1
|
Khagi S, Kotecha R, Gatson NTN, Jeyapalan S, Abdullah HI, Avgeropoulos NG, Batzianouli ET, Giladi M, Lustgarten L, Goldlust SA. Recent advances in Tumor Treating Fields (TTFields) therapy for glioblastoma. Oncologist 2024:oyae227. [PMID: 39401002 DOI: 10.1093/oncolo/oyae227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 07/23/2024] [Indexed: 10/15/2024] Open
Abstract
Tumor Treating Fields (TTFields) therapy is a locoregional, anticancer treatment consisting of a noninvasive, portable device that delivers alternating electric fields to tumors through arrays placed on the skin. Based on efficacy and safety data from global pivotal (randomized phase III) clinical studies, TTFields therapy (Optune Gio) is US Food and Drug Administration-approved for newly diagnosed (nd) and recurrent glioblastoma (GBM) and Conformité Européenne-marked for grade 4 glioma. Here we review data on the multimodal TTFields mechanism of action that includes disruption of cancer cell mitosis, inhibition of DNA replication and damage response, interference with cell motility, and enhancement of systemic antitumor immunity (adaptive immunity). We describe new data showing that TTFields therapy has efficacy in a broad range of patients, with a tolerable safety profile extending to high-risk subpopulations. New analyses of clinical study data also confirmed that overall and progression-free survival positively correlated with increased usage of the device and dose of TTFields at the tumor site. Additionally, pilot/early phase clinical studies evaluating TTFields therapy in ndGBM concomitant with immunotherapy as well as radiotherapy have shown promise, and new pivotal studies will explore TTFields therapy in these settings. Finally, we review recent and ongoing studies in patients in pediatric care, other central nervous system tumors and brain metastases, as well as other advanced-stage solid tumors (ie, lung, ovarian, pancreatic, gastric, and hepatic cancers), that highlight the broad potential of TTFields therapy as an adjuvant treatment in oncology.
Collapse
Affiliation(s)
- Simon Khagi
- Hoag Family Cancer Institute, Newport Beach, CA, United States
| | - Rupesh Kotecha
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, United States
| | - Na Tosha N Gatson
- Neuro-Oncology Center of Excellence, Indiana University School of Medicine, Indianapolis, IN, United States
- IU Health Neuroscience & Simon Cancer Institutes, Indianapolis, IN, United States
- Geisinger Commonwealth School of Medicine, Scranton, PA, United States
| | | | | | | | | | | | | | - Samuel A Goldlust
- Department of Neuro-Oncology, Saint Luke's Cancer Institute, Kansas City, MO, United States
| |
Collapse
|
2
|
Schlieper-Scherf S, Hebach N, Hausmann D, Azorín DD, Hoffmann DC, Horschitz S, Maier E, Koch P, Karreman MA, Etminan N, Ratliff M. Disrupting glioblastoma networks with tumor treating fields (TTFields) in in vitro models. J Neurooncol 2024; 170:139-151. [PMID: 39088157 PMCID: PMC11457690 DOI: 10.1007/s11060-024-04786-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/18/2024] [Indexed: 08/02/2024]
Abstract
PURPOSE This study investigates the biological effect of Tumor Treating Fields (TTFields) on key drivers of glioblastoma's malignancy-tumor microtube (TM) formation-and on the function and overall integrity of the tumor cell network. METHOD Using a two-dimensional monoculture GB cell network model (2DTM) of primary glioblastoma cell (GBC) cultures (S24, BG5 or T269), we evaluated the effects of TTFields on cell density, interconnectivity and structural integrity of the tumor network. We also analyzed calcium (Ca2+) transient dynamics and network morphology, validating findings in patient-derived tumoroids and brain tumor organoids. RESULTS In the 2DTM assay, TTFields reduced cell density by 85-88% and disrupted network interconnectivity, particularly in cells with multiple TMs. A "crooked TM" phenotype emerged in 5-6% of treated cells, rarely seen in controls. Ca2+ transients were significantly compromised, with global Ca2+ activity reduced by 51-83%, active and periodic cells by over 50%, and intercellular co-activity by 52% in S24, and almost completely in BG5 GBCs. The effects were more pronounced at 200 kHz compared to a 50 kHz TTFields. Similar reductions in Ca2+ activity were observed in patient-derived tumoroids. In brain tumor organoids, TTFields significantly reduced tumor cell proliferation and infiltration. CONCLUSION Our comprehensive study provides new insights into the multiple effects of Inovitro-modeled TTFields on glioma progression, morphology and network dynamics in vitro. Future in vivo studies to verify our in vitro findings may provide the basis for a deeper understanding and optimization of TTFields as a therapeutic modality in the treatment of GB.
Collapse
Affiliation(s)
- Steffen Schlieper-Scherf
- Department of Neurosurgery, University Hospital Mannheim, University of Heidelberg, Mannheim, Germany
| | - Nils Hebach
- Clinical Cooperation Unit Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - David Hausmann
- Clinical Cooperation Unit Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Daniel D Azorín
- Clinical Cooperation Unit Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Dirk C Hoffmann
- Clinical Cooperation Unit Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Sandra Horschitz
- Central Institute of Mental Health, University of Heidelberg/Medical Faculty Mannheim, Mannheim, Germany
- Hector Institute for Translational Brain Research (HITBR gGmbH), Mannheim, Germany
| | - Elena Maier
- Department of Neurosurgery, University Hospital Mannheim, University of Heidelberg, Mannheim, Germany
| | - Phillip Koch
- Central Institute of Mental Health, University of Heidelberg/Medical Faculty Mannheim, Mannheim, Germany
- Hector Institute for Translational Brain Research (HITBR gGmbH), Mannheim, Germany
| | - Matthia A Karreman
- Clinical Cooperation Unit Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Nima Etminan
- Department of Neurosurgery, University Hospital Mannheim, University of Heidelberg, Mannheim, Germany
| | - Miriam Ratliff
- Department of Neurosurgery, University Hospital Mannheim, University of Heidelberg, Mannheim, Germany.
- Clinical Cooperation Unit Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany.
| |
Collapse
|
3
|
Zhang T, Pan W, Tan X, Yu J, Cheng S, Wei S, Fan K, Wang L, Luo H, Hu X. A novel L-shaped ortho-quinone analog suppresses glioblastoma progression by targeting acceleration of AR degradation and regulating PI3K/AKT pathway. Biochem Pharmacol 2024; 226:116398. [PMID: 38944395 DOI: 10.1016/j.bcp.2024.116398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/14/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
Glioblastoma (GBM) is a primary intracranial malignant tumor with the highest mortality and morbidity among all malignant central nervous system tumors. Tanshinone IIA is a fat-soluble active ingredient obtained from Salvia miltiorrhiza, which has an inhibitory effect against various cancers. We designed and synthesized a novel L-shaped ortho-quinone analog TE5 with tanshinone IIA as the lead compound and tested its antitumor activity against GBM. The results indicated that TE5 effectively inhibited the proliferation, migration, and invasion of GBM cells, and demonstrated low toxicity in vitro. We found that TE5 may bind to androgen receptors and promote their degradation through the proteasome. Inhibition of the PI3K/AKT signaling pathway was also observed in TE5 treated GBM cells. Additionally, TE5 arrested the cell cycle at the G2/M phase and induced mitochondria-dependent apoptosis. In vivo experiments further confirmed the anti-tumor activity, safety, and effect on androgen receptor level of TE5 in animal models of GBM. Our results suggest that TE5 may be a potential therapeutic drug to treat GBM.
Collapse
Affiliation(s)
- Tao Zhang
- GuiZhou University Medical College, Guiyang 550025, Guizhou Province, China; State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, Guizhou Province, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, Guizhou Province, China; Department of Neurology, Guizhou Provincial People's Hospital, Guiyang 550002, Guizhou Province, China
| | - Weidong Pan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, Guizhou Province, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, Guizhou Province, China
| | - Xin Tan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, Guizhou Province, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, Guizhou Province, China
| | - Jia Yu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, Guizhou Province, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, Guizhou Province, China
| | - Sha Cheng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, Guizhou Province, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, Guizhou Province, China
| | - Shinan Wei
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, Guizhou Province, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, Guizhou Province, China
| | - Kuan Fan
- Department of Neurology, Guizhou Provincial People's Hospital, Guiyang 550002, Guizhou Province, China
| | - Lu Wang
- Department of Neurology, Guizhou Provincial People's Hospital, Guiyang 550002, Guizhou Province, China
| | - Heng Luo
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, Guizhou Province, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, Guizhou Province, China.
| | - Xiao Hu
- GuiZhou University Medical College, Guiyang 550025, Guizhou Province, China; Department of Neurology, Guizhou Provincial People's Hospital, Guiyang 550002, Guizhou Province, China.
| |
Collapse
|
4
|
Dieper A, Scheidegger S, Füchslin RM, Veltsista PD, Stein U, Weyland M, Gerster D, Beck M, Bengtsson O, Zips D, Ghadjar P. Literature review: potential non-thermal molecular effects of external radiofrequency electromagnetic fields on cancer. Int J Hyperthermia 2024; 41:2379992. [PMID: 39019469 DOI: 10.1080/02656736.2024.2379992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/10/2024] [Indexed: 07/19/2024] Open
Abstract
INTRODUCTION There is an ongoing scientific discussion, that anti-cancer effects induced by radiofrequency (RF)-hyperthermia might not be solely attributable to subsequent temperature elevations at the tumor site but also to non-temperature-induced effects. The exact molecular mechanisms behind said potential non-thermal RF effects remain largely elusive, however, limiting their therapeutical targetability. OBJECTIVE Therefore, we aim to provide an overview of the current literature on potential non-temperature-induced molecular effects within cancer cells in response to RF-electromagnetic fields (RF-EMF). MATERIAL AND METHODS This literature review was conducted following the PRISMA guidelines. For this purpose, a MeSH-term-defined literature search on MEDLINE (PubMed) and Scopus (Elsevier) was conducted on March 23rd, 2024. Essential criteria herein included the continuous wave RF-EMF nature (3 kHz - 300 GHz) of the source, the securing of temperature-controlled circumstances within the trials, and the preclinical nature of the trials. RESULTS Analysis of the data processed in this review suggests that RF-EMF radiation of various frequencies seems to be able to induce significant non-temperature-induced anti-cancer effects. These effects span from mitotic arrest and growth inhibition to cancer cell death in the form of autophagy and apoptosis and appear to be mostly exclusive to cancer cells. Several cellular mechanisms were identified through which RF-EMF radiation potentially imposes its anti-cancer effects. Among those, by reviewing the included publications, we identified RF-EMF-induced ion channel activation, altered gene expression, altered membrane potentials, membrane oscillations, and blebbing, as well as changes in cytoskeletal structure and cell morphology. CONCLUSION The existent literature points toward a yet untapped therapeutic potential of RF-EMF treatment, which might aid in damaging cancer cells through bio-electrical and electro-mechanical molecular mechanisms while minimizing adverse effects on healthy tissue cells. Further research is imperative to definitively confirm non-thermal EMF effects as well as to determine optimal cancer-type-specific RF-EMF frequencies, field intensities, and exposure intervals.
Collapse
Affiliation(s)
- Anna Dieper
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Stephan Scheidegger
- Institute for Applied Mathematics and Physics, Zurich University of Applied Sciences, Winterthur, Switzerland
| | - Rudolf M Füchslin
- Institute for Applied Mathematics and Physics, Zurich University of Applied Sciences, Winterthur, Switzerland
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin and Max-Delbrück-Centrum (MDC), Berlin, Germany
| | - Paraskevi D Veltsista
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ulrike Stein
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin and Max-Delbrück-Centrum (MDC), Berlin, Germany
| | - Mathias Weyland
- Institute for Applied Mathematics and Physics, Zurich University of Applied Sciences, Winterthur, Switzerland
| | - Dominik Gerster
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Marcus Beck
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Olof Bengtsson
- Ferdinand-Braun-Institut (FBH), Leibnitz-Institut für Höchstfrequenztechnik, Berlin, Germany
| | - Daniel Zips
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Pirus Ghadjar
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
5
|
Gromek P, Senkowska Z, Płuciennik E, Pasieka Z, Zhao LY, Gielecińska A, Kciuk M, Kłosiński K, Kałuzińska-Kołat Ż, Kołat D. Revisiting the standards of cancer detection and therapy alongside their comparison to modern methods. World J Methodol 2024; 14:92982. [PMID: 38983668 PMCID: PMC11229876 DOI: 10.5662/wjm.v14.i2.92982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/15/2024] [Accepted: 04/28/2024] [Indexed: 06/13/2024] Open
Abstract
In accordance with the World Health Organization data, cancer remains at the forefront of fatal diseases. An upward trend in cancer incidence and mortality has been observed globally, emphasizing that efforts in developing detection and treatment methods should continue. The diagnostic path typically begins with learning the medical history of a patient; this is followed by basic blood tests and imaging tests to indicate where cancer may be located to schedule a needle biopsy. Prompt initiation of diagnosis is crucial since delayed cancer detection entails higher costs of treatment and hospitalization. Thus, there is a need for novel cancer detection methods such as liquid biopsy, elastography, synthetic biosensors, fluorescence imaging, and reflectance confocal microscopy. Conventional therapeutic methods, although still common in clinical practice, pose many limitations and are unsatisfactory. Nowadays, there is a dynamic advancement of clinical research and the development of more precise and effective methods such as oncolytic virotherapy, exosome-based therapy, nanotechnology, dendritic cells, chimeric antigen receptors, immune checkpoint inhibitors, natural product-based therapy, tumor-treating fields, and photodynamic therapy. The present paper compares available data on conventional and modern methods of cancer detection and therapy to facilitate an understanding of this rapidly advancing field and its future directions. As evidenced, modern methods are not without drawbacks; there is still a need to develop new detection strategies and therapeutic approaches to improve sensitivity, specificity, safety, and efficacy. Nevertheless, an appropriate route has been taken, as confirmed by the approval of some modern methods by the Food and Drug Administration.
Collapse
Affiliation(s)
- Piotr Gromek
- Department of Functional Genomics, Medical University of Lodz, Lodz 90-752, Lodzkie, Poland
| | - Zuzanna Senkowska
- Department of Functional Genomics, Medical University of Lodz, Lodz 90-752, Lodzkie, Poland
| | - Elżbieta Płuciennik
- Department of Functional Genomics, Medical University of Lodz, Lodz 90-752, Lodzkie, Poland
| | - Zbigniew Pasieka
- Department of Biomedicine and Experimental Surgery, Medical University of Lodz, Lodz 90-136, Lodzkie, Poland
| | - Lin-Yong Zhao
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Adrianna Gielecińska
- Department of Molecular Biotechnology and Genetics, University of Lodz, Lodz 90-237, Lodzkie, Poland
- Doctoral School of Exact and Natural Sciences, University of Lodz, Lodz 90-237, Lodzkie, Poland
| | - Mateusz Kciuk
- Department of Molecular Biotechnology and Genetics, University of Lodz, Lodz 90-237, Lodzkie, Poland
| | - Karol Kłosiński
- Department of Biomedicine and Experimental Surgery, Medical University of Lodz, Lodz 90-136, Lodzkie, Poland
| | - Żaneta Kałuzińska-Kołat
- Department of Functional Genomics, Medical University of Lodz, Lodz 90-752, Lodzkie, Poland
- Department of Biomedicine and Experimental Surgery, Medical University of Lodz, Lodz 90-136, Lodzkie, Poland
| | - Damian Kołat
- Department of Functional Genomics, Medical University of Lodz, Lodz 90-752, Lodzkie, Poland
- Department of Biomedicine and Experimental Surgery, Medical University of Lodz, Lodz 90-136, Lodzkie, Poland
| |
Collapse
|
6
|
Xiao T, Zheng H, Zu K, Yue Y, Wang Y. Tumor-treating fields in cancer therapy: advances of cellular and molecular mechanisms. Clin Transl Oncol 2024:10.1007/s12094-024-03551-z. [PMID: 38884919 DOI: 10.1007/s12094-024-03551-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/04/2024] [Indexed: 06/18/2024]
Abstract
Tumor-Treating Fields (TTFields) use intermediate-frequency and low-intensity electric fields to inhibit tumor cells. However, their mechanisms are still not well understood. This article reviews their key antitumor mechanisms at the cellular and molecular levels, including inhibition of proliferation, induction of death, disturbance of migration, and activation of the immune system. The multifaceted biological effects in combination with other cancer treatments are also summarized. The deep insight into their mechanism will help develop more potential antitumor treatments.
Collapse
Affiliation(s)
- Tong Xiao
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Hao Zheng
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Kaiyang Zu
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Youjia Yue
- School of Biomedical Engineeringg, Capital Medical University, Beijing, 100069, China
| | - Ying Wang
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
7
|
Lan J, Liu Y, Chen J, Liu H, Feng Y, Liu J, Chen L. Advanced tumor electric fields therapy: A review of innovative research and development and prospect of application in glioblastoma. CNS Neurosci Ther 2024; 30:e14720. [PMID: 38715344 PMCID: PMC11077002 DOI: 10.1111/cns.14720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/16/2024] [Accepted: 03/21/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is an aggressive malignant tumor with a high mortality rate and is the most prevalent primary intracranial tumor that remains incurable. The current standard treatment, which involves surgery along with concurrent radiotherapy and chemotherapy, only yields a survival time of 14-16 months. However, the introduction of tumor electric fields therapy (TEFT) has provided a glimmer of hope for patients with newly diagnosed and recurrent GBM, as it has been shown to extend the median survival time to 20 months. The combination of TEFT and other advanced therapies is a promising trend in the field of GBM, facilitated by advancements in medical technology. AIMS In this review, we provide a concise overview of the mechanism and efficacy of TEFT. In addition, we mainly discussed the innovation of TEFT and our proposed blueprint for TEFT implementation. CONCLUSION Tumor electric fields therapy is an effective and highly promising treatment modality for GBM. The full therapeutic potential of TEFT can be exploited by combined with other innovative technologies and treatments.
Collapse
Affiliation(s)
- Jinxin Lan
- Department of NeurosurgeryChinese PLA General HospitalBeijingChina
- School of MedicineNankai UniversityTianjinChina
- Medical School of Chinese PLABeijingChina
| | - Yuyang Liu
- Medical School of Chinese PLABeijingChina
- Department of Neurosurgery920th Hospital of Joint Logistics Support ForceKunmingChina
| | - Junyi Chen
- Department of NeurosurgeryChinese PLA General HospitalBeijingChina
- Medical School of Chinese PLABeijingChina
| | - Hongyu Liu
- Medical School of Chinese PLABeijingChina
- Department of NeurosurgeryHainan Hospital of Chinese PLA General HospitalHainanChina
| | - Yaping Feng
- Department of Neurosurgery920th Hospital of Joint Logistics Support ForceKunmingChina
| | - Jialin Liu
- Department of NeurosurgeryChinese PLA General HospitalBeijingChina
- Medical School of Chinese PLABeijingChina
| | - Ling Chen
- Department of NeurosurgeryChinese PLA General HospitalBeijingChina
- School of MedicineNankai UniversityTianjinChina
- Medical School of Chinese PLABeijingChina
| |
Collapse
|
8
|
Yu A, Zeng J, Yu J, Cao S, Li A. Theory and application of TTFields in newly diagnosed glioblastoma. CNS Neurosci Ther 2024; 30:e14563. [PMID: 38481068 PMCID: PMC10938032 DOI: 10.1111/cns.14563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/07/2023] [Accepted: 11/29/2023] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND Glioblastoma is the most common primary malignant brain tumor in adults. TTFields is a therapy that use intermediate-frequency and low-intensity alternating electric fields to treat tumors. For patients with ndGBM, the addition of TTFields after the concurrent chemoradiotherapy phase of the Stupp regimen can improve prognosis. However, TTFields still has the potential to further prolong the survival of ndGBM patients. AIM By summarizing the mechanism and application status of TTFields in the treatment of ndGBM, the application prospect of TTFields in ndbm treatment is prospected. METHODS We review the recent literature and included 76 articles to summarize the mechanism of TTfields in the treatment of ndGBM. The current clinical application status and potential health benefits of TTFields in the treatment of ndGBM are also discussed. RESULTS TTFields can interfere with tumor cell mitosis, lead to tumor cell apoptosis and increased autophagy, hinder DNA damage repair, induce ICD, activate tumor immune microenvironment, reduce cancer cell metastasis and invasion, and increase BBB permeability. TTFields combines with chemoradiotherapy has made progress, its optimal application time is being explored and the problems that need to be considered when retaining the electrode patches for radiotherapy are further discussed. TTFields shows potential in combination with immunotherapy, antimitotic agents, and PARP inhibitors, as well as in patients with subtentorial gliomas. CONCLUSION This review summarizes mechanisms of TTFields in the treatment of ndGBM, and describes the current clinical application of TTFields in ndGBM. Through the understanding of its principle and application status, we believe that TTFields still has the potential to further prolong the survival of ndGBM patients. Thus,research is still needed to explore new ways to combine TTFields with other therapies and optimize the use of TTFields to realize its full potential in ndGBM patients.
Collapse
Affiliation(s)
- Ao Yu
- Department of Radiotherapy, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical UniversityCancer Hospital of Dalian University of TechnologyShenyangChina
- School of GraduateChina Medical UniversityShenyangChina
| | - Juan Zeng
- Department of OncologyShengjing Hospital of China Medical UniversityShenyangChina
| | - Jinhui Yu
- Department of Radiotherapy, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical UniversityCancer Hospital of Dalian University of TechnologyShenyangChina
- School of GraduateChina Medical UniversityShenyangChina
| | - Shuo Cao
- Department of OncologyShengjing Hospital of China Medical UniversityShenyangChina
| | - Ailin Li
- Department of Radiotherapy, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical UniversityCancer Hospital of Dalian University of TechnologyShenyangChina
| |
Collapse
|
9
|
Ravin R, Cai TX, Li A, Briceno N, Pursley RH, Garmendia-Cedillos M, Pohida T, Wang H, Zhuang Z, Cui J, Morgan NY, Williamson NH, Gilbert MR, Basser PJ. "Tumor Treating Fields" delivered via electromagnetic induction have varied effects across glioma cell lines and electric field amplitudes. Am J Cancer Res 2024; 14:562-584. [PMID: 38455403 PMCID: PMC10915321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/15/2023] [Indexed: 03/09/2024] Open
Abstract
Previous studies reported that alternating electric fields (EFs) in the intermediate frequency (100-300 kHz) and low intensity (1-3 V/cm) regime - termed "Tumor Treating Fields" (TTFields) - have a specific, anti-proliferative effect on glioblastoma multiforme (GBM) cells. However, the mechanism(s) of action remain(s) incompletely understood, hindering the clinical adoption of treatments based on TTFields. To advance the study of such treatment in vitro, we developed an inductive device to deliver EFs to cell cultures which improves thermal and osmolar regulation compared to prior devices. Using this inductive device, we applied continuous, 200 kHz electromagnetic fields (EMFs) with a radial EF amplitude profile spanning 0-6.5 V/cm to cultures of primary rat astrocytes and several human GBM cell lines - U87, U118, GSC827, and GSC923 - for a duration of 72 hours. Cell density was assessed via segmented pixel densities from GFP expression (U87, U118) or from staining (astrocytes, GSC827, GSC923). Further RNA-Seq analyses were performed on GSC827 and GSC923 cells. Treated cultures of all cell lines exhibited little to no change in proliferation at lower EF amplitudes (0-3 V/cm). At higher amplitudes (> 4 V/cm), different effects were observed. Apparent cell densities increased (U87), decreased (GSC827, GSC923), or showed little change (U118, astrocytes). RNA-Seq analyses on treated and untreated GSC827 and GSC923 cells revealed differentially expressed gene sets of interest, such as those related to cell cycle control. Up- and down-regulation, however, was not consistent across cell lines nor EF amplitudes. Our results indicate no consistent, anti-proliferative effect of 200 kHz EMFs across GBM cell lines and thus contradict previous in vitro findings. Rather, effects varied across different cell lines and EF amplitude regimes, highlighting the need to assess the effect(s) of TTFields and similar treatments on a per cell line basis.
Collapse
Affiliation(s)
- Rea Ravin
- Section on Quantitative Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIHBethesda, Maryland, USA
- Celoptics, Inc.Rockville, Maryland, USA
| | - Teddy X Cai
- Section on Quantitative Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIHBethesda, Maryland, USA
- The Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, Oxford UniversityOxfordshire, UK
| | - Aiguo Li
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, NIHBethesda, Maryland, USA
| | - Nicole Briceno
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, NIHBethesda, Maryland, USA
| | - Randall H Pursley
- Instrumentation Development and Engineering Applications Section, National Institute of Biomedical Imaging and Bioengineering, NIHBethesda, Maryland, USA
| | - Marcial Garmendia-Cedillos
- Instrumentation Development and Engineering Applications Section, National Institute of Biomedical Imaging and Bioengineering, NIHBethesda, Maryland, USA
| | - Tom Pohida
- Instrumentation Development and Engineering Applications Section, National Institute of Biomedical Imaging and Bioengineering, NIHBethesda, Maryland, USA
| | - Herui Wang
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, NIHBethesda, Maryland, USA
| | - Zhengping Zhuang
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, NIHBethesda, Maryland, USA
| | - Jing Cui
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, NIHBethesda, Maryland, USA
| | - Nicole Y Morgan
- Trans-NIH Shared Resources on Biomedical Engineering and Physical Sciences, National Institute of Biomedical Imaging and Bioengineering, NIHBethesda, Maryland, USA
| | - Nathan H Williamson
- Section on Quantitative Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIHBethesda, Maryland, USA
| | - Mark R Gilbert
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, NIHBethesda, Maryland, USA
| | - Peter J Basser
- Section on Quantitative Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIHBethesda, Maryland, USA
| |
Collapse
|
10
|
Shi W, Tanzhu G, Chen L, Ning J, Wang H, Xiao G, Peng H, Jing D, Liang H, Nie J, Yi M, Zhou R. Radiotherapy in Preclinical Models of Brain Metastases: A Review and Recommendations for Future Studies. Int J Biol Sci 2024; 20:765-783. [PMID: 38169621 PMCID: PMC10758094 DOI: 10.7150/ijbs.91295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024] Open
Abstract
Brain metastases (BMs) frequently occur in primary tumors such as lung cancer, breast cancer, and melanoma, and are associated with notably short natural survival. In addition to surgical interventions, chemotherapy, targeted therapy, and immunotherapy, radiotherapy (RT) is a crucial treatment for BM and encompasses whole-brain radiotherapy (WBRT) and stereotactic radiosurgery (SRS). Validating the efficacy and safety of treatment regimens through preclinical models is imperative for successful translation to clinical application. This not only advances fundamental research but also forms the theoretical foundation for clinical study. This review, grounded in animal models of brain metastases (AM-BM), explores the theoretical underpinnings and practical applications of radiotherapy in combination with chemotherapy, targeted therapy, immunotherapy, and emerging technologies such as nanomaterials and oxygen-containing microbubbles. Initially, we provided a concise overview of the establishment of AM-BMs. Subsequently, we summarize key RT parameters (RT mode, dose, fraction, dose rate) and their corresponding effects in AM-BMs. Finally, we present a comprehensive analysis of the current research status and future directions for combination therapy based on RT. In summary, there is presently no standardized regimen for AM-BM treatment involving RT. Further research is essential to deepen our understanding of the relationships between various parameters and their respective effects.
Collapse
Affiliation(s)
- Wen Shi
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Guilong Tanzhu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Liu Chen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Jiaoyang Ning
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Hongji Wang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Gang Xiao
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Haiqin Peng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Di Jing
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Huadong Liang
- Department of Technology, Hunan SJA Laboratory Animal Co., Ltd., Changsha, Hunan Province, China
| | - Jing Nie
- Department of Technology, Hunan SJA Laboratory Animal Co., Ltd., Changsha, Hunan Province, China
| | - Min Yi
- Department of Technology, Hunan SJA Laboratory Animal Co., Ltd., Changsha, Hunan Province, China
| | - Rongrong Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| |
Collapse
|
11
|
Colamaria A, Leone A, Fochi NP, Di Napoli V, Giordano G, Landriscina M, Patel K, Carbone F. Tumor treating fields for the treatment of glioblastoma: Current understanding and future perspectives. Surg Neurol Int 2023; 14:394. [PMID: 38053701 PMCID: PMC10695468 DOI: 10.25259/sni_674_2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/13/2023] [Indexed: 12/07/2023] Open
Abstract
Background This review focuses on the recently published evidence on tumor treating fields (TTFields) administered alone or in combination with locoregional and systemic options for treating glioblastoma (GBM) in the past ten years. The aim is to critically summarize the novelty and results obtained with this innovative tool, which is becoming part of the armamentarium of neurosurgeons and neuro-oncologists. Methods A comprehensive search and analysis were conducted on pivotal studies published in the past ten years. Furthermore, all completed clinical trials, whose results were published on clinicaltrials.gov, were examined and included in the present review, encompassing both recurrent (r) and newly diagnosed (n) GBM. Finally, an additional examination of the ongoing clinical trials was also conducted. Results Recent trials have shown promising results both in patients with nGBM and rGBM/progressive (rGBM), leading to Food and Drug Administration approval in selected patients and the Congress of Neurological Surgeons to include TTFields into current guidelines on the management of GBM (P100034/S001-029). Recently, different randomized trials have demonstrated promising results of TTFields in combination with standard treatment of n- and rGBM, especially when considering progression-free and overall survival, maintaining a low rate of mild to moderate adverse events. Conclusion Optimal outcomes were obtained in nGBM and progressive disease. A possible future refinement of TTFields could significantly impact the treatment of rGBM and the actual standard of care for GBM, given the better safety profile and survival effects.
Collapse
Affiliation(s)
| | - Augusto Leone
- Department of Neurosurgery, Städtisches Klinikum Karlsruhe, Karlsruhe, Germany
| | | | | | - Guido Giordano
- Unit of Medical Oncology and Biomolecular Therapy, University of Foggia, Foggia, Italy
| | - Matteo Landriscina
- Unit of Medical Oncology and Biomolecular Therapy, University of Foggia, Foggia, Italy
| | - Kashyap Patel
- Department of Neurosurgery, Baroda Medical College, Vadodara, Gujarat, India
| | - Francesco Carbone
- Department of Neurosurgery, Städtisches Klinikum Karlsruhe, Karlsruhe, Germany
| |
Collapse
|
12
|
Hänsch L, Peipp M, Mastall M, Villars D, Myburgh R, Silginer M, Weiss T, Gramatzki D, Vasella F, Manz MG, Weller M, Roth P. Chimeric antigen receptor T cell-based targeting of CD317 as a novel immunotherapeutic strategy against glioblastoma. Neuro Oncol 2023; 25:2001-2014. [PMID: 37335916 PMCID: PMC10628943 DOI: 10.1093/neuonc/noad108] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Indexed: 06/21/2023] Open
Abstract
BACKGROUND Chimeric antigen receptor (CAR) T cell therapy has proven to be successful against hematological malignancies. However, exploiting CAR T cells to treat solid tumors is more challenging for various reasons including the lack of suitable target antigens. Here, we identify the transmembrane protein CD317 as a novel target antigen for CAR T cell therapy against glioblastoma, one of the most aggressive solid tumors. METHODS CD317-targeting CAR T cells were generated by lentivirally transducing human T cells from healthy donors. The anti-glioma activity of CD317-CAR T cells toward various glioma cells was assessed in vitro in cell lysis assays. Subsequently, we determined the efficacy of CD317-CAR T cells to control tumor growth in vivo in clinically relevant mouse glioma models. RESULTS We generated CD317-specific CAR T cells and demonstrate strong anti-tumor activity against several glioma cell lines as well as primary patient-derived cells with varying CD317 expression levels in vitro. A CRISPR/Cas9-mediated knockout of CD317 protected glioma cells from CAR T cell lysis, demonstrating the target specificity of the approach. Silencing of CD317 expression in T cells by RNA interference reduced fratricide of engineered T cells and further improved their effector function. Using orthotopic glioma mouse models, we demonstrate the antigen-specific anti-tumor activity of CD317-CAR T cells, which resulted in prolonged survival and cure of a fraction of CAR T cell-treated animals. CONCLUSIONS These data reveal a promising role of CD317-CAR T cell therapy against glioblastoma, which warrants further evaluation to translate this immunotherapeutic strategy into clinical neuro-oncology.
Collapse
Affiliation(s)
- Lena Hänsch
- Department of Neurology and Brain Tumor Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Matthias Peipp
- Division of Antibody-Based Immunotherapy, Department of Internal Medicine II, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
- Division of Antibody-based Immunotherapy, Christian-Albrechts-University, Kiel, Germany
| | - Maximilian Mastall
- Department of Neurology and Brain Tumor Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Danielle Villars
- Department of Neurology and Brain Tumor Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Renier Myburgh
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Manuela Silginer
- Department of Neurology and Brain Tumor Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Tobias Weiss
- Department of Neurology and Brain Tumor Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Dorothee Gramatzki
- Department of Neurology and Brain Tumor Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Flavio Vasella
- Department of Neurology and Brain Tumor Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland
- Department of Neurosurgery, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Markus G Manz
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Michael Weller
- Department of Neurology and Brain Tumor Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Patrick Roth
- Department of Neurology and Brain Tumor Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| |
Collapse
|
13
|
Jo Y, Lee E, Oh G, Gi Y, Yoon M. Synergistic effect of TTF and 5-FU combination treatment on pancreatic cancer cells. Am J Cancer Res 2023; 13:4734-4741. [PMID: 37970358 PMCID: PMC10636678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 08/23/2023] [Indexed: 11/17/2023] Open
Abstract
The present study investigated the therapeutic potential of combining tumor-treating fields (TTF), a novel cancer treatment modality that employs low-intensity, alternating electric fields, with 5-fluorouracil (5-FU), a standard chemotherapy drug used for treating pancreatic cancer. The HPAF-II and Mia-Paca II pancreatic cancer cell lines were treated with TTF, 5-FU, or their combination. Combination treatment produced a significantly greater inhibitory effect on cancer cell proliferation than each single modality. Furthermore, combination therapy induced a substantially higher rate of pancreatic cancer cell apoptosis and exhibited a synergistic effect in clonogenic assays. Additionally, combination treatment showed a greater inhibition of cancer cell migration and invasion than either TTF or 5-FU alone. In conclusion, these findings suggest that the synergistic properties of TTF and 5-FU result in greater therapeutic efficacy against pancreatic cancer cells than either modality alone and may improve survival rates in patients with pancreatic cancer.
Collapse
Affiliation(s)
- Yunhui Jo
- Institute of Global Health Technology (IGHT), Korea UniversitySeoul 02841, Republic of Korea
| | - Eunjun Lee
- Department of Bio-Medical Engineering, Korea UniversitySeoul 02841, Republic of Korea
| | - Geon Oh
- Department of Bio-Medical Engineering, Korea UniversitySeoul 02841, Republic of Korea
| | - Yongha Gi
- Department of Bio-Medical Engineering, Korea UniversitySeoul 02841, Republic of Korea
| | - Myonggeun Yoon
- Department of Bio-Medical Engineering, Korea UniversitySeoul 02841, Republic of Korea
- FieldCure Ltd.Seoul 02852, Republic of Korea
| |
Collapse
|
14
|
Li X, Liu K, Xing L, Rubinsky B. A review of tumor treating fields (TTFields): advancements in clinical applications and mechanistic insights. Radiol Oncol 2023; 57:279-291. [PMID: 37665740 PMCID: PMC10476910 DOI: 10.2478/raon-2023-0044] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/04/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND Tumor Treating Fields (TTFields) is a non-invasive modality for cancer treatment that utilizes a specific sinusoidal electric field ranging from 100 kHz to 300 kHz, with an intensity of 1 V/cm to 3 V/cm. Its purpose is to inhibit cancer cell proliferation and induce cell death. Despite promising outcomes from clinical trials, TTFields have received FDA approval for the treatment of glioblastoma multiforme (GBM) and malignant pleural mesothelioma (MPM). Nevertheless, global acceptance of TTFields remains limited. To enhance its clinical application in other types of cancer and gain a better understanding of its mechanisms of action, this review aims to summarize the current research status by examining existing literature on TTFields' clinical trials and mechanism studies. CONCLUSIONS Through this comprehensive review, we seek to stimulate novel ideas and provide physicians, patients, and researchers with a better comprehension of the development of TTFields and its potential applications in cancer treatment.
Collapse
Affiliation(s)
- Xing Li
- College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nan Jing, Jiang Su, China
| | - Kaida Liu
- College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nan Jing, Jiang Su, China
| | - Lidong Xing
- College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nan Jing, Jiang Su, China
| | - Boris Rubinsky
- Department of Mechanical Engineering, University of California Berkeley, BerkeleyCA, United States of America
| |
Collapse
|
15
|
Guterres A, Abrahim M, da Costa Neves PC. The role of immune subtyping in glioma mRNA vaccine development. Immunotherapy 2023; 15:1057-1072. [PMID: 37431617 DOI: 10.2217/imt-2023-0027] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023] Open
Abstract
Studies on the development of mRNA vaccines for central nervous system tumors have used gene expression profiles, clinical data and RNA sequencing from sources such as The Cancer Genome Atlas and Chinese Glioma Genome Atlas to identify effective antigens. These studies revealed several immune subtypes of glioma, each one linked to unique prognoses and genetic/immune-modulatory changes. Potential antigens include ARPC1B, BRCA2, COL6A1, ITGB3, IDH1, LILRB2, TP53 and KDR, among others. Patients with immune-active and immune-suppressive phenotypes were found to respond better to mRNA vaccines. While these findings indicate the potential of mRNA vaccines in cancer therapy, further research is required to optimize administration and adjuvant selection, and precisely identify target antigens.
Collapse
Affiliation(s)
- Alexandro Guterres
- Laboratório de Tecnologia Imunológica, Instituto de Tecnologia em Imunobiológicos, Vice-Diretoria de Desenvolvimento Tecnológico, Bio-Manguinhos, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, RJ, 21040-360, Brazil
| | - Mayla Abrahim
- Laboratório de Tecnologia Imunológica, Instituto de Tecnologia em Imunobiológicos, Vice-Diretoria de Desenvolvimento Tecnológico, Bio-Manguinhos, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, RJ, 21040-360, Brazil
| | - Patrícia Cristina da Costa Neves
- Laboratório de Tecnologia Imunológica, Instituto de Tecnologia em Imunobiológicos, Vice-Diretoria de Desenvolvimento Tecnológico, Bio-Manguinhos, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, RJ, 21040-360, Brazil
| |
Collapse
|
16
|
Jones AB, Schanel TL, Rigsby MR, Griguer CE, McFarland BC, Anderson JC, Willey CD, Hjelmeland AB. Tumor Treating Fields Alter the Kinomic Landscape in Glioblastoma Revealing Therapeutic Vulnerabilities. Cells 2023; 12:2171. [PMID: 37681903 PMCID: PMC10486683 DOI: 10.3390/cells12172171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/09/2023] Open
Abstract
Treatment for the deadly brain tumor glioblastoma (GBM) has been improved through the non-invasive addition of alternating electric fields, called tumor treating fields (TTFields). Improving both progression-free and overall survival, TTFields are currently approved for treatment of recurrent GBMs as a monotherapy and in the adjuvant setting alongside TMZ for newly diagnosed GBMs. These TTFields are known to inhibit mitosis, but the full molecular impact of TTFields remains undetermined. Therefore, we sought to understand the ability of TTFields to disrupt the growth patterns of and induce kinomic landscape shifts in TMZ-sensitive and -resistant GBM cells. We determined that TTFields significantly decreased the growth of TMZ-sensitive and -resistant cells. Kinomic profiling predicted kinases that were induced or repressed by TTFields, suggesting possible therapy-specific vulnerabilities. Serving as a potential pro-survival mechanism for TTFields, kinomics predicted the increased activity of platelet-derived growth-factor receptor alpha (PDGFRα). We demonstrated that the addition of the PDGFR inhibitor, crenolanib, to TTFields further reduced cell growth in comparison to either treatment alone. Collectively, our data suggest the efficacy of TTFields in vitro and identify common signaling responses to TTFields in TMZ-sensitive and -resistant populations, which may support more personalized medicine approaches.
Collapse
Affiliation(s)
- Amber B. Jones
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (A.B.J.); (M.R.R.); (B.C.M.)
| | - Taylor L. Schanel
- Department of Radiation Oncology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (T.L.S.); (J.C.A.)
| | - Mikayla R. Rigsby
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (A.B.J.); (M.R.R.); (B.C.M.)
| | - Corinne E. Griguer
- Department of Radiation Oncology, University of Iowa, Iowa City, IA 52242, USA;
| | - Braden C. McFarland
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (A.B.J.); (M.R.R.); (B.C.M.)
| | - Joshua C. Anderson
- Department of Radiation Oncology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (T.L.S.); (J.C.A.)
| | - Christopher D. Willey
- Department of Radiation Oncology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (T.L.S.); (J.C.A.)
| | - Anita B. Hjelmeland
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (A.B.J.); (M.R.R.); (B.C.M.)
| |
Collapse
|
17
|
Fishman H, Monin R, Dor-On E, Kinzel A, Haber A, Giladi M, Weinberg U, Palti Y. Tumor Treating Fields (TTFields) increase the effectiveness of temozolomide and lomustine in glioblastoma cell lines. J Neurooncol 2023; 163:83-94. [PMID: 37131108 DOI: 10.1007/s11060-023-04308-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/03/2023] [Indexed: 05/04/2023]
Abstract
PURPOSE Tumor Treating Fields (TTFields) are electric fields that disrupt cellular processes critical for cancer cell viability and tumor progression, ultimately leading to cell death. TTFields therapy is approved for treatment of newly-diagnosed glioblastoma (GBM) concurrent with maintenance temozolomide (TMZ). Recently, the benefit of TMZ in combination with lomustine (CCNU) was demonstrated in patients with O6-methylguanine DNA methyltransferase (MGMT) promoter methylation. The addition of adjuvant TTFields to TMZ plus CCNU further improved patient outcomes, leading to a CE mark for this regimen. The current in vitro study aimed to elucidate the mechanism underlying the benefit of this treatment protocol. METHODS Human GBM cell lines with different MGMT promoter methylation statuses were treated with TTFields, TMZ, and CCNU, and effectiveness was tested by cell count, apoptosis, colony formation, and DNA damage measurements. Expression levels of relevant DNA-repair proteins were examined by western blot analysis. RESULTS TTFields concomitant with TMZ displayed an additive effect, irrespective of MGMT expression levels. TTFields concomitant with CCNU or with CCNU plus TMZ was additive in MGMT-expressing cells and synergistic in MGMT-non-expressing cells. TTFields downregulated the FA-BRCA pathway and increased DNA damage induced by the chemotherapy combination. CONCLUSIONS The results support the clinical benefit demonstrated for TTFields concomitant with TMZ plus CCNU. Since the FA-BRCA pathway is required for repair of DNA cross-links induced by CCNU in the absence of MGMT, the synergy demonstrated in MGMT promoter methylated cells when TTFields and CCNU were co-applied may be attributed to the BRCAness state induced by TTFields.
Collapse
|
18
|
Zhou Y, Xing X, Zhou J, Jiang H, Cen P, Jin C, Zhong Y, Zhou R, Wang J, Tian M, Zhang H. Therapeutic potential of tumor treating fields for malignant brain tumors. Cancer Rep (Hoboken) 2023; 6:e1813. [PMID: 36987739 PMCID: PMC10172187 DOI: 10.1002/cnr2.1813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/02/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND Malignant brain tumors are among the most threatening diseases of the central nervous system, and despite increasingly updated treatments, the prognosis has not been improved. Tumor treating fields (TTFields) are an emerging approach in cancer treatment using intermediate-frequency and low-intensity electric field and can lead to the development of novel therapeutic options. RECENT FINDINGS A series of biological processes induced by TTFields to exert anti-cancer effects have been identified. Recent studies have shown that TTFields can alter the bioelectrical state of macromolecules and organelles involved in cancer biology. Massive alterations in cancer cell proteomics and transcriptomics caused by TTFields were related to cell biological processes as well as multiple organelle structures and activities. This review addresses the mechanisms of TTFields and recent advances in the application of TTFields therapy in malignant brain tumors, especially in glioblastoma (GBM). CONCLUSIONS As a novel therapeutic strategy, TTFields have shown promising results in many clinical trials, especially in GBM, and continue to evolve. A growing number of patients with malignant brain tumors are being enrolled in ongoing clinical studies demonstrating that TTFields-based combination therapies can improve treatment outcomes.
Collapse
Affiliation(s)
- Youyou Zhou
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Xiaoqing Xing
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jinyun Zhou
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Han Jiang
- Faculty of Science and Technology, Department of Electrical and Computer Engineering, Biomedical Imaging Laboratory (BIG), University of Macau, Taipa, Macau SAR, China
| | - Peili Cen
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Chentao Jin
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yan Zhong
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Rui Zhou
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jing Wang
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Mei Tian
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang, China
- Human Phenome Institute, Fudan University, Shanghai, China
| | - Hong Zhang
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang, China
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
19
|
Induction of apoptosis in glioma cells by lycorine via reactive oxygen species generation and regulation of NF-κB pathways. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:1247-1255. [PMID: 36715733 DOI: 10.1007/s00210-023-02384-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 01/02/2023] [Indexed: 01/31/2023]
Abstract
Glioma is an extremely aggressive primary brain tumor, which is highly resistant to chemotherapy, presenting a therapeutic challenge. Here, we explored the anti-glioma effects and the underlying mechanism of lycorine, an isoquinoline alkaloid isolated from lycoris on glioma cells. We found that lycorine could dose dependently inhibit C6 glioma cell growth and induce cell apoptosis and intracellular reactive oxygen species (ROS) production. The half-maximal inhibitory concentration (IC50) values of lycorine on C6 glioma cells at 48 h was 2.85 μM. Meanwhile, lycorine treatment caused dysfunction of the NF-κB signal, as demonstrated by the up-regulation of NF-κB inhibitor protein IκB and the downregulation of the NF-κB phosphorylation protein p-p65. The addition of NF-κB inhibitor SC75741 further confirmed the importance of the NF-κB pathway in lycorine-induced cell-growth inhibition. Moreover, lycorine might act synergically with temozolomide (TMZ) to reduce drug resistance by blocking the NF-κB pathway. Our study suggested that lycorine exerts an anti-glioma effect by inducing ROS production and inhibiting NF-κB, which validated that lycorine may be a potential candidate for glioma treatment alone or in combination with TMZ.
Collapse
|
20
|
Ravin R, Cai TX, Li A, Briceno N, Pursley RH, Garmendia-Cedillos M, Pohida T, Wang H, Zhuang Z, Cui J, Morgan NY, Williamson NH, Gilbert MR, Basser PJ. "Tumor Treating Fields" delivered via electromagnetic induction have varied effects across glioma cell lines and electric field amplitudes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.18.524504. [PMID: 36789415 PMCID: PMC9928061 DOI: 10.1101/2023.01.18.524504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Previous studies reported that alternating electric fields (EFs) in the intermediate frequency (100 - 300 kHz) and low intensity (1 - 3 V/cm) regime - termed "Tumor Treating Fields" (TTFields) - have a specific, anti-proliferative effect on glioblastoma multiforme (GBM) cells. However, the mechanism(s) of action remain(s) incompletely understood, hindering the clinical adoption of treatments based on TTFields. To advance the study of such treatment in vitro , we developed an inductive device to deliver EFs to cell cultures which improves thermal and osmolar regulation compared to prior devices. Using this inductive device, we applied continuous, 200 kHz electromagnetic fields (EMFs) with a radial EF amplitude profile spanning 0 - 6.5 V/cm to cultures of primary rat astrocytes and several human GBM cell lines - U87, U118, GSC827, and GSC923 - for a duration of 72 hours. Cell density was assessed via segmented pixel densities from GFP expression (U87, U118) or from staining (astrocytes, GSC827, GSC923). Further RNA-Seq analyses were performed on GSC827 and GSC923 cells. Treated cultures of all cell lines exhibited little to no change in proliferation at lower EF amplitudes (0 - 3 V/cm). At higher amplitudes (> 4 V/cm), different effects were observed. Apparent cell densities increased (U87), decreased (GSC827, GSC923), or showed little change (U118, astrocytes). RNA-Seq analyses on treated and untreated GSC827 and GSC923 cells revealed differentially expressed gene sets of interest, such as those related to cell cycle control. Up- and down-regulation, however, was not consistent across cell lines nor EF amplitudes. Our results indicate no consistent, anti-proliferative effect of 200 kHz EMFs across GBM cell lines and thus contradict previous in vitro findings. Rather, effects varied across different cell lines and EF amplitude regimes, highlighting the need to assess the effect(s) of TTFields and similar treatments on a per cell line basis.
Collapse
|
21
|
Tumor Treating Fields (TTFields) Therapy Concomitant with Taxanes for Cancer Treatment. Cancers (Basel) 2023; 15:cancers15030636. [PMID: 36765594 PMCID: PMC9913762 DOI: 10.3390/cancers15030636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/22/2023] Open
Abstract
Non-small cell lung cancer, ovarian cancer, and pancreatic cancer all present with high morbidity and mortality. Systemic chemotherapies have historically been the cornerstone of standard of care (SOC) regimens for many cancers, but are associated with systemic toxicity. Multimodal treatment combinations can help improve patient outcomes; however, implementation is limited by additive toxicities and potential drug-drug interactions. As such, there is a high unmet need to develop additional therapies to enhance the efficacy of SOC treatments without increasing toxicity. Tumor Treating Fields (TTFields) are electric fields that exert physical forces to disrupt cellular processes critical for cancer cell viability and tumor progression. The therapy is locoregional and is delivered noninvasively to the tumor site via a portable medical device that consists of field generator and arrays that are placed on the patient's skin. As a noninvasive treatment modality, TTFields therapy-related adverse events mainly consist of localized skin reactions, which are manageable with effective acute and prophylactic treatments. TTFields selectively target cancer cells through a multi-mechanistic approach without affecting healthy cells and tissues. Therefore, the application of TTFields therapy concomitant with other cancer treatments may lead to enhanced efficacy, with low risk of further systemic toxicity. In this review, we explore TTFields therapy concomitant with taxanes in both preclinical and clinical settings. The summarized data suggest that TTFields therapy concomitant with taxanes may be beneficial in the treatment of certain cancers.
Collapse
|
22
|
Shams S, Patel CB. Anti-cancer mechanisms of action of therapeutic alternating electric fields (tumor treating fields [TTFields]). J Mol Cell Biol 2022; 14:mjac047. [PMID: 35973687 PMCID: PMC9912101 DOI: 10.1093/jmcb/mjac047] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 06/11/2022] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
Despite improved survival outcomes across many cancer types, the prognosis remains grim for certain solid organ cancers including glioblastoma and pancreatic cancer. Invariably in these cancers, the control achieved by time-limited interventions such as traditional surgical resection, radiation therapy, and chemotherapy is short-lived. A new form of anti-cancer therapy called therapeutic alternating electric fields (AEFs) or tumor treating fields (TTFields) has been shown, either by itself or in combination with chemotherapy, to have anti-cancer effects that translate to improved survival outcomes in patients. Although the pre-clinical and clinical data are promising, the mechanisms of TTFields are not fully elucidated. Many investigations are underway to better understand how and why TTFields is able to selectively kill cancer cells and impede their proliferation. The purpose of this review is to summarize and discuss the reported mechanisms of action of TTFields from pre-clinical studies (both in vitro and in vivo). An improved understanding of how TTFields works will guide strategies focused on the timing and combination of TTFields with other therapies, to further improve survival outcomes in patients with solid organ cancers.
Collapse
Affiliation(s)
- Shadi Shams
- Rowan University School of Osteopathic Medicine, Stratford, NJ 08028, USA
| | - Chirag B Patel
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
- Cancer Biology Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
23
|
Zhong S, Yao S, Zhao Q, Wang Z, Liu Z, Li L, Wang ZL. Electricity‐Assisted Cancer Therapy: From Traditional Clinic Applications to Emerging Methods Integrated with Nanotechnologies. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Songjing Zhong
- Beijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences Beijing 101400 P.R. China
- School of Nanoscience and Technology University of Chinese Academy of Sciences Beijing 101400 P.R. China
| | - Shuncheng Yao
- Beijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences Beijing 101400 P.R. China
- School of Nanoscience and Technology University of Chinese Academy of Sciences Beijing 101400 P.R. China
| | - Qinyu Zhao
- Beijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences Beijing 101400 P.R. China
- Center on Nanoenergy Research Guangxi University Nanning 530004 P.R. China
| | - Zhuo Wang
- Beijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences Beijing 101400 P.R. China
| | - Zhirong Liu
- Beijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences Beijing 101400 P.R. China
- School of Nanoscience and Technology University of Chinese Academy of Sciences Beijing 101400 P.R. China
| | - Linlin Li
- Beijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences Beijing 101400 P.R. China
- School of Nanoscience and Technology University of Chinese Academy of Sciences Beijing 101400 P.R. China
- Center on Nanoenergy Research Guangxi University Nanning 530004 P.R. China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences Beijing 101400 P.R. China
- Center on Nanoenergy Research Guangxi University Nanning 530004 P.R. China
| |
Collapse
|
24
|
Nitta RT, Luo EJ, Lim M, Li G. Can tumor treating fields induce DNA damage and reduce cell motility in medulloblastoma cell lines? J Neurosurg Pediatr 2022; 30:555-566. [PMID: 36208441 DOI: 10.3171/2022.8.peds22300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/25/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Medulloblastoma (MB) is the most common malignant pediatric brain tumor and accounts for approximately 20% of all pediatric CNS tumors. Current multimodal treatment is associated with a 70%-90% 5-year survival rate; however, the prognosis for patients with tumor dissemination and recurrent MB remains poor. The majority of survivors exhibit long-term neurocognitive complications; thus, more effective and less toxic treatments are critically needed. Tumor treating fields (TTFields) are low-intensity, alternating electric fields that disrupt cell division through physical interactions with key molecules during mitosis. Side effects from TTField therapy are minimal, making it an ideal candidate for MB treatment. METHODS To determine if TTFields can be an effective treatment for MB, the authors conducted an in vitro study treating multiple MB cell lines. Three MB molecular subgroups (SHH [sonic hedgehog], group 3, and group 4) were treated for 24, 48, and 72 hours at 100, 200, 300, and 400 kHz. Combinatorial studies were conducted with the small-molecule casein kinase 2 inhibitor CX-4945. RESULTS TTFields reduced MB cell growth with an optimal frequency of 300 kHz, and the most efficacious treatment time was 72 hours. Treatment with TTFields dysregulated actin polymerization and corresponded with a reduction in cell motility and invasion. TTFields also induced DNA damage (γH2AX, 53BP1) that correlated with an increase in apoptotic cells. The authors discovered that CX-4945 works synergistically with TTFields to reduce MB growth. In addition, combining CX-4945 and TTFields increased the cellular actin dysregulation, which correlated with a decrease in MB migration. CONCLUSIONS The findings of this study demonstrate that TTFields may be a novel and less toxic method to treat patients with MB.
Collapse
|
25
|
Moser JC, Salvador E, Deniz K, Swanson K, Tuszynski J, Carlson KW, Karanam NK, Patel CB, Story M, Lou E, Hagemann C. The Mechanisms of Action of Tumor Treating Fields. Cancer Res 2022; 82:3650-3658. [PMID: 35839284 PMCID: PMC9574373 DOI: 10.1158/0008-5472.can-22-0887] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/24/2022] [Accepted: 07/13/2022] [Indexed: 01/07/2023]
Abstract
Tumor treating fields (TTFields), a new modality of cancer treatment, are electric fields transmitted transdermally to tumors. The FDA has approved TTFields for the treatment of glioblastoma multiforme and mesothelioma, and they are currently under study in many other cancer types. While antimitotic effects were the first recognized biological anticancer activity of TTFields, data have shown that tumor treating fields achieve their anticancer effects through multiple mechanisms of action. TTFields therefore have the ability to be useful for many cancer types in combination with many different treatment modalities. Here, we review the current understanding of TTFields and their mechanisms of action.
Collapse
Affiliation(s)
- Justin C. Moser
- HonorHealth Research and Innovation Institute, Scottsdale, Arizona.,Department of Medicine, University of Arizona College of Medicine- Phoenix, Phoenix, Arizona.,Corresponding Author: Justin Moser, HonorHealth Research and Innovation Institute, 10510 N 92nd Street Ste 200, Scottsdale, AZ 85258. Phone: 480-323-4638, E-mail:
| | - Ellaine Salvador
- Section Experimental Neurosurgery, Department of Neurosurgery, University of Würzburg, Würzburg, Germany
| | - Karina Deniz
- Department of Medicine, Division of Hematology Oncology and Transplant, University of Minnesota, Minneapolis, Minnesota
| | - Kenneth Swanson
- Cutaneous Biology Research Center, Massachusetts General Hospital, Charlestown, Massachusetts
| | - Jack Tuszynski
- Department of Physics, University of Alberta, Edmonton, Alberta, Canada
| | - Kristen W. Carlson
- Department of Neurosurgery, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, Massachusetts
| | - Narasimha Kumar Karanam
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Chirag B. Patel
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston Texas.,Neuroscience and Cancer Biology Graduate Programs, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences
| | - Michael Story
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Emil Lou
- Department of Medicine, Division of Hematology Oncology and Transplant, University of Minnesota, Minneapolis, Minnesota
| | - Carsten Hagemann
- Section Experimental Neurosurgery, Department of Neurosurgery, University of Würzburg, Würzburg, Germany
| |
Collapse
|
26
|
Tanzhu G, Chen L, Xiao G, Shi W, Peng H, Chen D, Zhou R. The schemes, mechanisms and molecular pathway changes of Tumor Treating Fields (TTFields) alone or in combination with radiotherapy and chemotherapy. Cell Death Discov 2022; 8:416. [PMID: 36220835 PMCID: PMC9553876 DOI: 10.1038/s41420-022-01206-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/22/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
Tumor Treating Fields (TTFields) is a physical therapy that uses moderate frequency (100-300 kHz) and low-intensity (1-3 V/cm) alternating electric fields to inhibit tumors. Currently, the Food and Drug Administration approves TTFields for treating recurrent or newly diagnosed glioblastoma (GBM) and malignant pleural mesothelioma (MPM). The classical mechanism of TTFields is mitotic inhibition by hindering the formation of tubulin and spindle. In addition, TTFields inhibits cell proliferation, invasion, migration and induces cell death, such as apoptosis, autophagy, pyroptosis, and cell cycle arrest. Meanwhile, it regulates immune function and changes the permeability of the nuclear membrane, cell membrane, and blood-brain barrier. Based on the current researches on TTFields in various tumors, this review comprehensively summarizes the in-vitro effects, changes in pathways and molecules corresponding to relevant parameters of TTFields (frequency, intensity, and duration). In addition, radiotherapy and chemotherapy are common tumor treatments. Thus, we also pay attention to the sequence and dose when TTFields combined with radiotherapy or chemotherapy. TTFields has inhibitory effects in a variety of tumors. The study of TTFields mechanism is conducive to subsequent research. How to combine common tumor therapy such as radiotherapy and chemotherapy to obtain the maximum benefit is also a problem that's worthy of our attention.
Collapse
Affiliation(s)
- Guilong Tanzhu
- Department of Oncology, Xiangya Hospital, Central South University, 410008, Changsha, China
| | - Liu Chen
- Department of Oncology, Xiangya Hospital, Central South University, 410008, Changsha, China
| | - Gang Xiao
- Department of Oncology, Xiangya Hospital, Central South University, 410008, Changsha, China
| | - Wen Shi
- Department of Oncology, Xiangya Hospital, Central South University, 410008, Changsha, China
| | - Haiqin Peng
- Department of Oncology, Xiangya Hospital, Central South University, 410008, Changsha, China
| | - Dikang Chen
- Hunan An Tai Kang Cheng Biotechnology Co., Ltd, Changsha, China
| | - Rongrong Zhou
- Department of Oncology, Xiangya Hospital, Central South University, 410008, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, P.R. China.
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, 410008, Changsha, China.
| |
Collapse
|
27
|
Le HT, Staelens M, Lazzari D, Chan G, Tuszyński JA. Real-Time Monitoring of the Effect of Tumour-Treating Fields on Cell Division Using Live-Cell Imaging. Cells 2022; 11:2712. [PMID: 36078119 PMCID: PMC9454843 DOI: 10.3390/cells11172712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
The effects of electric fields (EFs) on various cell types have been thoroughly studied, and exhibit a well-known regulatory effect on cell processes, implicating their usage in several medical applications. While the specific effect exerted on cells is highly parameter-dependent, the majority of past research has focused primarily on low-frequency alternating fields (<1 kHz) and high-frequency fields (in the order of MHz). However, in recent years, low-intensity (1-3 V/cm) alternating EFs with intermediate frequencies (100-500 kHz) have been of topical interest as clinical treatments for cancerous tumours through their disruption of cell division and the mitotic spindle, which can lead to cell death. These aptly named tumour-treating fields (TTFields) have been approved by the FDA as a treatment modality for several cancers, such as malignant pleural mesothelioma and glioblastoma multiforme, demonstrating remarkable efficacy and a high safety profile. In this work, we report the results of in vitro experiments with HeLa and MCF-10A cells exposed to TTFields for 18 h, imaged in real time using live-cell imaging. Both studied cell lines were exposed to 100 kHz TTFields with a 1-1 duty cycle, which resulted in significant mitotic and cytokinetic arrest. In the experiments with HeLa cells, the effects of the TTFields' frequency (100 kHz vs. 200 kHz) and duty cycle (1-1 vs. 1-0) were also investigated. Notably, the anti-mitotic effect was stronger in the HeLa cells treated with 100 kHz TTFields. Additionally, it was found that single and two-directional TTFields (oriented orthogonally) exhibit a similar inhibitory effect on HeLa cell division. These results provide real-time evidence of the profound ability of TTFields to hinder the process of cell division by significantly delaying both the mitosis and cytokinesis phases of the cell cycle.
Collapse
Affiliation(s)
- Hoa T. Le
- Department of Medical Microbiology & Immunology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Michael Staelens
- Department of Physics, Faculty of Science, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Davide Lazzari
- Dipartimento di Ingegneria Meccanica e Aerospaziale (DIMEAS), Politecnico di Torino, 10129 Turin, Italy
| | - Gordon Chan
- Department of Oncology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB T6G 1Z2, Canada
| | - Jack A. Tuszyński
- Department of Physics, Faculty of Science, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Department of Oncology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB T6G 1Z2, Canada
| |
Collapse
|
28
|
Xu S, Luo C, Chen D, Tang L, Chen L, Liu Z. Whole transcriptome and proteome analyses identify potential targets and mechanisms underlying tumor treating fields against glioblastoma. Cell Death Dis 2022; 13:721. [PMID: 35982032 PMCID: PMC9388668 DOI: 10.1038/s41419-022-05127-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 01/21/2023]
Abstract
Glioblastoma (GBM) is one of the most malignant types of brain cancer. Tumor treating fields (TTFields) is the up-to-date treatment for GBM. However, its molecular mechanism requires additional investigation. Herein, a novel TTFields system was developed (CL-301A) and its efficiency in suppressing GBM cell proliferation and inducing cell apoptosis was demonstrated. Through the whole proteomic and transcriptomic analyses, a multitude of differentially expressed proteins (1243), mRNAs (4191), miRtNAs (47), lncRNAs (4286), and circRNAs (13,903) were identified. Bioinformatic analysis indicated that TTFields mainly affected nuclear proteins and interrupt cell mitosis-related events. Moreover, the inhibition of autophagy could significantly enhance the anti-GBM activity of TTFields. And CDK2-AS1 might be a target of TTFields to mediate cell cycle arrest via regulating CDK2 mRNA stability. This study provided valuable resources for understanding the mechanism of TTFields, which might further assist the investigation of TTFields in GBM treatment.
Collapse
Affiliation(s)
- Shengchao Xu
- grid.216417.70000 0001 0379 7164Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China ,grid.216417.70000 0001 0379 7164National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Chengke Luo
- grid.216417.70000 0001 0379 7164Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China ,grid.216417.70000 0001 0379 7164National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Dikang Chen
- Hunan An Tai Kang Cheng Biotechnology Co., Ltd, Changsha, China
| | - Lu Tang
- grid.216417.70000 0001 0379 7164Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
| | - Ling Chen
- grid.488137.10000 0001 2267 2324Department of Neurosurgery, Chinese People’s Liberation Army of China (PLA) General Hospital, Medical School of Chinese PLA, Institute of Neurosurgery of Chinese PLA, 100853 Beijing, China
| | - Zhixiong Liu
- grid.216417.70000 0001 0379 7164Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China ,grid.216417.70000 0001 0379 7164National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
29
|
Huang M, Li P, Chen F, Cai Z, Yang S, Zheng X, Li W. Is extremely low frequency pulsed electromagnetic fields applicable to gliomas? A literature review of the underlying mechanisms and application of extremely low frequency pulsed electromagnetic fields. Cancer Med 2022; 12:2187-2198. [PMID: 35929424 PMCID: PMC9939155 DOI: 10.1002/cam4.5112] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/07/2022] [Accepted: 07/19/2022] [Indexed: 11/07/2022] Open
Abstract
Gliomas refer to a group of complicated human brain tumors with a low 5-year survival rate and limited therapeutic options. Extremely low-frequency pulsed electromagnetic field (ELF-PEMF) is a specific magnetic field featuring almost no side effects. However, the application of ELF-PEMF in the treatment of gliomas is rare. This review summarizes five significant underlying mechanisms including calcium ions, autophagy, apoptosis, angiogenesis, and reactive oxygen species, and applications of ELF-PEMF in glioma treatment from a clinical practice perspective. In addition, the prospects of ELF-PEMF in combination with conventional therapy for the treatment of gliomas are reviewed. This review benefits any specialists, especially oncologists, interested in this new therapy because it can help treat patients with gliomas properly.
Collapse
Affiliation(s)
- Mengqian Huang
- Cancer Center, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Parker Li
- Clinical MedicineShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Feng Chen
- Cancer Center, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Zehao Cai
- Cancer Center, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Shoubo Yang
- Cancer Center, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Xiaohong Zheng
- Cancer Center, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Wenbin Li
- Cancer Center, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
30
|
Tumor-Treating Fields in Glioblastomas: Past, Present, and Future. Cancers (Basel) 2022; 14:cancers14153669. [PMID: 35954334 PMCID: PMC9367615 DOI: 10.3390/cancers14153669] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Glioblastoma (GBM) is the most common malignant primary brain tumor. Although the standard of care, including maximal resection, concurrent radiotherapy with temozolomide (TMZ), and adjuvant TMZ, has largely improved the prognosis of these patients, the 5-year survival rate is still < 10%. Tumor-treating fields (TTFields), a noninvasive anticancer therapeutic modality, has been rising as a fourth treatment option for GBMs, as confirmed by recent milestone large-scale phase 3 randomized trials and subsequent real-world data, elongating patient overall survival from 16 months to 21 months. However, the mechanisms of antitumor efficacy, its clinical safety, and potential benefits when combined with other treatment modalities are far from completely elucidated. As an increasing number of studies have recently been published on this topic, we conducted this updated, comprehensive review to establish an objective understanding of the mechanism of action, efficacy, safety, clinical concerns, and future perspectives of TTFields. Abstract Tumor-treating fields (TTFields), a noninvasive and innovative therapeutic approach, has emerged as the fourth most effective treatment option for the management of glioblastomas (GBMs), the most deadly primary brain cancer. According to on recent milestone randomized trials and subsequent observational data, TTFields therapy leads to substantially prolonged patient survival and acceptable adverse events. Clinical trials are ongoing to further evaluate the safety and efficacy of TTFields in treating GBMs and its biological and radiological correlations. TTFields is administered by delivering low-intensity, intermediate-frequency, alternating electric fields to human GBM function through different mechanisms of action, including by disturbing cell mitosis, delaying DNA repair, enhancing autophagy, inhibiting cell metabolism and angiogenesis, and limiting cancer cell migration. The abilities of TTFields to strengthen intratumoral antitumor immunity, increase the permeability of the cell membrane and the blood–brain barrier, and disrupt DNA-damage-repair processes make it a promising therapy when combined with conventional treatment modalities. However, the overall acceptance of TTFields in real-world clinical practice is still low. Given that increasing studies on this promising topic have been published recently, we conducted this updated review on the past, present, and future of TTFields in GBMs.
Collapse
|
31
|
Krigers A, Pinggera D, Demetz M, Kornberger LM, Kerschbaumer J, Thomé C, Freyschlag CF. The Routine Application of Tumor-Treating Fields in the Treatment of Glioblastoma WHO° IV. Front Neurol 2022; 13:900377. [PMID: 35785334 PMCID: PMC9243748 DOI: 10.3389/fneur.2022.900377] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction:Tumor-treating fields (TTFs) are a specific local oncological treatment modality in glioblastoma multiforme WHO° IV (GBM). Their mechanism of action is based on the effect of electrical fields interfering with the mitotic activity of malignant cells. Prospective studies have demonstrated efficacy, but TTF benefits are still controversially discussed. This treatment was implemented in our center as the standard of care in January 2016. We thus discuss the current state of the art and our long-term experience in the routine application of TTF.MethodsThe data of 48 patients suffering from GBM and treated with TTF were assessed and compared with previously published studies. Up-to-date information from open sources was evaluated.ResultsA total of 31 males and 17 females harboring a GBM were treated with TTF, between January 2016 and August 2021, in our center. In 98% of cases, TTFs were started within 6 weeks after concomitant radiochemotherapy (Stupp protocol). Mean overall survival was 22.6 months (95% CI: 17.3–27.9). Current indications, benefits, and restrictions were evaluated. Future TTF opportunities and ongoing studies were reviewed.ConclusionTTFs are a feasible and routinely applicable specific oncological treatment option for glioblastoma multiforme WHO° IV. Further research is ongoing to extend the indications and the efficacy of TTF.
Collapse
|
32
|
Tumor Treating Fields (TTFields) Concomitant with Sorafenib Inhibit Hepatocellular Carcinoma In Vitro and In Vivo. Cancers (Basel) 2022; 14:cancers14122959. [PMID: 35740624 PMCID: PMC9220990 DOI: 10.3390/cancers14122959] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/20/2022] [Accepted: 06/09/2022] [Indexed: 01/27/2023] Open
Abstract
Hepatocellular carcinoma (HCC), a highly aggressive liver cancer, is a leading cause of cancer-related death. Tumor Treating Fields (TTFields) are electric fields that exert antimitotic effects on cancerous cells. The aims of the current research were to test the efficacy of TTFields in HCC, explore the underlying mechanisms, and investigate the possible combination of TTFields with sorafenib, one of the few front-line treatments for patients with advanced HCC. HepG2 and Huh-7D12 human HCC cell lines were treated with TTFields at various frequencies to determine the optimal frequency eliciting maximal cell count reduction. Clonogenic, apoptotic effects, and autophagy induction were measured. The efficacy of TTFields alone and with concomitant sorafenib was tested in cell cultures and in an orthotopic N1S1 rat model. Tumor volume was examined at the beginning and following 5 days of treatment. At study cessation, tumors were weighed and examined by immunohistochemistry to assess autophagy and apoptosis. TTFields were found in vitro to exert maximal effect at 150 kHz, reducing cell count and colony formation, increasing apoptosis and autophagy, and augmenting the effects of sorafenib. In animals, TTFields concomitant with sorafenib reduced tumor weight and volume fold change, and increased cases of stable disease following treatment versus TTFields or sorafenib alone. While each treatment alone elevated levels of autophagy relative to control, TTFields concomitant with sorafenib induced a significant increase versus control in tumor ER stress and apoptosis levels, demonstrating increased stress under the multimodal treatment. Overall, TTFields treatment demonstrated efficacy and enhanced the effects of sorafenib for the treatment of HCC in vitro and in vivo, via a mechanism involving induction of autophagy.
Collapse
|
33
|
Chen X, Zhang Y, Zhao Q, Xiaoqun Chen LB, Zhou Z. Management of dermatologic adverse events associated with tumour treating fields in patients with glioblastoma multiforme: A 27-case series. Asia Pac J Oncol Nurs 2022; 9:100095. [PMID: 36060271 PMCID: PMC9428807 DOI: 10.1016/j.apjon.2022.100095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/26/2022] [Indexed: 11/25/2022] Open
|
34
|
Shi P, Tian J, Ulm BS, Mallinger JC, Khoshbouei H, Deleyrolle LP, Sarkisian MR. Tumor Treating Fields Suppression of Ciliogenesis Enhances Temozolomide Toxicity. Front Oncol 2022; 12:837589. [PMID: 35359402 PMCID: PMC8962950 DOI: 10.3389/fonc.2022.837589] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/03/2022] [Indexed: 12/19/2022] Open
Abstract
Tumor Treating Fields (TTFields) are low-intensity, alternating intermediate-frequency (200 kHz) electrical fields that extend survival of glioblastoma patients receiving maintenance temozolomide (TMZ) chemotherapy. How TTFields exert efficacy on cancer over normal cells or interact with TMZ is unclear. Primary cilia are microtubule-based organelles triggered by extracellular ligands, mechanical and electrical field stimulation and are capable of promoting cancer growth and TMZ chemoresistance. We found in both low- and high-grade patient glioma cell lines that TTFields ablated cilia within 24 h. Halting TTFields treatment led to recovered frequencies of elongated cilia. Cilia on normal primary astrocytes, neurons, and multiciliated/ependymal cells were less affected by TTFields. The TTFields-mediated loss of glioma cilia was partially rescued by chloroquine pretreatment, suggesting the effect is in part due to autophagy activation. We also observed death of ciliated cells during TTFields by live imaging. Notably, TMZ and TTFields have opposing effects on glioma ciliogenesis. TMZ-induced stimulation of ciliogenesis in both adherent cells and gliomaspheres was blocked by TTFields. Surprisingly, the inhibitory effects of TTFields and TMZ on tumor cell recurrence are linked to the relative timing of TMZ exposure to TTFields and ARL13B+ cilia. Finally, TTFields disrupted cilia in patient tumors treated ex vivo. Our findings suggest that the efficacy of TTFields may depend on the degree of tumor ciliogenesis and relative timing of TMZ treatment.
Collapse
Affiliation(s)
- Ping Shi
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, United States
| | - Jia Tian
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, United States
| | - Brittany S. Ulm
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, United States
| | - Julianne C. Mallinger
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, United States
| | - Habibeh Khoshbouei
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, United States
| | - Loic P. Deleyrolle
- Department of Neurosurgery, University of Florida College of Medicine, Gainesville, FL, United States
- Preston A. Wells Jr. Center for Brain Tumor Therapy, University of Florida College of Medicine, Gainesville, FL, United States
| | - Matthew R. Sarkisian
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, United States
- Preston A. Wells Jr. Center for Brain Tumor Therapy, University of Florida College of Medicine, Gainesville, FL, United States
- *Correspondence: Matthew R. Sarkisian,
| |
Collapse
|
35
|
Genome-Wide Expression and Anti-Proliferative Effects of Electric Field Therapy on Pediatric and Adult Brain Tumors. Int J Mol Sci 2022; 23:ijms23041982. [PMID: 35216098 PMCID: PMC8880247 DOI: 10.3390/ijms23041982] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/25/2021] [Accepted: 09/02/2021] [Indexed: 02/04/2023] Open
Abstract
The lack of treatment options for high-grade brain tumors has led to searches for alternative therapeutic modalities. Electrical field therapy is one such area. The Optune™ system is an FDA-approved novel device that delivers continuous alternating electric fields (tumor treating fields—TTFields) to the patient for the treatment of primary and recurrent Glioblastoma multiforme (GBM). Various mechanisms have been proposed to explain the effects of TTFields and other electrical therapies. Here, we present the first study of genome-wide expression of electrotherapy (delivered via TTFields or Deep Brain Stimulation (DBS)) on brain tumor cell lines. The effects of electric fields were assessed through gene expression arrays and combinational effects with chemotherapies. We observed that both DBS and TTFields significantly affected brain tumor cell line viability, with DBS promoting G0-phase accumulation and TTFields promoting G2-phase accumulation. Both treatments may be used to augment the efficacy of chemotherapy in vitro. Genome-wide expression assessment demonstrated significant overlap between the different electrical treatments, suggesting novel interactions with mitochondrial functioning and promoting endoplasmic reticulum stress. We demonstrate the in vitro efficacy of electric fields against adult and pediatric high-grade brain tumors and elucidate potential mechanisms of action for future study.
Collapse
|
36
|
Huang Q, Wang D, Yao G, Wang H. Impact of General Factors on Glioma Immunotherapy. J Clin Neurol 2022; 18:3-13. [PMID: 35021271 PMCID: PMC8762502 DOI: 10.3988/jcn.2022.18.1.3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/31/2021] [Accepted: 08/31/2021] [Indexed: 11/17/2022] Open
Abstract
Glioma remains the most common malignant tumor in the brain and is also the most difficult to treat. Immunotherapy achieving long-lasting tumor remission in multiple cancer types has received considerable attention due to its potential to improve the treatment outcomes of patients with glioma. However, clinical trials have not yet demonstrated major improvements in prognoses, which might be attributable to the extrinsic components and intrinsic mechanisms involved in the tumor microenvironment and immune system. It is particularly noteworthy that there is emerging evidence that current routine treatment modalities and the physical and psychological characteristics of patients have different impacts on the efficacy of glioma immunotherapy. This article addresses how these factors interact with the host immune system and tumor microenvironment, and highlights their potential roles in glioma immunotherapy, with the ultimate goal of developing better immunotherapy-based personalized medicine strategies.
Collapse
Affiliation(s)
- Qilin Huang
- Department of Neurosurgery, General Hospital of Central Theater Command of Chinese People's Liberation Army, Wuhan, China
| | - Dongmei Wang
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Guojie Yao
- Department of Neurosurgery, General Hospital of Central Theater Command of Chinese People's Liberation Army, Wuhan, China.
| | - Hongxiang Wang
- Department of Neurosurgery, Changhai Hospital, Naval Medical University, Shanghai, China.
| |
Collapse
|
37
|
Ye E, Lee JE, Lim YS, Yang SH, Park SM. Effect of duty cycles of tumor‑treating fields on glioblastoma cells and normal brain organoids. Int J Oncol 2022; 60:8. [PMID: 34970698 PMCID: PMC8727135 DOI: 10.3892/ijo.2021.5298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/09/2021] [Indexed: 11/06/2022] Open
Abstract
Tumor‑treating fields (TTFields) are emerging cancer therapies based on alternating low‑intensity electric fields that interfere with dividing cells and induce cancer cell apoptosis. However, to date, there is limited knowledge of their effects on normal cells, as well as the effects of different duty cycles on outcomes. The present study evaluated the effects of TTFields with different duty cycles on glioma spheroid cells and normal brain organoids. A customized TTFields system was developed to perform in vitro experiments with varying duty cycles. Three duty cycles were applied to three types of glioma spheroid cells and brain organoids. The efficacy and safety of the TTFields were evaluated by analyzing the cell cycle of glioma cells, and markers of neural stem cells (NSCs) and astrocytes in brain organoids. The application of the TTFields at the 75 and 100% duty cycle markedly inhibited the proliferation of the U87 and U373 compared with the control. FACS analysis revealed that the higher the duty cycle of the applied fields, the greater the increase in apoptosis detected. Exposure to a higher duty cycle resulted in a greater decrease in NSC markers and a greater increase in glial fibrillary acidic protein expression in normal brain organoids. These results suggest that TTFields at the 75 and 100% duty cycle induced cancer cell death, and that the neurotoxicity of the TTFields at 75% was less prominent than that at 100%. Although clinical studies with endpoints related to safety and efficacy need to be performed before this strategy may be adopted clinically, the findings of the present study provide meaningful evidence for the further advancement of TTFields in the treatment of various types of cancer.
Collapse
Affiliation(s)
- Eunbi Ye
- Department of Convergence IT Engineering, Pohang University of Science and Technology, Pohang-si, Gyeongsangbuk-do 37673, Republic of Korea
| | - Jung Eun Lee
- Department of Neurosurgery, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Suwon-si, Gyeonggi-do 16247, Republic of Korea
| | - Young-Soo Lim
- Department of Convergence IT Engineering, Pohang University of Science and Technology, Pohang-si, Gyeongsangbuk-do 37673, Republic of Korea
| | - Seung Ho Yang
- Department of Neurosurgery, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Suwon-si, Gyeonggi-do 16247, Republic of Korea
| | - Sung-Min Park
- Department of Convergence IT Engineering, Pohang University of Science and Technology, Pohang-si, Gyeongsangbuk-do 37673, Republic of Korea
- Department of Electrical Engineering, Pohang University of Science and Technology, Pohang-si, Gyeongsangbuk-do 37673, Republic of Korea
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang-si, Gyeongsangbuk-do 37673, Republic of Korea
| |
Collapse
|
38
|
Hong P, Kudulaiti N, Wu S, Nie J, Zhuang D. Tumor treating fields: a comprehensive overview of the underlying molecular mechanism. Expert Rev Mol Diagn 2021; 22:19-28. [PMID: 34883030 DOI: 10.1080/14737159.2022.2017283] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION As a novel treatment modality, tumor treating fields (TTFields) exert low-intensity, medium-frequency electric fields on tumor cells. TTFields' effectiveness and safety have been demonstrated clinically and in the real world for treating glioblastoma, the most common and aggressive primary central nervous system tumor. TTFields therapy has also been approved for the management of malignant mesothelioma, and clinical trials are ongoing for NSCLC, gastric cancer, pancreatic cancer, and other solid tumors. AREAS COVERED This article comprehensively reviews the currently described evidence of TTFields' mechanism of action. TTFields' most evident therapeutic effect is to induce cell death by disrupting mitosis. Moreover, evidence suggests at additional mechanistic complexity, such as delayed DNA repair and heightened DNA replication stress, reversible increase in cell membrane and blood-brain barrier permeability, induction of immune response, and so on. EXPERT OPINION TTFields therapy has been arising as the fourth anti-tumor treatment besides surgery, radiotherapy, and antineoplastic agents in recent years. However, the precise molecular mechanisms underlying the effects of TTFields are not fully understood and some concepts remain controversial. An in-depth understanding of TTFields' effects on tumor cell and tumor microenvironment would be crucial for informing research aimed at further optimizing TTFields' efficacy and developing new combination therapies for clinical applications.
Collapse
Affiliation(s)
- Pengjie Hong
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Neurosurgical Institute of Fudan University, Shanghai, China.,Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China.,Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China
| | - Nijiati Kudulaiti
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Neurosurgical Institute of Fudan University, Shanghai, China.,Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China.,Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China
| | - Shuai Wu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Neurosurgical Institute of Fudan University, Shanghai, China.,Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China.,Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China
| | - Jingtao Nie
- Zai Lab Trading (Shanghai) Co., Ltd., Shanghai, China
| | - Dongxiao Zhuang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Neurosurgical Institute of Fudan University, Shanghai, China.,Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China.,Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China
| |
Collapse
|
39
|
Bai L, Pfeifer T, Gross W, De La Torre C, Zhao S, Liu L, Schaefer M, Herr I. Establishment of Tumor Treating Fields Combined With Mild Hyperthermia as Novel Supporting Therapy for Pancreatic Cancer. Front Oncol 2021; 11:738801. [PMID: 34804927 PMCID: PMC8597267 DOI: 10.3389/fonc.2021.738801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 10/18/2021] [Indexed: 12/22/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly malignant tumor with poor prognosis and limited therapeutic options. Alternating electrical fields with low intensity called "Tumor Treating Fields" (TTFields) are a new, non-invasive approach with almost no side effects and phase 3 trials are ongoing in advanced PDAC. We evaluated TTFields in combination with mild hyperthermia. Three established human PDAC cell lines and an immortalized pancreatic duct cell line were treated with TTFields and hyperthermia at 38.5°C, followed by microscopy, assays for MTT, migration, colony and sphere formation, RT-qPCR, FACS, Western blot, microarray and bioinformatics, and in silico analysis using the online databases GSEA, KEGG, Cytoscape-String, and Kaplan-Meier Plotter. Whereas TTFields and hyperthermia alone had weak effects, their combination strongly inhibited the viability of malignant, but not those of nonmalignant cells. Progression features and the cell cycle were impaired, and autophagy was induced. The identified target genes were key players in autophagy, the cell cycle and DNA repair. The expression profiles of part of these target genes were significantly involved in the survival of PDAC patients. In conclusion, the combination of TTFields with mild hyperthermia results in greater efficacy without increased toxicity and could be easily clinically approved as supporting therapy.
Collapse
Affiliation(s)
- Liping Bai
- Molecular OncoSurgery, Section Surgical Research, Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Tobias Pfeifer
- Molecular OncoSurgery, Section Surgical Research, Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Wolfgang Gross
- Molecular OncoSurgery, Section Surgical Research, Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Carolina De La Torre
- Medical Research Center, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Shuyang Zhao
- Department of Hematology, Oncology and Rheumatology, Internal Medicine V, University Hospital of Heidelberg, Heidelberg, Germany
| | - Li Liu
- Molecular OncoSurgery, Section Surgical Research, Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Michael Schaefer
- Molecular OncoSurgery, Section Surgical Research, Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Ingrid Herr
- Molecular OncoSurgery, Section Surgical Research, Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
40
|
Abstract
Around three out of one hundred thousand people are diagnosed with glioblastoma multiforme, simply called glioblastoma, which is the most common primary brain tumor in adults. With a dismal prognosis of a little over a year, receiving a glioblastoma diagnosis is oftentimes fatal. A major advancement in its treatment was made almost two decades ago when the alkylating chemotherapeutic agent temozolomide (TMZ) was combined with radiotherapy (RT). Little progress has been made since then. Therapies that focus on the modulation of autophagy, a key process that regulates cellular homeostasis, have been developed to curb the progression of glioblastoma. The dual role of autophagy (cell survival or cell death) in glioblastoma has led to the development of autophagy inhibitors and promoters that either work as monotherapies or as part of a combination therapy to induce cell death, cellular senescence, and counteract the ability of glioblastoma stem cells (GSCs) for initiating tumor recurrence. The myriad of cellular pathways that act upon the modulation of autophagy have created contention between two groups: those who use autophagy inhibition versus those who use promotion of autophagy to control glioblastoma growth. We discuss rationale for using current major therapeutics, their molecular mechanisms for modulation of autophagy in glioblastoma and GSCs, their potentials for making strides in combating glioblastoma progression, and their possible shortcomings. These shortcomings may fuel the innovation of novel delivery systems and therapies involving TMZ in conjunction with another agent to pave the way towards a new gold standard of glioblastoma treatment.
Collapse
Affiliation(s)
- Amanda J Manea
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, 6439 Garners Ferry Road, Columbia, SC, 29209, USA
| | - Swapan K Ray
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, 6439 Garners Ferry Road, Columbia, SC, 29209, USA.
| |
Collapse
|
41
|
Francipane MG, Douradinha B, Chinnici CM, Russelli G, Conaldi PG, Iannolo G. Zika Virus: A New Therapeutic Candidate for Glioblastoma Treatment. Int J Mol Sci 2021; 22:10996. [PMID: 34681654 PMCID: PMC8537796 DOI: 10.3390/ijms222010996] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/29/2021] [Accepted: 10/09/2021] [Indexed: 01/05/2023] Open
Abstract
Glioblastoma (GBM) is the most aggressive among the neurological tumors. At present, no chemotherapy or radiotherapy regimen is associated with a positive long-term outcome. In the majority of cases, the tumor recurs within 32-36 weeks of initial treatment. The recent discovery that Zika virus (ZIKV) has an oncolytic action against GBM has brought hope for the development of new therapeutic approaches. ZIKV is an arbovirus of the Flaviviridae family, and its infection during development has been associated with central nervous system (CNS) malformations, including microcephaly, through the targeting of neural stem/progenitor cells (NSCs/NPCs). This finding has led various groups to evaluate ZIKV's effects against glioblastoma stem cells (GSCs), supposedly responsible for GBM onset, progression, and therapy resistance. While preliminary data support ZIKV tropism toward GSCs, a more accurate study of ZIKV mechanisms of action is fundamental in order to launch ZIKV-based clinical trials for GBM patients.
Collapse
Affiliation(s)
- Maria Giovanna Francipane
- Fondazione Ri.MED, 90133 Palermo, Italy; (M.G.F.); (B.D.); (C.M.C.)
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Bruno Douradinha
- Fondazione Ri.MED, 90133 Palermo, Italy; (M.G.F.); (B.D.); (C.M.C.)
- Department of Research, Istituto di Ricovero e Cura a Carattere Scientifico—Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione (IRCCS ISMETT), 90127 Palermo, Italy; (G.R.); (P.G.C.)
| | - Cinzia Maria Chinnici
- Fondazione Ri.MED, 90133 Palermo, Italy; (M.G.F.); (B.D.); (C.M.C.)
- Department of Research, Istituto di Ricovero e Cura a Carattere Scientifico—Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione (IRCCS ISMETT), 90127 Palermo, Italy; (G.R.); (P.G.C.)
| | - Giovanna Russelli
- Department of Research, Istituto di Ricovero e Cura a Carattere Scientifico—Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione (IRCCS ISMETT), 90127 Palermo, Italy; (G.R.); (P.G.C.)
| | - Pier Giulio Conaldi
- Department of Research, Istituto di Ricovero e Cura a Carattere Scientifico—Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione (IRCCS ISMETT), 90127 Palermo, Italy; (G.R.); (P.G.C.)
| | - Gioacchin Iannolo
- Department of Research, Istituto di Ricovero e Cura a Carattere Scientifico—Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione (IRCCS ISMETT), 90127 Palermo, Italy; (G.R.); (P.G.C.)
| |
Collapse
|
42
|
Farmani AR, Mahdavinezhad F, Scagnolari C, Kouhestani M, Mohammadi S, Ai J, Shoormeij MH, Rezaei N. An overview on tumor treating fields (TTFields) technology as a new potential subsidiary biophysical treatment for COVID-19. Drug Deliv Transl Res 2021; 12:1605-1615. [PMID: 34542840 PMCID: PMC8451390 DOI: 10.1007/s13346-021-01067-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2021] [Indexed: 11/25/2022]
Abstract
COVID-19 pandemic situation has affected millions of people with tens of thousands of deaths worldwide. Despite all efforts for finding drugs or vaccines, the key role for the survival of patients is still related to the immune system. Therefore, improving the efficacy and the functionality of the immune system of COVID-19 patients is very crucial. The potential new, non-invasive, FDA-approved biophysical technology that could be considered in this regard is tumor treating fields (TTFields) based on an alternating electric field has great biological effects. TTFields have significant effects in improving the functionality of dendritic cell, and cytotoxic T-cells, and these cells have a major role in defense against viral infection. Hence, applying TTFields could help COVID-19 patients against infection. Additionally, TTFields can reduce viral genomic replication, by reducing the expressions of some of the vital members of DNA replication complex genes from the minichromosome maintenance family (MCMs). These genes not only are involved in DNA replication but it has also been proven that they have a crucial role in viral replication. Also, TTFields suppress the formation of the network of tunneling nanotubes (TNTs) which is knows as filamentous (F)-actin-rich tubular structures. TNTs have a critical role in promoting the spread of viruses through improving viral entry and acting as a protective agent for viral components from immune cells and even pharmaceuticals. Moreover, TTFields enhance autophagy which leads to apoptosis of virally infected cells. Thus, it can be speculated that using TTFields may prove to be a promising approach as a subsidiary treatment of COVID-19.
Collapse
Affiliation(s)
- Ahmad Reza Farmani
- Tissue Engineering and Applied Cell Sciences Department, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Tissue Engineering Department-School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
- Students’ Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Forough Mahdavinezhad
- Anatomy Department-School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Carolina Scagnolari
- Laboratory of Virology, Department of Molecular Medicine, Sapienza University, Affiliated to Istituto Pasteur Italia, Viale Di Porta Tiburtina, 28, 00185 Rome, Italy
| | - Mahsa Kouhestani
- Tissue Engineering and Applied Cell Sciences Department, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sadegh Mohammadi
- Department of Plastic Engineering, Faculty of Polymer Processing, Iran Polymer and Petrochemical Institute, Tehran, Iran
| | - Jafar Ai
- Tissue Engineering and Applied Cell Sciences Department, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hasan Shoormeij
- Emergency Medicine Department, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
43
|
Wang Y, Wang X, Wang X, Wu D, Qi J, Zhang Y, Wang K, Zhou D, Meng QM, Nie E, Wang Q, Yu RT, Zhou XP. Imipramine impedes glioma progression by inhibiting YAP as a Hippo pathway independent manner and synergizes with temozolomide. J Cell Mol Med 2021; 25:9350-9363. [PMID: 34469035 PMCID: PMC8500960 DOI: 10.1111/jcmm.16874] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 02/06/2023] Open
Abstract
Patients with malignant glioma often suffered from depression, which leads to an increased risk of detrimental outcomes. Imipramine, an FDA‐approved tricyclic antidepressant, has been commonly used to relieve depressive symptoms in the clinic. Recently, imipramine has been reported to participate in the suppression of tumour progression in several human cancers, including prostate cancer, colon cancer and lymphomas. However, the effect of imipramine on malignant glioma is largely unclear. Here, we show that imipramine significantly retarded proliferation of immortalized and primary glioma cells. Mechanistically, imipramine suppressed tumour proliferation by inhibiting yes‐associated protein (YAP), a recognized oncogene in glioma, independent of Hippo pathway. In addition to inhibiting YAP transcription, imipramine also promoted the subcellular translocation of YAP from nucleus into cytoplasm. Consistently, imipramine administration significantly reduced orthotopic tumour progression and prolonged survival of tumour‐bearing mice. Moreover, exogenous overexpression of YAP partially restored the inhibitory effect of imipramine on glioma progression. Most importantly, compared with imipramine or temozolomide (TMZ) monotherapy, combination therapy with imipramine and TMZ exhibited enhanced inhibitory effect on glioma growth both in vitro and in vivo, suggesting the synergism of both agents. In conclusion, we found that tricyclic antidepressant imipramine impedes glioma progression by inhibiting YAP. In addition, combination therapy with imipramine and TMZ may potentially serve as promising anti‐glioma regimens, thus predicting a broad prospect of clinical application.
Collapse
Affiliation(s)
- Yan Wang
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China.,Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xiang Wang
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China
| | - Xu Wang
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China.,Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Di Wu
- Pathological Diagnosis Center, Xuzhou Central Hospital, Xuzhou, China
| | - Ji Qi
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China
| | - Yu Zhang
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China
| | - Kai Wang
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China
| | - Ding Zhou
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China
| | - Qing-Ming Meng
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China.,Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Er Nie
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Qiang Wang
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Ru-Tong Yu
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China.,Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xiu-Ping Zhou
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China.,Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
44
|
Jenkins EPW, Finch A, Gerigk M, Triantis IF, Watts C, Malliaras GG. Electrotherapies for Glioblastoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100978. [PMID: 34292672 PMCID: PMC8456216 DOI: 10.1002/advs.202100978] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/20/2021] [Indexed: 05/08/2023]
Abstract
Non-thermal, intermediate frequency (100-500 kHz) electrotherapies present a unique therapeutic strategy to treat malignant neoplasms. Here, pulsed electric fields (PEFs) which induce reversible or irreversible electroporation (IRE) and tumour-treating fields (TTFs) are reviewed highlighting the foundations, advances, and considerations of each method when applied to glioblastoma (GBM). Several biological aspects of GBM that contribute to treatment complexity (heterogeneity, recurrence, resistance, and blood-brain barrier(BBB)) and electrophysiological traits which are suggested to promote glioma progression are described. Particularly, the biological responses at the cellular and molecular level to specific parameters of the electrical stimuli are discussed offering ways to compare these parameters despite the lack of a universally adopted physical description. Reviewing the literature, a disconnect is found between electrotherapy techniques and how they target the biological complexities of GBM that make treatment difficult in the first place. An attempt is made to bridge the interdisciplinary gap by mapping biological characteristics to different methods of electrotherapy, suggesting important future research topics and directions in both understanding and treating GBM. To the authors' knowledge, this is the first paper that attempts an in-tandem assessment of the biological effects of different aspects of intermediate frequency electrotherapy methods, thus offering possible strategies toward GBM treatment.
Collapse
Affiliation(s)
- Elise P. W. Jenkins
- Division of Electrical EngineeringDepartment of EngineeringUniversity of CambridgeCambridgeCB3 0FAUK
| | - Alina Finch
- Institute of Cancer and Genomic ScienceUniversity of BirminghamBirminghamB15 2TTUK
| | - Magda Gerigk
- Division of Electrical EngineeringDepartment of EngineeringUniversity of CambridgeCambridgeCB3 0FAUK
| | - Iasonas F. Triantis
- Department of Electrical and Electronic EngineeringCity, University of LondonLondonEC1V 0HBUK
| | - Colin Watts
- Institute of Cancer and Genomic ScienceUniversity of BirminghamBirminghamB15 2TTUK
| | - George G. Malliaras
- Division of Electrical EngineeringDepartment of EngineeringUniversity of CambridgeCambridgeCB3 0FAUK
| |
Collapse
|
45
|
Regev O, Merkin V, Blumenthal DT, Melamed I, Kaisman-Elbaz T. Tumor-Treating Fields for the treatment of glioblastoma: a systematic review and meta-analysis. Neurooncol Pract 2021; 8:426-440. [PMID: 34277021 PMCID: PMC8278345 DOI: 10.1093/nop/npab026] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Tumor-Treating Fields (TTFields) is an emerging treatment modality for glioblastoma (GBM). Studies have shown a good safety profile alongside improved efficacy in newly diagnosed GBM (ndGBM), while a less clear effect was shown for recurrent GBM (rGBM). Despite regulatory support, sectors of the neuro-oncology community have been reluctant to accept it as part of the standard treatment protocol. To establish an objective understanding of TTFields' mechanism of action, safety, efficacy, and economical implications, we conducted a systematic literature review and meta-analysis. METHODS A systematic search was conducted in PubMed, Scopus, and Cochrane databases. Twenty studies met the pre-defined inclusion criteria, incorporating 1636 patients (542 ndGBM and 1094 rGBM), and 11 558 patients (6403 ndGBM and 5155 rGBM) analyzed for the clinical outcomes and safety endpoints, respectively. RESULTS This study demonstrated improved clinical efficacy and a good safety profile of TTFields. For ndGBM, pooled median overall survival (OS) and progression-free survival (PFS) were 21.7 (95%CI = 19.6-23.8) and 7.2 (95%CI = 6.1-8.2) months, respectively. For rGBM, pooled median OS and PFS were 10.3 (95%CI = 8.3-12.8) and 5.7 (95%CI = 2.8-10) months, respectively. Compliance of ≥75% was associated with an improved OS and the predominant adverse events were dermatologic, with a pooled prevalence of 38.4% (95%CI = 32.3-44.9). Preclinical studies demonstrated TTFields' diverse molecular mechanism of action, its potential synergistic efficacy, and suggest possible benefits for certain populations. CONCLUSIONS This study supports the use of TTFields for GBM, alongside the standard-of-care treatment protocol, and provides a practical summary, discussing the current clinical and preclinical aspects of the treatment and their implication on the disease course.
Collapse
Affiliation(s)
- Ohad Regev
- Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Be’er-Sheva, Israel
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Be’er-Sheva, Israel
| | - Vladimir Merkin
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Be’er-Sheva, Israel
- Department of Neurosurgery, Soroka University Medical Center, Be’er-Sheva, Israel
| | - Deborah T Blumenthal
- Neuro-Oncology Service, Tel Aviv Medical Center, Tel Aviv University, Tel Aviv, Israel
| | - Israel Melamed
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Be’er-Sheva, Israel
- Department of Neurosurgery, Soroka University Medical Center, Be’er-Sheva, Israel
| | - Tehila Kaisman-Elbaz
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Be’er-Sheva, Israel
- Department of Neurosurgery, Soroka University Medical Center, Be’er-Sheva, Israel
| |
Collapse
|
46
|
Linder B, Schiesl A, Voss M, Rödel F, Hehlgans S, Güllülü Ö, Seifert V, Kögel D, Senft C, Dubinski D. Dexamethasone Treatment Limits Efficacy of Radiation, but Does Not Interfere With Glioma Cell Death Induced by Tumor Treating Fields. Front Oncol 2021; 11:715031. [PMID: 34395289 PMCID: PMC8361446 DOI: 10.3389/fonc.2021.715031] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/20/2021] [Indexed: 11/25/2022] Open
Abstract
Purpose Dexamethasone (Dex) is the most common corticosteroid to treat edema in glioblastoma (GBM) patients. Recent studies identified the addition of Dex to radiation therapy (RT) to be associated with poor survival. Independently, Tumor Treating Fields (TTFields) provides a novel anti-cancer modality for patients with primary and recurrent GBM. Whether Dex influences the efficacy of TTFields, however, remains elusive. Methods Human GBM cell lines MZ54 and U251 were treated with RT or TTFields in combination with Dex and the effects on cell counts and cell death were determined via flow cytometry. We further performed a retrospective analysis of GBM patients with TTFields treatment +/- concomitant Dex and analysed its impact on progression-free (PFS) and overall survival (OS). Results The addition of Dex significantly reduced the efficacy of RT in U251, but not in MZ54 cells. TTFields (200 kHz/250 kHz) induced massive cell death in both cell lines. Concomitant treatment of TTFields and Dex did not reduce the overall efficacy of TTFields. Further, in our retrospective clinical analysis, we found that the addition of Dex to TTFields therapy did not influence PFS nor OS. Conclusion Our translational investigation indicates that the efficacy of TTFields therapy in patients with GBM and GBM cell lines is not affected by the addition of Dex.
Collapse
Affiliation(s)
- Benedikt Linder
- Experimental Neurosurgery, Neuroscience Center, Goethe University Hospital, Frankfurt, Germany
| | - Abigail Schiesl
- Experimental Neurosurgery, Neuroscience Center, Goethe University Hospital, Frankfurt, Germany
| | - Martin Voss
- Dr. Senckenberg Institute of Neurooncology, Goethe University Hospital, Frankfurt, Germany
| | - Franz Rödel
- Department of Radiotherapy and Oncology, Goethe University Hospital Frankfurt, Frankfurt, Germany
| | - Stephanie Hehlgans
- Department of Radiotherapy and Oncology, Goethe University Hospital Frankfurt, Frankfurt, Germany
| | - Ömer Güllülü
- Department of Radiotherapy and Oncology, Goethe University Hospital Frankfurt, Frankfurt, Germany
| | - Volker Seifert
- Department of Neurosurgery, Goethe University Hospital, Frankfurt, Germany
| | - Donat Kögel
- Experimental Neurosurgery, Neuroscience Center, Goethe University Hospital, Frankfurt, Germany
| | - Christian Senft
- Department of Neurosurgery, Goethe University Hospital, Frankfurt, Germany
| | - Daniel Dubinski
- Experimental Neurosurgery, Neuroscience Center, Goethe University Hospital, Frankfurt, Germany.,Department of Neurosurgery, Goethe University Hospital, Frankfurt, Germany
| |
Collapse
|
47
|
Wust P, Stein U, Ghadjar P. Non-thermal membrane effects of electromagnetic fields and therapeutic applications in oncology. Int J Hyperthermia 2021; 38:715-731. [PMID: 33910472 DOI: 10.1080/02656736.2021.1914354] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
The temperature-independent effects of electromagnetic fields (EMF) have been controversial for decades. Here, we critically analyze the available literature on non-thermal effects of radiofrequency (RF) and microwave EMF. We present a literature review of preclinical and clinical data on non-thermal antiproliferative effects of various EMF applications, including conventional RF hyperthermia (HT, cRF-HT). Further, we suggest and evaluate plausible biophysical and electrophysiological models to decipher non-thermal antiproliferative membrane effects. Available preclinical and clinical data provide sufficient evidence for the existence of non-thermal antiproliferative effects of exposure to cRF-HT, and in particular, amplitude modulated (AM)-RF-HT. In our model, transmembrane ion channels function like RF rectifiers and low-pass filters. cRF-HT induces ion fluxes and AM-RF-HT additionally promotes membrane vibrations at specific resonance frequencies, which explains the non-thermal antiproliferative membrane effects via ion disequilibrium (especially of Ca2+) and/or resonances causing membrane depolarization, the opening of certain (especially Ca2+) channels, or even hole formation. AM-RF-HT may be tumor-specific owing to cancer-specific ion channels and because, with increasing malignancy, membrane elasticity parameters may differ from that in normal tissues. Published literature suggests that non-thermal antiproliferative effects of cRF-HT are likely to exist and could present a high potential to improve future treatments in oncology.
Collapse
Affiliation(s)
- Peter Wust
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ulrike Stein
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Max-Delbrück-Centrum (MDC), Berlin, Germany
| | - Pirus Ghadjar
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
48
|
Aguilar AA, Ho MC, Chang E, Carlson KW, Natarajan A, Marciano T, Bomzon Z, Patel CB. Permeabilizing Cell Membranes with Electric Fields. Cancers (Basel) 2021; 13:2283. [PMID: 34068775 PMCID: PMC8126200 DOI: 10.3390/cancers13092283] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 12/29/2022] Open
Abstract
The biological impact of exogenous, alternating electric fields (AEFs) and direct-current electric fields has a long history of study, ranging from effects on embryonic development to influences on wound healing. In this article, we focus on the application of electric fields for the treatment of cancers. In particular, we outline the clinical impact of tumor treating fields (TTFields), a form of AEFs, on the treatment of cancers such as glioblastoma and mesothelioma. We provide an overview of the standard mechanism of action of TTFields, namely, the capability for AEFs (e.g., TTFields) to disrupt the formation and segregation of the mitotic spindle in actively dividing cells. Though this standard mechanism explains a large part of TTFields' action, it is by no means complete. The standard theory does not account for exogenously applied AEFs' influence directly upon DNA nor upon their capacity to alter the functionality and permeability of cancer cell membranes. This review summarizes the current literature to provide a more comprehensive understanding of AEFs' actions on cell membranes. It gives an overview of three mechanistic models that may explain the more recent observations into AEFs' effects: the voltage-gated ion channel, bioelectrorheological, and electroporation models. Inconsistencies were noted in both effective frequency range and field strength between TTFields versus all three proposed models. We addressed these discrepancies through theoretical investigations into the inhomogeneities of electric fields on cellular membranes as a function of disease state, external microenvironment, and tissue or cellular organization. Lastly, future experimental strategies to validate these findings are outlined. Clinical benefits are inevitably forthcoming.
Collapse
Affiliation(s)
- Alondra A. Aguilar
- Molecular Imaging Program at Stanford, Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA; (A.A.A.); (M.C.H.); (E.C.); (A.N.)
| | - Michelle C. Ho
- Molecular Imaging Program at Stanford, Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA; (A.A.A.); (M.C.H.); (E.C.); (A.N.)
| | - Edwin Chang
- Molecular Imaging Program at Stanford, Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA; (A.A.A.); (M.C.H.); (E.C.); (A.N.)
| | - Kristen W. Carlson
- Beth Israel Deaconess Medical Center, Department of Neurosurgery, Harvard Medical School, Boston, MA 02215, USA;
| | - Arutselvan Natarajan
- Molecular Imaging Program at Stanford, Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA; (A.A.A.); (M.C.H.); (E.C.); (A.N.)
| | - Tal Marciano
- Novocure, Ltd., 31905 Haifa, Israel; (T.M.); (Z.B.)
| | - Ze’ev Bomzon
- Novocure, Ltd., 31905 Haifa, Israel; (T.M.); (Z.B.)
| | - Chirag B. Patel
- Molecular Imaging Program at Stanford, Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA; (A.A.A.); (M.C.H.); (E.C.); (A.N.)
- Department of Neurology & Neurological Sciences, Division of Neuro-Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
49
|
Pterostilbene promotes mitochondrial apoptosis and inhibits proliferation in glioma cells. Sci Rep 2021; 11:6381. [PMID: 33737656 PMCID: PMC7973728 DOI: 10.1038/s41598-021-85908-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 03/09/2021] [Indexed: 01/15/2023] Open
Abstract
Glioma is the most general primary and lethal intracranial malignant tumor. Pterostilbene (PTE), an analog of stilbene and resveratrol, has attracted attention in recent years due to its significant antitumor activity in multiple solid tumors; however, its effect on drug-resistant glioma cells and the underlying mechanism have not yet been reported. In this study, we found that pterostilbene inhibited proliferation, induced intrinsic mitochondria-mediated apoptosis and caused S phase arrest, inhibited migration and excessive invasion in glioma cells. Pretreatment with the pan-caspase-inhibitor Z-VAD-FMK attenuated the PTE-induced apoptosis of glioma cells. Moreover, PTE significantly increased the production of reactive oxygen species (ROS) and reduce the mitochondrial membrane potential (MMP). Inhibition of ROS with N-acetyl-l-cysteine not only rescued PTE-induced reduction of cellular viability but also prevented glioma cell apoptosis. We also discovered ERK 1/2 and JNK signaling pathways were activated by PTE and contributed to induce glioma cell apoptosis. In addition, specific inhibitors of ERK 1/2 and JNK attenuated PTE-induced apoptosis. Besides, PTE significantly reduced tumor volume and prolonged median survival of tumor-bearing rats in vivo. In summary, the results of this study indicate that the anti-tumor effect of PTE on glioma cells may provide a new treatment option for glioma patients.
Collapse
|
50
|
Rominiyi O, Vanderlinden A, Clenton SJ, Bridgewater C, Al-Tamimi Y, Collis SJ. Tumour treating fields therapy for glioblastoma: current advances and future directions. Br J Cancer 2021; 124:697-709. [PMID: 33144698 PMCID: PMC7884384 DOI: 10.1038/s41416-020-01136-5] [Citation(s) in RCA: 142] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 09/16/2020] [Accepted: 10/05/2020] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common primary brain tumour in adults and continues to portend poor survival, despite multimodal treatment using surgery and chemoradiotherapy. The addition of tumour-treating fields (TTFields)-an approach in which alternating electrical fields exert biophysical force on charged and polarisable molecules known as dipoles-to standard therapy, has been shown to extend survival for patients with newly diagnosed GBM, recurrent GBM and mesothelioma, leading to the clinical approval of this approach by the FDA. TTFields represent a non-invasive anticancer modality consisting of low-intensity (1-3 V/cm), intermediate-frequency (100-300 kHz), alternating electric fields delivered via cutaneous transducer arrays configured to provide optimal tumour-site coverage. Although TTFields were initially demonstrated to inhibit cancer cell proliferation by interfering with mitotic apparatus, it is becoming increasingly clear that TTFields show a broad mechanism of action by disrupting a multitude of biological processes, including DNA repair, cell permeability and immunological responses, to elicit therapeutic effects. This review describes advances in our current understanding of the mechanisms by which TTFields mediate anticancer effects. Additionally, we summarise the landscape of TTFields clinical trials across various cancers and consider how emerging preclinical data might inform future clinical applications for TTFields.
Collapse
Affiliation(s)
- Ola Rominiyi
- Weston Park Cancer Centre, Department of Oncology & Metabolism, The University of Sheffield Medical School, Sheffield, UK.
- Department of Neurosurgery, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK.
| | - Aurelie Vanderlinden
- Weston Park Cancer Centre, Department of Oncology & Metabolism, The University of Sheffield Medical School, Sheffield, UK
| | - Susan Jane Clenton
- Department of Clinical Oncology, Weston Park Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Caroline Bridgewater
- Department of Clinical Oncology, Weston Park Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Yahia Al-Tamimi
- Department of Neurosurgery, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Spencer James Collis
- Weston Park Cancer Centre, Department of Oncology & Metabolism, The University of Sheffield Medical School, Sheffield, UK.
| |
Collapse
|