1
|
Wen Y, Gan H, Zhong Q, Gong Y. Long noncoding RNA Gm4419 promotes mesangial cell proliferation and extracellular matrix accumulation via the miR-455-3p/histone deacetylase 2 axis. Heliyon 2025; 11:e38835. [PMID: 39758407 PMCID: PMC11699353 DOI: 10.1016/j.heliyon.2024.e38835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/15/2024] [Accepted: 10/01/2024] [Indexed: 01/07/2025] Open
Abstract
Long noncoding RNAs may function as competitive endogenous RNAs by sponging microRNAs, thereby contributing to the progression of diabetic nephropathy. In this study, a potential diabetic nephropathy-related long noncoding-microRNA-mRNA axis, Gm4419-miR-455-3p-Hdac2, was predicted using bioinformatics methods. To verify the role of the Gm4419-miR-455-3p-Hdac2 axis in diabetic nephropathy, an in vitro high glucose-induced mesangial cell model was established. The expression levels of Gm4419, miR-455-3p and Hdac2 were detected using reverse-transcription quantitative PCR. Protein levels of collagen IV, fibronectin and transforming growth factor-beta 1 were detected using western blotting. Cell counting kit-8 assay and 5-ethynyl-2'-deoxyuridine staining assay were adopted to assess cell proliferation. Cell transfection, fluorescence in situ hybridization, RNA immunoprecipitation, and dual luciferase reporter assay were also performed. Our results revealed significant cell proliferation and extracellular matrix accumulation in high glucose-treated mesangial cells. In addition, Gm4419 and Hdac2 levels were increased and miR-455-3p was decreased in high glucose-treated mesangial cells. The interaction between Gm4419 and miR-455-3p or miR-455-3p and Hdac2 was confirmed by reverse-transcription quantitative PCR and dual luciferase reporter assay. Gene silencing of Gm4419 inhibited mesangial cells proliferation and extracellular matrix accumulation. MiR-455-3p inhibitor counteracted the effects of Gm4419 gene silencing on cell proliferation and extracellular matrix accumulation, which was reversed again by Hdac2 gene silencing. In summary, our research indicates that gene silencing of Gm4419 can effectively inhibit high glucose-induced mesangial cells proliferation and extracellular matrix accumulation. This is achieved through the regulation of the miR-455-3p/Hdac2 axis, highlighting the potential of the Gm4419-miR-455-3p-Hdac2 axis as a promising therapeutic target for the treatment of diabetic nephropathy.
Collapse
Affiliation(s)
- Yang Wen
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Hua Gan
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Qing Zhong
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Ying Gong
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
2
|
Darwish R, Alcibahy Y, Bucheeri S, Albishtawi A, Tama M, Shetty J, Butler AE. The Role of Hypothalamic Microglia in the Onset of Insulin Resistance and Type 2 Diabetes: A Neuro-Immune Perspective. Int J Mol Sci 2024; 25:13169. [PMID: 39684879 DOI: 10.3390/ijms252313169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/05/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024] Open
Abstract
Historically, microglial activation has been associated with diseases of a neurodegenerative and neuroinflammatory nature. Some, like Alzheimer's disease, Parkinson's disease, and multiple system atrophy, have been explored extensively, while others pertaining to metabolism not so much. However, emerging evidence points to hypothalamic inflammation mediated by microglia as a driver of metabolic dysregulations, particularly insulin resistance and type 2 diabetes mellitus. Here, we explore this connection further and examine pathways that underlie this relationship, including the IKKβ/NF-κβ, IRS-1/PI3K/Akt, mTOR-S6 Kinase, JAK/STAT, and PPAR-γ signaling pathways. We also investigate the role of non-coding RNAs, namely microRNAs and long non-coding RNAs, in insulin resistance related to neuroinflammation and their diagnostic and therapeutic potential. Finally, we explore therapeutics further, searching for both pharmacological and non-pharmacological interventions that can help mitigate microglial activation.
Collapse
Affiliation(s)
- Radwan Darwish
- School of Medicine, Royal College of Surgeons in Ireland-Medical University of Bahrain (RCSI-MUB), Busaiteen 228, Bahrain
| | - Yasmine Alcibahy
- School of Medicine, Royal College of Surgeons in Ireland-Medical University of Bahrain (RCSI-MUB), Busaiteen 228, Bahrain
| | - Shahd Bucheeri
- School of Medicine, Royal College of Surgeons in Ireland-Medical University of Bahrain (RCSI-MUB), Busaiteen 228, Bahrain
| | - Ashraf Albishtawi
- School of Medicine, Royal College of Surgeons in Ireland-Medical University of Bahrain (RCSI-MUB), Busaiteen 228, Bahrain
| | - Maya Tama
- School of Medicine, Royal College of Surgeons in Ireland-Medical University of Bahrain (RCSI-MUB), Busaiteen 228, Bahrain
| | - Jeevan Shetty
- Department of Biochemistry, Royal College of Surgeons in Ireland-Medical University of Bahrain (RCSI-MUB), Busaiteen 228, Bahrain
| | - Alexandra E Butler
- School of Postgraduate Studies and Research, Royal College of Surgeons in Ireland-Medical University of Bahrain (RCSI-MUB), Busaiteen 228, Bahrain
| |
Collapse
|
3
|
Yu H, Fan J, Zhang Y, Zhao Z, Lin Z, Jiang P. Syndecan-3 inhibits LPS-induced Inflammation of Bovine Mammary Epithelial Cells through the NF-κB Signal Transduction Pathway. J Dairy Sci 2024:S0022-0302(24)01164-0. [PMID: 39343222 DOI: 10.3168/jds.2024-25212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/20/2024] [Indexed: 10/01/2024]
Abstract
In mastitis, excessive inflammation caused by lipopolysaccharide (LPS) is an important factor leading to mammary tissue damage. Therefore, exploring the regulatory factors that can inhibit the widespread inflammation caused by LPS is crucial. Syndecan-3 (SDC3) has been found to play an active role in anti-inflammatory infection by inhibiting leukocyte adhesion, reducing the accumulation of inflammatory products, such as reactive oxygen species, and competing with chemokines; however, the role and regulatory mechanism of SDC3 in mastitis remains unknown. Therefore, this study aimed to reveal the effect of SDC3 on LPS-induced inflammation in bovine mammary epithelial cells (BMECs) and explore its possible molecular mechanisms. First, we constructed a BMEC inflammatory model. It was found that cells stimulated with 10 μg/mL LPS for 24 h strongly induced the expression of inflammatory cytokines and had no toxic effect on cells, which was the best condition to simulate the BMECs inflammatory response in vitro. Subsequently, we used overexpression and RNAi interference, Real Time Quantitative PCR (RT-qPCR), and Western blot assays to explore the effects of SDC3 on LPS-induced inflammatory factors and their mechanisms. The results showed that overexpression of SDC3 could inhibit the transcriptional levels of inflammatory cytokines IL-6, IL-1β, and TNFα induced by LPS and inhibit the activation of the NF-κB inflammatory pathway by inhibiting the expression of NF-κB p50 and p-IκBα and promoting the expression of IκBα. Our results suggest that SDC3 inhibits the LPS-induced inflammatory response of BMECs through the NF-κB pathway, in which NF-κB p50 may be an important target of SDC3. These findings lay the foundation for elucidating the molecular regulatory mechanisms of dairy cow mastitis.
Collapse
Affiliation(s)
- Haibin Yu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Zhanjiang 524088, China
| | - Jing Fan
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Zhanjiang 524088, China
| | - Yongliang Zhang
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Zhihui Zhao
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Zhanjiang 524088, China
| | - Ziwei Lin
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Zhanjiang 524088, China.
| | - Ping Jiang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Zhanjiang 524088, China.
| |
Collapse
|
4
|
Wu K, Zha H, Wu T, Liu H, Peng R, Lin Z, Lv D, Liao X, Sun Y, Zhang Z. Cytosolic Hmgb1 accumulation in mesangial cells aggravates diabetic kidney disease progression via NFκB signaling pathway. Cell Mol Life Sci 2024; 81:408. [PMID: 39287634 PMCID: PMC11408458 DOI: 10.1007/s00018-024-05433-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/07/2024] [Accepted: 08/29/2024] [Indexed: 09/19/2024]
Abstract
Diabetic kidney disease (DKD) is the predominant type of end-stage renal disease. Increasing evidence suggests thatglomerular mesangial cell (MC) inflammation is pivotal for cell proliferation and DKD progression. However, the exactmechanism of MC inflammation remains largely unknown. This study aims to elucidate the role of inflammatoryfactor high-mobility group box 1 (Hmgb1) in DKD. Inflammatory factors related to DKD progression are screened viaRNA sequencing (RNA-seq). In vivo and in vitro experiments, including db/db diabetic mice model, CCK-8 assay, EdUassay, flow cytometric analysis, Co-IP, FISH, qRT-PCR, western blot, single cell nuclear RNA sequencing (snRNA-seq),are performed to investigate the effects of Hmgb1 on the inflammatory behavior of MCs in DKD. Here, wedemonstrate that Hmgb1 is significantly upregulated in renal tissues of DKD mice and mesangial cells cultured withhigh glucose, and Hmgb1 cytopasmic accumulation promotes MC inflammation and proliferation. Mechanistically,Hmgb1 cytopasmic accumulation is two-way regulated by MC-specific cyto-lncRNA E130307A14Rik interaction andlactate-mediated acetylated and lactylated Hmgb1 nucleocytoplasmic translocation, and accelerates NFκB signalingpathway activation via directly binding to IκBα. Together, this work reveals the promoting role of Hmgb1 on MCinflammation and proliferation in DKD and helps expound the regulation of Hmgb1 cytopasmic accumulation in twoways. In particular, Hmgb1 may be a promising therapeutic target for DKD.
Collapse
Affiliation(s)
- Keqian Wu
- Department of Nephrology, The Second Affiliated Hospital, Basic Medicine College, Key Laboratory of Major Brain Disease and Aging Research(Ministry of Education), Chongqing Medical University, Chongqing, 400010, China
| | - He Zha
- Department of Laboratory Medicine, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, 563000, Guizhou, China
| | - Tianhui Wu
- Department of Nephrology, The Second Affiliated Hospital, Basic Medicine College, Key Laboratory of Major Brain Disease and Aging Research(Ministry of Education), Chongqing Medical University, Chongqing, 400010, China
- School of Public Health and Laboratory, Qilu Medical University, Zibo, 255300, Shandong, China
| | - Handeng Liu
- Laboratory of Tissue and Cell Biology, Experimental Teaching and Management Center, Chongqing Medical University, Chongqing, 400016, China
| | - Rui Peng
- Department of Bioinformatics, Chongqing Medical University, Chongqing, 400016, China
| | - Ziyue Lin
- Department of Nephrology, The Second Affiliated Hospital, Basic Medicine College, Key Laboratory of Major Brain Disease and Aging Research(Ministry of Education), Chongqing Medical University, Chongqing, 400010, China
| | - Dan Lv
- Department of Nephrology, The Second Affiliated Hospital, Basic Medicine College, Key Laboratory of Major Brain Disease and Aging Research(Ministry of Education), Chongqing Medical University, Chongqing, 400010, China
| | - Xiaohui Liao
- Department of Nephrology, The Second Affiliated Hospital, Basic Medicine College, Key Laboratory of Major Brain Disease and Aging Research(Ministry of Education), Chongqing Medical University, Chongqing, 400010, China.
| | - Yan Sun
- Department of Nephrology, The Second Affiliated Hospital, Basic Medicine College, Key Laboratory of Major Brain Disease and Aging Research(Ministry of Education), Chongqing Medical University, Chongqing, 400010, China.
| | - Zheng Zhang
- Department of Nephrology, The Second Affiliated Hospital, Basic Medicine College, Key Laboratory of Major Brain Disease and Aging Research(Ministry of Education), Chongqing Medical University, Chongqing, 400010, China.
| |
Collapse
|
5
|
Li S, Hu W, Qian L, Sun D. Insights into non-coding RNAS: biogenesis, function and their potential regulatory roles in acute kidney disease and chronic kidney disease. Mol Cell Biochem 2024. [DOI: 10.1007/s11010-024-05083-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 07/29/2024] [Indexed: 01/03/2025]
|
6
|
Sivagurunathan N, Rahamathulla MP, Al-Dossary H, Calivarathan L. Emerging Role of Long Noncoding RNAs in Regulating Inflammasome-Mediated Neurodegeneration in Parkinson's Disease. Mol Neurobiol 2024; 61:4619-4632. [PMID: 38105409 DOI: 10.1007/s12035-023-03809-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/14/2023] [Indexed: 12/19/2023]
Abstract
Parkinson's disease (PD) is one of the complex neurodegenerative disorders, primarily characterized by motor deficits, including bradykinesia, tremor, rigidity, and postural instability. The underlying pathophysiology involves the progressive loss of dopaminergic neurons within the substantia nigra pars compacta, leading to dopamine depletion in the basal ganglia circuitry. While motor symptoms are hallmark features of PD, emerging research highlights a wide range of non-motor symptoms, including cognitive impairments, mood disturbances, and autonomic dysfunctions. Inflammasome activation is pivotal in inducing neuroinflammation and promoting disease onset, progression, and severity of PD. Several studies have shown that long noncoding RNAs (lncRNAs) modulate inflammasomes in the pathogenesis of neurodegenerative diseases. Dysregulation of lncRNAs is linked to aberrant gene expression and cellular processes in neurodegeneration, causing the activation of inflammasomes that contribute to neuroinflammation and neurodegeneration. Inflammasomes are cytosolic proteins that form complexes upon activation, inducing inflammation and neuronal cell death. This review explores the significance of lncRNAs in regulating inflammasomes in PD, primarily focusing on specific lncRNAs such as nuclear paraspeckle assembly transcript 1 (NEATNEAT1), X-inactive specific transcript (XIST), growth arrest-specific 5 (GAS5), and HOX transcript antisense RNA (HOTAIR), which have been shown to activate or inhibit the NLRP3 inflammasome and induce the release of proinflammatory cytokines. Moreover, some lncRNAs mediate inflammasome activation through miRNA interactions. Understanding the roles of lncRNAs in inflammasome regulation provides new therapeutic targets for controlling neuroinflammation and reducing the progression of neurodegeneration. Identifying lncRNA-mediated regulatory pathways paves the way for novel therapies in the battle against these devastating neurodegenerative disorders.
Collapse
Affiliation(s)
- Narmadhaa Sivagurunathan
- Molecular Pharmacology & Toxicology Laboratory, Department of Biotechnology, School of Life Sciences, Central University of Tamil Nadu, Neelakudi Campus, Thiruvarur, 610005, India
| | - Mohamudha Parveen Rahamathulla
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Kingdom of Saudi Arabia
| | - Hussein Al-Dossary
- University Hospital, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Kingdom of Saudi Arabia
| | - Latchoumycandane Calivarathan
- Molecular Pharmacology & Toxicology Laboratory, Department of Biotechnology, School of Life Sciences, Central University of Tamil Nadu, Neelakudi Campus, Thiruvarur, 610005, India.
| |
Collapse
|
7
|
Fan Q, Li R, Wei H, Xue W, Li X, Xia Z, Zhao L, Qiu Y, Cui D. Research Progress of Pyroptosis in Diabetic Kidney Disease. Int J Mol Sci 2024; 25:7130. [PMID: 39000237 PMCID: PMC11241146 DOI: 10.3390/ijms25137130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
Pyroptosis, known as one typical mode of programmed cell death, is generally characterized by the cleaved gasdermin family (GSDMs) forming pores in the cell membrane and inducing cell rupture, and the activation of aspartate-specific proteases (caspases) has also been found during this process. Diabetic Kidney Disease (DKD) is caused by the complication of diabetes in the kidney, and the most important kidney's function, Glomerular Filtration Rate (GFR), happens to drop to less than 90% of its usual and even lead to kidney failure in severe cases. The persistent inflammatory state induced by high blood glucose implies the key pathology of DKD, and growing evidence shows that pyroptosis serves as a significant contributor to this chronic immune-mediated inflammatory disorder. Currently, the expanded discovery of GSDMs, pyroptosis, and its association with innate immunity has been more attractive, and overwhelming research is needed to sort out the implication of pyroptosis in DKD pathology. In this review, we comb both classical studies and newly founds on pyroptosis, prick off the novel awakening of pyroptosis in DKD, and center on the significance of pyroptosis in DKD treatment, aiming to provide new research targets and treatment strategies on DKD.
Collapse
Affiliation(s)
- Qingqing Fan
- Department of Physical Education, Hunan University, Changsha 410000, China
| | - Rongxuan Li
- Department of Physical Education, Hunan University, Changsha 410000, China
| | - Huiting Wei
- Department of Physical Education, Hunan University, Changsha 410000, China
| | - Weiyue Xue
- Department of Physical Education, Hunan University, Changsha 410000, China
| | - Xiang Li
- Department of Physical Education, Jiangnan University, Wuxi 214122, China
| | - Ziyao Xia
- Department of Physical Education, Hunan University, Changsha 410000, China
| | - Le Zhao
- Department of Physical Education, Hunan University, Changsha 410000, China
| | - Ye Qiu
- The State Key Laboratory of Medical Virology, College of Biology, Hunan University, Changsha 410000, China
| | - Di Cui
- Department of Physical Education, Hunan University, Changsha 410000, China
- The State Key Laboratory of Medical Virology, College of Biology, Hunan University, Changsha 410000, China
| |
Collapse
|
8
|
Wang J, Wang X, Ma T, Xie Y. Research progress on Alpinia oxyphylla in the treatment of diabetic nephropathy. Front Pharmacol 2024; 15:1390672. [PMID: 38948461 PMCID: PMC11211572 DOI: 10.3389/fphar.2024.1390672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/13/2024] [Indexed: 07/02/2024] Open
Abstract
Diabetic nephropathy (DN) constitutes a major microvascular complication of diabetes and is a primary cause of mortality in diabetic individuals. With the global rise in diabetes, DN has become an urgent health issue. Currently, there is no definitive cure for DN. Alpinia oxyphylla, a Chinese herbal medicine traditionally used, exhibits a wide range of pharmacological effects and is frequently used in the prevention and management of DN. This paper offers an extensive review of the biological mechanisms by which A. oxyphylla delivers therapeutic advantages in DN management. These mechanisms include activating podocyte autophagy, regulating non-coding RNA, modulating gut microbiota, alleviating lipotoxicity, counteracting oxidative stress, and diminishing inflammatory responses, underscoring the therapeutic potential of A. oxyphylla in DN treatment.
Collapse
Affiliation(s)
- Jing Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaomin Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tianpeng Ma
- Hainan Medical University, Haikou, Hainan, China
| | - Yiqiang Xie
- Hainan Medical University, Haikou, Hainan, China
| |
Collapse
|
9
|
Li Z, Qiu X, Guan G, Shi K, Chen S, Tang J, Xiao M, Tang S, Yan Y, Zhou J, Xie H. The role of FGF-21 in promoting diabetic wound healing by modulating high glucose-induced inflammation. Heliyon 2024; 10:e30022. [PMID: 38726159 PMCID: PMC11078883 DOI: 10.1016/j.heliyon.2024.e30022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 04/18/2024] [Accepted: 04/18/2024] [Indexed: 05/12/2024] Open
Abstract
Background Wound healing is a complex biological process that can be impaired in individuals with diabetes. Diabetic wounds are a serious complication of diabetes that require promoting diagnosis and effective treatment. FGF-21, a member of the endocrine FGF factors family, has caught the spotlight in the treatment of diabetes for its beneficial effects on accelerating human glucose uptake and fat catabolism. However, the therapeutic efficacy of FGF-21 in promoting diabetic wounds remains unknown. This study aims to evaluate the therapeutic potential of FGF-21 in promoting diabetic wound healing. Methods we investigated the effects of FGF-21 on wound healing related-cells under high-glucose conditions using various assays such as CCK8, scratch assay, flow cytometry analysis, endothelial tube-formation assay, and transmission electron microscopy. Furthermore, we used db/db mice to verify the healing-promoting therapeutic effects of FGF-21 on diabetic wounds. We also conducted qRT-PCR, Western blot, and immunofluorescence staining analyses to elucidate the underlying mechanism. Result Our results indicate that FGF-21 treatment restored hyperglycemic damage on endothelial cell proliferation, migration, and tube-forming ability. It also reduced endothelial cell death rates under high-glucose conditions. TEM analysis showed that FGF-21 treatment effectively restored mitochondrial damage and morphological changes in endothelial cells caused by glucose. Additionally, qRT-PCR and Western blot analysis indicated that FGF-21 treatment restored inflammatory responses caused by hyperglycemic damage. Animal experiments confirmed these findings, suggesting that FGF-21 may be a promising candidate for the treatment of non-healing diabetic wounds due to its effectiveness in stimulating angiogenesis and anti-inflammatory function. Conclusion Our study provides evidence that FGF-21 is an essential regulator of wound-related cells under high-glucose conditions and has the potential to be a novel therapeutic target for accelerating diabetic wound healing.
Collapse
Affiliation(s)
- Zheling Li
- Department of Plastic and Reconstructive Surgery, Xiangya III Hospital of Central South University, Changsha City, People's Republic of China
| | - Xiaohui Qiu
- Department of Plastic and Reconstructive Surgery, Xiangya III Hospital of Central South University, Changsha City, People's Republic of China
| | - Gaopeng Guan
- Department of Endocrinology, Xiangya III Hospital of Central South University, Changsha City, People's Republic of China
| | - Ke Shi
- Department of Plastic and Reconstructive Surgery, Xiangya III Hospital of Central South University, Changsha City, People's Republic of China
| | - Shuyue Chen
- Department of Plastic and Reconstructive Surgery, Xiangya III Hospital of Central South University, Changsha City, People's Republic of China
| | - Jiangjie Tang
- Department of Stomatology, Xiangya III Hospital of Central South University, Changsha City, People's Republic of China
| | - Muzhang Xiao
- Department of Plastic and Cosmetic Surgery, Xiangya Hospital, Changsha, Hunan, People's Republic of China
| | - Shijie Tang
- Department of Plastic and Cosmetic Surgery, Second Affiliated Hospital of Shantou University Medical Collage, Shantou City, People's Republic of China
| | - Yu Yan
- Department of Plastic and Reconstructive Surgery, Xiangya III Hospital of Central South University, Changsha City, People's Republic of China
- Department of Endocrinology, Xiangya III Hospital of Central South University, Changsha City, People's Republic of China
| | - Jianda Zhou
- Department of Plastic and Reconstructive Surgery, Xiangya III Hospital of Central South University, Changsha City, People's Republic of China
| | - Huiqing Xie
- Department of Rehabilitation Medicine, Xiangya III Hospital of Central South University, Changsha City, People's Republic of China
| |
Collapse
|
10
|
Rezaee A, Rahmanian P, Nemati A, Sohrabifard F, Karimi F, Elahinia A, Ranjbarpazuki A, Lashkarbolouki R, Dezfulian S, Zandieh MA, Salimimoghadam S, Nabavi N, Rashidi M, Taheriazam A, Hashemi M, Hushmandi K. NF-ĸB axis in diabetic neuropathy, cardiomyopathy and nephropathy: A roadmap from molecular intervention to therapeutic strategies. Heliyon 2024; 10:e29871. [PMID: 38707342 PMCID: PMC11066643 DOI: 10.1016/j.heliyon.2024.e29871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 05/07/2024] Open
Abstract
Diabetes mellitus (DM) is a metabolic illness defined by elevated blood glucose levels, mediating various tissue alterations, including the dysfunction of vital organs. Diabetes mellitus (DM) can lead to many consequences that specifically affect the brain, heart, and kidneys. These issues are known as neuropathy, cardiomyopathy, and nephropathy, respectively. Inflammation is acknowledged as a pivotal biological mechanism that contributes to the development of various diabetes consequences. NF-κB modulates inflammation and the immune system at the cellular level. Its abnormal regulation has been identified in several clinical situations, including cancer, inflammatory bowel illnesses, cardiovascular diseases, and Diabetes Mellitus (DM). The purpose of this review is to evaluate the potential impact of NF-κB on complications associated with DM. Enhanced NF-κB activity promotes inflammation, resulting in cellular harm and compromised organ performance. Phytochemicals, which are therapeutic molecules, can potentially decline the NF-κB level, therefore alleviating inflammation and the progression of problems correlated with DM. More importantly, the regulation of NF-κB can be influenced by various factors, such as TLR4 in DM. Highlighting these factors can facilitate the development of novel therapies in the future.
Collapse
Affiliation(s)
- Aryan Rezaee
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Parham Rahmanian
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Amirreza Nemati
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farima Sohrabifard
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Fatemeh Karimi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Ali Elahinia
- Department of Clinical Science, Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Ali Ranjbarpazuki
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Rozhin Lashkarbolouki
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Sadaf Dezfulian
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Afshin Taheriazam
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
11
|
Hou Q, Yi B. The role of long non-coding RNAs in the development of diabetic kidney disease and the involved clinical application. Diabetes Metab Res Rev 2024; 40:e3809. [PMID: 38708843 DOI: 10.1002/dmrr.3809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/03/2024] [Accepted: 04/03/2024] [Indexed: 05/07/2024]
Abstract
Diabetic kidney disease (DKD), one of the common microvascular complications of diabetes, is increasing in prevalence worldwide and can lead to End-stage renal disease. However, there are still gaps in our understanding of the pathophysiology of DKD, and both current clinical diagnostic methods and treatment strategies have drawbacks. According to recent research, long non-coding RNAs (lncRNAs) are intimately linked to the developmental process of DKD and could be viable targets for clinical diagnostic decisions and therapeutic interventions. Here, we review recent insights gained into lncRNAs in pathological changes of DKD such as mesangial expansion, podocyte injury, renal tubular injury, and interstitial fibrosis. We also discuss the clinical applications of DKD-associated lncRNAs as diagnostic biomarkers and therapeutic targets, as well as their limitations and challenges, to provide new methods for the prevention, diagnosis, and treatment of DKD.
Collapse
Affiliation(s)
- Qizhuo Hou
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Bin Yi
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
12
|
Shelke V, Kale A, Sankrityayan H, Anders HJ, Gaikwad AB. Long non-coding RNAs as emerging regulators of miRNAs and epigenetics in diabetes-related chronic kidney disease. Arch Physiol Biochem 2024; 130:230-241. [PMID: 34986074 DOI: 10.1080/13813455.2021.2023580] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 12/22/2021] [Indexed: 01/19/2023]
Abstract
Diabetes is one of the major cause of chronic kidney disease (CKD), including "diabetic nephropathy," and is an increasingly prevalent accelerator of the progression of non-diabetic forms of CKD. The long non-coding RNAs (lncRNAs) have come into the limelight in the past few years as one of the emerging weapons against CKD in diabetes. Available data over the past few years demonstrate the interaction of lncRNAs with miRNAs and epigenetic machinery. Interestingly, the evolving data suggest that lncRNAs play a vital role in diabetes-associated CKD by regulation of epigenetic enzymes such as DNA methyltransferase, histone deacetylases, and histone methyltransferases. LncRNAs are also engaged in the regulation of several miRNAs in diabetic nephropathy. Hence this review will elaborate on the association between lncRNAs and their interaction with epigenetic regulators involved in different aspects and thus the progression of CKD in diabetes.
Collapse
Affiliation(s)
- Vishwadeep Shelke
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani, India
| | - Ajinath Kale
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani, India
| | - Himanshu Sankrityayan
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani, India
| | - Hans-Joachim Anders
- Division of Nephrology, Department of Internal Medicine IV, University Hospital of the Ludwig Maximilians University Munich, Munich, Germany
| | - Anil Bhanudas Gaikwad
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani, India
| |
Collapse
|
13
|
Geng M, Liu W, Li J, Yang G, Tian Y, Jiang X, Xin Y. LncRNA as a regulator in the development of diabetic complications. Front Endocrinol (Lausanne) 2024; 15:1324393. [PMID: 38390204 PMCID: PMC10881719 DOI: 10.3389/fendo.2024.1324393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/16/2024] [Indexed: 02/24/2024] Open
Abstract
Diabetes is a metabolic disease characterized by hyperglycemia, which induces the production of AGEs, ROS, inflammatory cytokines, and growth factors, leading to the formation of vascular dysfunction and target organ damage, promoting the development of diabetic complications. Diabetic nephropathy, retinopathy, and cardiomyopathy are common complications of diabetes, which are major contributors to disability and death in people with diabetes. Long non-coding RNAs affect gene transcription, mRNA stability, and translation efficiency to influence gene expression for a variety of biological functions. Over the past decade, it has been demonstrated that dysregulated long non-coding RNAs are extensively engaged in the pathogenesis of many diseases, including diabetic complications. Thus, this review discusses the regulations of long non-coding RNAs on the primary pathogenesis of diabetic complications (oxidative stress, inflammation, fibrosis, and microvascular dysfunction), and some of these long non-coding RNAs may function as potential biomarkers or therapeutic targets for diabetic complications.
Collapse
Affiliation(s)
- Mengrou Geng
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University and College of Basic Medical Science, Jilin University, Changchun, China
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Science, Jilin University, Changchun, China
| | - Wei Liu
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Science, Jilin University, Changchun, China
| | - Jinjie Li
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Science, Jilin University, Changchun, China
| | - Ge Yang
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Science, Jilin University, Changchun, China
| | - Yuan Tian
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Science, Jilin University, Changchun, China
| | - Xin Jiang
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University and College of Basic Medical Science, Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- National Health Commission (NHC) Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Ying Xin
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Science, Jilin University, Changchun, China
| |
Collapse
|
14
|
Zhong W, Hong C, Zhang Y, Li Y, Xiao C, Liu X. ASH2L-mediated H3K4me3 drives diabetic nephropathy through HIPK2 and Notch1 pathway. Transl Res 2024; 264:85-96. [PMID: 37879562 DOI: 10.1016/j.trsl.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/22/2023] [Accepted: 10/22/2023] [Indexed: 10/27/2023]
Abstract
Diabetic nephropathy (DN) is one of the complications of diabetes. Long-term hyperglycemia in the kidney results in renal insufficiency, and eventually leads to end-stage renal disease. Epigenetic factor ASH2L has long been identified as a transcriptional activator, and we previously indicated that ASH2L aggravated fibrosis and inflammation in high glucose-induced glomerular mesangial cells, but the pathophysiological relevance and the mechanism of ASH2L-mediated H3K4me3 in DN is not well understood. Here we demonstrated that ASH2L is upregulated in glomeruli isolated from db/db mice. Loss of ASH2L protected glomerular injury caused by hyperglycemia, as evidenced by reduced albuminuria, preserved structure, decreased glomerular extracellular matrix deposition, and lowered renal glomerular expression of proinflammatory and profibrotic markers in db/db mice. Furthermore, we demonstrated that enrichment of ASH2L-mediated H3K4me3 on the promoter regions of ADAM17 and HIPK2 triggered their transcription, leading to aberrant activation of Notch1 signaling pathway, thereby contributing to fibrosis and inflammation in DN. The findings of this study provide compelling evidence for targeting ASH2L as a potential therapeutic strategy to prevent or slow down the progression of DN.
Collapse
Affiliation(s)
- Wen Zhong
- Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai 201203, China
| | - Chen Hong
- Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai 201203, China
| | - Yuyu Zhang
- Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai 201203, China
| | - Yuhui Li
- Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai 201203, China
| | - Chenxi Xiao
- Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai 201203, China
| | - Xinhua Liu
- Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai 201203, China.
| |
Collapse
|
15
|
Gayatri V, Krishna Prasad M, Mohandas S, Nagarajan S, Kumaran K, Ramkumar KM. Crosstalk between inflammasomes, inflammation, and Nrf2: Implications for gestational diabetes mellitus pathogenesis and therapeutics. Eur J Pharmacol 2024; 963:176241. [PMID: 38043778 DOI: 10.1016/j.ejphar.2023.176241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/21/2023] [Accepted: 11/28/2023] [Indexed: 12/05/2023]
Abstract
The role of inflammasomes in gestational diabetes mellitus (GDM) has emerged as a critical area of research in recent years. Inflammasomes, key components of the innate immune system, are now recognized for their involvement in the pathogenesis of GDM. Activation of inflammasomes in response to various triggers during pregnancy can produce pro-inflammatory cytokines, such as interleukin-1β (IL-1β) and interleukin-18 (IL-18), contributing to systemic inflammation and insulin resistance. This dysregulation not only impacts maternal health but also poses significant risks to fetal development and long-term health outcomes. Understanding the intricate interplay between inflammasomes and GDM holds promise for developing novel therapeutic strategies and interventions to mitigate the adverse effects of this condition on both mothers and their offspring. Researchers have elucidated that targeting inflammasomes using anti-inflammatory drugs and compounds can effectively reduce inflammation in GDM. Furthermore, the addition of nuclear factor erythroid 2-related factor 2 (Nrf2) to this complex mechanism opens novel avenues for therapeutics. The antioxidant properties of Nrf2 may potentially suppress inflammasome activation in GDM. This comprehensive review investigates the intricate relationship between inflammasomes and GDM, emphasizing the pivotal role of inflammation in its pathogenesis. It also sheds light on potential therapeutic strategies targeting inflammasome activation and explores the role of Nrf2 in mitigating inflammation in GDM.
Collapse
Affiliation(s)
- Vijaya Gayatri
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Murali Krishna Prasad
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Sundhar Mohandas
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Sanjushree Nagarajan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Kriya Kumaran
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Kunka Mohanram Ramkumar
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India.
| |
Collapse
|
16
|
Zhang Z, Deng S, Shi Q. Isoliquiritigenin attenuates high glucose-induced proliferation, inflammation, and extracellular matrix deposition in glomerular mesangial cells by suppressing JAK2/STAT3 pathway. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:123-131. [PMID: 37368032 DOI: 10.1007/s00210-023-02598-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/22/2023] [Indexed: 06/28/2023]
Abstract
To investigate the effect of isoliquiritigenin (ISL) on high glucose (HG)-induced glomerular mesangial cells (GMCs) proliferation, extracellular matrix (ECM) deposition and inflammation, and the underlying mechanisms. Mouse GMCs (SV40-MES-13) were cultured in HG medium, with or without ISL. The proliferation of GMCs was determined by MTT assay. The production of proinflammatory cytokines was detected by qRT-PCR and ELISA. The expression of connective tissue growth factor (CTGF), TGF-β1, collagen IV, and fibronectin was measured by qRT-PCR and western blot. The phosphorylation of JAK2 and STAT3 was examined by western blot. Next, JAK2 inhibitor AG490 was applied to HG-exposed GMCs. The levels of JAK2/STAT3 phosphorylation and pro-fibrotic markers were analyzed by western blot, and the secretion of TNF-α and IL-1β was evaluated by ELISA. GMCs were treated with HG, HG plus ISL or HG plus ISL, and recombinant IL-6 (rIL-6) which is a JAK2 activator. The levels of JAK2/STAT3 activation, ECM formation, and proinflammatory cytokines secretion were determined by western blot and ELISA, respectively. In mouse GMCs, ISL successfully repressed HG-induced hyperproliferation; production of TNF-α and IL-1β; expression of CTGF, TGF-β1, collagen IV, and fibronectin; and activation of JAK2/STAT3. Similar to ISL, AG490 was able to reverse the inflammation and ECM generation caused by HG. Moreover, rIL-6 impeded the amelioration of ISL on HG-induced adverse effects. Our study demonstrated that ISL displayed preventive effects on HG-exposed GMCs through inhibiting JAK2/STAT3 pathway and provided an insight into the application of ISL for diabetic nephropathy (DN) treatment.
Collapse
Affiliation(s)
- Ziyuan Zhang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Shufen Deng
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Qiwen Shi
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, China.
| |
Collapse
|
17
|
Obaid AA, Farrash WF, Mujalli A, Singh SK. A Quest for Potential Role of Vitamin D in Type II Diabetes Mellitus Induced Diabetic Kidney Disease. Curr Pharm Des 2024; 30:2505-2512. [PMID: 38963115 DOI: 10.2174/0113816128296168240614071821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/13/2024] [Accepted: 05/21/2024] [Indexed: 07/05/2024]
Abstract
Diabetes mellitus is a metabolic disorder characterized by high blood sugar levels. In recent years, T2DM has become a worldwide health issue due to an increase in incidence and prevalence. Diabetic kidney disease (DKD) is one of the devastating consequences of diabetes, especially owing to T2DM and the key clinical manifestation of DKD is weakened renal function and progressive proteinuria. DKD affects approximately 1/3rd of patients with diabetes mellitus, and T2DM is the predominant cause of end-stage kidney disease (ESKD). Several lines of studies have observed the association between vitamin D deficiency and the progression and etiology of type II diabetes mellitus. Emerging experimental evidence has shown that T2DM is associated with various kinds of kidney diseases. Recent evidence has also shown that an alteration in VDR (vitamin D receptor) signaling in podocytes leads to DKD. The present review aims to examine vitamin D metabolism and its correlation with T2DM. Furthermore, we discuss the potential role of vitamin D and VDR in diabetic kidney disease.
Collapse
Affiliation(s)
- Ahmad A Obaid
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Wesam F Farrash
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Abdulrahman Mujalli
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Sandeep Kumar Singh
- Department of Biomedical, Indian Scientific Education and Technology Foundation, Lucknow 221005, India
| |
Collapse
|
18
|
Bhat AA, Afzal O, Agrawal N, Thapa R, Almalki WH, Kazmi I, Alzarea SI, Altamimi ASA, Kukreti N, Chakraborty A, Singh SK, Dua K, Gupta G. A comprehensive review on the emerging role of long non-coding RNAs in the regulation of NF-κB signaling in inflammatory lung diseases. Int J Biol Macromol 2023; 253:126951. [PMID: 37734525 DOI: 10.1016/j.ijbiomac.2023.126951] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/30/2023] [Accepted: 09/09/2023] [Indexed: 09/23/2023]
Abstract
Public health globally faces significant risks from conditions like acute respiratory distress syndrome (ARDS), chronic obstructive pulmonary disease (COPD), and various inflammatory lung disorders. The NF-κB signaling system partially controls lung inflammation, immunological responses, and remodeling. Non-coding RNAs (lncRNAs) are crucial in regulating gene expression. They are increasingly recognized for their involvement in NF-κB signaling and the development of inflammatory lung diseases. Disruption of lncRNA-NF-κB interactions is a potential cause and resolution factor for inflammatory respiratory conditions. This study explores the therapeutic potential of targeting lncRNAs and NF-κB signaling to alleviate inflammation and restore lung function. Understanding the intricate relationship between lncRNAs and NF-κB signaling could offer novel insights into disease mechanisms and identify therapeutic targets. Regulation of lncRNAs and NF-κB signaling holds promise as an effective approach for managing inflammatory lung disorders. This review aims to comprehensively analyze the interaction between lncRNAs and the NF-κB signaling pathway in the context of inflammatory lung diseases. It investigates the functional roles of lncRNAs in modulating NF-κB activity and the resulting inflammatory responses in lung cells, focusing on molecular mechanisms involving upstream regulators, inhibitory proteins, and downstream effectors.
Collapse
Affiliation(s)
- Asif Ahmad Bhat
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura 302017, Mahal Road, Jaipur, India
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Neetu Agrawal
- Institute of Pharmaceutical Research, GLA University, Mathura, UP, India
| | - Riya Thapa
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura 302017, Mahal Road, Jaipur, India
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | | | - Neelima Kukreti
- School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India
| | - Amlan Chakraborty
- Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester M13 9PL, UK; Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, VIC 3800, Australia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia.
| | - Gaurav Gupta
- Center for Global Health research (CGHR), Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, India
| |
Collapse
|
19
|
Zhao X, Hu H, Sun K, Liang W, Wang Z, Jin X, Wang S. Actoeside mitigated the renal proximal tubule cells damage triggered by high glucose through miR-766/VCAM1/NF-κB signalling pathway. Arch Physiol Biochem 2023; 129:1177-1186. [PMID: 34338087 DOI: 10.1080/13813455.2021.1920983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 04/19/2021] [Indexed: 10/20/2022]
Abstract
CONTEXT Diabetic nephropathy (DN) triggered by diabetes mellitus is one of the primary causes of end-stage renal failure worldwide. OBJECTIVE This study intends to explore the function and potential mechanism of actoeside on renal proximal tubule (HK-2) cells damage induced by high-glucose (HG). METHODS The DN model was established in HK-2 cells with 30 mM HG treatment. The viability, apoptosis and inflammation of HK-2 cells were analysed severally via CCK-8, flow cytomery and ELISA. The key factors related to NF-κB were detected by western blotting. RESULTS Actoeside attenuated the HG-induced HK-2 cells damage. The differentially expression of miR-766 and VCAM1 in DN patients was reversed by actoeside. Moreover, the increased phosphorylation levels of p65 NF-κB/IκBα induced by HG were attenuated by actoeside. CONCLUSIONS Actoeside promoted the growth and repressed the apoptosis and inflammation of HK-2 cells via miR-766/VCAM1/NF-κB signalling pathway, affording a promising idea for the treatment of DN.
Collapse
Affiliation(s)
- Xiaodong Zhao
- Department of Endocrinology, Zibo Central Hospital, Zibo City, PR China
| | - Honglei Hu
- Department of Endocrinology, Zibo Central Hospital, Zibo City, PR China
| | - Kun Sun
- Department of Nephropathy, Zibo Central Hospital, Zibo City, PR China
| | - Wenlong Liang
- Department of Endocrinology, Zibo Central Hospital, Zibo City, PR China
| | - Zhenzhen Wang
- Department of Endocrinology, Zibo Central Hospital, Zibo City, PR China
| | - Xingqian Jin
- Department of Endocrinology, Zibo Central Hospital, Zibo City, PR China
| | - Shujuan Wang
- Department of Endocrinology, Zibo Central Hospital, Zibo City, PR China
| |
Collapse
|
20
|
Yang G, Yang W, Jiang H, Yi Q, Ma W. Hederagenin inhibits high glucose-induced fibrosis in human renal cells by suppression of NLRP3 inflammasome activation through reducing cathepsin B expression. Chem Biol Drug Des 2023; 102:1409-1420. [PMID: 37599208 DOI: 10.1111/cbdd.14332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 07/22/2023] [Accepted: 08/09/2023] [Indexed: 08/22/2023]
Abstract
Diabetic nephropathy is a major complication of diabetes mellitus and is related to dysfunction of renal cells. Hederagenin is a triterpenoid saponin from some Chinese herbs with anti-inflammatory and anti-diabetic activities. However, its role in diabetic nephropathy progression is still obscure. This study aimed to explore the effects of hederagenin on renal cell dysfunction in vitro. Human renal mesangial cells (HRMCs) and human renal proximal tubular epithelial cells (HRPTEpiCs) were cultured under high glucose (HG) conditions to mimic diabetic nephropathy-like injury. Cell proliferation was evaluated by CCK-8. mRNA and protein levels were determined by qRT-PCR and western blotting, respectively. The secretion levels of fibrosis-related biomarkers were analyzed by ELISA. Results showed that hederagenin reduced HG-induced proliferation increase in HRMCs and HRPTEpiCs. Hederagenin attenuated HG-induced increase in mRNA and protein expression of NLRP3, ASC, and IL-1β. Hederagenin also suppressed HG-induced increase in mRNA and secretion levels of FN, Col. IV, PAI-1, and TGF-β1. NLRP3 inhibitor MCC950 attenuated HG-induced fibrosis of renal cells, and its activator nigericin reversed the suppressive effect of hederagenin on HG-induced fibrosis. Bioinformatics analysis predicted cathepsin B (CTSB) as a target of hederagenin to modulate NOD-like receptor (NLR) pathway. Hederagenin decreased CTSB level, and CTSB overexpression reversed the suppressive effect of hederagenin on HG-induced NLRP3 inflammasome activation and fibrosis in HRMCs and HRPTEpiCs. In conclusion, hederagenin attenuates HG-induced fibrosis of renal cells by inhibiting NLRP3 inflammasome activation via reducing CTSB expression, indicating a therapeutic potential of hederagenin in diabetic nephropathy.
Collapse
Affiliation(s)
- Guohua Yang
- Department of Endocrinology, Pingxiang Chinese Medicine Hospital, Pingxiang, China
| | - Wang Yang
- Department of Internal Medicine, Pingxiang Chinese Medicine Hospital, Pingxiang, China
| | - Hairong Jiang
- Dispensary, Pingxiang Chinese Medicine Hospital, Pingxiang, China
| | - Qing Yi
- Department of Internal Medicine, Pingxiang Chinese Medicine Hospital, Pingxiang, China
| | - Wei Ma
- Department of Pharmacy, Ninth Hospital of Xi'an, Xi'an, China
| |
Collapse
|
21
|
Jiang Q, Yang T, Zou Y, He M, Li Q, Chen X, Zhong A. LncRNA HOX transcript antisense RNA mediates hyperglycemic-induced injury in the renal tubular epithelial cell via the miR-126-5pAkt axis. Aging Med (Milton) 2023; 6:427-434. [PMID: 38239710 PMCID: PMC10792317 DOI: 10.1002/agm2.12266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/09/2023] [Accepted: 08/14/2023] [Indexed: 01/22/2024] Open
Abstract
OBJECTIVE To investigate the involvement of HOX transcript antisense RNA (HOTAIR) in the injury of renal tubular epithelial cells induced by high glucose. Results: In high glucose-induced HK-2 cells, the expression of HOTAIR was upregulated, resulting in suppressed cell proliferation. Meanwhile, HOTAIR upregulates the expression of pro-apoptotic proteins Bax and cleaved caspase-3, while downregulating the expression of the anti-apoptotic protein Bcl-2. Luciferase reporter assays revealed that HOTAIR could target miR-126-5p. Additionally, it was found that the PI3K/Akt signaling pathway serves as a downstream target of miR-126-5p. Knockdown of HOTAIR relieved apoptosis, whereas further inhibition of miR-126-5p led to apoptosis in HK-2 cells. Conclusions: HOTAIR plays a regulatory role in mediating high glucose-induced injuries in HK-2 cells, specifically affecting apoptosis and cell viability, via the miR-126-5p/PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Qiong Jiang
- Jiangxi Provincial Key Laboratory of NephrologyJiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical CollegeNanchangChina
| | - Ting Yang
- Jiangxi Provincial Key Laboratory of NephrologyJiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical CollegeNanchangChina
| | - Yan Zou
- Jiangxi Provincial Key Laboratory of NephrologyJiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical CollegeNanchangChina
| | - Mingjie He
- Jiangxi Provincial Key Laboratory of NephrologyJiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical CollegeNanchangChina
| | - Qingchun Li
- Jiangxi Provincial Key Laboratory of NephrologyJiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical CollegeNanchangChina
| | - Xiaohui Chen
- Jiangxi Provincial Key Laboratory of NephrologyJiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical CollegeNanchangChina
| | - Aimin Zhong
- Jiangxi Provincial Key Laboratory of NephrologyJiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical CollegeNanchangChina
| |
Collapse
|
22
|
Li X, Guo L, Huang F, Xu W, Peng G. Cornuside inhibits glucose-induced proliferation and inflammatory response of mesangial cells. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2023; 27:513-520. [PMID: 37884283 PMCID: PMC10613572 DOI: 10.4196/kjpp.2023.27.6.513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/26/2023] [Accepted: 07/18/2023] [Indexed: 10/28/2023]
Abstract
Cornuside is a secoiridoid glucoside compound extracted from the fruits of Cornus officinalis. Cornuside has immunomodulatory and anti-inflammatory properties; however, its potential therapeutic effects on diabetic nephropathy (DN) have not been completely explored. In this study, we established an in vitro model of DN through treating mesangial cells (MMCs) with glucose. MMCs were then treated with different concentrations of cornuside (0, 5, 10, and 30 μM). Cell viability was determined using cell counting kit-8 and 5-ethynyl-2'-deoxyuridine assays. Levels of proinflammatory cytokines, including interleukin (IL)-6, tumor necrosis factor-α, and IL-1β were examined using enzyme-linked immunosorbent assay. Reverse transcription quantitative real-time polymerase chain reaction and Western blotting were performed to detect the expression of AKT and nuclear factor-kappa B (NF-κB)-associated genes. We found that cornuside treatment significantly reduced glucose-induced increase in MMC viability and expression of pro-inflammatory cytokines. Moreover, cornuside inhibited glucose-induced phosphorylation of AKT and NF-κB inhibitor alpha, decreased the expression of proliferating cell nuclear antigen and cyclin D1, and increased the expression of p21. Our study indicates that the anti-inflammatory properties of cornuside in DN are due to AKT and NF-κB inactivation in MMCs.
Collapse
Affiliation(s)
- Xiaoxin Li
- Prevention Medicine, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou 215009, China
- Nanjing University of Traditional Chinese Medicine, Nanjing 210023, China
| | - Lizhong Guo
- Nanjing University of Traditional Chinese Medicine, Nanjing 210023, China
| | - Fei Huang
- Department of Endocrinology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou 215009, China
| | - Wei Xu
- Cardiovascular Department, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou 215009, China
| | - Guiqing Peng
- Respiratory Department, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou 215009, China
| |
Collapse
|
23
|
Wang Q, Fan X, Sheng Q, Yang M, Zhou P, Lu S, Gao Y, Kong Z, Shen N, Lv Z, Wang R. N6-methyladenosine methylation in kidney injury. Clin Epigenetics 2023; 15:170. [PMID: 37865763 PMCID: PMC10590532 DOI: 10.1186/s13148-023-01586-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/11/2023] [Indexed: 10/23/2023] Open
Abstract
Multiple mechanisms are involved in kidney damage, among which the role of epigenetic modifications in the occurrence and development of kidney diseases is constantly being revealed. However, N6-methyladenosine (M6A), a well-known post-transcriptional modification, has been regarded as the most prevalent epigenetic modifications in higher eukaryotic, which is involved in various biological processes of cells such as maintaining the stability of mRNA. The role of M6A modification in the mechanism of kidney damage has attracted widespread attention. In this review, we mainly summarize the role of M6A modification in the progression of kidney diseases from the following aspects: the regulatory pattern of N6-methyladenosine, the critical roles of N6-methyladenosine in chronic kidney disease, acute kidney injury and renal cell carcinoma, and then reveal its potential significance in the diagnosis and treatment of various kidney diseases. A better understanding of this field will be helpful for future research and clinical treatment of kidney diseases.
Collapse
Affiliation(s)
- Qimeng Wang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Xiaoting Fan
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Qinghao Sheng
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Meilin Yang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Ping Zhou
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Shangwei Lu
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Ying Gao
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Zhijuan Kong
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Ning Shen
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Zhimei Lv
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China.
| | - Rong Wang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China.
| |
Collapse
|
24
|
Hussein RM. Long non-coding RNAs: The hidden players in diabetes mellitus-related complications. Diabetes Metab Syndr 2023; 17:102872. [PMID: 37797393 DOI: 10.1016/j.dsx.2023.102872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/07/2023]
Abstract
BACKGROUND AND AIM Long non-coding RNAs (lncRNAs) have been recognized as important regulators of gene expression in various human diseases. Diabetes mellitus (DM) is a long-term metabolic disorder associated with serious macro and microvascular complications. This review discusses the potential lncRNAs involved in DM-related complications such as dysfunction of pancreatic beta islets, nephropathy, retinopathy, cardiomyopathy, and peripheral neuropathy. METHODS An extensive literature search was conducted in the Scopus database to find information from reputed biomedical articles published on lncRNAs and diabetic complications from 2014 to 2023. All review articles were collected and statistically analyzed, and the findings were summarized. In addition, the potential lncRNAs involved in DM-related complications, molecular mechanisms, and gene targets were discussed in detail. RESULTS The lncRNAs ANRIL, E33, MALAT1, PVT1, Erbb4-IR, Gm4419, Gm5524, MIAT, MEG3, KNCQ1OT1, Uc.48+, BC168687, HOTAIR, and NONRATT021972 were upregulated in several diabetic complications. However, βlinc1, H19, PLUTO, MEG3, GAS5, uc.322, HOTAIR, MIAT, TUG1, CASC2, CYP4B1-PS1-001, SOX2OT, and Crnde were downregulated. Remarkably, lncRNAs MALAT1, ANRIL, MIAT, MEG3, H19, and HOTAIR were overlapping in more than one diabetic complication and were considered potential lncRNAs. CONCLUSION Several lncRNAs are identified as regulators of DM-related complications. The expression of lncRNAs is up or downregulated depending on the disease context, target genes, and regulatory partners. However, most lncRNAs target oxidative stress, inflammation, apoptosis, fibrosis, and angiogenesis pathways to mediate their protective/pathogenic mechanism of action and contribute to DM-related complications.
Collapse
Affiliation(s)
- Rasha M Hussein
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Mutah University, Al-Karak, Jordan.
| |
Collapse
|
25
|
Liu C, Dai S, Geng H, Jiang Z, Teng X, Liu K, Tuo Z, Peng L, Yang C, Bi L. Development and validation of a kidney renal clear cell carcinoma prognostic model relying on pyroptosis-related LncRNAs-A multidimensional comprehensive bioinformatics exploration. Eur J Med Res 2023; 28:341. [PMID: 37700389 PMCID: PMC10498568 DOI: 10.1186/s40001-023-01277-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 08/08/2023] [Indexed: 09/14/2023] Open
Abstract
BACKGROUND Renal cell carcinoma (RCC) is a malignant tumour that may develop in the kidney. RCC is one of the most common kinds of tumours of this sort, and its most common pathological subtype is kidney renal clear cell carcinoma (KIRC). However, the aetiology and pathogenesis of RCC still need to be clarified. Exploring the internal mechanism of RCC contributes to diagnosing and treating this disease. Pyroptosis is a critical process related to cell death. Recent research has shown that pyroptosis is a critical factor in the initiation and progression of tumour formation. Thus far, researchers have progressively uncovered evidence of the regulatory influence that long noncoding RNAs (lncRNAs) have on pyroptosis. METHODS In this work, a comprehensive bioinformatics approach was used to produce a predictive model according to pyroptosis-interrelated lncRNAs for the purpose of predicting the overall survival and molecular immune specialties of patients diagnosed with KIRC. This model was verified from multiple perspectives. RESULTS First, we discovered pyroptosis-associated lncRNAs in KIRC patients using the TCGA database and a Sankey diagram. Then, we developed and validated a KIRC patient risk model based on pyroptosis-related lncRNAs. We demonstrated the grouping power of PLnRM through PCA and used PLnRM to assess the tumour immune microenvironment and response to immunotherapy. Immunological and molecular traits of diverse PLnRM subgroups were evaluated, as were clinical KIRC patient characteristics and predictive risk models. On this basis, a predictive nomogram was developed and analyzed, and novel PLnRM candidate compounds were identified. Finally, we investigated possible medications used by KIRC patients. CONCLUSIONS The results demonstrate that the model generated has significant value for KIRC in clinical practice.
Collapse
Affiliation(s)
- Chang Liu
- Department of Urology, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Shuxin Dai
- Department of Urology, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Hao Geng
- Department of Urology, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Zhiwei Jiang
- Department of Urology, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xiangyu Teng
- Department of Urology, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Kun Liu
- Department of Urology, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Zhouting Tuo
- Department of Urology, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Longfei Peng
- Department of Urology, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Chao Yang
- Department of Urology, The Second Hospital of Anhui Medical University, Hefei, Anhui, China.
| | - Liangkuan Bi
- Department of Urology, The Second Hospital of Anhui Medical University, Hefei, Anhui, China.
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, China.
| |
Collapse
|
26
|
Hoorzad P, Mousavinasab F, Tofigh P, Kalahroud EM, Aghaei-Zarch SM, Salehi A, Fattahi M, Le BN. Understanding the lncRNA/miRNA-NFκB regulatory network in Diabetes Mellitus: From function to clinical translation. Diabetes Res Clin Pract 2023:110804. [PMID: 37369279 DOI: 10.1016/j.diabres.2023.110804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/24/2023] [Accepted: 06/22/2023] [Indexed: 06/29/2023]
Abstract
Diabetes mellitus (DM) and its significant ramifications make out one of the primary reasons behind morbidity worldwide. Noncoding RNAs (ncRNAs), such as microRNAs and long noncoding RNAs, are involved in regulating manifold biological processes, including diabetes initiation and progression. One of the established pathways attributed to DM development is NF-κB signaling. Neurons, β cells, adipocytes, and hepatocytes are among the metabolic tissues where NF-κB is known to produce a range of inflammatory chemokines and cytokines. The direct or indirect role of ncRNAs such as lncRNAs and miRNAs on the NF-κB signaling pathway and DM development has been supported by many studies. As a result, effective diabetes treatment and preventive methods will benefit from a comprehensive examination of the interplay between NF-κB and ncRNAs. Herein, we provide a concise overview of the role of NF-κB-mediated signaling pathways in diabetes mellitus and its consequences. The reciprocal regulation of ncRNAs and the NF-κB signaling pathway in diabetes is then discussed, shedding light on the pathogenesis of the illness and its possible therapeutic interventions.
Collapse
Affiliation(s)
- Parisa Hoorzad
- Department of Molecular and cellular biology, Faculty of basic sciences and Advanced technologies in Biology, University of Science and Culture, ACECR, Tehran, Iran
| | | | - Pouya Tofigh
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| | | | - Seyed Mohsen Aghaei-Zarch
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Salehi
- Department of Cellular and Molecular Biology, Faculity of New Science and technology, Tehran Medical Branch, Islamic Azad University, Tehran, Iran.
| | - Mehdi Fattahi
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam; School of engineering & Technology, Duy Tan University, Da Nang, Vietnam.
| | - Binh Nguyen Le
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam; School of engineering & Technology, Duy Tan University, Da Nang, Vietnam
| |
Collapse
|
27
|
Li H, Wu P, Sun D, Jiang L, Yu J, Wang C, Fan L. lncRNA-Gm4419 alleviates renal damage in rats with diabetic nephropathy through NF-κB pathway. Panminerva Med 2023; 65:268-269. [PMID: 32009349 DOI: 10.23736/s0031-0808.19.03844-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Haizhen Li
- Department of Endocrinology, Dongying District People's Hospital, Dongying, China
| | - Peipei Wu
- Department of Endocrinology, Dongying People's Hospital, Dongying, China
| | - Dejing Sun
- Department of Internal Medicine, Dongying District People's Hospital, Dongying, China
| | - Lu Jiang
- Department of Endocrinology, Shengli Oilfield Central Hospital, Dongying, China
| | - Jixiang Yu
- Department of Vascular Surgery, Jining No.1 People's Hospital, Affiliated Jining NO.1 People's Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Cailing Wang
- Department of Endocrinology, Qianfoshan Hospital in Shandong, Affiliated No.1 Hospital of Shandong First Medical University, Jinan, China
| | - Linlin Fan
- Department of Vascular Surgery, Jining No.1 People's Hospital, Affiliated Jining NO.1 People's Hospital of Jining Medical University, Jining Medical University, Jining, China -
| |
Collapse
|
28
|
Kounatidis D, Vallianou N, Evangelopoulos A, Vlahodimitris I, Grivakou E, Kotsi E, Dimitriou K, Skourtis A, Mourouzis I. SGLT-2 Inhibitors and the Inflammasome: What's Next in the 21st Century? Nutrients 2023; 15:nu15102294. [PMID: 37242177 DOI: 10.3390/nu15102294] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
The nucleotide-binding domain-like receptor protein 3 (NLRP3) inflammasome in the kidney and the heart is increasingly being suggested to play a key role in mediating inflammation. In the kidney, NLRP3 activation was associated with the progression of diabetic kidney disease. In the heart, activation of the NLRP3 inflammasome was related to the enhanced release of interleukin-1β (IL-1β) and the subsequent induction of atherosclerosis and heart failure. Apart from their glucose-lowering effects, SGLT-2 inhibitors were documented to attenuate activation of the NLRP3, thus resulting in the constellation of an anti-inflammatory milieu. In this review, we focus on the interplay between SGLT-2 inhibitors and the inflammasome in the kidney, the heart and the neurons in the context of diabetes mellitus and its complications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Iordanis Mourouzis
- Faculty of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece
| |
Collapse
|
29
|
Ram C, Gairola S, Verma S, Mugale MN, Bonam SR, Murty US, Sahu BD. Biochanin A Ameliorates Nephropathy in High-Fat Diet/Streptozotocin-Induced Diabetic Rats: Effects on NF-kB/NLRP3 Axis, Pyroptosis, and Fibrosis. Antioxidants (Basel) 2023; 12:antiox12051052. [PMID: 37237918 DOI: 10.3390/antiox12051052] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/29/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
Nephropathy is the most prevalent microvascular disorder in diabetes mellitus. Oxidative stress and inflammatory cascade provoked by the persistent hyperglycemic milieu play integral roles in the aggravation of renal injury and fibrosis. We explored the impact of biochanin A (BCA), an isoflavonoid, on the inflammatory response, nod-like receptor protein 3 (NLRP3) inflammasome activation, oxidative stress, and fibrosis in diabetic kidneys. A high-fat-diet/streptozotocin (HFD/STZ)-induced experimental model of diabetic nephropathy (DN) was established in Sprague Dawley rats, and in vitro studies were performed in high-glucose-induced renal tubular epithelial (NRK-52E) cells. Persistent hyperglycemia in diabetic rats was manifested by perturbation of renal function, marked histological alterations, and oxidative and inflammatory renal damage. Therapeutic intervention of BCA mitigated histological changes, improved renal function and antioxidant capacity, and suppressed phosphorylation of nuclear factor-kappa B (NF-κB) and nuclear factor-kappa B inhibitor alpha (IκBα) proteins. Our in vitro data reveal excessive superoxide generation, apoptosis, and altered mitochondrial membrane potential in NRK-52E cells that were cultured in a high-glucose (HG) environment were subsided by BCA intervention. Meanwhile, the upregulated expressions of NLRP3 and its associated proteins, the pyroptosis-indicative protein gasdermin-D (GSDMD) in the kidneys, and HG-stimulated NRK-52E cells were significantly ameliorated by BCA treatment. Additionally, BCA blunted transforming growth factor (TGF)-β/Smad signaling and production of collagen I, collagen III, fibronectin, and alfa-smooth muscle actin (α-SMA) in diabetic kidneys. Our results indicate the plausible role of BCA in attenuating DN, presumably through modulation of the apoptotic cascade in renal tubular epithelial cells and the NF-κB/NLRP3 axis.
Collapse
Affiliation(s)
- Chetan Ram
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati 781101, India
| | - Shobhit Gairola
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati 781101, India
| | - Shobhit Verma
- Toxicology & Experimental Medicine, CSIR-Central Drug Research Institute (CDRI), Lucknow 226031, India
| | - Madhav Nilakanth Mugale
- Toxicology & Experimental Medicine, CSIR-Central Drug Research Institute (CDRI), Lucknow 226031, India
| | - Srinivasa Reddy Bonam
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | | | - Bidya Dhar Sahu
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati 781101, India
| |
Collapse
|
30
|
Wang Y, Sui Z, Wang M, Liu P. Natural products in attenuating renal inflammation via inhibiting the NLRP3 inflammasome in diabetic kidney disease. Front Immunol 2023; 14:1196016. [PMID: 37215100 PMCID: PMC10196020 DOI: 10.3389/fimmu.2023.1196016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 04/26/2023] [Indexed: 05/24/2023] Open
Abstract
Diabetic kidney disease (DKD) is a prevalent and severe complications of diabetes and serves as the primary cause of end-stage kidney disease (ESKD) globally. Increasing evidence indicates that renal inflammation is critical in the pathogenesis of DKD. The nucleotide - binding oligomerization domain (NOD) - like receptor family pyrin domain containing 3 (NLRP3) inflammasome is the most extensively researched inflammasome complex and is considered a crucial regulator in the pathogenesis of DKD. The activation of NLRP3 inflammasome is regulated by various signaling pathways, including NF- κB, thioredoxin-interacting protein (TXNIP), and non-coding RNAs (ncRNA), among others. Natural products are chemicals extracted from living organisms in nature, and they typically possess pharmacological and biological activities. They are invaluable sources for drug design and development. Research has demonstrated that many natural products can alleviate DKD by targeting the NLRP3 inflammasome. In this review, we highlight the role of the NLRP3 inflammasome in DKD, and the pathways by which natural products fight against DKD via inhibiting the NLRP3 inflammasome activation, so as to provide novel insights for the treatment of DKD.
Collapse
Affiliation(s)
- Yan Wang
- Department of Nephrology, Peking University People’s Hospital, Beijing, China
| | - Zhun Sui
- Department of Nephrology, Peking University People’s Hospital, Beijing, China
| | - Mi Wang
- Department of Nephrology, Peking University People’s Hospital, Beijing, China
| | - Peng Liu
- Shunyi Hospital, Beijing Traditional Chinese Medicine Hospital, Beijing, China
| |
Collapse
|
31
|
Arman K, Dalloul Z, Bozgeyik E. Emerging role of microRNAs and long non-coding RNAs in COVID-19 with implications to therapeutics. Gene 2023; 861:147232. [PMID: 36736508 PMCID: PMC9892334 DOI: 10.1016/j.gene.2023.147232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/21/2023] [Accepted: 01/25/2023] [Indexed: 02/05/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection which is commonly known as COVID-19 (COronaVIrus Disease 2019) has creeped into the human population taking tolls of life and causing tremendous economic crisis. It is indeed crucial to gain knowledge about their characteristics and interactions with human host cells. It has been shown that the majority of our genome consists of non-coding RNAs. Non-coding RNAs including micro RNAs (miRNAs) and long non-coding RNAs (lncRNAs) display significant roles in regulating gene expression in almost all cancers and viral diseases. It is intriguing that miRNAs and lncRNAs remarkably regulate the function and expression of major immune components of SARS-CoV-2. MiRNAs act via RNA interference mechanism in which they bind to the complementary sequences of the viral RNA strand, inducing the formation of silencing complex that eventually degrades or inhibits the viral RNA and viral protein expression. LncRNAs have been extensively shown to regulate gene expression in cytokine storm and thus emerges as a critical target for COVID-19 treatment. These lncRNAs also act as competing endogenous RNAs (ceRNAs) by sponging miRNAs and thus affecting the expression of downstream targets during SARS-CoV-2 infection. In this review, we extensively discuss the role of miRNAs and lncRNAs, describe their mechanism of action and their different interacting human targets cells during SARS-CoV-2 infection. Finally, we discuss possible ways how an interference with their molecular function could be exploited for new therapies against SARS-CoV-2.
Collapse
Affiliation(s)
- Kaifee Arman
- Institut de recherches cliniques de Montréal, Montréal, QC H2W 1R7, Canada.
| | - Zeinab Dalloul
- Institut de recherches cliniques de Montréal, Montréal, QC H2W 1R7, Canada
| | - Esra Bozgeyik
- Department of Medical Services and Techniques, Vocational School of Health Services, Adiyaman University, Adiyaman, Turkey
| |
Collapse
|
32
|
Guo H, Wu H, Li Z. The Pathogenesis of Diabetes. Int J Mol Sci 2023; 24:ijms24086978. [PMID: 37108143 PMCID: PMC10139109 DOI: 10.3390/ijms24086978] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/30/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
Diabetes is the most common metabolic disorder, with an extremely serious effect on health systems worldwide. It has become a severe, chronic, non-communicable disease after cardio-cerebrovascular diseases. Currently, 90% of diabetic patients suffer from type 2 diabetes. Hyperglycemia is the main hallmark of diabetes. The function of pancreatic cells gradually declines before the onset of clinical hyperglycemia. Understanding the molecular processes involved in the development of diabetes can provide clinical care with much-needed updates. This review provides the current global state of diabetes, the mechanisms involved in glucose homeostasis and diabetic insulin resistance, and the long-chain non-coding RNA (lncRNA) associated with diabetes.
Collapse
Affiliation(s)
- Huiqin Guo
- Institute of Biotechnology, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Haili Wu
- College of Life Science, Shanxi University, Taiyuan 030006, China
| | - Zhuoyu Li
- Institute of Biotechnology, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
33
|
Tang GY, Li S, Xu Y, Zhang C, Xu XY, Xu L, Wang N, Feng Y. Renal herb formula protects against hyperuricemic nephropathy by inhibiting apoptosis and inflammation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 116:154812. [PMID: 37167821 DOI: 10.1016/j.phymed.2023.154812] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/27/2023] [Accepted: 04/08/2023] [Indexed: 05/13/2023]
Abstract
BACKGROUND Hyperuricemic nephropathy may be induced by the elevation and accumulation of uric acid in kidney after hyperuricemia, which leads to kidney residential cells apoptosis and inflammation. Renal herb formula (RHF) is a self-designed formula based on traditional Chinese medicine theory and clinical practice in kidney disease treatment. In the literature available currently, there is not yet research article reporting the reno-protective effect of RHF against hyperuricemic nephropathy. PURPOSE This study was performed to analyze the bioactive compound profiles of RHF, evaluate its protective effects against hyperuricemic nephropathy, and investigate the mechanisms of actions regarding apoptosis and inflammation. METHODS Ultra-performance liquid chromatography with a diode-array detector was applied to establish fingerprint and chemical composition of RHF. Potassium oxonate was used to induce hyperuricemic nephropathy in mice, and uric acid was used to stimulate apoptosis and inflammatory response in HK-2 cells, while the mice and cells were treated with RHF to explore its reno-protective effects and mechanisms. RESULTS It was found that chlorogenic acid, neochlorogenic acid, cryptochlorogenic acid, and isochlorogenic acid A-C may be the characteristic components of RHF. RHF treatment could improve kidney functions in mice with hyperuricemic nephropathies, such as decreasing urine protein, uric acid, and creatinine and serum uric acid, creatinine, and urea nitrogen. Histopathological observations showed that RHF treatment ameliorated kidney glomerular hypotrophy, tubular damage, and inflammatory infiltration. Mechanism studies revealed that RHF inhibited kidney residential cell apoptosis and inflammatory response by targeting the p53-associated intrinsic apoptosis pathway and NF-κB-mediated inflammatory pathway. CONCLUSION Taken together, it could be concluded that RHF exerted reno-protective effects against hyperuricemic nephropathy through reducing apoptosis and inflammation. RHF and the bioactive compounds chlorogenic acid analogs as promising candidates may be developed into novel and effective drugs for hyperuricemic nephropathy treatment and management.
Collapse
Affiliation(s)
- Guo-Yi Tang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 999077 Hong Kong S.A.R., P.R. China
| | - Sha Li
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 999077 Hong Kong S.A.R., P.R. China
| | - Yu Xu
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 999077 Hong Kong S.A.R., P.R. China
| | - Cheng Zhang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 999077 Hong Kong S.A.R., P.R. China
| | - Xiao-Yu Xu
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 999077 Hong Kong S.A.R., P.R. China
| | - Lin Xu
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 999077 Hong Kong S.A.R., P.R. China
| | - Ning Wang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 999077 Hong Kong S.A.R., P.R. China
| | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 999077 Hong Kong S.A.R., P.R. China.
| |
Collapse
|
34
|
Fan J, Zhao Z, Wu H, Fang X, Miao F, Chen X, Jiang X, Li J, Jiang P, Yu H. Syndecan-3 Coregulates Milk Fat Metabolism and Inflammatory Reactions in Bovine Mammary Epithelial Cells through AMPK/SIRT1 Signaling Pathway. Int J Mol Sci 2023; 24:6657. [PMID: 37047630 PMCID: PMC10095454 DOI: 10.3390/ijms24076657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 04/05/2023] Open
Abstract
Transcriptome sequencing showed that syndecan-3 (SDC3) was differentially expressed in high-fat and low-fat mammary epithelial cells of Chinese Holstein cows. Previous studies found that SDC3 plays an important role in inflammatory diseases and virus infection. However, those studies did not confirm whether or not the functional gene SDC3, which plays an important role in regulating milk fat metabolism, has an effect on susceptibility to breast tissue diseases. Therefore, we studied the effects of SDC3 on milk lipid metabolism and inflammation in bovine mammary epithelial cells (BMECs) and further explored the common regulatory pathway of SDC3 in both. The overexpression of SDC3 increased the contents of triglycerides and cholesterol, reduced the content of non-esterified fatty acids, inhibited the expression of inflammatory factors (IL-6, IL-1β, TNF-α and COX-2), and reduced the production of ROS in BMECs. However, silenced SDC3 had the opposite effect. Further exploring the mechanisms of SDC3, we found that SDC3 upregulated the expression of peroxisome proliferator-activated receptor gamma (PPARG) through the AMPK/SIRT1 signal pathway to promote milk fat synthesis. It also regulated the activation of the NF-κB pathway through the AMPK/SIRT1 signal pathway, reducing the expression of inflammatory factors and ROS production, thus inhibiting the inflammatory response of BMECs. Nuclear factor kappa B subunit 1 (NF-κB p50) was an important target of SDC3 in this process. To sum up, our results showed that SDC3 coregulated milk fat metabolism and inflammation through the AMPK/SIRT1 signaling pathway. This study laid a foundation for the comprehensive evaluation of breeding value based on multi-effect functional genes in dairy cow molecular breeding.
Collapse
Affiliation(s)
- Jing Fan
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (J.F.); (Z.Z.); (H.W.); (F.M.); (X.C.); (X.J.); (J.L.)
- The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Zhanjiang 524088, China
| | - Zhihui Zhao
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (J.F.); (Z.Z.); (H.W.); (F.M.); (X.C.); (X.J.); (J.L.)
- The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Zhanjiang 524088, China
| | - Haochen Wu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (J.F.); (Z.Z.); (H.W.); (F.M.); (X.C.); (X.J.); (J.L.)
- The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Zhanjiang 524088, China
| | - Xibi Fang
- College of Animal Science, Jilin University, Changchun 130062, China;
| | - Fengshuai Miao
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (J.F.); (Z.Z.); (H.W.); (F.M.); (X.C.); (X.J.); (J.L.)
- The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Zhanjiang 524088, China
| | - Xuanxu Chen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (J.F.); (Z.Z.); (H.W.); (F.M.); (X.C.); (X.J.); (J.L.)
- The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Zhanjiang 524088, China
| | - Xinyi Jiang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (J.F.); (Z.Z.); (H.W.); (F.M.); (X.C.); (X.J.); (J.L.)
- The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Zhanjiang 524088, China
| | - Jing Li
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (J.F.); (Z.Z.); (H.W.); (F.M.); (X.C.); (X.J.); (J.L.)
- The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Zhanjiang 524088, China
| | - Ping Jiang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (J.F.); (Z.Z.); (H.W.); (F.M.); (X.C.); (X.J.); (J.L.)
- The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Zhanjiang 524088, China
| | - Haibin Yu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (J.F.); (Z.Z.); (H.W.); (F.M.); (X.C.); (X.J.); (J.L.)
- The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Zhanjiang 524088, China
| |
Collapse
|
35
|
Han X, Li B, Zhang S. MIR503HG: A potential diagnostic and therapeutic target in human diseases. Biomed Pharmacother 2023; 160:114314. [PMID: 36736276 DOI: 10.1016/j.biopha.2023.114314] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023] Open
Abstract
LncRNAs are involved in many physiological and pathological processes, including chromatin remodeling, transcription, posttranscriptional gene expression, mRNA stability, translation, and posttranslational modification, and their functions depend on subcellular localization. MIR503HG is a lncRNA as well as a host gene for the miRNAs miR-503 and miR-424. MIR503HG functions independently or synergistically with miR-503. MIR503HG affects cell proliferation, invasion, metastasis, apoptosis, angiogenesis, and other biological behaviors. The mechanism of MIR503HG in disease includes interaction with protein, sponging miRNA to regulate downstream target gene, and participation in NF-κB, TGF-β, ERK/MAPK, and PI3K/AKT signaling pathways. In this review, we summarize the molecular mechanisms of MIR503HG in disease and its potential applications in diagnosis, prognosis, and treatment. We also raise some unanswered questions in this area, providing insights for future research.
Collapse
Affiliation(s)
- Xue Han
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Shenyang, Liaoning Province, China.
| | - Bo Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Shenyang, Liaoning Province, China. libo--
| | - Shitai Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Shenyang, Liaoning Province, China.
| |
Collapse
|
36
|
Zeng M, Zhang T, Lin Y, Lin Y, Wu Z. The Common LncRNAs of Neuroinflammation-Related Diseases. Mol Pharmacol 2023; 103:113-131. [PMID: 36456192 DOI: 10.1124/molpharm.122.000530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 10/24/2022] [Accepted: 11/07/2022] [Indexed: 12/04/2022] Open
Abstract
Spatio-temporal specific long noncoding RNAs (lncRNAs) play important regulatory roles not only in the growth and development of the brain but also in the occurrence and development of neurologic diseases. Generally, the occurrence of neurologic diseases is accompanied by neuroinflammation. Elucidation of the regulatory mechanisms of lncRNAs on neuroinflammation is helpful for the clinical treatment of neurologic diseases. This paper focuses on recent findings on the regulatory effect of lncRNAs on neuroinflammatory diseases and selects 10 lncRNAs that have been intensively studied to analyze their mechanism action. The clinical treatment status of lncRNAs as drug targets is also reviewed. SIGNIFICANCE STATEMENT: Gene therapies such as clustered regularly interspaced short palindrome repeats technology, antisense RNA technology, and RNAi technology are gradually applied in clinical treatment, and the development of technology is based on a large number of basic research investigations. This paper focuses on the mechanisms of lncRNAs regulation of neuroinflammation, elucidates the beneficial or harmful effects of lncRNAs in neurosystemic diseases, and provides theoretical bases for lncRNAs as drug targets.
Collapse
Affiliation(s)
- Meixing Zeng
- The First Affiliated Hospital of Shantou University Medical College (M.Z., Y.L., Z.W.) and The Second Affiliated Hospital of Shantou University Medical College (Y.L.), Shantou, Guangdong, China, and The Seventh Affiliated Hospital of Southern Medical University, Foshan, Guangdong, China(T.Z.)
| | - Ting Zhang
- The First Affiliated Hospital of Shantou University Medical College (M.Z., Y.L., Z.W.) and The Second Affiliated Hospital of Shantou University Medical College (Y.L.), Shantou, Guangdong, China, and The Seventh Affiliated Hospital of Southern Medical University, Foshan, Guangdong, China(T.Z.)
| | - Yan Lin
- The First Affiliated Hospital of Shantou University Medical College (M.Z., Y.L., Z.W.) and The Second Affiliated Hospital of Shantou University Medical College (Y.L.), Shantou, Guangdong, China, and The Seventh Affiliated Hospital of Southern Medical University, Foshan, Guangdong, China(T.Z.)
| | - Yongluan Lin
- The First Affiliated Hospital of Shantou University Medical College (M.Z., Y.L., Z.W.) and The Second Affiliated Hospital of Shantou University Medical College (Y.L.), Shantou, Guangdong, China, and The Seventh Affiliated Hospital of Southern Medical University, Foshan, Guangdong, China(T.Z.)
| | - Zhuomin Wu
- The First Affiliated Hospital of Shantou University Medical College (M.Z., Y.L., Z.W.) and The Second Affiliated Hospital of Shantou University Medical College (Y.L.), Shantou, Guangdong, China, and The Seventh Affiliated Hospital of Southern Medical University, Foshan, Guangdong, China(T.Z.)
| |
Collapse
|
37
|
Yan BF, Wang Y, Wang WB, Ding XJ, Wei B, Liu SJ, Fu TM, Chen L, Zhang JZ, Liu J, Zheng X. Huangqin decoction mitigates hepatic inflammation in high-fat diet-challenged rats by inhibiting TLR4/NF-κB/NLRP3 pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 303:115999. [PMID: 36509260 DOI: 10.1016/j.jep.2022.115999] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Non-alcoholic fatty liver disease (NAFLD) has become the most common chronic hepatopathy worldwide, in which ectopic steatosis (5%) and inflammatory infiltration in the liver are the principal clinical characteristics. Huangqin decoction (HQD), a Chinese medicine formula used in the clinic for thousands of years, presents appreciable anti-inflammatory effects. Nevertheless, the role and mechanism of HQD against inflammation in NAFLD are still undefined. AIM OF THE STUDY The objective of this study was to evaluate the curative efficacy and unravel the involved mechanism of HQD on a high-fat diet (HFD)-induced NAFLD. MATERIALS AND METHODS First, HPLC was utilized to analyze the main chemical components of HQD. Then, NAFLD model was introduced by subjecting the rats to HFD for 16 weeks, and HQD (400 and 800 mg/kg) or polyene lecithin choline (PLC, 8 mg/kg) was given orally from week 8-16. Pharmacodynamic indicators including body weight, liver weight, liver index, as well as biochemical and histological parameters were assessed. As to mechanism exploration, the expressions of TLR4/NF-κB/NLRP3 pathway and molecular docking between major phytochemicals of HQD and key targets of TLR4/NF-κB/NLRP3 pathway were investigated. RESULTS Seven main monomeric constituents of HQD were revealed by HPLC analysis. Of note, HQD could effectively attenuate the body weight, liver weight, and liver index, rescue disorders in serum transaminases and lipid profile, correct hepatic histological abnormalities, and reduce phagocytes infiltration into the liver and pro-inflammatory cytokines release in NAFLD rats. Mechanism investigation discovered that HQD harbored inhibitory effects on TLR4/NF-κB/NLRP3 pathway-regulated liver inflammation. Further exploration found that seven phytochemicals in HQD exhibited better binding modes with TLR4/NF-κB/NLRP3 pathway, in which baicalein, baicalin and liquiritin presented the highest affinity and docking score for protein TLR4, NF-κB, and NLRP3, respectively. CONCLUSIONS These findings confirmed that HQD ameliorated hepatic inflammation in NAFLD rats by blocking the TLR4/NF-κB/NLRP3 pathway, with multi-components and multi-targets action pattern.
Collapse
Affiliation(s)
- Bao-Fei Yan
- Jiangsu Health Vocational College, Nanjing, 211800, PR China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Yun Wang
- Department of Dermatology, Affiliated Huai'an Hospital of Xuzhou Medical University, the Second People's Hospital of Huai'an, Huai'an, 223002, PR China
| | - Wen-Bo Wang
- Department of Pharmacy, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, 215300, PR China
| | - Xiao-Jun Ding
- Department of Otolaryngology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, 215300, PR China
| | - Bin Wei
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, 215300, PR China
| | - Sheng-Jin Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Ting-Ming Fu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Ling Chen
- Jiangsu Health Vocational College, Nanjing, 211800, PR China
| | | | - Jia Liu
- Jiangsu Health Vocational College, Nanjing, 211800, PR China.
| | - Xian Zheng
- Department of Pharmacy, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, 215300, PR China.
| |
Collapse
|
38
|
Huang HY, Lin TW, Hong ZX, Lim LM. Vitamin D and Diabetic Kidney Disease. Int J Mol Sci 2023; 24:ijms24043751. [PMID: 36835159 PMCID: PMC9960850 DOI: 10.3390/ijms24043751] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/28/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Vitamin D is a hormone involved in many physiological processes. Its active form, 1,25(OH)2D3, modulates serum calcium-phosphate homeostasis and skeletal homeostasis. A growing body of evidence has demonstrated the renoprotective effects of vitamin D. Vitamin D modulates endothelial function, is associated with podocyte preservation, regulates the renin-angiotensin-aldosterone system, and has anti-inflammatory effects. Diabetic kidney disease (DKD) is a leading cause of end-stage kidney disease worldwide. There are numerous studies supporting vitamin D as a renoprotector, potentially delaying the onset of DKD. This review summarizes the findings of current research on vitamin D and its role in DKD.
Collapse
Affiliation(s)
- Ho-Yin Huang
- Department of Pharmacy, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Ting-Wei Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Zi-Xuan Hong
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Lee-Moay Lim
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Correspondence: ; Tel.: +886-7-3121101-7351; Fax: +886-7-3228721
| |
Collapse
|
39
|
Sheng J, Lu C, Liao Z, Xue M, Zou Z, Feng J, Wu B. Suppression of lncRNA Snhg1 inhibits high glucose-induced inflammation and proliferation in mouse mesangial cells. Toxicol In Vitro 2023; 86:105482. [DOI: 10.1016/j.tiv.2022.105482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/08/2022] [Accepted: 10/08/2022] [Indexed: 12/04/2022]
|
40
|
Wang X, Zhao J, Li Y, Rao J, Xu G. Epigenetics and endoplasmic reticulum in podocytopathy during diabetic nephropathy progression. Front Immunol 2022; 13:1090989. [PMID: 36618403 PMCID: PMC9813850 DOI: 10.3389/fimmu.2022.1090989] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022] Open
Abstract
Proteinuria or nephrotic syndrome are symptoms of podocytopathies, kidney diseases caused by direct or indirect podocyte damage. Human health worldwide is threatened by diabetic nephropathy (DN), the leading cause of end-stage renal disease (ESRD) in the world. DN development and progression are largely dependent on inflammation. The effects of podocyte damage on metabolic disease and inflammatory disorders have been documented. Epigenetic and endoplasmic reticulum (ER) stress are also evident in DN. Targeting inflammation pathway and ER stress in podocytes may be a prospective therapy to prevent the progression of DN. Here, we review the mechanism of epigenetics and ER stress on podocyte inflammation and apoptosis, and discuss the potential amelioration of podocytopathies by regulating epigenetics and ER stress as well as by targeting inflammatory signaling, which provides a theoretical basis for drug development to ameliorate DN.
Collapse
Affiliation(s)
- Xiaokang Wang
- Department of Pharmacy, Shenzhen Longhua District Central Hospital, The Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China,*Correspondence: Xiaokang Wang,
| | - Jingqian Zhao
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Yuanqing Li
- Department of Pharmacy, Shenzhen Longhua District Central Hospital, The Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Jiaoyu Rao
- Department of Pharmacy, Shenzhen Longhua District Central Hospital, The Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Gengrui Xu
- Department of Pharmacy, Shenzhen Longhua District Central Hospital, The Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| |
Collapse
|
41
|
Ma Q, Hu X, Liu F, Cao Z, Han L, Zhou K, Bai Y, Zhang Y, Nan Y, Lv Q, Rao J, Wu T, Yang X, He H, Ju D, Xu H. A novel fusion protein consisting of anti-ANGPTL3 antibody and interleukin-22 ameliorates diabetic nephropathy in mice. Front Immunol 2022; 13:1011442. [PMID: 36544775 PMCID: PMC9760875 DOI: 10.3389/fimmu.2022.1011442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/01/2022] [Indexed: 12/11/2022] Open
Abstract
Introduction The pathogenic mechanisms of diabetic nephropathy (DN) include podocyte injury, inflammatory responses and metabolic disorders. Although the antagonism of Angiopoietin-like protein 3 (ANGPTL3) can alleviate proteinuria symptoms by inhibiting the activation of integrin αvβ3 on the surface of podocytes, it can not impede other pathological processes, such as inflammatory responses and metabolic dysfunction of glucolipid. Interleukin-22 (IL-22) is considered to be a pivotal molecule involved in suppressing inflammatory responses, initiating regenerative repair, and regulating glucolipid metabolism. Methods Genes encoding the mIL22IgG2aFc and two chains of anti-ANGPTL3 antibody and bifunctional protein were synthesized. Then, the DN mice were treated with intraperitoneal injection of normal saline, anti-ANGPTL3 (20 mg/kg), mIL22Fc (12 mg/kg) or anti-ANGPTL3 /IL22 (25.3 mg/kg) and irrigation of positive drug losartan (20mg/kg/d) twice a week for 8 weeks. Results In this research, a novel bifunctional fusion protein (anti-ANGPTL3/IL22) formed by the fusion of IL-22 with the C-terminus of anti-ANGPTL3 antibody exhibited favorable stability and maintained the biological activity of anti-ANGPTL3 and IL-22, respectively. The fusion protein showed a more pronounced attenuation of proteinuria and improved dysfunction of glucolipid metabolism compared with mIL22Fc or anti-ANGPTL3. Our results also indicated that anti-ANGPTL3/IL22 intervention significantly alleviated renal fibrosis via inhibiting the expression of the inflammatory response-related protein nuclear factor kappa light-chain enhancer of activated B cells (NF-κB) p65 and NOD-like receptor family pyrin domain-containing protein 3 (NLRP3) inflammasome. Moreover, transcriptome analysis revealed the downregulation of signaling pathways associated with injury and dysfunction of the renal parenchymal cell indicating the possible protective mechanisms of anti-ANGPTL3/IL22 in DN. Conclusion Collectively, anti-ANGPTL3/IL22 bifunctional fusion protein can be a promising novel therapeutic strategy for DN by reducing podocyte injury, ameliorating inflammatory response, and enhancing renal tissue recovery.
Collapse
Affiliation(s)
- Qianqian Ma
- Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Xiaozhi Hu
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Fangyu Liu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhonglian Cao
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Lei Han
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Kaicheng Zhou
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Yu Bai
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Yuting Zhang
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Yanyang Nan
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Qianying Lv
- Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Jia Rao
- Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Tao Wu
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Xue Yang
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Haidong He
- Department of Nephrology, Minhang Hospital, Fudan University, Shanghai, China
| | - Dianwen Ju
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, China
- Department of Nephrology, Minhang Hospital, Fudan University, Shanghai, China
| | - Hong Xu
- Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| |
Collapse
|
42
|
Wan J, Jiang Z, Liu D, Pan S, Zhou S, Liu Z. Inhibition of the glycogen synthase kinase 3β-hypoxia-inducible factor 1α pathway alleviates NLRP3-mediated pyroptosis induced by high glucose in renal tubular epithelial cells. Exp Physiol 2022; 107:1493-1506. [PMID: 36056793 DOI: 10.1113/ep090685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/30/2022] [Indexed: 12/14/2022]
Abstract
NEW FINDINGS What is the central question of this study? Activation of the glycogen synthase kinase 3 β (GSK-3β)-hypoxia-inducible factor 1 α (HIF-1α) pathway results in stimulation of pyroptosis under high glucose, and exerts actions in a number renal diseases: does this pathway have a role in renal tubular epithelial cells? What is the main finding and its importance? Down-regulation of GSK-3β can inhibit pyroptosis of renal tubular epithelial cells induced by high glucose and this may be related to down-regulation of HIF-1α. This role of the GSK-3β-HIF-1α pathway has not previously been reported and identifies a potential new therapeutic target in diabetic nephropathy. ABSTRACT Diabetic nephropathy (DN) is not only one of the main complications of diabetes, but also has a high incidence rate and a high mortality rate. Glycogen synthase kinase 3 β (GSK-3β) and hypoxia-inducible factor 1 α (HIF-1α) have been demonstrated to influence DN by regulating pyroptosis. This study aimed to investigate the effect of the GSK-3β-HIF-1α pathway on pyroptosis of high-glucose (HG)-induced renal tubular cells. Mouse renal proximal tubular epithelial cells (TKPT cells) were induced by HG to simulate DN cell and we transfected TKPT cells with GSK-3β knockdown lentivirus. Western blot analysis confirmed the transfection effects and detected the expression of GSK-3β, HIF-1α, Nod-like receptor protein 3 (NLRP3), cleaved-caspase-1, pro-caspase-1, gasdermin D (GSDMD) and GSDMD-N. The expression of GSDMD-N and HIF-1α were also verified by immunofluorescence. The levels of interleukin (IL)-1β and IL-18 were measured by enzyme linked immunosorbent assay. Flow cytometric analysis determined the apoptosis rate. Results showed that HIF-1α expression was increased in HG-induced TKPT cells, and GSK-3β knockdown could decrease the levels of NLRP3, cleaved-caspase-1, GSDMD-N and HIF-1α, verified by immunofluorescence. Moreover, GSK-3β knockdown suppressed the expression of IL-1β and IL-18, and reduced the apoptosis rate. Lithium chloride (LiCl) interference could cause the same changes as GSK-3β knockdown for HG-induced TKPT cells, and dimethyloxallyl glycine could reverse the effect of GSK-3β-knockdown interference. Our studies definitively demonstrate that the GSK-3β-HIF-1α signalling pathway mediates HG-stimulated pyroptosis in renal tubular epithelial cells and that down-regulation of GSK-3β inhibited HG-induced pyroptosis by inhibiting the expression of HIF-1α. These findings suggest a new potential target for the treatment of DN.
Collapse
Affiliation(s)
- Jiayi Wan
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China.,Research Institute of Nephrology, Zhengzhou University, Zhengzhou, P. R. China.,Henan Province Research Center for Kidney Disease, Zhengzhou, P. R. China.,Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, P. R. China
| | - Ziming Jiang
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China.,Research Institute of Nephrology, Zhengzhou University, Zhengzhou, P. R. China.,Henan Province Research Center for Kidney Disease, Zhengzhou, P. R. China.,Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, P. R. China
| | - Dongwei Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China.,Research Institute of Nephrology, Zhengzhou University, Zhengzhou, P. R. China.,Henan Province Research Center for Kidney Disease, Zhengzhou, P. R. China.,Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, P. R. China
| | - Shaokang Pan
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China.,Research Institute of Nephrology, Zhengzhou University, Zhengzhou, P. R. China.,Henan Province Research Center for Kidney Disease, Zhengzhou, P. R. China.,Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, P. R. China
| | - Sijie Zhou
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China.,Research Institute of Nephrology, Zhengzhou University, Zhengzhou, P. R. China.,Henan Province Research Center for Kidney Disease, Zhengzhou, P. R. China.,Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, P. R. China
| | - Zhangsuo Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China.,Research Institute of Nephrology, Zhengzhou University, Zhengzhou, P. R. China.,Henan Province Research Center for Kidney Disease, Zhengzhou, P. R. China.,Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, P. R. China
| |
Collapse
|
43
|
Wang Q. XIST silencing alleviated inflammation and mesangial cells proliferation in diabetic nephropathy by sponging miR-485. Arch Physiol Biochem 2022; 128:1697-1703. [PMID: 32669002 DOI: 10.1080/13813455.2020.1789880] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In this study, we investigated the role of XIST in the development of diabetic nephropathy (DN) and further explored its underlying mechanism. qRT-PCR was used to examine the level of XIST in serum of DN patients. ELISA, MTT, and flow cytometry were used to investigate the effect of XIST on biological functions of human mesangial cells (HMCs) treated with high glucose. The recovery experiments were used to explore the potential mechanism. The result showed XIST expression was elevated significantly in serums of DN patients. XIST silencing alleviated the induction of high glucose in biological behaviour of HMCs. Besides, miR-485 inhibitor revised the suppression by si-XIST in biological behaviour of high glucose induced HMCs. Furthermore, PSMB8 mimic relieved the inhibition of si-XIST in biological behaviour of high glucose induced HMCs. In short, XIST silencing could alleviate biological process and inflammation of HMCs treated with high glucose by sponging miR-485.
Collapse
Affiliation(s)
- Qi Wang
- Department of Geriatrics, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| |
Collapse
|
44
|
Duan J, He L, Deng W, Lu M, Zhai Y, Pei F, Liu S, Zhang C. Natural swietenine attenuates diabetic nephropathy by regulating the NF-κB/NLRP3/Caspase-1 signaling pathways: In vivo and in vitro study. ENVIRONMENTAL TOXICOLOGY 2022; 37:2977-2989. [PMID: 36066211 DOI: 10.1002/tox.23653] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/10/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
Swietenine (Swi), isolated from Swietenia macrophylla King ameliorates inflammation and oxidative stress, and diabetic nephropathy has a close connection with them. So the effects of Swi on diabetic nephropathy and its mechanism of action was explored. We divided human mesangial cells into five groups and determined the expression of NF-κB and NLRP3 inflammasomes in each group. The levels of inflammatory factors IL-1β and IL-18 were also measured. To explore the relationship between NF-κB and NLRP3, we added PDTC, a specific NF-κB inhibitor, and LPS, and divided the experimental groups into seven groups. We measured the expressions of NF-κB and NLRP3, and then added MCC950, a specific inhibitor of NLRP3 and LPS, the expression of NLRP3, Caspase-1, and IL-1β and IL-18 were measured. Animals divided into four groups and administered over 8 weeks. Protein excretion, creatinine, urea nitrogen, and uric acid were measured. Swi down regulated the expression of NF-κB, NLRP3, and Caspase-1. It reduced the levels of IL-1β and IL-18. PDTC decreased the expression of NF-κB and NLRP3. Compared with the HG + PDTC group, the expression of NF-κB and NLRP3 in the HG + Swi + PDTC group decreased significantly. After adding lipopolysaccharide, the expression of NF-κB and NLRP3 increased, but this situation was reversed after adding Swi. After adding LPS, the expression of NLRP3 and Caspase-1 increased, and the levels of IL-1β and IL-18 also increased, but this situation was reversed after the addition of Swi. Swi significantly improved the renal function of mice with diabetic nephropathy and inhibited the activation of NF-κB and the NLRP3 inflammasome and reduced inflammation by regulating the NF-κB/NLRP3/Caspase-1 signaling pathway, thereby improving diabetic nephropathy.
Collapse
Affiliation(s)
- Jingyu Duan
- School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Liangliang He
- School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Wenhao Deng
- School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Mengyuan Lu
- School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Yutong Zhai
- School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Feilong Pei
- School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Shuang Liu
- School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Chunping Zhang
- School of Pharmacy, Xuzhou Medical University, Xuzhou, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
45
|
Inhibition of TGFβ1/Smad pathway by NF-κB induces inflammation leading to poor wound healing in high glucose. Cells Dev 2022; 172:203814. [PMID: 36307062 DOI: 10.1016/j.cdev.2022.203814] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/11/2022]
Abstract
This study mainly analyzed the relationship between nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and transforming growth factor-β (TGFβ1)/Smad under high glucose environment and its influence on wound healing. Fibroblast NIH-3T3 was used to analyze the effect of high concentration glucose (20 nmol/mL) on cell viability, migration ability, inflammation level and NF-κB pathway. Pyrrolidinedithiocarbamate (PDTC) was used to inhibit NF-κB for rescue experiments. Diabetic mice were used to construct wound healing models. Recombinant TGF-β1 was used to promote wound healing in diabetic mice. FSL-1 was applied to activate NF-κB to verify the mechanism. High glucose inhibited cell viability and migration ability, promoted the expression of TNF-α, IL-6 and IL-1β, induced the activation of NF-κB pathway in fibroblasts. Inhibition of NF-κB not only blocked the decrease in cell viability and migration ability induced by high glucose, but also relieved the release of inflammatory factors. TGF-β1 activated the TGF-β1/Smad pathway and promoted wound healing in diabetic mice. Activating the NF-κB pathway not only inhibited the activation of the TGF-β1/Smad pathway, but also alleviated the promoting effect of TGF-β1 on wound healing. In a high glucose environment, the activation of NF-κB may inhibit the function of fibroblasts by inhibiting the TGF-β1/Smad pathway, resulting in poor wound healing.
Collapse
|
46
|
Chang W, Wang M, Zhang Y, Yu F, Hu B, Goljanek-Whysall K, Li P. Roles of long noncoding RNAs and small extracellular vesicle-long noncoding RNAs in type 2 diabetes. Traffic 2022; 23:526-537. [PMID: 36109347 PMCID: PMC9828071 DOI: 10.1111/tra.12868] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/17/2022] [Accepted: 09/14/2022] [Indexed: 01/20/2023]
Abstract
The prevalence of a high-energy diet and a sedentary lifestyle has increased the incidence of type 2 diabetes (T2D). T2D is a chronic disease characterized by high blood glucose levels and insulin resistance in peripheral tissues. The pathological mechanism of this disease is not fully clear. Accumulated evidence has shown that noncoding RNAs have an essential regulatory role in the progression of diabetes and its complications. The roles of small noncoding RNAs, such as miRNAs, in T2D, have been extensively investigated, while the function of long noncoding RNAs (lncRNAs) in T2D has been unstudied. It has been reported that lncRNAs in T2D play roles in the regulation of pancreatic function, peripheral glucose homeostasis and vascular inflammation. In addition, lncRNAs carried by small extracellular vesicles (sEV) were shown to mediate communication between organs and participate in diabetes progression. Some sEV lncRNAs derived from stem cells are being developed as potential therapeutic agents for diabetic complications. In this review, we summarize the current knowledge relating to lncRNA biogenesis, the mechanisms of lncRNA sorting into sEV and the regulatory roles of lncRNAs and sEV lncRNAs in diabetes. Knowledge of lncRNAs and sEV lncRNAs in diabetes will aid in the development of new therapeutic drugs for T2D in the future.
Collapse
Affiliation(s)
- Wenguang Chang
- Institute for Translational Medicine, The Affiliated Hospital, College of Medicine, Qingdao University, Qingdao, China
| | - Man Wang
- Institute for Translational Medicine, The Affiliated Hospital, College of Medicine, Qingdao University, Qingdao, China
| | - Yuan Zhang
- Institute for Translational Medicine, The Affiliated Hospital, College of Medicine, Qingdao University, Qingdao, China
| | - Fei Yu
- Institute for Translational Medicine, The Affiliated Hospital, College of Medicine, Qingdao University, Qingdao, China
| | - Bin Hu
- The Institute of Medical Sciences (IMS), School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Aberdeen, UK
| | - Katarzyna Goljanek-Whysall
- Department of Physiology, Nursing and Health Sciences, College of Medicine, National University of Ireland, Galway, Ireland
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital, College of Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
47
|
Zhao W, He C, Jiang J, Zhao Z, Yuan H, Wang F, Shen B. The role of discoid domain receptor 1 on renal tubular epithelial pyroptosis in diabetic nephropathy. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2022; 26:427-438. [PMID: 36302618 PMCID: PMC9614395 DOI: 10.4196/kjpp.2022.26.6.427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/13/2022] [Accepted: 04/13/2022] [Indexed: 11/07/2022]
Abstract
Pyroptosis, a form of cell death associated with inflammation, is known to be involved in diabetic nephropathy (DN), and discoid domain receptor 1 (DDR1), an inflammatory regulatory protein, is reported to be associated with diabetes. However, the mechanism underlying DDR1 regulation and pyroptosis in DN remains unknown. We aimed to investigate the effect of DDR1 on renal tubular epithelial cell pyroptosis and the mechanism underlying DN. In this study, we used high glucose (HG)-treated HK-2 cells and rats with a single intraperitoneal injection of streptozotocin as DN models. Subsequently, the expression of pyroptosis-related proteins (cleaved caspase-1, GSDMD-N, Interleukin-1β [IL-1β], and interleukin-18 [IL-18]), DDR1, phosphorylated NF-κB (p-NF-κB), and NLR family pyrin domain-containing 3 (NLRP3) inflammasomes were determined through Western blotting. IL-1β and IL-18 levels were determined using ELISA. The rate of pyroptosis was assessed by propidium iodide (PI) staining. The results revealed upregulated expression of pyroptosis-related proteins and increased concentration of IL-1β and IL-18, accompanied by DDR1, p-NF-κB, and NLRP3 upregulation in DN rat kidney tissues and HG-treated HK-2 cells. Moreover, DDR1 knockdown in the background of HG treatment resulted in inhibited expression of pyroptosis-related proteins and attenuation of IL-1β and IL-18 production and PI-positive cell frequency via the NF-κB/NLRP3 pathway in HK-2 cells. However, NLRP3 overexpression reversed the effect of DDR1 knockdown on pyroptosis. In conclusion, we demonstrated that DDR1 may be associated with pyroptosis, and DDR1 knockdown inhibited HG-induced renal tubular epithelial cell pyroptosis. The NF-κB/NLRP3 pathway is probably involved in the underlying mechanism of these findings.
Collapse
Affiliation(s)
- Weichen Zhao
- Department of Pharmacy, Lu'an Hospital Affiliated to Anhui Medical University, Lu'an People's Hospital, Lu'an, Anhui 237005, China
| | - Chunyuan He
- Department of Pharmacy, Lu'an Hospital Affiliated to Anhui Medical University, Lu'an People's Hospital, Lu'an, Anhui 237005, China
| | - Junjie Jiang
- Department of Pharmacy, Lu'an Hospital Affiliated to Anhui Medical University, Lu'an People's Hospital, Lu'an, Anhui 237005, China
| | - Zongbiao Zhao
- Department of Pharmacy, Lu'an Hospital Affiliated to Anhui Medical University, Lu'an People's Hospital, Lu'an, Anhui 237005, China
| | - Hongzhong Yuan
- Department of Pharmacy, Lu'an Hospital Affiliated to Anhui Medical University, Lu'an People's Hospital, Lu'an, Anhui 237005, China
| | - Facai Wang
- Department of Pharmacy, Lu'an Hospital Affiliated to Anhui Medical University, Lu'an People's Hospital, Lu'an, Anhui 237005, China
| | - Bingxiang Shen
- Department of Pharmacy, Lu'an Hospital Affiliated to Anhui Medical University, Lu'an People's Hospital, Lu'an, Anhui 237005, China
| |
Collapse
|
48
|
Wan J, Liu D, Pan S, Zhou S, Liu Z. NLRP3-mediated pyroptosis in diabetic nephropathy. Front Pharmacol 2022; 13:998574. [PMID: 36304156 PMCID: PMC9593054 DOI: 10.3389/fphar.2022.998574] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Diabetic nephropathy (DN) is the main cause of end-stage renal disease (ESRD), which is characterized by a series of abnormal changes such as glomerulosclerosis, podocyte loss, renal tubular atrophy and excessive deposition of extracellular matrix. Simultaneously, the occurrence of inflammatory reaction can promote the aggravation of DN-induced kidney injury. The most important processes in the canonical inflammasome pathway are inflammasome activation and membrane pore formation mediated by gasdermin family. Converging studies shows that pyroptosis can occur in renal intrinsic cells and participate in the development of DN, and its activation mechanism involves a variety of signaling pathways. Meanwhile, the activation of the NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome can not only lead to the occurrence of inflammatory response, but also induce pyroptosis. In addition, a number of drugs targeting pyroptosis-associated proteins have been shown to have potential for treating DN. Consequently, the pathogenesis of pyroptosis and several possible activation pathways of NLRP3 inflammasome were reviewed, and the potential drugs used to treat pyroptosis in DN were summarized in this review. Although relevant studies are still not thorough and comprehensive, these findings still have certain reference value for the understanding, treatment and prognosis of DN.
Collapse
Affiliation(s)
- Jiayi Wan
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Dongwei Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Shaokang Pan
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Sijie Zhou
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
- *Correspondence: Sijie Zhou, ; Zhangsuo Liu,
| | - Zhangsuo Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
- *Correspondence: Sijie Zhou, ; Zhangsuo Liu,
| |
Collapse
|
49
|
Chen Q, Ji H, Lin Y, Chen Z, Liu Y, Jin L, Peng R. LncRNAs regulate ferroptosis to affect diabetes and its complications. Front Physiol 2022; 13:993904. [PMID: 36225311 PMCID: PMC9548856 DOI: 10.3389/fphys.2022.993904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Worldwide, the rapid increase in the incidence of diabetes and its complications poses a serious threat to human health. Ferroptosis, which is a new nonapoptotic form of cell death, has been proven to be closely related to the occurrence and development of diabetes and its complications. In recent years, lncRNAs have been confirmed to be involved in the occurrence and development of diabetes and play an important role in regulating ferroptosis. An increasing number of studies have shown that lncRNAs can affect the occurrence and development of diabetes and its complications by regulating ferroptosis. Therefore, lncRNAs have great potential as therapeutic targets for regulating ferroptosis-mediated diabetes and its complications. This paper reviewed the potential impact and regulatory mechanism of ferroptosis on diabetes and its complications, focusing on the effects of lncRNAs on the occurrence and development of ferroptosis-mediated diabetes and its complications and the regulation of ferroptosis-inducing reactive oxygen species, the key ferroptosis regulator Nrf2 and the NF-κB signaling pathway to provide new therapeutic strategies for the development of lncRNA-regulated ferroptosis-targeted drugs to treat diabetes.
Collapse
Affiliation(s)
- Qianqian Chen
- Institute of Life Sciences and Biomedicine Collaborative Innovation Center of Zhejiang province, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Hao Ji
- Institute of Life Sciences and Biomedicine Collaborative Innovation Center of Zhejiang province, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Yue Lin
- Department of Emergency, Wenzhou People’s Hospital, The Third Affiliated Hospital of Shanghai University and Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou, China
| | - Zheyan Chen
- Department of Plastic Surgery, Wenzhou People’s Hospital, The Third Affiliated Hospital of Shanghai University and Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou, China
| | - Yinai Liu
- Institute of Life Sciences and Biomedicine Collaborative Innovation Center of Zhejiang province, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Libo Jin
- Institute of Life Sciences and Biomedicine Collaborative Innovation Center of Zhejiang province, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
- *Correspondence: Libo Jin, ; Renyi Peng,
| | - Renyi Peng
- Institute of Life Sciences and Biomedicine Collaborative Innovation Center of Zhejiang province, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
- *Correspondence: Libo Jin, ; Renyi Peng,
| |
Collapse
|
50
|
Liu C, Yang M, Li L, Luo S, Yang J, Li C, Liu H, Sun L. A Glimpse of Inflammation and Anti-Inflammation Therapy in Diabetic Kidney Disease. Front Physiol 2022; 13:909569. [PMID: 35874522 PMCID: PMC9298824 DOI: 10.3389/fphys.2022.909569] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/18/2022] [Indexed: 02/06/2023] Open
Abstract
Diabetic kidney disease (DKD) is a common complication of diabetes mellitus and a major cause of end-stage kidney disease (ESKD). The pathogenesis of DKD is very complex and not completely understood. Recently, accumulated evidence from in vitro and in vivo studies has demonstrated that inflammation plays an important role in the pathogenesis and the development of DKD. It has been well known that a variety of pro-inflammatory cytokines and related signaling pathways are involved in the procession of DKD. Additionally, some anti-hyperglycemic agents and mineralocorticoid receptor antagonists (MRAs) that are effective in alleviating the progression of DKD have anti-inflammatory properties, which might have beneficial effects on delaying the progression of DKD. However, there is currently a lack of systematic overviews. In this review, we focus on the novel pro-inflammatory signaling pathways in the development of DKD, including the nuclear factor kappa B (NF-κB) signaling pathway, toll-like receptors (TLRs) and myeloid differentiation primary response 88 (TLRs/MyD88) signaling pathway, adenosine 5′-monophosphate-activated protein kinase (AMPK) signaling pathways, inflammasome activation, mitochondrial DNA (mtDNA) release as well as hypoxia-inducible factor-1(HIF-1) signaling pathway. We also discuss the related anti-inflammation mechanisms of metformin, finerenone, sodium-dependent glucose transporters 2 (SGLT2) inhibitors, Dipeptidyl peptidase-4 (DPP-4) inhibitors, Glucagon-like peptide-1 (GLP-1) receptor agonist and traditional Chinese medicines (TCM).
Collapse
Affiliation(s)
- Chongbin Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South Unibersity, Changsha, China.,Hunan Key Laboratory of kidney Disease and Blood Purification, Changsha, China
| | - Ming Yang
- Department of Nephrology, The Second Xiangya Hospital, Central South Unibersity, Changsha, China.,Hunan Key Laboratory of kidney Disease and Blood Purification, Changsha, China
| | - Li Li
- Department of Nephrology, The Second Xiangya Hospital, Central South Unibersity, Changsha, China.,Hunan Key Laboratory of kidney Disease and Blood Purification, Changsha, China
| | - Shilu Luo
- Department of Nephrology, The Second Xiangya Hospital, Central South Unibersity, Changsha, China
| | - Jinfei Yang
- Department of Nephrology, The Second Xiangya Hospital, Central South Unibersity, Changsha, China
| | - Chenrui Li
- Department of Nephrology, The Second Xiangya Hospital, Central South Unibersity, Changsha, China
| | - Huafeng Liu
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases & Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Lin Sun
- Department of Nephrology, The Second Xiangya Hospital, Central South Unibersity, Changsha, China.,Hunan Key Laboratory of kidney Disease and Blood Purification, Changsha, China
| |
Collapse
|