1
|
Kumar A, O'Shea CR, Yadav VK, Kandasamy G, Moorthy BT, Ambrose EA, Mulati A, Fontanesi F, Zhang F. Arginyltransferase1 drives a mitochondria-dependent program to induce cell death. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.22.624728. [PMID: 39605427 PMCID: PMC11601567 DOI: 10.1101/2024.11.22.624728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Cell death regulation is essential for stress adaptation and/or signal response. Past studies have shown that eukaryotic cell death is mediated by an evolutionarily conserved enzyme, arginyltransferase1 (Ate1). The downregulation of Ate1, as seen in many types of cancer, prominently increases cellular tolerance to a variety of stressing conditions. Conversely, in yeast and mammalian cells, Ate1 is elevated under acute oxidative stress conditions and this change appears to be essential for triggering cell death. However, studies of Ate1 were conventionally focused on its function in inducing protein degradation via the N-end rule pathway in the cytosol, leading to an incomplete understanding of the role of Ate1 in cell death. Our recent investigation shows that Ate1 dually exists in the cytosol and mitochondria, the latter of which has an established role in cell death initiation. Here, by using budding yeast as a model organism, we found that mitochondrial translocation of Ate1 is promoted by the presence of oxidative stressors and is essential for inducing cell death with characteristics of apoptosis. Also, we found that Ate1-induced cell death is dependent on the formation of the mitochondrial permeability pore and at least partly dependent on the action of mitochondria-contained factors including the apoptosis-inducing factor, but is not directly dependent on mitochondrial electron transport chain activity or its derived reactive oxygen species (ROS). Furthermore, our evidence suggests that, contrary to widespread assumptions, the cytosolic protein degradation pathways including ubiquitin-proteasome, autophagy, or endoplasmic reticulum (ER) stress response has little or negligible impacts on Ate1-induced cell death. We conclude that Ate1 controls the mitochondria-dependent cell death pathway.
Collapse
|
2
|
Naga R, Poddar S, Bhattacharjee A, Kar P, Bose A, Mattaparthi VSK, Mukherjee O, Saha S. Structural analysis of human ATE1 isoforms and their interactions with Arg-tRNA Arg. J Biomol Struct Dyn 2024; 42:7554-7573. [PMID: 37505085 DOI: 10.1080/07391102.2023.2240449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 07/18/2023] [Indexed: 07/29/2023]
Abstract
Posttranslational protein arginylation has been shown as a key regulator of cellular processes in eukaryotes by affecting protein stability, function, and interaction with macromolecules. Thus, the enzyme Arginyltransferase and its targets, are of immense interest to modulate cellular processes in the normal and diseased state. While the study on the effect of this posttranslational modification in mammalian systems gained momentum in the recent times, the detail structures of human ATE1 (hATE1) enzymes has not been investigated so far. Thus, the purpose of this study was to predict the overall structure and the structure function relationship of hATE1 enzyme and its four isoforms. The structure of four ATE1 isoforms were modelled and were docked with 3'end of the Arg-tRNAArg which acts as arginine donor in the arginylation reaction, followed by MD simulation. All the isoforms showed two distinct domains. A compact domain and a somewhat flexible domain as observed in the RMSF plot. A distinct similarity in the overall structure and interacting residues were observed between hATE1-1 and X4 compared to hATE1-2 and 5. While the putative active sites of all the hATE1 isoforms were located at the same pocket, differences were observed in the active site residues across hATE1 isoforms suggesting different substrate specificity. Mining of nsSNPs showed several nsSNPs including cancer associated SNPs with deleterious consequences on hATE1 structure and function. Thus, the current study for the first time shows the structural differences in the mammalian ATE1 isoforms and their possible implications in the function of these proteins.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Rahul Naga
- Department of Biotechnology, National Institute of Technology, Durgapur, West Bengal, India
| | - Sayan Poddar
- Department of Bioscience and Biomedical Engineering, IIT Indore, Indore, India
| | - Arghyadeep Bhattacharjee
- Department of Biotechnology, National Institute of Technology, Durgapur, West Bengal, India
- Department of Microbiology, Kingston College of Science, Barasat, Kolkata, West Bengal, India
| | - Parimal Kar
- Department of Bioscience and Biomedical Engineering, IIT Indore, Indore, India
| | - Avishek Bose
- Department of Biotechnology, National Institute of Technology, Durgapur, West Bengal, India
| | | | - Oindrilla Mukherjee
- Department of Biotechnology, National Institute of Technology, Durgapur, West Bengal, India
| | - Sougata Saha
- Department of Biotechnology, National Institute of Technology, Durgapur, West Bengal, India
| |
Collapse
|
3
|
Shokeen K, Baroi MK, Chahar M, Das D, Saini H, Kumar S. Arginyltransferase 1 (ATE1)-mediated proteasomal degradation of viral haemagglutinin protein: a unique host defence mechanism. J Gen Virol 2024; 105. [PMID: 39207120 DOI: 10.1099/jgv.0.002020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
The extensive protein production in virus-infected cells can disrupt protein homeostasis and activate various proteolytic pathways. These pathways utilize post-translational modifications (PTMs) to drive the ubiquitin-mediated proteasomal degradation of surplus proteins. Protein arginylation is the least explored PTM facilitated by arginyltransferase 1 (ATE1) enzyme. Several studies have provided evidence supporting its importance in multiple physiological processes, including ageing, stress, nerve regeneration, actin formation and embryo development. However, its function in viral pathogenesis is still unexplored. The present work utilizes Newcastle disease virus (NDV) as a model to establish the role of the ATE1 enzyme and its activity in pathogenesis. Our data indicate a rise in levels of N-arginylated cellular proteins in the infected cells. Here, we also explore the haemagglutinin-neuraminidase (HN) protein of NDV as a presumable target for arginylation. The data indicate that the administration of Arg amplifies the arginylation process, resulting in reduced stability of the HN protein. ATE1 enzyme activity inhibition and gene expression knockdown studies were also conducted to analyse modulation in HN protein levels, which further substantiated the findings. Moreover, we also observed Arg addition and probable ubiquitin modification to the HN protein, indicating engagement of the proteasomal degradation machinery. Lastly, we concluded that the enhanced levels of the ATE1 enzyme could transfer the Arg residue to the N-terminus of the HN protein, ultimately driving its proteasomal degradation.
Collapse
Affiliation(s)
- Kamal Shokeen
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Malay Kumar Baroi
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, India
| | - Manjeet Chahar
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Debapratim Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, India
| | - Harimohan Saini
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Sachin Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| |
Collapse
|
4
|
Le LTHL, Park S, Lee JH, Kim YK, Lee MJ. N-recognins UBR1 and UBR2 as central ER stress sensors in mammals. Mol Cells 2024; 47:100001. [PMID: 38376480 PMCID: PMC10880078 DOI: 10.1016/j.mocell.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/22/2023] [Accepted: 11/22/2023] [Indexed: 02/21/2024] Open
Abstract
In eukaryotes, a primary protein quality control (PQC) process involves the destruction of conformationally misfolded proteins through the ubiquitin-proteasome system. Because approximately one-third of eukaryotic proteomes fold and assemble within the endoplasmic reticulum (ER) before being sent to their destinations, the ER plays a crucial role in PQC. The specific functions and biochemical roles of several E3 ubiquitin ligases involved in ER-associated degradation in mammals, on the other hand, are mainly unknown. We identified 2 E3 ligases, ubiquitin protein ligase E3 component N-recognin 1 (UBR1) and ubiquitin protein ligase E3 component N-recognin 2 (UBR2), which are the key N-recognins in the N-degron pathway and participate in the ER stress response in mammalian cells by modulating their stability. Cells lacking UBR1 and UBR2 are hypersensitive to ER stress-induced apoptosis. Under normal circumstances, these proteins are polyubiquitinated through Lys48-specific linkages and are then degraded by the 26S proteasome. In contrast, when cells are subjected to ER stress, UBR1 and UBR2 exhibit greater stability, potentially as a cellular adaptive response to stressful conditions. Although the precise mechanisms underlying these findings require further investigation, our findings show that cytoplasmic UBR1 and UBR2 have anti-ER stress activities and contribute to global PQC in mammals. These data also reveal an additional level of complexity within the mammalian ER-associated degradation system, implicating potential involvement of the N-degron pathway.
Collapse
Affiliation(s)
- Ly Thi Huong Luu Le
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea; Department of Biomedical Sciences, Seoul National University Graduate School, Seoul 03080, Korea
| | - Seoyoung Park
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea; Inspharmtech Inc., Seoul 08511, Korea
| | - Jung Hoon Lee
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Yun Kyung Kim
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
| | - Min Jae Lee
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea; Department of Biomedical Sciences, Seoul National University Graduate School, Seoul 03080, Korea; Ischemic/Hypoxic Disease Institute, Convergence Research Center for Dementia, Seoul National University College of Medicine, Seoul 03080, Korea.
| |
Collapse
|
5
|
Fu H, Li Y, Tian J, Yang B, Li Y, Li Q, Liu S. Contribution of HIF-1α to Heat Shock Response by Transcriptional Regulation of HSF1/HSP70 Signaling Pathway in Pacific Oyster, Crassostrea gigas. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023; 25:691-700. [PMID: 37556001 DOI: 10.1007/s10126-023-10231-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 07/19/2023] [Indexed: 08/10/2023]
Abstract
Ocean temperature rising drastically threatens the adaptation and survival of marine organisms, causing serious ecological impacts and economic losses. It is crucial to understand the adaptive mechanisms of marine organisms in response to high temperature. In this study, a novel regulatory mechanism that is mediated by hypoxia-inducible factor-1α (HIF-1α) was revealed in Pacific oyster (Crassostrea gigas) in response to heat stress. We identified a total of six HIF-1α genes in the C. gigas genome, of which HIF-1α and HIF-1α-like5 were highly induced under heat stress. We found that the HIF-1α and HIF-1α-like5 genes played critical roles in the heat shock response (HSR) through upregulating the expression of heat shock protein (HSP). Knocking down of HIF-1α via RNA interference (RNAi) inhibited the expression of heat shock factor 1 (HSF1) and HSP70 genes in C. gigas under heat stress. Both HIF-1α and HIF-1α-like5 promoted the transcriptional activity of HSF1 by binding to hypoxia response elements (HREs) within the promoter region. Furthermore, the survival of C. gigas under heat stress was significantly decreased after knocking down of HIF-1α. This work for the first time revealed the involvement of HIF-1α/HSF1/HSP70 pathway in response to heat stress in the oyster and provided an insight into adaptive mechanism of bivalves in the face of ocean warming.
Collapse
Affiliation(s)
- Huiru Fu
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education and College of Fisheries, Ocean University of China, Qingdao, 266003, China
| | - Yongjing Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education and College of Fisheries, Ocean University of China, Qingdao, 266003, China
| | - Jing Tian
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education and College of Fisheries, Ocean University of China, Qingdao, 266003, China
| | - Ben Yang
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education and College of Fisheries, Ocean University of China, Qingdao, 266003, China
| | - Yin Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education and College of Fisheries, Ocean University of China, Qingdao, 266003, China
| | - Qi Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education and College of Fisheries, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Shikai Liu
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education and College of Fisheries, Ocean University of China, Qingdao, 266003, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
6
|
Ray L, Ray S. Enhanced anticancer activity of siRNA and drug codelivered by anionic biopolymer: overcoming electrostatic repulsion. Nanomedicine (Lond) 2023; 18:855-874. [PMID: 37503814 DOI: 10.2217/nnm-2022-0225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023] Open
Abstract
Aim: To codeliver an anticancer drug (doxorubicin) and siRNA in the form of nanoparticles into CD44-overexpressing colon cancer cells (HT-29) using an anionic, amphiphilic biopolymer comprising modified hyaluronic acid (6-O-[3-hexadecyloxy-2-hydroxypropyl]-hyaluronic acid). Materials & methods: Characterization of nanoparticles was performed using dynamic light scattering, scanning electron microscopy, transmission electron microscopy, molecular docking, in vitro drug release and gel mobility assays. Detailed in vitro experiments, including a gene silencing study and western blot, were also performed. Results: A 69% knockdown of the target gene was observed, and western blot showed 5.7-fold downregulation of the target protein. The repulsive forces between siRNA and 6-O-(3-hexadecyloxy-2-hydroxypropyl)-hyaluronic acid were overcome by hydrogen bonding and hydrophobic interactions. Conclusion: The authors successfully codelivered a drug and siRNA by anionic vector.
Collapse
Affiliation(s)
- Lipika Ray
- Pharmaceutics & Pharmacokinetics Division, Council of Scientific & Industrial Research-Central Drug Research Institute, Sector 10, Jankipuram Extension, Lucknow, Uttar Pradesh, 226031, India
| | - Sutapa Ray
- Department of Chemistry, Indian Institute of Technology, Kharagpur, 721302, India
| |
Collapse
|
7
|
Macedo-da-Silva J, Rosa-Fernandes L, Gomes VDM, Santiago VF, Santos DM, Molnar CMS, Barboza BR, de Souza EE, Marques RF, Boscardin SB, Durigon EL, Marinho CRF, Wrenger C, Marie SKN, Palmisano G. Protein Arginylation Is Regulated during SARS-CoV-2 Infection. Viruses 2023; 15:v15020290. [PMID: 36851505 PMCID: PMC9964439 DOI: 10.3390/v15020290] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/09/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND In 2019, the world witnessed the onset of an unprecedented pandemic. By February 2022, the infection by SARS-CoV-2 has already been responsible for the death of more than 5 million people worldwide. Recently, we and other groups discovered that SARS-CoV-2 infection induces ER stress and activation of the unfolded protein response (UPR) pathway. Degradation of misfolded/unfolded proteins is an essential element of proteostasis and occurs mainly in lysosomes or proteasomes. The N-terminal arginylation of proteins is characterized as an inducer of ubiquitination and proteasomal degradation by the N-degron pathway. RESULTS The role of protein arginylation during SARS-CoV-2 infection was elucidated. Protein arginylation was studied in Vero CCL-81, macrophage-like THP1, and Calu-3 cells infected at different times. A reanalysis of in vivo and in vitro public omics data combined with immunoblotting was performed to measure levels of arginyl-tRNA-protein transferase (ATE1) and its substrates. Dysregulation of the N-degron pathway was specifically identified during coronavirus infections compared to other respiratory viruses. We demonstrated that during SARS-CoV-2 infection, there is an increase in ATE1 expression in Calu-3 and Vero CCL-81 cells. On the other hand, infected macrophages showed no enzyme regulation. ATE1 and protein arginylation was variant-dependent, as shown using P1 and P2 viral variants and HEK 293T cells transfection with the spike protein and receptor-binding domains (RBD). In addition, we report that ATE1 inhibitors, tannic acid and merbromine (MER) reduce viral load. This finding was confirmed in ATE1-silenced cells. CONCLUSIONS We demonstrate that ATE1 is increased during SARS-CoV-2 infection and its inhibition has potential therapeutic value.
Collapse
Affiliation(s)
- Janaina Macedo-da-Silva
- GlycoProteomics Laboratory, Department of Parasitology, ICB, University of São Paulo, São Paulo 05508-000, Brazil
| | - Livia Rosa-Fernandes
- GlycoProteomics Laboratory, Department of Parasitology, ICB, University of São Paulo, São Paulo 05508-000, Brazil
- Laboratory of Experimental Immunoparasitology, Department of Parasitology, ICB, University of São Paulo, São Paulo 05508-000, Brazil
| | - Vinicius de Morais Gomes
- GlycoProteomics Laboratory, Department of Parasitology, ICB, University of São Paulo, São Paulo 05508-000, Brazil
| | - Veronica Feijoli Santiago
- GlycoProteomics Laboratory, Department of Parasitology, ICB, University of São Paulo, São Paulo 05508-000, Brazil
| | - Deivid Martins Santos
- GlycoProteomics Laboratory, Department of Parasitology, ICB, University of São Paulo, São Paulo 05508-000, Brazil
| | | | - Bruno Rafael Barboza
- GlycoProteomics Laboratory, Department of Parasitology, ICB, University of São Paulo, São Paulo 05508-000, Brazil
| | - Edmarcia Elisa de Souza
- Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences at the University of São Paulo, São Paulo 05508-000, Brazil
| | - Rodolfo Ferreira Marques
- Laboratory of Antigen Targeting for Dendritic Cells, Department of Parasitology, Institute of Biomedical Sciences at the University of São Paulo, São Paulo 05508-000, Brazil
| | - Silvia Beatriz Boscardin
- Laboratory of Antigen Targeting for Dendritic Cells, Department of Parasitology, Institute of Biomedical Sciences at the University of São Paulo, São Paulo 05508-000, Brazil
| | - Edison Luiz Durigon
- Laboratory of Clinical and Molecular Virology, Department of Microbiology, ICB, University of São Paulo, São Paulo 05508-000, Brazil
| | - Claudio Romero Farias Marinho
- Laboratory of Experimental Immunoparasitology, Department of Parasitology, ICB, University of São Paulo, São Paulo 05508-000, Brazil
| | - Carsten Wrenger
- Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences at the University of São Paulo, São Paulo 05508-000, Brazil
| | - Suely Kazue Nagahashi Marie
- Laboratory of Molecular and Cellular Biology (LIM 15), Department of Neurology, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo 01246-903, Brazil
| | - Giuseppe Palmisano
- GlycoProteomics Laboratory, Department of Parasitology, ICB, University of São Paulo, São Paulo 05508-000, Brazil
- School of Natural Sciences, Macquarie University, Sydney 2109, Australia
- Correspondence: or ; Tel.: +55-11-99920-8662
| |
Collapse
|
8
|
Kumar A, Zhang F. Assaying Arginylation Activity in Cell Lysates Using a Fluorescent Reporter. Methods Mol Biol 2023; 2620:71-80. [PMID: 37010750 DOI: 10.1007/978-1-0716-2942-0_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Abstract
Here, we describe an antibody-based method to evaluate the enzymatic activity of arginyltransferase1 (Ate1). The assay is based on the arginylation of a reporter protein, which contains the N-terminal peptide of beta-actin, a known endogenous substrate of Ate1, and a C-terminal GFP. The arginylation level of the reporter protein is determined on an immunoblot with an antibody specific for the arginylated N-terminus, while the total amount of substrate is evaluated with anti-GFP antibody. This method can be used to conveniently and accurately examine the Ate1 activity in yeast and mammalian cell lysates. Moreover, the effect of mutation on Ate1 critical residues and effect of stress and other factors on Ate1 activity can also be successfully determined with this method.
Collapse
Affiliation(s)
- Akhilesh Kumar
- Department of Botany, Banaras Hindu University, Varanasi, UP, India
| | - Fangliang Zhang
- Department of Molecular & Cellular Pharmacology, University of Miami Leonard M. Miller School of Medicine, Miami, FL, USA.
- Sylvester Comprehensive Cancer Center, Miami, FL, USA.
| |
Collapse
|
9
|
Arginylation Regulates Cytoskeleton Organization and Cell Division and Affects Mitochondria in Fission Yeast. Mol Cell Biol 2022; 42:e0026122. [PMID: 36226970 PMCID: PMC9670973 DOI: 10.1128/mcb.00261-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Protein arginylation mediated by arginyltransferase Ate1 is a posttranslational modification of emerging importance implicated in the regulation of mammalian embryogenesis, the cardiovascular system, tissue morphogenesis, cell migration, neurodegeneration, cancer, and aging. Ate1 deletion results in embryonic lethality in mice but does not affect yeast viability, making yeast an ideal system to study the molecular pathways regulated by arginylation. Here, we conducted a global analysis of cytoskeleton-related arginylation-dependent phenotypes in Schizosaccharomyces pombe, a fission yeast species that shares many fundamental features of higher eukaryotic cells. Our studies revealed roles of Ate1 in cell division, cell polarization, organelle transport, and interphase cytoskeleton organization and dynamics. We also found a role of Ate1 in mitochondria morphology and maintenance. Furthermore, targeted mass spectrometry analysis of the total Sc. pombe arginylome identified a number of arginylated proteins, including those that play direct roles in these processes; lack of their arginylation may be responsible for ate1-knockout phenotypes. Our work outlines global biological processes potentially regulated by arginylation and paves the way to unraveling the functions of protein arginylation that are conserved at multiple levels of evolution and potentially constitute the primary role of this modification in vivo.
Collapse
|
10
|
Zhang F. Editorial: Waken the Silent Majority: Principles and Pathogenic Significance of Non-Acetyl Acylation and Other Understudied Post-Translational Modifications. Front Cell Dev Biol 2022; 10:896324. [PMID: 35493078 PMCID: PMC9043806 DOI: 10.3389/fcell.2022.896324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 03/22/2022] [Indexed: 11/21/2022] Open
Affiliation(s)
- Fangliang Zhang
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, United States
- Sylvester Comprehensive Cancer Center, University of Miami Health System, Miami, FL, United States
- *Correspondence: Fangliang Zhang,
| |
Collapse
|
11
|
Liquiritin Attenuates Angiotensin II-Induced Cardiomyocyte Hypertrophy via ATE1/TAK1-JNK1/2 Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7861338. [PMID: 35341136 PMCID: PMC8942629 DOI: 10.1155/2022/7861338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 02/23/2022] [Indexed: 11/18/2022]
Abstract
Objective To investigate the protective effect and mechanism of liquiritin (LIQ) on cardiomyocyte hypertrophy induced by angiotensin II (Ang II). Methods H9c2 cells were pretreated with LIQ before and after Ang II treatment. CCK8 assay was performed to evaluate cell viability. The cell surface area was measured by phalloidin staining. The mRNA expression of atrial and B-type natriuretic peptides (ANP and BNP, respectively) and β-myosin heavy chain (β-MHC) was determined by quantitative reverse transcription-polymerase chain reaction (RT-qPCR); the protein levels of arginyltransferase 1 (ATE1), transforming growth factor beta-activated kinase 1 (TAK1), phos-TAK1, c-Jun N-terminal kinases1/2 (JNK1/2), and phos-JNK1/2 were determined by Western blotting. After constructing the ATE1 overexpression cell models with the pcDNA3.1/ATE1, the abovementioned indicators were tested using the introduced methods. Results LIQ at a concentration of ≤30 μM was not cytotoxic to H9c2 cells before exposure to Ang II. The protective effect of LIQ was best observed at 30 μM after Ang II treatment. Phalloidin staining and RT-qPCR results indicated that the deposition of Ang II increased the cell surface area and levels of ANP, BNP, and β-MHC. On the other hand, Western blotting results showed that Ang II increased the ATE1 protein levels and TAK1 and JNK1/2 phosphorylation, which were significantly alleviated after LIQ treatment. LIQ also directly inhibited the ATE1 overexpression in H9c2 cells transfected with pcDNA3.1/ATE1 and further inhibited TAK1 and JNK1/2 phosphorylation. Conclusion LIQ can attenuate Ang II-induced cardiomyocyte hypertrophy by regulating the ATE1/TAK1-JNK1/2 pathway.
Collapse
|
12
|
Alagar Boopathy LR, Jacob-Tomas S, Alecki C, Vera M. Mechanisms tailoring the expression of heat shock proteins to proteostasis challenges. J Biol Chem 2022; 298:101796. [PMID: 35248532 PMCID: PMC9065632 DOI: 10.1016/j.jbc.2022.101796] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 12/14/2022] Open
Abstract
All cells possess an internal stress response to cope with environmental and pathophysiological challenges. Upon stress, cells reprogram their molecular functions to activate a survival mechanism known as the heat shock response, which mediates the rapid induction of molecular chaperones such as the heat shock proteins (HSPs). This potent production overcomes the general suppression of gene expression and results in high levels of HSPs to subsequently refold or degrade misfolded proteins. Once the damage or stress is repaired or removed, cells terminate the production of HSPs and resume regular functions. Thus, fulfillment of the stress response requires swift and robust coordination between stress response activation and completion that is determined by the status of the cell. In recent years, single-cell fluorescence microscopy techniques have begun to be used in unravelling HSP-gene expression pathways, from DNA transcription to mRNA degradation. In this review, we will address the molecular mechanisms in different organisms and cell types that coordinate the expression of HSPs with signaling networks that act to reprogram gene transcription, mRNA translation, and decay and ensure protein quality control.
Collapse
|
13
|
Drazic A, Timmerman E, Kajan U, Marie M, Varland S, Impens F, Gevaert K, Arnesen T. The Final Maturation State of β-actin Involves N-terminal Acetylation by NAA80, not N-terminal Arginylation by ATE1. J Mol Biol 2022; 434:167397. [PMID: 34896361 PMCID: PMC7613935 DOI: 10.1016/j.jmb.2021.167397] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/03/2021] [Accepted: 12/04/2021] [Indexed: 12/16/2022]
Abstract
Actin is a hallmark protein of the cytoskeleton in eukaryotic cells, affecting a range of cellular functions. Actin dynamics is regulated through a myriad of actin-binding proteins and post-translational modifications. The mammalian actin family consists of six different isoforms, which vary slightly in their N-terminal (Nt) sequences. During and after synthesis, actins undergo an intricate Nt-processing that yields mature actin isoforms. The ubiquitously expressed cytoplasmic β-actin is Nt-acetylated by N-alpha acetyltransferase 80 (NAA80) yielding the Nt-sequence Ac-DDDI-. In addition, β-actin was also reported to be Nt-arginylated by arginyltransferase 1 (ATE1) after further peptidase-mediated processing, yielding RDDI-. To characterize in detail the Nt-processing of actin, we used state-of-the-art proteomics. To estimate the relative cellular levels of Nt-modified proteoforms of actin, we employed NAA80-lacking cells, in which actin was not Nt-acetylated. We found that targeted proteomics is superior to a commercially available antibody previously used to analyze Nt-arginylation of β-actin. Significantly, despite the use of sensitive mass spectrometry-based techniques, we could not confirm the existence of the previously claimed Nt-arginylated β-actin (RDDI-) in either wildtype or NAA80-lacking cells. A very minor level of Nt-arginylation of the initially cleaved β-actin (DDDI-) could be identified, but only in NAA80-lacking cells, not in wildtype cells. We also identified small fractions of cleaved and unmodified β-actin (DDI-) as well as cleaved and Nt-acetylated β-actin (Ac-DDI-). In sum, we show that the multi-step Nt-maturation of β-actin is terminated by NAA80, which Nt-acetylates the exposed Nt-Asp residues, in the virtual absence of previously claimed Nt-arginylation.
Collapse
Affiliation(s)
- Adrian Drazic
- Department of Biomedicine, University of Bergen, N-5020 Bergen, Norway
| | - Evy Timmerman
- VIB-UGent Center for Medical Biotechnology, B-9000 Ghent, Belgium; VIB Proteomics Core, B-9000 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, B-9000 Ghent, Belgium
| | - Ulrike Kajan
- Department of Biomedicine, University of Bergen, N-5020 Bergen, Norway
| | - Michaël Marie
- Department of Biomedicine, University of Bergen, N-5020 Bergen, Norway
| | - Sylvia Varland
- Department of Biomedicine, University of Bergen, N-5020 Bergen, Norway; Department of Biological Sciences, University of Bergen, N-5020 Bergen, Norway
| | - Francis Impens
- VIB-UGent Center for Medical Biotechnology, B-9000 Ghent, Belgium; VIB Proteomics Core, B-9000 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, B-9000 Ghent, Belgium
| | - Kris Gevaert
- VIB-UGent Center for Medical Biotechnology, B-9000 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, B-9000 Ghent, Belgium
| | - Thomas Arnesen
- Department of Biomedicine, University of Bergen, N-5020 Bergen, Norway; Department of Biological Sciences, University of Bergen, N-5020 Bergen, Norway; Department of Surgery, Haukeland University Hospital, N-5021 Bergen, Norway.
| |
Collapse
|
14
|
Kalinina M, Skvortsov D, Kalmykova S, Ivanov T, Dontsova O, Pervouchine D. Multiple competing RNA structures dynamically control alternative splicing in the human ATE1 gene. Nucleic Acids Res 2021; 49:479-490. [PMID: 33330934 PMCID: PMC7797038 DOI: 10.1093/nar/gkaa1208] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/07/2020] [Accepted: 11/28/2020] [Indexed: 11/14/2022] Open
Abstract
The mammalian Ate1 gene encodes an arginyl transferase enzyme with tumor suppressor function that depends on the inclusion of one of the two mutually exclusive exons (MXE), exons 7a and 7b. We report that the molecular mechanism underlying MXE splicing in Ate1 involves five conserved regulatory intronic elements R1-R5, of which R1 and R4 compete for base pairing with R3, while R2 and R5 form an ultra-long-range RNA structure spanning 30 Kb. In minigenes, single and double mutations that disrupt base pairings in R1R3 and R3R4 lead to the loss of MXE splicing, while compensatory triple mutations that restore RNA structure revert splicing to that of the wild type. In the endogenous Ate1 pre-mRNA, blocking the competing base pairings by LNA/DNA mixmers complementary to R3 leads to the loss of MXE splicing, while the disruption of R2R5 interaction changes the ratio of MXE. That is, Ate1 splicing is controlled by two independent, dynamically interacting, and functionally distinct RNA structure modules. Exon 7a becomes more included in response to RNA Pol II slowdown, however it fails to do so when the ultra-long-range R2R5 interaction is disrupted, indicating that exon 7a/7b ratio depends on co-transcriptional RNA folding. In sum, these results demonstrate that splicing is coordinated both in time and in space over very long distances, and that the interaction of these components is mediated by RNA structure.
Collapse
Affiliation(s)
- Marina Kalinina
- Skolkovo Institute of Science and Technology, Center of Life Sciences, Moscow 143026, Russia
| | - Dmitry Skvortsov
- Moscow State University, Faculty of Chemistry, Moscow 119991, Russia
| | - Svetlana Kalmykova
- Skolkovo Institute of Science and Technology, Center of Life Sciences, Moscow 143026, Russia
| | - Timofei Ivanov
- Skolkovo Institute of Science and Technology, Center of Life Sciences, Moscow 143026, Russia
| | - Olga Dontsova
- Skolkovo Institute of Science and Technology, Center of Life Sciences, Moscow 143026, Russia
- Moscow State University, Faculty of Chemistry, Moscow 119991, Russia
| | - Dmitri D Pervouchine
- Skolkovo Institute of Science and Technology, Center of Life Sciences, Moscow 143026, Russia
| |
Collapse
|
15
|
Jiang C, Moorthy BT, Patel DM, Kumar A, Morgan WM, Alfonso B, Huang J, Lampidis TJ, Isom DG, Barrientos A, Fontanesi F, Zhang F. Regulation of Mitochondrial Respiratory Chain Complex Levels, Organization, and Function by Arginyltransferase 1. Front Cell Dev Biol 2020; 8:603688. [PMID: 33409279 PMCID: PMC7779560 DOI: 10.3389/fcell.2020.603688] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/23/2020] [Indexed: 12/24/2022] Open
Abstract
Arginyltransferase 1 (ATE1) is an evolutionary-conserved eukaryotic protein that localizes to the cytosol and nucleus. It is the only known enzyme in metazoans and fungi that catalyzes posttranslational arginylation. Lack of arginylation has been linked to an array of human disorders, including cancer, by altering the response to stress and the regulation of metabolism and apoptosis. Although mitochondria play relevant roles in these processes in health and disease, a causal relationship between ATE1 activity and mitochondrial biology has yet to be established. Here, we report a phylogenetic analysis that traces the roots of ATE1 to alpha-proteobacteria, the mitochondrion microbial ancestor. We then demonstrate that a small fraction of ATE1 localizes within mitochondria. Furthermore, the absence of ATE1 influences the levels, organization, and function of respiratory chain complexes in mouse cells. Specifically, ATE1-KO mouse embryonic fibroblasts have increased levels of respiratory supercomplexes I+III2+IVn. However, they have decreased mitochondrial respiration owing to severely lowered complex II levels, which leads to accumulation of succinate and downstream metabolic effects. Taken together, our findings establish a novel pathway for mitochondrial function regulation that might explain ATE1-dependent effects in various disease conditions, including cancer and aging, in which metabolic shifts are part of the pathogenic or deleterious underlying mechanism.
Collapse
Affiliation(s)
- Chunhua Jiang
- Department of Molecular & Cellular Pharmacology, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States
| | - Balaji T Moorthy
- Department of Molecular & Cellular Pharmacology, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States
| | - Devang M Patel
- Department of Molecular & Cellular Pharmacology, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States
| | - Akhilesh Kumar
- Department of Molecular & Cellular Pharmacology, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States
| | - William M Morgan
- Department of Molecular & Cellular Pharmacology, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States
| | - Belkis Alfonso
- Department of Human Genetics, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States
| | - Jingyu Huang
- Department of Human Genetics, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States
| | - Theodore J Lampidis
- Department of Cell Biology, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States.,Sylvester Comprehensive Cancer Center, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States
| | - Daniel G Isom
- Department of Molecular & Cellular Pharmacology, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States.,Sylvester Comprehensive Cancer Center, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States.,Institute for Data Science and Computing, University of Miami, Coral Gables, FL, United States
| | - Antoni Barrientos
- Department of Neurology, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States.,Department of Biochemistry & Molecular Biology, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States
| | - Flavia Fontanesi
- Department of Biochemistry & Molecular Biology, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States
| | - Fangliang Zhang
- Department of Molecular & Cellular Pharmacology, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States.,Sylvester Comprehensive Cancer Center, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
16
|
Heat stress induced arginylation of HuR promotes alternative polyadenylation of Hsp70.3 by regulating HuR stability and RNA binding. Cell Death Differ 2020; 28:730-747. [PMID: 32929216 DOI: 10.1038/s41418-020-00619-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 08/27/2020] [Accepted: 09/01/2020] [Indexed: 11/08/2022] Open
Abstract
Arginylation was previously found to promote stabilization of heat shock protein 70.3 (Hsp70.3) mRNA and cell survival in mouse embryonic fibroblasts (MEFs) on exposure to heat stress (HS). In search of a factor responsible for these phenomena, the current study identified human antigen R (HuR) as a direct target of arginylation. HS induced arginylation of HuR affected its stability and RNA binding activity. Arginylated HuR failed to bind Hsp70.3 3' UTR, allowing the recruitment of cleavage stimulating factor 64 (CstF64) in the proximal poly-A-site (PAS), generating transcripts with short 3'UTR. However, HuR from Ate1 knock out (KO) MEFs bound to proximal PAS region with higher affinity, thus excluded CstF64 recruitment. This inhibited the alternative polyadenylation (APA) of Hsp70.3 mRNA and generated the unstable transcripts with long 3'UTR. The inhibition of RNA binding activity of HuR was traced to arginylation-coupled phosphorylation of HuR, by check point kinase 2 (Chk2). Arginylation of HuR occurred at the residue D15 and the arginylation was needed for the phosphorylation. Accumulation of HuR also decreased cell viability upon HS. In conclusion, arginylation dependent modifications of HuR maintained its cellular homeostasis, and promoted APA of Hsp70.3 pre-mRNA, during early HS response.
Collapse
|
17
|
Avcilar-Kucukgoze I, Gamper H, Polte C, Ignatova Z, Kraetzner R, Shtutman M, Hou YM, Dong DW, Kashina A. tRNA Arg-Derived Fragments Can Serve as Arginine Donors for Protein Arginylation. Cell Chem Biol 2020; 27:839-849.e4. [PMID: 32553119 DOI: 10.1016/j.chembiol.2020.05.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/12/2020] [Accepted: 05/27/2020] [Indexed: 12/23/2022]
Abstract
Arginyltransferase ATE1 mediates posttranslational arginylation and plays key roles in multiple physiological processes. ATE1 utilizes arginyl (Arg)-tRNAArg as the donor of Arg, putting this reaction into a direct competition with the protein synthesis machinery. Here, we address the question of ATE1- Arg-tRNAArg specificity as a potential mechanism enabling this competition in vivo. Using in vitro arginylation assays and Ate1 knockout models, we find that, in addition to full-length tRNA, ATE1 is also able to utilize short tRNAArg fragments that bear structural resemblance to tRNA-derived fragments (tRF), a recently discovered class of small regulatory non-coding RNAs with global emerging biological role. Ate1 knockout cells show a decrease in tRFArg generation and a significant increase in the ratio of tRNAArg:tRFArg compared with wild type, suggesting a functional link between tRFArg and arginylation. We propose that generation of physiologically important tRFs can serve as a switch between translation and protein arginylation.
Collapse
Affiliation(s)
- Irem Avcilar-Kucukgoze
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Howard Gamper
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19144, USA
| | - Christine Polte
- Institute of Biochemistry and Molecular Biology, University of Hamburg, 20148 Hamburg, Germany
| | - Zoya Ignatova
- Institute of Biochemistry and Molecular Biology, University of Hamburg, 20148 Hamburg, Germany
| | - Ralph Kraetzner
- Department of Pediatrics and Adolescent Medicine, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Michael Shtutman
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Ya-Ming Hou
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19144, USA
| | - Dawei W Dong
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Anna Kashina
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
18
|
Wiley DJ, D’Urso G, Zhang F. Posttranslational Arginylation Enzyme Arginyltransferase1 Shows Genetic Interactions With Specific Cellular Pathways in vivo. Front Physiol 2020; 11:427. [PMID: 32435206 PMCID: PMC7218141 DOI: 10.3389/fphys.2020.00427] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/07/2020] [Indexed: 12/20/2022] Open
Abstract
Arginyltransferase1 (ATE1) is a conserved enzyme in eukaryotes mediating posttranslational arginylation, the addition of an extra arginine to an existing protein. In mammals, the dysregulations of the ATE1 gene (ate1) is shown to be involved in cardiovascular abnormalities, cancer, and aging-related diseases. Although biochemical evidence suggested that arginylation may be involved in stress response and/or protein degradation, the physiological role of ATE1 in vivo has never been systematically determined. This gap of knowledge leads to difficulties for interpreting the involvements of ATE1 in diseases pathogenesis. Since ate1 is highly conserved between human and the unicellular organism Schizosaccharomyces pombe (S. pombe), we take advantage of the gene-knockout library of S. pombe, to investigate the genetic interactions between ate1 and other genes in a systematic and unbiased manner. By this approach, we found that ate1 has a surprisingly small and focused impact size. Among the 3659 tested genes, which covers nearly 75% of the genome of S. pombe, less than 5% of them displayed significant genetic interactions with ate1. Furthermore, these ate1-interacting partners can be grouped into a few discrete clustered categories based on their functions or their physical interactions. These categories include translation/transcription regulation, biosynthesis/metabolism of biomolecules (including histidine), cell morphology and cellular dynamics, response to oxidative or metabolic stress, ribosomal structure and function, and mitochondrial function. Unexpectedly, inconsistent to popular belief, very few genes in the global ubiquitination or degradation pathways showed interactions with ate1. Our results suggested that ATE1 specifically regulates a handful of cellular processes in vivo, which will provide critical mechanistic leads for studying the involvements of ATE1 in normal physiologies as well as in diseased conditions.
Collapse
Affiliation(s)
- David J. Wiley
- Department of Molecular and Cellular Pharmacology, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States
| | - Gennaro D’Urso
- Department of Molecular and Cellular Pharmacology, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States
| | - Fangliang Zhang
- Department of Molecular and Cellular Pharmacology, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States
- Sylvester Comprehensive Cancer Center, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
19
|
Kong KYE, Hung TNF, Man PHM, Wong TN, Cheng T, Jin DY. Post-transcriptional negative feedback regulation of proteostasis through the Dis3 ribonuclease and its disruption by polyQ-expanded Huntingtin. Nucleic Acids Res 2019; 47:10040-10058. [PMID: 31428776 PMCID: PMC6821268 DOI: 10.1093/nar/gkz722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 08/05/2019] [Accepted: 08/08/2019] [Indexed: 11/17/2022] Open
Abstract
When proteostasis is disrupted by stresses such as heat shock, the heat stress response will be stimulated, leading to up-regulation of molecular chaperones by transcriptional activation and mRNA stabilization for restoring proteostasis. Although the mechanisms for their transcriptional activation have been clearly defined, how chaperone mRNAs are stabilized remains largely unknown. Starting by exploring the coupling between the apparently unrelated RNA degradation and protein quality control (PQC) systems, we show that the Dis3 ribonuclease, catalytic subunit of the RNA exosome required for RNA degradation, suppresses PQC activity in unstressed cells by degrading mRNAs encoding the Hsp70 cofactors Sis1, Ydj1 and Fes1, as well as some other chaperones or PQC factors, thereby limiting their protein expression. Dis3 is stabilized through its binding to Sis1 and the Hsp70s Ssa1/2. Upon heat stress, loss of Sis1 and Ssa1/2 availability triggers Dis3 ubiquitination and degradation, leading to stabilization of those chaperone mRNAs originally targeted by Dis3. We further demonstrate that polyQ-expanded huntingtin delays Dis3 degradation during heat stress and thus hinders chaperone mRNA stabilization. Our findings not only reveal a post-transcriptional negative feedback loop for maintaining proteostasis, but also uncover a mechanism that contributes to the impaired heat stress response in Huntington's disease.
Collapse
Affiliation(s)
- Ka-Yiu Edwin Kong
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong
| | | | | | - Tin-Ning Wong
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong
| | - Tao Cheng
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong
| | - Dong-Yan Jin
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong
| |
Collapse
|
20
|
Singh A, Borah AK, Deka K, Gogoi AP, Verma K, Barah P, Saha S. Arginylation regulates adipogenesis by regulating expression of PPARγ at transcript and protein level. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:596-607. [DOI: 10.1016/j.bbalip.2018.12.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 11/28/2022]
|
21
|
Comba A, Bonnet LV, Goitea VE, Hallak ME, Galiano MR. Arginylated Calreticulin Increases Apoptotic Response Induced by Bortezomib in Glioma Cells. Mol Neurobiol 2018; 56:1653-1664. [PMID: 29916141 DOI: 10.1007/s12035-018-1182-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 06/07/2018] [Indexed: 10/14/2022]
Abstract
After retrotranslocation from the endoplasmic reticulum to the cytoplasm, calreticulin is modified by the enzyme arginyltransferase-1 (ATE1). Cellular levels of arginylated calreticulin (R-CRT) are regulated in part by the proteasomal system. Under various stress conditions, R-CRT becomes associated with stress granules (SGs) or reaches the plasma membrane (PM), where it participates in pro-apoptotic signaling. The mechanisms underlying the resistance of tumor cells to apoptosis induced by specific drugs remain unclear. We evaluated the regulatory role of R-CRT in apoptosis of human glioma cell lines treated with the proteasome inhibitor bortezomib (BT). Two cell lines (HOG, MO59K) displaying distinctive susceptibility to apoptosis induction were studied further. BT efficiency was found to be correlated with a subcellular distribution of R-CRT. In MO59K (apoptosis-resistant), R-CRT was confined to SGs formed following BT treatment. In contrast, HOG (apoptosis-susceptible) treated with BT showed lower SG formation and higher levels of cytosolic and PM R-CRT. Increased R-CRT level was associated with enhanced mobilization of intracellular Ca2+ and with sustained apoptosis activation via upregulation of cell death receptor DR5. R-CRT overexpression in the cytoplasm of MO59K rendered the cells susceptible to BT-induced, DR5-mediated cell death. Our findings suggest that R-CRT plays an essential role in the effect of BT treatment on tumor cells and that ATE1 is a strong candidate target for future studies of cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Andrea Comba
- Facultad de Ciencias Químicas, Departamento de Química Biológica Ranwel Caputto, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC-CONICET), Universidad Nacional de Córdoba, 5000, Córdoba, Argentina
| | - Laura V Bonnet
- Facultad de Ciencias Químicas, Departamento de Química Biológica Ranwel Caputto, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC-CONICET), Universidad Nacional de Córdoba, 5000, Córdoba, Argentina
| | - Victor E Goitea
- Facultad de Ciencias Químicas, Departamento de Química Biológica Ranwel Caputto, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC-CONICET), Universidad Nacional de Córdoba, 5000, Córdoba, Argentina
| | - Marta E Hallak
- Facultad de Ciencias Químicas, Departamento de Química Biológica Ranwel Caputto, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC-CONICET), Universidad Nacional de Córdoba, 5000, Córdoba, Argentina
| | - Mauricio R Galiano
- Facultad de Ciencias Químicas, Departamento de Química Biológica Ranwel Caputto, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC-CONICET), Universidad Nacional de Córdoba, 5000, Córdoba, Argentina.
| |
Collapse
|
22
|
Eldeeb MA, Leitao LCA, Fahlman RP. Emerging branches of the N-end rule pathways are revealing the sequence complexities of N-termini dependent protein degradation. Biochem Cell Biol 2017; 96:289-294. [PMID: 29253354 DOI: 10.1139/bcb-2017-0274] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The N-end rule links the identity of the N-terminal amino acid of a protein to its in vivo half-life, as some N-terminal residues confer metabolic instability to a protein via their recognition by the cellular machinery that targets them for degradation. Since its discovery, the N-end rule has generally been defined as set of rules of whether an N-terminal residue is stabilizing or not. However, recent studies are revealing that the N-terminal code of amino acids conferring protein instability is more complex than previously appreciated, as recent investigations are revealing that the identity of adjoining downstream residues can also influence the metabolic stability of N-end rule substrate. This is exemplified by the recent discovery of a new branch of N-end rule pathways that target proteins bearing N-terminal proline. In addition, recent investigations are demonstrating that the molecular machinery in N-termini dependent protein degradation may also target proteins for lysosomal degradation, in addition to proteasome-dependent degradation. Herein, we describe some of the recent advances in N-end rule pathways and discuss some of the implications regarding the emerging additional sequence requirements.
Collapse
Affiliation(s)
- Mohamed A Eldeeb
- a Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.,b Department of Chemistry, Faculty of Science, Cairo University, Giza, Cairo, Egypt
| | - Luana C A Leitao
- a Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Richard P Fahlman
- a Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.,c Department of Oncology, University of Alberta, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
23
|
Gene expression profiling in colon of mice exposed to food additive titanium dioxide (E171). Food Chem Toxicol 2017; 111:153-165. [PMID: 29128614 DOI: 10.1016/j.fct.2017.11.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 10/20/2017] [Accepted: 11/07/2017] [Indexed: 12/19/2022]
Abstract
Dietary factors that may influence the risks of colorectal cancer, including specific supplements, are under investigation. Previous studies showed the capacity of food additive titanium dioxide (E171) to induce DNA damage in vitro and facilitate growth of colorectal tumours in vivo. This study aimed to investigate the molecular mechanisms behind these effects after E171 exposure. BALB/c mice were exposed by gavage to 5 mg/kgbw/day of E171 for 2, 7, 14, and 21 days. Transcriptome changes were studied by whole genome mRNA microarray analysis on the mice's distal colons. In addition, histopathological changes as well as a proliferation marker were analysed. The results showed significant gene expression changes in the olfactory/GPCR receptor family, oxidative stress, the immune system and of cancer related genes. Transcriptome analysis also identified genes that thus far have not been included in known biological pathways and can induce functional changes by interacting with other genes involved in different biological pathways. Histopathological analysis showed alteration and disruption in the normal structure of crypts inducing a hyperplastic epithelium. At cell proliferation level, no consistent increase over time was observed. These results may offer a mechanistic framework for the enhanced tumour growth after ingestion of E171 in BALB/c mice.
Collapse
|
24
|
Ray L, Pal MK, Ray RS. Synergism of co-delivered nanosized antioxidants displayed enhanced anticancer efficacy in human colon cancer cell lines. Bioact Mater 2017; 2:82-95. [PMID: 29744415 PMCID: PMC5935044 DOI: 10.1016/j.bioactmat.2017.02.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 02/24/2017] [Accepted: 02/25/2017] [Indexed: 12/24/2022] Open
Abstract
Combination of chemopreventive and/or therapeutic agents is the imminent smart approach to cope up with cancer because it may act on multiple targets through different pathways. In the present study, we have synthesized multiple chemopreventive and/or therapeutic agents (Curcumin, Quercetin and Aspirin) loaded nanoparticles by simple cation-anion interaction among the amine groups of chitosan (CS) and phosphate groups of sodium hexametaphosphate (SHMP). These nanosized bioactive materials (CS-SHMP-CQA-NPs) were well characterized and found most effective in colon cancer cell line (HCT-116) compared to other cancer cell lines. Triplex chemopreventive and/or therapeutic agents-loaded NPs were synergistically inducing apoptosis in HCT-116 cells compared to two-chemopreventive agents-loaded NPs as evident by an increase in sub-G1 cells (percent), and chromatin condensation along with the decrease in mitochondrial membrane potential (MMP). Interestingly, Chou–Talalay analysis revealed that CS-SHMP-CQA-NPs showed strong synergistic effect in its all doses. Thus, our study demonstrates that nanoparticles based bioactive materials significantly inhibit the growth of HCT-116 cells and thus could be a promising approach for colon cancer chemoprevention. Multiple antioxidants loaded nanoparticle base bioactive materials have been synthesized. This nanoparticular bioactive materials (CS-SHMP-CQA-NPs) were well characterized and found most effective in colon cancer cell line (HCT-116) compared to other cancer cell lines. Nanosized bioactivematerial inhibited HCT-116 cells synergistically, could be a promising approach for colon cancer chemotherapy.
Collapse
Affiliation(s)
- Lipika Ray
- CSIR-Indian Institute of Toxicology Research, P.O. Box No. 80, M.G. Marg, Lucknow, UP, 226001, India
| | - Manish Kumar Pal
- CSIR-Indian Institute of Toxicology Research, P.O. Box No. 80, M.G. Marg, Lucknow, UP, 226001, India
| | - Ratan Singh Ray
- CSIR-Indian Institute of Toxicology Research, P.O. Box No. 80, M.G. Marg, Lucknow, UP, 226001, India.,Academy of Scientific and Innovative Research, New Delhi 110001, India
| |
Collapse
|
25
|
Affiliation(s)
- Kamalakshi Deka
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Assam 784028, India
| | - Sougata Saha
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Assam 784028, India
| |
Collapse
|
26
|
Karimi M, Zangabad PS, Mehdizadeh F, Malekzad H, Ghasemi A, Bahrami S, Zare H, Moghoofei M, Hekmatmanesh A, Hamblin MR. Nanocaged platforms: modification, drug delivery and nanotoxicity. Opening synthetic cages to release the tiger. NANOSCALE 2017; 9:1356-1392. [PMID: 28067384 PMCID: PMC5300024 DOI: 10.1039/c6nr07315h] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Nanocages (NCs) have emerged as a new class of drug-carriers, with a wide range of possibilities in multi-modality medical treatments and theranostics. Nanocages can overcome such limitations as high toxicity caused by anti-cancer chemotherapy or by the nanocarrier itself, due to their unique characteristics. These properties consist of: (1) a high loading-capacity (spacious interior); (2) a porous structure (analogous to openings between the bars of the cage); (3) enabling smart release (a key to unlock the cage); and (4) a low likelihood of unfavorable immune responses (the outside of the cage is safe). In this review, we cover different classes of NC structures such as virus-like particles (VLPs), protein NCs, DNA NCs, supramolecular nanosystems, hybrid metal-organic NCs, gold NCs, carbon-based NCs and silica NCs. Moreover, NC-assisted drug delivery including modification methods, drug immobilization, active targeting, and stimulus-responsive release mechanisms are discussed, highlighting the advantages, disadvantages and challenges. Finally, translation of NCs into clinical applications, and an up-to-date assessment of the nanotoxicology considerations of NCs are presented.
Collapse
Affiliation(s)
- Mahdi Karimi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Parham Sahandi Zangabad
- Research Center for Pharmaceutical Nanotechnology (RCPN), Tabriz University of Medical Science (TUOMS), Tabriz, Iran
- Advanced Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, Iran
- Department of Materials Science and Engineering, Sharif University of Technology, 11365-9466, Tehran, Iran
- Nanomedicine Research Association (NRA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | | | - Hedieh Malekzad
- Advanced Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, Iran
- Faculty of Chemistry, Kharazmi University of Tehran, Tehran, Iran
| | - Alireza Ghasemi
- Department of Materials Science and Engineering, Sharif University of Technology, 11365-9466, Tehran, Iran
| | - Sajad Bahrami
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Zare
- Biomaterials Group, Materials Science & Engineering Department, Iran University of Science & Technology, P.O. Box 1684613114 Tehran, Iran
| | - Mohsen Moghoofei
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amin Hekmatmanesh
- Laboratory of Intelligent Machines, Lappeenranta University of Technology, 53810, Finland
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, 02139, USA
| |
Collapse
|