1
|
Zhou Q, Yang L, Verne ZT, Zhang BB, Fields JZ, Thacker AT, Verne GN. Human colonic EVs induce murine enteric neuroplasticity via the lncRNA GAS5/miR-23/NMDA NR2B axis. JCI Insight 2025; 10:e178631. [PMID: 40059833 PMCID: PMC11949048 DOI: 10.1172/jci.insight.178631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 01/28/2025] [Indexed: 03/29/2025] Open
Abstract
Postinfectious, diarrhea-predominant, irritable bowel syndrome (PI-IBS-D) is difficult to treat owing to its unknown pathophysiology. Extracellular vesicles (EVs) derived from human colon tissue and long noncoding RNAs (lncRNAs), such as growth arrest-specific 5 (GAS5), may play key roles in the pathophysiology of PI-IBS-D. To determine whether altered colonic EV lncRNA signaling leads to gastrointestinal dysfunction and heightened visceral nociception in patients with PI-IBS-D via the GAS5/miR-23ab/NMDA NR2B axis, we conducted translational studies, including those on (a) the role of colonic EV lncRNAs in patients with PI-IBS-D, human colonoids, and PI-IBS-D tissues; (b) i.p. injection of colonic EVs from patients with PI-IBS-D into Rab27a/b-/- mice (P-EV mice) to investigate whether colonic EVs drive visceral hypersensitivity in vivo via the GAS5/miR-23ab/NMDA NR2B axis; and (c) treatment of mice with oligo-miR-23 precursors and anti-GAS5 Vivo-Morpholinos for GAS5/miR-23ab/NMDA NR2B axis mechanisms. Colonic EVs from patients with PI-IBS-D, but not from control participants, demonstrated reduced miR-23a/b expression caused by enhanced GAS5 expression, which drives increased NR2B expression. Intraperitoneal injection of anti-GAS5-Vivo-Morpholino into P-EV mice increased miR-23 levels and decreased NR2B expression and VMR to CD. EVs are internal messengers that alter gastrointestinal function and increase visceral nociception in patients with PI-IBS-D. Strategies to deliver EVs to modulate GAS5/miR-23ab/NMDA NR2B axis signaling may lead to new and innovative treatments for patients with PI-IBS-D.
Collapse
Affiliation(s)
- QiQi Zhou
- College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
- Lt. Col. Luke Weathers, Jr. VA Medical Center, Research Service, Memphis, Tennessee, USA
| | - Liuqing Yang
- College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Zachary T. Verne
- College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Benjamin B. Zhang
- College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Jeremy Z. Fields
- College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Amber T. Thacker
- College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - G. Nicholas Verne
- College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
- Lt. Col. Luke Weathers, Jr. VA Medical Center, Research Service, Memphis, Tennessee, USA
| |
Collapse
|
2
|
Marceca GP, Romano G, Acunzo M, Nigita G. ncRNA Editing: Functional Characterization and Computational Resources. Methods Mol Biol 2025; 2883:455-495. [PMID: 39702721 DOI: 10.1007/978-1-0716-4290-0_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Non-coding RNAs (ncRNAs) play crucial roles in gene expression regulation, translation, and disease development, including cancer. They are classified by size in short and long non-coding RNAs. This chapter focuses on the functional implications of adenosine-to-inosine (A-to-I) RNA editing in both short (e.g., miRNAs) and long ncRNAs. RNA editing dynamically alters the sequence and structure of primary transcripts, impacting ncRNA biogenesis and function. Notable findings include the role of miRNA editing in promoting glioblastoma invasiveness, characterizing RNA editing hotspots across cancers, and its implications in thyroid cancer and ischemia. This chapter also highlights bioinformatics resources and next-generation sequencing (NGS) technologies that enable comprehensive ncRNAome studies and genome-wide RNA editing detection. Dysregulation of RNA editing machinery has been linked to various human diseases, emphasizing the potential of RNA editing as a biomarker and therapeutic target. This overview integrates current knowledge and computational tools for studying ncRNA editing, providing insights into its biological significance and clinical applications.
Collapse
Affiliation(s)
| | - Giulia Romano
- Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Mario Acunzo
- Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Giovanni Nigita
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
- Center for RNA Biology, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
3
|
Xuan Y, Wang L, Zhang L, Lv M, Li F, Gong Q. Structural basis of pri-let-7 recognition by human pseudouridine synthase TruB1. Biochem Biophys Res Commun 2024; 721:150122. [PMID: 38776834 DOI: 10.1016/j.bbrc.2024.150122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/29/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
Let-7 was one of the first microRNAs (miRNAs) to be discovered and its expression promotes differentiation during development and function as tumor suppressors in various cancers. The maturation process of let-7 miRNA is tightly regulated by multiple RNA-binding proteins. For example, LIN28 binds to the terminal loops of the precursors of let-7 family and block their processing into mature miRNAs. Trim25 promotes the uridylation-mediated degradation of pre-let-7 modified by LIN28/TUT4. Recently, human pseudouridine synthase TruB1 has been reported to facilitate let-7 maturation by directly binding to pri-let-7 and recruiting Drosha-DGCR8 microprocessor. Through biochemical assay and structural investigation, we show that human TruB1 binds specifically the terminal loop of pri-let-7a1 at nucleotides 31-41, which folds as a small stem-loop architecture. Although TruB1 recognizes the terminal loop of pri-let-7a1 in a way similar to how E. coli TruB interacts with tRNA, a conserved KRKK motif in human and other higher eukaryotes adds an extra binding interface and strengthens the recognition of TruB1 for pri-let-7a1 through electrostatic interactions. These findings reveal the structural basis of TruB1-pri-let-7 interaction which may assists the elucidation of precise role of TruB1 in biogenesis of let-7.
Collapse
Affiliation(s)
- Yumi Xuan
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, 230027, Hefei, PR China
| | - Lei Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, 230027, Hefei, PR China
| | - Liang Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, 230027, Hefei, PR China
| | - Mengqi Lv
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, 230027, Hefei, PR China
| | - Fudong Li
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, 230027, Hefei, PR China
| | - Qingguo Gong
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, 230027, Hefei, PR China.
| |
Collapse
|
4
|
Danga AK, Kour S, Kumari A, Rath PC. Cell-type specific and differential expression of LINC-RSAS long noncoding RNA declines in the testes during ageing of the rat. Biogerontology 2024; 25:543-566. [PMID: 38353919 DOI: 10.1007/s10522-023-10088-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 12/15/2023] [Indexed: 03/26/2024]
Abstract
Long noncoding RNAs (lncRNAs) have emerged as major regulators of gene expression, chromatin structure, epigenetic changes, post-transcriptional processing of RNAs, translation of mRNAs into proteins as well as contributing to the process of ageing. Ageing is a universal, slow, progressive change in almost all physiological processes of organisms after attaining reproductive maturity and often associated with age-related diseases. Mammalian testes contain various cell-types, vast reservoir of transcriptome complexity, produce haploid male gametes for reproduction and testosterone for development and maintenance of male sexual characters as well as contribute genetic variation to the species. We report age-related decline in expression and cellular localization of Long intergenic noncoding repeat-rich sense-antisense (LINC-RSAS) RNA in the testes and its major cell-types such as primary spermatocytes, Leydig cells and Sertoli cells during ageing of the rat. LINC-RSAS expression in testes increased from immature (4-weeks) to adult (16- and 44-weeks) and declined from adult (44-weeks) to nearly-old (70-weeks) rats. Genomic DNA methylation in the testes showed a similar pattern. Cell-type specific higher expression of LINC-RSAS was observed in primary spermatocytes (pachytene cells), Leydig cells and Sertoli cells of testes of adult rats. Over-expression of LINC-RSAS in cultured human cell lines revealed its possible role in cell-cycle control and apoptosis. We propose that LINC-RSAS expression is involved in molecular physiology of primary spermatocytes, Leydig cells and Sertoli cells of adult testes and its decline is associated with diminishing function of testes during ageing of the rat.
Collapse
Affiliation(s)
- Ajay Kumar Danga
- Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Sukhleen Kour
- Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, 15224, USA
| | - Anita Kumari
- Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Pramod C Rath
- Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
5
|
Zeinelabdeen Y, Abaza T, Yasser MB, Elemam NM, Youness RA. MIAT LncRNA: A multifunctional key player in non-oncological pathological conditions. Noncoding RNA Res 2024; 9:447-462. [PMID: 38511054 PMCID: PMC10950597 DOI: 10.1016/j.ncrna.2024.01.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/27/2023] [Accepted: 01/14/2024] [Indexed: 03/22/2024] Open
Abstract
The discovery of non-coding RNAs (ncRNAs) has unveiled a wide range of transcripts that do not encode proteins but play key roles in several cellular and molecular processes. Long noncoding RNAs (lncRNAs) are specific class of ncRNAs that are longer than 200 nucleotides and have gained significant attention due to their diverse mechanisms of action and potential involvement in various pathological conditions. In the current review, the authors focus on the role of lncRNAs, specifically highlighting the Myocardial Infarction Associated Transcript (MIAT), in non-oncological context. MIAT is a nuclear lncRNA that has been directly linked to myocardial infarction and is reported to control post-transcriptional processes as a competitive endogenous RNA (ceRNA) molecule. It interacts with microRNAs (miRNAs), thereby limiting the translation and expression of their respective target messenger RNA (mRNA) and regulating protein expression. Yet, MIAT has been implicated in other numerous pathological conditions such as other cardiovascular diseases, autoimmune disease, neurodegenerative diseases, metabolic diseases, and many others. In this review, the authors emphasize that MIAT exhibits distinct expression patterns and functions across different pathological conditions and is emerging as potential diagnostic, prognostic, and therapeutic agent. Additionally, the authors highlight the regulatory role of MIAT and shed light on the involvement of lncRNAs and specifically MIAT in various non-oncological pathological conditions.
Collapse
Affiliation(s)
- Yousra Zeinelabdeen
- Molecular Genetics Research Team, Molecular Biology and Biochemistry Department, Faculty of Biotechnology, German International University (GIU), Cairo, 11835, Egypt
- Faculty of Medical Sciences/UMCG, University of Groningen, Antonius Deusinglaan 1, Groningen, 9713 AV, the Netherlands
| | - Tasneem Abaza
- Molecular Genetics Research Team, Molecular Biology and Biochemistry Department, Faculty of Biotechnology, German International University (GIU), Cairo, 11835, Egypt
- Biotechnology and Biomolecular Biochemistry Program, Faculty of Science, Cairo University, Cairo, Egypt
| | - Montaser Bellah Yasser
- Bioinformatics Group, Center for Informatics Sciences (CIS), School of Information Technology and Computer Science (ITCS), Nile University, Giza, Egypt
| | - Noha M. Elemam
- Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Rana A. Youness
- Molecular Genetics Research Team, Molecular Biology and Biochemistry Department, Faculty of Biotechnology, German International University (GIU), Cairo, 11835, Egypt
| |
Collapse
|
6
|
Syed RU, Afsar S, Aboshouk NAM, Salem Alanzi S, Abdalla RAH, Khalifa AAS, Enrera JA, Elafandy NM, Abdalla RAH, Ali OHH, Satheesh Kumar G, Alshammari MD. LncRNAs in necroptosis: Deciphering their role in cancer pathogenesis and therapy. Pathol Res Pract 2024; 256:155252. [PMID: 38479121 DOI: 10.1016/j.prp.2024.155252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 04/14/2024]
Abstract
Necroptosis, a controlled type of cell death that is different from apoptosis, has become a key figure in the aetiology of cancer and offers a possible target for treatment. A growing number of biological activities, including necroptosis, have been linked to long noncoding RNAs (lncRNAs), a varied family of RNA molecules with limited capacity to code for proteins. The complex interactions between LncRNAs and important molecular effectors of necroptosis, including mixed lineage kinase domain-like pseudokinase (MLKL) and receptor-interacting protein kinase 3 (RIPK3), will be investigated. We will explore the many methods that LncRNAs use to affect necroptosis, including protein-protein interactions, transcriptional control, and post-transcriptional modification. Additionally, the deregulation of certain LncRNAs in different forms of cancer will be discussed, highlighting their dual function in influencing necroptotic processes as tumour suppressors and oncogenes. The goal of this study is to thoroughly examine the complex role that LncRNAs play in controlling necroptotic pathways and how that regulation affects the onset and spread of cancer. In the necroptosis for cancer treatment, this review will also provide insight into the possible therapeutic uses of targeting LncRNAs. Techniques utilising LncRNA-based medicines show promise in controlling necroptotic pathways to prevent cancer from spreading and improve the effectiveness of treatment.
Collapse
Affiliation(s)
- Rahamat Unissa Syed
- Department of Pharmaceutics, College of Pharmacy, University of Ha'il, Hail 81442, Saudi Arabia.
| | - S Afsar
- Department of Virology, Sri Venkateswara University, Tirupathi, Andhra Pradesh 517502, India.
| | - Nayla Ahmed Mohammed Aboshouk
- Department of Clinical laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail 81442, Saudi Arabia
| | | | | | - Amna Abakar Suleiman Khalifa
- Department of Clinical laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail 81442, Saudi Arabia
| | - Jerlyn Apatan Enrera
- Department of Clinical laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail 81442, Saudi Arabia
| | - Nancy Mohammad Elafandy
- Department of Clinical laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail 81442, Saudi Arabia
| | - Randa Abdeen Husien Abdalla
- Department of Clinical laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail 81442, Saudi Arabia
| | - Omar Hafiz Haj Ali
- Department of Clinical laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail 81442, Saudi Arabia
| | - G Satheesh Kumar
- Department of Pharmaceutical Chemistry, College of Pharmacy, Seven Hills College of Pharmacy, Venkataramapuram, Tirupati, India
| | - Maali D Alshammari
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia
| |
Collapse
|
7
|
Damiescu R, Efferth T, Dawood M. Dysregulation of different modes of programmed cell death by epigenetic modifications and their role in cancer. Cancer Lett 2024; 584:216623. [PMID: 38246223 DOI: 10.1016/j.canlet.2024.216623] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/19/2023] [Accepted: 01/07/2024] [Indexed: 01/23/2024]
Abstract
Modifications of epigenetic factors affect our lives and can give important information regarding one's state of health. In cancer, epigenetic modifications play a crucial role, as they influence various programmed cell death types. The purpose of this review is to investigate how epigenetic modifications, such as DNA methylation, histone modifications, and non-coding RNAs, influence various cell death processes in suppressing or promoting cancer development. Autophagy and apoptosis are the most investigated programmed cell death modes, as based on the tumor stage these cell death types can either promote or prevent cancer evolution. Therefore, our discussion focuses on how epigenetic modifications affect autophagy and apoptosis, as well as their diagnostic and therapeutical potential in combination with available chemotherapeutics. Additionally, we summarize the available data regarding the role of epigenetic modifications on other programmed cell death modes, such as ferroptosis, necroptosis, and parthanatos in cancer and discuss current advancements.
Collapse
Affiliation(s)
- R Damiescu
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, Mainz, Germany
| | - T Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, Mainz, Germany
| | - M Dawood
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, Mainz, Germany.
| |
Collapse
|
8
|
Yang H, Qiu W, Liu Z. Anoikis-related mRNA-lncRNA and DNA methylation profiles for overall survival prediction in breast cancer patients. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2024; 21:1590-1609. [PMID: 38303479 DOI: 10.3934/mbe.2024069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
As a type of programmed cell death, anoikis resistance plays an essential role in tumor metastasis, allowing cancer cells to survive in the systemic circulation and as a key pathway for regulating critical biological processes. We conducted an exploratory analysis to improve risk stratification and optimize adjuvant treatment choices for patients with breast cancer, and identify multigene features in mRNA and lncRNA transcriptome profiles associated with anoikis. First, the variance selection method filters low information content genes in RNA sequence and then extracts the mRNA and lncRNA expression data base on annotation files. Then, the top ten key mRNAs are screened out through the PPI network. Pearson analysis has been employed to identify lncRNAs related to anoikis, and the prognosis-related lncRNAs are selected using Univariate Cox regression and machine learning. Finally, we identified a group of RNAs (including ten mRNAs and six lncRNAs) and integrated the expression data of 16 genes to construct a risk-scoring system for BRCA prognosis and drug sensitivity analysis. The risk score's validity has been evaluated with the ROC curve, Kaplan-Meier survival curve analysis and decision curve analysis (DCA). For the methylation data, we have obtained 169 anoikis-related prognostic methylation sites, integrated these sites with 16 RNA features and further used the deep learning model to evaluate and predict the survival risk of patients. The developed anoikis feature is demonstrated a consistency index (C-index) of 0.778, indicating its potential to predict the survival probability of breast cancer patients using deep learning methods.
Collapse
Affiliation(s)
- Huili Yang
- Computer Department, Jingdezhen Ceramic University, Jingdezhen 333403, China
| | - Wangren Qiu
- Computer Department, Jingdezhen Ceramic University, Jingdezhen 333403, China
| | - Zi Liu
- Computer Department, Jingdezhen Ceramic University, Jingdezhen 333403, China
| |
Collapse
|
9
|
Huang W, Paul D, Calin GA, Bayraktar R. miR-142: A Master Regulator in Hematological Malignancies and Therapeutic Opportunities. Cells 2023; 13:84. [PMID: 38201290 PMCID: PMC10778542 DOI: 10.3390/cells13010084] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/29/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
MicroRNAs (miRNAs) are a type of non-coding RNA whose dysregulation is frequently associated with the onset and progression of human cancers. miR-142, an ultra-conserved miRNA with both active -3p and -5p mature strands and wide-ranging physiological targets, has been the subject of countless studies over the years. Due to its preferential expression in hematopoietic cells, miR-142 has been found to be associated with numerous types of lymphomas and leukemias. This review elucidates the multifaceted role of miR-142 in human physiology, its influence on hematopoiesis and hematopoietic cells, and its intriguing involvement in exosome-mediated miR-142 transport. Moreover, we offer a comprehensive exploration of the genetic and molecular landscape of the miR-142 genomic locus, highlighting its mutations and dysregulation within hematological malignancies. Finally, we discuss potential avenues for harnessing the therapeutic potential of miR-142 in the context of hematological malignancies.
Collapse
Affiliation(s)
- Wilson Huang
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (W.H.); (G.A.C.)
| | - Doru Paul
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA;
| | - George A. Calin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (W.H.); (G.A.C.)
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Recep Bayraktar
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
10
|
Dandare A, Khan MJ, Naeem A, Liaquat A. Clinical relevance of circulating non-coding RNAs in metabolic diseases: Emphasis on obesity, diabetes, cardiovascular diseases and metabolic syndrome. Genes Dis 2023; 10:2393-2413. [PMID: 37554181 PMCID: PMC10404886 DOI: 10.1016/j.gendis.2022.05.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/11/2022] [Indexed: 11/22/2022] Open
Abstract
Non-coding RNAs (ncRNAs) participate in the regulation of several cellular processes including transcription, RNA processing and genome rearrangement. The aberrant expression of ncRNAs is associated with several pathological conditions. In this review, we focused on recent information to elucidate the role of various regulatory ncRNAs i.e., micro RNAs (miRNAs), circular RNAs (circRNAs) and long-chain non-coding RNAs (lncRNAs), in metabolic diseases, e.g., obesity, diabetes mellitus (DM), cardiovascular diseases (CVD) and metabolic syndrome (MetS). The mechanisms by which ncRNAs participated in disease pathophysiology were also highlighted. miRNAs regulate the expression of genes at transcriptional and translational levels. circRNAs modulate the regulation of gene expression via miRNA sponging activity, interacting with RNA binding protein and polymerase II transcription regulation. lncRNAs regulate the expression of genes by acting as a protein decoy, miRNA sponging, miRNA host gene, binding to miRNA response elements (MRE) and the recruitment of transcriptional element or chromatin modifiers. We examined the role of ncRNAs in the disease pathogenesis and their potential role as molecular markers for diagnosis, prognosis and therapeutic targets. We showed the involvement of ncRNAs in the onset of obesity and its progression to MetS and CVD. miRNA-192, miRNA-122, and miRNA-221 were dysregulated in all these metabolic diseases. Other ncRNAs, implicated in at least three diseases include miRNA-15a, miRNA-26, miRNA-27a, miRNA-320, and miRNA-375. Dysregulation of ncRNAs increased the risk of development of DM and MetS and its progression to CVD in obese individuals. Hence, these molecules are potential targets to arrest or delay the progression of metabolic diseases.
Collapse
Affiliation(s)
- Abdullahi Dandare
- Department of Biosciences, COMSATS University Islamabad, Islamabad 45550, Pakistan
- Department of Biochemistry, Usmanu Danfodiyo University, Sokoto 840104, Nigeria
| | - Muhammad Jawad Khan
- Department of Biosciences, COMSATS University Islamabad, Islamabad 45550, Pakistan
| | - Aisha Naeem
- Ministry of Public Health, POB42, Doha, Qatar
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Afrose Liaquat
- Shifa College of Medicine, Shifa Tameer-E-Millat University, Islamabad 45550, Pakistan
| |
Collapse
|
11
|
Ebrahimi N, Hakimzadeh A, Bozorgmand F, Speed S, Manavi MS, Khorram R, Farahani K, Rezaei-Tazangi F, Mansouri A, Hamblin MR, Aref AR. Role of non-coding RNAs as new therapeutic targets in regulating the EMT and apoptosis in metastatic gastric and colorectal cancers. Cell Cycle 2023; 22:2302-2323. [PMID: 38009668 PMCID: PMC10730205 DOI: 10.1080/15384101.2023.2286804] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 05/11/2023] [Accepted: 08/01/2023] [Indexed: 11/29/2023] Open
Abstract
Colorectal cancer (CRC) and gastric cancer (GC), are the two most common cancers of the gastrointestinal tract, and are serious health concerns worldwide. The discovery of more effective biomarkers for early diagnosis, and improved patient prognosis is important. Non-coding RNAs (ncRNAs), including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), can regulate cellular processes such as apoptosis and the epithelial-mesenchymal transition (EMT) leading to progression and resistance of GC and CRC tumors. Moreover these pathways (apoptosis and EMT) may serve as therapeutic targets, to prevent metastasis, and to overcome drug resistance. A subgroup of ncRNAs is common to both GC and CRC tumors, suggesting that they might be used as biomarkers or therapeutic targets. In this review, we highlight some ncRNAs that can regulate EMT and apoptosis as two opposite mechanisms in cancer progression and metastasis in GC and CRC. A better understanding of the biological role of ncRNAs could open up new avenues for the development of personalized treatment plans for GC and CRC patients.
Collapse
Affiliation(s)
- Nasim Ebrahimi
- Genetics Division, Department of Cell and Molecular Biology and Microbiology, Faculty of Science and Technology, University of Isfahan, Isfahan, Iran
| | - Ali Hakimzadeh
- Department of Medical Biotechnologies, University of Siena, Tuscany, Italy
| | - Farima Bozorgmand
- Department of Medical Nanotechnology, Faculty of Advanced Sciences and Technology, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Sepehr Speed
- Medical Campus, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | | | - Roya Khorram
- Bone and Joint Diseases Research Center, Department of Orthopedic Surgery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kobra Farahani
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Fatemeh Rezaei-Tazangi
- Department of Anatomy, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Atena Mansouri
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Reza Aref
- Xsphera Biosciences, Translational Medicine group, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
12
|
Szaflik T, Romanowicz H, Trzmielak D, Makowska M, Smolarz B. Analysis of lcnRNAHomebox transcript antisense RNA (HOTAIR) expression in Polish women with endometriosis. Arch Med Sci 2023; 21:688-694. [PMID: 40395901 PMCID: PMC12087308 DOI: 10.5114/aoms/171350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 08/17/2023] [Indexed: 05/22/2025] Open
Abstract
Introduction Long non-coding RNAs (lncRNAs) are implicated in endometriosis development. The aim of the study was to analyse the expression of lncRNA HOTAIR in the context of the risk of developing endometriosis. Material and methods The presented study determined lncRNA HOTAIR expression in patients with endometriosis (n = 100) compared with a healthy control group (n = 100). Histological examination was performed by pathologists using a digital slide scanner and slide viewer software (Case Viewer 2.3, 3DHistech, Budapest, Hungary). The gene expression was measured by the reverse-transcription polymerase chain reaction (RT-PCR) technique. Two-step qRT-PCR was used to analyse the expression of the HOTAIR gene in normal tissue and in endometriosis samples. The total RNA was used for cDNA synthesis. Ct values were used for subsequent analysis, and GADPH was used as the endogenous control. Results Statistically significantly higher HOTAIR expression was found in endometriosis samples compared to the expression in the control material (p < 0.0001). Regarding the classification of endometriosis (stage I-IV), there was a statistically significant increase in HOTAIR expression in stage IV (p < 0.05). There was no relationship between the age of the patients, the number of deliveries, the number of spontaneous abortions and BMI and the expression of HOTAIR. Conclusions The reported studies suggest a significant role of lncRNA HOTAIR expression in the pathogenesis of endometriosis.
Collapse
Affiliation(s)
- Tomasz Szaflik
- Department of Gynaecology, Oncological Gynaecology and Endometriosis Treatment, Polish Mother’s Memorial Hospital Research Institute, Lodz, Poland
| | - Hanna Romanowicz
- Laboratory of Cancer Genetics, Department of Pathology, Polish Mother’s Memorial Hospital Research Institute, Lodz, Poland
| | - Dariusz Trzmielak
- Department of Science, Polish Mother’s Memorial Hospital Research Institute, Lodz, Poland
| | - Marianna Makowska
- Department of Anaesthesiology and Operative Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Beata Smolarz
- Laboratory of Cancer Genetics, Department of Pathology, Polish Mother’s Memorial Hospital Research Institute, Lodz, Poland
| |
Collapse
|
13
|
Ostini A, Mourtada-Maarabouni M. Investigation into the Role of Long-Non-Coding RNA MIAT in Leukemia. Noncoding RNA 2023; 9:47. [PMID: 37624039 PMCID: PMC10459085 DOI: 10.3390/ncrna9040047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/03/2023] [Accepted: 08/10/2023] [Indexed: 08/26/2023] Open
Abstract
Myocardial Infarction Associated Transcript (MIAT) is a nuclear long non-coding RNA (LncRNA) with four different splicing variants. MIAT dysregulation is associated with carcinogenesis, mainly acting as an oncogene regulating cellular growth, invasion, and metastasis. The aim of the current study is to investigate the role of MIAT in the regulation of T and chronic myeloid leukemic cell survival. To this end, MIAT was silenced using MIAT-specific siRNAs in leukemic cell lines, and functional assays were performed thereafter. This investigation also aims to investigate the effects of MIAT silencing on the expression of core genes involved in cancer. Functional studies and gene expression determination confirm that MIAT knockdown not only affects short- and long-term survival and the apoptosis of leukemic cells but also plays a pivotal role in the alteration of key genes involved in cancer, including c-MYC and HIF-1A. Our observations suggest that MIAT could act as an oncogene and it has the potential to be used not only as a reliable biomarker for leukemia, but also be employed for prognostic and therapeutic purposes.
Collapse
Affiliation(s)
| | - Mirna Mourtada-Maarabouni
- School of Life Sciences, Faculty of Natural Sciences, Keele University, Newcastle-under-Lyme ST5 5BG, UK;
| |
Collapse
|
14
|
Orhan ME, Demirci YM, Saçar Demirci MD. NeRNA: A negative data generation framework for machine learning applications of noncoding RNAs. Comput Biol Med 2023; 159:106861. [PMID: 37075604 DOI: 10.1016/j.compbiomed.2023.106861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/03/2023] [Accepted: 03/30/2023] [Indexed: 04/21/2023]
Abstract
Many supervised machine learning based noncoding RNA (ncRNA) analysis methods have been developed to classify and identify novel sequences. During such analysis, the positive learning datasets usually consist of known examples of ncRNAs and some of them might even have weak or strong experimental validation. On the contrary, there are neither databases listing the confirmed negative sequences for a specific ncRNA class nor standardized methodologies developed to generate high quality negative examples. To overcome this challenge, a novel negative data generation method, NeRNA (negative RNA), is developed in this work. NeRNA uses known examples of given ncRNA sequences and their calculated structures for octal representation to create negative sequences in a manner similar to frameshift mutations but without deletion or insertion. NeRNA is tested individually with four different ncRNA datasets including microRNA (miRNA), transfer RNA (tRNA), long noncoding RNA (lncRNA), and circular RNA (circRNA). Furthermore, a species-specific case analysis is performed to demonstrate and compare the performance of NeRNA for miRNA prediction. The results of 1000 fold cross-validation on Decision Tree, Naïve Bayes and Random Forest classifiers, and deep learning algorithms such as Multilayer Perceptron, Convolutional Neural Network, and Simple feedforward Neural Networks indicate that models obtained by using NeRNA generated datasets, achieves substantially high prediction performance. NeRNA is released as an easy-to-use, updatable and modifiable KNIME workflow that can be downloaded with example datasets and required extensions. In particular, NeRNA is designed to be a powerful tool for RNA sequence data analysis.
Collapse
Affiliation(s)
- Mehmet Emin Orhan
- Department of Bioengineering, Graduate School of Engineering and Science, Abdullah Gül University, Kayseri, Turkey
| | - Yılmaz Mehmet Demirci
- Department of Engineering Science, Faculty of Engineering, Abdullah Gül University, Kayseri, Turkey
| | | |
Collapse
|
15
|
Kiełbowski K, Ptaszyński K, Wójcik J, Wojtyś ME. The role of selected non-coding RNAs in the biology of non-small cell lung cancer. Adv Med Sci 2023; 68:121-137. [PMID: 36933328 DOI: 10.1016/j.advms.2023.02.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 11/26/2022] [Accepted: 02/27/2023] [Indexed: 03/18/2023]
Abstract
Lung cancer is the second most frequently diagnosed cancer worldwide and a leading cause of cancer-related deaths. Non-small cell lung carcinoma (NSCLC) represents 85% of all cases. Accumulating evidence highlights the outstanding role of non-coding RNA (ncRNA) in regulating the tumorigenesis process by modulating crucial signaling pathways. Micro RNA (miRNA), long non-coding RNA (lncRNA) and circular RNA (circRNA) are either up- or downregulated in lung cancer patients and can promote or suppress the progression of the disease. These molecules interact with messenger RNA (mRNA) and with each other to regulate gene expression and stimulate proto-oncogenes or silence tumor suppressors. NcRNAs provide a new strategy to diagnose or treat lung cancer patients and multiple molecules have already been identified as potential biomarkers or therapeutic targets. The aim of this review is to summarize the current evidence on the roles of miRNA, lncRNA and circRNA in NSCLC biology and present their clinical potential.
Collapse
Affiliation(s)
- Kajetan Kiełbowski
- Department of Thoracic Surgery and Transplantation, Pomeranian Medical University, Szczecin, Poland
| | - Konrad Ptaszyński
- Department of Pathology, Faculty of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Poland
| | - Janusz Wójcik
- Department of Thoracic Surgery and Transplantation, Pomeranian Medical University, Szczecin, Poland
| | - Małgorzata Edyta Wojtyś
- Department of Thoracic Surgery and Transplantation, Pomeranian Medical University, Szczecin, Poland.
| |
Collapse
|
16
|
Dieter C, Lemos NE, Girardi E, Ramos DT, Pellenz FM, Canani LH, Assmann TS, Crispim D. The rs3931283/PVT1 and rs7158663/MEG3 polymorphisms are associated with diabetic kidney disease and markers of renal function in patients with type 2 diabetes mellitus. Mol Biol Rep 2023; 50:2159-2169. [PMID: 36565414 DOI: 10.1007/s11033-022-08122-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/14/2022] [Indexed: 12/25/2022]
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) are key regulators of gene expression. Some studies have reported the association of polymorphisms in lncRNA genes with diabetes mellitus (DM) and its chronic complications, including diabetic kidney disease (DKD); however, the results are still inconclusive. Thus, we investigated the association of the rs3200401/MALAT1, rs1894720/MIAT, rs3931283/PVT1, rs11993333/PVT1, rs5749201/TUG1, and rs7158663/MEG3 polymorphisms with DKD in patients with type 2 DM (T2DM). METHODS AND RESULTS This study comprised 902 patients with T2DM and DKD (cases) and 394 patients with T2DM without DKD (controls). The six polymorphisms of interest were genotyped by real-time PCR using TaqMan probes. Frequency of the rs3931283/PVT1 G/G genotype was 36.2% in cases and 31.9% in controls (P = 0.331). After adjustment for gender, glycated hemoglobin, HDL cholesterol, ethnicity, hypertension, and diabetic retinopathy, the G/G genotype was associated with risk for DKD (OR = 1.625, 95% CI 1.020-2.588; P = 0.041). The rs3931283/PVT1 G/G genotype was also associated with higher urinary albumin excretion levels compared to A allele carriers (P = 0.017). No difference was found in rs7158663/MEG3 genotype frequencies between T2DM controls and DKD patients (OR = 1.087, 95% CI 0.686-1.724; P = 0.722). However, the rs7158663/MEG3 G/G genotype was associated with protection against severe DKD (OR = 0.694, 95% CI 0.488-0.989; P = 0.043, for patients with severe DKD vs. T2DM controls). The rs7158663/MEG3 G/G genotype was also associated with lower creatinine levels (P = 0.007) and higher estimated glomerular filtration rate (P = 0.010) compared to A allele carriers. No association was found between the rs11993333/PVT1, rs3200401/MALAT1, rs1894720/MIAT, and rs5749201/TUG1 polymorphisms and DKD or its laboratory markers. CONCLUSION The rs3931283/PVT1 G/G and rs7158663/MEG3 G/G are associated with DKD and markers of renal function in T2DM patients from a Brazilian population.
Collapse
Affiliation(s)
- Cristine Dieter
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos 2350; prédio 12; 4° andar, 90035-003, Porto Alegre, Rio Grande do Sul, Brazil.,Graduate Program in Medical Sciences: Endocrinology, Faculty of Medicine, Department of Internal Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Natália Emerim Lemos
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos 2350; prédio 12; 4° andar, 90035-003, Porto Alegre, Rio Grande do Sul, Brazil.,Department of Biochemistry, Institute of Chemistry, Universidade de São Paulo, São Paulo, Brazil
| | - Eliandra Girardi
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos 2350; prédio 12; 4° andar, 90035-003, Porto Alegre, Rio Grande do Sul, Brazil
| | - Denise Taurino Ramos
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos 2350; prédio 12; 4° andar, 90035-003, Porto Alegre, Rio Grande do Sul, Brazil
| | - Felipe Mateus Pellenz
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos 2350; prédio 12; 4° andar, 90035-003, Porto Alegre, Rio Grande do Sul, Brazil.,Graduate Program in Medical Sciences: Endocrinology, Faculty of Medicine, Department of Internal Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Luís Henrique Canani
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos 2350; prédio 12; 4° andar, 90035-003, Porto Alegre, Rio Grande do Sul, Brazil.,Graduate Program in Medical Sciences: Endocrinology, Faculty of Medicine, Department of Internal Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Taís Silveira Assmann
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos 2350; prédio 12; 4° andar, 90035-003, Porto Alegre, Rio Grande do Sul, Brazil.,Graduate Program in Medical Sciences: Endocrinology, Faculty of Medicine, Department of Internal Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Daisy Crispim
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos 2350; prédio 12; 4° andar, 90035-003, Porto Alegre, Rio Grande do Sul, Brazil. .,Graduate Program in Medical Sciences: Endocrinology, Faculty of Medicine, Department of Internal Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
17
|
Raval M, Mishra S, Tiwari AK. Epigenetic regulons in Alzheimer's disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 198:185-247. [DOI: 10.1016/bs.pmbts.2023.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
18
|
Non-coding RNAs in breast cancer: Implications for programmed cell death. Cancer Lett 2022; 550:215929. [DOI: 10.1016/j.canlet.2022.215929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/23/2022] [Accepted: 09/23/2022] [Indexed: 11/21/2022]
|
19
|
Su Z, Ao J, Zhao F, Xu G, Chen H, Gao C. The roles of long non‑coding RNAs in renal cell carcinoma (Review). Mol Clin Oncol 2022; 18:4. [PMID: 36591597 PMCID: PMC9780631 DOI: 10.3892/mco.2022.2600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 10/07/2022] [Indexed: 11/29/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are involved in the gene expression regulation and usually play important roles in various human cancers, including the renal cell carcinoma (RCC). Dysregulation of certain lncRNAs are associated with the prognosis of patients with RCC. In the present review, several recently studied lncRNAs were discussed and their critical roles in proliferation, migration, invasion, apoptosis and drug resistance of renal cancer cells were revealed. The research on lncRNAs further increases our understanding on the development and progression of RCC. It is suggested that lncRNAs can be used as biomarkers or therapeutic targets for diagnosis or treatment of renal cancer.
Collapse
Affiliation(s)
- Zhengming Su
- Department of Urology, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510700, P.R. China
| | - Jian Ao
- Department of General Surgery, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510700, P.R. China
| | - Fengjin Zhao
- Department of Urology, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510700, P.R. China
| | - Guibin Xu
- Department of Urology, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510700, P.R. China
| | - Huihua Chen
- Department of Education Management Section, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510700, P.R. China,Correspondence to: Professor Huihua Chen, Department of Education Management Section, The Fifth Affiliated Hospital of Guangzhou Medical University, 621 Gangwan Road, Guangzhou, Guangdong 510700, P.R. China
| | - Chen Gao
- Department of Operating Room, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China,Correspondence to: Professor Huihua Chen, Department of Education Management Section, The Fifth Affiliated Hospital of Guangzhou Medical University, 621 Gangwan Road, Guangzhou, Guangdong 510700, P.R. China
| |
Collapse
|
20
|
Villarreal-García V, Estupiñan-Jiménez JR, Vivas-Mejía PE, Gonzalez-Villasana V, Vázquez-Guillén JM, Reséndez-Pérez D. A vicious circle in breast cancer: The interplay between inflammation, reactive oxygen species, and microRNAs. Front Oncol 2022; 12:980694. [PMID: 36226048 PMCID: PMC9548555 DOI: 10.3389/fonc.2022.980694] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/05/2022] [Indexed: 11/28/2022] Open
Abstract
Breast cancer (BC) is the most common cancer in women worldwide. This highly heterogeneous disease is molecularly stratified into luminal A, luminal B, HER2, triple-negative/basal-like, and normal-like subtypes. An important aspect in BC progression is the activation of inflammatory processes. The activation of CD8+/Th1, NK, and M1 tumor associated macrophages (TAMs), leads to tumor destruction. In contrast, an anti-inflammatory response mediated by CD4+/Th2 and M2 TAMs will favor tumor progression. Inflammation also stimulates the production of inflammatory mediators like reactive oxygen species (ROS). In chronic inflammation, ROS activates oxidative stress and endothelial dysfunction. In cancer, ROS plays a dual role with anti-tumorigenic and pro-tumorigenic effects in cell signaling pathways that control proliferation, survival, apoptosis, and inflammation. MicroRNAs (miRNAs), which are known to be involved in BC progression and inflammation, can be regulated by ROS. At the same time, miRNAs regulate the expression of genes modulating oxidative stress. In this review, we will discuss the interplay between inflammation, ROS, and miRNAs as anticancer and tumor promoter molecules in BC. A clear understanding of the role of miRNAs in the regulation of ROS production and inflammation, may lead to new opportunities for therapy in BC.
Collapse
Affiliation(s)
- Valeria Villarreal-García
- Departmento de Biología Celular y Genética, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, Mexico
| | - José Roberto Estupiñan-Jiménez
- Departmento de Biología Celular y Genética, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, Mexico
| | - Pablo E. Vivas-Mejía
- Department of Biochemestry, Medical Sciences Campus, University of Puerto Rico, San Juan, Puerto Rico
- Comprehensive Cancer Center, Medical Sciences Campus, University of Puerto Rico, San Juan, Puerto Rico
| | - Vianey Gonzalez-Villasana
- Departmento de Biología Celular y Genética, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, Mexico
| | - José Manuel Vázquez-Guillén
- Departamento de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, Mexico
| | - Diana Reséndez-Pérez
- Departmento de Biología Celular y Genética, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, Mexico
- Departamento de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, Mexico
| |
Collapse
|
21
|
Wang YH, Tsai CH, Liu SC, Chen HT, Chang JW, Ko CY, Hsu CJ, Chang TK, Tang CH. miR-150-5p and XIST interaction controls monocyte adherence: Implications for osteoarthritis therapy. Front Immunol 2022; 13:1004334. [PMID: 36203618 PMCID: PMC9530358 DOI: 10.3389/fimmu.2022.1004334] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/02/2022] [Indexed: 11/23/2022] Open
Abstract
Recent literature highlights the importance of microRNAs (miRNAs) functioning as diagnostic biomarkers and therapeutic agents in osteoarthritis (OA) and regulators of gene expression. In OA pathogenesis, cell adhesion molecules (CAMs), especially vascular cell adhesion protein 1 (VCAM-1), recruit monocyte infiltration to inflamed synovial tissues and thus accelerate OA progression. Up until now, little has been known about the regulatory mechanisms between miRNAs, long non-coding RNAs (lncRNAs) and VCAM-1 during OA progression. The evidence in this article emphasizes that the functional feature of miR-150-5p is an interaction with the lncRNA X-inactive specific transcript (XIST), which regulates VCAM-1-dependent monocyte adherence in OA synovial fibroblasts (OASFs). Levels of VCAM-1, CD11b (a monocyte marker) and XIST expression were higher in human synovial tissue samples and OASFs, while levels of miR-150-5p were lower in human OA synovial tissue compared with non-OA specimens. XIST enhanced VCAM-1-dependent monocyte adherence to OASFs. Upregulation of miR-150-5p inhibited the effects of XIST upon monocyte adherence. Administration of miR-150-5p effectively ameliorated OA severity in anterior cruciate ligament transection (ACLT) rats. The interaction of miR-150-5p and XIST regulated VCAM-1-dependent monocyte adherence and attenuated OA progression. Our findings suggest that miR-150-5p is a promising small-molecule therapeutic strategy for OA.
Collapse
Affiliation(s)
- Yu-Han Wang
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan
| | - Chun-Hao Tsai
- Department of Sports Medicine, College of Health Care, China Medical University, Taichung, Taiwan
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Shan-Chi Liu
- Department of Medical Education and Research, China Medical University Beigang Hospital, Yunlin, Taiwan
| | - Hsien-Te Chen
- Department of Sports Medicine, College of Health Care, China Medical University, Taichung, Taiwan
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Jun-Way Chang
- The Ph.D. Program of Biotechnology and Biomedical Industry, China Medical University, Taichung, Taiwan
| | - Chih-Yuan Ko
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Chin-Jung Hsu
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Ting-Kuo Chang
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan
- Division of Spine Surgery, Department of Orthopedic Surgery, MacKay Memorial Hospital, New Taipei, Taiwan
- *Correspondence: Chih-Hsin Tang, ; Ting-Kuo Chang,
| | - Chih-Hsin Tang
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan
- School of Medicine, China Medical University, Taichung, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
- Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan
- *Correspondence: Chih-Hsin Tang, ; Ting-Kuo Chang,
| |
Collapse
|
22
|
Rashidmayvan M, Sahebi R, Ghayour-Mobarhan M. Long non-coding RNAs: a valuable biomarker for metabolic syndrome. Mol Genet Genomics 2022; 297:1169-1183. [PMID: 35854006 DOI: 10.1007/s00438-022-01922-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 06/25/2022] [Indexed: 10/17/2022]
Abstract
Long non-coding RNAs (lncRNAs) have become important regulators of gene expression because they affect a wide range of biological processes, such as cell growth, death, differentiation, and aging. More and more evidence suggests that lncRNAs play a role in maintaining metabolic homeostasis. When certain lncRNAs are out of balance, metabolic disorders like diabetes, obesity, and heart disease get worse. In this review, we talk about what we know about how lncRNAs control metabolism, with a focus on diseases caused by long-term inflammation and the characteristics of the metabolic syndrome. We looked at lncRNAs and their molecular targets in the pathogenesis of signaling pathways. We also talked about how lncRNAs are becoming more and more interesting as diagnostic and therapeutic targets for improving metabolic homeostasis.
Collapse
Affiliation(s)
- Mohammad Rashidmayvan
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Sahebi
- Metabolic Syndrome Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Ghayour-Mobarhan
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
23
|
Shen J, Chen J, Wang D, Liu Z, Han G, Liu B, Han M, Zhang R, Liu G, Zhang Z. Real-time quantification of nuclear RNA export using an intracellular relocation probe. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.10.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
24
|
Liu D, Xu S, Chang T, Ma S, Wang K, Sun G, Chen S, Xu Y, Zhang H. Predicting Prognosis and Distinguishing Cold and Hot Tumors in Bladder Urothelial Carcinoma Based on Necroptosis-Associated lncRNAs. Front Immunol 2022; 13:916800. [PMID: 35860239 PMCID: PMC9289196 DOI: 10.3389/fimmu.2022.916800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 06/06/2022] [Indexed: 12/24/2022] Open
Abstract
Background In reference to previous studies, necroptosis played an important role in cancer development. Our team decided to explore the potential prognostic values of long non-coding RNAs (lncRNAs) associated with necroptosis in bladder urothelial carcinoma (BLCA) and their relationship with the tumor microenvironment (TME) and the immunotherapeutic response for accurate dose. Methods To obtain the required data, bladder urothelial carcinoma transcriptome data were searched from Cancer Genome Atlas (TCGA) (https://portal.gdc.cancer.gov/). We used co-expression analysis, differential expression analysis, and univariate Cox regression to screen out prognostic lncRNAs associated with necroptosis in BLCA. Then the least absolute shrinkage and selection operator (LASSO) was conducted to construct the necroptosis-associated lncRNAs model. Based on this model, we also performed the Kaplan–Meier analysis and time-dependent receiver operating characteristics (ROC) to estimate the prognostic power of risk score. Multivariate and univariate Cox regression analysis were performed to build up a nomogram. Calibration curves, and time-dependent ROC were also conducted to evaluate nomogram. Principal component analysis (PCA) revealed a difference between high- and low-risk groups. In addition, we explored immune analysis, gene set enrichment analyses (GSEA), and evaluation of the half-maximal inhibitory concentration (IC50) in constructed model. Finally, the entire samples were divided into three clusters based on model of necroptosis-associated lncRNAs to further compare immunotherapy in cold and hot tumors. Results A model was built up based on necroptosis-associated lncRNAs. The model revealed good consistence between calibration plots and prognostic prediction. The area of 1-, 3-, and 5-year OS under the ROC curve (AUC) were 0.707, 0.679, and 0.675. Risk groups could be helpful for systemic therapy due to the markedly diverse IC50 between risk groups. To our delight, clusters could effectively identify cold and hot tumors, which would be beneficial to accurate mediation. Clusters 2 and 3 were considered the hot tumor, which was more sensitive to immunotherapeutic drugs. Conclusions The outcomes of our study suggested that necroptosis-associated lncRNAs could effectively predict patients with BLCA prognosis, which may be helpful for distinguishing the cold and hot tumors and improving individual treatment of BLCA.
Collapse
|
25
|
De Martino M, Esposito F, Capone M, Pallante P, Fusco A. Noncoding RNAs in Thyroid-Follicular-Cell-Derived Carcinomas. Cancers (Basel) 2022; 14:cancers14133079. [PMID: 35804851 PMCID: PMC9264824 DOI: 10.3390/cancers14133079] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/13/2022] [Accepted: 06/21/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary Thyroid tumors represent the most common neoplastic pathology of the endocrine system. Mutations occurring in oncogenes and tumor suppressor genes are responsible for thyroid carcinogenesis; however, the complete mutational landscape characterizing these neoplasias has not been completely unveiled. It has been established that only the 2% of the human genome codes for proteins, suggesting that the vast majority of the genome has regulatory capabilities, which, if altered, could account for the onset of cancer. Hence, many scientific efforts are currently focused on the characterization of the heterogeneous class of noncoding RNAs, which represent an abundant part of the transcribed noncoding genome. In this review, we mainly focus on the involvement of microRNAs, long noncoding RNAs, and pseudogenes in thyroid cancer. The determination of the diagnosis, prognosis, and treatment of thyroid cancers based on the evaluation of the noncoding RNA network could allow the implementation of a more personalized approach to fighting these pathologies. Abstract Among the thyroid neoplasias originating from follicular cells, we can include well-differentiated carcinomas, papillary (PTC) and follicular (FTC) thyroid carcinomas, and the undifferentiated anaplastic (ATC) carcinomas. Several mutations in oncogenes and tumor suppressor genes have already been observed in these malignancies; however, we are still far from the comprehension of their full regulation-altered landscape. Even if only 2% of the human genome has the ability to code for proteins, most of the noncoding genome is transcribed, constituting the heterogeneous class of noncoding RNAs (ncRNAs), whose alterations are associated with the development of several human diseases, including cancer. Hence, many scientific efforts are currently focused on the elucidation of their biological role. In this review, we analyze the scientific literature regarding the involvement of microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and pseudogenes in FTC, PTC, and ATC. Recent findings emphasized the role of lncRNAs in all steps of cancer progression. In particular, lncRNAs may control progression steps by regulating the expression of genes and miRNAs involved in cell proliferation, apoptosis, epithelial–mesenchymal transition, and metastatization. In conclusion, the determination of the diagnosis, prognosis, and treatment of cancer based on the evaluation of the ncRNA network could allow the implementation of a more personalized approach to fighting thyroid tumors.
Collapse
Affiliation(s)
- Marco De Martino
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale (IEOS) “G. Salvatore”, Consiglio Nazionale delle Ricerche (CNR), Via S. Pansini 5, 80131 Napoli, Italy; (M.D.M.); (F.E.); (M.C.)
| | - Francesco Esposito
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale (IEOS) “G. Salvatore”, Consiglio Nazionale delle Ricerche (CNR), Via S. Pansini 5, 80131 Napoli, Italy; (M.D.M.); (F.E.); (M.C.)
| | - Maria Capone
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale (IEOS) “G. Salvatore”, Consiglio Nazionale delle Ricerche (CNR), Via S. Pansini 5, 80131 Napoli, Italy; (M.D.M.); (F.E.); (M.C.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), Università degli Studi di Napoli “Federico II”, Via S. Pansini 5, 80131 Napoli, Italy
| | - Pierlorenzo Pallante
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale (IEOS) “G. Salvatore”, Consiglio Nazionale delle Ricerche (CNR), Via S. Pansini 5, 80131 Napoli, Italy; (M.D.M.); (F.E.); (M.C.)
- Correspondence: (P.P.); (A.F.)
| | - Alfredo Fusco
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale (IEOS) “G. Salvatore”, Consiglio Nazionale delle Ricerche (CNR), Via S. Pansini 5, 80131 Napoli, Italy; (M.D.M.); (F.E.); (M.C.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), Università degli Studi di Napoli “Federico II”, Via S. Pansini 5, 80131 Napoli, Italy
- Correspondence: (P.P.); (A.F.)
| |
Collapse
|
26
|
Chen Y, Sun Y, Luo Z, Lin J, Qi B, Kang X, Ying C, Guo C, Yao M, Chen X, Wang Y, Wang Q, Chen J, Chen S. Potential Mechanism Underlying Exercise Upregulated Circulating Blood Exosome miR-215-5p to Prevent Necroptosis of Neuronal Cells and a Model for Early Diagnosis of Alzheimer's Disease. Front Aging Neurosci 2022; 14:860364. [PMID: 35615585 PMCID: PMC9126031 DOI: 10.3389/fnagi.2022.860364] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/21/2022] [Indexed: 02/05/2023] Open
Abstract
Exercise is crucial for preventing Alzheimer's disease (AD), although the exact underlying mechanism remains unclear. The construction of an accurate AD risk prediction model is beneficial as it can provide a theoretical basis for preventive exercise prescription. In recent years, necroptosis has been confirmed as an important manifestation of AD, and exercise is known to inhibit necroptosis of neuronal cells. In this study, we extracted 67 necroptosis-related genes and 32 necroptosis-related lncRNAs and screened for key predictive AD risk genes through a random forest analysis. Based on the neural network Prediction model, we constructed a new logistic regression-based AD risk prediction model in order to provide a visual basis for the formulation of exercise prescription. The prediction model had an area under the curve (AUC) value of 0.979, indicative of strong predictive power and a robust clinical application prospect. In the exercise group, the expression of exosomal miR-215-5p was found to be upregulated; miR-215-5p could potentially inhibit the expressions of IDH1, BCL2L11, and SIRT1. The single-cell SCENIC assay was used to identify key transcriptional regulators in skeletal muscle. Among them, CEBPB and GATA6 were identified as putative transcriptional regulators of miR-215. After "skeletal muscle removal of load," the expressions of CEBPB and GATA6 increased substantially, which in turn led to the elevation of miR-215 expression, thereby suggesting a putative mechanism for negative feedback regulation of exosomal homeostasis.
Collapse
Affiliation(s)
- Yisheng Chen
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yaying Sun
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhiwen Luo
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jinrong Lin
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Beijie Qi
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Xueran Kang
- Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chenting Ying
- Department of Orthopaedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chenyang Guo
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Mengxuan Yao
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Biomechanics of Hebei Province, Orthopaedic Research Institution of Hebei Province, Shijiazhuang, China
| | | | - Yi Wang
- Huashan Hospital, Fudan University, Shanghai, China
| | - Qian Wang
- Department of Central Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Tai’an, China
| | - Jiwu Chen
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shiyi Chen
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
27
|
Gao L, Jiang Z, Han Y, Li Y, Yang X. Regulation of Pyroptosis by ncRNA: A Novel Research Direction. Front Cell Dev Biol 2022; 10:840576. [PMID: 35419365 PMCID: PMC8995973 DOI: 10.3389/fcell.2022.840576] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/14/2022] [Indexed: 01/17/2023] Open
Abstract
Pyroptosis is a novel form of programmed cell death (PCD), which is characterized by DNA fragmentation, chromatin condensation, cell swelling and leakage of cell contents. The process of pyroptosis is performed by certain inflammasome and executor gasdermin family member. Previous researches have manifested that pyroptosis is closely related to human diseases (such as inflammatory diseases) and malignant tumors, while the regulation mechanism of pyroptosis is not yet clear. Non-coding RNA (ncRNA) such as microRNA (miRNA), long non-coding RNA (lncRNA) and circular RNA (circRNA) have been widely identified in the genome of eukaryotes and played a paramount role in the development of cell function and fate after transcription. Accumulating evidences support the importance of ncRNA biology in the hallmarks of pyroptosis. However, the associations between ncRNA and pyroptosis are rarely reviewed. In this review, we are trying to summarize the regulation and function of ncRNA in cell pyroptosis, which provides a new research direction and ideas for the study of pyroptosis in different diseases.
Collapse
Affiliation(s)
- Liyuan Gao
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Zhitao Jiang
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Yi Han
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Yang Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiang Yang
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| |
Collapse
|
28
|
Fang J, Li K, Huang C, Xue H, Ni Q. LncRNA TTN-AS1 confers tamoxifen resistance in breast cancer via sponging miR-107 to modulate PI3K/AKT signaling pathway. Am J Transl Res 2022; 14:2267-2279. [PMID: 35559394 PMCID: PMC9091103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 09/02/2020] [Indexed: 06/15/2023]
Abstract
OBJECTIVE Tamoxifen resistance of breast cancer (BC) is a significant hindrance in clinical therapy. The long-noncoding RNA (lncRNA) TTN-AS1 has been reported as a crucial tumor promoting factor in various cancers. In this study, we set out to discover the specific pathologic regulatory mechanisms of tamoxifen-resistance in breast cancer. METHODS MTT assay was conducted to evaluate the cell viability of the breast cancer cell lines MCF-7 and MCF-7/TAM. QRT-PCR and western blot assay were performed to estimate the expression of TTN-AS1, miR-107 and related proteins. Flow cytometry was conducted to identify degree of apoptosis and cell cycle. The invasive ability was estimated by transwell chamber assay. RESULTS Our findings revealed that TTN-AS1 can enhance tamoxifen-resistance in BC cells and augment the invasive ability of tamoxifen-resistant breast cancer cells by down-regulating miR-107, and thereby encourage the development of drug-resistant BC. Further investigation indicates that lncRNA TTN-AS1 worsens the course of tamoxifen-resistant BC by regulating zinc and ring finger 2 (ZNRF2) via miR-107 and activating the PI3K/AKT pathway. CONCLUSION Our findings suggest that the lncRNA TTN-AS1 can encourage tamoxifen-resistance in BC by modulating the miR-107/ZNRF2 axis and stimulating the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Jun Fang
- Department of General Surgery, Affiliated Hospital of Nantong UniversityNantong 226001, Jiangsu, PR China
| | - Kun Li
- Department of Thyroid and Breast Surgery, Kunshan Hospital of Traditional Chinese MedicineKunshan 215300, Jiangsu, PR China
- Kunshan Affiliated Hospital of Nanjing University of Chinese MedicineKunshan 215300, Jiangsu, PR China
| | - Chen Huang
- Department of General Surgery, Affiliated Hospital of Nantong UniversityNantong 226001, Jiangsu, PR China
| | - Huimin Xue
- Department of General Surgery, Affiliated Hospital of Nantong UniversityNantong 226001, Jiangsu, PR China
| | - Qichao Ni
- Department of General Surgery, Affiliated Hospital of Nantong UniversityNantong 226001, Jiangsu, PR China
| |
Collapse
|
29
|
Wang Z, Li X, Huang L, Liu G, Chen Y, Li B, Zhao X, Xie R, Li Y, Fang W. Long Non-coding RNAs (lncRNAs), A New Target in Stroke. Cell Mol Neurobiol 2022; 42:501-519. [PMID: 32865676 PMCID: PMC11441288 DOI: 10.1007/s10571-020-00954-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/22/2020] [Indexed: 02/07/2023]
Abstract
Stroke has become the most disabling and the second most fatal disease in the world. It has been a top priority to reveal the pathophysiology of stroke at cellular and molecular levels. A large number of long non-coding RNAs (lncRNAs) are identified to be abnormally expressed after stroke. Here, we summarize 35 lncRNAs associated with stroke, and clarify their functions on the prognosis through signal transduction and predictive values as biomarkers. Changes in the expression of these lncRNAs mediate a wide range of pathological processes in stroke, including apoptosis, inflammation, angiogenesis, and autophagy. Based on the exploration of the functions and mechanisms of lncRNAs in stroke, more timely, accurate predictions and more effective, safer treatments for stroke could be developed.
Collapse
Affiliation(s)
- Ziyu Wang
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Xiang Li
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Liangliang Huang
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Ge Liu
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Yan Chen
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Binbin Li
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Xueyan Zhao
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Rong Xie
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200040, People's Republic of China
| | - Yunman Li
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.
| | - Weirong Fang
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.
- Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Tongjiaxiang 24, Mailbox 207, Nanjing, 210009, Jiangsu, People's Republic of China.
| |
Collapse
|
30
|
The lncRNA NEAT1/miRNA-766-5p/E2F3 Regulatory Axis Promotes Prostate Cancer Progression. JOURNAL OF ONCOLOGY 2022; 2022:1866972. [PMID: 35237319 PMCID: PMC8885187 DOI: 10.1155/2022/1866972] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/24/2021] [Accepted: 12/28/2021] [Indexed: 11/17/2022]
Abstract
Background Prostate cancer (PCa) is one of the most common malignancies in men. Increasing evidence has demonstrated that dysregulation of long noncoding RNAs (lncRNAs) is closely related to carcinogenesis and cancer progression. lncRNA NEAT1 has recently been identified as a carcinogenic regulator of multiple cancers; however, the role of NEAT1 on PCa is still poorly understood. Methods Kaplan–Meier was conducted to determine the overall survival rate in PCa patients with aberrant NEAT1 levels. qRT-PCR analysis was performed to detect expressions of NEAT1 and miR-766-5p in tissues and cells. In addition, CCK-8, colony formation, flow cytometry analysis, wound healing, and transwell assay were conducted to determine cell proliferation, cell arrest, apoptosis, migration, and invasion. The western blot assay was utilized to determine E2F3 and cell growth-related proteins. The relationship between NEAT1 and miR-766-5p or miR-766-5p and E2F3 was verified by correlation analysis and dual-luciferase reporter assay. Results Here, we find that NEAT1 is overexpressed in PCa tissues and cell lines. Besides, silencing of NEAT1 inhibits cell proliferation, invasion, and migration and promotes cell apoptosis and cell cycle arrest. Further mechanistic studies find that NEAT1 sponges miR-766-5p, and miRNA-766-5p is negatively correlated with the expression of NEAT1. In addition, the functional experiment shows that upregulation of miRNA-766-5p inhibits PCa proliferation, migration, and invasion. Furthermore, E2F transcription factor 3 (E2F3) is testified to be the downstream target gene of miRNA-766-5p. Finally, the rescue experiment revealed that miRNA-766-5p inhibition largely restores NEAT1 downregulation-mediated function on PCa progression, while E2F3 knockdown partly removes the effects of miRNA-766-5p inhibitor. Conclusions In conclusion, NEAT1 facilitates PCa progression by targeting the miRNA-766-5p/E2F3 axis.
Collapse
|
31
|
Luo Y, Qiu W, Wu B, Fang F. An Overview of Mesenchymal Stem Cell-based Therapy Mediated by Noncoding RNAs in the Treatment of Neurodegenerative Diseases. Stem Cell Rev Rep 2022; 18:457-473. [PMID: 34347272 DOI: 10.1007/s12015-021-10206-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2021] [Indexed: 12/11/2022]
Abstract
Mesenchymal stem cells (MSCs) have become a promising tool for neurorestorative therapy of neurodegenerative diseases (NDDs), which are mainly characterized by the progressive and irreversible loss of neuronal structure and function in the central or peripheral nervous system. Recently, studies have reported that genetic manipulation mediated by noncoding RNAs (ncRNAs) can increase survival and neural regeneration of transplanted MSCs, offering a new strategy for clinical translation. In this review, we summarize the potential role and regulatory mechanism of two major types of ncRNAs, including microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), during the neurogenesis of MSCs with gene expression profile analyses. We also overview the realization of MSC-based therapy mediated by ncRNAs in the treatment of spinal cord injury, stroke, Alzheimer's disease and peripheral nerve injury. It is expected that ncRNAs will become promising therapeutic targets for NDD on stem cells, while the underlying mechanisms require further exploration.
Collapse
Affiliation(s)
- Yifei Luo
- Department of Stomatology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, People's Republic of China
| | - Wei Qiu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, People's Republic of China
| | - Buling Wu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, People's Republic of China
- Shenzhen Stomatology Hospital (Pingshan), Southern Medical University, 143 Dongzong Road, Pingshan District, Shenzhen, 518118, People's Republic of China
| | - Fuchun Fang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, People's Republic of China.
| |
Collapse
|
32
|
Rasheed M, Asghar R, Firdoos S, Ahmad N, Nazir A, Ullah KM, Li N, Zhuang F, Chen Z, Deng Y. A Systematic Review of Circulatory microRNAs in Major Depressive Disorder: Potential Biomarkers for Disease Prognosis. Int J Mol Sci 2022; 23:1294. [PMID: 35163214 PMCID: PMC8835958 DOI: 10.3390/ijms23031294] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/17/2022] [Accepted: 01/20/2022] [Indexed: 02/04/2023] Open
Abstract
Major depressive disorder (MDD) is a neuropsychiatric disorder, which remains challenging to diagnose and manage due to its complex endophenotype. In this aspect, circulatory microRNAs (cimiRNAs) offer great potential as biomarkers and may provide new insights for MDD diagnosis. Therefore, we systemically reviewed the literature to explore various cimiRNAs contributing to MDD diagnosis and underlying molecular pathways. A comprehensive literature survey was conducted, employing four databases from 2012 to January 2021. Out of 1004 records, 157 reports were accessed for eligibility criteria, and 32 reports meeting our inclusion criteria were considered for in-silico analysis. This study identified 99 dysregulated cimiRNAs in MDD patients, out of which 20 cimiRNAs found in multiple reports were selected for in-silico analysis. KEGG pathway analysis indicated activation of ALS, MAPK, p53, and P13K-Akt signaling pathways, while gene ontology analysis demonstrated that most protein targets were associated with transcription. In addition, chromosomal location analysis showed clustering of dysregulated cimiRNAs at proximity 3p22-p21, 9q22.32, and 17q11.2, proposing their coregulation with specific transcription factors primarily involved in MDD physiology. Further analysis of transcription factor sites revealed the existence of HIF-1, REST, and TAL1 in most cimiRNAs. These transcription factors are proposed to target genes linked with MDD, hypothesizing that first-wave cimiRNA dysregulation may trigger the second wave of transcription-wide changes, altering the protein expressions of MDD-affected cells. Overall, this systematic review presented a list of dysregulated cimiRNAs in MDD, notably miR-24-3p, let 7a-5p, miR-26a-5p, miR135a, miR-425-3p, miR-132, miR-124 and miR-16-5p as the most prominent cimiRNAs. However, various constraints did not permit us to make firm conclusions on the clinical significance of these cimiRNAs, suggesting the need for more research on single blood compartment to identify the biomarker potential of consistently dysregulated cimiRNAs in MDD, as well as the therapeutic implications of these in-silico insights.
Collapse
Affiliation(s)
- Madiha Rasheed
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Sciences, Beijing Institute of Technology, Beijing 100081, China; (M.R.); (R.A.); (S.F.); (K.M.U.); (N.L.)
| | - Rabia Asghar
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Sciences, Beijing Institute of Technology, Beijing 100081, China; (M.R.); (R.A.); (S.F.); (K.M.U.); (N.L.)
| | - Sundas Firdoos
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Sciences, Beijing Institute of Technology, Beijing 100081, China; (M.R.); (R.A.); (S.F.); (K.M.U.); (N.L.)
| | - Nadeem Ahmad
- Department of Pharmacy, Abbottabad Campus, COMSATS University Islamabad, Abbottabad 22060, Pakistan;
| | - Amina Nazir
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan Industry North Road 202, Jinan 250100, China;
| | - Kakar Mohib Ullah
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Sciences, Beijing Institute of Technology, Beijing 100081, China; (M.R.); (R.A.); (S.F.); (K.M.U.); (N.L.)
| | - Noumin Li
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Sciences, Beijing Institute of Technology, Beijing 100081, China; (M.R.); (R.A.); (S.F.); (K.M.U.); (N.L.)
| | - Fengyuan Zhuang
- School of Biology and Medical Engineering, Beihang University, Beijing 100191, China;
| | - Zixuan Chen
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Sciences, Beijing Institute of Technology, Beijing 100081, China; (M.R.); (R.A.); (S.F.); (K.M.U.); (N.L.)
| | - Yulin Deng
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Sciences, Beijing Institute of Technology, Beijing 100081, China; (M.R.); (R.A.); (S.F.); (K.M.U.); (N.L.)
| |
Collapse
|
33
|
Zeng J, Zhang Z, Liao Q, Lu Q, Liu J, Yuan L, Liu G. CircPan3 Promotes the Ghrelin System and Chondrocyte Autophagy by Sponging miR-667-5p During Rat Osteoarthritis Pathogenesis. Front Cell Dev Biol 2021; 9:719898. [PMID: 34869311 PMCID: PMC8640465 DOI: 10.3389/fcell.2021.719898] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 10/11/2021] [Indexed: 12/19/2022] Open
Abstract
This study aimed to investigate the potential roles of circRNAs in regulating osteoarthritis (OA)-related ghrelin synthesis, autophagy induction, and the relevant molecular mechanisms. Results showed that Col2a1, Acan, ghrelin, and autophagy-related markers expression were downregulated, while matrix metalloproteinase 13 (MMP13) and a disintegrin and metalloproteinase with thrombospondin motifs 5 (ADAMTS5) expressions increased in both IL-1β-induced rat chondrocytes and cartilage tissues of OA rats. A total of 130 circRNAs and 731 mRNAs were differentially expressed in IL-1β-induced rat chondrocytes. Among them, we found that circPan3 expression was significantly decreased in both cellular and animal OA models. CircPan3 directly targeted miR-667-5p. CircPan3 overexpression promoted Col2a1, Acan, ghrelin, beclin 1, and LC3-II expression but reduced MMP13 and ADAMTS5 expression in rat chondrocytes, whereas overexpression of miR-667-5p exhibited opposite effects on the above markers. Furthermore, we found that miR-667-5p bound directly to the 3′-UTR sequence of ghrelin gene. Moreover, the circPan3-induced alterations in chondrocytes were antagonized by miR-667-5p overexpression. Taken together, our findings demonstrate that circPan3 promotes ghrelin synthesis and chondrocyte autophagy via targeting miR-667-5p, protecting against OA injury. This study provided experimental evidence that circPan3/miR-667-5p/ghrelin axis might serve as targets of drug development for the treatment of OA.
Collapse
Affiliation(s)
- Jing Zeng
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, China.,Department of Rehabilitation Medicine, Nanfang University of Science and Technology Hospital, Shenzhen, China
| | - Zhenzhen Zhang
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, China.,Department of Rehabilitation Medicine, Hankou Hospital, Wuhan, China
| | - Qing Liao
- Department of Rehabilitation Medicine, Shunde Hospital of Southern Medical University, Southern Medical University, Foshan, China
| | - Qijin Lu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Jiemei Liu
- Department of Rehabilitation Medicine, Shunde Hospital of Southern Medical University, Southern Medical University, Foshan, China
| | - Lixia Yuan
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Gang Liu
- Department of Rehabilitation Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Rehabilitation Medicine, Shunde Hospital of Southern Medical University, Southern Medical University, Foshan, China
| |
Collapse
|
34
|
Hu X, Xu Y, Zhang H, Li Y, Wang X, Xu C, Ni W, Zhou K. Role of necroptosis in traumatic brain and spinal cord injuries. J Adv Res 2021; 40:125-134. [PMID: 36100321 PMCID: PMC9481937 DOI: 10.1016/j.jare.2021.12.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 09/04/2021] [Accepted: 12/08/2021] [Indexed: 11/30/2022] Open
Affiliation(s)
- Xinli Hu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China; The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Yu Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China; The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Haojie Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China; The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Yao Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China; The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Xiangyang Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China; The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China.
| | - Cong Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China; The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China.
| | - Wenfei Ni
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China; The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China.
| | - Kailiang Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China; The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China.
| |
Collapse
|
35
|
Co-upregulation of miR-31 and its host gene lncRNA MIR31HG in oral squamous cell carcinoma. J Dent Sci 2021; 17:696-706. [PMID: 35756773 PMCID: PMC9201660 DOI: 10.1016/j.jds.2021.11.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/07/2021] [Indexed: 11/24/2022] Open
Abstract
Background/purpose Several long non-coding RNAs (lncRNAs) harbor miRNA in their genome. MIR31HG harbors miR-31 in its intron and it is speculated that they are co-expressed in tumors. This study addressed whether frequent miR-31 and MIR31HG co-upregulation occurred in oral squamous cell carcinoma (OSCC) and its clinical implications. Materials and methods Microarray was performed to retrieve dis-regulated lncRNAs from tissue sample. The ectopic gene expression was carried out to specify the phenotypic influences of selected lncRNA screened from bioinformatic algorithms. The expression of miR-31 and MIR31HG in tissues or scrapped samples was analyzed using qRT-PCR. The implications of gene expression as related to metastasis or survival were further dissected. Results Microarray identified disrupted transcripts including MIR31HG and other 152 lncRNAs aberrantly expressed in OSCC tissues. In silico algorithms annotated an eminent involvement of aberrant transcripts in the regulation of cell cycle, extracellular modulation, adhesion, and wound healing. The enhancement of proliferation, wound healing, invasion and anchorage-independent colony formation mediated by MIR31HG was ascertained by ectopic expression in OECM1 cells. Besides, co-upregulation of miR-31 and MIR31HG was conspicuous in OSCC tissues. High expression of miR-31 and MIR31HG designated a trend of worse OSCC prognosis. Interestingly, high MIR31HG expression defined a very poor survival in stage IV diseases. By contrast, high miR-31 expression predicted nodal metastasis in stage I–III diseases. Conclusion Assessment of miR-31 and MIR31HG expression in OSCC may enable the prognostic prediction. The candidate lncRNAs isolated from this work can be further validated as crucial factors contributing to OSCC pathogenesis.
Collapse
|
36
|
Wang P, Zhou Y, Richards AM. Effective tools for RNA-derived therapeutics: siRNA interference or miRNA mimicry. Theranostics 2021; 11:8771-8796. [PMID: 34522211 PMCID: PMC8419061 DOI: 10.7150/thno.62642] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/30/2021] [Indexed: 12/18/2022] Open
Abstract
The approval of the first small interfering RNA (siRNA) drug Patisiran by FDA in 2018 marks a new era of RNA interference (RNAi) therapeutics. MicroRNAs (miRNA), an important post-transcriptional gene regulator, are also the subject of both basic research and clinical trials. Both siRNA and miRNA mimics are ~21 nucleotides RNA duplexes inducing mRNA silencing. Given the well performance of siRNA, researchers ask whether miRNA mimics are unnecessary or developed siRNA technology can pave the way for the emergence of miRNA mimic drugs. Through comprehensive comparison of siRNA and miRNA, we focus on (1) the common features and lessons learnt from the success of siRNAs; (2) the unique characteristics of miRNA that potentially offer additional therapeutic advantages and opportunities; (3) key areas of ongoing research that will contribute to clinical application of miRNA mimics. In conclusion, miRNA mimics have unique properties and advantages which cannot be fully matched by siRNA in clinical applications. MiRNAs are endogenous molecules and the gene silencing effects of miRNA mimics can be regulated or buffered to ameliorate or eliminate off-target effects. An in-depth understanding of the differences between siRNA and miRNA mimics will facilitate the development of miRNA mimic drugs.
Collapse
Affiliation(s)
- Peipei Wang
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, 117599 Singapore
- Department of Medicine, National University Health System, 119228 Singapore
| | - Yue Zhou
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, 117599 Singapore
- Department of Medicine, National University Health System, 119228 Singapore
| | - Arthur M. Richards
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, 117599 Singapore
- Department of Medicine, National University Health System, 119228 Singapore
- Christchurch Heart Institute, Department of Medicine, University of Otago Christchurch, New Zealand
| |
Collapse
|
37
|
Pelia R, Venkateswaran S, Matthews JD, Haberman Y, Cutler DJ, Hyams JS, Denson LA, Kugathasan S. Profiling non-coding RNA levels with clinical classifiers in pediatric Crohn's disease. BMC Med Genomics 2021; 14:194. [PMID: 34325702 PMCID: PMC8323253 DOI: 10.1186/s12920-021-01041-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 07/22/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Crohn's disease (CD) is a heritable chronic inflammatory disorder. Non-coding RNAs (ncRNAs) play an important role in epigenetic regulation by affecting gene expression, but can also directly affect protein function, thus having a substantial impact on biological processes. We investigated whether non-coding RNAs (ncRNA) at diagnosis are dysregulated during CD at different CD locations and future disease behaviors to determine if ncRNA signatures can serve as an index to outcomes. METHODS Using subjects belonging to the RISK cohort, we analyzed ncRNA from the ileal biopsies of 345 CD and 71 non-IBD controls, and ncRNA from rectal biopsies of 329 CD and 61 non-IBD controls. Sequence alignment was done (STAR package) using Human Genome version 38 (hg38) as reference panel. The differential expression (DE) analysis was performed with EdgeR package and DE ncRNAs were identified with a threshold of fold change (FC) > 2 and FDR < 0.05 after multiple test corrections. RESULTS In total, we identified 130 CD specific DE ncRNAs (89 in ileum and 41 in rectum) when compared to non-IBD controls. Similarly, 35 DE ncRNAs were identified between B1 and B2 in ileum, whereas no differences among CD disease behaviors were noticed in rectum. We also found inflammation specific ncRNAs between inflamed and non-inflamed groups in ileal biopsies. Overall, we observed that expression of mir1244-2, mir1244-3, mir1244-4, and RN7SL2 were increased during CD, regardless of disease behavior, location, or inflammatory status. Lastly, we tested ncRNA expression at baseline as potential tool to predict the disease status, disease behaviors and disease inflammation at 3-year follow up. CONCLUSIONS We have identified ncRNAs that are specific to disease location, disease behavior, and disease inflammation in CD. Both ileal and rectal specific ncRNA are changing over the course of CD, specifically during the disease progression in the intestinal mucosa. Collectively, our findings show changes in ncRNA during CD and may have a clinical utility in early identification and characterization of disease progression.
Collapse
Affiliation(s)
- Ranjit Pelia
- Division of Pediatric Gastroenterology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, 1760 Haygood Drive, W-427, Atlanta, GA, 30322, USA
| | - Suresh Venkateswaran
- Division of Pediatric Gastroenterology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, 1760 Haygood Drive, W-427, Atlanta, GA, 30322, USA
| | - Jason D Matthews
- Division of Pediatric Gastroenterology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, 1760 Haygood Drive, W-427, Atlanta, GA, 30322, USA
| | - Yael Haberman
- Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Sheba Medical Center, Tel-HaShomer, Affiliated With the Tel-Aviv University, Tel-Aviv, Israel
| | - David J Cutler
- Department of Human Genetics, Emory University, Atlanta, GA, USA
| | | | - Lee A Denson
- Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Subra Kugathasan
- Division of Pediatric Gastroenterology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, 1760 Haygood Drive, W-427, Atlanta, GA, 30322, USA.
- Department of Human Genetics, Emory University, Atlanta, GA, USA.
| |
Collapse
|
38
|
Abstract
PURPOSE OF REVIEW Studies indicating that non-coding RNAs (ncRNAs) play a regulatory role in sepsis are increasing rapidly. This present review summarizes recent publications on the role of microRNAs and long non-coding RNAs (lncRNAs) in sepsis. RECENT FINDINGS MicroRNAs (miRNAs) and lncRNAs are being identified as potential sepsis biomarkers and therapeutic targets. Experimental studies have examined the biological mechanisms that might underpin the regulatory role of these ncRNAs in sepsis. SUMMARY Clinical applications of miRNAs and lncRNAs in sepsis are on the horizon. These data could lead to the identification of novel treatments or indeed support the repurposing of existing drugs for sepsis. Validation of the findings from these preliminary studies and crucially integration of multiomics datasets will undoubtedly revolutionize the clinical management of sepsis.
Collapse
|
39
|
Al-Rubaye S, Ghaderian SMH, Salehpour S, Salmani T, Vojdani S, Yaseen R, Akbarzadeh R. Aberrant expression of BAX, MEG3, and miR-214-3P genes in recurrent pregnancy loss. Gynecol Endocrinol 2021; 37:660-664. [PMID: 33719810 DOI: 10.1080/09513590.2021.1897098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
AIMS Recurrent pregnancy loss (RPL), with unknown causes, is one of the most common challenges facing pregnancy. Apoptotic signaling pathways are involved in the normal and abnormal pregnancy process. Despite the evidence pointing toward the aberrant expression of apoptotic and apoptotic-related genes in pregnancy complications, the involvement of these genes in RPL remains to be elucidated. This study aimed to investigate the expression levels of BAX, MEG3, and miR-214-3p (as a microRNA), and their associations in an Iranian population. MATERIALS AND METHODS Following the extraction of RNA from blood samples of RPL patients and controls, quantitative expression levels of BAX, MEG3, and miR-214-3p genes were analyzed by real-time RT-PCR. RESULTS The findings showed that the expression levels of BAX and miRNA-214-3p were significantly higher in the blood samples of RPL patients than in control samples. In contrast, the expression of MEG3 was significantly down-regulated in women RPL. Furthermore, altered expressions of MEG3 and miRNA-214-3p are associated with their target gene BAX, where the BAX expression is positively and negatively correlated with the expressions of has-miR-214-3P and MEG3, respectively. ROC curve evaluation demonstrated the highest specificity and diagnostic value for miR-214-3p expression in distinguishing RPL samples from the healthy controls. CONCLUSIONS These data indicated that the aberrant expression of BAX, MEG3, miRNA-214-3p genes in RPL patients could provide new insights into the biological characteristics and related pathways of differentially expressed genes, which could help as potential diagnostic biomarkers and a better understanding of the molecular mechanisms of RPL.
Collapse
Affiliation(s)
- Saja Al-Rubaye
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sayyed Mohammad Hossein Ghaderian
- Cellular and Molecular Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saghar Salehpour
- Preventative Gynecology Research Center (PGRC), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tayyebali Salmani
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samaneh Vojdani
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rusul Yaseen
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Akbarzadeh
- Institute of Anatomy, University of Lübeck, Lübeck, Germany
- Skin Research Centre, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
40
|
Chatterjee M, Viswanathan P. Long noncoding RNAs in the regulation of p53-mediated apoptosis in human cancers. Cell Biol Int 2021; 45:1364-1382. [PMID: 33760332 DOI: 10.1002/cbin.11597] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/02/2021] [Accepted: 03/21/2021] [Indexed: 02/05/2023]
Abstract
Long noncoding RNAs (lncRNAs) are widely known for their regulatory function in transcriptional and posttranscriptional processes. The involvement of such non-protein-coding RNAs in nuclear organization and chromatin remodeling is often associated with an increased risk of human malignancies. In cancer, lncRNAs either promote cell survival or may act as a growth suppressor, thus conferring a key regulatory function other than their established role in fundamental cellular processes. Interestingly, lncRNAs interfere with the stages of apoptosis and related pathways involving p53. Many of these molecules either regulate or are regulated by p53 while mounting oncogenic events. Consequently, they may confer both prosurvival or proapoptotic functions depending upon the tissue type. Since the mechanism of cell death is bypassed in many human cancers, it has emerged that the lncRNAs are either overexpressed or knocked down to sensitize cells to apoptotic stimuli. Nonetheless, the abundant expression of lncRNAs in tumor cells renders them suitable targets for anticancer therapies. Although the role of lncRNAs in the p53 network and apoptosis has been independently defined, their interplay in activating p53-target genes during cell cycle arrest remains unexplored. Thus, we have specifically reviewed the possible involvement of lncRNAs in the p53-mediated apoptosis of human cancer cells. In particular, we summarize the growing evidence from individual studies and analyze whether lncRNAs are essential to facilitate apoptosis in a p53-dependent manner. This may lead to the identification of p53-associated lncRNAs that are suitable therapeutic targets or diagnostic/prognostic markers.
Collapse
Affiliation(s)
- Manjima Chatterjee
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Pragasam Viswanathan
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
41
|
Shensu IV prevents glomerular podocyte injury in nephrotic rats via promoting lncRNA H19/DIRAS3-mediated autophagy. Biosci Rep 2021; 41:228425. [PMID: 33881140 PMCID: PMC8112846 DOI: 10.1042/bsr20203362] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 04/09/2021] [Accepted: 04/15/2021] [Indexed: 12/14/2022] Open
Abstract
Shensu IV is a Chinese prescription well-known for its function in treating chronic kidney diseases. However, the potential mechanisms underlying how Shensu IV exerts its effects remain unclear. In the present study, we investigated the effects of Shensu IV on glomerular podocyte injury in nephrotic rats and puromycin-induced injury in cultured podocytes, and assessed the associated molecular mechanisms. Liquid chromatography-mass spectrometry (LC-MS) results showed that the main components of Shensu IV were l-Carnitine, P-lysoPC (LPC) 16:0, Coumaroyl tyramine, Tetramethylpyrazine, LPC 18:1, Choline, (S,S)-Butane-2,3-diol, and Scopoletin. We further found that nephrotic rats displayed pathological alterations in kidney tissues and ultrastructural changes in glomerular podocytes; however, these effects were reversed with Shensu IV treatment. Compared with the control, the numbers of autophagosomes were markedly reduced in the model group, but not in the Shensu IV treatment group. Furthermore, the expression of p62 was significantly higher in the model group than in the controls, whereas the LC3-II/I ratio was significantly lower; however, these changes were not observed when Shensu IV was administered. The protective effects of Shensu IV were further confirmed in podocytes displaying puromycin-induced injury. Compared with control group, the expression of long non-coding RNA (lncRNA) H19, mTOR, p-mTOR, and p62 was significantly increased in the puromycin group, whereas that of distinct subgroup of the RAS family member 3 (DIRAS3) was significantly decreased, as was the LC3-II/I ratio. The opposite results were obtained for both shH19- and Shensu IV-treated cells. Collectively, our data demonstrated that Shensu IV can prevent glomerular podocyte injury in nephrotic rats and puromycin-treated podocytes, likely via promoting lncRNA H19/DIRAS3-regulated autophagy.
Collapse
|
42
|
Chatterjee M, Viswanathan P. Long noncoding RNAs in the regulation of p53‐mediated apoptosis in human cancers. Cell Biol Int 2021. [DOI: https://doi.org/10.1002/cbin.11597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Manjima Chatterjee
- School of Bio Sciences and Technology, Vellore Institute of Technology Vellore Tamil Nadu India
| | - Pragasam Viswanathan
- School of Bio Sciences and Technology, Vellore Institute of Technology Vellore Tamil Nadu India
| |
Collapse
|
43
|
Rugowska A, Starosta A, Konieczny P. Epigenetic modifications in muscle regeneration and progression of Duchenne muscular dystrophy. Clin Epigenetics 2021; 13:13. [PMID: 33468200 PMCID: PMC7814631 DOI: 10.1186/s13148-021-01001-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/14/2020] [Indexed: 02/08/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a multisystemic disorder that affects 1:5000 boys. The severity of the phenotype varies dependent on the mutation site in the DMD gene and the resultant dystrophin expression profile. In skeletal muscle, dystrophin loss is associated with the disintegration of myofibers and their ineffective regeneration due to defective expansion and differentiation of the muscle stem cell pool. Some of these phenotypic alterations stem from the dystrophin absence-mediated serine-threonine protein kinase 2 (MARK2) misplacement/downregulation in activated muscle stem (satellite) cells and neuronal nitric oxide synthase loss in cells committed to myogenesis. Here, we trace changes in DNA methylation, histone modifications, and expression of regulatory noncoding RNAs during muscle regeneration, from the stage of satellite cells to myofibers. Furthermore, we describe the abrogation of these epigenetic regulatory processes due to changes in signal transduction in DMD and point to therapeutic treatments increasing the regenerative potential of diseased muscles based on this acquired knowledge.
Collapse
Affiliation(s)
- Anna Rugowska
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614, Poznan, Poland
| | - Alicja Starosta
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614, Poznan, Poland
| | - Patryk Konieczny
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614, Poznan, Poland.
| |
Collapse
|
44
|
Alfaifi M, Ali Beg MM, Alshahrani MY, Ahmad I, Alkhathami AG, Joshi PC, Alshehri OM, Alamri AM, Verma AK. Circulating long non-coding RNAs NKILA, NEAT1, MALAT1, and MIAT expression and their association in type 2 diabetes mellitus. BMJ Open Diabetes Res Care 2021; 9:e001821. [PMID: 33436407 PMCID: PMC7805373 DOI: 10.1136/bmjdrc-2020-001821] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/07/2020] [Accepted: 11/21/2020] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is a multifactorial disorder that leads to alterations in gene regulation. Long non-coding RNAs (lncRNAs) have become a major research topic as they are involved in metabolic disorders. METHODS This study included a total of 400 study subjects; 200 were subjects with T2DM and 200 were healthy subjects. Extracted RNA was used to synthesize cDNA by quantitative real time. Serum analysis was carried out to determine differences in biochemical parameters. Recorded data were used to evaluate associations with expression of lncRNAs NF-kappaB interacting lncRNA (NKILA), nuclear enriched abundant transcript 1 (NEAT1), metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), and myocardial infarction-associated transcript (MIAT) in T2DM cases. RESULTS Compared with healthy controls, patients with T2DM showed an overall increase in expression of lncRNAs NKILA, NEAT, MALAT1, and MIAT by 3.94-fold, 5.28-fold, 4.46-fold, and 6.35-fold, respectively. Among patients with T2DM, higher expression of lncRNA NKILA was associated with hypertension (p=0.001), smoking (p<0.0001), and alcoholism (p<0.0001). Altered NEAT1 expression was significantly associated with weight loss (p=0.04), fatigue (p=0.01), slow wound healing (p=0.002), blurred vision (p=0.008), loss of appetite (p=0.007), smoking (p<0.0001), and alcoholism (p<0.0001). Higher expression of lncRNA MALAT1 was significantly linked with weight loss (p=0.003), blurred vision (p=0.01), smoking (p<0.0001), and alcoholism (p<0.0001). Expression of lncRNA MIAT was associated with only blurred vision (p<0.0001), smoking (p<0.0001), and alcoholism (p<0.0001). Positive correlations of lncRNA NKILA with lncRNAs NEAT1 (r=0.42, p<0.0001), MALAT (r=0.36, p<0.0001) and MIAT (r=0.42, p<0.0001) were observed among patients with T2DM. Significant positive correlations of lncRNA NEAT with lncRNAs MALAT and MIAT were observed among patients with T2DM. A positive correlation between lncRNAs MALAT and MIAT was also observed among patients with T2DM. CONCLUSION Increased circulating NKILA, NEAT1, MALAT, and MIAT expression in patients with T2DM, which is linked with poor patient outcomes and significantly linked with alcoholism and smoking, may influence the degree and severity of disease among patients with T2DM. These lncRNAs may contribute to the progression of T2DM disease or other related diabetes-related complications.
Collapse
Affiliation(s)
- Mohammed Alfaifi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Mirza Masroor Ali Beg
- Department of Medical Elementology and Toxicology, Jamia Hamdard, New Delhi, Delhi, India
- Department of Biochemistry, Maulana Azad Medical College, New Delhi, India
| | - Mohammed Yahya Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Ali Gaithan Alkhathami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Prakash C Joshi
- Department of Zoology and Environmental Sciences, Gurukula Kangri University, Haridwar, Uttarakhand, India
| | - Osama M Alshehri
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | | | - Amit Kumar Verma
- Department of Zoology and Environmental Sciences, Gurukula Kangri University, Haridwar, Uttarakhand, India
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, Delhi, India
| |
Collapse
|
45
|
Zuo Y, Chen L, He X, Ye Z, Li L, Liu Z, Zhou S. Atorvastatin Regulates MALAT1/miR-200c/NRF2 Activity to Protect Against Podocyte Pyroptosis Induced by High Glucose. Diabetes Metab Syndr Obes 2021; 14:1631-1645. [PMID: 33880049 PMCID: PMC8053520 DOI: 10.2147/dmso.s298950] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 03/18/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Diabetic nephropathy (DN) is one of the main complications of diabetes mellitus (DM), which leads to the long-term loss of kidney functions. Long noncoding RNAs (LncRNAs) can alleviate DN by interacting with microRNAs (miRNAs). In this work, we aimed to explore the effects of the MALAT1/miR-200c/NRF2 regulatory axis on the pyroptosis and oxidative stress (Oxidative stress, OS) of renal podocytes in high glucose (HG) environment and whether the lipid-lowering drug atorvastatin (AT) can relieve renal OS through this approach. METHODS MPC-5, a mouse podocyte cell line, was induced by HG as a cell model. The protein expressions of caspase-1, GSDMD, NLRP3, NRF2, etc. were detected by Western blotting and immunofluorescence, and the mRNA level of caspase-1, GSDMD, NLRP3, NRF2, MALAT1, miR-200c was tested by qRT-PCR. The cell pyroptosis of podocytes treated with AT was verified by CCK-8 or flow cytometry. The levels of Malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione (GSH) were measured by spectrophotometer, respectively. RESULTS The caspase-1 was upregulated in time-dependent manner and got the peak at 48 h and 30 mmol/L respectively in MPC-5 cells treated with HG. Further, the expression of GSDMD, MALAT1 and miR-200c were increased, while the level of NRF2, HO-1, OS-related indicators, were decreased simultaneously. Knockdown the MALAT1 protected MPC-5 cells from pyroptosis and OS induced by HG. However, overexpressing miR-200c in control-group cells increased pyroptosis and upregulated the OS level with HG culture medium. Further, atorvastatin protected MPC-5 cells from cell pyroptosis and downregulated the level of renal OS via attenuating the expression of MALAT1 and miR-200c. CONCLUSION Atorvastatin protects podocyte cells via MALAT1/miR-200c/NRF2 signal pathway from pyroptosis and OS induced by HG.
Collapse
Affiliation(s)
- Yi Zuo
- Department of Endocrinology, Affiliated Hospital of Guilin Medical University, Guilin, 541001, People’s Republic of China
| | - Li Chen
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin, Guangxi, 541004, People’s Republic of China
| | - Xiaoyun He
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
| | - Zhen Ye
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin, Guangxi, 541004, People’s Republic of China
| | - Ling Li
- Department of Endocrinology, Affiliated Hospital of Guilin Medical University, Guilin, 541001, People’s Republic of China
| | - Zhanhong Liu
- Department of Endocrinology, Affiliated Hospital of Guilin Medical University, Guilin, 541001, People’s Republic of China
| | - Suxian Zhou
- Department of Endocrinology, Affiliated Hospital of Guilin Medical University, Guilin, 541001, People’s Republic of China
- Correspondence: Suxian Zhou Department of Endocrinology, Affiliated Hospital of Guilin Medical University, 15 Lequn Road, Guilin, Guangxi, 541001, People’s Republic of China Email
| |
Collapse
|
46
|
Rezaie F, Mokhtari MJ, Kalani M. Quercetin Arrests in G2 phase, Upregulates INXS LncRNA and Downregulates UCA1 LncRNA in MCF-7 Cells. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2021; 10:208-216. [PMID: 35178359 PMCID: PMC8800456 DOI: 10.22088/ijmcm.bums.10.3.207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 10/30/2021] [Indexed: 11/25/2022]
Abstract
One of the most prevalent malignancies, which have severe effects on women's health, is breast cancer. Quercetin, a flavonoid found in vegetables, tea, and fruits, is known to have bioactive properties, such as anti-inflammatory, anti-oxidant, as well as anti-cancer. Long non-coding RNAs (lncRNAs) have been recognized to function as primary regulators of diverse cellular processes, including differentiation, development, and cell fate. INXS and UCA1 are lncRNAs that are up regulated and down regulated respectively in cancer cells. This research aimed to assess the impact of quercetin on the expression of INXS and UCA1 genes in MCF-7 cells. Various quercetin concentrations at different times were used to treat MCF-7 cells. The cell viability and IC50 values were determined using MTT assay. Then, MCF-7 cells were incubated with various quercetin concentrations for 24, 48, and 72 h. Cell cycle analyses were evaluated by flow cytometry. The levels of INXS and UCA1 gene expression compared with the GAPDH gene at different concentrations of quercetin were quantified using real-time PCR method. Based on the results, quercetin exerted a dose- and time-dependent inhibitory impact on the viability of MCF-7 cells. Furthermore, quercetin induced cell cycle arrest at the G2 phase in MCF-7 cells. Also, quercetin induced INXS upregulation and UCA1 downregulation in the MCF-7 cell line. These data suggest that quercetin might increase cell death by up regulating INXS and down regulating UCA1 lncRNAs in MCF-7 cells.
Collapse
Affiliation(s)
- Fatemeh Rezaie
- Department of Biology, Zarghan Branch, Islamic Azad University, Zarghan, Iran.
| | - Mohammad Javad Mokhtari
- Department of Biology, Zarghan Branch, Islamic Azad University, Zarghan, Iran.,Corresponding author: Department of Biology, Zarghan Branch, Islamic Azad University, Zarghan, Iran.
| | - Mehdi Kalani
- Department of Immunology, Prof. Alborzi Clinical Microbiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
47
|
Lu J, Luo Y, Mei S, Fang Y, Zhang J, Chen S. The Effect of Melatonin Modulation of Non-coding RNAs on Central Nervous System Disorders: An Updated Review. Curr Neuropharmacol 2020; 19:3-23. [PMID: 32359338 PMCID: PMC7903498 DOI: 10.2174/1570159x18666200503024700] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 04/06/2020] [Accepted: 04/25/2020] [Indexed: 01/19/2023] Open
Abstract
Melatonin is a hormone produced in and secreted by the pineal gland. Besides its role in regulating circadian rhythms, melatonin has a wide range of protective functions in the central nervous system (CNS) disorders. The mechanisms underlying this protective function are associated with the regulatory effects of melatonin on related genes and proteins. In addition to messenger ribonucleic acid (RNA) that can be translated into protein, an increasing number of non-coding RNAs in the human body are proven to participate in many diseases. This review discusses the current progress of research on the effects of melatonin modulation of non-coding RNAs (ncRNAs), including microRNA, long ncRNA, and circular RNA. The role of melatonin in regulating common pathological mechanisms through these ncRNAs is also summarized. Furthermore, the ncRNAs, currently shown to be involved in melatonin signaling in CNS diseases, are discussed. The information compiled in this review will open new avenues for future research into melatonin mechanisms and provide a further understanding of ncRNAs in the CNS.
Collapse
Affiliation(s)
- Jianan Lu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Yujie Luo
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Shuhao Mei
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Yuanjian Fang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Sheng Chen
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| |
Collapse
|
48
|
Diana A, Gaido G, Maxia C, Murtas D. MicroRNAs at the Crossroad of the Dichotomic Pathway Cell Death vs. Stemness in Neural Somatic and Cancer Stem Cells: Implications and Therapeutic Strategies. Int J Mol Sci 2020; 21:E9630. [PMID: 33348804 PMCID: PMC7766058 DOI: 10.3390/ijms21249630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/05/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022] Open
Abstract
Stemness and apoptosis may highlight the dichotomy between regeneration and demise in the complex pathway proceeding from ontogenesis to the end of life. In the last few years, the concept has emerged that the same microRNAs (miRNAs) can be concurrently implicated in both apoptosis-related mechanisms and cell differentiation. Whether the differentiation process gives rise to the architecture of brain areas, any long-lasting perturbation of miRNA expression can be related to the occurrence of neurodevelopmental/neuropathological conditions. Moreover, as a consequence of neural stem cell (NSC) transformation to cancer stem cells (CSCs), the fine modulation of distinct miRNAs becomes necessary. This event implies controlling the expression of pro/anti-apoptotic target genes, which is crucial for the management of neural/neural crest-derived CSCs in brain tumors, neuroblastoma, and melanoma. From a translational point of view, the current progress on the emerging miRNA-based neuropathology therapeutic applications and antitumor strategies will be disclosed and their advantages and shortcomings discussed.
Collapse
Affiliation(s)
- Andrea Diana
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy
| | | | - Cristina Maxia
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy
| | - Daniela Murtas
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy
| |
Collapse
|
49
|
Fan H, Ding L, Yang Y. lncRNA SNHG16 promotes the occurrence of osteoarthritis by sponging miR‑373‑3p. Mol Med Rep 2020; 23:117. [PMID: 33300061 PMCID: PMC7751458 DOI: 10.3892/mmr.2020.11756] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 02/05/2020] [Indexed: 02/07/2023] Open
Abstract
Osteoarthritis (OA) is a common age‑related joint disorder, for which no effective disease‑modifying drugs are currently available. Long non‑coding RNAs (lncRNAs) are involved in the occurrence of OA. lncRNA small nucleolar RNA host gene 16 (SNHG16) has been reported to regulate inflammation; however, the exact biological function of SNHG16 in OA and its underlying mechanism of action remain unclear. In this study, gene and protein expression levels were detected using reverse transcription‑quantitative PCR and western blotting, respectively. Cell apoptosis was analyzed using flow cytometry and ELISA was performed to detect TNF‑α levels. The interactions between lncRNA SNHG16 and microRNA (miR)‑373‑3p were examined using the dual‑luciferase reporter assay. lncRNA SNHG16 was upregulated in OA tissue compared with normal joint tissue. The expression levels of collagen II were significantly reduced in OA tissue compared with normal tissue. Similarly, aggrecan expression levels were significantly reduced in IL‑1β‑treated CHON‑001 cells compared with the controls. In addition, the protein expression levels of MMP13 were significantly increased in OA tissues and IL‑1β‑treated CHON‑001 cells compared with the controls. SNHG16 knockdown significantly increased the expression levels of aggrecan, and decreased the expression levels of MMP13, cleaved caspase‑3 and p21 in IL‑1β‑treated CHON‑001 cells. In addition, IL‑1β induced CHON‑001 cell apoptosis, while SNHG16 knockdown decreased IL‑1β‑induced apoptosis. Furthermore, the luciferase activity assay suggested that SNHG16 negatively regulated miR‑373‑3p in OA. Finally, the results suggested that the proinflammatory effect of IL‑1β on CHON‑001 cells was significantly reduced by SNHG16 knockdown. In conclusion, lncRNA SNHG16 knockdown significantly limited the progression of OA by sponging miR‑373‑3p in vitro, which suggested that SNHG16 may serve as a potential therapeutic target for OA.
Collapse
Affiliation(s)
- Haiyan Fan
- Department of Radiology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010000, P.R. China
| | - Liangjia Ding
- Department of Joint Surgery, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010030, P.R. China
| | - Yun Yang
- Department of Joint Surgery, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010030, P.R. China
| |
Collapse
|
50
|
Sato A, Yamamoto A, Shimotsuma A, Ogino Y, Funayama N, Takahashi Y, Hiramoto A, Wataya Y, Kim HS. Intracellular microRNA expression patterns influence cell death fates for both necrosis and apoptosis. FEBS Open Bio 2020; 10:2417-2426. [PMID: 33022895 PMCID: PMC7609763 DOI: 10.1002/2211-5463.12995] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/16/2020] [Accepted: 10/01/2020] [Indexed: 11/16/2022] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNA molecules that interact with target mRNAs at specific sites to induce cleavage of the mRNA or inhibit translation. Such miRNAs play a vital role in gene expression and in several other biological processes, including cell death. We have studied the mechanisms regulating cell death (necrosis in original F28‐7 cells and apoptosis in their variant F28‐7‐A cells) in the mouse mammary tumor cell line FM3A using the anticancer agent floxuridine (FUdR). We previously reported that inhibition of heat‐shock protein 90 by the specific inhibitor geldanamycin (GA) in F28‐7 cells causes a shift from necrosis to apoptosis. In this study, we investigated the intracellular miRNA expression profiles of FUdR‐treated F28‐7 cells (necrotic condition), GA plus FUdR‐treated F28‐7 cells (apoptotic condition), and FUdR‐treated F28‐7‐A cells (apoptotic condition) through miRNA microarray analysis. In addition, we knocked down Dicer, a key molecule for the expression of mature miRNAs, in F28‐7 cells to examine whether it modulates FUdR‐induced cell death. Our analysis revealed that the miRNA expression patterns differ significantly between these cell death conditions. Furthermore, we identified miRNA candidates that regulate cell death. Knockdown of Dicer in FUdR‐treated necrosis‐fated cells caused a partial shift from necrosis to apoptosis. These findings suggest that modulation of miRNA expression patterns influences the decision of cell death fate toward necrosis or apoptosis. Our findings may serve as a basis for further study of the functions of miRNAs in cell death mechanisms.
Collapse
Affiliation(s)
- Akira Sato
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Akihiro Yamamoto
- Division of International Infectious Disease Control, Faculty of Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Akira Shimotsuma
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Yoko Ogino
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan.,Department of Gene Regulation, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Naoki Funayama
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Yui Takahashi
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Akiko Hiramoto
- Division of International Infectious Disease Control, Faculty of Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Yusuke Wataya
- Division of International Infectious Disease Control, Faculty of Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Hye-Sook Kim
- Division of International Infectious Disease Control, Faculty of Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|