1
|
Pandey A, Chopra S, Cleary SJ, López-Álvarez M, Quimby FM, Alanizi AAA, Sakhamuri S, Zhang N, Looney MR, Craik CS, Wilson DM, Evans MJ. Imaging the Granzyme Mediated Host Immune Response to Viral and Bacterial Pathogens In Vivo Using Positron Emission Tomography. ACS Infect Dis 2024; 10:2108-2117. [PMID: 38819300 DOI: 10.1021/acsinfecdis.4c00114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Understanding how the host immune system engages complex pathogens is essential to developing therapeutic strategies to overcome their virulence. While granzymes are well understood to trigger apoptosis in infected host cells or bacteria, less is known about how the immune system mobilizes individual granzyme species in vivo to combat diverse pathogens. Toward the goal of studying individual granzyme function directly in vivo, we previously developed a new class of radiopharmaceuticals termed "restricted interaction peptides (RIPs)" that detect biochemically active endoproteases using positron emission tomography (PET). In this study, we showed that secreted granzyme B proteolysis in response to diverse viral and bacterial pathogens could be imaged with [64Cu]Cu-GRIP B, a RIP that specifically targets granzyme B. Wild-type or germline granzyme B knockout mice were instilled intranasally with the A/PR/8/34 H1N1 influenza A strain to generate pneumonia, and granzyme B production within the lungs was measured using [64Cu]Cu-GRIP B PET/CT. Murine myositis models of acute bacterial (E. coli, P. aeruginosa, K. pneumoniae, and L. monocytogenes) infection were also developed and imaged using [64Cu]Cu-GRIP B. In all cases, the mice were studied in vivo using mPET/CT and ex vivo via tissue-harvesting, gamma counting, and immunohistochemistry. [64Cu]Cu-GRIP B uptake was significantly higher in the lungs of wild-type mice that received A/PR/8/34 H1N1 influenza A strain compared to mice that received sham or granzyme B knockout mice that received either treatment. In wild-type mice, [64Cu]Cu-GRIP B uptake was significantly higher in the infected triceps muscle versus normal muscle and the contralateral triceps inoculated with heat killed bacteria. In granzyme B knockout mice, [64Cu]Cu-GRIP B uptake above the background was not observed in the infected triceps muscle. Interestingly, live L. monocytogenes did not induce detectable granzyme B on PET, despite prior in vitro data, suggesting a role for granzyme B in suppressing their pathogenicity. In summary, these data show that the granzyme response elicited by diverse human pathogens can be imaged using PET. These results and data generated via additional RIPs specific for other granzyme proteases will allow for a deeper mechanistic study analysis of their complex in vivo biology.
Collapse
Affiliation(s)
- Apurva Pandey
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California 94158, United States
| | - Shalini Chopra
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California 94158, United States
| | - Simon J Cleary
- Department of Medicine, University of California, San Francisco, San Francisco, California 94158, United States
| | - Marina López-Álvarez
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California 94158, United States
| | - Fiona M Quimby
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California 94158, United States
| | - Aryn A A Alanizi
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California 94158, United States
| | - Sasank Sakhamuri
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California 94158, United States
| | - Ningjing Zhang
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California 94158, United States
| | - Mark R Looney
- Department of Medicine, University of California, San Francisco, San Francisco, California 94158, United States
| | - Charles S Craik
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California 94158, United States
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California 94158, United States
| | - David M Wilson
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California 94158, United States
| | - Michael J Evans
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California 94158, United States
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California 94158, United States
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California 94158, United States
| |
Collapse
|
2
|
Senan-Salinas A, Comas L, Esteban P, Garzón-Tituaña M, Cheng Z, Santiago L, Domingo MP, Ramírez-Labrada A, Paño-Pardo JR, Vendrell M, Pardo J, Arias MA, Galvez EM. Selective Detection of Active Extracellular Granzyme A by Using a Novel Fluorescent Immunoprobe with Application to Inflammatory Diseases. ACS Pharmacol Transl Sci 2024; 7:1474-1484. [PMID: 38751645 PMCID: PMC11092195 DOI: 10.1021/acsptsci.4c00065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/05/2024] [Accepted: 04/10/2024] [Indexed: 05/18/2024]
Abstract
Granzymes (Gzms), a family of serine proteases, expressed by immune and nonimmune cells, present perforin-dependent and independent intracellular and extracellular functions. When released in the extracellular space, GzmA, with trypsin-like activity, is involved in the pathophysiology of different inflammatory diseases. However, there are no validated specific systems to detect active forms of extracellular GzmA, making it difficult to assess its biological relevance and potential use as a biomarker. Here, we have developed fluorescence-energy resonance-transfer (FRET)-based peptide probes (FAM-peptide-DABCYL) to specifically detect GzmA activity in tissue samples and biological fluids in both mouse and human samples during inflammatory diseases. An initial probe was developed and incubated with GzmA and different proteases like GzmB and others with similar cleavage specificity as GzmA like GzmK, thrombin, trypsin, kallikrein, or plasmin. After measuring fluorescence, the probe showed very good specificity and sensitivity for human and mouse GzmA when compared to GzmB, its closest homologue GzmK, and with thrombin. The specificity of this probe was further refined by incubating the samples in a coated plate with a GzmA-specific antibody before adding the probe. The results show a high specific detection of soluble GzmA even when compared with other soluble proteases with very similar cleavage specificity like thrombin, GzmK, trypsin, kallikrein, or plasmin, which shows nearly no fluorescence signal. The high specific detection of GzmA was validated, showing that using pure proteins and serum and tissue samples from GzmA-deficient mice presented a significant reduction in the signal compared with WT mice. The utility of this system in humans was confirmed, showing that GzmA activity was significantly higher in serum samples from septic patients in comparison with healthy donors. Our results present a new immunoprobe with utility to detect extracellular GzmA activity in different biological fluids, confirming the presence of active forms of the soluble protease in vivo during inflammatory and infectious diseases.
Collapse
Affiliation(s)
| | - Laura Comas
- Instituto
de Carboquímica ICB-CSIC, 50018 Zaragoza, Spain
| | - Patricia Esteban
- Fundación
Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), 50009 Zaragoza, Spain
| | - Marcela Garzón-Tituaña
- Dept.
Microbiology, Preventive Medicine and Public Health, University of Zaragoza, 50009 Zaragoza, Spain
- CIBERINFEC,
ISCIII—CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, 28029Madrid, Spain
| | - Zhiming Cheng
- Centre for
Inflammation Research, The University of
Edinburgh, EH164UU Edinburgh, U.K.
- IRR
Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, EH16 4UU Edinburgh, U.K.
| | | | | | - Ariel Ramírez-Labrada
- Fundación
Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), 50009 Zaragoza, Spain
- CIBERINFEC,
ISCIII—CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, 28029Madrid, Spain
- Unidad
de Nanotoxicología e Inmunotoxicología (UNATI), Centro
de Investigación Biomédica de Aragón (CIBA),
Aragón Health Research Institute (IIS Aragón), 50009Zaragoza, Spain
| | - José Ramón Paño-Pardo
- CIBERINFEC,
ISCIII—CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, 28029Madrid, Spain
- Servicio
de Enfermedades Infecciosas, Hospital Clinico
Universitario Lozano Blesa, 50009 Zaragoza, Spain
| | - Marc Vendrell
- Centre for
Inflammation Research, The University of
Edinburgh, EH164UU Edinburgh, U.K.
| | - Julián Pardo
- Fundación
Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), 50009 Zaragoza, Spain
- Dept.
Microbiology, Preventive Medicine and Public Health, University of Zaragoza, 50009 Zaragoza, Spain
- CIBERINFEC,
ISCIII—CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, 28029Madrid, Spain
| | - Maykel A. Arias
- Fundación
Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), 50009 Zaragoza, Spain
- CIBERINFEC,
ISCIII—CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, 28029Madrid, Spain
| | - Eva M. Galvez
- Instituto
de Carboquímica ICB-CSIC, 50018 Zaragoza, Spain
- CIBERINFEC,
ISCIII—CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, 28029Madrid, Spain
| |
Collapse
|
3
|
Rasi V, Phelps KR, Paulson KR, Eickhoff CS, Chinnaraj M, Pozzi N, Di Gioia M, Zanoni I, Shakya S, Carlson HL, Ford DA, Kolar GR, Hoft DF. Homodimeric Granzyme A Opsonizes Mycobacterium tuberculosis and Inhibits Its Intracellular Growth in Human Monocytes via Toll-Like Receptor 4 and CD14. J Infect Dis 2024; 229:876-887. [PMID: 37671668 PMCID: PMC10938207 DOI: 10.1093/infdis/jiad378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 08/18/2023] [Accepted: 09/04/2023] [Indexed: 09/07/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb)-specific γ9δ2 T cells secrete granzyme A (GzmA) protective against intracellular Mtb growth. However, GzmA-enzymatic activity is unnecessary for pathogen inhibition, and the mechanisms of GzmA-mediated protection remain unknown. We show that GzmA homodimerization is essential for opsonization of mycobacteria, altered uptake into human monocytes, and subsequent pathogen clearance within the phagolysosome. Although monomeric and homodimeric GzmA bind mycobacteria, only homodimers also bind cluster of differentiation 14 (CD14) and Toll-like receptor 4 (TLR4). Without access to surface-expressed CD14 and TLR4, GzmA fails to inhibit intracellular Mtb. Upregulation of Rab11FIP1 was associated with inhibitory activity. Furthermore, GzmA colocalized with and was regulated by protein disulfide isomerase AI (PDIA1), which cleaves GzmA homodimers into monomers and prevents Mtb inhibitory activity. These studies identify a previously unrecognized role for homodimeric GzmA structure in opsonization, phagocytosis, and elimination of Mtb in human monocytes, and they highlight PDIA1 as a potential host-directed therapy for prevention and treatment of tuberculosis, a major human disease.
Collapse
Affiliation(s)
- Valerio Rasi
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
- Department of Internal Medicine, Division of Infectious Diseases, Allergy and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Kathleen R Phelps
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
- Department of Internal Medicine, Division of Infectious Diseases, Allergy and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Keegan R Paulson
- Department of Internal Medicine, Division of Infectious Diseases, Allergy and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Christopher S Eickhoff
- Department of Internal Medicine, Division of Infectious Diseases, Allergy and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Mathivanan Chinnaraj
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Nicola Pozzi
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Marco Di Gioia
- Harvard Medical School and Division of Immunology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Ivan Zanoni
- Harvard Medical School and Division of Immunology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Shubha Shakya
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Haley L Carlson
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - David A Ford
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Grant R Kolar
- Department of Pathology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Daniel F Hoft
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
- Department of Internal Medicine, Division of Infectious Diseases, Allergy and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
4
|
Aybay E, Ryu J, Fu Z, Akula S, Enriquez EM, Hallgren J, Wernersson S, Olsson AK, Hellman L. Extended cleavage specificities of human granzymes A and K, two closely related enzymes with conserved but still poorly defined functions in T and NK cell-mediated immunity. Front Immunol 2023; 14:1211295. [PMID: 37497217 PMCID: PMC10366535 DOI: 10.3389/fimmu.2023.1211295] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/23/2023] [Indexed: 07/28/2023] Open
Abstract
Granzymes A and K are two highly homologous serine proteases expressed by mammalian cytotoxic T cells (CTL) and natural killer cells (NK). Granzyme A is the most abundant of the different granzymes (gzms) expressed by these two cell types. Gzms A and K are found in all jawed vertebrates and are the most well conserved of all hematopoietic serine proteases. Their potential functions have been studied extensively for many years, however, without clear conclusions. Gzm A was for many years thought to serve as a key component in the defense against viral infection by the induction of apoptosis in virus-infected cells, similar to gzm B. However, later studies have questioned this role and instead indicated that gzm A may act as a potent inducer of inflammatory cytokines and chemokines. Gzms A and K form clearly separate branches in a phylogenetic tree indicating separate functions. Transcriptional analyses presented here demonstrate the presence of gzm A and K transcripts in both CD4+ and CD8+ T cells. To enable screening for their primary biological targets we have made a detailed analysis of their extended cleavage specificities. Phage display analysis of the cleavage specificity of the recombinant enzymes showed that both gzms A and K are strict tryptases with high selectivity for Arg over Lys in the P1 position. The major differences in the specificities of these two enzymes are located N-terminally of the cleavage site, where gzm A prefers small amino acids such as Gly in the P3 position and shows a relatively relaxed selectivity in the P2 position. In contrast, gzm K prefers large amino acids such as Phe, Tyr, and Trp in both the P2 and P3 positions and does not tolerate negatively charged residues in the P2 position. This major distinction in extended specificities is likely reflected also in preferred in vivo targets of these two enzymes. This information can now be utilized for high-precision screening of primary targets for gzms A and K in search of their highly conserved but still poorly defined functions in vertebrate immunity.
Collapse
Affiliation(s)
- Erdem Aybay
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, The Biomedical Center, Uppsala, Sweden
| | - Jinhye Ryu
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, The Biomedical Center, Uppsala, Sweden
| | - Zhirong Fu
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, The Biomedical Center, Uppsala, Sweden
| | - Srinivas Akula
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, The Biomedical Center, Uppsala, Sweden
- Department of Anatomy, Physiology, and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Erika Mendez Enriquez
- Department of Medical Biochemistry and Microbiology, The Biomedical Center, Uppsala, Sweden
| | - Jenny Hallgren
- Department of Medical Biochemistry and Microbiology, The Biomedical Center, Uppsala, Sweden
| | - Sara Wernersson
- Department of Anatomy, Physiology, and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Anna-Karin Olsson
- Department of Medical Biochemistry and Microbiology, The Biomedical Center, Uppsala, Sweden
| | - Lars Hellman
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, The Biomedical Center, Uppsala, Sweden
| |
Collapse
|
5
|
Zheng Y, Zhao J, Shan Y, Guo S, Schrodi SJ, He D. Role of the granzyme family in rheumatoid arthritis: Current Insights and future perspectives. Front Immunol 2023; 14:1137918. [PMID: 36875082 PMCID: PMC9977805 DOI: 10.3389/fimmu.2023.1137918] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/03/2023] [Indexed: 02/18/2023] Open
Abstract
Rheumatoid arthritis (RA) is a complex autoimmune disease characterized by chronic inflammation that affects synovial tissues of multiple joints. Granzymes (Gzms) are serine proteases that are released into the immune synapse between cytotoxic lymphocytes and target cells. They enter target cells with the help of perforin to induce programmed cell death in inflammatory and tumor cells. Gzms may have a connection with RA. First, increased levels of Gzms have been found in the serum (GzmB), plasma (GzmA, GzmB), synovial fluid (GzmB, GzmM), and synovial tissue (GzmK) of patients with RA. Moreover, Gzms may contribute to inflammation by degrading the extracellular matrix and promoting cytokine release. They are thought to be involved in RA pathogenesis and have the potential to be used as biomarkers for RA diagnosis, although their exact role is yet to be fully elucidated. The purpose of this review was to summarize the current knowledge regarding the possible role of the granzyme family in RA, with the aim of providing a reference for future research on the mechanisms of RA and the development of new therapies.
Collapse
Affiliation(s)
- Yixin Zheng
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Jianan Zhao
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Yu Shan
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Shicheng Guo
- Center for Human Genomics and Precision Medicine, University of Wisconsin-Madison, Madison, WI, United States.,Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Steven J Schrodi
- Center for Human Genomics and Precision Medicine, University of Wisconsin-Madison, Madison, WI, United States.,Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Dongyi He
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China.,Arthritis Institute of Integrated Traditional and Western medicine, Shanghai Chinese Medicine Research Institute, Shanghai, China
| |
Collapse
|
6
|
Richardson KC, Jung K, Pardo J, Turner CT, Granville DJ. Noncytotoxic Roles of Granzymes in Health and Disease. Physiology (Bethesda) 2022; 37:323-348. [PMID: 35820180 DOI: 10.1152/physiol.00011.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Granzymes are serine proteases previously believed to play exclusive and somewhat redundant roles in lymphocyte-mediated target cell death. However, recent studies have challenged this paradigm. Distinct substrate profiles and functions have since emerged for each granzyme while their dysregulated proteolytic activities have been linked to diverse pathologies.
Collapse
Affiliation(s)
- Katlyn C Richardson
- International Collaboration on Repair Discoveries (ICORD), British Columbia Professional Firefighters' Wound Healing Laboratory, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Karen Jung
- International Collaboration on Repair Discoveries (ICORD), British Columbia Professional Firefighters' Wound Healing Laboratory, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Julian Pardo
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragon (CIBA), Zaragoza, Spain.,Department of Microbiology, Radiology, Pediatrics and Public Health, University of Zaragoza, Zaragoza, Spain.,CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Zaragoza, Spain
| | - Christopher T Turner
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Melbourne, Victoria, Australia.,Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia
| | - David J Granville
- International Collaboration on Repair Discoveries (ICORD), British Columbia Professional Firefighters' Wound Healing Laboratory, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
7
|
Rasi V, Hameed OA, Matthey P, Bera S, Grandgenett DP, Salentinig S, Walch M, Hoft DF. Improved Purification of Human Granzyme A/B and Granulysin Using a Mammalian Expression System. Front Immunol 2022; 13:830290. [PMID: 35300343 PMCID: PMC8921980 DOI: 10.3389/fimmu.2022.830290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/08/2022] [Indexed: 01/14/2023] Open
Abstract
Cytotoxic lymphocytes release proteins contained within the cytoplasmic cytolytic granules after recognition of infected or tumor target cells. These cytotoxic granular proteins (namely granzymes, granulysin, and perforin) are key immunological mediators within human cellular immunity. The availability of highly purified cytotoxic proteins has been fundamental for understanding their function in immunity and mechanistic involvement in sepsis and autoimmunity. Methods for recovery of native cytotoxic proteins can be problematic leading to: 1) the co-purification of additional proteins, confounding interpretation of function, and 2) low yields of highly purified proteins. Recombinant protein expression of individual cytolytic components can overcome these challenges. The use of mammalian expression systems is preferred for optimal post-translational modifications and avoidance of endotoxin contamination. Some of these proteins have been proposed for host directed human therapies (e.g. - granzyme A), or treatment of systemic infections or tumors as in granulysin. We report here a novel expression system using HEK293T cells for cost-effective purification of high yields of human granzymes (granzyme A and granzyme B) and granulysin with enhanced biological activity than previous reports. The resulting proteins are free of native contaminants, fold correctly, and remain enzymatically active. Importantly, these improvements have also led to the first purification of biologically active recombinant human granulysin in high yields from a mammalian system. This method can be used as a template for purification of many other secreted cellular proteins and may lead to advances for human medicine.
Collapse
Affiliation(s)
- Valerio Rasi
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, MO, United States,Department of Internal Medicine, Division of Infectious Diseases, Allergy and Immunology, Saint Louis University School of Medicine, Saint Louis, MO, United States
| | - Owais Abdul Hameed
- Anatomy Unit, Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland,Department of Chemistry, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Patricia Matthey
- Anatomy Unit, Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Sibes Bera
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, MO, United States
| | - Duane P. Grandgenett
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, MO, United States
| | - Stefan Salentinig
- Department of Chemistry, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Michael Walch
- Anatomy Unit, Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland,*Correspondence: Daniel F. Hoft, ; Michael Walch,
| | - Daniel F. Hoft
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, MO, United States,Department of Internal Medicine, Division of Infectious Diseases, Allergy and Immunology, Saint Louis University School of Medicine, Saint Louis, MO, United States,*Correspondence: Daniel F. Hoft, ; Michael Walch,
| |
Collapse
|
8
|
Uranga-Murillo I, Tapia E, Garzón-Tituaña M, Ramirez-Labrada A, Santiago L, Pesini C, Esteban P, Roig FJ, Galvez EM, Bird PI, Pardo J, Arias M. Biological relevance of Granzymes A and K during E. coli sepsis. Am J Cancer Res 2021; 11:9873-9883. [PMID: 34815792 PMCID: PMC8581435 DOI: 10.7150/thno.59418] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 06/08/2021] [Indexed: 11/07/2022] Open
Abstract
Aims: Recent in vitro findings suggest that the serine protease Granzyme K (GzmK) may act as a proinflammatory mediator. However, its role in sepsis is unknown. Here we aim to understand the role of GzmK in a mouse model of bacterial sepsis and compare it to the biological relevance of Granzyme A (GzmA). Methods: Sepsis was induced in WT, GzmA-/- and GzmK-/- mice by an intraperitoneal injection of 2x108 CFU from E. coli. Mouse survival was monitored during 5 days. Levels of IL-1α, IL-1β, TNFα and IL-6 in plasma were measured and bacterial load in blood, liver and spleen was analyzed. Finally, profile of cellular expression of GzmA and GzmK was analyzed by FACS. Results: GzmA and GzmK are not involved in the control of bacterial infection. However, GzmA and GzmK deficient mice showed a lower sepsis score in comparison with WT mice, although only GzmA deficient mice exhibited increased survival. GzmA deficient mice also showed reduced expression of some proinflammatory cytokines like IL1-α, IL-β and IL-6. A similar result was found when extracellular GzmA was therapeutically inhibited in WT mice using serpinb6b, which improved survival and reduced IL-6 expression. Mechanistically, active extracellular GzmA induces the production of IL-6 in macrophages by a mechanism dependent on TLR4 and MyD88. Conclusions: These results suggest that although both proteases contribute to the clinical signs of E. coli-induced sepsis, inhibition of GzmA is sufficient to reduce inflammation and improve survival irrespectively of the presence of other inflammatory granzymes, like GzmK.
Collapse
|
9
|
de Jong LC, Crnko S, ten Broeke T, Bovenschen N. Noncytotoxic functions of killer cell granzymes in viral infections. PLoS Pathog 2021; 17:e1009818. [PMID: 34529743 PMCID: PMC8445437 DOI: 10.1371/journal.ppat.1009818] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Cytotoxic lymphocytes produce granules armed with a set of 5 serine proteases (granzymes (Gzms)), which, together with the pore-forming protein (perforin), serve as a major defense against viral infections in humans. This granule-exocytosis pathway subsumes a well-established mechanism in which target cell death is induced upon perforin-mediated entry of Gzms and subsequent activation of various (apoptosis) pathways. In the past decade, however, a growing body of evidence demonstrated that Gzms also inhibit viral replication and potential reactivation in cell death–independent manners. For example, Gzms can induce proteolysis of viral or host cell proteins necessary for the viral entry, release, or intracellular trafficking, as well as augment pro-inflammatory antiviral cytokine response. In this review, we summarize current evidence for the noncytotoxic mechanisms and roles by which killer cells can use Gzms to combat viral infections, and we discuss the potential thereof for the development of novel therapies.
Collapse
Affiliation(s)
- Lisanne C. de Jong
- Radboud University, Nijmegen, the Netherlands
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Sandra Crnko
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Toine ten Broeke
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Niels Bovenschen
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
- * E-mail:
| |
Collapse
|
10
|
Rasi V, Wood DC, Eickhoff CS, Xia M, Pozzi N, Edwards RL, Walch M, Bovenschen N, Hoft DF. Granzyme A Produced by γ 9δ 2 T Cells Activates ER Stress Responses and ATP Production, and Protects Against Intracellular Mycobacterial Replication Independent of Enzymatic Activity. Front Immunol 2021; 12:712678. [PMID: 34413857 PMCID: PMC8368726 DOI: 10.3389/fimmu.2021.712678] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/12/2021] [Indexed: 01/14/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb), the pathological agent that causes tuberculosis (TB) is the number one infectious killer worldwide with one fourth of the world's population currently infected. Data indicate that γ9δ2 T cells secrete Granzyme A (GzmA) in the extracellular space triggering the infected monocyte to inhibit growth of intracellular mycobacteria. Accordingly, deletion of GZMA from γ9δ2 T cells reverses their inhibitory capacity. Through mechanistic studies, GzmA's action was investigated in monocytes from human PBMCs. The use of recombinant human GzmA expressed in a mammalian system induced inhibition of intracellular mycobacteria to the same degree as previous human native protein findings. Our data indicate that: 1) GzmA is internalized within mycobacteria-infected cells, suggesting that GzmA uptake could prevent infection and 2) that the active site is not required to inhibit intracellular replication. Global proteomic analysis demonstrated that the ER stress response and ATP producing proteins were upregulated after GzmA treatment, and these proteins abundancies were confirmed by examining their expression in an independent set of patient samples. Our data suggest that immunotherapeutic host interventions of these pathways may contribute to better control of the current TB epidemic.
Collapse
Affiliation(s)
- Valerio Rasi
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, MO, United States,Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO, United States
| | - David C. Wood
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, MO, United States
| | - Christopher S. Eickhoff
- Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO, United States
| | - Mei Xia
- Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO, United States
| | - Nicola Pozzi
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, MO, United States
| | - Rachel L. Edwards
- Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO, United States
| | - Michael Walch
- Anatomy Unit, Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Niels Bovenschen
- Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands,Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Daniel F. Hoft
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, MO, United States,Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO, United States,*Correspondence: Daniel F. Hoft,
| |
Collapse
|
11
|
Garzón-Tituaña M, Sierra-Monzón JL, Comas L, Santiago L, Khaliulina-Ushakova T, Uranga-Murillo I, Ramirez-Labrada A, Tapia E, Morte-Romea E, Algarate S, Couty L, Camerer E, Bird PI, Seral C, Luque P, Paño-Pardo JR, Galvez EM, Pardo J, Arias M. Granzyme A inhibition reduces inflammation and increases survival during abdominal sepsis. Theranostics 2021; 11:3781-3795. [PMID: 33664861 PMCID: PMC7914344 DOI: 10.7150/thno.49288] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 12/29/2020] [Indexed: 02/06/2023] Open
Abstract
Aims: Peritonitis is one of the most common causes of sepsis, a serious syndrome characterized by a dysregulated systemic inflammatory response. Recent evidence suggests that Granzyme A (GzmA), a serine protease mainly expressed by NK and T cells, could act as a proinflammatory mediator and could play an important role in the pathogenesis of sepsis. This work aims to analyze the role and the therapeutic potential of GzmA in the pathogenesis of peritoneal sepsis. Methods: The level of extracellular GzmA as well as GzmA activity were analyzed in serum from healthy volunteers and patients with confirmed peritonitis and were correlated with the Sequential Organ Failure Assessment (SOFA) score. Peritonitis was induced in C57Bl/6 (WT) and GzmA-/- mice by cecal ligation and puncture (CLP). Mice were treated intraperitoneally with antibiotics alone or in combination serpinb6b, a specific GzmA inhibitor, for 5 days. Mouse survival was monitored during 14 days, levels of some proinflammatory cytokines were measured in serum and bacterial load and diversity was analyzed in blood and spleen at different times. Results: Clinically, elevated GzmA was observed in serum from patients with abdominal sepsis suggesting that GzmA plays an important role in this pathology. In the CLP model GzmA deficient mice, or WT mice treated with an extracellular GzmA inhibitor, showed increased survival, which correlated with a reduction in proinflammatory markers in both serum and peritoneal lavage fluid. GzmA deficiency did not influence bacterial load in blood and spleen and GzmA did not affect bacterial replication in macrophages in vitro, indicating that GzmA has no role in bacterial control. Analysis of GzmA in lymphoid cells following CLP showed that it was mainly expressed by NK cells. Mechanistically, we found that extracellular active GzmA acts as a proinflammatory mediator in macrophages by inducing the TLR4-dependent expression of IL-6 and TNFα. Conclusions: Our findings implicate GzmA as a key regulator of the inflammatory response during abdominal sepsis and provide solid evidences about its therapeutic potential for the treatment of this severe pathology.
Collapse
Affiliation(s)
- Marcela Garzón-Tituaña
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), 50009, Zaragoza, Spain
| | - José L Sierra-Monzón
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), 50009, Zaragoza, Spain
- Hospital Clínico Universitario Lozano Blesa, 50009, Zaragoza, Spain
| | - Laura Comas
- Instituto de Carboquímica ICB-CSIC, 50018, Zaragoza, Spain
| | - Llipsy Santiago
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), 50009, Zaragoza, Spain
| | - Tatiana Khaliulina-Ushakova
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), 50009, Zaragoza, Spain
- Hospital Clínico Universitario Lozano Blesa, 50009, Zaragoza, Spain
| | - Iratxe Uranga-Murillo
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), 50009, Zaragoza, Spain
| | - Ariel Ramirez-Labrada
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), 50009, Zaragoza, Spain
| | - Elena Tapia
- Animal Unit, University of Zaragoza, 50009, Zaragoza, Spain
| | - Elena Morte-Romea
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), 50009, Zaragoza, Spain
- Hospital Clínico Universitario Lozano Blesa, 50009, Zaragoza, Spain
| | - Sonia Algarate
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), 50009, Zaragoza, Spain
- Department of Biochemistry and Molecular and Cell Biology and Department of Microbiology, Preventive Medicine and Public Health, University of Zaragoza, 50009, Zaragoza, Spain
- Hospital Clínico Universitario Lozano Blesa, 50009, Zaragoza, Spain
| | - Ludovic Couty
- INSERM U970, Paris Cardiovascular Research Centre, Université de Paris, 75015, Paris, France
| | - Eric Camerer
- INSERM U970, Paris Cardiovascular Research Centre, Université de Paris, 75015, Paris, France
| | - Phillip I Bird
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, 3800, Clayton VIC, Australia
| | - Cristina Seral
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), 50009, Zaragoza, Spain
- Department of Biochemistry and Molecular and Cell Biology and Department of Microbiology, Preventive Medicine and Public Health, University of Zaragoza, 50009, Zaragoza, Spain
- Hospital Clínico Universitario Lozano Blesa, 50009, Zaragoza, Spain
| | - Pilar Luque
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), 50009, Zaragoza, Spain
- Hospital Clínico Universitario Lozano Blesa, 50009, Zaragoza, Spain
| | - José R Paño-Pardo
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), 50009, Zaragoza, Spain
- Hospital Clínico Universitario Lozano Blesa, 50009, Zaragoza, Spain
| | - Eva M Galvez
- Instituto de Carboquímica ICB-CSIC, 50018, Zaragoza, Spain
| | - Julián Pardo
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), 50009, Zaragoza, Spain
- Aragon I+D Foundation (ARAID), 50018, Zaragoza, Spain
- Nanoscience Institute of Aragon (INA), University of Zaragoza, 50018, Zaragoza, Spain
- Department of Biochemistry and Molecular and Cell Biology and Department of Microbiology, Preventive Medicine and Public Health, University of Zaragoza, 50009, Zaragoza, Spain
| | - Maykel Arias
- Instituto de Carboquímica ICB-CSIC, 50018, Zaragoza, Spain
| |
Collapse
|
12
|
Ma L, Li Q, Cai S, Peng H, Huyan T, Yang H. The role of NK cells in fighting the virus infection and sepsis. Int J Med Sci 2021; 18:3236-3248. [PMID: 34400893 PMCID: PMC8364442 DOI: 10.7150/ijms.59898] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 06/12/2021] [Indexed: 12/22/2022] Open
Abstract
Natural killer cells, one of the important types of innate immune cells, play a pivotal role in the antiviral process in vivo. It has been shown that increasing NK cell activity may promote the alleviation of viral infections, even severe infection-induced sepsis. Given the current state of the novel coronavirus (SARS-CoV-2) global pandemic, clarifying the anti-viral function of NK cells would be helpful for revealing the mechanism of host immune responses and decipher the progression of COVID-19 and providing important clues for combating this pandemic. In this review, we summarize the roles of NK cells in viral infection and sepsis as well as the potential possibilities of NK cell-based immunotherapy for treating COVID-19.
Collapse
Affiliation(s)
- Lu Ma
- The Hengyang Key Laboratory of Cellular Stress Biology, Institute of Cytology and Genetics, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Qi Li
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Suna Cai
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Hourong Peng
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Ting Huyan
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Hui Yang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| |
Collapse
|
13
|
Granzymes in cardiovascular injury and disease. Cell Signal 2020; 76:109804. [PMID: 33035645 DOI: 10.1016/j.cellsig.2020.109804] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/02/2020] [Accepted: 10/04/2020] [Indexed: 12/17/2022]
Abstract
Chronic inflammation and impaired wound healing play important roles in the pathophysiology of cardiovascular diseases. Moreover, the aberrant secretion of proteases plays a critical role in pathological tissue remodeling in chronic inflammatory conditions. Human Granzymes (Granule secreted enzymes - Gzms) comprise a family of five (GzmA, B, H, K, M) cell-secreted serine proteases. Although each unique in function and substrate specificities, Gzms were originally thought to share redundant, intracellular roles in cytotoxic lymphocyte-induced cell death. However, an abundance of evidence has challenged this dogma. It is now recognized, that individual Gzms exhibit unique substrate repertoires and functions both intracellularly and extracellularly. In the extracellular milieu, Gzms contribute to inflammation, vascular dysfunction and permeability, reduced cell adhesion, release of matrix-sequestered growth factors, receptor activation, and extracellular matrix cleavage. Despite these recent findings, the non-cytotoxic functions of Gzms in the context of cardiovascular disease pathogenesis remain poorly understood. Minimally detected in tissues and bodily fluids of normal individuals, GzmB is elevated in patients with acute coronary syndromes, coronary artery disease, and myocardial infarction. Pre-clinical animal models have exemplified the importance of GzmB in atherosclerosis, aortic aneurysm, and cardiac fibrosis as animals deficient in GzmB exhibit reduced tissue remodeling, improved disease phenotypes and increased survival. Although a role for GzmB in cardiovascular disease is described, further work to elucidate the mechanisms that underpin the remaining human Gzms activity in cardiovascular disease is necessary. The present review provides a summary of the pre-clinical and clinical evidence, as well as emerging areas of research pertaining to Gzms in tissue remodeling and cardiovascular disease.
Collapse
|
14
|
Park S, Griesenauer B, Jiang H, Adom D, Mehrpouya-Bahrami P, Chakravorty S, Kazemian M, Imam T, Srivastava R, Hayes TA, Pardo J, Janga SC, Paczesny S, Kaplan MH, Olson MR. Granzyme A-producing T helper cells are critical for acute graft-versus-host disease. JCI Insight 2020; 5:124465. [PMID: 32809971 PMCID: PMC7526544 DOI: 10.1172/jci.insight.124465] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 08/05/2020] [Indexed: 12/20/2022] Open
Abstract
Acute graft-versus-host disease (aGVHD) can occur after hematopoietic cell transplant in patients undergoing treatment for hematological malignancies or inborn errors. Although CD4+ T helper (Th) cells play a major role in aGVHD, the mechanisms by which they contribute, particularly within the intestines, have remained elusive. We have identified a potentially novel subset of Th cells that accumulated in the intestines and produced the serine protease granzyme A (GrA). GrA+ Th cells were distinct from other Th lineages and exhibited a noncytolytic phenotype. In vitro, GrA+ Th cells differentiated in the presence of IL-4, IL-6, and IL-21 and were transcriptionally unique from cells cultured with either IL-4 or the IL-6/IL-21 combination alone. In vivo, both STAT3 and STAT6 were required for GrA+ Th cell differentiation and played roles in maintenance of the lineage identity. Importantly, GrA+ Th cells promoted aGVHD-associated morbidity and mortality and contributed to crypt destruction within intestines but were not required for the beneficial graft-versus-leukemia effect. Our data indicate that GrA+ Th cells represent a distinct Th subset and are critical mediators of aGVHD.
Collapse
Affiliation(s)
- Sungtae Park
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Brad Griesenauer
- Department of Pediatrics and Herman B Wells Center for Pediatric Research and.,Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Hua Jiang
- Department of Pediatrics and Herman B Wells Center for Pediatric Research and.,Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Djamilatou Adom
- Department of Pediatrics and Herman B Wells Center for Pediatric Research and.,Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | - Srishti Chakravorty
- Departments of Biochemistry and Computer Science, Purdue University, West Lafayette, Indiana, USA
| | - Majid Kazemian
- Departments of Biochemistry and Computer Science, Purdue University, West Lafayette, Indiana, USA
| | - Tanbeena Imam
- Department of Pediatrics and Herman B Wells Center for Pediatric Research and
| | - Rajneesh Srivastava
- Department of Biohealth Informatics, School of Informatics and Computing, Indiana University-Purdue University, Indianapolis, Indianapolis, Indiana, USA
| | - Tristan A Hayes
- Department of Pediatrics and Herman B Wells Center for Pediatric Research and
| | - Julian Pardo
- Biomedical Research Centre of Aragon (CIBA), Department of Microbiology, Preventative Medicine and Public Health, Nanoscience Institute of Aragon (INA), Aragon I+D Foundation, IIS Aragon/University of Zaragoza, Zaragoza, Spain
| | - Sarath Chandra Janga
- Department of Biohealth Informatics, School of Informatics and Computing, Indiana University-Purdue University, Indianapolis, Indianapolis, Indiana, USA
| | - Sophie Paczesny
- Department of Pediatrics and Herman B Wells Center for Pediatric Research and.,Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Mark H Kaplan
- Department of Pediatrics and Herman B Wells Center for Pediatric Research and.,Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Matthew R Olson
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
15
|
Ceppa FA, Izzo L, Sardelli L, Raimondi I, Tunesi M, Albani D, Giordano C. Human Gut-Microbiota Interaction in Neurodegenerative Disorders and Current Engineered Tools for Its Modeling. Front Cell Infect Microbiol 2020; 10:297. [PMID: 32733812 PMCID: PMC7358350 DOI: 10.3389/fcimb.2020.00297] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/19/2020] [Indexed: 12/14/2022] Open
Abstract
The steady increase in life-expectancy of world population, coupled to many genetic and environmental factors (for instance, pre- and post-natal exposures to environmental neurotoxins), predispose to the onset of neurodegenerative diseases, whose prevalence is expected to increase dramatically in the next years. Recent studies have proposed links between the gut microbiota and neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. Human body is a complex structure where bacterial and human cells are almost equal in numbers, and most microbes are metabolically active in the gut, where they potentially influence other target organs, including the brain. The role of gut microbiota in the development and pathophysiology of the human brain is an area of growing interest for the scientific community. Several microbial-derived neurochemicals involved in the gut-microbiota-brain crosstalk seem implicated in the biological and physiological basis of neurodevelopment and neurodegeneration. Evidence supporting these connections has come from model systems, but there are still unsolved issues due to several limitations of available research tools. New technologies are recently born to help understanding the causative role of gut microbes in neurodegeneration. This review aims to make an overview of recent advances in the study of the microbiota-gut-brain axis in the field of neurodegenerative disorders by: (a) identifying specific microbial pathological signaling pathways; (b) characterizing new, advanced engineered tools to study the interactions between human cells and gut bacteria.
Collapse
Affiliation(s)
- Florencia Andrea Ceppa
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Milan, Italy
| | - Luca Izzo
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Milan, Italy
| | - Lorenzo Sardelli
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Milan, Italy
| | - Ilaria Raimondi
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Milan, Italy
| | - Marta Tunesi
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Milan, Italy
| | - Diego Albani
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Carmen Giordano
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Milan, Italy
| |
Collapse
|
16
|
Garzón-Tituaña M, Arias MA, Sierra-Monzón JL, Morte-Romea E, Santiago L, Ramirez-Labrada A, Martinez-Lostao L, Paño-Pardo JR, Galvez EM, Pardo J. The Multifaceted Function of Granzymes in Sepsis: Some Facts and a Lot to Discover. Front Immunol 2020; 11:1054. [PMID: 32655547 PMCID: PMC7325996 DOI: 10.3389/fimmu.2020.01054] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/30/2020] [Indexed: 12/21/2022] Open
Abstract
Sepsis is a serious global health problem. In addition to a high incidence, this syndrome has a high mortality and is responsible for huge health expenditure. The pathophysiology of sepsis is very complex and it is not well-understood yet. However, it is widely accepted that the initial phase of sepsis is characterized by a hyperinflammatory response while the late phase is characterized by immunosuppression and immune anergy, increasing the risk of secondary infections. Granzymes (Gzms) are a family of serine proteases classified according to their cleavage specificity. Traditionally, it was assumed that all Gzms acted as cytotoxic proteases. However, recent evidence suggests that GzmB is the one with the greatest cytotoxic capacity, while the cytotoxicity of others such as GzmA and GzmK is not clear. Recent studies have found that GzmA, GzmB, GzmK, and GzmM act as pro-inflammatory mediators. Specially, solid evidences show that GzmA and GzmK function as extracellular proteases that regulate the inflammatory response irrespectively of its ability to induce cell death. Indeed, studies in animal models indicate that GzmA is involved in the cytokine release syndrome characteristic of sepsis. Moreover, the GZM family also could regulate other biological processes involved in sepsis pathophysiology like the coagulation cascade, platelet function, endothelial barrier permeability, and, in addition, could be involved in the immunosuppressive stage of sepsis. In this review, we provide a comprehensive overview on the contribution of these novel functions of Gzms to sepsis and the new therapeutic opportunities emerging from targeting these proteases for the treatment of this serious health problem.
Collapse
Affiliation(s)
- Marcela Garzón-Tituaña
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
| | | | - José L Sierra-Monzón
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain
| | - Elena Morte-Romea
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain
| | - Llipsy Santiago
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
| | - Ariel Ramirez-Labrada
- Nanotoxicology and Immunotoxicology Unit (UNATI), Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain
| | - Luis Martinez-Lostao
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain.,Nanoscience Institute of Aragon (INA), University of Zaragoza, Zaragoza, Spain
| | - José R Paño-Pardo
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain
| | - Eva M Galvez
- Instituto de Carboquímica ICB-CSIC, Zaragoza, Spain
| | - Julián Pardo
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Nanoscience Institute of Aragon (INA), University of Zaragoza, Zaragoza, Spain.,Aragon I + D Foundation (ARAID), Zaragoza, Spain.,Department of Biochemistry and Molecular and Cell Biology and Department of Microbiology, Preventive Medicine and Public Health, University of Zaragoza, Zaragoza, Spain.,Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| |
Collapse
|
17
|
van Daalen KR, Reijneveld JF, Bovenschen N. Modulation of Inflammation by Extracellular Granzyme A. Front Immunol 2020; 11:931. [PMID: 32508827 PMCID: PMC7248576 DOI: 10.3389/fimmu.2020.00931] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 04/21/2020] [Indexed: 12/21/2022] Open
Abstract
Granzyme A (GrA) has long been recognized as one of the key players in the induction of cell death of neoplastic, foreign or infected cells after granule delivery by cytotoxic cells. While the cytotoxic potential of GrA is controversial in current literature, accumulating evidence now indicates roles for extracellular GrA in modulating inflammation and inflammatory diseases. This paper aims to explore the literature presenting current knowledge on GrA as an extracellular modulator of inflammation by summarizing (i) the presence and role of extracellular GrA in several inflammatory diseases, and (ii) the potential molecular mechanisms of extracellular GrA in augmenting inflammation.
Collapse
Affiliation(s)
- Kim R. van Daalen
- Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | | | - Niels Bovenschen
- Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
18
|
Shimizu K, Yamasaki S, Sakurai M, Yumoto N, Ikeda M, Mishima-Tsumagari C, Kukimoto-Niino M, Watanabe T, Kawamura M, Shirouzu M, Fujii SI. Granzyme A Stimulates pDCs to Promote Adaptive Immunity via Induction of Type I IFN. Front Immunol 2019; 10:1450. [PMID: 31293597 PMCID: PMC6606709 DOI: 10.3389/fimmu.2019.01450] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 06/10/2019] [Indexed: 01/01/2023] Open
Abstract
Granzyme A (GzmA), together with perforin, are well-known for their cytotoxic activity against tumor or virus-infected cells. In addition to this cytotoxic function, GzmA stimulates several immune cell types and induces inflammation in the absence of perforin, however, its effect on the dendritic cell (DC) is unknown. In the current study, we showed that recombinant GzmA induced the phenotypic maturation of plasmacytoid DCs (pDCs) and conventional DCs (cDCs), but not their apoptosis. Particularly, GzmA made pDCs more functional, thus leading to production of type I interferon (IFN) via the TLR9-MyD88 pathway. We also demonstrated that GzmA binds TLR9 and co-localizes with it in endosomes. When co-administered with antigen, GzmA acted as a powerful adjuvant for eliciting antigen-specific cytotoxic CD8+ T lymphocytes (CTLs) that protected mice from tumor challenge. The induction of CTL was completely abolished in XCR1+ DC-depleted mice, whereas it was reduced to less than half in pDC-depleted or IFN-α/β receptor knockout mice. Thus, CTL cross-priming was dependent on XCR1+cDC and also type I IFN, which was produced by GzmA-activated pDCs. These results indicate that GzmA -stimulated pDCs enhance the cross-priming activity of cDCs in situ. We also showed that the adjuvant effect of GzmA is superior to CpG-ODN and LPS. Our findings highlight the ability of GzmA to bridge innate and adaptive immune responses via pDC help and suggest that GzmA may be useful as a vaccine adjuvant.
Collapse
Affiliation(s)
- Kanako Shimizu
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Satoru Yamasaki
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Maki Sakurai
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Noriko Yumoto
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Mariko Ikeda
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | - Chiemi Mishima-Tsumagari
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | - Mutsuko Kukimoto-Niino
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | - Takashi Watanabe
- Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Masami Kawamura
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Mikako Shirouzu
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | - Shin-Ichiro Fujii
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| |
Collapse
|
19
|
Kumar V. Natural killer cells in sepsis: Underprivileged innate immune cells. Eur J Cell Biol 2019; 98:81-93. [DOI: 10.1016/j.ejcb.2018.12.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 12/15/2018] [Accepted: 12/17/2018] [Indexed: 02/06/2023] Open
|
20
|
Bulitta B, Zuschratter W, Bernal I, Bruder D, Klawonn F, von Bergen M, Garritsen HSP, Jänsch L. Proteomic definition of human mucosal-associated invariant T cells determines their unique molecular effector phenotype. Eur J Immunol 2018; 48:1336-1349. [PMID: 29749611 DOI: 10.1002/eji.201747398] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 03/10/2018] [Accepted: 05/08/2018] [Indexed: 12/26/2022]
Abstract
Mucosal-associated invariant T cells (MAIT) constitute the most abundant anti-bacterial CD8+ T-cell population in humans. MR1/TCR-activated MAIT cells were reported to organize cytotoxic and innate-like responses but knowledge about their molecular effector phenotype is still fragmentary. Here, we have examined the functional inventory of human MAIT cells (CD3+ Vα7.2+ CD161+ ) in comparison with those from conventional non-MAIT CD8+ T cells (cCD8+ ) and NK cells. Quantitative mass spectrometry characterized 5500 proteins of primary MAIT cells and identified 160 and 135 proteins that discriminate them from cCD8+ T cells and NK cells donor-independently. Most notably, MAIT cells showed a unique exocytosis machinery in parallel to a proinflammatory granzyme profile with high levels of the granzymes A, K, and M. Furthermore, 24 proteins were identified with highest abundances in MAIT cells, including CD26, CD98, and L-amino-oxidase (LAAO). Among those, expression of granzyme K and CD98 were validated as MAIT-specific with respect to non-MAIT CD8+ effector subsets and LAAO was found to be recruited together with granzymes, perforin, and CD107a at the immunological synapse of activated MAIT cells. In conclusion, this study complements knowledge on the molecular effector phenotype of MAIT cells and suggest novel immune regulatory functions as part of their cytotoxic responses.
Collapse
Affiliation(s)
- Björn Bulitta
- Structure and Function of Proteins, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Werner Zuschratter
- Special Lab Electron and Laserscanning Microscopy, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Isabel Bernal
- Structure and Function of Proteins, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Institute of Medical Microbiology and Hospital Hygiene, University Hospital Magdeburg, Magdeburg, Germany
| | - Dunja Bruder
- Institute of Medical Microbiology and Hospital Hygiene, University Hospital Magdeburg, Magdeburg, Germany.,Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Frank Klawonn
- Structure and Function of Proteins, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Department of Computer Science, Ostfalia University of Applied Sciences, Wolfenbüttel, Germany
| | - Martin von Bergen
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Henrikus Stephanus Paulus Garritsen
- Institute for Clinical Transfusion Medicine, Städtisches Klinikum Braunschweig, Braunschweig, Germany.,Fraunhofer Institute for Surface Engineering and Thin Films, Braunschweig, Germany
| | - Lothar Jänsch
- Structure and Function of Proteins, Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
21
|
Zhang FX, Xu RS. Juglanin ameliorates LPS-induced neuroinflammation in animal models of Parkinson's disease and cell culture via inactivating TLR4/NF-κB pathway. Biomed Pharmacother 2017; 97:1011-1019. [PMID: 29136779 DOI: 10.1016/j.biopha.2017.08.132] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 08/21/2017] [Accepted: 08/29/2017] [Indexed: 11/16/2022] Open
Abstract
Parkinson's disease (PD) is a common neuro-degenerative disorder, and novel therapeutic targets are required for the treatment of PD. Juglanin is a natural compound extracted from the crude Polygonum aviculare, exhibiting anti-inflammatory, anti-oxidant and anti-cancer activities. In our study, PD in mice was induced by systemic LPS treatment as evidenced by enhanced α-synuclein and reduced tyrosine hydroxylase (TH), which were reversed by juglanin treatment. Moreover, juglanin administration attenuated LPS-caused behavioral and memory impairments and reduced LPS-induced enhancement of neuro-degenerative markers, including amyloid β (Aβ) and p-Tau. Additionally, juglanin ameliorated synaptic functionality through promoting the expression of synaptic markers, such as SYP, PSD-95 and SNAP-25. Toll-like receptor 4 (TLR4) signaling in brain regulates neuroinflammation, contributing to neurodegenerative diseases. Furthermore, LPS induced neuroinflammation through the acceleration of various pro-inflammatory cytokines, including interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), interleukin-18 (IL-18) and Cyclooxygenase-2 (COX-2), via activating TLR4/nuclear factor (NF)-κB pathway in hippocampus of mice and microglia cells. Juglanin significantly reduced LPS-induced production of pro-inflammatory cytokines and blocked TLR4/NF-κB pathway. We also found that LPS-induced astrocytes (AST) activity was prevented by juglanin through down-regulating glial fibrillary acidic protein (GFAP) and Iba1 in vivo and in vitro. Together, our results indicated that juglanin ameliorated neuroinflammation-related memory impairment, and neurodegeneration through impeding TLR4/NF-κB, indicating its potential for PD prevention.
Collapse
Affiliation(s)
- Fang-Xue Zhang
- Medicial Experiment Education Department, Medical College of Nanchang University, No. 461 Bayi Road, Donghu District, Nanchang 330001, China
| | - Ren-Shi Xu
- Department of Neurology, The First Affiliated Hospital of Nanchang University, No.17 Yongwaizheng Street, Donghu District, Nanchang 330006, China.
| |
Collapse
|
22
|
van Eck JA, Shan L, Meeldijk J, Hack CE, Bovenschen N. A novel proinflammatory role for granzyme A. Cell Death Dis 2017; 8:e2630. [PMID: 28230859 PMCID: PMC5386495 DOI: 10.1038/cddis.2017.56] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Jacqueline A van Eck
- Department of Pathology, University Medical Center Utrecht, Utrecht 3584 CX, The Netherlands
| | - Liling Shan
- Department of Pathology, University Medical Center Utrecht, Utrecht 3584 CX, The Netherlands
| | - Jan Meeldijk
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht 3584 CX, The Netherlands
| | - C Erik Hack
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht 3584 CX, The Netherlands
| | - Niels Bovenschen
- Department of Pathology, University Medical Center Utrecht, Utrecht 3584 CX, The Netherlands.,Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht 3584 CX, The Netherlands
| |
Collapse
|