the growth of LLC1 tumors to a single high-dose irradiation with 10 Gy in vivo. In complementary in vitro experiments, we examined the radiation response of LLC1 cells in combination with exogenously added ATP or adenosine, the proinflammatory and anti-inflammatory arms of purinergic signaling. Finally, we analyzed the impact of genetic loss of CD39 on pathophysiologic lung changes associated with lung fibrosis induced by a single-dose whole-thorax irradiation (WTI) with 15 Gy. Loss of CD73 in the tumor host did neither significantly affect tumor growth nor the radiation response of the CD39/CD73-negative LLC1 tumors. In contrast, LLC1 tumors exhibited a tendency to grow faster in CD39−/− mice compared to WT mice. Even more important, tumors grown in the CD39-deficient background displayed a significantly reduced tumor growth delay upon irradiation when compared to irradiated tumors grown on WT mice. CD39 deficiency caused only subtle differences in the immune compartment of irradiated LLC1 tumors compared to WT mice. Instead, we could associate the tumor growth and radioresistance-promoting effects of host CD39 deficiency to alterations in the tumor endothelial compartment. Importantly, genetic deficiency of CD39 also augmented the expression level of fibrosis-associated osteopontin in irradiated normal lungs and exacerbated radiation-induced lung fibrosis at 25 weeks after irradiation. We conclude that genetic loss of host CD39 alters the tumor microenvironment, particularly the tumor microvasculature, and thereby promotes growth and radioresistance of murine LLC1 tumors. In the normal tissue loss of host, CD39 exacerbates radiation-induced adverse late effects. The suggested beneficial roles of host CD39 on the therapeutic ratio of radiotherapy suggest that therapeutic strategies targeting CD39 in combination with radiotherapy have to be considered with caution.
Collapse
Affiliation(s)
- Alina V Meyer
- Medical School, Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Essen, Germany
| | - Diana Klein
- Medical School, Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Essen, Germany
| | - Simone de Leve
- Medical School, Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Essen, Germany
| | - Klaudia Szymonowicz
- Medical School, Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Essen, Germany
| | - Martin Stuschke
- Department of Radiotherapy, University Hospital Essen, Essen, Germany
| | - Simon C Robson
- Departments of Medicine and Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, Harvard University, Boston, MA, United States
| | - Verena Jendrossek
- Medical School, Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Essen, Germany
| | - Florian Wirsdörfer
- Medical School, Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
23
|
Ashrafizadeh M, Farhood B, Eleojo Musa A, Taeb S, Najafi M. Damage-associated molecular patterns in tumor radiotherapy. Int Immunopharmacol 2020; 86:106761. [PMID: 32629409 DOI: 10.1016/j.intimp.2020.106761] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/26/2020] [Accepted: 06/27/2020] [Indexed: 02/06/2023]
Abstract
Radiotherapy is one of the most common modalities for the treatment of cancer. One of the most promising effects of radiotherapy is immunologic cell death and the release of danger alarms, which are known as damage-associated molecular patterns (DAMPs). DAMPs are able to trigger cancer cells and other cells within tumor microenvironment (TME), either for suppression or promotion of tumor growth. Heat shock proteins (HSPs) including HSP70 and HSP90, high mobility group box 1 (HMGB1), and adenosine triphosphate (ATP) and its metabolites such as adenosine are the most common danger alarms that are released after radiotherapy-induced immunologic cell death. Some DAMPs including adenosine is able to interact with both cancer cells as well as other cells in TME to promote tumor growth and resistance to radiotherapy. However, others are able to trigger anti-tumor immunity or both tumor suppressive and immunosuppressive mechanisms depending on affected cells. In this review, we explain the mechanisms behind the release of radiation-induced DAMPs, and its consequences on cells within tumor. Targeting of these mechanisms may be in favor of tumor control in combination with radiotherapy and radioimmunotherapy.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Ahmed Eleojo Musa
- Department of Medical Physics, Tehran University of Medical Sciences (International Campus), Tehran, Iran
| | - Shahram Taeb
- Ionizing and Non-Ionizing Radiation Protection Research Center (INIRPRC), Shiraz University of Medical Sciences, Shiraz, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
24
|
D’Antongiovanni V, Benvenuti L, Fornai M, Pellegrini C, van den Wijngaard R, Cerantola S, Giron MC, Caputi V, Colucci R, Haskó G, Németh ZH, Blandizzi C, Antonioli L. Glial A 2B Adenosine Receptors Modulate Abnormal Tachykininergic Responses and Prevent Enteric Inflammation Associated with High Fat Diet-Induced Obesity. Cells 2020; 9:cells9051245. [PMID: 32443525 PMCID: PMC7290602 DOI: 10.3390/cells9051245] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 12/16/2022] Open
Abstract
The role played by adenosine A2B receptors (A2BRs) in the regulation of enteric glial cell (EGC) functions remains unclear. This study was aimed at investigating the involvement of A2BRs in the control of EGC functions in a model of obesity. C57BL/6 mice were fed with standard diet (SD) or high fat diet (HFD) for eight weeks. Colonic tachykininergic contractions were recorded in the presence of BAY60-6583 (A2BRs agonist), MRS1754 (A2BRs antagonist), and the gliotoxin fluorocitrate. Immunofluorescence distribution of HuC/D, S100β, and A2BRs was assessed in whole mount preparations of colonic myenteric plexus. To mimic HFD, EGCs were incubated in vitro with palmitate (PA) and lipopolysaccharide (LPS), in the absence or in the presence of A2BR ligands. Toll-like receptor 4 (TLR4) expression was assessed by Western blot analysis. Interleukin-1β (IL-1β), substance P (SP), and glial cell derived neurotrophic factor (GDNF) release were determined by enzyme-linked immunosorbent assay (ELISA) assays. MRS1754 enhanced electrically evoked tachykininergic contractions of colonic preparations from HFD mice. BAY60-6583 decreased the evoked tachykininergic contractions, with higher efficacy in HFD mice. Such effects were blunted upon incubation with fluorocitrate. In in vitro experiments on EGCs, PA and LPS increased TLR4 expression as well as IL-1β, GDNF, and SP release. Incubation with BAY60-6583 reduced TLR4 expression as well as IL-1β, GDNF, and SP release. Such effects were blunted by MRS1754. The present results suggest that A2BRs, expressed on EGCs, participate in the modulation of enteric inflammation and altered tachykininergic responses associated with obesity, thus representing a potential therapeutic target.
Collapse
Affiliation(s)
- Vanessa D’Antongiovanni
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (V.D.); (L.B.); (M.F.); (L.A.)
| | - Laura Benvenuti
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (V.D.); (L.B.); (M.F.); (L.A.)
| | - Matteo Fornai
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (V.D.); (L.B.); (M.F.); (L.A.)
| | | | - Renè van den Wijngaard
- Tytgat Institute for Liver and Intestinal Research, Department of Gastroenterology and Hepatology, Academic Medical Center, 1105 Amsterdam, The Netherlands;
| | - Silvia Cerantola
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (S.C.); (M.C.G.); (R.C.)
| | - Maria Cecilia Giron
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (S.C.); (M.C.G.); (R.C.)
| | - Valentina Caputi
- APC Microbiome Ireland, University College Cork, T12 YN60 Cork, Ireland;
| | - Rocchina Colucci
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (S.C.); (M.C.G.); (R.C.)
| | - Gyorgy Haskó
- Department of Anesthesiology, Columbia University, New York, NY 10032, USA;
- Correspondence: (G.H.); (C.B.)
| | - Zoltán H. Németh
- Department of Anesthesiology, Columbia University, New York, NY 10032, USA;
- Department of Surgery, Morristown Medical Center, Morristown, NJ 07960, USA
| | - Corrado Blandizzi
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (V.D.); (L.B.); (M.F.); (L.A.)
- Correspondence: (G.H.); (C.B.)
| | - Luca Antonioli
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (V.D.); (L.B.); (M.F.); (L.A.)
| |
Collapse
|
25
|
Deb PK, Deka S, Borah P, Abed SN, Klotz KN. Medicinal Chemistry and Therapeutic Potential of Agonists, Antagonists and Allosteric Modulators of A1 Adenosine Receptor: Current Status and Perspectives. Curr Pharm Des 2020; 25:2697-2715. [PMID: 31333094 DOI: 10.2174/1381612825666190716100509] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 07/01/2019] [Indexed: 12/28/2022]
Abstract
Adenosine is a purine nucleoside, responsible for the regulation of a wide range of physiological and pathophysiological conditions by binding with four G-protein-coupled receptors (GPCRs), namely A1, A2A, A2B and A3 adenosine receptors (ARs). In particular, A1 AR is ubiquitously present, mediating a variety of physiological processes throughout the body, thus represents a promising drug target for the management of various pathological conditions. Agonists of A1 AR are found to be useful for the treatment of atrial arrhythmia, angina, type-2 diabetes, glaucoma, neuropathic pain, epilepsy, depression and Huntington's disease, whereas antagonists are being investigated for the treatment of diuresis, congestive heart failure, asthma, COPD, anxiety and dementia. However, treatment with full A1 AR agonists has been associated with numerous challenges like cardiovascular side effects, off-target activation as well as desensitization of A1 AR leading to tachyphylaxis. In this regard, partial agonists of A1 AR have been found to be beneficial in enhancing insulin sensitivity and subsequently reducing blood glucose level, while avoiding severe CVS side effects and tachyphylaxis. Allosteric enhancer of A1 AR is found to be potent for the treatment of neuropathic pain, culminating the side effects related to off-target tissue activation of A1 AR. This review provides an overview of the medicinal chemistry and therapeutic potential of various agonists/partial agonists, antagonists and allosteric modulators of A1 AR, with a particular emphasis on their current status and future perspectives in clinical settings.
Collapse
Affiliation(s)
- Pran Kishore Deb
- Faculty of Pharmacy, Philadelphia University, PO Box - 1, 19392, Amman, Jordan
| | - Satyendra Deka
- Pratiksha Institute of Pharmaceutical Sciences, Chandrapur Road, Panikhaiti, Guwahati-26, Assam, India
| | - Pobitra Borah
- Pratiksha Institute of Pharmaceutical Sciences, Chandrapur Road, Panikhaiti, Guwahati-26, Assam, India
| | - Sara N Abed
- Faculty of Pharmacy, Philadelphia University, PO Box - 1, 19392, Amman, Jordan
| | - Karl-Norbert Klotz
- University of Würzburg, Department of Pharmacology and Toxicology Versbacher Str. 9, D-97078 Würzburg, Germany
| |
Collapse
|
26
|
Chandrasekaran B, Samarneh S, Jaber AMY, Kassab G, Agrawal N. Therapeutic Potentials of A2B Adenosine Receptor Ligands: Current Status and Perspectives. Curr Pharm Des 2020; 25:2741-2771. [PMID: 31333084 DOI: 10.2174/1381612825666190717105834] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 07/03/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Adenosine receptors (ARs) are classified as A1, A2A, A2B, and A3 subtypes belong to the superfamily of G-protein coupled receptors (GPCRs). More than 40% of modern medicines act through either activation or inhibition of signaling processes associated with GPCRs. In particular, A2B AR signaling pathways are implicated in asthma, inflammation, cancer, ischemic hyperfusion, diabetes mellitus, cardiovascular diseases, gastrointestinal disorders, and kidney disease. METHODS This article reviews different disease segments wherein A2B AR is implicated and discusses the potential role of subtype-selective A2B AR ligands in the management of such diseases or disorders. All the relevant publications on this topic are reviewed and presented scientifically. RESULTS This review provides an up-to-date highlight of the recent advances in the development of novel and selective A2B AR ligands and their therapeutic role in treating various disease conditions. A special focus has been given to the therapeutic potentials of selective A2B AR ligands in the management of airway inflammatory conditions and cancer. CONCLUSIONS This systematic review demonstrates the current status and perspectives of A2B AR ligands as therapeutically useful agents that would assist medicinal chemists and pharmacologists in discovering novel and subtype-selective A2B AR ligands as potential drug candidates.
Collapse
Affiliation(s)
- Balakumar Chandrasekaran
- Faculty of Pharmacy, Philadelphia University-Jordan, P. O. Box: 1, Philadelphia University-19392, Amman, Jordan
| | - Sara Samarneh
- Faculty of Pharmacy, Philadelphia University-Jordan, P. O. Box: 1, Philadelphia University-19392, Amman, Jordan
| | - Abdul Muttaleb Yousef Jaber
- Faculty of Pharmacy, Philadelphia University-Jordan, P. O. Box: 1, Philadelphia University-19392, Amman, Jordan
| | - Ghadir Kassab
- Faculty of Pharmacy, Philadelphia University-Jordan, P. O. Box: 1, Philadelphia University-19392, Amman, Jordan
| | - Nikhil Agrawal
- College of Health Sciences, University of KwaZulu-Natal, P. O. Box: 4000, Westville, Durban, South Africa
| |
Collapse
|
27
|
Ceruti S, Abbracchio MP. Adenosine Signaling in Glioma Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1202:13-33. [PMID: 32034707 DOI: 10.1007/978-3-030-30651-9_2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Purines and pyrimidines are fundamental signaling molecules in controlling the survival and proliferation of astrocytes, as well as in mediating cell-to-cell communication between glial cells and neurons in the healthy brain. The malignant transformation of astrocytes towards progressively more aggressive brain tumours (from astrocytoma to anaplastic glioblastoma) leads to modifications in both the survival and cell death pathways which overall confer a growth advantage to malignant cells and resistance to many cytotoxic stimuli. It has been demonstrated, however, that, in astrocytomas, several purinergic (in particular adenosinergic) pathways controlling cell survival and death are still effective and, in some cases, even enhanced, providing invaluable targets for purine-based chemotherapy, that still represents an appropriate pharmacological approach to brain tumours. In this chapter, the current knowledge on both receptor-mediated and receptor-independent adenosine pathways in astrocytomas will be reviewed, with a particular emphasis on the most promising targets which could be translated from in vitro studies to in vivo pharmacology. Additionally, we have included new original data from our laboratory demonstrating a key involvement of MAP kinases in the cytostastic and cytotoxic effects exerted by an adenosine analogue, 2-CdA, which with the name of Cladribine is already clinically utilized in haematological malignancies. Here we show that 2-CdA can activate multiple intracellular pathways leading to cell cycle block and cell death by apoptosis of a human astrocytoma cell line that bears several pro-survival genetic mutations. Although in vivo data are still lacking, our results suggest that adenosine analogues could therefore be exploited to overcome resistance to chemotherapy of brain tumours.
Collapse
Affiliation(s)
- Stefania Ceruti
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmacological Sciences, University of Milan - Università degli Studi di Milano, Milan, Italy.
| | - Maria P Abbracchio
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmacological Sciences, University of Milan - Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
28
|
Marcelino H, Nogueira VC, Santos CRA, Quelhas P, Carvalho TMA, Fonseca-Gomes J, Tomás J, Diógenes MJ, Sebastião AM, Cascalheira JF. Adenosine inhibits human astrocyte proliferation independently of adenosine receptor activation. J Neurochem 2019; 153:455-467. [PMID: 31811731 DOI: 10.1111/jnc.14937] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/27/2019] [Accepted: 12/05/2019] [Indexed: 12/12/2022]
Abstract
Brain adenosine concentrations can reach micromolar concentrations in stressful situations such as stroke, neurodegenerative diseases or hypoxic regions of brain tumours. Adenosine can act by receptor-independent mechanism by reversing the reaction catalysed by S-adenosylhomocysteine (SAH) hydrolase, leading to SAH accumulation and inhibition of S-adenosylmethionine (SAM)-dependent methyltransferases. Astrocytes are essential in maintaining brain homeostasis but their pathological activation and uncontrolled proliferation plays a role in neurodegeneration and glioma. Adenosine can affect cell proliferation, but the effect of increased adenosine concentration on proliferation of astrocytes is not clarified and was addressed in present work. Human astrocytes (HA) were treated for 3 days with test drugs. Cell proliferation/viability was assessed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium assay and by cell counting. Cell death was evaluated by assessing lactate dehydrogenase release and by western blot analysis of αII-Spectrin cleavage. 30 µM-Adenosine caused a 40% ± 3% (p < .05, n = 5) reduction in cell proliferation/viability, an effect reversed by 2U/ml-adenosine deaminase, but unchanged in the presence of antagonists of any of the adenosine receptors. Adenosine alone did not induce cell death. 100 µM-Homocysteine alone caused 16% ± 3% (p < .05) decrease in HA proliferation. Combined action of adenosine and homocysteine decreased HA proliferation by 76% ± 4%, an effect higher (p < .05) than the sum of the effects of adenosine and homocysteine alone (56% ± 5%). The inhibitory effect of adenosine on HA proliferation/viability was mimicked by two adenosine kinase inhibitors and attenuated in the presence of folate (100 µM) or SAM (50-100 µM). The results suggest that adenosine reduces HA proliferation by a receptor-independent mechanism probably involving reversal of SAH hydrolase-catalysed reaction.
Collapse
Affiliation(s)
- Helena Marcelino
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal.,Department of Chemistry, University of Beira Interior, Covilhã, Portugal
| | - Vanda C Nogueira
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal.,Institute of Pharmacology and Neurosciences, Faculty of Medicine, University of Lisbon, Lisboa, Portugal.,Institute of Molecular Medicine, University of Lisbon, Lisboa, Portugal
| | - Cecília R A Santos
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Patrícia Quelhas
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Tiago M A Carvalho
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - João Fonseca-Gomes
- Institute of Pharmacology and Neurosciences, Faculty of Medicine, University of Lisbon, Lisboa, Portugal.,Institute of Molecular Medicine, University of Lisbon, Lisboa, Portugal
| | - Joana Tomás
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Maria J Diógenes
- Institute of Pharmacology and Neurosciences, Faculty of Medicine, University of Lisbon, Lisboa, Portugal.,Institute of Molecular Medicine, University of Lisbon, Lisboa, Portugal
| | - Ana M Sebastião
- Institute of Pharmacology and Neurosciences, Faculty of Medicine, University of Lisbon, Lisboa, Portugal.,Institute of Molecular Medicine, University of Lisbon, Lisboa, Portugal
| | - José F Cascalheira
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal.,Department of Chemistry, University of Beira Interior, Covilhã, Portugal
| |
Collapse
|
29
|
Mateus JM, Ribeiro FF, Alonso-Gomes M, Rodrigues RS, Marques JM, Sebastião AM, Rodrigues RJ, Xapelli S. Neurogenesis and Gliogenesis: Relevance of Adenosine for Neuroregeneration in Brain Disorders. J Caffeine Adenosine Res 2019. [DOI: 10.1089/caff.2019.0010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Joana M. Mateus
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Filipa F. Ribeiro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Marta Alonso-Gomes
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Rui S. Rodrigues
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Joana M. Marques
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Ana M. Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Ricardo J. Rodrigues
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Sara Xapelli
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
30
|
Wang J, Matosevic S. NT5E/CD73 as Correlative Factor of Patient Survival and Natural Killer Cell Infiltration in Glioblastoma. J Clin Med 2019; 8:jcm8101526. [PMID: 31547570 PMCID: PMC6832588 DOI: 10.3390/jcm8101526] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/13/2019] [Accepted: 09/19/2019] [Indexed: 01/01/2023] Open
Abstract
CD73, a cell-surface protein encoded by the gene NT5E, is overexpressed in glioblastoma (GBM), where it contributes to the tumor’s pathophysiology via the generation of immunosuppressive adenosine. Adenosinergic signaling, in turn, drives immunosuppression of natural killer (NK) cells through metabolic and functional reprogramming. The correlation of CD73 with patient survival in relation to GBM pathology and the intratumoral infiltration of NK cells has not been comprehensively studied before. Here, we present an analysis of the prognostic relevance of CD73 in GBM based on transcriptional gene expression from patient data from The Cancer Genome Atlas (TCGA) database. Utilizing bioinformatics data mining tools, we explore the relationship between GBM prognosis, NT5E expression, and intratumoral presence of NK cells. Our analysis demonstrates that CD73 is a negative prognostic factor for GBM and that presence of NK cells may associate with improved prognosis. Moreover, the interplay between expression of NT5E and specific NK genes hints to potential functional effects of CD73 on NK cell activation.
Collapse
Affiliation(s)
- Jiao Wang
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN 47907, USA.
| | - Sandro Matosevic
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN 47907, USA.
- Purdue Center for Cancer Research, West Lafayette, IN 47906, USA.
| |
Collapse
|
31
|
Chambers AM, Matosevic S. Immunometabolic Dysfunction of Natural Killer Cells Mediated by the Hypoxia-CD73 Axis in Solid Tumors. Front Mol Biosci 2019; 6:60. [PMID: 31396523 PMCID: PMC6668567 DOI: 10.3389/fmolb.2019.00060] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 07/09/2019] [Indexed: 01/09/2023] Open
Abstract
NK cell infiltration into solid tumors is often low and is largely represented by the poorly-cytotoxic CD56bright subset. Numerous studies have demonstrated that CD73, overexpressed under conditions of hypoxia, is involved in a variety of physiological processes, while its overexpression has been correlated with tumor invasiveness, metastasis and poorer patient survival in many cancers. Hypoxia itself favors aggressive glycolytic fueling of cancer cells, in turn driving reprogramming of NK cell metabolism. In addition, the hypoxia-driven activity of CD73 immunometabolically impairs NK cells in tumors, due to its catalytic role in the generation of the highly immunosuppressive metabolite adenosine. Adenosinergic signaling was shown to alter NK cell metabolic programs, leading to tumor-promoting environments characterized by NK cell dysfunction. Despite the demonstrated role of NK cell responses in the context of CD73 targeting, the engagement of NK cells in the setting of hypoxia/CD73 signaling has not been extensively studied or exploited. Here, we discuss available evidence on the role of hypoxic signaling on CD73-mediated activity, and how this relates to the immunometabolic responses of NK cells, with a particular focus on the therapeutic targeting of these pathways.
Collapse
Affiliation(s)
- Andrea M Chambers
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN, United States
| | - Sandro Matosevic
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN, United States.,Center for Cancer Research, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
32
|
CD73 Promotes Glioblastoma Pathogenesis and Enhances Its Chemoresistance via A 2B Adenosine Receptor Signaling. J Neurosci 2019; 39:4387-4402. [PMID: 30926752 DOI: 10.1523/jneurosci.1118-18.2019] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 03/19/2019] [Accepted: 03/22/2019] [Indexed: 12/18/2022] Open
Abstract
Glioblastoma (GB) is one of the deadliest brain cancers to afflict humans, and it has a very poor survival rate even with treatment. The extracellular adenosine-generating enzyme CD73 is involved in many cellular functions that can be usurped by tumors, including cell adhesion, proliferation, invasion, and angiogenesis. We set out to determine the role of CD73 in GB pathogenesis. To do this, we established a unique GB mouse model (CD73-FLK) in which we spatially expressed CD73 on endothelial cells in CD73-/- mice. This allowed us to elucidate the mechanism of host CD73 versus GB-expressed CD73 by comparing GB pathogenesis in WT, CD73-/-, and CD73-FLK mice. GB in CD73-/- mice had decreased tumor size, decreased tumor vessel density, and reduced tumor invasiveness compared with GB in WT mice. Interestingly, GBs in CD73-FLK mice were much more invasive and caused complete distortion of the brain morphology. We showed a 20-fold upregulation of A2B AR on GB compared with sham, and its activation induced matrix metalloproteinase-2, which enhanced GB pathogenesis. Inhibition of A2B AR signaling decreased multidrug resistance transporter protein expression, including permeability glycoprotein (P-gp) and multidrug resistance-associated protein 1 (MRP1). Further, we showed that blockade of A2B AR signaling potently increased GB cell death induced by the chemotherapeutic drug temozolomide. Together, these findings suggest that CD73 and A2B AR play a multifaceted role in GB pathogenesis and progression and that targeting the CD73-A2B AR axis can benefit GB patients and inform new approaches for therapy to treat GB patients.SIGNIFICANCE STATEMENT Glioblastoma (GB) is the most devastating primary brain tumor. GB patients' median survival is 16 months even with treatment. It is critical that we develop prophylaxes to advance GB treatment and improve patient survival. CD73-generated adenosine has been implicated in cancer pathogenesis, but its role in GB was not ascertained. Here, we demonstrated that host CD73 plays a prominent role in multiple areas of glioblastoma pathogenesis, including promoting GB growth, its angiogenesis, and its invasiveness. We found a 20-fold increase in A2B adenosine receptor (AR) expression on GB compared with sham, and its inhibition increased GB chemosensitivity to temozolomide. These findings strongly indicate that blockade or inhibition of CD73 and the A2B AR are prime targets for future GB therapy.
Collapse
|
33
|
Borea PA, Gessi S, Merighi S, Vincenzi F, Varani K. Pharmacology of Adenosine Receptors: The State of the Art. Physiol Rev 2018; 98:1591-1625. [PMID: 29848236 DOI: 10.1152/physrev.00049.2017] [Citation(s) in RCA: 475] [Impact Index Per Article: 79.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Adenosine is a ubiquitous endogenous autacoid whose effects are triggered through the enrollment of four G protein-coupled receptors: A1, A2A, A2B, and A3. Due to the rapid generation of adenosine from cellular metabolism, and the widespread distribution of its receptor subtypes in almost all organs and tissues, this nucleoside induces a multitude of physiopathological effects, regulating central nervous, cardiovascular, peripheral, and immune systems. It is becoming clear that the expression patterns of adenosine receptors vary among cell types, lending weight to the idea that they may be both markers of pathologies and useful targets for novel drugs. This review offers an overview of current knowledge on adenosine receptors, including their characteristic structural features, molecular interactions and cellular functions, as well as their essential roles in pain, cancer, and neurodegenerative, inflammatory, and autoimmune diseases. Finally, we highlight the latest findings on molecules capable of targeting adenosine receptors and report which stage of drug development they have reached.
Collapse
Affiliation(s)
- Pier Andrea Borea
- Department of Medical Sciences, University of Ferrara , Ferrara , Italy
| | - Stefania Gessi
- Department of Medical Sciences, University of Ferrara , Ferrara , Italy
| | - Stefania Merighi
- Department of Medical Sciences, University of Ferrara , Ferrara , Italy
| | - Fabrizio Vincenzi
- Department of Medical Sciences, University of Ferrara , Ferrara , Italy
| | - Katia Varani
- Department of Medical Sciences, University of Ferrara , Ferrara , Italy
| |
Collapse
|
34
|
Merlino F, Daniele S, La Pietra V, Di Maro S, Di Leva FS, Brancaccio D, Tomassi S, Giuntini S, Cerofolini L, Fragai M, Luchinat C, Reichart F, Cavallini C, Costa B, Piccarducci R, Taliani S, Da Settimo F, Martini C, Kessler H, Novellino E, Marinelli L. Simultaneous Targeting of RGD-Integrins and Dual Murine Double Minute Proteins in Glioblastoma Multiforme. J Med Chem 2018; 61:4791-4809. [PMID: 29775303 DOI: 10.1021/acs.jmedchem.8b00004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In the fight against Glioblastoma Multiforme, recent literature data have highlighted that integrin α5β1 and p53 are part of convergent pathways in the control of glioma apoptosis. This observation prompted us to seek a molecule able to simultaneously modulate both target families. Analyzing the results of a previous virtual screening against murine double minute 2 protein (MDM2), we envisaged that Arg-Gly-Asp (RGD)-mimetic molecules could be inhibitors of MDM2/4. Herein, we present the discovery of compound 7, which inhibits both MDM2/4 and α5β1/αvβ3 integrins. A lead optimization campaign was carried out on 7 with the aim to preserve the activities on integrins while improving those on MDM proteins. Compound 9 turned out to be a potent MDM2/4 and α5β1/αvβ3 blocker. In p53-wild type glioma cells, 9 arrested cell cycle and proliferation and strongly reduced cell invasiveness, emerging as the first molecule of a novel class of integrin/MDM inhibitors, which might be especially useful in subpopulations of patients with glioblastoma expressing a functional p53 concomitantly with a high level of α5β1 integrin.
Collapse
Affiliation(s)
- Francesco Merlino
- Dipartimento di Farmacia , Università degli Studi di Napoli "Federico II" , via D. Montesano 49 , 80131 Napoli , Italy
| | - Simona Daniele
- Dipartimento di Farmacia , Università di Pisa , via Bonanno 6 , 56126 Pisa , Italy
| | - Valeria La Pietra
- Dipartimento di Farmacia , Università degli Studi di Napoli "Federico II" , via D. Montesano 49 , 80131 Napoli , Italy
| | - Salvatore Di Maro
- DiSTABiF , Università degli Studi della Campania "Luigi Vanvitelli" , via Vivaldi 43 , 81100 Caserta , Italy
| | - Francesco Saverio Di Leva
- Dipartimento di Farmacia , Università degli Studi di Napoli "Federico II" , via D. Montesano 49 , 80131 Napoli , Italy
| | - Diego Brancaccio
- Dipartimento di Farmacia , Università degli Studi di Napoli "Federico II" , via D. Montesano 49 , 80131 Napoli , Italy
| | - Stefano Tomassi
- DiSTABiF , Università degli Studi della Campania "Luigi Vanvitelli" , via Vivaldi 43 , 81100 Caserta , Italy
| | - Stefano Giuntini
- Magnetic Resonance Center (CERM) University of Florence , via L. Sacconi 6 , 50019 Sesto Fiorentino ( FI ), Italy.,Department of Chemistry "Ugo Schiff" , University of Florence , via della Lastruccia 3-13 , 50019 Sesto Fiorentino ( FI ), Italy
| | - Linda Cerofolini
- Magnetic Resonance Center (CERM) University of Florence , via L. Sacconi 6 , 50019 Sesto Fiorentino ( FI ), Italy.,Department of Chemistry "Ugo Schiff" , University of Florence , via della Lastruccia 3-13 , 50019 Sesto Fiorentino ( FI ), Italy
| | - Marco Fragai
- Magnetic Resonance Center (CERM) University of Florence , via L. Sacconi 6 , 50019 Sesto Fiorentino ( FI ), Italy.,Department of Chemistry "Ugo Schiff" , University of Florence , via della Lastruccia 3-13 , 50019 Sesto Fiorentino ( FI ), Italy
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM) University of Florence , via L. Sacconi 6 , 50019 Sesto Fiorentino ( FI ), Italy.,Department of Chemistry "Ugo Schiff" , University of Florence , via della Lastruccia 3-13 , 50019 Sesto Fiorentino ( FI ), Italy
| | - Florian Reichart
- Institute for Advanced Study and Center for Integrated Protein Science, Department of Chemistry , Technische Universität München , Lichtenbergstr. 4 , 85747 Garching , Germany
| | - Chiara Cavallini
- Dipartimento di Farmacia , Università di Pisa , via Bonanno 6 , 56126 Pisa , Italy
| | - Barbara Costa
- Dipartimento di Farmacia , Università di Pisa , via Bonanno 6 , 56126 Pisa , Italy
| | - Rebecca Piccarducci
- Dipartimento di Farmacia , Università di Pisa , via Bonanno 6 , 56126 Pisa , Italy
| | - Sabrina Taliani
- Dipartimento di Farmacia , Università di Pisa , via Bonanno 6 , 56126 Pisa , Italy
| | - Federico Da Settimo
- Dipartimento di Farmacia , Università di Pisa , via Bonanno 6 , 56126 Pisa , Italy
| | - Claudia Martini
- Dipartimento di Farmacia , Università di Pisa , via Bonanno 6 , 56126 Pisa , Italy
| | - Horst Kessler
- Institute for Advanced Study and Center for Integrated Protein Science, Department of Chemistry , Technische Universität München , Lichtenbergstr. 4 , 85747 Garching , Germany
| | - Ettore Novellino
- Dipartimento di Farmacia , Università degli Studi di Napoli "Federico II" , via D. Montesano 49 , 80131 Napoli , Italy
| | - Luciana Marinelli
- Dipartimento di Farmacia , Università degli Studi di Napoli "Federico II" , via D. Montesano 49 , 80131 Napoli , Italy
| |
Collapse
|
35
|
Rocha R, Torres Á, Ojeda K, Uribe D, Rocha D, Erices J, Niechi I, Ehrenfeld P, San Martín R, Quezada C. The Adenosine A₃ Receptor Regulates Differentiation of Glioblastoma Stem-Like Cells to Endothelial Cells under Hypoxia. Int J Mol Sci 2018; 19:ijms19041228. [PMID: 29670017 PMCID: PMC5979496 DOI: 10.3390/ijms19041228] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 04/03/2018] [Accepted: 04/03/2018] [Indexed: 12/29/2022] Open
Abstract
Glioblastoma (GBM) is a neoplasm characterized by an extensive blood vessel network. Hypoxic niches of GBM can induce tumorigenic properties of a small cell subpopulation called Glioblastoma stem-like cells (GSCs) and can also increase extracellular adenosine generation which activates the A₃ adenosine receptor (A₃AR). Moreover, GSCs potentiates the persistent neovascularization in GBM. The aim of this study was to determine if A₃AR blockade can reduce the vasculogenesis mediated by the differentiation of GSCs to Endothelial Cells (ECs) under hypoxia. We evaluated the expression of endothelial cell markers (CD31, CD34, CD144, and vWF) by fluorescence-activated cell sorting (FACS), and vascular endothelial growth factor (VEGF) secretion by ELISA using MRS1220 (A₃AR antagonist) under hypoxia. We validate our results using U87MG-GSCs A₃AR knockout (GSCsA3-KO). The effect of MRS1220 on blood vessel formation was evaluated in vivo using a subcutaneous GSCs-tumor model. GSCs increased extracellular adenosine production and A₃AR expression under hypoxia. Hypoxia also increased the percentage of GSCs positive for endothelial cell markers and VEGF secretion, which was in turn prevented when using MRS1220 and in GSCsA3-KO. Finally, in vivo treatment with MRS1220 reduced tumor size and blood vessel formation. Blockade of A₃AR decreases the differentiation of GSCs to ECs under hypoxia and in vivo blood vessel formation.
Collapse
Affiliation(s)
- René Rocha
- Laboratorio de Patología Molecular, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile.
| | - Ángelo Torres
- Laboratorio de Patología Molecular, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile.
| | - Karina Ojeda
- Laboratorio de Patología Molecular, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile.
| | - Daniel Uribe
- Laboratorio de Patología Molecular, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile.
| | - Dellis Rocha
- Laboratorio de Patología Molecular, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile.
| | - José Erices
- Laboratorio de Patología Molecular, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile.
| | - Ignacio Niechi
- Laboratorio de Patología Molecular, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile.
| | - Pamela Ehrenfeld
- Instituto de Anatomía, Histología y Patología, Universidad Austral de Chile, Valdivia 5090000, Chile.
| | - Rody San Martín
- Laboratorio de Patología Molecular, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile.
| | - Claudia Quezada
- Laboratorio de Patología Molecular, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile.
| |
Collapse
|
36
|
Mei HF, Poonit N, Zhang YC, Ye CY, Cai HL, Yu CY, Zhou YH, Wu BB, Cai J, Cai XH. Activating adenosine A1 receptor accelerates PC12 cell injury via ADORA1/PKC/KATP pathway after intermittent hypoxia exposure. Mol Cell Biochem 2018; 446:161-170. [PMID: 29380238 DOI: 10.1007/s11010-018-3283-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 01/18/2018] [Indexed: 12/19/2022]
Abstract
Obstructive sleep apnea hypopnea syndrome (OSAHS) is associated with the neurocognitive deficits as a result of the neuronal cell injury. Previous studies have shown that adenosine A1 receptor (ADORA1) played an important role against hypoxia exposure, such as controlling the metabolic recovery in rat hippocampal slices and increasing the resistance in the combined effects of hypoxia and hypercapnia. However, little is known about whether ADORA1 takes part in the course of neuronal cell injury after intermittent hypoxia exposure which was the main pathological characteristic of OSAHS. The present study is performed to explore the underlying mechanism of neuronal cell injury which was induced by intermittent hypoxia exposure in PC12 cells. In our research, we find that the stimulation of the ADORA1 by CCPA accelerated the injury of PC12 cells as well as upregulated the expression of PKC, inwardly rectifying potassium channel 6.2(Kir6.2) and sulfonylurea receptor 1(SUR1) while inhibition of the ADORA1 by DPCPX alleviated the injury of PC12 cells as well as downregulated the expression of PKC, Kir6.2, and SUR1. Moreover, inhibition of the PKC by CHE, also mitigated the injury of PC12 cells, suppressed the Kir6.2 and SUR1 expressions induced by PKC. Taken together, our findings indicate that ADORA1 accelerated PC12 cells injury after intermittent hypoxia exposure via ADORA1/PKC/KATP signaling pathway.
Collapse
Affiliation(s)
- Hong-Fang Mei
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325027, China.,Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Neha Poonit
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yi-Chun Zhang
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325027, China
| | - Chu-Yuan Ye
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325027, China
| | - Hui-Lin Cai
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325027, China
| | - Chen-Yi Yu
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yong-Hai Zhou
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325027, China
| | - Bei-Bei Wu
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325027, China
| | - Jun Cai
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325027, China. .,Department of Pediatrics, Children's Hospital Research Institute, The University of Louisville, Louisville, KY, USA.
| | - Xiao-Hong Cai
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
37
|
Daniele S, Pietrobono D, Costa B, Giustiniano M, La Pietra V, Giacomelli C, La Regina G, Silvestri R, Taliani S, Trincavelli ML, Da Settimo F, Novellino E, Martini C, Marinelli L. Bax Activation Blocks Self-Renewal and Induces Apoptosis of Human Glioblastoma Stem Cells. ACS Chem Neurosci 2018; 9:85-99. [PMID: 28368610 DOI: 10.1021/acschemneuro.7b00023] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma (GBM) is characterized by a poor response to conventional chemotherapeutic agents, attributed to the insurgence of drug resistance mechanisms and to the presence of a subpopulation of glioma stem cells (GSCs). GBM cells and GSCs present, among others, an overexpression of antiapoptotic proteins and an inhibition of pro-apoptotic ones, which help to escape apoptosis. Among pro-apoptotic inducers, the Bcl-2 family protein Bax has recently emerged as a promising new target in cancer therapy along with first BAX activators (BAM7, Compound 106, and SMBA1). Herein, a derivative of BAM-7, named BTC-8, was employed to explore the effects of Bax activation in different human GBM cells and in their stem cell subpopulation. BTC-8 inhibited GBM cell proliferation, arrested the cell cycle, and induced apoptosis through the induction of mitochondrial membrane permeabilization. Most importantly, BTC-8 blocked proliferation and self-renewal of GSCs and induced their apoptosis. Notably, BTC-8 was demonstrated to sensitize both GBM cells and GSCs to the alkylating agent Temozolomide. Overall, our findings shed light on the effects and the relative molecular mechanisms related to Bax activation in GBM, and they suggest Bax-targeting compounds as promising therapeutic tools against the GSC reservoir.
Collapse
Affiliation(s)
- Simona Daniele
- Department
of Pharmacy, University of Pisa, 56126 Pisa, Italy
| | | | - Barbara Costa
- Department
of Pharmacy, University of Pisa, 56126 Pisa, Italy
| | | | - Valeria La Pietra
- Department
of Pharmacy, University of Naples Federico II, 80131 Napoli, Italy
| | | | - Giuseppe La Regina
- Istituto
Pasteur Italia—Fondazione Cenci Bolognetti, Dipartimento di
Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, 00185 Roma, Italy
| | - Romano Silvestri
- Istituto
Pasteur Italia—Fondazione Cenci Bolognetti, Dipartimento di
Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, 00185 Roma, Italy
| | - Sabrina Taliani
- Department
of Pharmacy, University of Pisa, 56126 Pisa, Italy
| | | | | | - Ettore Novellino
- Department
of Pharmacy, University of Naples Federico II, 80131 Napoli, Italy
| | - Claudia Martini
- Department
of Pharmacy, University of Pisa, 56126 Pisa, Italy
| | - Luciana Marinelli
- Department
of Pharmacy, University of Naples Federico II, 80131 Napoli, Italy
| |
Collapse
|
38
|
Jafari SM, Joshaghani HR, Panjehpour M, Aghaei M. A2B adenosine receptor agonist induces cell cycle arrest and apoptosis in breast cancer stem cells via ERK1/2 phosphorylation. Cell Oncol (Dordr) 2017; 41:61-72. [PMID: 29218545 DOI: 10.1007/s13402-017-0359-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2017] [Indexed: 12/30/2022] Open
Abstract
PURPOSE It has been reported that cancer stem cells (CSCs) may play a crucial role in the development, recurrence and metastasis of breast cancer. Targeting signaling pathways in CSCs is considered to be a promising strategy for the treatment of cancer. Here, we investigated the role of the A2B adenosine receptor (A2BAR) and its associated signaling pathways in governing the proliferation and viability of breast cancer cell line derived CSCs. METHODS CSCs were isolated from the breast cancer cell lines MCF-7 and MDA-MB-231 using a mammosphere assay. The effect of the A2BAR agonist BAY606583 on cell proliferation was evaluated using XTT and mammosphere formation assays, respectively. Apoptosis was assessed using Annexin-V staining and cell cycle analyses were performed using flow cytometry. The expression levels of Bax, Bcl-2, cyclin-D1, CDK-4 and (phosphorylated) ERK1/2 were assessed using Western blotting. RESULTS Our data revealed that the breast cancer cell line derived mammospheres were enriched for CSCs. We also found that A2BAR stimulation with its agonist BAY606583 inhibited mammosphere formation and CSC viability. In addition, we found that the application of BAY606583 led to CSC cell cycle arrest and apoptosis through the cyclin-D1/Cdk-4 and Bax/Bcl-2 pathways, respectively. Notably, we found that BAY606583 significantly down-regulated ERK1/2 phosphorylation in the breast cancer cell line derived CSCs. CONCLUSIONS From our results we conclude that A2BAR induces breast CSC cell cycle arrest and apoptosis through downregulation of the ERK1/2 cascade. As such, A2BAR may be considered as a novel target for the treatment of breast cancer.
Collapse
Affiliation(s)
- Seyyed Mehdi Jafari
- Biochemistry & Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Hamid Reza Joshaghani
- Medical Laboratory Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mojtaba Panjehpour
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, P.O. Box: 81746-73461, Isfahan, Iran.,Bioinformatics Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahmoud Aghaei
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, P.O. Box: 81746-73461, Isfahan, Iran. .,Isfahan Pharmaceutical Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
39
|
Giustiniano M, Daniele S, Pelliccia S, La Pietra V, Pietrobono D, Brancaccio D, Cosconati S, Messere A, Giuntini S, Cerofolini L, Fragai M, Luchinat C, Taliani S, La Regina G, Da Settimo F, Silvestri R, Martini C, Novellino E, Marinelli L. Computer-Aided Identification and Lead Optimization of Dual Murine Double Minute 2 and 4 Binders: Structure-Activity Relationship Studies and Pharmacological Activity. J Med Chem 2017; 60:8115-8130. [PMID: 28921985 DOI: 10.1021/acs.jmedchem.7b00912] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The function of p53 protein, also known as "genome guardian", might be impaired by the overexpression of its primary cellular inhibitor, the murine double minute 2 protein (MDM2). However, the recent finding that MDM2-selective inhibitors induce high levels of its homologue MDM4, prompt us to identify, through a receptor-based virtual screening on an in house database, dual MDM2/MDM4 binders. Compound 1 turned out to possess an IC50 of 93.7 and of 4.6 nM on MDM2 and MDM4, respectively. A series of compounds were synthesized to optimize its activity on MDM2. As a result, compound 12 showed low nanomolar IC50 for both targets. NMR studies confirmed the pocket of binding of 12 as predicted by the Glide docking software. Notably, 12 was able to cause concentration-dependent inhibition of cell proliferation, yielding an IC50 value of 356 ± 21 nM in neuroblastoma SHSY5Y cells and proved even to efficiently block cancer stem cell growth.
Collapse
Affiliation(s)
- Mariateresa Giustiniano
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II , Via D. Montesano 49, 80131, Napoli, Italy
| | - Simona Daniele
- Dipartimento di Farmacia, Università di Pisa , 56126 Pisa, Italy
| | - Sveva Pelliccia
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II , Via D. Montesano 49, 80131, Napoli, Italy
| | - Valeria La Pietra
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II , Via D. Montesano 49, 80131, Napoli, Italy
| | | | - Diego Brancaccio
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II , Via D. Montesano 49, 80131, Napoli, Italy
| | | | - Anna Messere
- DiSTABiF, Second University of Naples , 81100, Caserta, Italy
| | - Stefano Giuntini
- Magnetic Resonance Center (CERM), University of Florence , Via L. Sacconi 6, 50019 Sesto Fiorentino (FI), Italy.,Department of Chemistry "Ugo Schiff″, University of Florence , Via della Lastruccia 3-13, 50019 Sesto Fiorentino (FI), Italy
| | - Linda Cerofolini
- Magnetic Resonance Center (CERM), University of Florence , Via L. Sacconi 6, 50019 Sesto Fiorentino (FI), Italy
| | - Marco Fragai
- Magnetic Resonance Center (CERM), University of Florence , Via L. Sacconi 6, 50019 Sesto Fiorentino (FI), Italy.,Department of Chemistry "Ugo Schiff″, University of Florence , Via della Lastruccia 3-13, 50019 Sesto Fiorentino (FI), Italy
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM), University of Florence , Via L. Sacconi 6, 50019 Sesto Fiorentino (FI), Italy.,Department of Chemistry "Ugo Schiff″, University of Florence , Via della Lastruccia 3-13, 50019 Sesto Fiorentino (FI), Italy
| | - Sabrina Taliani
- Dipartimento di Farmacia, Università di Pisa , 56126 Pisa, Italy
| | - Giuseppe La Regina
- Dipartimento di Chimica e Tecnologie del Farmaco, Università La Sapienza , Piazzale Aldo Moro 5, 00185 Roma, Italy
| | | | - Romano Silvestri
- Dipartimento di Chimica e Tecnologie del Farmaco, Università La Sapienza , Piazzale Aldo Moro 5, 00185 Roma, Italy
| | - Claudia Martini
- Dipartimento di Farmacia, Università di Pisa , 56126 Pisa, Italy
| | - Ettore Novellino
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II , Via D. Montesano 49, 80131, Napoli, Italy
| | - Luciana Marinelli
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II , Via D. Montesano 49, 80131, Napoli, Italy
| |
Collapse
|
40
|
Burnstock G. Purinergic Signalling: Therapeutic Developments. Front Pharmacol 2017; 8:661. [PMID: 28993732 PMCID: PMC5622197 DOI: 10.3389/fphar.2017.00661] [Citation(s) in RCA: 275] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 09/05/2017] [Indexed: 12/15/2022] Open
Abstract
Purinergic signalling, i.e., the role of nucleotides as extracellular signalling molecules, was proposed in 1972. However, this concept was not well accepted until the early 1990's when receptor subtypes for purines and pyrimidines were cloned and characterised, which includes four subtypes of the P1 (adenosine) receptor, seven subtypes of P2X ion channel receptors and 8 subtypes of the P2Y G protein-coupled receptor. Early studies were largely concerned with the physiology, pharmacology and biochemistry of purinergic signalling. More recently, the focus has been on the pathophysiology and therapeutic potential. There was early recognition of the use of P1 receptor agonists for the treatment of supraventricular tachycardia and A2A receptor antagonists are promising for the treatment of Parkinson's disease. Clopidogrel, a P2Y12 antagonist, is widely used for the treatment of thrombosis and stroke, blocking P2Y12 receptor-mediated platelet aggregation. Diquafosol, a long acting P2Y2 receptor agonist, is being used for the treatment of dry eye. P2X3 receptor antagonists have been developed that are orally bioavailable and stable in vivo and are currently in clinical trials for the treatment of chronic cough, bladder incontinence, visceral pain and hypertension. Antagonists to P2X7 receptors are being investigated for the treatment of inflammatory disorders, including neurodegenerative diseases. Other investigations are in progress for the use of purinergic agents for the treatment of osteoporosis, myocardial infarction, irritable bowel syndrome, epilepsy, atherosclerosis, depression, autism, diabetes, and cancer.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical SchoolLondon, United Kingdom
- Department of Pharmacology and Therapeutics, The University of Melbourne, MelbourneVIC, Australia
| |
Collapse
|
41
|
Martínez-Ramírez AS, Díaz-Muñoz M, Battastini AM, Campos-Contreras A, Olvera A, Bergamin L, Glaser T, Jacintho Moritz CE, Ulrich H, Vázquez-Cuevas FG. Cellular Migration Ability Is Modulated by Extracellular Purines in Ovarian Carcinoma SKOV-3 Cells. J Cell Biochem 2017; 118:4468-4478. [PMID: 28464260 DOI: 10.1002/jcb.26104] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 04/28/2017] [Indexed: 12/14/2022]
Abstract
Extracellular nucleotides and nucleosides have emerged as important elements regulating tissue homeostasis. Acting through specific receptors, have the ability to control gene expression patterns to direct cellular fate. We observed that SKOV-3 cells express the ectonucleotidases: ectonucleotide pyrophosphatase 1 (ENPP1), ecto-5'-nucleotidase (NT5E), and liver alkaline phosphatase (ALPL). Strikingly, in pulse and chase experiments supplemented with ATP, SKOV-3 cells exhibited low catabolic efficiency in the conversion of ADP into AMP, but they were efficient in converting AMP into adenosine. Since these cells release ATP, we proposed that the conversion of ADP into AMP is a regulatory node associated with the migratory ability and the mesenchymal characteristics shown by SKOV-3 cells under basal conditions. The landscape of gene expression profiles of SKOV-3 cell cultures treated with apyrase or adenosine demonstrated similarities (e.g., decrease FGF16 transcript) and differences (e.g., the negative regulation of Wnt 2, and 10B by adenosine). Thus, in SKOV-3 we analyzed the migratory ability and the expression of epithelium to mesenchymal transition (EMT) markers in response to apyrase. Apyrase-treatment favored the epithelial-like phenotype, as revealed by the re-location of E-cadherin to the cell to cell junctions. Pharmacological approaches strongly suggested that the effect of Apyrase involved the accumulation of extracellular adenosine; this notion was strengthened when the incubation of the SKOV-3 cell with α,β-methylene ADP (CD73 inhibitor) or adenosine deaminase was sufficient to abolish the effect of apyrase on cell migration. Overall, adenosine signaling is a fine tune mechanism in the control of cell phenotype in cancer. J. Cell. Biochem. 118: 4468-4478, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- A S Martínez-Ramírez
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Juriquilla Querétaro, CP 76230, Querétaro, México
| | - M Díaz-Muñoz
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Juriquilla Querétaro, CP 76230, Querétaro, México
| | - A M Battastini
- Departamento de Bioquímica, Instituto de Ciências Básicas e da Saúde, UFRGS, Porto Alegre, RS, Brazil
| | - A Campos-Contreras
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Juriquilla Querétaro, CP 76230, Querétaro, México
| | - A Olvera
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Juriquilla Querétaro, CP 76230, Querétaro, México
| | - L Bergamin
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, Sao Paulo, 05508-900, Brazil
| | - T Glaser
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, Sao Paulo, 05508-900, Brazil
| | - C E Jacintho Moritz
- Departamento de Bioquímica, Instituto de Ciências Básicas e da Saúde, UFRGS, Porto Alegre, RS, Brazil
| | - H Ulrich
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, Sao Paulo, 05508-900, Brazil
| | - F G Vázquez-Cuevas
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Juriquilla Querétaro, CP 76230, Querétaro, México
| |
Collapse
|
42
|
Oliveira KA, Dal-Cim TA, Lopes FG, Nedel CB, Tasca CI. Guanosine promotes cytotoxicity via adenosine receptors and induces apoptosis in temozolomide-treated A172 glioma cells. Purinergic Signal 2017; 13:305-318. [PMID: 28536931 DOI: 10.1007/s11302-017-9562-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 04/19/2017] [Indexed: 12/13/2022] Open
Abstract
Gliomas are a malignant tumor group whose patients have survival rates around 12 months. Among the treatments are the alkylating agents as temozolomide (TMZ), although gliomas have shown multiple resistance mechanisms for chemotherapy. Guanosine (GUO) is an endogenous nucleoside involved in extracellular signaling that presents neuroprotective effects and also shows the effect of inducing differentiation in cancer cells. The chemotherapy allied to adjuvant drugs are being suggested as a novel approach in gliomas treatment. In this way, this study evaluated whether GUO presented cytotoxic effects on human glioma cells as well as GUO effects in association with a classical chemotherapeutic compound, TMZ. Classical parameters of tumor aggressiveness, as alterations on cell viability, type of cell death, migration, and parameters of glutamatergic transmission, were evaluated. GUO (500 and 1000 μM) decreases the A172 glioma cell viability after 24, 48, or 72 h of treatment. TMZ alone or GUO plus TMZ also reduced glioma cell viability similarly. GUO combined with TMZ showed a potentiation effect of increasing apoptosis in A172 glioma cells, and a similar pattern was observed in reducing mitochondrial membrane potential. GUO per se did not elevate the acidic vesicular organelles occurrence, but TMZ or GUO plus TMZ increased this autophagy hallmark. GUO did not alter glutamate transport per se, but it prevented TMZ-induced glutamate release. GUO or TMZ did not alter glutamine synthetase activity. Pharmacological blockade of glutamate receptors did not change GUO effect on glioma viability. GUO cytotoxicity was partially prevented by adenosine receptor (A1R and A2AR) ligands. These results point to a cytotoxic effect of GUO on A172 glioma cells and suggest an anticancer effect of GUO as a putative adjuvant treatment, whose mechanism needs to be unraveled.
Collapse
Affiliation(s)
- Karen A Oliveira
- Programa de Pós-Graduação em Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Tharine A Dal-Cim
- Programa de Pós-Graduação em Neurociências, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Flávia G Lopes
- Departamento de Biologia Celular, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Cláudia B Nedel
- Programa de Pós-Graduação em Neurociências, Universidade Federal de Santa Catarina, Florianópolis, Brazil.,Departamento de Biologia Celular, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Carla Inês Tasca
- Programa de Pós-Graduação em Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, Brazil. .,Programa de Pós-Graduação em Neurociências, Universidade Federal de Santa Catarina, Florianópolis, Brazil. .,Departamento de Bioquímica, CCB, Universidade Federal de Santa Catarina, Trindade, Florianópolis, SC, 88040-900, Brazil.
| |
Collapse
|
43
|
Jafari SM, Panjehpour M, Aghaei M, Joshaghani HR, Enderami SE. A3 Adenosine Receptor Agonist Inhibited Survival of Breast Cancer Stem Cells via GLI-1 and ERK1/2 Pathway. J Cell Biochem 2017; 118:2909-2920. [PMID: 28230290 DOI: 10.1002/jcb.25945] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 02/21/2017] [Indexed: 12/13/2022]
Abstract
Numerous studies have demonstrated the role of A3 adenosine receptor (A3AR) and signaling pathways in the multiple aspects of the tumor. However, there is a little study about the function of A3AR in the biological processes of cancer stem cells (CSCs). CSCs have a critical role in the maintenance and survival of breast cancer. The aim of current study was to investigate the effect of A3AR agonist on breast cancer stem cells (BCSCs). XTT assay showed antiproliferative effect of A3AR agonist (Cl-IB-MECA) on BCSCs. Our results also demonstrated that A3AR agonist reduces mammosphere formation in a dose-dependent manner. Flow cytometry analysis showed that A3AR agonist induces G1 cell cycle arrest and apoptosis in BCSCs. Western blot assay showed that A3AR agonist inhibits the expression of cell cycle and apoptotic regulatory proteins as well as the expression of ERK1/2 and GLI-1 proteins. Finally, these findings propose that A3AR agonist induces cell cycle arrest and apoptosis in BCSCs by inhibition of ERK1/2 and GLI-1 cascade. J. Cell. Biochem. 118: 2909-2920, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Seyyed Mehdi Jafari
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mojtaba Panjehpour
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.,Bioinformatics Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahmoud Aghaei
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.,Isfahan Pharmaceutical Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamid Reza Joshaghani
- Medical Laboratory Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Seyed Ehsan Enderami
- Faculty of Medicine, Department of Medical Biotechnology and Nanotechnology, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
44
|
Kazemi MH, Raoofi Mohseni S, Hojjat-Farsangi M, Anvari E, Ghalamfarsa G, Mohammadi H, Jadidi-Niaragh F. Adenosine and adenosine receptors in the immunopathogenesis and treatment of cancer. J Cell Physiol 2017; 233:2032-2057. [DOI: 10.1002/jcp.25873] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 02/21/2017] [Indexed: 12/18/2022]
Affiliation(s)
- Mohammad H. Kazemi
- Student Research Committee, Department of Immunology, School of Medicine; Iran University of Medical Sciences (IUMS); Tehran Iran
- Immunology Research Center; Tabriz University of Medical Sciences; Tabriz Iran
| | - Sahar Raoofi Mohseni
- Department of Immunology, School of Public Health; Tehran University of Medical Sciences; Tehran Iran
| | - Mohammad Hojjat-Farsangi
- Department of Oncology-Pathology, Immune and Gene Therapy Lab, Cancer Center Karolinska (CCK); Karolinska University Hospital Solna and Karolinska Institute; Stockholm Sweden
- Department of Immunology, School of Medicine; Bushehr University of Medical Sciences; Bushehr Iran
| | - Enayat Anvari
- Faculty of Medicine, Department of Physiology; Ilam University of Medical Sciences; Ilam Iran
| | - Ghasem Ghalamfarsa
- Medicinal Plants Research Center; Yasuj University of Medical Sciences; Yasuj Iran
| | - Hamed Mohammadi
- Immunology Research Center; Tabriz University of Medical Sciences; Tabriz Iran
- Faculty of Medicine, Department of Immunology; Tabriz University of Medical Sciences; Tabriz Iran
| | - Farhad Jadidi-Niaragh
- Immunology Research Center; Tabriz University of Medical Sciences; Tabriz Iran
- Department of Immunology, School of Public Health; Tehran University of Medical Sciences; Tehran Iran
- Faculty of Medicine, Department of Immunology; Tabriz University of Medical Sciences; Tabriz Iran
- Drug Applied Research Center; Tabriz University of Medical Sciences; Tabriz Iran
| |
Collapse
|
45
|
Jafari SM, Joshaghani HR, Panjehpour M, Aghaei M, Zargar Balajam N. Apoptosis and cell cycle regulatory effects of adenosine by modulation of GLI-1 and ERK1/2 pathways in CD44 + and CD24 - breast cancer stem cells. Cell Prolif 2017; 50. [PMID: 28370734 DOI: 10.1111/cpr.12345] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 02/07/2017] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES Breast cancer stem cells (CSCs) are a small population of tumour cells with the ability of self-renewal and resistance to chemotherapy. Targeting CSCs is a promising strategy for treatment of cancer. A recent study demonstrated that adenosine receptor agonists inhibit glioblastoma CSCs proliferation. At present, the effect of adenosine on breast CSCs has not been reported. Therefore, this study was designed to evaluate the effect of adenosine and its signalling pathways in breast CSCs. MATERIALS AND METHODS Anti-proliferative effect of adenosine on breast CSCs was evaluated by mammosphere formation and MTS assay. The effect of adenosine on cell cycle progression was examined using flow cytometry. Detection of apoptosis was conducted by Annexin V-FITC. The expression levels of cell cycle and apoptosis regulatory proteins as well as ERK1/2, and GLI-1 were measured by Western blot. RESULTS Adenosine reduced CSCs population and mammosphere formation in breast CSCs. Adenosine induced G1 cell cycle arrest in breast CSCs in conjunction with a marked down-regulation of cyclin D1 and CDK4. Adenosine also induced apoptosis by regulation of Bax/Bcl-2 ratio, mitochondrial membrane potential depletion and activation of caspase-6. Moreover, adenosine inhibited ERK1/2 phosphorylation and GLI-1 protein expression. CONCLUSIONS These findings indicated that adenosine induces cell cycle arrest and apoptosis through inhibition of GLI-1 and ERK1/2 pathways in breast CSCs.
Collapse
Affiliation(s)
- S M Jafari
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - H R Joshaghani
- Medical Laboratory Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - M Panjehpour
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.,Bioinformatics Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - M Aghaei
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.,Isfahan Pharmaceutical Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - N Zargar Balajam
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
46
|
Uribe D, Torres Á, Rocha JD, Niechi I, Oyarzún C, Sobrevia L, San Martín R, Quezada C. Multidrug resistance in glioblastoma stem-like cells: Role of the hypoxic microenvironment and adenosine signaling. Mol Aspects Med 2017; 55:140-151. [PMID: 28223127 DOI: 10.1016/j.mam.2017.01.009] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 12/29/2016] [Accepted: 01/08/2017] [Indexed: 12/11/2022]
Abstract
Glioblastoma multiforme (GBM) is considered the most common and aggressive tumour of the central nervous system and is characterized for being highly chemoresistant. This property is mainly due to the activation of Multiple Drug Resistance (MDR) mechanisms that protect cancer cells from structurally and morphologically different drugs. Overexpression and increased ABC transporters activity is one of the most important MDR mechanisms at the clinical level, and both its expression and activity are elevated in GBM cells. Within the tumour, there is a subpopulation called glioblastoma stem-like cells (GSCs), which due to its high tumourigenic capacity and chemoresistance, have been postulated as the main responsible for tumour recurrence. The GSCs inhabit hypoxic tumour zones, niches that apart from maintaining and promoting stem phenotype have also been correlated with high chemoresistance. Of the signalling pathways activated during hypoxia, purinergic signalling has been highly associated to the induction of MDR mechanisms. Through its receptors, the nucleoside adenosine has been shown to promotes the chemoresistance mediated by ABC transporters. Therefore, targeting its components is a promising alternative for GBM treatment. In this review, we will discuss chemoresistance in GSCs and the effect of the hypoxic microenvironment and adenosine on MDR mechanisms.
Collapse
Affiliation(s)
- Daniel Uribe
- Molecular Pathology Laboratory, Institute of Biochemistry and Microbiology, Science Faculty, Universidad Austral de Chile, Valdivia, Chile
| | - Ángelo Torres
- Molecular Pathology Laboratory, Institute of Biochemistry and Microbiology, Science Faculty, Universidad Austral de Chile, Valdivia, Chile
| | - José Dellis Rocha
- Molecular Pathology Laboratory, Institute of Biochemistry and Microbiology, Science Faculty, Universidad Austral de Chile, Valdivia, Chile
| | - Ignacio Niechi
- Molecular Pathology Laboratory, Institute of Biochemistry and Microbiology, Science Faculty, Universidad Austral de Chile, Valdivia, Chile
| | - Carlos Oyarzún
- Molecular Pathology Laboratory, Institute of Biochemistry and Microbiology, Science Faculty, Universidad Austral de Chile, Valdivia, Chile
| | - Luis Sobrevia
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Department of Physiology, Faculty of Pharmacy, Universidad de Sevilla, Seville E-41012, Spain; University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston QLD 4029, Queensland, Australia
| | - Rody San Martín
- Molecular Pathology Laboratory, Institute of Biochemistry and Microbiology, Science Faculty, Universidad Austral de Chile, Valdivia, Chile
| | - Claudia Quezada
- Molecular Pathology Laboratory, Institute of Biochemistry and Microbiology, Science Faculty, Universidad Austral de Chile, Valdivia, Chile.
| |
Collapse
|
47
|
Daniele S, Sestito S, Pietrobono D, Giacomelli C, Chiellini G, Di Maio D, Marinelli L, Novellino E, Martini C, Rapposelli S. Dual Inhibition of PDK1 and Aurora Kinase A: An Effective Strategy to Induce Differentiation and Apoptosis of Human Glioblastoma Multiforme Stem Cells. ACS Chem Neurosci 2017; 8:100-114. [PMID: 27797168 DOI: 10.1021/acschemneuro.6b00251] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The poor prognosis of glioblastoma multiforme (GBM) is mainly attributed to drug resistance mechanisms and to the existence of a subpopulation of glioma stem cells (GSCs). Multitarget compounds able to both affect different deregulated pathways and the GSC subpopulation could escape tumor resistance and, most importantly, eradicate the stem cell reservoir. In this respect, the simultaneous inhibition of phosphoinositide-dependent kinase-1 (PDK1) and aurora kinase A (AurA), each one playing a pivotal role in cellular survival/migration/differentiation, could represent an innovative strategy to overcome GBM resistance and recurrence. Herein, the cross-talk between these pathways was investigated, using the single-target reference compounds MP7 (PDK1 inhibitor) and Alisertib (AurA inhibitor). Furthermore, a new ligand, SA16, was identified for its ability to inhibit the PDK1 and the AurA pathways at once, thus proving to be a useful tool for the simultaneous inhibition of the two kinases. SA16 blocked GBM cell proliferation, reduced tumor invasiveness, and triggered cellular apoptosis. Most importantly, the AurA/PDK1 blocker showed an increased efficacy against GSCs, inducing their differentiation and apoptosis. To the best of our knowledge, this is the first report on combined targeting of PDK1 and AurA. This drug represents an attractive multitarget lead scaffold for the development of new potential treatments for GBM and GSCs.
Collapse
Affiliation(s)
| | | | | | | | | | - Danilo Di Maio
- Scuola Normale Superiore, Piazza
dei Cavalieri 7, I-56126 Pisa, Italy
| | - Luciana Marinelli
- Department
of Pharmacy, University of Naples Federico II, Napoli, Italy
| | - Ettore Novellino
- Department
of Pharmacy, University of Naples Federico II, Napoli, Italy
| | | | | |
Collapse
|
48
|
A1 Adenosine Receptor Activation Modulates Central Nervous System Development and Repair. Mol Neurobiol 2016; 54:8128-8139. [DOI: 10.1007/s12035-016-0292-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 11/08/2016] [Indexed: 01/22/2023]
|
49
|
Daniele S, La Pietra V, Barresi E, Di Maro S, Da Pozzo E, Robello M, La Motta C, Cosconati S, Taliani S, Marinelli L, Novellino E, Martini C, Da Settimo F. Lead Optimization of 2-Phenylindolylglyoxylyldipeptide Murine Double Minute (MDM)2/Translocator Protein (TSPO) Dual Inhibitors for the Treatment of Gliomas. J Med Chem 2016; 59:4526-38. [PMID: 27050782 DOI: 10.1021/acs.jmedchem.5b01767] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In glioblastoma multiforme (GBM), translocator protein (TSPO) and murine double minute (MDM)2/p53 complex represent two druggable targets. We recently reported the first dual binder 3 possessing a higher anticancer effect in GBM cells than the standards PK11195 1 or Nutlin-3 2 singularly applied. Herein, through a structure-activity relationship study, we developed derivatives 4-10 with improved potencies toward both TSPO and MDM2. As a result, compound 9: (i) reactivated the p53 functionality; (ii) inhibited the viability of two human GBM cells; (iii) impaired the proliferation of glioma cancer stem cells (CSCs), more resistant to chemotherapeutics and responsible of GBM recurrence; (iv) sensitized GBM cells and CSCs to the activity of temozolomide; (v) directed its effects preferentially toward tumor cells with respect to healthy ones. Thus, 9 may represent a promising cytotoxic agent, which is worthy of being further developed for a therapeutic approach against GBM, where the downstream p53 signaling is intact and TSPO is overexpressed.
Collapse
Affiliation(s)
- Simona Daniele
- Department of Pharmacy, University of Pisa , Pisa 56126, Italy
| | - Valeria La Pietra
- Department of Pharmacy, University of Naples Federico II , Via Montesano 49, Naples 80131, Italy
| | | | | | | | - Marco Robello
- Department of Pharmacy, University of Pisa , Pisa 56126, Italy
| | | | | | - Sabrina Taliani
- Department of Pharmacy, University of Pisa , Pisa 56126, Italy
| | - Luciana Marinelli
- Department of Pharmacy, University of Naples Federico II , Via Montesano 49, Naples 80131, Italy
| | - Ettore Novellino
- Department of Pharmacy, University of Naples Federico II , Via Montesano 49, Naples 80131, Italy
| | - Claudia Martini
- Department of Pharmacy, University of Pisa , Pisa 56126, Italy
| | | |
Collapse
|
50
|
Sestito S, Daniele S, Nesi G, Zappelli E, Di Maio D, Marinelli L, Digiacomo M, Lapucci A, Martini C, Novellino E, Rapposelli S. Locking PDK1 in DFG-out conformation through 2-oxo-indole containing molecules: Another tools to fight glioblastoma. Eur J Med Chem 2016; 118:47-63. [PMID: 27123901 DOI: 10.1016/j.ejmech.2016.04.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 04/01/2016] [Accepted: 04/02/2016] [Indexed: 01/05/2023]
Abstract
The phosphoinositide-dependent kinase-1 (PDK1) is one of the main components of the PI3K/Akt pathway. Also named the "master kinase" of the AGC family, PDK1 plays a critical role in tumorigenesis, by enhancing cell proliferation and inhibiting apoptosis, as well as in cell invasion and metastasis formation. Although there have been done huge efforts in discovering specific compounds targeting PDK1, nowadays no PDK1 inhibitor has yet entered the clinic. With the aim to pick out novel and potent PDK1 inhibitors, herein we report the design and synthesis of a new class of molecules obtained by merging the 2-oxo-indole nucleus with the 2-oxo-pyridonyl fragment, two moieties with high affinity for the PDK1 hinge region and its DFG-out binding site, respectively. To this purpose, a small series of compounds were synthesised and a tandem application of docking and Molecular Dynamic (MD) was employed to get insight into their mode of binding. The OXID-pyridonyl hybrid 8, possessing the lower IC50 (IC50 = 112 nM), was also tested against recombinant kinases involved in the PI3K/PDK1/Akt pathway and was subjected to vitro studies to evaluate the cytotoxicity and the inhibition of tumour cell migration. All together the results let us to consider 8, as a lead compound of a new generation of PDK1 inhibitors and encourage us to further studies in this direction.
Collapse
Affiliation(s)
- Simona Sestito
- Department of Pharmacy, University of Pisa, Via Bonanno, 6, 56126 Pisa, Italy
| | - Simona Daniele
- Department of Pharmacy, University of Pisa, Via Bonanno, 6, 56126 Pisa, Italy
| | - Giulia Nesi
- Department of Pharmacy, University of Pisa, Via Bonanno, 6, 56126 Pisa, Italy
| | - Elisa Zappelli
- Department of Pharmacy, University of Pisa, Via Bonanno, 6, 56126 Pisa, Italy
| | - Danilo Di Maio
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy; Istituto Nazionale di Fisica Nucleare (INFN), Largo Bruno Pontecorvo 3, 56127 Pisa, Italy
| | | | - Maria Digiacomo
- Department of Pharmacy, University of Pisa, Via Bonanno, 6, 56126 Pisa, Italy
| | - Annalina Lapucci
- Department of Pharmacy, University of Pisa, Via Bonanno, 6, 56126 Pisa, Italy
| | - Claudia Martini
- Department of Pharmacy, University of Pisa, Via Bonanno, 6, 56126 Pisa, Italy
| | | | - Simona Rapposelli
- Department of Pharmacy, University of Pisa, Via Bonanno, 6, 56126 Pisa, Italy.
| |
Collapse
|