1
|
Kundu P, Jain R, Kanuri NN, Arimappamagan A, Santosh V, Kondaiah P. DNA Methylation in Recurrent Glioblastomas: Increased TEM8 Expression Activates the Src/PI3K/AKT/GSK-3β/B-Catenin Pathway. Cancer Genomics Proteomics 2024; 21:485-501. [PMID: 39191501 PMCID: PMC11363927 DOI: 10.21873/cgp.20466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/20/2024] [Accepted: 06/10/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND/AIM Glioblastomas (GBM) are infiltrative malignant brain tumors which mostly recur within a year's time following surgical resection and chemo-radiation therapy. Studies on glioblastoma cells following radio-chemotherapy, have been demonstrated to induce trans-differentiation, cellular plasticity, activation of DNA damage response and stemness. As glioblastomas are heterogenous tumors that develop treatment resistance and plasticity, we investigated if there exist genome-wide DNA methylation changes in recurrent tumors. MATERIALS AND METHODS Utilizing genome-wide DNA methylation arrays, we compared the DNA methylation profile of 11 primary (first occurrence) tumors with 13 recurrent (relapsed) GBM, to delineate the contribution of epigenetic changes associated with therapy exposure, therapy resistance, and relapse of disease. RESULTS Our data revealed 1,224 hypermethylated- and 526 hypomethylated-probes in recurrent glioblastomas compared to primary disease. We found differential methylation of solute carrier and ion channel genes, interleukin receptor/ligand genes, tumor-suppressor genes and genes associated with metastasis. We functionally characterized one such hypomethylated-up-regulated gene, namely anthrax toxin receptor 1/tumor endothelial marker 8 (ANTXR1/TEM8), whose expression was validated to be significantly up-regulated in recurrent glioblastomas compared to primary tumors and confirmed by immunohistochemistry. Using overexpression and knockdown approaches, we showed that TEM8 induces proliferation, invasion, migration, and chemo-radioresistance in glioblastoma cells. Additionally, we demonstrated a novel mechanism of β-catenin stabilization and activation of the β-catenin transcriptional program due to TEM8 overexpression via a Src/PI3K/AKT/GSK3β/β-catenin pathway. CONCLUSION We report genome-wide DNA methylation changes in recurrent GBM and suggest involvement of the TEM8 gene in GBM recurrence and progression.
Collapse
Affiliation(s)
- Paramita Kundu
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
- Breast Cancer Now Toby Robins Research Centre, Department of Breast Research, The Institute of Cancer Research, London, U.K
| | - Ruchi Jain
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
- Al Jalila Genomics Centre, Al Jalila Children's Hospital, Dubai, United Arab Emirates
| | - Nandaki Nag Kanuri
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bangalore, India
| | | | - Vani Santosh
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Paturu Kondaiah
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India;
| |
Collapse
|
2
|
Hu M, Yingyu Z, Zhang M, Wang Q, Cheng W, Hou L, Yuan J, Yu Z, Li L, Zhang X, Zhang W. Functionalizing tetrahedral framework nucleic acids-based nanostructures for tumor in situ imaging and treatment. Colloids Surf B Biointerfaces 2024; 240:113982. [PMID: 38788473 DOI: 10.1016/j.colsurfb.2024.113982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/13/2024] [Accepted: 05/20/2024] [Indexed: 05/26/2024]
Abstract
Timely in situ imaging and effective treatment are efficient strategies in improving the therapeutic effect and survival rate of tumor patients. In recent years, there has been rapid progress in the development of DNA nanomaterials for tumor in situ imaging and treatment, due to their unsurpassed structural stability, excellent material editability, excellent biocompatibility and individual endocytic pathway. Tetrahedral framework nucleic acids (tFNAs), are a typical example of DNA nanostructures demonstrating superior stability, biocompatibility, cell-entry performance, and flexible drug-loading ability. tFNAs have been shown to be effective in achieving timely tumor in situ imaging and precise treatment. Therefore, the progress in the fabrication, characterization, modification and cellular internalization pathway of tFNAs-based functional systems and their potential in tumor in situ imaging and treatment applications were systematically reviewed in this article. In addition, challenges and future prospects of tFNAs in tumor in situ imaging and treatment as well as potential clinical applications were discussed.
Collapse
Affiliation(s)
- Minghui Hu
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
| | - Zhang Yingyu
- Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Mengxin Zhang
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
| | - Qionglin Wang
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
| | - Weyland Cheng
- Henan International Joint Laboratory for Prevention and Treatment of Pediatric Disease, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
| | - Ligong Hou
- Henan International Joint Laboratory for Prevention and Treatment of Pediatric Disease, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
| | - Jingya Yuan
- Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Zhidan Yu
- Henan International Joint Laboratory for Prevention and Treatment of Pediatric Disease, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
| | - Lifeng Li
- Henan International Joint Laboratory for Prevention and Treatment of Pediatric Disease, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
| | - Xianwei Zhang
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China.
| | - Wancun Zhang
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China; Henan International Joint Laboratory for Prevention and Treatment of Pediatric Disease, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China; Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China.
| |
Collapse
|
3
|
Rodgers LT, Villano JL, Hartz AMS, Bauer B. Glioblastoma Standard of Care: Effects on Tumor Evolution and Reverse Translation in Preclinical Models. Cancers (Basel) 2024; 16:2638. [PMID: 39123366 PMCID: PMC11311277 DOI: 10.3390/cancers16152638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Glioblastoma (GBM) presents a significant public health challenge as the deadliest and most common malignant brain tumor in adults. Despite standard-of-care treatment, which includes surgery, radiation, and chemotherapy, mortality rates are high, underscoring the critical need for advancing GBM therapy. Over the past two decades, numerous clinical trials have been performed, yet only a small fraction demonstrated a benefit, raising concerns about the predictability of current preclinical models. Traditionally, preclinical studies utilize treatment-naïve tumors, failing to model the clinical scenario where patients undergo standard-of-care treatment prior to recurrence. Recurrent GBM generally exhibits distinct molecular alterations influenced by treatment selection pressures. In this review, we discuss the impact of treatment-surgery, radiation, and chemotherapy-on GBM. We also provide a summary of treatments used in preclinical models, advocating for their integration to enhance the translation of novel strategies to improve therapeutic outcomes in GBM.
Collapse
Affiliation(s)
- Louis T. Rodgers
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| | - John L. Villano
- Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
- Department of Medicine, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
- Department of Neurology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
- Department of Neurosurgery, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Anika M. S. Hartz
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Björn Bauer
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
4
|
Laprie A, Noel G, Chaltiel L, Truc G, Sunyach MP, Charissoux M, Magne N, Auberdiac P, Biau J, Ken S, Tensaouti F, Khalifa J, Sidibe I, Roux FE, Vieillevigne L, Catalaa I, Boetto S, Uro-Coste E, Supiot S, Bernier V, Filleron T, Mounier M, Poublanc M, Olivier P, Delord JP, Cohen-Jonathan-Moyal E. Randomized phase III trial of metabolic imaging-guided dose escalation of radio-chemotherapy in patients with newly diagnosed glioblastoma (SPECTRO GLIO trial). Neuro Oncol 2024; 26:153-163. [PMID: 37417948 PMCID: PMC10768994 DOI: 10.1093/neuonc/noad119] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Indexed: 07/08/2023] Open
Abstract
BACKGROUND Glioblastoma (GBM) systematically recurs after a standard 60 Gy radio-chemotherapy regimen. Since magnetic resonance spectroscopic imaging (MRSI) has been shown to predict the site of relapse, we analyzed the effect of MRSI-guided dose escalation on overall survival (OS) of patients with newly diagnosed GBM. METHODS In this multicentric prospective phase III trial, patients who had undergone biopsy or surgery for a GBM were randomly assigned to a standard dose (SD) of 60 Gy or a high dose (HD) of 60 Gy with an additional simultaneous integrated boost totaling 72 Gy to MRSI metabolic abnormalities, the tumor bed and residual contrast enhancements. Temozolomide was administered concomitantly and maintained for 6 months thereafter. RESULTS One hundred and eighty patients were included in the study between March 2011 and March 2018. After a median follow-up of 43.9 months (95% CI [42.5; 45.5]), median OS was 22.6 months (95% CI [18.9; 25.4]) versus 22.2 months (95% CI [18.3; 27.8]) for HD, and median progression-free survival was 8.6 (95% CI [6.8; 10.8]) versus 7.8 months (95% CI [6.3; 8.6]), in SD versus HD, respectively. No increase in toxicity rate was observed in the study arm. The pseudoprogression rate was similar across the SD (14.4%) and HD (16.7%) groups. For O(6)-methylguanine-DNA methyltransferase (MGMT) methylated patients, the median OS was 38 months (95% CI [23.2; NR]) for HD patients versus 28.5 months (95% CI [21.1; 35.7]) for SD patients. CONCLUSION The additional MRSI-guided irradiation dose totaling 72 Gy was well tolerated but did not improve OS in newly diagnosed GBM. TRIAL REGISTRATION NCT01507506; registration date: December 20, 2011. https://clinicaltrials.gov/ct2/show/NCT01507506?cond=NCT01507506&rank=1.
Collapse
Affiliation(s)
- Anne Laprie
- Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| | | | - Leonor Chaltiel
- Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France
| | - Gilles Truc
- Centre Georges-François Leclerc, Dijon, France
| | | | | | - Nicolas Magne
- Institut de Cancérologie de la Loire, Saint-Priest en Jarez, France
| | | | - Julian Biau
- Centre Jean-Perrin, Clermont-Ferrand, France
| | - Soléakhéna Ken
- Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse-Oncopole, RadOpt-CRCT-INSERM, Toulouse, France
| | - Fatima Tensaouti
- Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse-Oncopole & ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - Jonathan Khalifa
- Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France
| | | | - Franck-Emmanuel Roux
- Centre Hospitalier Universitaire de Toulouse, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - Laure Vieillevigne
- Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France
| | | | - Sergio Boetto
- Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Emmanuelle Uro-Coste
- Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse-Oncopole, RadOpt-CRCT-INSERM, Toulouse, France
| | - Stéphane Supiot
- Institut de Cancerologie de l’Ouest, Nantes st Herblain, France
| | - Valérie Bernier
- Institut de Cancérologie de Lorraine Centre Alexis Vautrin, Nancy, France
| | - Thomas Filleron
- Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France
| | - Muriel Mounier
- Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France
| | - Muriel Poublanc
- Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France
| | - Pascale Olivier
- Service de Pharmacologie Médicale et Clinique, Centre Régional de Pharmacovigilance, de Pharmacoépidémiologie et d’Information sur le Médicament CHU de Toulouse, Toulouse, France
| | - Jean-Pierre Delord
- Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France
| | | |
Collapse
|
5
|
De Maria L, Panciani PP, Zeppieri M, Ius T, Serioli S, Piazza A, Di Giovanni E, Fontanella MM, Agosti E. A Systematic Review of the Metabolism of High-Grade Gliomas: Current Targeted Therapies and Future Perspectives. Int J Mol Sci 2024; 25:724. [PMID: 38255798 PMCID: PMC10815583 DOI: 10.3390/ijms25020724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/27/2023] [Accepted: 01/04/2024] [Indexed: 01/23/2024] Open
Abstract
High-grade glial tumors (HGGs) exhibit aggressive growth patterns and high recurrence rates. The prevailing treatment approach comprises radiation therapy (RT), chemotherapy (CMT), and surgical resection. Despite the progress made in traditional treatments, the outlook for patients with HGGs remains bleak. Tumor metabolism is emerging as a potential target for glioma therapies, a promising approach that harnesses the metabolism to target tumor cells. However, the efficacy of therapies targeting the metabolism of HGGs remains unclear, compelling a comprehensive review. This study aimed to assess the outcome of present trials on HGG therapies targeting metabolism. A comprehensive search of PubMed, Ovid MEDLINE, and Ovid EMBASE was conducted until November 2023. The search method used pertinent Medical Subject Heading (MeSH) terminologies and keywords referring to "high-grade gliomas", "metabolism", "target therapies", "monoclonal antibodies", "overall survival", and "progression-free survival". The review analyzed studies that focused on therapies targeting the metabolism of HGGs in human subjects. These studies included both randomized controlled trials (RCTs) and non-randomized controlled trials (NRCTs). Out of 284 articles identified, 23 trials met the inclusion criteria and were thoroughly analyzed. Phase II trials were the most numerous (62%). Targeted metabolic therapies were predominantly used for recurrent HGGs (67%). The most common targeted pathways were the vascular endothelial growth factor (VEGF, 43%), the human epidermal growth factor receptor (HER, 22%), the platelet-derived growth factor (PDGF, 17%), and the mammalian target of rapamycin (mTOR, 17%). In 39% of studies, the subject treatment was combined with CMT (22%), RT (4%), or both (13%). The median OS widely ranged from 4 to 26.3 months, while the median PFS ranged from 1.5 to 13 months. This systematic literature review offers a thorough exploration of the present state of metabolic therapies for HGGs. The multitude of targeted pathways underscores the intricate nature of addressing the metabolic aspects of these tumors. Despite existing challenges, these findings provide valuable insights, guiding future research endeavors. The results serve as a foundation for refining treatment strategies and enhancing patient outcomes within the complex landscape of HGGs.
Collapse
Affiliation(s)
- Lucio De Maria
- Division of Neurosurgery, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Piazza Spedali Civili 1, 25123 Brescia, Italy or (L.D.M.); (E.A.)
- Division of Neurosurgery, Department of Clinical Neurosciences, Geneva University Hospitals (HUG), Rue Gabrielle-Perret-Gentil 4, 1205 Geneva, Switzerland
| | - Pier Paolo Panciani
- Division of Neurosurgery, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Piazza Spedali Civili 1, 25123 Brescia, Italy or (L.D.M.); (E.A.)
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, p.le S. Maria della Misericordia 15, 33100 Udine, Italy
| | - Tamara Ius
- Neurosurgery Unit, Head-Neck and NeuroScience Department University Hospital of Udine, p.le S. Maria della Misericordia 15, 33100 Udine, Italy
| | - Simona Serioli
- Division of Neurosurgery, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Piazza Spedali Civili 1, 25123 Brescia, Italy or (L.D.M.); (E.A.)
| | - Amedeo Piazza
- Department of Neurosurgery, “Sapienza” University, 00185 Rome, Italy
| | - Emanuele Di Giovanni
- Division of Neurosurgery, Department of Clinical Neurosciences, Geneva University Hospitals (HUG), Rue Gabrielle-Perret-Gentil 4, 1205 Geneva, Switzerland
| | - Marco Maria Fontanella
- Division of Neurosurgery, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Piazza Spedali Civili 1, 25123 Brescia, Italy or (L.D.M.); (E.A.)
| | - Edoardo Agosti
- Division of Neurosurgery, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Piazza Spedali Civili 1, 25123 Brescia, Italy or (L.D.M.); (E.A.)
| |
Collapse
|
6
|
Bentaberry-Rosa A, Nicaise Y, Delmas C, Gouazé-Andersson V, Cohen-Jonathan-Moyal E, Seva C. Overexpression of Growth Differentiation Factor 15 in Glioblastoma Stem Cells Promotes Their Radioresistance. Cancers (Basel) 2023; 16:27. [PMID: 38201456 PMCID: PMC10778311 DOI: 10.3390/cancers16010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
GSCs play an important role in GBM recurrence. Understanding the resistance mechanisms in these cells is therefore crucial for radiation therapy optimization. In this study, using patient-derived GSCs, we demonstrate that GDF15, a cytokine belonging to the TGF-β superfamily, is regulated by irradiation (IR) and the transcription factor WWTR1/TAZ. Blocking WWTR1/TAZ using specific siRNAs significantly reduces GDF15 basal expression and reverses the upregulation of this cytokine induced by IR. Furthermore, we demonstrate that GDF15 plays an important role in GSC radioresistance. Targeting GDF15 expression by siRNA in GSCs expressing high levels of GDF15 sensitizes the cells to IR. In addition, we also found that GDF15 expression is critical for GSC spheroid formation, as GDF15 knockdown significantly reduces the number of GSC neurospheres. This study suggests that GDF15 targeting in combination with radiotherapy may be a feasible approach in patients with GBM.
Collapse
Affiliation(s)
- Alexandre Bentaberry-Rosa
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM U1037, Université Toulouse III Paul Sabatier, ERL5294 CNRS, 31062 Toulouse, France; (A.B.-R.); (Y.N.); (C.D.); (V.G.-A.); (E.C.-J.-M.)
- IUCT-Oncopole, 31100 Toulouse, France
| | - Yvan Nicaise
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM U1037, Université Toulouse III Paul Sabatier, ERL5294 CNRS, 31062 Toulouse, France; (A.B.-R.); (Y.N.); (C.D.); (V.G.-A.); (E.C.-J.-M.)
| | - Caroline Delmas
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM U1037, Université Toulouse III Paul Sabatier, ERL5294 CNRS, 31062 Toulouse, France; (A.B.-R.); (Y.N.); (C.D.); (V.G.-A.); (E.C.-J.-M.)
- IUCT-Oncopole, 31100 Toulouse, France
| | - Valérie Gouazé-Andersson
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM U1037, Université Toulouse III Paul Sabatier, ERL5294 CNRS, 31062 Toulouse, France; (A.B.-R.); (Y.N.); (C.D.); (V.G.-A.); (E.C.-J.-M.)
- IUCT-Oncopole, 31100 Toulouse, France
| | - Elizabeth Cohen-Jonathan-Moyal
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM U1037, Université Toulouse III Paul Sabatier, ERL5294 CNRS, 31062 Toulouse, France; (A.B.-R.); (Y.N.); (C.D.); (V.G.-A.); (E.C.-J.-M.)
- IUCT-Oncopole, 31100 Toulouse, France
| | - Catherine Seva
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM U1037, Université Toulouse III Paul Sabatier, ERL5294 CNRS, 31062 Toulouse, France; (A.B.-R.); (Y.N.); (C.D.); (V.G.-A.); (E.C.-J.-M.)
| |
Collapse
|
7
|
Cartiaux B, Deviers A, Delmas C, Abadie J, Pumarola Battle M, Cohen-Jonathan Moyal E, Mogicato G. Evaluation of in vitro intrinsic radiosensitivity and characterization of five canine high-grade glioma cell lines. Front Vet Sci 2023; 10:1253074. [PMID: 38098992 PMCID: PMC10720585 DOI: 10.3389/fvets.2023.1253074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/17/2023] [Indexed: 12/17/2023] Open
Abstract
Glioma is the most common primary brain tumor in dogs and predominantly affects brachycephalic breeds. Diagnosis relies on CT or MRI imaging, and the proposed treatments include surgical resection, chemotherapy, and radiotherapy depending on the tumor's location. Canine glioma from domestic dogs could be used as a more powerful model to study radiotherapy for human glioma than the murine model. Indeed, (i) contrary to mice, immunocompetent dogs develop spontaneous glioma, (ii) the canine brain structure is closer to human than mice, and (iii) domestic dogs are exposed to the same environmental factors than humans. Moreover, imaging techniques and radiation therapy used in human medicine can be applied to dogs, facilitating the direct transposition of results. The objective of this study is to fully characterize 5 canine glioma cell lines and to evaluate their intrinsic radiosensitivity. Canine cell lines present numerous analogies between the data obtained during this study on different glioma cell lines in dogs. Cell morphology is identical, such as doubling time, clonality test and karyotype. Immunohistochemical study of surface proteins, directly on cell lines and after stereotaxic injection in mice also reveals close similarity. Radiosensitivity profile of canine glial cells present high profile of radioresistance.
Collapse
Affiliation(s)
- Benjamin Cartiaux
- INSERM UMR.1037-Cancer Research Center of Toulouse (CRCT), University Paul Sabatier Toulouse III, Toulouse, France
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, ENVT, Toulouse, France
| | - Alexandra Deviers
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, ENVT, Toulouse, France
| | - Caroline Delmas
- INSERM UMR.1037-Cancer Research Center of Toulouse (CRCT), University Paul Sabatier Toulouse III, Toulouse, France
- IUCT-oncopole, Toulouse, France
| | - Jérôme Abadie
- Department of Biology, Pathology and Food Sciences, Laboniris, Nantes, France
| | - Martí Pumarola Battle
- Unit of Murine and Comparative Pathology, Department of Animal Medicine and Surgery, Veterinary Faculty, Autonomous University of Barcelona, Barcelona, Spain
| | - Elizabeth Cohen-Jonathan Moyal
- INSERM UMR.1037-Cancer Research Center of Toulouse (CRCT), University Paul Sabatier Toulouse III, Toulouse, France
- IUCT-oncopole, Toulouse, France
| | - Giovanni Mogicato
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, ENVT, Toulouse, France
| |
Collapse
|
8
|
Lemarié A, Lubrano V, Delmas C, Lusque A, Cerapio JP, Perrier M, Siegfried A, Arnauduc F, Nicaise Y, Dahan P, Filleron T, Mounier M, Toulas C, Cohen-Jonathan Moyal E. The STEMRI trial: Magnetic resonance spectroscopy imaging can define tumor areas enriched in glioblastoma stem-like cells. SCIENCE ADVANCES 2023; 9:eadi0114. [PMID: 37922359 PMCID: PMC10624352 DOI: 10.1126/sciadv.adi0114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 10/03/2023] [Indexed: 11/05/2023]
Abstract
Despite maximally safe resection of the magnetic resonance imaging (MRI)-defined contrast-enhanced (CE) central tumor area and chemoradiotherapy, most patients with glioblastoma (GBM) relapse within a year in peritumoral FLAIR regions. Magnetic resonance spectroscopy imaging (MRSI) can discriminate metabolic tumor areas with higher recurrence potential as CNI+ regions (choline/N-acetyl-aspartate index >2) can predict relapse sites. As relapses are mainly imputed to glioblastoma stem-like cells (GSCs), CNI+ areas might be GSC enriched. In this prospective trial, 16 patients with GBM underwent MRSI/MRI before surgery/chemoradiotherapy to investigate GSC content in CNI-/+ biopsies from CE/FLAIR. Biopsy and derived-GSC characterization revealed a FLAIR/CNI+ sample enrichment in GSC and in gene signatures related to stemness, DNA repair, adhesion/migration, and mitochondrial bioenergetics. FLAIR/CNI+ samples generate GSC-enriched neurospheres faster than FLAIR/CNI-. Parameters assessing biopsy GSC content and time-to-neurosphere formation in FLAIR/CNI+ were associated with worse patient outcome. Preoperative MRI/MRSI would certainly allow better resection and targeting of FLAIR/CNI+ areas, as their GSC enrichment can predict worse outcomes.
Collapse
Affiliation(s)
- Anthony Lemarié
- CRCT, Université de Toulouse, Inserm, CNRS, Université Toulouse III–Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- UFR Santé, Université de Toulouse III–Paul Sabatier, Toulouse, France
| | - Vincent Lubrano
- TONIC, Université de Toulouse, Inserm, CNRS, Université Toulouse III–Paul Sabatier, Toulouse Neuro Imaging Center, Toulouse, France
- CHU de Toulouse, Neurosurgery Department, Toulouse, France
| | - Caroline Delmas
- CRCT, Université de Toulouse, Inserm, CNRS, Université Toulouse III–Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Institut Claudius Regaud, IUCT-Oncopole, Interface Department, Toulouse, France
| | - Amélie Lusque
- Institut Claudius Regaud, IUCT-Oncopole, Biostatistics and Health Data Science Unit, Toulouse, France
| | - Juan-Pablo Cerapio
- CRCT, Université de Toulouse, Inserm, CNRS, Université Toulouse III–Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Marion Perrier
- CRCT, Université de Toulouse, Inserm, CNRS, Université Toulouse III–Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Aurore Siegfried
- CRCT, Université de Toulouse, Inserm, CNRS, Université Toulouse III–Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- CHU de Toulouse, Anatomopathology Department, Toulouse, France
| | - Florent Arnauduc
- CRCT, Université de Toulouse, Inserm, CNRS, Université Toulouse III–Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- UFR Santé, Université de Toulouse III–Paul Sabatier, Toulouse, France
| | - Yvan Nicaise
- CRCT, Université de Toulouse, Inserm, CNRS, Université Toulouse III–Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- UFR Santé, Université de Toulouse III–Paul Sabatier, Toulouse, France
| | - Perrine Dahan
- CRCT, Université de Toulouse, Inserm, CNRS, Université Toulouse III–Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Thomas Filleron
- Institut Claudius Regaud, IUCT-Oncopole, Biostatistics and Health Data Science Unit, Toulouse, France
| | - Muriel Mounier
- Institut Claudius Regaud, IUCT-Oncopole, Clinical Trials Office, Toulouse, France
| | - Christine Toulas
- CRCT, Université de Toulouse, Inserm, CNRS, Université Toulouse III–Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Institut Claudius Regaud, IUCT-Oncopole, Cancer Biology Department, Molecular Oncology Division, Toulouse, France
| | - Elizabeth Cohen-Jonathan Moyal
- CRCT, Université de Toulouse, Inserm, CNRS, Université Toulouse III–Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- UFR Santé, Université de Toulouse III–Paul Sabatier, Toulouse, France
- Institut Claudius Regaud, IUCT-Oncopole, Radiation Oncology Department, Toulouse, France
| |
Collapse
|
9
|
Liao J, Qing X, Deng G, Xiao Y, Fu Y, Han S, Li X, Gan Y, Li W. Gastrodin destabilizes survivin and overcomes pemetrexed resistance. Cell Signal 2023; 110:110851. [PMID: 37586466 DOI: 10.1016/j.cellsig.2023.110851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/01/2023] [Accepted: 08/13/2023] [Indexed: 08/18/2023]
Abstract
Survivin is a bifunctional protein that plays crucial roles in tumorigenesis. In the present study, we discovered that the natural product gastrodin suppressed the cell viability and colony formation of non-small cell lung cancer (NSCLC) cell lines A549, HCC827, and H460 in a dose-dependent manner. In addition, gastrodin enhanced the protein levels of cleaved-caspase 3 by activating the endogenous mitochondrial apoptosis pathway. Gastrodin inhibits protein kinase B (Akt)/WEE1/cyclin-dependent kinase 1 (CDK1) signaling to downregulate survivin Thr34 phosphorylation. Survivin Thr34 dephosphorylation caused by gastrodin interfered with the binding of ubiquitin-specific protease 19 (USP19), which eventually destabilized survivin. We revealed that the growth of NSCLC xenograft tumors was markedly suppressed by gastrodin in vivo. Furthermore, gastrodin overcomes pemetrexed resistance in vivo or in vitro. Our results suggest that gastrodin is a potential antitumor agent by reducing survivin in NSCLC.
Collapse
Affiliation(s)
- Jinzhuang Liao
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China; Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xiang Qing
- Department of Otolaryngology Head and Neck Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, China
| | - Gaoyan Deng
- Department of Thoracic Surgery, Hunan Chest Hospital, Changsha, Hunan, China
| | - Yeqing Xiao
- Department of Ultrasonography, Hunan Chest Hospital, Changsha, Hunan, China
| | - Yaqian Fu
- Xiangya Nursing School, Central South University, Changsha, Hunan, China
| | - Shuangze Han
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China; Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xiaoying Li
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China; Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yu Gan
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China; Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Wei Li
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China; Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China.
| |
Collapse
|
10
|
Boylan J, Byers E, Kelly DF. The Glioblastoma Landscape: Hallmarks of Disease, Therapeutic Resistance, and Treatment Opportunities. MEDICAL RESEARCH ARCHIVES 2023; 11:10.18103/mra.v11i6.3994. [PMID: 38107346 PMCID: PMC10723753 DOI: 10.18103/mra.v11i6.3994] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Malignant brain tumors are aggressive and difficult to treat. Glioblastoma is the most common and lethal form of primary brain tumor, often found in patients with no genetic predisposition. The median life expectancy for individuals diagnosed with this condition is 6 months to 2 years and there is no known cure. New paradigms in cancer biology implicate a small subset of tumor cells in initiating and sustaining these incurable brain tumors. Here, we discuss the heterogenous nature of glioblastoma and theories behind its capacity for therapy resistance and recurrence. Within the cancer landscape, cancer stem cells are thought to be both tumor initiators and major contributors to tumor heterogeneity and therapy evasion and such cells have been identified in glioblastoma. At the cellular level, disruptions in the delicate balance between differentiation and self-renewal spur transformation and support tumor growth. While rapidly dividing cells are more sensitive to elimination by traditional treatments, glioblastoma stem cells evade these measures through slow division and reversible exit from the cell cycle. At the molecular level, glioblastoma tumor cells exploit several signaling pathways to evade conventional therapies through improved DNA repair mechanisms and a flexible state of senescence. We examine these common evasion techniques while discussing potential molecular approaches to better target these deadly tumors. Equally important, the presented information encourages the idea of augmenting conventional treatments with novel glioblastoma stem cell-directed therapies, as eliminating these harmful progenitors holds great potential to modulate tumor recurrence.
Collapse
Affiliation(s)
- Jack Boylan
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
- Center for Structural Oncology, Pennsylvania State University, University Park, PA 16802, USA
- Molecular, Cellular, and Integrative Biosciences Graduate Program, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Elizabeth Byers
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
- Molecular, Cellular, and Integrative Biosciences Graduate Program, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Deborah F. Kelly
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
- Center for Structural Oncology, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
11
|
Kuznetsov M, Kolobov A. Optimization of antitumor radiotherapy fractionation via mathematical modeling with account of 4 R's of radiobiology. J Theor Biol 2023; 558:111371. [PMID: 36462667 DOI: 10.1016/j.jtbi.2022.111371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/26/2022] [Accepted: 11/23/2022] [Indexed: 12/05/2022]
Abstract
A spatially-distributed continuous mathematical model of solid tumor growth and treatment by fractionated radiotherapy is presented. The model explicitly accounts for the factors, widely referred to as 4 R's of radiobiology, which influence the efficacy of radiotherapy fractionation protocols: tumor cell repopulation, their redistribution in cell cycle, reoxygenation and repair of sublethal damage of both tumor and normal tissues. With the use of special algorithm the fractionation protocols that provide increased tumor control probability, compared to standard clinical protocol, are found for various physiologically-based values of model parameters under the constraints of fixed overall normal tissue damage and maximum admissible fractional dose. In particular, it is shown that significant gain in treatment efficacy can be achieved for tumors of low malignancy by the use of protracted hyperfractionated protocols. The optimized non-uniform protocols are characterized by gradual escalation of fractional doses in their last parts, which start after the levels of oxygen and nutrients significantly elevate throughout the tumor and accelerated tumor proliferation manifests itself, which is a well-known experimental phenomenon.
Collapse
Affiliation(s)
- Maxim Kuznetsov
- P.N. Lebedev Physical Institute of the Russian Academy of Sciences, 53 Leninskiy Prospekt, Moscow 119991, Russia; Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow 117198, Russia.
| | - Andrey Kolobov
- P.N. Lebedev Physical Institute of the Russian Academy of Sciences, 53 Leninskiy Prospekt, Moscow 119991, Russia
| |
Collapse
|
12
|
Husanie H, Abu-Remaileh M, Maroun K, Abu-Tair L, Safadi H, Atlan K, Golan T, Aqeilan RI. Loss of tumor suppressor WWOX accelerates pancreatic cancer development through promotion of TGFβ/BMP2 signaling. Cell Death Dis 2022; 13:1074. [PMID: 36572673 PMCID: PMC9792466 DOI: 10.1038/s41419-022-05519-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/05/2022] [Accepted: 12/14/2022] [Indexed: 12/28/2022]
Abstract
Pancreatic cancer is one of the most lethal cancers, owing to its late diagnosis and resistance to chemotherapy. The tumor suppressor WW domain-containing oxidoreductase (WWOX), one of the most active fragile sites in the human genome (FRA16D), is commonly altered in pancreatic cancer. However, the direct contribution of WWOX loss to pancreatic cancer development and progression remains largely unknown. Here, we report that combined conditional deletion of Wwox and activation of KRasG12D in Ptf1a-CreER-expressing mice results in accelerated formation of precursor lesions and pancreatic carcinoma. At the molecular level, we found that WWOX physically interacts with SMAD3 and BMP2, which are known activators of the TGF-β signaling pathway. In the absence of WWOX, TGFβ/BMPs signaling was enhanced, leading to increased macrophage infiltration and enhanced cancer stemness. Finally, overexpression of WWOX in patient-derived xenografts led to diminished aggressiveness both in vitro and in vivo. Overall, our findings reveal an essential role of WWOX in pancreatic cancer development and progression and underscore its role as a bona fide tumor suppressor.
Collapse
Affiliation(s)
- Hussam Husanie
- grid.9619.70000 0004 1937 0538The Concern Foundation Laboratories, The Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research-IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Muhannad Abu-Remaileh
- grid.9619.70000 0004 1937 0538The Concern Foundation Laboratories, The Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research-IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Kian Maroun
- grid.9619.70000 0004 1937 0538The Concern Foundation Laboratories, The Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research-IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Lina Abu-Tair
- grid.9619.70000 0004 1937 0538The Concern Foundation Laboratories, The Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research-IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hazem Safadi
- grid.9619.70000 0004 1937 0538The Concern Foundation Laboratories, The Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research-IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Karine Atlan
- grid.17788.310000 0001 2221 2926Department of Pathology, Hadassah Medical Center, Jerusalem, Israel
| | - Talia Golan
- grid.12136.370000 0004 1937 0546Oncology Institute, Sheba Medical Center, Tel Aviv University, Tel Aviv, Israel
| | - Rami I. Aqeilan
- grid.9619.70000 0004 1937 0538The Concern Foundation Laboratories, The Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research-IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
13
|
Spina R, Mills I, Ahmad F, Chen C, Ames HM, Winkles JA, Woodworth GF, Bar EE. DHODH inhibition impedes glioma stem cell proliferation, induces DNA damage, and prolongs survival in orthotopic glioblastoma xenografts. Oncogene 2022; 41:5361-5372. [PMID: 36344676 DOI: 10.1038/s41388-022-02517-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/06/2022] [Accepted: 10/17/2022] [Indexed: 11/09/2022]
Abstract
Glioma stem cells (GSCs) promote tumor progression and therapeutic resistance and exhibit remarkable bioenergetic and metabolic plasticity, a phenomenon that has been linked to their ability to escape standard and targeted therapies. However, specific mechanisms that promote therapeutic resistance have been somewhat elusive. We hypothesized that because GSCs proliferate continuously, they may require the salvage and de novo nucleotide synthesis pathways to satisfy their bioenergetic needs. Here, we demonstrate that GSCs lacking EGFR (or EGFRvIII) amplification are exquisitely sensitive to de novo pyrimidine synthesis perturbations, while GSCs that amplify EGFR are utterly resistant. Furthermore, we show that EGFRvIII promotes BAY2402234 resistance in otherwise BAY2402234 responsive GSCs. Remarkably, a novel, orally bioavailable, blood-brain-barrier penetrating, dihydroorotate dehydrogenase (DHODH) inhibitor BAY2402234 was found to abrogate GSC proliferation, block cell-cycle progression, and induce DNA damage and apoptosis. When dosed daily by oral gavage, BAY2402234 significantly impaired the growth of two different intracranial human glioblastoma xenograft models in mice. Given this observed efficacy and the previously established safety profiles in preclinical animal models and human clinical trials, the clinical testing of BAY2402234 in patients with primary glioblastoma that lacks EGFR amplification is warranted.
Collapse
Affiliation(s)
- Raffaella Spina
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ian Mills
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Fahim Ahmad
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Chixiang Chen
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Epidemiology & Public Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Heather M Ames
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA.,University of Maryland, Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
| | - Jeffrey A Winkles
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA.,University of Maryland, Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA.,Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA.,Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Graeme F Woodworth
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA.,University of Maryland, Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
| | - Eli E Bar
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA. .,Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA. .,University of Maryland, Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA.
| |
Collapse
|
14
|
Shyntar A, Patel A, Rhodes M, Enderling H, Hillen T. The Tumor Invasion Paradox in Cancer Stem Cell-Driven Solid Tumors. Bull Math Biol 2022; 84:139. [PMID: 36301402 PMCID: PMC9613767 DOI: 10.1007/s11538-022-01086-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 09/14/2022] [Indexed: 11/24/2022]
Abstract
Cancer stem cells (CSCs) are key in understanding tumor growth and tumor progression. A counterintuitive effect of CSCs is the so-called tumor growth paradox: the effect where a tumor with a higher death rate may grow larger than a tumor with a lower death rate. Here we extend the modeling of the tumor growth paradox by including spatial structure and considering cancer invasion. Using agent-based modeling and a corresponding partial differential equation model, we demonstrate and prove mathematically a tumor invasion paradox: a larger cell death rate can lead to a faster invasion speed. We test this result on a generic hypothetical cancer with typical growth rates and typical treatment sensitivities. We find that the tumor invasion paradox may play a role for continuous and intermittent treatments, while it does not seem to be essential in fractionated treatments. It should be noted that no attempt was made to fit the model to a specific cancer, thus, our results are generic and theoretical.
Collapse
|
15
|
Muthukrishnan SD, Kawaguchi R, Nair P, Prasad R, Qin Y, Johnson M, Wang Q, VanderVeer-Harris N, Pham A, Alvarado AG, Condro MC, Gao F, Gau R, Castro MG, Lowenstein PR, Deb A, Hinman JD, Pajonk F, Burns TC, Goldman SA, Geschwind DH, Kornblum HI. P300 promotes tumor recurrence by regulating radiation-induced conversion of glioma stem cells to vascular-like cells. Nat Commun 2022; 13:6202. [PMID: 36261421 PMCID: PMC9582000 DOI: 10.1038/s41467-022-33943-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 10/07/2022] [Indexed: 12/24/2022] Open
Abstract
Glioma stem cells (GSC) exhibit plasticity in response to environmental and therapeutic stress leading to tumor recurrence, but the underlying mechanisms remain largely unknown. Here, we employ single-cell and whole transcriptomic analyses to uncover that radiation induces a dynamic shift in functional states of glioma cells allowing for acquisition of vascular endothelial-like and pericyte-like cell phenotypes. These vascular-like cells provide trophic support to promote proliferation of tumor cells, and their selective depletion results in reduced tumor growth post-treatment in vivo. Mechanistically, the acquisition of vascular-like phenotype is driven by increased chromatin accessibility and H3K27 acetylation in specific vascular genes allowing for their increased expression post-treatment. Blocking P300 histone acetyltransferase activity reverses the epigenetic changes induced by radiation and inhibits the adaptive conversion of GSC into vascular-like cells and tumor growth. Our findings highlight a role for P300 in radiation-induced stress response, suggesting a therapeutic approach to prevent glioma recurrence.
Collapse
Affiliation(s)
- Sree Deepthi Muthukrishnan
- The UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Riki Kawaguchi
- The UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Pooja Nair
- The UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Rachna Prasad
- The UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Yue Qin
- The UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Maverick Johnson
- The UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Qing Wang
- The UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Nathan VanderVeer-Harris
- The UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Amy Pham
- The UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Alvaro G Alvarado
- The UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Michael C Condro
- The UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Fuying Gao
- The UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Raymond Gau
- The UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Maria G Castro
- Department of Neurosurgery, and Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Pedro R Lowenstein
- Department of Neurosurgery, and Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Arjun Deb
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Jason D Hinman
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Frank Pajonk
- Department of Radiation Oncology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Terry C Burns
- Department of Neurological Surgery, Mayo Clinic, Rochester, MN, USA
| | - Steven A Goldman
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, USA
- Center for Translational Neuromedicine, University of Coppenhagen School of Medicine, Coppenhagen, Denmark
| | - Daniel H Geschwind
- The UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Harley I Kornblum
- The UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.
| |
Collapse
|
16
|
Silver A, Feier D, Ghosh T, Rahman M, Huang J, Sarkisian MR, Deleyrolle LP. Heterogeneity of glioblastoma stem cells in the context of the immune microenvironment and geospatial organization. Front Oncol 2022; 12:1022716. [PMID: 36338705 PMCID: PMC9628999 DOI: 10.3389/fonc.2022.1022716] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/03/2022] [Indexed: 01/16/2023] Open
Abstract
Glioblastoma (GBM) is an extremely aggressive and incurable primary brain tumor with a 10-year survival of just 0.71%. Cancer stem cells (CSCs) are thought to seed GBM's inevitable recurrence by evading standard of care treatment, which combines surgical resection, radiotherapy, and chemotherapy, contributing to this grim prognosis. Effective targeting of CSCs could result in insights into GBM treatment resistance and development of novel treatment paradigms. There is a major ongoing effort to characterize CSCs, understand their interactions with the tumor microenvironment, and identify ways to eliminate them. This review discusses the diversity of CSC lineages present in GBM and how this glioma stem cell (GSC) mosaicism drives global intratumoral heterogeneity constituted by complex and spatially distinct local microenvironments. We review how a tumor's diverse CSC populations orchestrate and interact with the environment, especially the immune landscape. We also discuss how to map this intricate GBM ecosystem through the lens of metabolism and immunology to find vulnerabilities and new ways to disrupt the equilibrium of the system to achieve improved disease outcome.
Collapse
Affiliation(s)
- Aryeh Silver
- Department of Neurosurgery, Adam Michael Rosen Neuro-Oncology Laboratories, University of Florida, Gainesville, FL, United States
| | - Diana Feier
- Department of Neurosurgery, Adam Michael Rosen Neuro-Oncology Laboratories, University of Florida, Gainesville, FL, United States
| | - Tanya Ghosh
- Department of Neurosurgery, Adam Michael Rosen Neuro-Oncology Laboratories, University of Florida, Gainesville, FL, United States
| | - Maryam Rahman
- Department of Neurosurgery, Adam Michael Rosen Neuro-Oncology Laboratories, University of Florida, Gainesville, FL, United States,Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, United States
| | - Jianping Huang
- Department of Neurosurgery, Adam Michael Rosen Neuro-Oncology Laboratories, University of Florida, Gainesville, FL, United States,Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, United States
| | - Matthew R. Sarkisian
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, United States,Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Loic P. Deleyrolle
- Department of Neurosurgery, Adam Michael Rosen Neuro-Oncology Laboratories, University of Florida, Gainesville, FL, United States,Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, United States,*Correspondence: Loic P. Deleyrolle,
| |
Collapse
|
17
|
Ramos EK, Tsai CF, Jia Y, Cao Y, Manu M, Taftaf R, Hoffmann AD, El-Shennawy L, Gritsenko MA, Adorno-Cruz V, Schuster EJ, Scholten D, Patel D, Liu X, Patel P, Wray B, Zhang Y, Zhang S, Moore RJ, Mathews JV, Schipma MJ, Liu T, Tokars VL, Cristofanilli M, Shi T, Shen Y, Dashzeveg NK, Liu H. Machine learning-assisted elucidation of CD81-CD44 interactions in promoting cancer stemness and extracellular vesicle integrity. eLife 2022; 11:e82669. [PMID: 36193887 PMCID: PMC9581534 DOI: 10.7554/elife.82669] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 08/26/2022] [Indexed: 11/30/2022] Open
Abstract
Tumor-initiating cells with reprogramming plasticity or stem-progenitor cell properties (stemness) are thought to be essential for cancer development and metastatic regeneration in many cancers; however, elucidation of the underlying molecular network and pathways remains demanding. Combining machine learning and experimental investigation, here we report CD81, a tetraspanin transmembrane protein known to be enriched in extracellular vesicles (EVs), as a newly identified driver of breast cancer stemness and metastasis. Using protein structure modeling and interface prediction-guided mutagenesis, we demonstrate that membrane CD81 interacts with CD44 through their extracellular regions in promoting tumor cell cluster formation and lung metastasis of triple negative breast cancer (TNBC) in human and mouse models. In-depth global and phosphoproteomic analyses of tumor cells deficient with CD81 or CD44 unveils endocytosis-related pathway alterations, leading to further identification of a quality-keeping role of CD44 and CD81 in EV secretion as well as in EV-associated stemness-promoting function. CD81 is coexpressed along with CD44 in human circulating tumor cells (CTCs) and enriched in clustered CTCs that promote cancer stemness and metastasis, supporting the clinical significance of CD81 in association with patient outcomes. Our study highlights machine learning as a powerful tool in facilitating the molecular understanding of new molecular targets in regulating stemness and metastasis of TNBC.
Collapse
Affiliation(s)
- Erika K Ramos
- Department of Pharmacology, Northwestern UniversityChicagoUnited States
- Driskill Graduate Program in Life Science, Feinberg School of Medicine, Northwestern UniversityChicagoUnited States
| | - Chia-Feng Tsai
- Biological Sciences Division, Pacific Northwest National LaboratoryWashingtonUnited States
| | - Yuzhi Jia
- Department of Pharmacology, Northwestern UniversityChicagoUnited States
| | - Yue Cao
- Department of Electrical and Computer Engineering, TEES-AgriLife Center for Bioinformatics and Genomic Systems Engineering, Texas A&M UniversityCollege StationUnited States
| | - Megan Manu
- Department of Pharmacology, Northwestern UniversityChicagoUnited States
| | - Rokana Taftaf
- Department of Pharmacology, Northwestern UniversityChicagoUnited States
- Driskill Graduate Program in Life Science, Feinberg School of Medicine, Northwestern UniversityChicagoUnited States
| | - Andrew D Hoffmann
- Department of Pharmacology, Northwestern UniversityChicagoUnited States
| | | | - Marina A Gritsenko
- Biological Sciences Division, Pacific Northwest National LaboratoryWashingtonUnited States
| | | | - Emma J Schuster
- Department of Pharmacology, Northwestern UniversityChicagoUnited States
- Driskill Graduate Program in Life Science, Feinberg School of Medicine, Northwestern UniversityChicagoUnited States
| | - David Scholten
- Department of Pharmacology, Northwestern UniversityChicagoUnited States
- Driskill Graduate Program in Life Science, Feinberg School of Medicine, Northwestern UniversityChicagoUnited States
| | - Dhwani Patel
- Department of Pharmacology, Northwestern UniversityChicagoUnited States
| | - Xia Liu
- Department of Pharmacology, Northwestern UniversityChicagoUnited States
- Department of Toxicology and Cancer Biology, University of KentuckyLexingtonUnited States
| | - Priyam Patel
- Quantitative Data Science Core, Center for Genetic Medicine, Northwestern University Feinberg School of MedicineChicagoUnited States
| | - Brian Wray
- Quantitative Data Science Core, Center for Genetic Medicine, Northwestern University Feinberg School of MedicineChicagoUnited States
| | - Youbin Zhang
- Department of Medicine, Hematology/Oncology Division, Feinberg School of Medicine, Northwestern UniversityChicagoUnited States
| | - Shanshan Zhang
- Pathology Core Facility, Northwestern UniversityChicagoUnited States
| | - Ronald J Moore
- Biological Sciences Division, Pacific Northwest National LaboratoryWashingtonUnited States
| | - Jeremy V Mathews
- Pathology Core Facility, Northwestern UniversityChicagoUnited States
| | - Matthew J Schipma
- Quantitative Data Science Core, Center for Genetic Medicine, Northwestern University Feinberg School of MedicineChicagoUnited States
| | - Tao Liu
- Biological Sciences Division, Pacific Northwest National LaboratoryWashingtonUnited States
| | - Valerie L Tokars
- Department of Pharmacology, Northwestern UniversityChicagoUnited States
| | - Massimo Cristofanilli
- Department of Medicine, Hematology/Oncology Division, Feinberg School of Medicine, Northwestern UniversityChicagoUnited States
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern UniversityChicagoUnited States
| | - Tujin Shi
- Biological Sciences Division, Pacific Northwest National LaboratoryWashingtonUnited States
| | - Yang Shen
- Department of Electrical and Computer Engineering, TEES-AgriLife Center for Bioinformatics and Genomic Systems Engineering, Texas A&M UniversityCollege StationUnited States
| | | | - Huiping Liu
- Department of Pharmacology, Northwestern UniversityChicagoUnited States
- Department of Medicine, Hematology/Oncology Division, Feinberg School of Medicine, Northwestern UniversityChicagoUnited States
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern UniversityChicagoUnited States
| |
Collapse
|
18
|
Li M, Song D, Chen X, Wang X, Xu L, Yang M, Yang J, Kalvakolanu DV, Wei X, Liu X, Li Y, Guo B, Zhang L. RSL3 triggers glioma stem cell differentiation via the Tgm2/AKT/ID1 signaling axis. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166529. [PMID: 36041715 DOI: 10.1016/j.bbadis.2022.166529] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/16/2022] [Accepted: 08/20/2022] [Indexed: 10/15/2022]
Abstract
RSL3 is a synthetic molecule that inactivates glutathione peroxidase 4 to induce ferroptosis. However, its effect on glioma stem cells (GSC) remains unclear. In this study, we found that RSL3 significantly suppressed GSC proliferation and induced their differentiation into astrocytes, which was accompanied by the downregulation of stemness-related markers, including Nestin and Sox2. Combined transcriptome and proteome analyses further revealed that RSL3 promoted GSC differentiation by suppressing transglutaminase 2 (Tgm2), but not by ferroptosis-related pathways. Tgm2 overexpression in CSC2078 cells rescued the changes in stemness-related markers and differentiation caused by RSL3, which was mediated by inhibitor of DNA binding 1 (ID1) activation. Further studies identified ID1 as a downstream signaling target of Tgm2. Blocking the phosphoinositide-3 kinase (PI3K)/Akt pathway with LY294002 suppressed PI3K, p-Akt, and ID1 levels but not Tgm2. Tgm2 overexpression abrogated the changes in PI3K, p-Akt, and ID1 levels caused by LY294002. Taken together, we demonstrate that RSL3 does not induce ferroptosis; instead, it inhibits GSC proliferation and triggers their differentiation by suppressing the Tgm2/Akt/ID1 signaling axis.
Collapse
Affiliation(s)
- Mengxin Li
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China; Department of Breast Surgery, First Hospital of Jilin University, Changchun, China
| | - Dong Song
- Department of Breast Surgery, First Hospital of Jilin University, Changchun, China
| | - Xuyang Chen
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Xuanzhong Wang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, China
| | - Libo Xu
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Mei Yang
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Jiaying Yang
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Dhan V Kalvakolanu
- Greenebaum NCI Comprehensive Cancer Center, Department of Microbiology and Immunology University of Maryland School Medicine, Baltimore, MD, USA
| | - Xiaodong Wei
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Xiaorui Liu
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Yang Li
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China.
| | - Baofeng Guo
- Department of Surgery, China-Japan Union Hospital of Jilin University, Changchun, China.
| | - Ling Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China.
| |
Collapse
|
19
|
Ribosomes and Ribosomal Proteins Promote Plasticity and Stemness Induction in Glioma Cells via Reprogramming. Cells 2022; 11:cells11142142. [PMID: 35883585 PMCID: PMC9323835 DOI: 10.3390/cells11142142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 02/04/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a lethal tumor that develops in the adult brain. Despite advances in therapeutic strategies related to surgical resection and chemo-radiotherapy, the overall survival of patients with GBM remains unsatisfactory. Genetic research on mutation, amplification, and deletion in GBM cells is important for understanding the biological aggressiveness, diagnosis, and prognosis of GBM. However, the efficacy of drugs targeting the genetic abnormalities in GBM cells is limited. Investigating special microenvironments that induce chemo-radioresistance in GBM cells is critical to improving the survival and quality of life of patients with GBM. GBM cells acquire and maintain stem-cell-like characteristics via their intrinsic potential and extrinsic factors from their special microenvironments. The acquisition of stem-cell-like phenotypes and aggressiveness may be referred to as a reprogramming of GBM cells. In addition to protein synthesis, deregulation of ribosome biogenesis is linked to several diseases including cancer. Ribosomal proteins possess both tumor-promotive and -suppressive functions as extra-ribosomal functions. Incorporation of ribosomes and overexpression of ribosomal protein S6 reprogram and induce stem-cell-like phenotypes in GBM cells. Herein, we review recent literature and our published data on the acquisition of aggressiveness by GBM and discuss therapeutic options through reprogramming.
Collapse
|
20
|
Boccellato C, Rehm M. Glioblastoma, from disease understanding towards optimal cell-based in vitro models. Cell Oncol (Dordr) 2022; 45:527-541. [PMID: 35763242 PMCID: PMC9424171 DOI: 10.1007/s13402-022-00684-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2022] [Indexed: 11/24/2022] Open
Abstract
Abstract
Background
Glioblastoma (GBM) patients are notoriously difficult to treat and ultimately all succumb to disease. This unfortunate scenario motivates research into better characterizing and understanding this disease, and into developing novel research tools by which potential novel therapeutics and treatment options initially can be evaluated pre-clinically. Here, we provide a concise overview of glioblastoma epidemiology, disease classification, the challenges faced in the treatment of glioblastoma and current novel treatment strategies. From this, we lead into a description and assessment of advanced cell-based models that aim to narrow the gap between pre-clinical and clinical studies. Such invitro models are required to deliver reliable and meaningful data for the development and pre-validation of novel therapeutics and treatments.
Conclusions
The toolbox for GBM cell-based models has expanded substantially, with the possibility of 3D printing tumour tissues and thereby replicating invivo tissue architectures now looming on the horizon. A comparison of experimental cell-based model systems and techniques highlights advantages and drawbacks of the various tools available, based on which cell-based models and experimental approaches best suited to address a diversity of research questions in the glioblastoma research field can be selected.
Collapse
Affiliation(s)
- Chiara Boccellato
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany.
| | - Markus Rehm
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany.
- Stuttgart Research Center Systems Biology, University of Stuttgart, 70569, Stuttgart, Germany.
| |
Collapse
|
21
|
Duval T, Lotterie JA, Lemarie A, Delmas C, Tensaouti F, Moyal ECJ, Lubrano V. Glioblastoma Stem-like Cell Detection Using Perfusion and Diffusion MRI. Cancers (Basel) 2022; 14:cancers14112803. [PMID: 35681782 PMCID: PMC9179449 DOI: 10.3390/cancers14112803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/21/2022] [Accepted: 05/25/2022] [Indexed: 01/25/2023] Open
Abstract
Simple Summary Glioblastoma stem-like cells (GSCs) are known to be aggressive and radio-resistant and proliferate heterogeneously in preferred environments. Additionally, quantitative diffusion and perfusion MRI biomarkers provide insight into the tissue micro-environment. This study assessed the sensitivity of these imaging biomarkers to GSCs in the hyperintensities-FLAIR region, where relapses may occur. A total of 16 patients underwent an MRI session and biopsies were extracted to study the GSCs. In vivo and in vitro biomarkers were compared and both Apparent Diffusion Coefficient (ADC) and relative Cerebral Blood Volume (rCBV) MRI metrics were found to be good predictors of GSCs presence and aggressiveness. Abstract Purpose: With current gold standard treatment, which associates maximum safe surgery and chemo-radiation, the large majority of glioblastoma patients relapse within a year in the peritumoral non contrast-enhanced region (NCE). A subpopulation of glioblastoma stem-like cells (GSC) are known to be particularly radio-resistant and aggressive, and are thus suspected to be the cause of these relapses. Previous studies have shown that their distribution is heterogeneous in the NCE compartment, but no study exists on the sensitivity of medical imaging for localizing these cells. In this work, we propose to study the magnetic resonance (MR) signature of these infiltrative cells. Methods: In the context of a clinical trial on 16 glioblastoma patients, relative Cerebral Blood Volume (rCBV) and Apparent Diffusion Coefficient (ADC) were measured in a preoperative diffusion and perfusion MRI examination. During surgery, two biopsies were extracted using image-guidance in the hyperintensities-FLAIR region. GSC subpopulation was quantified within the biopsies and then cultivated in selective conditions to determine their density and aggressiveness. Results: Low ADC was found to be a good predictor of the time to GSC neurospheres formation in vitro. In addition, GSCs were found in higher concentrations in areas with high rCBV. Conclusions: This study confirms that GSCs have a critical role for glioblastoma aggressiveness and supports the idea that peritumoral sites with low ADC or high rCBV should be preferably removed when possible during surgery and targeted by radiotherapy.
Collapse
Affiliation(s)
- Tanguy Duval
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, 31000 Toulouse, France; (J.-A.L.); (F.T.); (V.L.)
- Correspondence:
| | - Jean-Albert Lotterie
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, 31000 Toulouse, France; (J.-A.L.); (F.T.); (V.L.)
- Department of Nuclear Medicine, CHU Purpan, 31000 Toulouse, France
| | - Anthony Lemarie
- U1037 Toulouse Cancer Research Center CRCT, INSERM, 31000 Toulouse, France; (A.L.); (E.C.-J.M.)
- Université Paul Sabatier Toulouse III, 31000 Toulouse, France
| | - Caroline Delmas
- Institut Claudius Regaud, IUCT-Oncopole, 31000 Toulouse, France;
| | - Fatima Tensaouti
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, 31000 Toulouse, France; (J.-A.L.); (F.T.); (V.L.)
- Institut Claudius Regaud, IUCT-Oncopole, 31000 Toulouse, France;
| | - Elizabeth Cohen-Jonathan Moyal
- U1037 Toulouse Cancer Research Center CRCT, INSERM, 31000 Toulouse, France; (A.L.); (E.C.-J.M.)
- Université Paul Sabatier Toulouse III, 31000 Toulouse, France
- Institut Claudius Regaud, IUCT-Oncopole, 31000 Toulouse, France;
| | - Vincent Lubrano
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, 31000 Toulouse, France; (J.-A.L.); (F.T.); (V.L.)
- Department of Nuclear Medicine, CHU Purpan, 31000 Toulouse, France
- Service de Neurochirurgie, Clinique de l’Union, 31240 Toulouse, France
| |
Collapse
|
22
|
Vilar JB, Christmann M, Tomicic MT. Alterations in Molecular Profiles Affecting Glioblastoma Resistance to Radiochemotherapy: Where Does the Good Go? Cancers (Basel) 2022; 14:cancers14102416. [PMID: 35626024 PMCID: PMC9139489 DOI: 10.3390/cancers14102416] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Glioblastoma is a type of brain cancer that remains incurable. Despite multiple past and ongoing preclinical studies and clinical trials, involving adjuvants to the conventional therapy and based on molecular targeting, no relevant benefit for patients’ survival has been achieved so far. The current first-line treatment regimen is based on ionizing radiation and the monoalkylating compound, temozolomide, and has been administered for more than 15 years. Glioblastoma is extremely resistant to most agents due to a mutational background that elicits quick response to insults and adapts to microenvironmental and metabolic changes. Here, we present the most recent evidence concerning the molecular features and their alterations governing pathways involved in GBM response to the standard radio-chemotherapy and discuss how they collaborate with acquired GBM’s resistance. Abstract Glioblastoma multiforme (GBM) is a brain tumor characterized by high heterogeneity, diffuse infiltration, aggressiveness, and formation of recurrences. Patients with this kind of tumor suffer from cognitive, emotional, and behavioral problems, beyond exhibiting dismal survival rates. Current treatment comprises surgery, radiotherapy, and chemotherapy with the methylating agent, temozolomide (TMZ). GBMs harbor intrinsic mutations involving major pathways that elicit the cells to evade cell death, adapt to the genotoxic stress, and regrow. Ionizing radiation and TMZ induce, for the most part, DNA damage repair, autophagy, stemness, and senescence, whereas only a small fraction of GBM cells undergoes treatment-induced apoptosis. Particularly upon TMZ exposure, most of the GBM cells undergo cellular senescence. Increased DNA repair attenuates the agent-induced cytotoxicity; autophagy functions as a pro-survival mechanism, protecting the cells from damage and facilitating the cells to have energy to grow. Stemness grants the cells capacity to repopulate the tumor, and senescence triggers an inflammatory microenvironment favorable to transformation. Here, we highlight this mutational background and its interference with the response to the standard radiochemotherapy. We discuss the most relevant and recent evidence obtained from the studies revealing the molecular mechanisms that lead these cells to be resistant and indicate some future perspectives on combating this incurable tumor.
Collapse
|
23
|
Deshors P, Arnauduc F, Boëlle B, Cohen-Jonathan Moyal E, Courtade-Saïdi M, Evrard SM. Impact of Regorafenib on Endothelial Transdifferentiation of Glioblastoma Stem-like Cells. Cancers (Basel) 2022; 14:1551. [PMID: 35326702 PMCID: PMC8946617 DOI: 10.3390/cancers14061551] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/09/2022] [Accepted: 03/15/2022] [Indexed: 02/05/2023] Open
Abstract
Glioblastomas (GBM) are aggressive brain tumours with a poor prognosis despite heavy therapy that combines surgical resection and radio-chemotherapy. The presence of a subpopulation of GBM stem cells (GSC) contributes to tumour aggressiveness, resistance and recurrence. Moreover, GBM are characterised by abnormal, abundant vascularisation. Previous studies have shown that GSC are directly involved in new vessel formation via their transdifferentiation into tumour-derived endothelial cells (TDEC) and that irradiation (IR) potentiates the pro-angiogenic capacity of TDEC via the Tie2 signalling pathway. We therefore investigated the impact of regorafenib, a multikinase inhibitor with anti-angiogenic and anti-tumourigenic activity, on GSC and TDEC obtained from irradiated GSC (TDEC IR+) or non-irradiated GSC (TDEC). Regorafenib significantly decreases GSC neurosphere formation in vitro and inhibits tumour formation in the orthotopic xenograft model. Regorafenib also inhibits transdifferentiation by decreasing CD31 expression, CD31+ cell count, pseudotube formation in vitro and the formation of functional blood vessels in vivo of TDEC and TDEC IR+. All of these results confirm that regorafenib clearly impacts GSC tumour formation and transdifferentiation and may therefore be a promising therapeutic option in combination with chemo/radiotherapy for the treatment of highly aggressive brain tumours.
Collapse
Affiliation(s)
- Pauline Deshors
- Institut Claudius Regaud, IUCT Oncopole, 31059 Toulouse, France; (P.D.); (B.B.); (E.C.-J.M.)
| | - Florent Arnauduc
- Faculty of Medicine, Paul Sabatier University, Toulouse-3, 31062 Toulouse, France; (F.A.); (M.C.-S.)
- INSERM UMR 1037, Centre for Cancer Research of Toulouse, 31100 Toulouse, France
| | - Betty Boëlle
- Institut Claudius Regaud, IUCT Oncopole, 31059 Toulouse, France; (P.D.); (B.B.); (E.C.-J.M.)
| | - Elizabeth Cohen-Jonathan Moyal
- Institut Claudius Regaud, IUCT Oncopole, 31059 Toulouse, France; (P.D.); (B.B.); (E.C.-J.M.)
- Faculty of Medicine, Paul Sabatier University, Toulouse-3, 31062 Toulouse, France; (F.A.); (M.C.-S.)
- INSERM UMR 1037, Centre for Cancer Research of Toulouse, 31100 Toulouse, France
| | - Monique Courtade-Saïdi
- Faculty of Medicine, Paul Sabatier University, Toulouse-3, 31062 Toulouse, France; (F.A.); (M.C.-S.)
- INSERM UMR 1037, Centre for Cancer Research of Toulouse, 31100 Toulouse, France
- Pathology and Cytology Department, CHU Toulouse, IUCT Oncopole, 31059 Toulouse, France
| | - Solène M. Evrard
- Faculty of Medicine, Paul Sabatier University, Toulouse-3, 31062 Toulouse, France; (F.A.); (M.C.-S.)
- INSERM UMR 1037, Centre for Cancer Research of Toulouse, 31100 Toulouse, France
- Pathology and Cytology Department, CHU Toulouse, IUCT Oncopole, 31059 Toulouse, France
| |
Collapse
|
24
|
Roda E, Bottone MG. Editorial: Brain Cancers: New Perspectives and Therapies. Front Neurosci 2022; 16:857408. [PMID: 35237126 PMCID: PMC8883042 DOI: 10.3389/fnins.2022.857408] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 01/24/2022] [Indexed: 12/20/2022] Open
Affiliation(s)
- Elisa Roda
- Toxicology Unit, Laboratory of Clinical and Experimental Toxicology, Pavia Poison Centre, National Toxicology Information Centre, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
- *Correspondence: Elisa Roda ;
| | - Maria Grazia Bottone
- Department of Biology and Biotechnology “L. Spallanzani, ” University of Pavia, Pavia, Italy
| |
Collapse
|
25
|
Heffernan JM, McNamara JB, Vernon BL, Mehta S, Sirianni RW. PNJ scaffolds promote microenvironmental regulation of glioblastoma stem-like cell enrichment and radioresistance. Biomater Sci 2022; 10:819-833. [PMID: 34994746 PMCID: PMC8939461 DOI: 10.1039/d0bm01169j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Glioblastoma (GBM) brain tumors contain a subpopulation of self-renewing multipotent Glioblastoma stem-like cells (GSCs) that are believed to drive the near inevitable recurrence of GBM. We previously engineered temperature responsive scaffolds based on the polymer poly(N-isopropylacrylamide-co-Jeffamine M-1000 acrylamide) (PNJ) for the purpose of enriching GSCs in vitro from patient-derived samples. Here, we used PNJ scaffolds to study microenvironmental regulation of self-renewal and radiation response in patient-derived GSCs representing classical and proneural subtypes. GSC self-renewal was regulated by the composition of PNJ scaffolds and varied with cell type. PNJ scaffolds protected against radiation-induced cell death, particularly in conditions that also promoted GSC self-renewal. Additionally, cells cultured in PNJ scaffolds exhibited increased expression of the transcription factor HIF2α, which was not observed in neurosphere culture, providing a potential mechanistic basis for differences in radio-resistance. Differences in PNJ regulation of HIF2α in irradiated and untreated conditions also offered evidence of stem plasticity. These data show PNJ scaffolds provide a unique biomaterial for evaluating dynamic microenvironmental regulation of GSC self-renewal, radioresistance, and stem plasticity.
Collapse
Affiliation(s)
- John M. Heffernan
- Ivy Brain Tumor Center, Barrow Neurological Institute, 350 W Thomas Rd, Phoenix, AZ 85013, USA, School of Biological and Health Systems Engineering, Arizona State University, PO Box 879709, Tempe, AZ 85287, USA, Sonoran Biosciences, 1048 E Knight Ln, Tempe, AZ, USA
| | - James B. McNamara
- Ivy Brain Tumor Center, Barrow Neurological Institute, 350 W Thomas Rd, Phoenix, AZ 85013, USA, Department of Chemistry and Biochemistry, University of Arizona, 1306 E. University Blvd., Tucson, Arizona 85721, USA
| | - Brent L. Vernon
- School of Biological and Health Systems Engineering, Arizona State University, PO Box 879709, Tempe, AZ 85287, USA
| | - Shwetal Mehta
- Ivy Brain Tumor Center, Barrow Neurological Institute, 350 W Thomas Rd, Phoenix, AZ 85013, USA
| | - Rachael W. Sirianni
- Ivy Brain Tumor Center, Barrow Neurological Institute, 350 W Thomas Rd, Phoenix, AZ 85013, USA, School of Biological and Health Systems Engineering, Arizona State University, PO Box 879709, Tempe, AZ 85287, USA, Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| |
Collapse
|
26
|
Aguilar-Morante D, Gómez-Cabello D, Quek H, Liu T, Hamerlik P, Lim YC. Therapeutic Opportunities of Disrupting Genome Integrity in Adult Diffuse Glioma. Biomedicines 2022; 10:biomedicines10020332. [PMID: 35203541 PMCID: PMC8869545 DOI: 10.3390/biomedicines10020332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 11/09/2022] Open
Abstract
Adult diffuse glioma, particularly glioblastoma (GBM), is a devastating tumor of the central nervous system. The existential threat of this disease requires on-going treatment to counteract tumor progression. The present outcome is discouraging as most patients will succumb to this disease. The low cure rate is consistent with the failure of first-line therapy, radiation and temozolomide (TMZ). Even with their therapeutic mechanism of action to incur lethal DNA lesions, tumor growth remains undeterred. Delivering additional treatments only delays the inescapable development of therapeutic tolerance and disease recurrence. The urgency of establishing lifelong tumor control needs to be re-examined with a greater focus on eliminating resistance. Early genomic and transcriptome studies suggest each tumor subtype possesses a unique molecular network to safeguard genome integrity. Subsequent seminal work on post-therapy tumor progression sheds light on the involvement of DNA repair as the causative contributor for hypermutation and therapeutic failure. In this review, we will provide an overview of known molecular factors that influence the engagement of different DNA repair pathways, including targetable vulnerabilities, which can be exploited for clinical benefit with the use of specific inhibitors.
Collapse
Affiliation(s)
- Diana Aguilar-Morante
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain; (D.A.-M.); (D.G.-C.)
| | - Daniel Gómez-Cabello
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain; (D.A.-M.); (D.G.-C.)
| | - Hazel Quek
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia;
| | - Tianqing Liu
- NICM Health Research Institute, Westmead, NSW 2145, Australia;
| | | | - Yi Chieh Lim
- Danish Cancer Society, 2100 København, Denmark;
- Correspondence: ; Tel.: +45-35-257-413
| |
Collapse
|
27
|
Temozolomide-Acquired Resistance Is Associated with Modulation of the Integrin Repertoire in Glioblastoma, Impact of α5β1 Integrin. Cancers (Basel) 2022; 14:cancers14020369. [PMID: 35053532 PMCID: PMC8773618 DOI: 10.3390/cancers14020369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 02/04/2023] Open
Abstract
Despite extensive treatment, glioblastoma inevitably recurs, leading to an overall survival of around 16 months. Understanding why and how tumours resist to radio/chemotherapies is crucial to overcome this unmet oncological challenge. Primary and acquired resistance to Temozolomide (TMZ), the standard-of-care chemotherapeutic drug, have been the subjects of several studies. This work aimed to evaluate molecular and phenotypic changes occurring during and after TMZ treatment in a glioblastoma cell model, the U87MG. These initially TMZ-sensitive cells acquire long-lasting resistance even after removal of the drug. Transcriptomic analysis revealed that profound changes occurred between parental and resistant cells, particularly at the level of the integrin repertoire. Focusing on α5β1 integrin, which we proposed earlier as a glioblastoma therapeutic target, we demonstrated that its expression was decreased in the presence of TMZ but restored after removal of the drug. In this glioblastoma model of recurrence, α5β1 integrin plays an important role in the proliferation and migration of tumoral cells. We also demonstrated that reactivating p53 by MDM2 inhibitors concomitantly with the inhibition of this integrin in recurrent cells may overcome the TMZ resistance. Our results may explain some integrin-based targeted therapy failure as integrin expressions are highly switchable during the time of treatment. We also propose an alternative way to alter the viability of recurrent glioblastoma cells expressing a high level of α5β1 integrin.
Collapse
|
28
|
Tanase C, Enciu AM, Codrici E, Popescu ID, Dudau M, Dobri AM, Pop S, Mihai S, Gheorghișan-Gălățeanu AA, Hinescu ME. Fatty Acids, CD36, Thrombospondin-1, and CD47 in Glioblastoma: Together and/or Separately? Int J Mol Sci 2022; 23:ijms23020604. [PMID: 35054787 PMCID: PMC8776193 DOI: 10.3390/ijms23020604] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/30/2021] [Accepted: 01/03/2022] [Indexed: 02/04/2023] Open
Abstract
Glioblastoma (GBM) is one of the most aggressive tumors of the central nervous system, characterized by a wide range of inter- and intratumor heterogeneity. Accumulation of fatty acids (FA) metabolites was associated with a low survival rate in high-grade glioma patients. The diversity of brain lipids, especially polyunsaturated fatty acids (PUFAs), is greater than in all other organs and several classes of proteins, such as FA transport proteins (FATPs), and FA translocases are considered principal candidates for PUFAs transport through BBB and delivery of PUFAs to brain cells. Among these, the CD36 FA translocase promotes long-chain FA uptake as well as oxidated lipoproteins. Moreover, CD36 binds and recognizes thrombospondin-1 (TSP-1), an extracellular matrix protein that was shown to play a multifaceted role in cancer as part of the tumor microenvironment. Effects on tumor cells are mediated by TSP-1 through the interaction with CD36 as well as CD47, a member of the immunoglobulin superfamily. TSP-1/CD47 interactions have an important role in the modulation of glioma cell invasion and angiogenesis in GBM. Separately, FA, the two membrane receptors CD36, CD47, and their joint ligand TSP-1 all play a part in GBM pathogenesis. The last research has put in light their interconnection/interrelationship in order to exert a cumulative effect in the modulation of the GBM molecular network.
Collapse
Affiliation(s)
- Cristiana Tanase
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (A.M.E.); (E.C.); (I.D.P.); (M.D.); (A.M.D.); (S.P.); (S.M.); (M.E.H.)
- Department of Cell Biology and Clinical Biochemistry, Faculty of Medicine, Titu Maiorescu University, 031593 Bucharest, Romania
- Correspondence: ; Tel.: +40-74-020-4717
| | - Ana Maria Enciu
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (A.M.E.); (E.C.); (I.D.P.); (M.D.); (A.M.D.); (S.P.); (S.M.); (M.E.H.)
- Department of Cell Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Elena Codrici
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (A.M.E.); (E.C.); (I.D.P.); (M.D.); (A.M.D.); (S.P.); (S.M.); (M.E.H.)
| | - Ionela Daniela Popescu
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (A.M.E.); (E.C.); (I.D.P.); (M.D.); (A.M.D.); (S.P.); (S.M.); (M.E.H.)
| | - Maria Dudau
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (A.M.E.); (E.C.); (I.D.P.); (M.D.); (A.M.D.); (S.P.); (S.M.); (M.E.H.)
- Department of Cell Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Ana Maria Dobri
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (A.M.E.); (E.C.); (I.D.P.); (M.D.); (A.M.D.); (S.P.); (S.M.); (M.E.H.)
- Department of Cell Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
- Department of Neurology, National Institute of Neurology and Neurovascular Diseases, 077160 Bucharest, Romania
| | - Sevinci Pop
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (A.M.E.); (E.C.); (I.D.P.); (M.D.); (A.M.D.); (S.P.); (S.M.); (M.E.H.)
| | - Simona Mihai
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (A.M.E.); (E.C.); (I.D.P.); (M.D.); (A.M.D.); (S.P.); (S.M.); (M.E.H.)
| | - Ancuța-Augustina Gheorghișan-Gălățeanu
- Department of Cell Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
- ‘C.I. Parhon’ National Institute of Endocrinology, 001863 Bucharest, Romania
| | - Mihail Eugen Hinescu
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (A.M.E.); (E.C.); (I.D.P.); (M.D.); (A.M.D.); (S.P.); (S.M.); (M.E.H.)
- Department of Cell Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| |
Collapse
|
29
|
Yabo YA, Niclou SP, Golebiewska A. Cancer cell heterogeneity and plasticity: A paradigm shift in glioblastoma. Neuro Oncol 2021; 24:669-682. [PMID: 34932099 PMCID: PMC9071273 DOI: 10.1093/neuonc/noab269] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Phenotypic plasticity has emerged as a major contributor to intra-tumoral heterogeneity and treatment resistance in cancer. Increasing evidence shows that glioblastoma (GBM) cells display prominent intrinsic plasticity and reversibly adapt to dynamic microenvironmental conditions. Limited genetic evolution at recurrence further suggests that resistance mechanisms also largely operate at the phenotypic level. Here we review recent literature underpinning the role of GBM plasticity in creating gradients of heterogeneous cells including those that carry cancer stem cell (CSC) properties. A historical perspective from the hierarchical to the nonhierarchical concept of CSCs towards the recent appreciation of GBM plasticity is provided. Cellular states interact dynamically with each other and with the surrounding brain to shape a flexible tumor ecosystem, which enables swift adaptation to external pressure including treatment. We present the key components regulating intra-tumoral phenotypic heterogeneity and the equilibrium of phenotypic states, including genetic, epigenetic, and microenvironmental factors. We further discuss plasticity in the context of intrinsic tumor resistance, where a variable balance between preexisting resistant cells and adaptive persisters leads to reversible adaptation upon treatment. Innovative efforts targeting regulators of plasticity and mechanisms of state transitions towards treatment-resistant states are needed to restrict the adaptive capacities of GBM.
Collapse
Affiliation(s)
- Yahaya A Yabo
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg.,Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Simone P Niclou
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg.,Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Anna Golebiewska
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| |
Collapse
|
30
|
The Impact of Astrocytes and Endothelial Cells on Glioblastoma Stemness Marker Expression in Multicellular Spheroids. Cell Mol Bioeng 2021; 14:639-651. [PMID: 34900016 DOI: 10.1007/s12195-021-00691-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 07/12/2021] [Indexed: 10/20/2022] Open
Abstract
Introduction Glioblastoma multiforme (GBM), the most common primary brain tumor in adults, is extremely malignant and lethal. GBM tumors are highly heterogenous, being comprised of cellular and matrix components, which contribute to tumor cell invasion, cancer stem cell maintenance, and drug resistance. Here, we developed a heterotypic 3D spheroid model integrating GBM cells with astrocytes and endothelial cells (ECs) to better simulate the cellular components of the tumor microenvironment and investigate their impact on the stemness marker expression of GBM cells, which has not been previously investigated. Methods We used U87 GBM cells, C8-D1A mouse astrocytes, and human umbilical vein ECs to construct co- and tri-culture spheroid models in low-attachment U-well plates. We characterized the expression of known stemness markers NESTIN, SOX2, CD133, NANOG, and OCT4 in these models and compared it to respective mixed monoculture spheroids (control) using qRT-PCR and immunostaining. Results We incorporated GBM cells and astrocytes/ECs in 1:1, 1:2, 1:4, and 1:9 ratio and observed spontaneous self-assembled spheroids in all coculture conditions. We observed changing spheroid size dynamics over 7 days and an increased expression in stemness markers in GBM-astrocyte and GBM-EC coculture spheroids in 1:4 and 1:9 coculture conditions, respectively. In a triculture model employing GBM cells, astrocytes, and ECs in a 1:4:9 ratio, we found an increased expression of all the stemness markers. Conclusions We elucidated the impact of astrocytes and ECs on GBM stemness marker expression. This multicellular spheroid model may provide an important tool for investigating the crosstalk between cell types in GBM. Supplementary Information The online version contains supplementary material available at 10.1007/s12195-021-00691-y.
Collapse
|
31
|
Audesse AJ, Karashchuk G, Gardell ZA, Lakis NS, Maybury-Lewis SY, Brown AK, Leeman DS, Teo YV, Neretti N, Anthony DC, Brodsky AS, Webb AE. FOXO3 regulates a common genomic program in aging and glioblastoma stem cells. AGING AND CANCER 2021; 2:137-159. [PMID: 36303712 PMCID: PMC9601604 DOI: 10.1002/aac2.12043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 11/14/2021] [Indexed: 01/14/2023]
Abstract
Background Glioblastoma (GBM) is an aggressive, age-associated malignant glioma that contains populations of cancer stem cells. These glioma stem cells (GSCs) evade therapeutic interventions and repopulate tumors due to their existence in a slowly cycling quiescent state. Although aging is well known to increase cancer initiation, the extent to which the mechanisms supporting GSC tumorigenicity are related to physiological aging remains unknown. Aims Here, we investigate the transcriptional mechanisms by which Forkhead Box O3 (FOXO3), a transcriptional regulator that promotes healthy aging, affects GSC function and the extent to which FOXO3 transcriptional networks are dysregulated in aging and GBM. Methods and results We performed transcriptome analysis of clinical GBM tumors and observed that high FOXO3 activity is associated with gene expression signatures of stem cell quiescence, reduced oxidative metabolism, and improved patient outcomes. Consistent with these findings, we show that elevated FOXO3 activity significantly reduces the proliferation of GBM-derived GSCs. Using RNA-seq, we find that functional ablation of FOXO3 in GSCs rewires the transcriptional circuitry associated with metabolism, epigenetic stability, quiescence, and differentiation. Since FOXO3 has been implicated in healthy aging, we then investigated the extent to which it regulates common transcriptional programs in aging neural stem cells (NSCs) and GSCs. We uncover a shared transcriptional program and, most strikingly, find that FOXO3-regulated pathways are associated with altered mitochondrial functions in both aging and GBM. Conclusions This work identifies a FOXO-associated transcriptional program that correlates between GSCs and aging NSCs and is enriched for metabolic and stemness pathways connected with GBM and aging.
Collapse
Affiliation(s)
- Amanda J. Audesse
- Neuroscience Graduate Program, Brown University, Providence, Rhode Island, USA
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Galina Karashchuk
- Department of Pathology and Laboratory Medicine, Lifespan Academic Medical Center and Warren Alpert Medical School at Brown University, Providence, Rhode Island, USA
| | - Zachary A. Gardell
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Nelli S. Lakis
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Sun Y. Maybury-Lewis
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, USA
- Molecular Biology, Cell Biology, and Biochemistry Graduate Program, Brown University, Providence, Rhode Island, USA
| | - Abigail K. Brown
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, USA
- Molecular Biology, Cell Biology, and Biochemistry Graduate Program, Brown University, Providence, Rhode Island, USA
| | - Dena S. Leeman
- Department of Discovery Immunology, Genentech, Inc., South San Francisco, California, USA
| | - Yee Voan Teo
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, USA
- Molecular Biology, Cell Biology, and Biochemistry Graduate Program, Brown University, Providence, Rhode Island, USA
| | - Nicola Neretti
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, USA
- Center on the Biology of Aging, Brown University, Providence, Rhode Island, USA
| | - Douglas C. Anthony
- Department of Pathology and Laboratory Medicine, Lifespan Academic Medical Center and Warren Alpert Medical School at Brown University, Providence, Rhode Island, USA
- Department of Neurology, Brown University, Providence, Rhode Island, USA
| | - Alexander S. Brodsky
- Department of Pathology and Laboratory Medicine, Lifespan Academic Medical Center and Warren Alpert Medical School at Brown University, Providence, Rhode Island, USA
| | - Ashley E. Webb
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, USA
- Center on the Biology of Aging, Brown University, Providence, Rhode Island, USA
- Carney Institute for Brain Science, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
32
|
Stevanovic M, Kovacevic-Grujicic N, Mojsin M, Milivojevic M, Drakulic D. SOX transcription factors and glioma stem cells: Choosing between stemness and differentiation. World J Stem Cells 2021; 13:1417-1445. [PMID: 34786152 PMCID: PMC8567447 DOI: 10.4252/wjsc.v13.i10.1417] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/15/2021] [Accepted: 09/16/2021] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma (GBM) is the most common, most aggressive and deadliest brain tumor. Recently, remarkable progress has been made towards understanding the cellular and molecular biology of gliomas. GBM tumor initiation, progression and relapse as well as resistance to treatments are associated with glioma stem cells (GSCs). GSCs exhibit a high proliferation rate and self-renewal capacity and the ability to differentiate into diverse cell types, generating a range of distinct cell types within the tumor, leading to cellular heterogeneity. GBM tumors may contain different subsets of GSCs, and some of them may adopt a quiescent state that protects them against chemotherapy and radiotherapy. GSCs enriched in recurrent gliomas acquire more aggressive and therapy-resistant properties, making them more malignant, able to rapidly spread. The impact of SOX transcription factors (TFs) on brain tumors has been extensively studied in the last decade. Almost all SOX genes are expressed in GBM, and their expression levels are associated with patient prognosis and survival. Numerous SOX TFs are involved in the maintenance of the stemness of GSCs or play a role in the initiation of GSC differentiation. The fine-tuning of SOX gene expression levels controls the balance between cell stemness and differentiation. Therefore, innovative therapies targeting SOX TFs are emerging as promising tools for combatting GBM. Combatting GBM has been a demanding and challenging goal for decades. The current therapeutic strategies have not yet provided a cure for GBM and have only resulted in a slight improvement in patient survival. Novel approaches will require the fine adjustment of multimodal therapeutic strategies that simultaneously target numerous hallmarks of cancer cells to win the battle against GBM.
Collapse
Affiliation(s)
- Milena Stevanovic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade 11042, Serbia
- Chair Biochemistry and Molecular Biology, Faculty of Biology, University of Belgrade, Belgrade 11158, Serbia
- Department of Chemical and Biological Sciences, Serbian Academy of Sciences and Arts, Belgrade 11000, Serbia.
| | - Natasa Kovacevic-Grujicic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade 11042, Serbia
| | - Marija Mojsin
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade 11042, Serbia
| | - Milena Milivojevic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade 11042, Serbia
| | - Danijela Drakulic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade 11042, Serbia
| |
Collapse
|
33
|
Momeny M, Shamsaiegahkani S, Kashani B, Hamzehlou S, Esmaeili F, Yousefi H, Irani S, Mousavi SA, Ghaffari SH. Cediranib, a pan-inhibitor of vascular endothelial growth factor receptors, inhibits proliferation and enhances therapeutic sensitivity in glioblastoma cells. Life Sci 2021; 287:120100. [PMID: 34715143 DOI: 10.1016/j.lfs.2021.120100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/23/2021] [Accepted: 10/24/2021] [Indexed: 12/26/2022]
Abstract
AIMS Glioblastoma (GB) is the most aggressive type of brain tumor. Rapid progression, active angiogenesis, and therapy resistance are major reasons for its high mortality. Elevated expression of members of the vascular endothelial growth factor (VEGF) family suggests that anti-VEGF therapies may be potent anti-glioma therapeutic approaches. Here, we evaluated the anti-tumor activity of cediranib, a pan inhibitor of the VEGF receptors, on GB cells. MATERIALS AND METHODS Anti-proliferative effects of cediranib were determined using MTT, crystal-violet staining, clonogenic and anoikis resistance assays. Apoptosis induction was assessed by Annexin V/PI staining and Western blot analysis and aggressive abilities of GB cells were investigated using cell migration/invasion assays and zymography. Small-interfering RNA (siRNA)-mediated Knockdown was used to study resistance mechanisms. The anti-proliferative and apoptotic effects of cediranib in combination with radiotherapy, temozolomide, bevacizumab were also evaluated using MTT, Annexin V/PI staining and Western blot analysis for cleaved PARP-1. KEY FINDINGS Cediranib reduced GB cell proliferation, induced apoptotic cell death and inhibited the aggressive abilities of GB cells. Cediranib synergistically increased the anti-proliferative and apoptotic effects of radiotherapy and bevacizumab and augmented the sensitivity of GB cells to temozolomide chemotherapy. In addition, knockdown of MET and AKT potentiated cediranib sensitivity in cediranib-resistant GB cells. SIGNIFICANCE These findings suggest that cediranib, alone or in combination with other therapeutics, is a promising strategy for the treatment of GB and provide a rationale for further investigation of the therapeutic potential of cediranib for the treatment of this fatal malignancy.
Collapse
Affiliation(s)
| | - Sahar Shamsaiegahkani
- Hematology/Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahareh Kashani
- Hematology/Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Hamzehlou
- Hematology/Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Esmaeili
- Hematology/Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Yousefi
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Centre, New Orleans, USA
| | - Shiva Irani
- Department of Biology Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Seyed A Mousavi
- Hematology/Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed H Ghaffari
- Hematology/Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
34
|
The Immune Privilege of Cancer Stem Cells: A Key to Understanding Tumor Immune Escape and Therapy Failure. Cells 2021; 10:cells10092361. [PMID: 34572009 PMCID: PMC8469208 DOI: 10.3390/cells10092361] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/04/2021] [Accepted: 09/06/2021] [Indexed: 12/15/2022] Open
Abstract
Cancer stem cells (CSCs) are broadly considered immature, multipotent, tumorigenic cells within the tumor mass, endowed with the ability to self-renew and escape immune control. All these features contribute to place CSCs at the pinnacle of tumor aggressiveness and (immune) therapy resistance. The immune privileged status of CSCs is induced and preserved by various mechanisms that directly affect them (e.g., the downregulation of the major histocompatibility complex class I) and indirectly are induced in the host immune cells (e.g., activation of immune suppressive cells). Therefore, deeper insights into the immuno-biology of CSCs are essential in our pursuit to find new therapeutic opportunities that eradicate cancer (stem) cells. Here, we review and discuss the ability of CSCs to evade the innate and adaptive immune system, as we offer a view of the immunotherapeutic strategies adopted to potentiate and address specific subsets of (engineered) immune cells against CSCs.
Collapse
|
35
|
Zorzan M, Del Vecchio C, Vogiatzis S, Saccon E, Parolin C, Palù G, Calistri A, Mucignat-Caretta C. Targeting the Regulatory Subunit R2Alpha of Protein Kinase A in Human Glioblastoma through shRNA-Expressing Lentiviral Vectors. Viruses 2021; 13:v13071361. [PMID: 34372567 PMCID: PMC8310305 DOI: 10.3390/v13071361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/25/2021] [Accepted: 07/10/2021] [Indexed: 01/17/2023] Open
Abstract
Glioblastoma is the most malignant and most common form of brain tumor, still today associated with a poor 14-months median survival from diagnosis. Protein kinase A, particularly its regulatory subunit R2Alpha, presents a typical intracellular distribution in glioblastoma cells compared to the healthy brain parenchyma and this peculiarity might be exploited in a therapeutic setting. In the present study, a third-generation lentiviral system for delivery of shRNA targeting the regulatory subunit R2Alpha of protein kinase A was developed. Generated lentiviral vectors are able to induce an efficient and stable downregulation of R2Alpha in different cellular models, including non-stem and stem-like glioblastoma cells. In addition, our data suggest a potential correlation between silencing of the regulatory subunit of protein kinase A and reduced viability of tumor cells, apparently due to a reduction in replication rate. Thus, our findings support the role of protein kinase A as a promising target for novel anti-glioma therapies.
Collapse
|
36
|
Prrx1 promotes stemness and angiogenesis via activating TGF-β/smad pathway and upregulating proangiogenic factors in glioma. Cell Death Dis 2021; 12:615. [PMID: 34131109 PMCID: PMC8206106 DOI: 10.1038/s41419-021-03882-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 05/18/2021] [Accepted: 05/21/2021] [Indexed: 02/07/2023]
Abstract
Glioma is one of the most lethal cancers with highly vascularized networks and growing evidences have identified glioma stem cells (GSCs) to account for excessive angiogenesis in glioma. Aberrant expression of paired-related homeobox1 (Prrx1) has been functionally associated with cancer stem cells including GSCs. In this study, Prrx1 was found to be markedly upregulated in glioma specimens and elevated Prrx1 expression was inversely correlated with prognosis of glioma patients. Prrx1 potentiated stemness acquisition in non-stem tumor cells (NSTCs) and stemness maintenance in GSCs, accompanied with increased expression of stemness markers such as SOX2. Prrx1 also promoted glioma angiogenesis by upregulating proangiogenic factors such as VEGF. Consistently, silencing Prrx1 markedly inhibited glioma proliferation, stemness, and angiogenesis in vivo. Using a combination of subcellular proteomics and in vitro analyses, we revealed that Prrx1 directly bound to the promoter regions of TGF-β1 gene, upregulated TGF-β1 expression, and ultimately activated the TGF-β/smad pathway. Silencing TGF-β1 mitigated the malignant behaviors induced by Prrx1. Activation of this pathway cooperates with Prrx1 to upregulate the expression of stemness-related genes and proangiogenic factors. In summary, our findings revealed that Prrx1/TGF-β/smad signal axis exerted a critical role in glioma stemness and angiogeneis. Disrupting the function of this signal axis might represent a new therapeutic strategy in glioma patients.
Collapse
|
37
|
Feghhi M, Rezaie J, Mostafanezhad K, Jabbari N. Bystander effects induced by electron beam-irradiated MCF-7 cells: a potential mechanism of therapy resistance. Breast Cancer Res Treat 2021; 187:657-671. [PMID: 34043123 DOI: 10.1007/s10549-021-06250-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 05/04/2021] [Indexed: 12/09/2022]
Abstract
PURPOSE The distinct direct and non-targeting effects of electron beam radiation on MCF-7 cells remain obscure. We aimed to investigate the effect of electron beam irradiation (EBI) and conditioned media (CM) of the irradiated MCF-7 cells on MCF-7 cells. The cytotoxic effects of CM from irradiated MCF-7 cells on the mesenchymal stem cells and human umbilical vein endothelial cells (HUVECs) were also examined. METHODS Cell viability and apoptosis were assayed via MTT and flow cytometry analysis, respectively. The production of ROS (reactive oxygen species) was evaluated by the chemical fluorometric method, while the amount of extracellular vesicles was detected via acetylcholinesterase activity assay. Expression of genes involved in apoptosis, including caspase-3, -8, -9, and stemness such as Sox-2 and Oct-4, were calculated through qPCR. The wound healing rate of cells was monitored via in vitro scratch assay. RESULTS Compared to the control group, EBI groups showed decreased cell viability but increased apoptosis and ROS as well as acetylcholinesterase activity dose-dependently (P < 0.05). Concurrently with increasing the dose of the electron beam, the transcript levels of apoptotic genes (caspase-3, -8, -9) and stemness-related genes (Sox-2 and Oct-4) were up-regulated following EBI. The wound healing rate of irradiated MCF-7 cells increased dose-dependently (P < 0.05). Similar results were observed after treatment with CM from irradiated MCF-7 cells. Additionally, CM from irradiated MCF-7 cells decreased the viability of MCF-7 cells, mesenchymal stem cells, and HUVECs (P < 0.05). CONCLUSION MCF-7 cells treated with an electron beam and CMs from irradiated MCF-7 cells exhibit an up-regulation in both genes involved in the apoptosis pathway and stemness. As a result, EBI can affect apoptosis and stemness in MCF-7 cells in direct and bystander manners. However, specific signaling pathways require careful evaluation to provide an understanding of the mechanisms involved in the EBI-induced alternation in tumor cell dynamics.
Collapse
Affiliation(s)
- Maryam Feghhi
- Department of Medical Physics, Urmia University of Medical Sciences, Urmia, Iran
| | - Jafar Rezaie
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Nasrollah Jabbari
- Department of Medical Physics and Imaging, Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
38
|
Integration of machine learning and genome-scale metabolic modeling identifies multi-omics biomarkers for radiation resistance. Nat Commun 2021; 12:2700. [PMID: 33976213 PMCID: PMC8113601 DOI: 10.1038/s41467-021-22989-1] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 04/09/2021] [Indexed: 02/07/2023] Open
Abstract
Resistance to ionizing radiation, a first-line therapy for many cancers, is a major clinical challenge. Personalized prediction of tumor radiosensitivity is not currently implemented clinically due to insufficient accuracy of existing machine learning classifiers. Despite the acknowledged role of tumor metabolism in radiation response, metabolomics data is rarely collected in large multi-omics initiatives such as The Cancer Genome Atlas (TCGA) and consequently omitted from algorithm development. In this study, we circumvent the paucity of personalized metabolomics information by characterizing 915 TCGA patient tumors with genome-scale metabolic Flux Balance Analysis models generated from transcriptomic and genomic datasets. Metabolic biomarkers differentiating radiation-sensitive and -resistant tumors are predicted and experimentally validated, enabling integration of metabolic features with other multi-omics datasets into ensemble-based machine learning classifiers for radiation response. These multi-omics classifiers show improved classification accuracy, identify clinical patient subgroups, and demonstrate the utility of personalized blood-based metabolic biomarkers for radiation sensitivity. The integration of machine learning with genome-scale metabolic modeling represents a significant methodological advancement for identifying prognostic metabolite biomarkers and predicting radiosensitivity for individual patients.
Collapse
|
39
|
Patient-derived glioblastoma stem cells transfer mitochondria through tunneling nanotubes in tumor organoids. Biochem J 2021; 478:21-39. [PMID: 33245115 PMCID: PMC7800365 DOI: 10.1042/bcj20200710] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/20/2020] [Accepted: 11/27/2020] [Indexed: 12/13/2022]
Abstract
Glioblastoma (GBM) is the most aggressive brain cancer and its relapse after surgery, chemo and radiotherapy appears to be led by GBM stem cells (GSCs). Also, tumor networking and intercellular communication play a major role in driving GBM therapy-resistance. Tunneling Nanotubes (TNTs), thin membranous open-ended channels connecting distant cells, have been observed in several types of cancer, where they emerge to drive a more malignant phenotype. Here, we investigated whether GBM cells are capable to intercommunicate by TNTs. Two GBM stem-like cells (GSLCs) were obtained from the external and infiltrative zone of one GBM from one patient. We show, for the first time, that both GSLCs, grown in classical 2D culture and in 3D-tumor organoids, formed functional TNTs which allowed mitochondria transfer. In the organoid model, recapitulative of several tumor's features, we observed the formation of a network between cells constituted of both Tumor Microtubes (TMs), previously observed in vivo, and TNTs. In addition, the two GSLCs exhibited different responses to irradiation in terms of TNT induction and mitochondria transfer, although the correlation with the disease progression and therapy-resistance needs to be further addressed. Thus, TNT-based communication is active in different GSLCs derived from the external tumoral areas associated to GBM relapse, and we propose that they participate together with TMs in tumor networking.
Collapse
|
40
|
Shireman JM, Atashi F, Lee G, Ali ES, Saathoff MR, Park CH, Savchuk S, Baisiwala S, Miska J, Lesniak MS, James CD, Stupp R, Kumthekar P, Horbinski CM, Ben-Sahra I, Ahmed AU. De novo purine biosynthesis is a major driver of chemoresistance in glioblastoma. Brain 2021; 144:1230-1246. [PMID: 33855339 DOI: 10.1093/brain/awab020] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/08/2020] [Accepted: 11/11/2020] [Indexed: 12/16/2022] Open
Abstract
Glioblastoma is a primary brain cancer with a near 100% recurrence rate. Upon recurrence, the tumour is resistant to all conventional therapies, and because of this, 5-year survival is dismal. One of the major drivers of this high recurrence rate is the ability of glioblastoma cells to adapt to complex changes within the tumour microenvironment. To elucidate this adaptation's molecular mechanisms, specifically during temozolomide chemotherapy, we used chromatin immunoprecipitation followed by sequencing and gene expression analysis. We identified a molecular circuit in which the expression of ciliary protein ADP-ribosylation factor-like protein 13B (ARL13B) is epigenetically regulated to promote adaptation to chemotherapy. Immuno-precipitation combined with liquid chromatography-mass spectrometry binding partner analysis revealed that that ARL13B interacts with the purine biosynthetic enzyme inosine-5'-monophosphate dehydrogenase 2 (IMPDH2). Further, radioisotope tracing revealed that this interaction functions as a negative regulator for purine salvaging. Inhibition of the ARL13B-IMPDH2 interaction enhances temozolomide-induced DNA damage by forcing glioblastoma cells to rely on the purine salvage pathway. Targeting the ARLI3B-IMPDH2 circuit can be achieved using the Food and Drug Administration-approved drug, mycophenolate mofetil, which can block IMPDH2 activity and enhance the therapeutic efficacy of temozolomide. Our results suggest and support clinical evaluation of MMF in combination with temozolomide treatment in glioma patients.
Collapse
Affiliation(s)
- Jack M Shireman
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60616, USA
| | - Fatemeh Atashi
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60616, USA
| | - Gina Lee
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60616, USA
| | - Eunus S Ali
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60616, USA
| | - Miranda R Saathoff
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60616, USA
| | - Cheol H Park
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60616, USA
| | - Sol Savchuk
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60616, USA
| | - Shivani Baisiwala
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60616, USA
| | - Jason Miska
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60616, USA
| | - Maciej S Lesniak
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60616, USA
| | - C David James
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60616, USA
| | - Roger Stupp
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60616, USA
| | - Priya Kumthekar
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60616, USA
| | - Craig M Horbinski
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60616, USA
| | - Issam Ben-Sahra
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60616, USA
| | - Atique U Ahmed
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60616, USA
| |
Collapse
|
41
|
Ferrari B, Roda E, Priori EC, De Luca F, Facoetti A, Ravera M, Brandalise F, Locatelli CA, Rossi P, Bottone MG. A New Platinum-Based Prodrug Candidate for Chemotherapy and Its Synergistic Effect With Hadrontherapy: Novel Strategy to Treat Glioblastoma. Front Neurosci 2021; 15:589906. [PMID: 33828444 PMCID: PMC8019820 DOI: 10.3389/fnins.2021.589906] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 02/08/2021] [Indexed: 12/18/2022] Open
Abstract
Glioblastoma (GBM) is the most common tumor of the central nervous system. Current therapies, often associated with severe side effects, are inefficacious to contrast the GBM relapsing forms. In trying to overcome these drawbacks, (OC-6-44)-acetatodiamminedichlorido(2-(2-propynyl)octanoato)platinum(IV), also called Pt(IV)Ac-POA, has been recently synthesized. This new prodrug bearing as axial ligand (2-propynyl)octanoic acid (POA), a histone deacetylase inhibitor, has a higher activity due to (i) its high cellular accumulation by virtue of its high lipophilicity and (ii) the inhibition of histone deacetylase, which leads to the increased exposure of nuclear DNA, permitting higher platination and promoting cancer cell death. In the present study, we investigated the effects induced by Pt(IV)Ac-POA and its potential antitumor activity in human U251 glioblastoma cell line using a battery of complementary techniques, i.e., flow cytometry, immunocytochemistry, TEM, and Western blotting analyses. In addition, the synergistic effect of Pt(IV)Ac-POA associated with the innovative oncological hadrontherapy with carbon ions was investigated, with the aim to identify the most efficient anticancer treatment combination. Our in vitro data demonstrated that Pt(IV)Ac-POA is able to induce cell death, through different pathways, at concentrations lower than those tested for other platinum analogs. In particular, an enduring Pt(IV)Ac-POA antitumor effect, persisting in long-term treatment, was demonstrated. Interestingly, this effect was further amplified by the combined exposure to carbon ion radiation. In conclusion, Pt(IV)Ac-POA represents a promising prodrug to be incorporated into the treatment regimen for GBM. Moreover, the synergistic efficacy of the combined protocol using chemotherapeutic Pt(IV)Ac-POA followed by carbon ion radiation may represent a promising approach, which may overcome some typical limitations of conventional therapeutic protocols for GBM treatment.
Collapse
Affiliation(s)
- Beatrice Ferrari
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Elisa Roda
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy.,Laboratory of Clinical & Experimental Toxicology, Pavia Poison Centre, National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Erica Cecilia Priori
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Fabrizio De Luca
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Angelica Facoetti
- National Center of Oncological Hadrontherapy (Fondazione CNAO), Pavia, Italy
| | - Mauro Ravera
- Department of Sciences and Technological Innovation (DiSIT), University of Piemonte Orientale "A. Avogadro", Alessandria, Italy
| | - Federico Brandalise
- Department of Fundamental Neurosciences (NEUFO), University of Geneva, Geneva, Switzerland
| | - Carlo Alessandro Locatelli
- Laboratory of Clinical & Experimental Toxicology, Pavia Poison Centre, National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Paola Rossi
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Maria Grazia Bottone
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| |
Collapse
|
42
|
Zhou Y, Yang Q, Wang F, Zhou Z, Xu J, Cheng S, Cheng Y. Self-Assembled DNA Nanostructure as a Carrier for Targeted siRNA Delivery in Glioma Cells. Int J Nanomedicine 2021; 16:1805-1817. [PMID: 33692623 PMCID: PMC7938230 DOI: 10.2147/ijn.s295598] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/13/2021] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION RNA interference is a promising therapy in glioma treatment. However, the application of RNA interference has been limited in glioma therapy by RNA instability and the lack of tumor targeting. Here, we report a novel DNA tetrahedron, which can effectively deliver small interfering RNA to glioma cells and induce apoptosis. METHODS siRNA, a small interfering RNA that can suppress the expression of survivin in glioma, was loaded into the DNA tetrahedron (TDN). To enhance the ability of active targeting of this nanoparticle, we modified one side of the DNA nanostructure with aptamer as1411 (As-TDN-R), which can selectively recognize the nucleolin in the cytomembrane of tumor cells. The modified nanoparticles were characterized by agarose gel electrophoresis, dynamic light scattering, and transmission electron microscopy. The serum stability was evaluated by agarose gel electrophoresis. Nucleolin was detected by Western blot and immunofluorescence, and targeted cellular uptake was examined by flow cytometry. The TUNEL assay, flow cytometry, and Western Blot were used to detect apoptosis in U87 cells. The gene silencing of survivin was examined by qPCR, Western Blot, and immunofluorescence. RESULTS As-TDN-R alone showed better stability towards siRNA, indicating that TDN was a good siRNA protector. Compared with TDN alone, there was increased intercellular uptake of As-TDN-R by U87 cells, evidenced by overexpressed nucleolin in glioma cell lines. TUNEL assay, flow cytometry, and Western Blot revealed increased apoptosis in the As-TDN-R group. The downregulation of survivin protein and mRNA expression levels indicated that As-TDN-R effectively silenced the target gene. CONCLUSION The novel nanoparticle can serve as a good carrier for targeting siRNA delivery in glioma. Further exploration of the DNA nanostructure can greatly promote the application of DNA-based drug systems in glioma.
Collapse
Affiliation(s)
- Yanghao Zhou
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People’s Republic of China
| | - Qiang Yang
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People’s Republic of China
| | - Feng Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People’s Republic of China
| | - Zunjie Zhou
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People’s Republic of China
| | - Jing Xu
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People’s Republic of China
| | - Si Cheng
- Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People’s Republic of China
| | - Yuan Cheng
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People’s Republic of China
| |
Collapse
|
43
|
Chédeville AL, Madureira PA. The Role of Hypoxia in Glioblastoma Radiotherapy Resistance. Cancers (Basel) 2021; 13:542. [PMID: 33535436 PMCID: PMC7867045 DOI: 10.3390/cancers13030542] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/25/2021] [Accepted: 01/29/2021] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma (GB) (grade IV astrocytoma) is the most malignant type of primary brain tumor with a 16 months median survival time following diagnosis. Despite increasing attention regarding the development of targeted therapies for GB that resulted in around 450 clinical trials currently undergoing, radiotherapy still remains the most clinically effective treatment for these patients. Nevertheless, radiotherapy resistance (radioresistance) is commonly observed in GB patients leading to tumor recurrence and eventually patient death. It is therefore essential to unravel the molecular mechanisms underpinning GB cell radioresistance in order to develop novel strategies and combinational therapies focused on enhancing tumor cell sensitivity to radiotherapy. In this review, we present a comprehensive examination of the current literature regarding the role of hypoxia (O2 partial pressure less than 10 mmHg), a main GB microenvironmental factor, in radioresistance with the ultimate goal of identifying potential molecular markers and therapeutic targets to overcome this issue in the future.
Collapse
Affiliation(s)
- Agathe L. Chédeville
- INSERM, UMR 1287, Gustave Roussy, CEDEX 94805 Villejuif, France;
- Université Paris-Saclay, UMR 1287, Gustave Roussy, CEDEX 94805 Villejuif, France
- Gustave Roussy, UMR 1287, 114, Rue Edouard-Vaillant, CEDEX 94805 Villejuif, France
| | - Patricia A. Madureira
- Centre for Biomedical Research (CBMR), University of Algarve, Gambelas Campus, Building 8, Room 2.22, 9005-139 Faro, Portugal
| |
Collapse
|
44
|
Ruiz-Garcia H, Alvarado-Estrada K, Krishnan S, Quinones-Hinojosa A, Trifiletti DM. Nanoparticles for Stem Cell Therapy Bioengineering in Glioma. Front Bioeng Biotechnol 2020; 8:558375. [PMID: 33365304 PMCID: PMC7750507 DOI: 10.3389/fbioe.2020.558375] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 10/19/2020] [Indexed: 12/16/2022] Open
Abstract
Gliomas are a dismal disease associated with poor survival and high morbidity. Current standard treatments have reached a therapeutic plateau even after combining maximal safe resection, radiation, and chemotherapy. In this setting, stem cells (SCs) have risen as a promising therapeutic armamentarium, given their intrinsic tumor homing as well as their natural or bioengineered antitumor properties. The interplay between stem cells and other therapeutic approaches such as nanoparticles holds the potential to synergize the advantages from the combined therapeutic strategies. Nanoparticles represent a broad spectrum of synthetic and natural biomaterials that have been proven effective in expanding diagnostic and therapeutic efforts, either used alone or in combination with immune, genetic, or cellular therapies. Stem cells have been bioengineered using these biomaterials to enhance their natural properties as well as to act as their vehicle when anticancer nanoparticles need to be delivered into the tumor microenvironment in a very precise manner. Here, we describe the recent developments of this new paradigm in the treatment of malignant gliomas.
Collapse
Affiliation(s)
- Henry Ruiz-Garcia
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL, United States.,Department of Neurological Surgery, Mayo Clinic, Jacksonville, FL, United States
| | | | - Sunil Krishnan
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL, United States
| | | | - Daniel M Trifiletti
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL, United States.,Department of Neurological Surgery, Mayo Clinic, Jacksonville, FL, United States
| |
Collapse
|
45
|
Peng X, Wei Z, Gerweck LE. Making radiation therapy more effective in the era of precision medicine. PRECISION CLINICAL MEDICINE 2020; 3:272-283. [PMID: 35692625 PMCID: PMC8982539 DOI: 10.1093/pcmedi/pbaa038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/18/2020] [Accepted: 11/22/2020] [Indexed: 02/05/2023] Open
Abstract
Cancer has become a leading cause of death and constitutes an enormous burden worldwide. Radiation is a principle treatment modality used alone or in combination with other forms of therapy, with 50%–70% of cancer patients receiving radiotherapy at some point during their illness. It has been suggested that traditional radiotherapy (daily fractions of approximately 1.8–2 Gy over several weeks) might select for radioresistant tumor cell sub-populations, which, if not sterilized, give rise to local treatment failure and distant metastases. Thus, the challenge is to develop treatment strategies and schedules to eradicate the resistant subpopulation of tumorigenic cells rather than the predominant sensitive tumor cell population. With continued technological advances including enhanced conformal treatment technology, radiation oncologists can increasingly maximize the dose to tumors while sparing adjacent normal tissues, to limit toxicity and damage to the latter. Increased dose conformality also facilitates changes in treatment schedules, such as changes in dose per treatment fraction and number of treatment fractions, to enhance the therapeutic ratio. For example, the recently developed large dose per fraction treatment schedules (hypofractionation) have shown clinical advantage over conventional treatment schedules in some tumor types. Experimental studies suggest that following large acute doses of radiation, recurrent tumors, presumably sustained by the most resistant tumor cell populations, may in fact be equally or more radiation sensitive than the primary tumor. In this review, we summarize the related advances in radiotherapy, including the increasing understanding of the molecular mechanisms of radioresistance, and the targeting of these mechanisms with potent small molecule inhibitors, which may selectively sensitize tumor cells to radiation.
Collapse
Affiliation(s)
- Xingchen Peng
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Zhigong Wei
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Leo E Gerweck
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
46
|
LNX1 Modulates Notch1 Signaling to Promote Expansion of the Glioma Stem Cell Population during Temozolomide Therapy in Glioblastoma. Cancers (Basel) 2020; 12:cancers12123505. [PMID: 33255632 PMCID: PMC7759984 DOI: 10.3390/cancers12123505] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/05/2020] [Accepted: 10/12/2020] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Glioblastoma is the most common adult malignant brain tumor. It is an aggressive tumor that returns even after surgical removal and temozolomide-based chemotherapy and radiation. Our goal was to understand what genes are altered by temozolomide and how those genes may contribute to tumor return. Our work shows that one of the genes altered is LNX1, which increases the expression of Notch1, a gene important for glioblastoma progression. We further showed that the elevation of LNX1 and Notch1 results in an increase in the tumor stem cell population, a subpopulation of cells thought to help propagate a more aggressive tumor. Finally, we showed that forced reduction in LNX1 expression results in increased survival of animals implanted with glioblastoma. Together, these results suggest that LNX1 may be a novel therapeutic target that would allow modulation of Notch1 activity and the stem cell population, potentially resulting in increased patient survival. Abstract Glioblastoma (GBM) is the most common primary brain malignancy in adults, with a 100% recurrence rate and 21-month median survival. Our lab and others have shown that GBM contains a subpopulation of glioma stem cells (GSCs) that expand during chemotherapy and may contribute to therapeutic resistance and recurrence in GBM. To investigate the mechanism behind this expansion, we applied gene set expression analysis (GSEA) to patient-derived xenograft (PDX) cells in response to temozolomide (TMZ), the most commonly used chemotherapy against GBM. Results showed significant enrichment of cancer stem cell and cell cycle pathways (False Discovery Rate (FDR) < 0.25). The ligand of numb protein 1 (LNX1), a known regulator of Notch signaling by targeting negative regulator Numb, is strongly upregulated after TMZ therapy (p < 0.0001) and is negatively correlated with survival of GBM patients. LNX1 is also upregulated after TMZ therapy in multiple PDX lines with concomitant downregulations in Numb and upregulations in intracellular Notch1 (NICD). Overexpression of LNX1 results in Notch1 signaling activation and increased GSC populations. In contrast, knocking down LNX1 reverses these changes, causing a significant downregulation of NICD, reduction in stemness after TMZ therapy, and resulting in more prolonged median survival in a mouse model. Based on this, we propose that during anti-GBM chemotherapy, LNX1-regulated Notch1 signaling promotes stemness and contributes to therapeutic resistance.
Collapse
|
47
|
New Avenues in Radiotherapy of Glioblastoma: from Bench to Bedside. Curr Treat Options Neurol 2020. [DOI: 10.1007/s11940-020-00654-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
48
|
The HIF1α/HIF2α-miR210-3p network regulates glioblastoma cell proliferation, dedifferentiation and chemoresistance through EGF under hypoxic conditions. Cell Death Dis 2020; 11:992. [PMID: 33208727 PMCID: PMC7674439 DOI: 10.1038/s41419-020-03150-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 10/14/2020] [Accepted: 10/16/2020] [Indexed: 12/20/2022]
Abstract
Hypoxia-inducible factor 1α (HIF1α) promotes the malignant progression of glioblastoma under hypoxic conditions, leading to a poor prognosis for patients with glioblastoma; however, none of the therapies targeting HIF1α in glioblastoma have successfully eradicated the tumour. Therefore, we focused on the reason and found that treatments targeting HIF1α and HIF2α simultaneously increased tumour volume, but the combination of HIF1α/HIF2α-targeted therapies with temozolomide (TMZ) reduced tumourigenesis and significantly improved chemosensitization. Moreover, miR-210-3p induced HIF1α expression but inhibited HIF2α expression, suggesting that miR-210-3p regulates HIF1α/HIF2α expression. Epidermal growth factor (EGF) has been shown to upregulate HIF1α expression under hypoxic conditions. However, in the present study, in addition to the signalling pathways mentioned above, the upstream proteins HIF1α and HIF2α have been shown to induce EGF expression by binding to the sequences AGGCGTGG and GGGCGTGG. Briefly, in a hypoxic microenvironment the HIF1α/HIF2α-miR210-3p network promotes the malignant progression of glioblastoma through a positive feedback loop with EGF. Additionally, differentiated glioblastoma cells underwent dedifferentiation to produce glioma stem cells under hypoxic conditions, and simultaneous knockout of HIF1α and HIF2α inhibited cell cycle arrest but promoted proliferation with decreased stemness, promoting glioblastoma cell chemosensitization. In summary, both HIF1α and HIF2α regulate glioblastoma cell proliferation, dedifferentiation and chemoresistance through a specific pathway, which is important for glioblastoma treatments.
Collapse
|
49
|
Temozolomide Treatment Increases Fatty Acid Uptake in Glioblastoma Stem Cells. Cancers (Basel) 2020; 12:cancers12113126. [PMID: 33114573 PMCID: PMC7693784 DOI: 10.3390/cancers12113126] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/15/2020] [Accepted: 10/21/2020] [Indexed: 01/13/2023] Open
Abstract
Simple Summary Patients diagnosed with glioblastoma (GBM) brain tumors typically survive less than two years, despite aggressive therapy with surgery, radiation, and chemotherapy. A major factor underlying this lethality is the ability of GBM tumors to adapt to stress, including the stress of treatment. The role of metabolism in this process remains incompletely understood. We, therefore, explored the connection between cellular phenotype, chemotherapeutic stress, and metabolism in GBM. We found that inducing changes in GBM phenotypes led to alterations in metabolic behavior. Further, during treatment with chemotherapy, GBM cells that became resistant to therapy increased their fatty acid uptake. These therapy-induced alterations in nutrient uptake may underlie therapy resistance and deadly recurrence. Abstract Among all cancers, glioblastoma (GBM) remains one of the least treatable. One key factor in this resistance is a subpopulation of tumor cells termed glioma stem cells (GSCs). These cells are highly resistant to current treatment modalities, possess marked self-renewal capacity, and are considered key drivers of tumor recurrence. Further complicating an understanding of GBM, evidence shows that the GSC population is not a pre-ordained and static group of cells but also includes previously differentiated GBM cells that have attained a GSC state secondary to environmental cues. The metabolic behavior of GBM cells undergoing plasticity remains incompletely understood. To that end, we probed the connection between GSCs, environmental cues, and metabolism. Using patient-derived xenograft cells, mouse models, transcriptomics, and metabolic analyses, we found that cell state changes are accompanied by sharp changes in metabolic phenotype. Further, treatment with temozolomide, the current standard of care drug for GBM, altered the metabolism of GBM cells and increased fatty acid uptake both in vitro and in vivo in the plasticity driven GSC population. These results indicate that temozolomide-induced changes in cell state are accompanied by metabolic shifts—a potentially novel target for enhancing the effectiveness of current treatment modalities.
Collapse
|
50
|
Cho YH, Ro EJ, Yoon JS, Mizutani T, Kang DW, Park JC, Il Kim T, Clevers H, Choi KY. 5-FU promotes stemness of colorectal cancer via p53-mediated WNT/β-catenin pathway activation. Nat Commun 2020; 11:5321. [PMID: 33087710 PMCID: PMC7578039 DOI: 10.1038/s41467-020-19173-2] [Citation(s) in RCA: 198] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 09/29/2020] [Indexed: 02/08/2023] Open
Abstract
5-Fluorouracil (5-FU) remains the first-line treatment for colorectal cancer (CRC). Although 5-FU initially de-bulks the tumor mass, recurrence after chemotherapy is the barrier to effective clinical outcomes for CRC patients. Here, we demonstrate that p53 promotes WNT3 transcription, leading to activation of the WNT/β-catenin pathway in ApcMin/+/Lgr5EGFP mice, CRC patient-derived tumor organoids (PDTOs) and patient-derived tumor cells (PDCs). Through this regulation, 5-FU induces activation and enrichment of cancer stem cells (CSCs) in the residual tumors, contributing to recurrence after treatment. Combinatorial treatment of a WNT inhibitor and 5-FU effectively suppresses the CSCs and reduces tumor regrowth after discontinuation of treatment. These findings indicate p53 as a critical mediator of 5-FU-induced CSC activation via the WNT/β-catenin signaling pathway and highlight the significance of combinatorial treatment of WNT inhibitor and 5-FU as a compelling therapeutic strategy to improve the poor outcomes of current 5-FU-based therapies for CRC patients.
Collapse
Affiliation(s)
- Yong-Hee Cho
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Eun Ji Ro
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Jeong-Su Yoon
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Tomohiro Mizutani
- Hubrecht Institute, Cancer Genomics Netherlands, UMC Utrecht, 3584CT, Utrecht, Netherlands
| | - Dong-Woo Kang
- Medpacto Bio Institute, Medpacto Inc, Seoul, 06668, Republic of Korea
| | - Jong-Chan Park
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Tae Il Kim
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Hans Clevers
- Hubrecht Institute, Cancer Genomics Netherlands, UMC Utrecht, 3584CT, Utrecht, Netherlands
| | - Kang-Yell Choi
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea. .,CK Biotechnology Inc, Yonsei Engineering Complex B137A, 50 Yonsei Ro, Seodaemun-Gu, Seoul, 03722, Korea.
| |
Collapse
|