1
|
Zhou R, Wei K, Li X, Yan B, Li L. Mechanisms of ferroptosis and the relationship between ferroptosis and ER stress after JEV and HSV infection. Front Microbiol 2024; 15:1415417. [PMID: 39323885 PMCID: PMC11422203 DOI: 10.3389/fmicb.2024.1415417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/27/2024] [Indexed: 09/27/2024] Open
Abstract
Ferroptosis is a novel form of programmed cell death, which is different from apoptosis, pyroptosis and autophagy in morphology and biochemistry. Ferroptosis is characterized by condensed mitochondrial membrane densities, vanished of mitochondria crista and outer membrane rupture in morphology, and the accumulation of intracellular iron, lipid peroxidation (LPO), decrease of GSH and inhibition of GPX4 in biochemistry. Japanese encephalitis virus (JEV) and Herpes simplex virus (HSV) are both common neurotropic viruses that can cause neurological disorders, such as severe encephalitis. JEV and HSV have been demonstrated to be able to induce ferroptosis. This process is closely related to the inhibition of the GSH-GPX4 system, ACSL4 phosphorylation, and Nrf2 ubiquitination. In this review, we summarized the mechanisms by which JEV and HSV induced ferroptosis in the current study. In addition, we found a strong relationship between endoplasmic reticulum (ER) stress and ferroptosis, and we therefore speculated that sustained ER stress might be a prerequisite for ferroptosis in JEV and HSV-induced diseases.
Collapse
Affiliation(s)
- Rui Zhou
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, China
- First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, China
| | - Kexin Wei
- First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, China
| | - Xinyu Li
- First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, China
| | - Beibei Yan
- First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, China
| | - Lin Li
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, China
- First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
2
|
Sornjai W, Promma P, Priewkhiew S, Ramphan S, Jaratsittisin J, Jinagool P, Wikan N, Greenwood M, Murphy D, Smith DR. The interaction of GRP78 and Zika virus E and NS1 proteins occurs in a chaperone-client manner. Sci Rep 2024; 14:10407. [PMID: 38710792 PMCID: PMC11074156 DOI: 10.1038/s41598-024-61195-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/02/2024] [Indexed: 05/08/2024] Open
Abstract
Glucose regulated protein 78 (GRP78) is a chaperone protein that is a central mediator of the unfolded protein response, a key cellular stress response pathway. GRP78 has been shown to be critically required for infection and replication of a number of flaviviruses, and to interact with both non-structural (NS) and structural flavivirus proteins. However, the nature of the specific interaction between GRP78 and viral proteins remains largely unknown. This study aimed to characterize the binding domain and critical amino acid residues that mediate the interaction of GRP78 to ZIKV E and NS1 proteins. Recombinant EGFP fused GRP78 and individual subdomains (the nucleotide binding domain (NBD) and the substrate binding domain (SBD)) were used as a bait protein and co-expressed with full length or truncated ZIKV E and NS1 proteins in HEK293T/17 cells. Protein-protein interactions were determined by a co-immunoprecipitation assay. From the results, both the NBD and the SBD of GRP78 were crucial for an effective interaction. Single amino acid substitutions in the SBD showed that R492E and T518A mutants significantly reduced the binding affinity of GRP78 to ZIKV E and NS1 proteins. Notably, the interaction of GRP78 with ZIKV E was stably maintained against various single amino acid substitutions on ZIKV E domain III and with all truncated ZIKV E and NS1 proteins. Collectively, the results suggest that the principal binding between GRP78 and viral proteins is mainly a classic canonical chaperone protein-client interaction. The blocking of GRP78 chaperone function effectively inhibited ZIKV infection and replication in neuronal progenitor cells. Our findings reveal that GRP78 is a potential host target for anti-ZIKV therapeutics.
Collapse
Affiliation(s)
- Wannapa Sornjai
- Molecular Pathology Laboratory, Institute of Molecular Biosciences, Mahidol University, 25/25 Phutthamonthon Sai 4 Road, Salaya, Nakhon Pathom, 73170, Thailand
| | - Ploenphit Promma
- Molecular Pathology Laboratory, Institute of Molecular Biosciences, Mahidol University, 25/25 Phutthamonthon Sai 4 Road, Salaya, Nakhon Pathom, 73170, Thailand
| | - Suphansa Priewkhiew
- Molecular Pathology Laboratory, Institute of Molecular Biosciences, Mahidol University, 25/25 Phutthamonthon Sai 4 Road, Salaya, Nakhon Pathom, 73170, Thailand
| | - Suwipa Ramphan
- Molecular Pathology Laboratory, Institute of Molecular Biosciences, Mahidol University, 25/25 Phutthamonthon Sai 4 Road, Salaya, Nakhon Pathom, 73170, Thailand
| | - Janejira Jaratsittisin
- Molecular Pathology Laboratory, Institute of Molecular Biosciences, Mahidol University, 25/25 Phutthamonthon Sai 4 Road, Salaya, Nakhon Pathom, 73170, Thailand
| | - Pailin Jinagool
- Molecular Pathology Laboratory, Institute of Molecular Biosciences, Mahidol University, 25/25 Phutthamonthon Sai 4 Road, Salaya, Nakhon Pathom, 73170, Thailand
| | - Nitwara Wikan
- Molecular Pathology Laboratory, Institute of Molecular Biosciences, Mahidol University, 25/25 Phutthamonthon Sai 4 Road, Salaya, Nakhon Pathom, 73170, Thailand
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Michael Greenwood
- Molecular Neuroendocrinology Research Group, Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, UK
| | - David Murphy
- Molecular Neuroendocrinology Research Group, Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, UK
| | - Duncan R Smith
- Molecular Pathology Laboratory, Institute of Molecular Biosciences, Mahidol University, 25/25 Phutthamonthon Sai 4 Road, Salaya, Nakhon Pathom, 73170, Thailand.
| |
Collapse
|
3
|
Wongchitrat P, Chanmee T, Govitrapong P. Molecular Mechanisms Associated with Neurodegeneration of Neurotropic Viral Infection. Mol Neurobiol 2024; 61:2881-2903. [PMID: 37946006 PMCID: PMC11043213 DOI: 10.1007/s12035-023-03761-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/31/2023] [Indexed: 11/12/2023]
Abstract
Viral infections of the central nervous system (CNS) cause variable outcomes from acute to severe neurological sequelae with increased morbidity and mortality. Viral neuroinvasion directly or indirectly induces encephalitis via dysregulation of the immune response and contributes to the alteration of neuronal function and the degeneration of neuronal cells. This review provides an overview of the cellular and molecular mechanisms of virus-induced neurodegeneration. Neurotropic viral infections influence many aspects of neuronal dysfunction, including promoting chronic inflammation, inducing cellular oxidative stress, impairing mitophagy, encountering mitochondrial dynamics, enhancing metabolic rewiring, altering neurotransmitter systems, and inducing misfolded and aggregated pathological proteins associated with neurodegenerative diseases. These pathogenetic mechanisms create a multidimensional injury of the brain that leads to specific neuronal and brain dysfunction. The understanding of the molecular mechanisms underlying the neurophathogenesis associated with neurodegeneration of viral infection may emphasize the strategies for prevention, protection, and treatment of virus infection of the CNS.
Collapse
Affiliation(s)
- Prapimpun Wongchitrat
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Phutthamonthon, Nakhon Pathom, 73170, Thailand.
| | - Theerawut Chanmee
- Department of Clinical Chemistry, Faculty of Medical Technology, Mahidol University, Salaya, Nakhon Pathom, Thailand
| | | |
Collapse
|
4
|
Sharma S, Majumdar A, Basu A. Regulation of Onecut2 by miR-9-5p in Japanese encephalitis virus infected neural stem/progenitor cells. Microbiol Spectr 2024; 12:e0323823. [PMID: 38319106 PMCID: PMC10913399 DOI: 10.1128/spectrum.03238-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/12/2024] [Indexed: 02/07/2024] Open
Abstract
Japanese encephalitis virus (JEV) is one of the major neurotropic viral infections that is known to dysregulate the homeostasis of neural stem/progenitor cells (NSPCs) and depletes the stem cell pool. NSPCs are multipotent stem cell population of the central nervous system (CNS) which are known to play an important role in the repair of the CNS during insults/injury caused by several factors such as ischemia, neurological disorders, CNS infections, and so on. Viruses have evolved to utilize host factors for their own benefit and during JEV infection, host factors, including the non-coding RNAs such as miRNAs, are reported to be affected, thereby cellular processes regulated by the miRNAs exhibit perturbed functionality. Previous studies from our laboratory have demonstrated the role of JEV infection in dysregulating the function of neural stem cells (NSCs) by altering the cell fate and depleting the stem cell pool leading to a decline in stem cell function in CNS repair mechanism post-infection. JEV-induced alteration in miRNA expression in the NSCs is one of the major interest to us. In prior studies, we have observed an altered expression pattern of certain miRNAs following JEV infection. In this study, we have validated the role of JEV infection in NSCs in altering the expression of miR-9-5p, which is a known regulator of neurogenesis in NSCs. Furthermore, we have validated the interaction of this miRNA with its target, Onecut2 (OC2), in primary NSCs utilizing miRNA mimic and inhibitor transfection experiments. Our findings indicate a possible role of JEV mediated dysregulated interaction between miR-9-5p and its putative target OC2 in NSPCs. IMPORTANCE MicroRNAs have emerged as key disease pathogenic markers and potential therapeutic targets. In this study, we solidify this concept by studying a key miRNA, miR-9-5p, in Japanese encephalitis virus infection of neural stem/progenitor cells. miRNA target Onecut2 has a possible role in stem cell pool biology. Here, we show a possible mechanistic axis worth investing in neurotropic viral biology.
Collapse
Affiliation(s)
| | | | - Anirban Basu
- National Brain Research Centre, Manesar, Haryana, India
| |
Collapse
|
5
|
Wei Y, Hao Y, Li Y, Dan M, Yang Z, Qiu H, Li R, Yin R, Fan P. Machine learning reveals neutrophil-to-lymphocyte ratio as a crucial prognostic indicator in severe Japanese encephalitis patients. Front Neurol 2023; 14:1242317. [PMID: 38178886 PMCID: PMC10765562 DOI: 10.3389/fneur.2023.1242317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 11/22/2023] [Indexed: 01/06/2024] Open
Abstract
Japanese encephalitis (JE) is a severe infectious disease affecting the central nervous system (CNS). However, limited risk factors have been identified for predicting poor prognosis (PP) in adults with severe JE. In this study, we analyzed clinical data from thirty-eight severe adult JE patients and compared them to thirty-three patients without organic CNS disease. Machine learning techniques employing branch-and-bound algorithms were used to identify clinical risk factors. Based on clinical outcomes, patients were categorized into two groups: the PP group (mRs ≥ 3) and the good prognosis (GP) group (mRs ≤ 2) at three months post-discharge. We found that the neutrophil-to-lymphocyte ratio (NLR) and the percentage of neutrophilic count (N%) were significantly higher in the PP group compared to the GP group. Conversely, the percentage of lymphocyte count (L%) was significantly lower in the PP group. Additionally, elevated levels of aspartate aminotransferase (AST) and blood glucose were observed in the PP group compared to the GP group. The clinical parameters most strongly correlated with prognosis, as indicated by Pearson correlation coefficient (PCC), were NLR (PCC 0.45) and blood glucose (PCC 0.45). In summary, our findings indicate that increased serum NLR, N%, decreased L%, abnormal glucose metabolism, and liver function impairment are risk factors associated with poor prognosis in severe adult JE patients.
Collapse
Affiliation(s)
- Yaxuan Wei
- Department of Neurology, The Second Hospital of Lanzhou University, Lanzhou, China
- Department of Neurology, Gansu Province Central Hospital, Lanzhou, China
- Department of Neurology, Lanzhou General Hospital, Lanzhou, China
| | - Ying Hao
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yuanming Li
- Department of Neurology, Gansu Province Central Hospital, Lanzhou, China
| | - Meiling Dan
- Department of Neurological Rehabilitation, Sichuan China 81 Rehabilitation Center, Chongqing, China
| | - Zhiqi Yang
- Department of Neurology, The Second Hospital of Lanzhou University, Lanzhou, China
- Department of Neurology, Gansu Province Central Hospital, Lanzhou, China
| | - Huihui Qiu
- Department of Neurology, Gansu Province Central Hospital, Lanzhou, China
- The First Clinical Medical School, Gansu University of Chinese Medicine, Lanzhou, China
| | - Rong Li
- Department of Neurology, The Second Hospital of Lanzhou University, Lanzhou, China
- Department of Neurology, Lanzhou General Hospital, Lanzhou, China
| | - Rong Yin
- Department of Neurology, Gansu Province Central Hospital, Lanzhou, China
| | - Pengcheng Fan
- Department of Pharmacy, Lanzhou General Hospital, Lanzhou, China
- State Key Laboratory of Proteomics, National Center for Protein Sciences, (Beijing), Institute of Lifeomics, Beijing, China
| |
Collapse
|
6
|
Satheesan A, Sharma S, Basu A. Sodium Butyrate Induced Neural Stem/Progenitor Cell Death in an Experimental Model of Japanese Encephalitis. Metab Brain Dis 2023; 38:2831-2847. [PMID: 37650987 DOI: 10.1007/s11011-023-01279-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/21/2023] [Indexed: 09/01/2023]
Abstract
The anti-inflammatory and neuroprotective effects of short chain fatty acid (SCFA) butyrate have been explored in a wide array of neurological pathologies. It is a 4-carbon SCFA produced from the fermentation of dietary fibers by the gut-microbiota. As evident from previous literature, butyrate plays a wide array of functions in CNS and interestingly enhances the differentiation potential of Neural stem/Progenitor Cells (NSPCs). Japanese encephalitis virus (JEV) is a well-known member of the Flaviviridae family and has been shown to alter neural stem cell pool of the brain, causing devastating consequences. In this study, we administered sodium butyrate (NaB) post JEV infection in BALB/c mouse model to examine any possible amelioration of the viral infection in NSPCs. In addition, ex vivo neurospheres and in vitro model of NSPCs were also used to study the effect of sodium butyrate in JEV infection. As an unprecedented finding, butyrate treated infected animals presented early onset of symptoms, as compared to their respective JEV infected groups. Alongside, we observed an increased viral load in NSPCs isolated from these animals as well as in cell culture models upon sodium butyrate treatment. Cytometric bead array analysis also revealed an increase in inflammatory cytokines, particularly, MCP-1 and IL-6. Further, increased expression of the key members of the canonical NF-κB pathway, viz-a-viz p-NF-κB, p-Iκ-Bα and p-IKK was observed. Overall, the increased inflammation and cell death caused early symptom progression in NaB-treated JEV infected animal model, which is contradictory to the well documented protective nature of NaB and therefore a better understanding of SCFA-based modulation of the gut-brain axis in viral infections is required.
Collapse
Affiliation(s)
| | - Shivangi Sharma
- National Brain Research Centre, Manesar, Haryana, 122052, India
| | - Anirban Basu
- National Brain Research Centre, Manesar, Haryana, 122052, India.
| |
Collapse
|
7
|
Singh A, Ghosh R, Guchhait P. CXCR3 antagonist rescues ER stress and reduces inflammation and JEV infection in mice brain. Cytokine 2023; 172:156380. [PMID: 37812996 DOI: 10.1016/j.cyto.2023.156380] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/29/2023] [Accepted: 09/22/2023] [Indexed: 10/11/2023]
Abstract
The endoplasmic reticulum (ER) is crucial for maintaining cellular homeostasis, and synthesis and folding of proteins and lipids. The ER is sensitive to stresses including viral infection that perturb the intracellular energy level and redox state, and accumulating unfolded/misfolded proteins. Viruses including Japanese encephalitis virus (JEV) activates unfolded protein response (UPR) causing ER stress in host immune cells and promotes inflammation and apoptotic cell death. The chemokine receptor CXCR3 has been reported to play important role in the accumulation of inflammatory immune cells and neuronal cell death in several disease conditions. Recently we described the involvement of CXCR3 in regulating inflammation and JEV infection in mice brain. Supplementation with a CXCR3 antagonist AMG487 significantly reduced JEV infection in the mice brain in conjunction with the downregulation of UPR pathway via PERK:eIF2α:CHOP, and decreased mitochondrial ROS generation, inflammation and apoptotic cell death. Alongside, AMG487 treatment improved interferon (IFN)-α/β synthesis in JEV-infected mice brain. Thus, suggesting a potential therapeutic role of CXCR3 antagonist against JEV infection.
Collapse
Affiliation(s)
- Anamika Singh
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India
| | - Riya Ghosh
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India
| | - Prasenjit Guchhait
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India.
| |
Collapse
|
8
|
Zou J, Tian S, Zhu Y, Cheng Y, Jiang M, Tu S, Jin M, Chen H, Zhou H. Prohibitin1 facilitates viral replication by impairing the RIG-I-like receptor signaling pathway. J Virol 2023; 97:e0092623. [PMID: 37754758 PMCID: PMC10617439 DOI: 10.1128/jvi.00926-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/07/2023] [Indexed: 09/28/2023] Open
Abstract
IMPORTANCE Type I interferon (IFN-I), produced by the innate immune system, plays an essential role in host antiviral responses. Proper regulation of IFN-I production is required for the host to balance immune responses and prevent superfluous inflammation. IFN regulatory factor 3 (IRF3) and subsequent sensors are activated by RNA virus infection to induce IFN-I production. Therefore, proper regulation of IRF3 serves as an important way to control innate immunity and viral replication. Here, we first identified Prohibitin1 (PHB1) as a negative regulator of host IFN-I innate immune responses. Mechanistically, PHB1 inhibited the nucleus import of IRF3 by impairing its binding with importin subunit alpha-1 and importin subunit alpha-5. Our study demonstrates the mechanism by which PHB1 facilitates the replication of multiple RNA viruses and provides insights into the negative regulation of host immune responses.
Collapse
Affiliation(s)
- Jiahui Zou
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Shan Tian
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yinxing Zhu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yanqing Cheng
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Meijun Jiang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Shaoyu Tu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Meilin Jin
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Huanchun Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Hongbo Zhou
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| |
Collapse
|
9
|
Kamte YS, Chandwani MN, London NM, Potosnak CE, Leak RK, O'Donnell LA. Perturbations in neural stem cell function during a neurotropic viral infection in juvenile mice. J Neurochem 2023; 166:809-829. [PMID: 37530081 DOI: 10.1111/jnc.15914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/25/2023] [Accepted: 06/28/2023] [Indexed: 08/03/2023]
Abstract
Viral infections of the central nervous system (CNS) often cause worse neurological outcomes in younger hosts. Throughout childhood, the brain undergoes extensive development and refinement to produce functional neural networks. Network function is maintained partly with the help of neural stem cells (NSCs) that replace neuronal and glia subtypes in the two neurogenic niches of the brain (the hippocampus and subventricular zone). Accumulating evidence suggests that viruses disrupt NSC function in adulthood and infancy, but the in vivo impact of childhood infections on acute and long-term NSC function is unknown. Using a juvenile mouse model of measles virus (MeV) infection, where only mature neurons in the brain are infected, we defined the effects of the antiviral immune response on NSCs from juvenile to adult stages of life. We found that (a) virus persists in the brains of survivors despite an anti-viral immune response; (b) NSC numbers decrease dramatically during early infection, but ultimately stabilize in adult survivors; (c) infection is associated with mild apoptosis throughout the juvenile brain, but NSC proliferation is unchanged; (d) the loss of NSC numbers is dependent upon the stage of NSC differentiation; and (e) immature neurons increase early during infection, concurrent with depletion of NSC pools. Collectively, we show that NSCs are exquisitely sensitive to the inflammatory microenvironment created during neuron-restricted MeV infection in juveniles, responding with an early loss of NSCs but increased neurogenesis. These studies provide insight into potential cellular mechanisms associated with long-term neurological deficits in survivors of childhood CNS infections.
Collapse
Affiliation(s)
- Yashika S Kamte
- School of Pharmacy and the Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania, USA
| | - Manisha N Chandwani
- School of Pharmacy and the Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania, USA
| | - Natalie M London
- School of Pharmacy and the Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania, USA
| | - Chloe E Potosnak
- School of Pharmacy and the Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania, USA
| | - Rehana K Leak
- School of Pharmacy and the Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania, USA
| | - Lauren A O'Donnell
- School of Pharmacy and the Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
10
|
Sharma KB, Chhabra S, Kalia M. Japanese Encephalitis Virus-Infected Cells. Subcell Biochem 2023; 106:251-281. [PMID: 38159231 DOI: 10.1007/978-3-031-40086-5_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
RNA virus infections have been a leading cause of pandemics. Aided by global warming and increased connectivity, their threat is likely to increase over time. The flaviviruses are one such RNA virus family, and its prototypes such as the Japanese encephalitis virus (JEV), Dengue virus, Zika virus, West Nile virus, etc., pose a significant health burden on several endemic countries. All viruses start off their life cycle with an infected cell, wherein a series of events are set in motion as the virus and host battle for autonomy. With their remarkable capacity to hijack cellular systems and, subvert/escape defence pathways, viruses are able to establish infection and disseminate in the body, causing disease. Using this strategy, JEV replicates and spreads through several cell types such as epithelial cells, fibroblasts, monocytes and macrophages, and ultimately breaches the blood-brain barrier to infect neurons and microglia. The neurotropic nature of JEV, its high burden on the paediatric population, and its lack of any specific antivirals/treatment strategies emphasise the need for biomedical research-driven solutions. Here, we highlight the latest research developments on Japanese encephalitis virus-infected cells and discuss how these can aid in the development of future therapies.
Collapse
Affiliation(s)
- Kiran Bala Sharma
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Simran Chhabra
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Manjula Kalia
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana, India.
| |
Collapse
|
11
|
The Network of Interactions between the Porcine Epidemic Diarrhea Virus Nucleocapsid and Host Cellular Proteins. Viruses 2022; 14:v14102269. [PMID: 36298827 PMCID: PMC9611260 DOI: 10.3390/v14102269] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/14/2022] [Indexed: 11/05/2022] Open
Abstract
Host–virus protein interactions are critical for intracellular viral propagation. Understanding the interactions between cellular and viral proteins may help us develop new antiviral strategies. Porcine epidemic diarrhea virus (PEDV) is a highly contagious coronavirus that causes severe damage to the global swine industry. Here, we employed co-immunoprecipitation and liquid chromatography-mass spectrometry to characterize 426 unique PEDV nucleocapsid (N) protein-binding proteins in infected Vero cells. A protein–protein interaction network (PPI) was created, and gene ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) database analyses revealed that the PEDV N-bound proteins belong to different cellular pathways, such as nucleic acid binding, ribonucleoprotein complex binding, RNA methyltransferase, and polymerase activities. Interactions of the PEDV N protein with 11 putative proteins: tripartite motif containing 21, DEAD-box RNA helicase 24, G3BP stress granule assembly factor 1, heat shock protein family A member 8, heat shock protein 90 alpha family class B member 1, YTH domain containing 1, nucleolin, Y-box binding protein 1, vimentin, heterogeneous nuclear ribonucleoprotein A2/B1, and karyopherin subunit alpha 1, were further confirmed by in vitro co-immunoprecipitation assay. In summary, studying an interaction network can facilitate the identification of antiviral therapeutic strategies and novel targets for PEDV infection.
Collapse
|
12
|
Involvement of host microRNAs in flavivirus-induced neuropathology: An update. J Biosci 2022. [PMID: 36222134 PMCID: PMC9425815 DOI: 10.1007/s12038-022-00288-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Flaviviruses are a spectrum of vector-borne RNA viruses that cause potentially severe diseases in humans including encephalitis, acute-flaccid paralysis, cognitive disorders and foetal abnormalities. Japanese encephalitis virus (JEV), Zika virus (ZIKV), West Nile virus (WNV) and Dengue virus (DENV) are globally emerging pathogens that lead to epidemics and outbreaks with continued transmission to newer geographical areas over time. In the past decade, studies have focussed on understanding the pathogenic mechanisms of these viruses in a bid to alleviate their disease burden. MicroRNAs (miRNAs) are short single-stranded RNAs that have emerged as master-regulators of cellular gene expression. The dynamics of miRNAs within a cell have the capacity to modulate hundreds of genes and, consequently, their physiological manifestation. Increasing evidence suggests their role in host response to disease and infection including cell survival, intracellular viral replication and immune activation. In this review, we aim to comprehensively update published evidence on the role of miRNAs in host cells infected with the common neurotropic flaviviruses, with an increased focus on neuropathogenic mechanisms. In addition, we briefly cover therapeutic advancements made in the context of miRNA-based antiviral strategies.
Collapse
|
13
|
Interaction Network of Porcine Circovirus Type 3 and 4 Capsids with Host Proteins. Viruses 2022; 14:v14050939. [PMID: 35632681 PMCID: PMC9144384 DOI: 10.3390/v14050939] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 02/01/2023] Open
Abstract
An extensive understanding of the interactions between host cellular and viral proteins provides clues for studying novel antiviral strategies. Porcine circovirus type 3 (PCV3) and type 4 (PCV4) have recently been identified as viruses that can potentially damage the swine industry. Herein, 401 putative PCV3 Cap-binding and 484 putative PCV4 Cap-binding proteins were characterized using co-immunoprecipitation and liquid chromatography-mass spectrometry. Both PCV3 and PCV4 Caps shared 278 identical interacting proteins, but some putative interacting proteins (123 for PCV3 Cap and 206 for PCV4 Cap) differed. A protein-protein interaction network was constructed, and according to gene ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) database analyses, both PCV3 Cap- and PCV4 Cap-binding proteins participated mainly in ribosome biogenesis, nucleic acid binding, and ATP-dependent RNA helicase activities. Verification assays of eight putative interacting proteins indicated that nucleophosmin-1, nucleolin, DEAD-box RNA helicase 21, heterogeneous nuclear ribonucleoprotein A2/B1, YTH N6-methyladenosine RNA binding protein 1, and Y-box binding protein 1 bound directly to both PCV3 and PCV4 Caps, but ring finger protein 2 and signal transducer and activator of transcription 6 did not. Therefore, the interaction network provided helpful information to support further research into the underlying mechanisms of PCV3 and PCV4 infection.
Collapse
|
14
|
Yin R, Yang L, Hao Y, Yang Z, Lu T, Jin W, Dan M, Peng L, Zhang Y, Wei Y, Li R, Ma H, Shi Y, Fan P. Proteomic landscape subtype and clinical prognosis of patients with the cognitive impairment by Japanese encephalitis infection. J Neuroinflammation 2022; 19:77. [PMID: 35379280 PMCID: PMC8981687 DOI: 10.1186/s12974-022-02439-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 03/17/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cognitive impairment is one of the primary sequelae affecting the quality of life of patients with Japanese encephalitis (JE). The clinical treatment is mainly focused on life support, lacking of targeted treatment strategy. METHODS A cerebrospinal fluid (CSF) proteomic profiling study was performed including 26 patients with JE in Gansu province of China from June 2017 to October 2018 and 33 other concurrent hospitalized patients who were excluded central nervous system (CNS) organic or CNS infection diseases. The clinical and proteomics data of patients with JE were undergoing combined analysis for the first time. RESULTS Two subtypes of JE associated with significantly different prognoses were identified. Compared to JE1, the JE2 subtype is associated with lower overall survival rate and a higher risk of cognitive impairment. The percentages of neutrophils (N%), lymphocyte (L%), and monocytes (M%) decreased in JE2 significantly. CONCLUSIONS The differences in proteomic landscape between JE subgroups have specificity for the prognosis of cognitive impairment. The data also provided some potential target proteins for treatment of cognitive impairments caused by JE. Trial registration ChiCTR, ChiCTR2000030499. Registered 1st June 2017, http://www.medresman.org.cn/pub/cn/proj/projectshow.aspx?proj=6333.
Collapse
Affiliation(s)
- Rong Yin
- Department of Neurology, Lanzhou General Hospital, Lanzhou, 730050, China.,Department of Neurology, Gansu Province Central Hospital, Lanzhou, 730070, China
| | - Linpeng Yang
- Department of Pharmacy, Lanzhou General Hospital, Lanzhou, 730050, China.,The Fourth Department of Research, Center for Gansu Provincial Vaccine Engineering Research, Lanzhou, 730046, China
| | - Ying Hao
- Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, 10065, USA
| | - Zhiqi Yang
- Department of Neurology, Lanzhou General Hospital, Lanzhou, 730050, China.,Department of Neurology, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Tao Lu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Wanjun Jin
- Department of Pharmacy, Lanzhou General Hospital, Lanzhou, 730050, China
| | - Meiling Dan
- Department of Neurology, Lanzhou General Hospital, Lanzhou, 730050, China.,Department of Neurology, Chongqing University Fuling Hospital, Chongqing, 408000, China
| | - Liang Peng
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yingjie Zhang
- Department of Neurology, Lanzhou General Hospital, Lanzhou, 730050, China.,The First Clinical Medical School, Gansu University of Chinese Medicine, Lanzhou, 730030, China
| | - Yaxuan Wei
- Department of Neurology, Gansu Province Central Hospital, Lanzhou, 730070, China
| | - Rong Li
- Department of Neurology, Lanzhou General Hospital, Lanzhou, 730050, China.,Department of Neurology, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Huiping Ma
- Department of Pharmacy, Lanzhou General Hospital, Lanzhou, 730050, China
| | - Yuanyuan Shi
- Shenzhen Research Institute, Beijing University of Chinese Medicine, Shenzhen, 518118, China.
| | - Pengcheng Fan
- Department of Pharmacy, Lanzhou General Hospital, Lanzhou, 730050, China. .,State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Institute of Lifeomics, Beijing, 102206, China.
| |
Collapse
|
15
|
Apoptosis during ZIKA Virus Infection: Too Soon or Too Late? Int J Mol Sci 2022; 23:ijms23031287. [PMID: 35163212 PMCID: PMC8835863 DOI: 10.3390/ijms23031287] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 02/07/2023] Open
Abstract
Cell death by apoptosis is a major cellular response in the control of tissue homeostasis and as a defense mechanism in the case of cellular aggression such as an infection. Cell self-destruction is part of antiviral responses, aimed at limiting the spread of a virus. Although it may contribute to the deleterious effects in infectious pathology, apoptosis remains a key mechanism for viral clearance and the resolution of infection. The control mechanisms of cell death processes by viruses have been extensively studied. Apoptosis can be triggered by different viral determinants through different pathways as a result of virally induced cell stresses and innate immune responses. Zika virus (ZIKV) induces Zika disease in humans, which has caused severe neurological forms, birth defects, and microcephaly in newborns during the last epidemics. ZIKV also surprised by revealing an ability to persist in the genital tract and in semen, thus being sexually transmitted. Mechanisms of diverting antiviral responses such as the interferon response, the role of cytopathic effects and apoptosis in the etiology of the disease have been widely studied and debated. In this review, we examined the interplay between ZIKV infection of different cell types and apoptosis and how the virus deals with this cellular response. We illustrate a duality in the effects of ZIKV-controlled apoptosis, depending on whether it occurs too early or too late, respectively, in neuropathogenesis, or in long-term viral persistence. We further discuss a prospective role for apoptosis in ZIKV-related therapies, and the use of ZIKV as an oncolytic agent.
Collapse
|
16
|
Majumdar A, Basu A. Involvement of host microRNAs in flavivirus-induced neuropathology: An update. J Biosci 2022; 47:54. [PMID: 36222134 PMCID: PMC9425815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 04/17/2022] [Indexed: 09/07/2024]
Abstract
Flaviviruses are a spectrum of vector-borne RNA viruses that cause potentially severe diseases in humans including encephalitis, acute-flaccid paralysis, cognitive disorders and foetal abnormalities. Japanese encephalitis virus (JEV), Zika virus (ZIKV), West Nile virus (WNV) and Dengue virus (DENV) are globally emerging pathogens that lead to epidemics and outbreaks with continued transmission to newer geographical areas over time. In the past decade, studies have focussed on understanding the pathogenic mechanisms of these viruses in a bid to alleviate their disease burden. MicroRNAs (miRNAs) are short single-stranded RNAs that have emerged as master-regulators of cellular gene expression. The dynamics of miRNAs within a cell have the capacity to modulate hundreds of genes and, consequently, their physiological manifestation. Increasing evidence suggests their role in host response to disease and infection including cell survival, intracellular viral replication and immune activation. In this review, we aim to comprehensively update published evidence on the role of miRNAs in host cells infected with the common neurotropic flaviviruses, with an increased focus on neuropathogenic mechanisms. In addition, we briefly cover therapeutic advancements made in the context of miRNA-based antiviral strategies.
Collapse
Affiliation(s)
- Atreye Majumdar
- National Brain Research Centre, Manesar, Gurugram 122 052 India
| | - Anirban Basu
- National Brain Research Centre, Manesar, Gurugram 122 052 India
| |
Collapse
|
17
|
Ashraf U, Ding Z, Deng S, Ye J, Cao S, Chen Z. Pathogenicity and virulence of Japanese encephalitis virus: Neuroinflammation and neuronal cell damage. Virulence 2021; 12:968-980. [PMID: 33724154 PMCID: PMC7971234 DOI: 10.1080/21505594.2021.1899674] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/12/2021] [Accepted: 03/03/2021] [Indexed: 01/22/2023] Open
Abstract
Thousands of human deaths occur annually due to Japanese encephalitis (JE), caused by Japanese encephalitis virus. During the virus infection of the central nervous system, reactive gliosis, uncontrolled inflammatory response, and neuronal cell death are considered as the characteristic features of JE. To date, no specific treatment has been approved to overcome JE, indicating a need for the development of novel therapies. In this article, we focused on basic biological mechanisms in glial (microglia and astrocytes) and neuronal cells that contribute to the onset of neuroinflammation and neuronal cell damage during Japanese encephalitis virus infection. We also provided comprehensive knowledge about anti-JE therapies tested in clinical or pre-clinical settings, and discussed recent therapeutic strategies that could be employed for JE treatment. The improved understanding of JE pathogenesis might lay a foundation for the development of novel therapies to halt JE.Abbreviations AKT: a serine/threonine-specific protein kinase; AP1: activator protein 1; ASC: apoptosis-associated speck-like protein containing a CARD; ASK1: apoptosis signal-regulated kinase 1; ATF3/4/6: activating transcription factor 3/4/6; ATG5/7: autophagy-related 5/7; BBB: blood-brain barrier; Bcl-3/6: B-cell lymphoma 3/6 protein; CCL: C-C motif chemokine ligand; CCR2: C-C motif chemokine receptor 2; CHOP: C/EBP homologous protein; circRNA: circular RNA; CNS: central nervous system; CXCL: C-X-C motif chemokine ligand; dsRNA: double-stranded RNA; EDEM1: endoplasmic reticulum degradation enhancer mannosidase alpha-like 1; eIF2-ɑ: eukaryotic initiation factor 2 alpha; ER: endoplasmic reticulum; ERK: extracellular signal-regulated kinase; GRP78: 78-kDa glucose-regulated protein; ICAM: intercellular adhesion molecule; IFN: interferon; IL: interleukin; iNOS: inducible nitric oxide synthase; IRAK1/2: interleukin-1 receptor-associated kinase 1/2; IRE-1: inositol-requiring enzyme 1; IRF: interferon regulatory factor; ISG15: interferon-stimulated gene 15; JE: Japanese encephalitis; JEV: Japanese encephalitis virus; JNK: c-Jun N-terminal kinase; LAMP2: lysosome-associated membrane protein type 2; LC3-I/II: microtubule-associated protein 1 light chain 3-I/II; lncRNA: long non-coding RNA; MAPK: mitogen-activated protein kinase; miR/miRNA: microRNA; MK2: mitogen-activated protein kinase-activated protein kinase 2; MKK4: mitogen-activated protein kinase kinase 4; MLKL: mixed-linage kinase domain-like protein; MMP: matrix metalloproteinase; MyD88: myeloid differentiation factor 88; Nedd4: neural precursor cell-expressed developmentally downregulated 4; NF-κB: nuclear factor kappa B; NKRF: nuclear factor kappa B repressing factor; NLRP3: NLR family pyrin domain containing 3; NMDAR: N-methyl-D-aspartate receptor; NO: nitric oxide; NS2B/3/4: JEV non-structural protein 2B/3/4; P: phosphorylation. p38: mitogen-activated protein kinase p38; PKA: protein kinase A; PAK4: p21-activated kinase 4; PDFGR: platelet-derived growth factor receptor; PERK: protein kinase R-like endoplasmic reticulum kinase; PI3K: phosphoinositide 3-kinase; PTEN: phosphatase and tensin homolog; Rab7: Ras-related GTPase 7; Raf: proto-oncogene tyrosine-protein kinase Raf; Ras: a GTPase; RIDD: regulated IRE-1-dependent decay; RIG-I: retinoic acid-inducible gene I; RIPK1/3: receptor-interacting protein kinase 1/3; RNF11/125: RING finger protein 11/125; ROS: reactive oxygen species; SHIP1: SH2-containing inositol 5' phosphatase 1; SOCS5: suppressor of cytokine signaling 5; Src: proto-oncogene tyrosine-protein kinase Src; ssRNA = single-stranded RNA; STAT: signal transducer and activator of transcription; TLR: toll-like receptor; TNFAIP3: tumor necrosis factor alpha-induced protein 3; TNFAR: tumor necrosis factor alpha receptor; TNF-α: tumor necrosis factor-alpha; TRAF6: tumor necrosis factor receptor-associated factor 6; TRIF: TIR-domain-containing adapter-inducing interferon-β; TRIM25: tripartite motif-containing 25; VCAM: vascular cell adhesion molecule; ZO-1: zonula occludens-1.
Collapse
Affiliation(s)
- Usama Ashraf
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
| | - Zhen Ding
- Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, P. R. China
- Key Laboratory for Animal Health of Jiangxi Province, Nanchang, Jiangxi, P. R. China
| | - Shunzhou Deng
- Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, P. R. China
- Key Laboratory for Animal Health of Jiangxi Province, Nanchang, Jiangxi, P. R. China
| | - Jing Ye
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
| | - Shengbo Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
| | - Zheng Chen
- Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, P. R. China
- Key Laboratory for Animal Health of Jiangxi Province, Nanchang, Jiangxi, P. R. China
| |
Collapse
|
18
|
Abstract
Viruses are intracellular parasites that subvert the functions of their host cells to accomplish their infection cycle. The endoplasmic reticulum (ER)-residing chaperone proteins are central for the achievement of different steps of the viral cycle, from entry and replication to assembly and exit. The most abundant ER chaperones are GRP78 (78-kDa glucose-regulated protein), GRP94 (94-kDa glucose-regulated protein), the carbohydrate or lectin-like chaperones calnexin (CNX) and calreticulin (CRT), the protein disulfide isomerases (PDIs), and the DNAJ chaperones. This review will focus on the pleiotropic roles of ER chaperones during viral infection. We will cover their essential role in the folding and quality control of viral proteins, notably viral glycoproteins which play a major role in host cell infection. We will also describe how viruses co-opt ER chaperones at various steps of their infectious cycle but also in order to evade immune responses and avoid apoptosis. Finally, we will discuss the different molecules targeting these chaperones and the perspectives in the development of broad-spectrum antiviral drugs.
Collapse
|
19
|
Sharma KB, Chhabra S, Aggarwal S, Tripathi A, Banerjee A, Yadav AK, Vrati S, Kalia M. Proteomic landscape of Japanese encephalitis virus-infected fibroblasts. J Gen Virol 2021; 102. [PMID: 34546869 DOI: 10.1099/jgv.0.001657] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Advances in proteomics have enabled a comprehensive understanding of host-pathogen interactions. Here we have characterized Japanese encephalitis virus (JEV) infection-driven changes in the mouse embryonic fibroblast (MEF) proteome. Through tandem mass tagging (TMT)-based mass spectrometry, we describe changes in 7.85 % of the identified proteome due to JEV infection. Pathway enrichment analysis showed that proteins involved in innate immune sensing, interferon responses and inflammation were the major upregulated group, along with the immunoproteasome and poly ADP-ribosylation proteins. Functional validation of several upregulated anti-viral innate immune proteins, including an active cGAS-STING axis, was performed. Through siRNA depletion, we describe a crucial role of the DNA sensor cGAS in restricting JEV replication. Further, many interferon-stimulated genes (ISGs) were observed to be induced in infected cells. We also observed activation of TLR2 and inhibition of TLR2 signalling using TLR1/2 inhibitor CU-CPT22-blocked production of inflammatory cytokines IL6 and TNF-α from virus-infected N9 microglial cells. The major proteins that were downregulated by infection were involved in cell adhesion (collagens), transport (solute carrier and ATP-binding cassette transporters), sterol and lipid biosynthesis. Several collagens were found to be transcriptionally downregulated in infected MEFs and mouse brain. Collectively, our data provide a bird's-eye view into how fibroblast protein composition is rewired following JEV infection.
Collapse
Affiliation(s)
- Kiran Bala Sharma
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana, India.,Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Simran Chhabra
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Suruchi Aggarwal
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Aarti Tripathi
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Arup Banerjee
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana, India.,Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Amit Kumar Yadav
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Sudhanshu Vrati
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana, India.,Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Manjula Kalia
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana, India.,Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| |
Collapse
|
20
|
Kamte YS, Chandwani MN, Michaels AC, O’Donnell LA. Neural Stem Cells: What Happens When They Go Viral? Viruses 2021; 13:v13081468. [PMID: 34452333 PMCID: PMC8402908 DOI: 10.3390/v13081468] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/22/2021] [Accepted: 06/28/2021] [Indexed: 12/25/2022] Open
Abstract
Viruses that infect the central nervous system (CNS) are associated with developmental abnormalities as well as neuropsychiatric and degenerative conditions. Many of these viruses such as Zika virus (ZIKV), cytomegalovirus (CMV), and herpes simplex virus (HSV) demonstrate tropism for neural stem cells (NSCs). NSCs are the multipotent progenitor cells of the brain that have the ability to form neurons, astrocytes, and oligodendrocytes. Viral infections often alter the function of NSCs, with profound impacts on the growth and repair of the brain. There are a wide spectrum of effects on NSCs, which differ by the type of virus, the model system, the cell types studied, and the age of the host. Thus, it is a challenge to predict and define the consequences of interactions between viruses and NSCs. The purpose of this review is to dissect the mechanisms by which viruses can affect survival, proliferation, and differentiation of NSCs. This review also sheds light on the contribution of key antiviral cytokines in the impairment of NSC activity during a viral infection, revealing a complex interplay between NSCs, viruses, and the immune system.
Collapse
|
21
|
Activation of the Integrated Stress Response and ER Stress Protect from Fluorizoline-Induced Apoptosis in HEK293T and U2OS Cell Lines. Int J Mol Sci 2021; 22:ijms22116117. [PMID: 34204139 PMCID: PMC8201103 DOI: 10.3390/ijms22116117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/29/2021] [Accepted: 06/03/2021] [Indexed: 02/06/2023] Open
Abstract
The prohibitin (PHB)-binding compound fluorizoline as well as PHB-downregulation activate the integrated stress response (ISR) in HEK293T and U2OS human cell lines. This activation is denoted by phosphorylation of eIF2α and increases in ATF4, ATF3, and CHOP protein levels. The blockage of the activation of the ISR by overexpression of GRP78, as well as an increase in IRE1 activity, indicate the presence of ER stress after fluorizoline treatment. The inhibition of the ER stress response in HEK293T and U2OS led to increased sensitivity to fluorizoline-induced apoptosis, indicating a pro-survival role of this pathway after fluorizoline treatment in these cell lines. Fluorizoline induced an increase in calcium concentration in the cytosol and the mitochondria. Finally, two different calcium chelators reduced fluorizoline-induced apoptosis in U2OS cells. Thus, we have found that fluorizoline causes increased ER stress and activation of the integrated stress response, which in HEK293T and U2OS cells are protective against fluorizoline-induced apoptosis.
Collapse
|
22
|
Activation of PERK-ATF4-CHOP pathway as a novel therapeutic approach for efficient elimination of HTLV-1-infected cells. Blood Adv 2021; 4:1845-1858. [PMID: 32369565 DOI: 10.1182/bloodadvances.2019001139] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 03/26/2020] [Indexed: 02/06/2023] Open
Abstract
Patients with adult T-cell leukemia (ATL) exhibit a poor prognosis and overall survival rate when treated with standard chemotherapy, highlighting the continued requirement for the development of novel safe and effective therapies for human T-cell leukemia virus type 1 (HTLV-1)-related diseases. In this study, we demonstrated that MK-2048, a second-generation HIV-1 integrase (IN) inhibitor, potently and selectively kills HTLV-1-infected cells. Differential transcriptome profiling revealed significantly elevated levels of gene expression of the unfolded protein response (UPR) PKR-like ER kinase (PERK) signaling pathway in ATL cell lines following MK-2048 treatment. We also identified a significant downregulation in glucose regulated protein 78 (GRP78), a master regulator of the UPR in the CD4+CADM1+ HTLV-1-infected cell population of primary HTLV-1 carrier peripheral blood mononuclear cells (PBMCs) (n = 9), suggesting that HTLV-1-infected cells are hypersensitive to endoplasmic reticulum (ER) stress-mediated apoptosis. MK-2048 efficiently reduced proviral loads in primary HTLV-1 carrier PBMCs (n = 4), but had no effect on the total numbers of these cells, indicating that MK-2048 does not affect the proliferation of HTLV-1-uninfected PBMCs. MK-2048 specifically activated the ER stress-related proapoptotic gene, DNA damage-inducible transcript 3 protein (DDIT3), also known as C/EBP homologous protein (CHOP), in HTLV-1-infected but not uninfected cells of HTLV-1-carrier PBMCs. Our findings demonstrated that MK-2048 selectively induces HTLV-1-infected cell apoptosis via the activation of the UPR. This novel regulatory mechanism of the HIV IN inhibitor MK-2048 in HTLV-1-infected cells provides a promising prophylactic and therapeutic target for HTLV-1-related diseases including ATL.
Collapse
|
23
|
Wu HM, Lee SG, Oh CS, Kim SG. Hypergravity Load Modulates Acetaminophen Nephrotoxicity via Endoplasmic Reticulum Stress in Association with Hepatic microRNA-122 Expression. Int J Mol Sci 2021; 22:4901. [PMID: 34063126 PMCID: PMC8124210 DOI: 10.3390/ijms22094901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/03/2021] [Accepted: 05/03/2021] [Indexed: 02/06/2023] Open
Abstract
Hypergravity conditions may subject the kidney to intrinsic stress and lead to hemodynamic kidney dysfunction. However, the mechanisms underlying this phenomenon remain unclear. Accumulation of unfolded proteins in the endoplasmic reticulum (i.e., ER stress) is often observed in kidney diseases. Therefore, this study investigated whether hypergravity stress alters acetaminophen-induced renal toxicity in vivo, as well as the molecular mechanisms involved in this process. C57BL/6 mice were submitted to one or three loads of +9 Gx hypergravity for 1 h with or without acetaminophen (APAP) treatment. The protein levels of cell survival markers, including pAKT and pCREB, were decreased in the kidney after acetaminophen treatment with a single hypergravity load. Additionally, the combined treatment increased kidney injury markers, serum creatinine, and Bax, Bcl2, and Kim-1 transcript levels and enhanced ER stress-related markers were further. Moreover, multiple hypergravity loads enabled mice to overcome kidney injury, as indicated by decreases in serum creatinine content and ER stress marker levels, along with increased cell viability indices. Similarly, multiple hypergravity loads plus APAP elevated miR-122 levels in the kidney, which likely originated from the liver, as the levels of primary miR-122 increased only in the liver and not the kidney. Importantly, this phenomenon may contribute to overcoming hypergravity-induced kidney injury. Taken together, our results demonstrate that APAP-exposed mice submitted to a single load of hypergravity exhibited more pronounced kidney dysfunction due to increased ER stress, which may be overcome by repetitive hypergravity loads presumably due to increased production of miR-122 in the liver. Thus, our study provides novel insights into the mechanisms by which hypergravity stress plus APAP medication induce kidney injury, which may be overcome by repeated hypergravity exposure.
Collapse
Affiliation(s)
- Hong-Min Wu
- College of Pharmacy, Seoul National University, Seoul 08826, Korea; (H.-M.W.); (S.-G.L.)
| | - Sang-Gil Lee
- College of Pharmacy, Seoul National University, Seoul 08826, Korea; (H.-M.W.); (S.-G.L.)
| | - Choong-Sik Oh
- Aerospace Medical Center, ROKAF, Cheong-ju 360-842, Korea;
| | - Sang-Geon Kim
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang-si, Gyeonggi-Do 10326, Korea
| |
Collapse
|
24
|
Pan Y, Cheng A, Wang M, Yin Z, Jia R. The Dual Regulation of Apoptosis by Flavivirus. Front Microbiol 2021; 12:654494. [PMID: 33841381 PMCID: PMC8024479 DOI: 10.3389/fmicb.2021.654494] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 02/25/2021] [Indexed: 12/11/2022] Open
Abstract
Apoptosis is a form of programmed cell death, which maintains cellular homeostasis by eliminating pathogen-infected cells. It contains three signaling pathways: death receptor pathway, mitochondria-mediated pathway, and endoplasmic reticulum pathway. Its importance in host defenses is highlighted by the observation that many viruses evade, hinder or destroy apoptosis, thereby weakening the host’s immune response. Flaviviruses such as Dengue virus, Japanese encephalitis virus, and West Nile virus utilize various strategies to activate or inhibit cell apoptosis. This article reviews the research progress of apoptosis mechanism during flaviviruses infection, including flaviviruses proteins and subgenomic flaviviral RNA to regulate apoptosis by interacting with host proteins, as well as various signaling pathways involved in flaviviruses-induced apoptosis, which provides a scientific basis for understanding the pathogenesis of flaviviruses and helps in developing an effective antiviral therapy.
Collapse
Affiliation(s)
- Yuhong Pan
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Anchun Cheng
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Mingshu Wang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Zhongqiong Yin
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Renyong Jia
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| |
Collapse
|
25
|
Atorvastatin ameliorates viral burden and neural stem/progenitor cell (NSPC) death in an experimental model of Japanese encephalitis. J Biosci 2020. [DOI: 10.1007/s12038-020-00052-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
26
|
Kumar S, Maurya VK, Kabir R, Nayak D, Khurana A, Manchanda RK, Gadugu S, Shanker K, Saxena SK. Antiviral Activity of Belladonna During Japanese Encephalitis Virus Infection via Inhibition of Microglia Activation and Inflammation Leading to Neuronal Cell Survival. ACS Chem Neurosci 2020; 11:3683-3696. [PMID: 33054164 DOI: 10.1021/acschemneuro.0c00603] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Japanese encephalitis virus (JEV) is the main cause of viral encephalitis resulting in more than 68 000 clinical cases every year with case fatality rate as high as 30-40% for which no specific treatments are available. We have recently exhibited belladonna may be widely applicable for the treatment of various neurological disorders. Therefore, we developed a hydroalcoholic formulation of belladonna (B200) consisting of atropine and scopolamine and showed its antiviral efficacy against JEV infection. B200 treatment increases neuronal cell survival by reducing JEV induced cytopathic effects which were evident from significant reduction in necrotic cell population by flow-cytometry analysis and caspase 3 and 8 enzymatic activities. B200 treatment was found to reduce the intracellular JEV level observed by significant reduction in JEV-fluorescein isothiocyanate (FITC) expression in both neurons and microglia. Because microglia plays a crucial role in JEV pathogenesis, we further investigated the anti-JEV effects of B200 on human microglia cells and elucidated the mechanism of action by performing whole-transcriptome sequencing. Gene expression analysis revealed that B200 reduces the pro-apoptotic and inflammatory gene expression observed by significant reduction in BAD, BAX, CASP3, CASP8, IL1B, and CXCL10 and increase in IL10 responsive gene expression. Interestingly, our molecular docking analysis revealed that atropine and scopolamine interact with the His288 residue of NS3 protein, a crucial residue for RNA unwinding and ATPase activity that was further confirmed by degradation of NS3 protein. Drug likeness, ADME (absorption, distribution, metabolism, and excretion), and toxicity analysis further suggests that atropine and scopolamine both cross the blood-brain barrier, which is crucial for effective treatment of Japanese encephalitis (JE).
Collapse
Affiliation(s)
- Swatantra Kumar
- Centre for Advanced Research (CFAR), Faculty of Medicine, King George’s Medical University (KGMU), Lucknow 226003, India
| | - Vimal K. Maurya
- Centre for Advanced Research (CFAR), Faculty of Medicine, King George’s Medical University (KGMU), Lucknow 226003, India
| | - Russell Kabir
- School of Allied Health, Faculty of Health, Education, Medicine, and Social Care, Anglia Ruskin University, Chelmsford CM1 1SQ, United Kingdom
| | | | - Anil Khurana
- CCRH, Ministry of Ayush, Janakpuri, New Delhi 110058, India
| | | | - Srinivasulu Gadugu
- Department of Medicine, JSPS Government Medical College, Hyderabad 500013, India
| | - Karuna Shanker
- CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, India
| | - Shailendra K. Saxena
- Centre for Advanced Research (CFAR), Faculty of Medicine, King George’s Medical University (KGMU), Lucknow 226003, India
| |
Collapse
|
27
|
Gatti P, Ilamathi HS, Todkar K, Germain M. Mitochondria Targeted Viral Replication and Survival Strategies-Prospective on SARS-CoV-2. Front Pharmacol 2020; 11:578599. [PMID: 32982760 PMCID: PMC7485471 DOI: 10.3389/fphar.2020.578599] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 08/14/2020] [Indexed: 12/11/2022] Open
Abstract
SARS-CoV-2 is a positive sense RNA coronavirus that constitutes a new threat for the global community and economy. While vaccines against SARS-CoV-2 are being developed, the mechanisms through which this virus takes control of an infected cell to replicate remains poorly understood. Upon infection, viruses completely rely on host cell molecular machinery to survive and replicate. To escape from the immune response and proliferate, viruses strategically modulate cellular metabolism and alter subcellular organelle architecture and functions. One way they do this is by modulating the structure and function of mitochondria, a critical cellular metabolic hub but also a key platform for the regulation of cellular immunity. This versatile nature of mitochondria defends host cells from viruses through several mechanisms including cellular apoptosis, ROS signaling, MAVS activation and mitochondrial DNA-dependent immune activation. These events are regulated by mitochondrial dynamics, a process by which mitochondria alter their structure (including their length and connectivity) in response to stress or other cues. It is therefore not surprising that viruses, including coronaviruses hijack these processes for their survival. In this review, we highlight how positive sense RNA viruses modulate mitochondrial dynamics and metabolism to evade mitochondrial mediated immune response in order to proliferate.
Collapse
Affiliation(s)
- Priya Gatti
- Groupe de Recherche en Signalisation Cellulaire and Département de Biologie, Médicale, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
- Centre d’Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Hema Saranya Ilamathi
- Groupe de Recherche en Signalisation Cellulaire and Département de Biologie, Médicale, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
- Centre d’Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Kiran Todkar
- Groupe de Recherche en Signalisation Cellulaire and Département de Biologie, Médicale, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
- Centre d’Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Marc Germain
- Groupe de Recherche en Signalisation Cellulaire and Département de Biologie, Médicale, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
- Centre d’Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| |
Collapse
|
28
|
Li M, Ramage H, Cherry S. Deciphering flavivirus-host interactions using quantitative proteomics. Curr Opin Immunol 2020; 66:90-97. [PMID: 32682290 DOI: 10.1016/j.coi.2020.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/13/2020] [Accepted: 06/16/2020] [Indexed: 01/09/2023]
Abstract
Flaviviruses are a group of important emerging and re-emerging human pathogens that cause worldwide epidemics with thousands of deaths annually. Flaviviruses are small, enveloped, positive-sense, single-stranded RNA viruses that are obligate intracellular pathogens, relying heavily on host cell machinery for productive replication. Proteomic approaches have become an increasingly powerful tool to investigate the mechanisms by which viruses interact with host proteins and manipulate cellular processes to promote infection. Here, we review recent advances in employing quantitative proteomics techniques to improve our understanding of the complex interplay between flaviviruses and host cells. We describe new findings on our understanding of how flaviviruses impact protein-protein interactions, protein-RNA interactions, protein abundance, and post-translational modifications to modulate viral infection.
Collapse
Affiliation(s)
- Minghua Li
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Holly Ramage
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Sara Cherry
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
29
|
Kumar A, Kalita J, Sinha RA, Singh G, B A, Shukla M, Tiwari S, Dhole TN, Misra UK. Impaired Autophagy Flux is Associated with Proinflammatory Microglia Activation Following Japanese Encephalitis Virus Infection. Neurochem Res 2020; 45:2184-2195. [PMID: 32613347 DOI: 10.1007/s11064-020-03080-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/05/2020] [Accepted: 06/25/2020] [Indexed: 12/18/2022]
Abstract
Role of autophagy in Japanese encephalitis viral (JEV) infection is not well known. In the present study, we reported the role of autophagy flux in microglia activation, neurobehavioral function and neuronal death using a mouse model of JEV. Markers for autophagy (LC3-II/I, SQSTM1/P62, phos-Akt, phos-AMPK), and neuronal death (cleaved caspase 12, H2Ax, polyubiquitin) were investigated by western blot at 1, 3 and 7 days post inoculation. Cathepsin D was measured in cerebral cotex of JEV infected mice spectrophotometrically. Microglia activation and pro-inflammatory cytokines (IL1β, TNF-α, IFNγ, IL6) were measured by immunohistochemistry, western blot and qPCR analysis. In order to determine the neuroinflammatory changes and autophagy mediated neuronal cell death, BV2-microglia and N2a-neuronal cells were used. Autophagy activation marker LC3-II/I and its substrate SQSTM1/P62 were significantly increased while cathepsin D activity was decreased on day 7 post inoculation in cerebral cortex. Microglia in cortex were activated and showed higher expression of proinflammatory mRNA of IL1β, TNF-α, IFNγ and IL6, with increased DNA damage (H2AX) and neuronal cell death pathways in hippocampus and neurobehavioral dysfunction. Similar observations on JEV infection mediated autophagy flux inhibition and neuronal cell death was found in N2a neuronal cell. Collectively, our study provides evidence on the role of autophagy regulation, microglial activation and neurodegeneration following JEV infection.
Collapse
Affiliation(s)
- Alok Kumar
- Department of Molecular Medicine and Biotechnology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Raebareily Road, Lucknow, 226014, Uttar Pradesh, India.
| | - J Kalita
- Department of Neurology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Raebareily Road, Lucknow, 226014, Uttar Pradesh, India
| | - Rohit A Sinha
- Department of Endocrinology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Raebareily Road, Lucknow, 226014, Uttar Pradesh, India
| | - Gajendra Singh
- Department of Molecular Medicine and Biotechnology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Raebareily Road, Lucknow, 226014, Uttar Pradesh, India
| | - Anjum B
- Department of Endocrinology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Raebareily Road, Lucknow, 226014, Uttar Pradesh, India
| | - Mukti Shukla
- Department of Microbiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Raebareily Road, Lucknow, 226014, Uttar Pradesh, India
| | - Swasti Tiwari
- Department of Molecular Medicine and Biotechnology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Raebareily Road, Lucknow, 226014, Uttar Pradesh, India
| | - T N Dhole
- Department of Microbiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Raebareily Road, Lucknow, 226014, Uttar Pradesh, India
| | - U K Misra
- Department of Neurology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Raebareily Road, Lucknow, 226014, Uttar Pradesh, India.
| |
Collapse
|
30
|
Zhou J, Li H, Yu T, Li J, Dong W, Ojha NK, Jin Y, Gu J, Zhou J. Protein Interactions Network of Porcine Circovirus Type 2 Capsid With Host Proteins. Front Microbiol 2020; 11:1129. [PMID: 32582087 PMCID: PMC7283462 DOI: 10.3389/fmicb.2020.01129] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 05/05/2020] [Indexed: 02/03/2023] Open
Abstract
Virus-host interaction is a tug of war between pathogenesis and immunity, followed by either activating the host immune defense system to eliminate virus or manipulating host immune control mechanisms to survive and facilitate virus propagation. Comprehensive knowledge of interactions between host and viral proteins might provide hints for developing novel antiviral strategies. To gain a more detailed knowledge of the interactions with porcine circovirus type 2 capsid protein, we employed a coimmunoprecipitation combined with liquid chromatography mass spectrometry (LC-MS) approach and 222 putative PCV2 Cap-interacting host proteins were identified in the infected porcine kidney (PK-15) cells. Further, a protein-protein interactions (PPIs) network was plotted, and the PCV2 Cap-interacting host proteins were potentially involved in protein binding, DNA transcription, metabolism and innate immune response based on the gene ontology annotation and Kyoto Encyclopedia of Genes and Genomes database enrichment. Verification in vitro assay demonstrated that eight cellular proteins, namely heterogeneous nuclear ribonucleoprotein C, nucleophosmin-1, DEAD-box RNA helicase 21, importin β3, eukaryotic translation initiation factor 4A2, snail family transcriptional repressor 2, MX dynamin like GTPase 2, and intermediate chain 1 interacted with PCV2 Cap. Thus, this work effectively provides useful protein-related information to facilitate further investigation of the underlying mechanism of PCV2 infection and pathogenesis.
Collapse
Affiliation(s)
- Jianwei Zhou
- MOA Key Laboratory of Animal Virology, Department of Veterinary Medicine and Center of Veterinary Medical Sciences, Zhejiang University, Hangzhou, China
| | - Hanying Li
- MOA Key Laboratory of Animal Virology, Department of Veterinary Medicine and Center of Veterinary Medical Sciences, Zhejiang University, Hangzhou, China
| | - Tianqi Yu
- MOA Key Laboratory of Animal Virology, Department of Veterinary Medicine and Center of Veterinary Medical Sciences, Zhejiang University, Hangzhou, China
| | - Jiarong Li
- MOA Key Laboratory of Animal Virology, Department of Veterinary Medicine and Center of Veterinary Medical Sciences, Zhejiang University, Hangzhou, China
| | - Weiren Dong
- MOA Key Laboratory of Animal Virology, Department of Veterinary Medicine and Center of Veterinary Medical Sciences, Zhejiang University, Hangzhou, China
| | - Nishant Kumar Ojha
- MOA Key Laboratory of Animal Virology, Department of Veterinary Medicine and Center of Veterinary Medical Sciences, Zhejiang University, Hangzhou, China
| | - Yulan Jin
- MOA Key Laboratory of Animal Virology, Department of Veterinary Medicine and Center of Veterinary Medical Sciences, Zhejiang University, Hangzhou, China
| | - Jinyan Gu
- MOA Key Laboratory of Animal Virology, Department of Veterinary Medicine and Center of Veterinary Medical Sciences, Zhejiang University, Hangzhou, China
| | - Jiyong Zhou
- MOA Key Laboratory of Animal Virology, Department of Veterinary Medicine and Center of Veterinary Medical Sciences, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center and State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| |
Collapse
|
31
|
Wang ZY, Zhen ZD, Fan DY, Wang PG, An J. Transcriptomic Analysis Suggests the M1 Polarization and Launch of Diverse Programmed Cell Death Pathways in Japanese Encephalitis Virus-Infected Macrophages. Viruses 2020; 12:v12030356. [PMID: 32213866 PMCID: PMC7150907 DOI: 10.3390/v12030356] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/20/2020] [Accepted: 03/22/2020] [Indexed: 12/12/2022] Open
Abstract
The Japanese encephalitis virus (JEV) is a Culex mosquito-borne flavivirus and is the pathogenic agent of Japanese encephalitis, which is the most important type of viral encephalitis in the world. Macrophages are a type of pivotal innate immunocyte that serve as sentinels and respond quickly to pathogen invasions. However, some viruses like JEV can hijack macrophages as a refuge for viral replication and immune escape. Despite their crucial involvement in early JEV infection, the transcriptomic landscapes of JEV-infected macrophages are void. Here, by using an in situ JEV infection model, we investigate the transcriptomic alteration of JEV-infected peritoneal macrophages. We found that, upon JEV infection, the macrophages underwent M1 polarization and showed the drastic activation of innate immune and inflammatory pathways. Interestingly, almost all the programmed cell death (PCD) pathways were activated, especially the apoptosis, pyroptosis, and necroptosis pathways, which were verified by the immunofluorescent staining of specific markers. Further transcriptomic analysis and TUNEL staining revealed that JEV infection caused apparent DNA damage. The transcriptomic analysis also revealed that JEV infection promoted ROS and RNS generation and caused oxidative stress, which activated multiple cell death pathways. Our work uncovers the pivotal pathogenic roles of oxidative stress and multiple PCD pathways in JEV infection, providing a novel perspective on JEV–host interactions.
Collapse
Affiliation(s)
- Zhao-Yang Wang
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (Z.-Y.W.); (Z.-D.Z.); (D.-Y.F.)
| | - Zi-Da Zhen
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (Z.-Y.W.); (Z.-D.Z.); (D.-Y.F.)
| | - Dong-Ying Fan
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (Z.-Y.W.); (Z.-D.Z.); (D.-Y.F.)
| | - Pei-Gang Wang
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (Z.-Y.W.); (Z.-D.Z.); (D.-Y.F.)
- Correspondence: (P.-G.W.); or (J.A.)
| | - Jing An
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (Z.-Y.W.); (Z.-D.Z.); (D.-Y.F.)
- Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing 100093, China
- Correspondence: (P.-G.W.); or (J.A.)
| |
Collapse
|
32
|
Discordant Activity of Kaempferol Towards Dengue Virus and Japanese Encephalitis Virus. Molecules 2020; 25:molecules25051246. [PMID: 32164193 PMCID: PMC7179415 DOI: 10.3390/molecules25051246] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 03/06/2020] [Accepted: 03/08/2020] [Indexed: 11/30/2022] Open
Abstract
Kaempferol, a plant-derived flavonoid, has been reported to have activity against Japanese encephalitis virus (JEV) in BHK-21 cells. To determine the broader utility of this compound, we initially evaluated the activity of kaempferol against JEV and dengue virus (DENV) in HEK293T/17 cells. Results showed no significant antiviral activity against either virus. We subsequently investigated the activity of kaempferol against both JEV and DENV in BHK-21 cells. Results showed a significant inhibition of JEV infection but, surprisingly, a significant enhancement of DENV infection. The effect of kaempferol on both host protein expression and transcription was investigated and both transcriptional and translational inhibitory effects were observed, although a more marked effect was observed on host cell protein expression. Markedly, while GRP78 was increased in DENV infected cells treated with kaempferol, it was not increased in JEV infected cells treated with kaempferol. These results show that cellular alteration induced by one compound can have opposite effects on viruses from the same family, suggesting the presence of distinct replication strategies for these two viruses.
Collapse
|
33
|
Luo Z, Su R, Wang W, Liang Y, Zeng X, Shereen MA, Bashir N, Zhang Q, Zhao L, Wu K, Liu Y, Wu J. EV71 infection induces neurodegeneration via activating TLR7 signaling and IL-6 production. PLoS Pathog 2019; 15:e1008142. [PMID: 31730654 PMCID: PMC6932824 DOI: 10.1371/journal.ppat.1008142] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 12/26/2019] [Accepted: 10/09/2019] [Indexed: 01/13/2023] Open
Abstract
As a neurotropic virus, human Enterovirus 71 (EV71) infection causes hand-foot-and-mouth disease (HFMD) and may develop severe neurological disorders in infants. Toll-like receptor 7 (TLR7) acts as an innate immune receptor and is also a death receptor in the central nervous system (CNS). However, the mechanisms underlying the regulation of TLR7-mediated brain pathogenesis upon EV71 infection remain largely elusive. Here we reveal a novel mechanism by which EV71 infects astrocytes in the brain and induces neural pathogenesis via TLR7 and interleukin-6 (IL-6) in C57BL/6 mice and in human astroglioma U251 cells. Upon EV71 infection, wild-type (WT) mice displayed more significant body weight loss, higher clinical scores, and lower survival rates as compared with TLR7-/- mice. In the cerebral cortex of EV71-infected mice, neurofilament integrity was disrupted, and inflammatory cell infiltration and neurodegeneration were induced in WT mice, whereas these were largely absent in TLR7-/- mice. Similarly, IL-6 production, Caspase-3 cleavage, and cell apoptosis were significantly higher in EV71-infected WT mice as compared with TLR7-/- mice. Moreover, EV71 preferentially infected and induced IL-6 in astrocytes of mice brain. In U251 cells, EV71-induced IL-6 production and cell apoptosis were suppressed by shRNA-mediated knockdown of TLR7 (shTLR7). Moreover, in the cerebral cortex of EV71-infected mice, the blockade of IL-6 with anti-IL-6 antibody (IL-6-Ab) restored the body weight loss, attenuated clinical scores, improved survival rates, reduced the disruption of neurofilament integrity, decreased cell apoptotic induction, and lowered levels of Caspase-3 cleavage. Similarly, in EV71-infected U251 cells, IL-6-Ab blocked EV71-induced IL-6 production and cell apoptosis in response to viral infection. Collectively, it’s exhibited TLR7 upregulation, IL-6 induction and astrocytic cell apoptosis in EV71-infected human brain. Taken together, we propose that EV71 infects astrocytes of the cerebral cortex in mice and human and triggers TLR7 signaling and IL-6 release, subsequently inducing neural pathogenesis in the brain. Enterovirus 71 (EV71) infection causes aseptic meningitis, poliomyelitis-like paralysis and fatal encephalitis in infants. Besides an immune receptor, toll-like receptor 7 (TLR7) serves as a death receptor in central nervous system (CNS). However, the role of TLR7 in EV71-induced neural pathogenesis remains ambiguous. This study reveals a distinct mechanism by which EV71 induces neurodegeneration via TLR7 and interleukin-6 (IL-6). Upon EV71 infection, TLR7-/- mice displayed less body weight loss, lower clinical score, and higher survival rate as compared with wild-type (WT) mice. Meanwhile, a severer histopathologic neurofilaments disruption, neurodegeneration and cell apoptosis were observed in brain of EV71-infected WT mice. IL-6 release, cell apoptosis, and Caspase-3 cleavage were attenuated by shRNA targeting TLR7 (shTLR7) in EV71-infected U251 cells. Moreover, anti-IL-6 antibody (IL-6-Ab) suppressed EV71-induced body weight loss, clinical score increase, and survival rate decrease as well as neurofilaments disruption and neurodegeneration in mice, and it also attenuated EV71-induced cell apoptosis and Caspase-3 cleavage in U251 cells. It’s retrospectively observed that TLR7 upregulation, IL-6 induction and astrocytic cell apoptosis in EV71-infected human brain. Therefore, TLR7 is required for neural pathogenesis by IL-6 induction upon EV71 infection.
Collapse
Affiliation(s)
- Zhen Luo
- Guangdong Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Rui Su
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Wenbiao Wang
- Guangdong Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Yicong Liang
- Guangdong Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Xiaofeng Zeng
- School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Muhammad Adnan Shereen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Nadia Bashir
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Qi Zhang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Ling Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Kailang Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yingle Liu
- Guangdong Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jianguo Wu
- Guangdong Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- * E-mail:
| |
Collapse
|
34
|
Abstract
Japanese encephalitis (JE) is a clinical manifestation of the brain inflammation caused by JE virus (JEV). This virus imparts permanent neurological damage, thus imposing a heavy burden on public health and society. Neuro-inflammation is the hallmark of JEV infection. The prolonged pro-inflammatory response is due primarily to microglial activation, which eventually leads to severe encephalitis. A continual effort is going on in the scientific community toward an understanding of cellular and molecular factors that are involved in JEV neuro-invasion and inflammatory processes. This review not only gives a comprehensive update on the recent advances on understanding virus structure and mechanisms of pathogenesis but also briefly discusses crucial unresolved issues. We also highlight challenging areas of research that might open new avenues for controlling virus-induced neuro-inflammation.
Collapse
Affiliation(s)
- Arup Banerjee
- Laboratory of Virology, Regional Centre for Biotechnology, Faridabad, Haryana, India.,Translational Health Science & Technology Institute, Faridabad, Haryana, India
| | - Aarti Tripathi
- Translational Health Science & Technology Institute, Faridabad, Haryana, India
| |
Collapse
|
35
|
Identification and Classification of Hubs in microRNA Target Gene Networks in Human Neural Stem/Progenitor Cells following Japanese Encephalitis Virus Infection. mSphere 2019; 4:4/5/e00588-19. [PMID: 31578247 PMCID: PMC6796970 DOI: 10.1128/msphere.00588-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
RNA viruses are known to modulate host microRNA (miRNA) machinery for their own benefit. Japanese encephalitis virus (JEV), a neurotropic RNA virus, has been reported to manipulate several miRNAs in neurons or microglia. However, no report indicates a complete sketch of the miRNA profile of neural stem/progenitor cells (NSPCs), hence the focus of our current study. We used an miRNA array of 84 miRNAs in uninfected and JEV-infected human neuronal progenitor cells and primary neural precursor cells isolated from aborted fetuses. Severalfold downregulation of hsa-miR-9-5p, hsa-miR-22-3p, hsa-miR-124-3p, and hsa-miR-132-3p was found postinfection in both of the cell types compared to the uninfected cells. Subsequently, we screened for the target genes of these miRNAs and looked for the biological pathways that were significantly regulated by the genes. The target genes involved in two or more pathways were sorted out. Protein-protein interaction (PPI) networks of the miRNA target genes were formed based on their interaction patterns. A binary adjacency matrix for each gene network was prepared. Different modules or communities were identified in those networks by community detection algorithms. Mathematically, we identified the hub genes by analyzing their degree centrality and participation coefficient in the network. The hub genes were classified as either provincial (P < 0.4) or connector (P > 0.4) hubs. We validated the expression of hub genes in both cell line and primary cells through qRT-PCR after JEV infection and respective miR mimic transfection. Taken together, our findings highlight the importance of specific target gene networks of miRNAs affected by JEV infection in NSPCs.IMPORTANCE JEV damages the neural stem/progenitor cell population of the mammalian brain. However, JEV-induced alteration in the miRNA expression pattern of the cell population remains an open question, hence warranting our present study. In this study, we specifically address the downregulation of four miRNAs, and we prepared a protein-protein interaction network of miRNA target genes. We identified two types of hub genes in the PPI network, namely, connector hubs and provincial hubs. These two types of miRNA target hub genes critically influence the participation strength in the networks and thereby significantly impact up- and downregulation in several key biological pathways. Computational analysis of the PPI networks identifies key protein interactions and hubs in those modules, which opens up the possibility of precise identification and classification of host factors for viral infection in NSPCs.
Collapse
|
36
|
Carr M, Gonzalez G, Martinelli A, Wastika CE, Ito K, Orba Y, Sasaki M, Hall WW, Sawa H. Upregulated expression of the antioxidant sestrin 2 identified by transcriptomic analysis of Japanese encephalitis virus-infected SH-SY5Y neuroblastoma cells. Virus Genes 2019; 55:630-642. [PMID: 31292858 DOI: 10.1007/s11262-019-01683-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 07/02/2019] [Indexed: 01/29/2023]
Abstract
Japanese encephalitis virus (JEV) exerts a profound burden of viral encephalitis. We have investigated the differentially expressed transcripts in the neuronal transcriptome during JEV infection by RNA sequencing (RNA-Seq) of virus-infected SH-SY5Y human neuroblastoma cells. Gene ontology analysis revealed significant enrichment from two main pathways: endoplasmic reticulum (ER)-nucleus signaling (P value: 5.75E-18; false discovery rate [FDR] 3.11E-15) and the ER unfolded protein response (P value: 7.58E-18; FDR 3.11E-15). qPCR validation showed significant upregulation and differential expression (P < 0.01) of ER stress-signaling transcripts (SESN2, TRIB3, DDIT3, DDIT4, XBP1, and ATF4) at 24 h post-infection for both low (LN) and high (HN) neurovirulence JEV strains. Immunoblot analysis following JEV infection of SH-SY5Y cells showed an increase in levels of SESN2 protein following JEV infection. Similarly, Zika virus (MR766) infection of SH-SY5Y showed a titer-dependent increase in ER stress-signaling transcripts; however, this was absent or diminished for DDIT4 and ATF4, respectively, suggestive of differences in the induction of stress-response transcripts between flaviviruses. Interestingly, SLC7A11 and SLC3A2 mRNA were also both deregulated in JEV-infected SH-SY5Y cells and encode the two constituent subunits of the plasma membrane xCT amino acid antiporter that relieves oxidative stress by export of glutamate and import of cystine. Infection of SH-SY5Y and HEK293T cells by the JEV HN strain Sw/Mie/40/2004 lead to significant upregulation of the SLC7A11 mRNA to levels comparable to DDIT3. Our findings suggest upregulation of antioxidants including SESN2 and, also, the xCT antiporter occurs to counteract the oxidative stress elicited by JEV infection.
Collapse
Affiliation(s)
- Michael Carr
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, N20, W10, Kita-ku, Sapporo, 001-0020, Japan. .,National Virus Reference Laboratory, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Gabriel Gonzalez
- Division of Bioinformatics, Research Center for Zoonosis Control, Hokkaido University, N20, W10, Kita-ku, Sapporo, 001-0020, Japan
| | - Axel Martinelli
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, N20, W10, Kita-ku, Sapporo, 001-0020, Japan
| | - Christida E Wastika
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, N20, W10, Kita-ku, Sapporo, 001-0020, Japan
| | - Kimihito Ito
- Division of Bioinformatics, Research Center for Zoonosis Control, Hokkaido University, N20, W10, Kita-ku, Sapporo, 001-0020, Japan
| | - Yasuko Orba
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, N20, W10, Kita-ku, Sapporo, 001-0020, Japan
| | - Michihito Sasaki
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, N20, W10, Kita-ku, Sapporo, 001-0020, Japan
| | - William W Hall
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, N20, W10, Kita-ku, Sapporo, 001-0020, Japan.,National Virus Reference Laboratory, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland.,Global Virus Network, Baltimore, MD, 21201, USA
| | - Hirofumi Sawa
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, N20, W10, Kita-ku, Sapporo, 001-0020, Japan.,Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, N20, W10, Kita-ku, Sapporo, 001-0020, Japan.,Global Virus Network, Baltimore, MD, 21201, USA
| |
Collapse
|
37
|
Sun L, Zhou M, Liu C, Tang Y, Xiao K, Dai J, Gao Z, Siew L, Cao G, Wu X, Li L, Zhang R. Memantine can relieve the neuronal impairment caused by neurotropic virus infection. J Med Virol 2019; 91:935-940. [PMID: 30624794 DOI: 10.1002/jmv.25396] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 11/19/2018] [Accepted: 12/07/2018] [Indexed: 12/24/2022]
Abstract
Neurotropic viruses, such as the rabies virus (RABV) and Japanese encephalitis virus (JEV), induce neuronal dysfunction and complication, causing neuronal damage. Currently, there are still no effective clinical treatments for neuronal injury caused by neurotropic viruses. Memantine, a drug capable of passing through the blood-brain barrier, noncompetitively and reversibly binds to n-methyl- d-aspartic acid (NMDA) receptors. Memantine is used to treat Alzheimer's disease by blocking the activation of extra axonal ion channels, thus preventing neuronal degeneration by inhibiting the abnormal cytosolic Ca 2+ increase. To explore whether memantine can alleviate neurological disturbances caused by RABV and JEV, the following experiments were carried out: (1) for primary neurons cultured in vitro infected with RABV, the addition of memantine showed neuroprotection. (2) In the RABV challenge experiments, memantine had limited therapeutic effect, mildly extending the survival time of mice. In contrast, memantine significantly prolonged the survival time of mice infected with JEV, by reducing the intravascular cuff and inflammatory cell infiltration in mice. Furthermore, memantine decreases the amount of JEV virus in mice brain.
Collapse
Affiliation(s)
- Leqiang Sun
- Department of Animal Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Meiling Zhou
- Research and Development Department, State Key Laboratory of Development of Antibody Drugs, North China Pharmaceutical Group Corporation, Shijiazhuang, China
| | - Chuangang Liu
- Department of Animal Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yajie Tang
- Department of Animal Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ke Xiao
- Department of Animal Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jinxia Dai
- Department of Animal Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zhisong Gao
- Department of Science and Technology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Leonard Siew
- Department of Molecular, Cell and Developmental Biology, University of California-Santa Cruz, Santa Cruz, California
| | - Gang Cao
- Department of Animal Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiang Wu
- Department of Animal Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Liang Li
- Department of Animal Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, California
| | - Ran Zhang
- Department of Animal Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Department of Microbiology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| |
Collapse
|
38
|
Chen T, He X, Zhang P, Yuan Y, Lang X, Yu J, Qin Z, Li X, Zhang Q, Zhu L, Zhang B, Wu Q, Zhao W. Research advancements in the neurological presentation of flaviviruses. Rev Med Virol 2019; 29:e2021. [PMID: 30548722 PMCID: PMC6590462 DOI: 10.1002/rmv.2021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 07/27/2018] [Accepted: 10/26/2018] [Indexed: 12/25/2022]
Abstract
Owing to the large-scale epidemic of Zika virus disease and its association with microcephaly, properties that allow flaviviruses to cause nervous system diseases are an important area of investigation. At present, although potential pathogenic mechanisms of flaviviruses in the nervous system have been examined, they have not been completely elucidated. In this paper, we review the possible mechanisms of blood-brain barrier penetration, the pathological effects on neurons, and the association between virus mutations and neurotoxicity. A hypothesis on neurotoxicity caused by the Zika virus is presented. Clarifying the mechanisms of virulence of flaviviruses will be helpful in finding better antiviral drugs and optimizing the treatment of symptoms.
Collapse
Affiliation(s)
- Tingting Chen
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public HealthSouthern Medical UniversityGuangzhouChina
| | - Xiaoen He
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public HealthSouthern Medical UniversityGuangzhouChina
| | - Peiru Zhang
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public HealthSouthern Medical UniversityGuangzhouChina
| | - Yawen Yuan
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public HealthSouthern Medical UniversityGuangzhouChina
| | - Xinyue Lang
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public HealthSouthern Medical UniversityGuangzhouChina
| | - Jianhai Yu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public HealthSouthern Medical UniversityGuangzhouChina
| | - Zhiran Qin
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public HealthSouthern Medical UniversityGuangzhouChina
| | - Xujuan Li
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public HealthSouthern Medical UniversityGuangzhouChina
| | - Qiwei Zhang
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public HealthSouthern Medical UniversityGuangzhouChina
| | - Li Zhu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public HealthSouthern Medical UniversityGuangzhouChina
| | - Bao Zhang
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public HealthSouthern Medical UniversityGuangzhouChina
| | - Qinghua Wu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public HealthSouthern Medical UniversityGuangzhouChina
| | - Wei Zhao
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public HealthSouthern Medical UniversityGuangzhouChina
| |
Collapse
|
39
|
Wang Q, Liu M, Chen Y, Xu L, Wu B, Wu Y, Huang Y, Huang WR, Liu HJ. Muscovy duck reovirus p10.8 protein induces ER stress and apoptosis through the Bip/IRE1/XBP1 pathway. Vet Microbiol 2018; 228:234-245. [PMID: 30593373 DOI: 10.1016/j.vetmic.2018.12.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 12/04/2018] [Accepted: 12/11/2018] [Indexed: 12/20/2022]
Abstract
In the present study, the mechanisms underlying Muscovy duck reovirus (MDRV) p10.8 protein-induced ER stress and apoptosis in DF-1 cells and Muscovy duckling hepatic tissues were explored. On the fifth day post-infection, an increase in the mRNA levels of binding immunoglobulin protein (Bip) and X-box binding protein (XBP1), activation of XBP1/s, and an increase in percentage of apoptotic cells were observed in Muscovy duckling livers. The use of ER stress inducer Tunicamycin and ER stress inhibitor Tauroursodeoxycholic acid demonstrated that MDRV induces apoptosis via ER stress, leading to apoptosis. The use of Tunicamycin increased viral protein synthesis while Tauroursodeoxycholic acid reduced viral protein synthesis, suggesting that MDRV induces ER stress benefiting virus replication. The MDRV p10.8 is the major protein to induce ER stress and apoptosis. We found that p10.8 promotes the conversion of XBP1/u to XBP1/s and expands ER diameter, and increases the percentages of apoptotic cells in DF-1 and duckling liver tissues. To investigate the mechanism underlying the MDRV p10.8-induced ER stress and apoptosis, Western blot, siRNA, and co-immunoprecipitation (Co-IP) assays were performed. We found that the MDRV p10.8 protein up-regulates Bip, p-IRE1, XBP1s, and cleaved-caspase 3. Co-IP results reveal that the MDRV p10.8 protein disassociates the Bip/IRE1 complex. Inhibition of IRE1 by 4-methyl umbelliferone 8-carbaldehyde (4u8c) dramatically reversed the MDRV p10.8-modulated increase in levels of XBP1s and cleaved-caspase 3. Knockdown of XBP1 by siRNA reversed the increased level of p10.8-modulated cleaved-caspase 3. The present study provides mechanistic insights into the MDRV p10.8 protein induces ER stress, resulting in apoptosis via the Bip/IRE1/XBP1 pathway in DF-1 cells and duckling livers.
Collapse
Affiliation(s)
- Quanxi Wang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China; Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health (Fujian Agriculture and Forestry University), Fuzhou, Fujian, 350002, PR China.
| | - Mengxi Liu
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China; Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health (Fujian Agriculture and Forestry University), Fuzhou, Fujian, 350002, PR China
| | - Yuan Chen
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China; Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health (Fujian Agriculture and Forestry University), Fuzhou, Fujian, 350002, PR China
| | - Lihui Xu
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Baocheng Wu
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China; Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health (Fujian Agriculture and Forestry University), Fuzhou, Fujian, 350002, PR China
| | - Yijan Wu
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China; Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health (Fujian Agriculture and Forestry University), Fuzhou, Fujian, 350002, PR China
| | - Yifan Huang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China; Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health (Fujian Agriculture and Forestry University), Fuzhou, Fujian, 350002, PR China
| | - Wei-Ru Huang
- Institute of Molecular Biology, National Chung Hsing University, Taichung 402, Taiwan; The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
| | - Hung-Jen Liu
- Institute of Molecular Biology, National Chung Hsing University, Taichung 402, Taiwan; The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan; Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan; Ph.D Program in translational Medicine, National Chung Hsing University, Taichung 402, Taiwan; Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan.
| |
Collapse
|
40
|
Ojha A, Bhasym A, Mukherjee S, Annarapu GK, Bhakuni T, Akbar I, Seth T, Vikram NK, Vrati S, Basu A, Bhattacharyya S, Guchhait P. Platelet factor 4 promotes rapid replication and propagation of Dengue and Japanese encephalitis viruses. EBioMedicine 2018; 39:332-347. [PMID: 30527622 PMCID: PMC6354622 DOI: 10.1016/j.ebiom.2018.11.049] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 11/11/2018] [Accepted: 11/23/2018] [Indexed: 11/25/2022] Open
Abstract
Background Activated platelets release cytokines/proteins including CXCL4 (PF4), CCL5 and fibrinopeptides, which regulate infection of several pathogenic viruses such as HIV, H1N1 and HCV in human. Since platelet activation is the hallmark of Dengue virus (DV) infection, we investigated the role of platelets in DV replication and also in a closely related Japanese Encephalitis virus (JEV). Methods and findings Microscopy and PCR analysis revealed a 4-fold increase in DV replication in primary monocytes or monocytic THP-1 cells in vitro upon incubation with either DV-activated platelets or supernatant from DV-activated platelets. The mass spectrometry based proteomic data from extra-nuclear fraction of above THP-1 lysate showed the crucial association of PF4 with enhanced DV replication. Our cytokine analysis and immunoblot assay showed significant inhibition of IFN-α production in monocytes via p38MAPK-STAT2-IRF9 axis. Blocking PF4 through antibodies or its receptor CXCR3 through inhibitor i.e. AMG487, significantly rescued production of IFN-α resulting in potent inhibition of DV replication in monocytes. Further, flow cytometry and ELISA data showed the direct correlation between elevated plasma PF4 with increased viral NS1 in circulating monocytes in febrile DV patients at day-3 of fever than day-9. Similarly, PF4 also showed direct effects in promoting the JEV replication in monocytes and microglia cells in vitro. The in vitro results were also validated in mice, where AMG487 treatment significantly improved the survival of JEV infected animals. Interpretation: Our study suggests that PF4-CXCR3-IFN axis is a potential target for developing treatment regimen against viral infections including JEV and DV.
Collapse
Affiliation(s)
- Amrita Ojha
- Disease Biology Laboratory, Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India; Department of Biotechnology, Manipal Academy of Higher Education, Manipal, India
| | - Angika Bhasym
- Disease Biology Laboratory, Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India; Department of Biotechnology, Manipal Academy of Higher Education, Manipal, India
| | | | - Gowtham K Annarapu
- Disease Biology Laboratory, Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India
| | - Teena Bhakuni
- Disease Biology Laboratory, Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India
| | | | - Tulika Seth
- All India Institute of Medical Sciences, New Delhi, India
| | - Naval K Vikram
- All India Institute of Medical Sciences, New Delhi, India
| | - Sudhanshu Vrati
- Disease Biology Laboratory, Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India
| | | | - Sankar Bhattacharyya
- Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, National Capital Region Biotech Science Cluster, Faridabad, India
| | - Prasenjit Guchhait
- Disease Biology Laboratory, Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India.
| |
Collapse
|
41
|
LUO XN, YAO HL, SONG J, SONG QQ, SHI BT, XIA D, HAN J. Coxsackievirus B3 Infection Triggers Autophagy through 3 Pathways of Endoplasmic Reticulum Stress. BIOMEDICAL AND ENVIRONMENTAL SCIENCES : BES 2018; 31:867-875. [PMID: 30636656 PMCID: PMC7126911 DOI: 10.3967/bes2018.115] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 11/22/2018] [Indexed: 06/09/2023]
Abstract
OBJECTIVE Autophagy is a highly conserved intracellular degradation pathway. Many picornaviruses induce autophagy to benefit viral replication, but an understanding of how autophagy occurs remains incomplete. In this study, we explored whether coxsackievirus B3 (CVB3) infection induced autophagy through endoplasmic reticulum (ER) stress. METHODS In CVB3-infected HeLa cells, the specific molecules of ER stress and autophagy were detected using Western blotting, reverse transcription polymerase chain reaction (RT-PCR), and confocal microscopy. Then PKR-like ER protein kinase (PERK) inhibitor, inositol-requiring protein-1 (IRE1) inhibitor, or activating transcription factor-6 (ATF6) inhibitor worked on CVB3-infected cells, their effect on autophagy was assessed by Western blotting for detecting microtubule-associated protein light chain 3 (LC3). RESULTS CVB3 infection induced ER stress, and ER stress sensors PERK/eIF2α, IRE1/XBP1, and ATF6 were activated. CVB3 infection increased the accumulation of green fluorescent protein (GFP)-LC3 punctuation and induced the conversion from LC3-I to phosphatidylethanolamine-conjugated LC3-1 (LC3-II). CVB3 infection still decreased the expression of mammalian target of rapamycin (mTOR) and p-mTOR. Inhibition of PERK, IRE1, or ATF6 significantly decreased the ratio of LC3-II to LC3-I in CVB3-infected HeLa cells. CONCLUSION CVB3 infection induced autophagy through ER stress in HeLa cells, and PERK, IRE1, and ATF6a pathways participated in the regulation of autophagy. Our data suggested that ER stress may inhibit mTOR signaling pathway to induce autophagy during CVB3 infection.
Collapse
Affiliation(s)
- Xiao Nuan LUO
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Hai Lan YAO
- Molecular Immunology Laboratory, Capital Institute of Pediatrics, Beijing 100020, China
| | - Juan SONG
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Qin Qin SONG
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Bing Tian SHI
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Dong XIA
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Jun HAN
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| |
Collapse
|
42
|
Chandwani MN, Creisher PS, O'Donnell LA. Understanding the Role of Antiviral Cytokines and Chemokines on Neural Stem/Progenitor Cell Activity and Survival. Viral Immunol 2018; 32:15-24. [PMID: 30307795 DOI: 10.1089/vim.2018.0091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Viral infections of the central nervous system are accompanied by the expression of cytokines and chemokines that can be critical for the control of viral replication in the brain. The outcomes of cytokine/chemokine signaling in neural cells vary widely, with cell-specific effects on cellular activity, proliferation, and survival. Neural stem/progenitor cells (NSPCs) are often altered during viral infections, through direct infection by the virus or by the influence of immune cell activity or cytokine/chemokine signaling. However, it has been challenging to dissect the contribution of the virus and specific inflammatory mediators during an infection. In addition to initiating an antiviral program in infected NSPCs, cytokines/chemokines can induce multiple changes in NSPC behavior that can perturb NSPC numbers, differentiation into other neural cells, and migration to sites of injury, and ultimately brain development and repair. The focus of this review was to dissect the effects of common antiviral cytokines and chemokines on NSPC activity, and to consider the subsequent pathological consequences for the host from changes in NSPC function.
Collapse
Affiliation(s)
- Manisha N Chandwani
- Department of Pharmaceutical, Administrative, and Social Sciences, Graduate School of Pharmaceutical Sciences, Duquesne University School of Pharmacy , Pittsburgh, Pennsylvania
| | - Patrick S Creisher
- Department of Pharmaceutical, Administrative, and Social Sciences, Graduate School of Pharmaceutical Sciences, Duquesne University School of Pharmacy , Pittsburgh, Pennsylvania
| | - Lauren A O'Donnell
- Department of Pharmaceutical, Administrative, and Social Sciences, Graduate School of Pharmaceutical Sciences, Duquesne University School of Pharmacy , Pittsburgh, Pennsylvania
| |
Collapse
|
43
|
Mukherjee S, Sengupta N, Chaudhuri A, Akbar I, Singh N, Chakraborty S, Suryawanshi AR, Bhattacharyya A, Basu A. PLVAP and GKN3 Are Two Critical Host Cell Receptors Which Facilitate Japanese Encephalitis Virus Entry Into Neurons. Sci Rep 2018; 8:11784. [PMID: 30082709 PMCID: PMC6079088 DOI: 10.1038/s41598-018-30054-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 07/19/2018] [Indexed: 02/06/2023] Open
Abstract
Japanese Encephalitis Virus (JEV), a globally important pathogen, belongs to the family Flaviviridae, is transmitted between vertebrate hosts by mosquitoes, principally by Culex tritaeniorhynchus. The E-glycoprotein of the virus mediates its attachment to the host cell receptors. In this study, we cloned and purified JEV E-glycoprotein in pET28a vector using E. coli BL21 (DE3) cells. A pull down assay was performed using plasma membrane fraction of BALB/c mouse brain and E-glycoprotein as a bait protein. 2-Dimensional Gel Electrophoresis based separation of the interacting proteins was analyzed by mass spectrometry. Among all the identified partners of E-glycoprotein, PLVAP (Plasmalemma vesicle associated protein) and GKN3 (Gastrokine3) showed significant up-regulation in both JEV infected mouse brain and neuro2a cells. In-silico studies also predicted significant interaction of these receptors with E-glycoprotein. Additionally, overexperssion and silencing of these receptors resulted in increase and reduction in viral load respectively, suggesting them as two critical cellular receptors governing JEV entry and propagation in neurons. In support, we observed significant expression of PLVAP but not GKN3 in post-mortem autopsied human brain tissue. Our results establish two novel receptor proteins in neurons in case of JEV infection, thus providing potential targets for antiviral research.
Collapse
Affiliation(s)
- Sriparna Mukherjee
- National Brain Research Centre, Manesar, Haryana, 122052, India.,Immunology Lab, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Nabonita Sengupta
- National Brain Research Centre, Manesar, Haryana, 122052, India.,Microbiology and Cell Biology, Indian Institute of Science, CV Raman Avenue, Bangalore, Karnataka, 560012, India
| | - Ankur Chaudhuri
- West Bengal State University, North 24 Parganas, Barasat, Kolkata, 700126, India
| | - Irshad Akbar
- National Brain Research Centre, Manesar, Haryana, 122052, India
| | - Noopur Singh
- National Brain Research Centre, Manesar, Haryana, 122052, India
| | - Sibani Chakraborty
- West Bengal State University, North 24 Parganas, Barasat, Kolkata, 700126, India
| | | | - Arindam Bhattacharyya
- Immunology Lab, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India.
| | - Anirban Basu
- National Brain Research Centre, Manesar, Haryana, 122052, India.
| |
Collapse
|
44
|
Huang MQ, Cheng XX, Chen SL, Zheng M, Chen SY. Analysis of differentially expressed proteins in Muscovy duck embryo fibroblasts infected with virulent and attenuated Muscovy duck reovirus by two-dimensional polyacrylamide gel electrophoresis. J Vet Med Sci 2017; 79:2063-2069. [PMID: 29046506 PMCID: PMC5745192 DOI: 10.1292/jvms.17-0421] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Muscovy duck reovirus (MDRV) belongs to the Orthoreovirus genus of the Reoviridae family,
which is a significant poultry pathogen leading to high morbidity and mortality in
ducklings. However, the pathogenesis of the virus is not well understood. In the present
study, two-dimensional (2D) polyacrylamide gel electrophoresis (PAGE) combined with
LC-MS-MS was used to identify differentially expressed proteins between Muscovy duck
embryo fibroblasts (MDEF) infected with virulent (MV9710 strain) and attenuated (CA
strain) MDRV and non-infected MDEFs. A total of 115 abundant protein spots were
identified. Of these, 59 of differentially expressed proteins were detected, with
functions in metabolism and utilization of carbohydrates and nucleotides, anti-stress, and
regulation of immune and cellular process. GO analysis of the identified proteins showed
that they belonged to the classes molecular function (141 proteins), cellular component
(62 proteins), and biological process (146 proteins). The results were validated by
qRT-PCR, which suggests that the analysis method of 2D PAGE combined with LC-MS-MS used in
this study is reliable. This study lays a foundation for further investigation of the
biology of MDRV infection in MDEF.
Collapse
Affiliation(s)
- Mei-Qing Huang
- Animal Husbandry and Veterinary Medicine Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350013, China.,Fujian Animal Diseases Control Technology Development Center, Fuzhou, 350013, China
| | - Xiao-Xia Cheng
- Animal Husbandry and Veterinary Medicine Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350013, China.,Fujian Animal Diseases Control Technology Development Center, Fuzhou, 350013, China
| | - Shi-Long Chen
- Animal Husbandry and Veterinary Medicine Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350013, China.,Fujian Animal Diseases Control Technology Development Center, Fuzhou, 350013, China
| | - Min Zheng
- Animal Husbandry and Veterinary Medicine Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350013, China.,Fujian Animal Diseases Control Technology Development Center, Fuzhou, 350013, China
| | - Shao-Ying Chen
- Animal Husbandry and Veterinary Medicine Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350013, China.,Fujian Animal Diseases Control Technology Development Center, Fuzhou, 350013, China
| |
Collapse
|
45
|
Inhibition of Starvation-Triggered Endoplasmic Reticulum Stress, Autophagy, and Apoptosis in ARPE-19 Cells by Taurine through Modulating the Expression of Calpain-1 and Calpain-2. Int J Mol Sci 2017; 18:ijms18102146. [PMID: 29036897 PMCID: PMC5666828 DOI: 10.3390/ijms18102146] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 10/11/2017] [Accepted: 10/11/2017] [Indexed: 12/20/2022] Open
Abstract
Age-related macular degeneration (AMD) is a complex disease with multiple initiators and pathways that converge on death for retinal pigment epithelial (RPE) cells. In this study, effects of taurine on calpains, autophagy, endoplasmic reticulum (ER) stress, and apoptosis in ARPE-19 cells (a human RPE cell line) were investigated. We first confirmed that autophagy, ER stress and apoptosis in ARPE-19 cells were induced by Earle’s balanced salt solution (EBSS) through starvation to induce RPE metabolic stress. Secondly, inhibition of ER stress by 4-phenyl butyric acid (4-PBA) alleviated autophagy and apoptosis, and suppression of autophagy by 3-methyl adenine (3-MA) reduced the cell apoptosis, but the ER stress was minimally affected. Thirdly, the apoptosis, ER stress and autophagy were inhibited by gene silencing of calpain-2 and overexpression of calpain-1, respectively. Finally, taurine suppressed both the changes of the important upstream regulators (calpain-1 and calpain-2) and the activation of ER stress, autophagy and apoptosis, and taurine had protective effects on the survival of ARPE-19 cells. Collectively, this data indicate that taurine inhibits starvation-triggered endoplasmic reticulum stress, autophagy, and apoptosis in ARPE-19 cells by modulating the expression of calpain-1 and calpain-2.
Collapse
|