1
|
Ito T, Tanaka Y, Ogata D, Nishida H, Shiomi T, Tanaka R, Kawaguchi A, Miyashita A, Fukushima S, Shojiguchi N, Goto H, Togawa Y, Kiyohara T, Oda Y, Nakahara T. A multicenter study on TROP2 as a potential targeted therapy for extramammary Paget disease in Japan. Sci Rep 2025; 15:409. [PMID: 39747638 PMCID: PMC11697375 DOI: 10.1038/s41598-024-84566-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 12/24/2024] [Indexed: 01/04/2025] Open
Abstract
Extramammary Paget disease (EMPD) is a rare skin cancer that typically occurs in the anogenital area of older people. Since efficacy of treatments for metastatic or unresectable EMPD remains poor, development of a novel therapeutic approach is strongly desired. However, the lack of EMPD models has hampered investigation of EMPD. Here we investigated whether trophoblast cell surface antigen 2 (TROP2) could be a promising therapeutic target for EMPD. We retrospectively collected 108 samples from 54 patients with primary and metastatic EMPD from 10 Japanese institutions, and compared TROP2 expression between primary and metastatic lesions of each paired sample. In vitro assays were performed using a newly established EMPD cell line, KS-EMPD-1. TROP2 was strongly and homogeneously expressed in patient tissues, regardless of primary or metastatic lesions. The KS-EMPD-1 cells were treated with a TROP2-targeted antibody-drug conjugate (ADC), sacituzumab govitecan, and it significantly reduced cell viability in a dose-dependent manner compared with that of the cells treated with sacituzumab alone. Knockdown of TROP2 reduced cell viability and cell migration, and caused slight upregulation of the apoptosis-related factors, together with downregulation of the epithelial-to-mesenchymal transition-related factors. These findings suggest that a TROP2-targeted ADC may be a promising treatment option for unresectable EMPD.
Collapse
MESH Headings
- Humans
- Paget Disease, Extramammary/drug therapy
- Paget Disease, Extramammary/pathology
- Paget Disease, Extramammary/metabolism
- Paget Disease, Extramammary/genetics
- Antigens, Neoplasm/metabolism
- Antigens, Neoplasm/genetics
- Cell Adhesion Molecules/metabolism
- Cell Adhesion Molecules/genetics
- Female
- Aged
- Male
- Japan
- Retrospective Studies
- Middle Aged
- Aged, 80 and over
- Cell Line, Tumor
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antibodies, Monoclonal, Humanized/pharmacology
- Molecular Targeted Therapy/methods
- Cell Survival/drug effects
- Immunoconjugates/therapeutic use
- Immunoconjugates/pharmacology
- Camptothecin/analogs & derivatives
Collapse
Affiliation(s)
- Takamichi Ito
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Yuka Tanaka
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Dai Ogata
- Department of Dermatologic Oncology, National Cancer Center Hospital, Tokyo, 104-0045, Japan
| | - Haruto Nishida
- Department of Diagnostic Pathology, Faculty of Medicine, Oita University, Yufu, 879-5593, Japan
| | - Tatsushi Shiomi
- Department of Pathology, Kawasaki Medical School, Kurashiki, 701-0192, Japan
| | - Ryo Tanaka
- Department of Dermatology, Kawasaki Medical School, Kurashiki, 701-0192, Japan
| | - Aya Kawaguchi
- Department of Dermatology, Kurume University School of Medicine, Kurume, 830-0011, Japan
| | - Azusa Miyashita
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Satoshi Fukushima
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Naoko Shojiguchi
- Department of Pathology, Saitama Medical University International Medical Center, Saitama, 350-1298, Japan
| | - Hiroyuki Goto
- Department of Dermatology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, 545-8585, Japan
| | - Yaei Togawa
- Department of Dermatology, Chiba University Hospital, Chiba, 260-8677, Japan
| | - Takahiro Kiyohara
- Department of Dermatology, Kansai Medical University Medical Center, Moriguchi, 570-8507, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Takeshi Nakahara
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
2
|
Ji L, Chai Y, Tong C, Hu Y, Li J, Lu B, Yu J. Morusin Reverses Epithelial-Mesenchymal Transition in Gallbladder Cancer Cells by Regulating STAT3/HIF-1α Signaling. Chem Biol Drug Des 2025; 105:e70054. [PMID: 39825622 DOI: 10.1111/cbdd.70054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 01/04/2025] [Accepted: 01/08/2025] [Indexed: 01/20/2025]
Abstract
Gallbladder cancer is the most prevalent malignancy of the biliary tract and has a dismal overall survival even in the present day. The development of new drugs holds promise for improving the prognosis of this lethal disease. The possible anti-neoplastic role of morusin was investigated both in vitro and in vivo. Through cell viability and colony formation assays, we observed that morusin inhibited the proliferation of gallbladder cancer cells in vitro. Wound healing and transwell assays revealed that morusin impeded the migration and invasion of gallbladder cancer cells. Given the observed morphological changes, we examined epithelial-mesenchymal transition (EMT) markers. Subsequent investigations demonstrated that morusin treatment, both in vitro and in vivo, downregulated the expression of phospho-STAT3 (Signal transducer and activator of transcription 3) and HIF-1α (Hypoxia-inducible factor 1α) in gallbladder cancer cells. Furthermore, morusin effectively reversed EMT induced by phospho-STAT3 or HIF-1α. Morusin has a reversing effect on the EMT of gallbladder cancer cells by modulating STAT3/HIF-1α signaling.
Collapse
Affiliation(s)
- Lichao Ji
- Department of Hepato-Biliary-Pancreatic Surgery, Shaoxing People's Hospital, Shaoxing, People's Republic of China
- School of Medicine, Shaoxing University, Shaoxing, People's Republic of China
| | - Yingjie Chai
- Department of Hepato-Biliary-Pancreatic Surgery, Shaoxing People's Hospital, Shaoxing, People's Republic of China
- Department of General Surgery, Haining People's Hospital, Haining, People's Republic of China
| | - Chenhao Tong
- Department of Hepato-Biliary-Pancreatic Surgery, Shaoxing People's Hospital, Shaoxing, People's Republic of China
| | - Yanxin Hu
- Department of Hepato-Biliary-Pancreatic Surgery, Shaoxing People's Hospital, Shaoxing, People's Republic of China
- School of Medicine, Shaoxing University, Shaoxing, People's Republic of China
| | - Jiandong Li
- Department of Hepato-Biliary-Pancreatic Surgery, Shaoxing People's Hospital, Shaoxing, People's Republic of China
| | - Baochun Lu
- Department of Hepato-Biliary-Pancreatic Surgery, Shaoxing People's Hospital, Shaoxing, People's Republic of China
| | - Jianhua Yu
- Department of Hepato-Biliary-Pancreatic Surgery, Shaoxing People's Hospital, Shaoxing, People's Republic of China
- School of Medicine, Shaoxing University, Shaoxing, People's Republic of China
| |
Collapse
|
3
|
Sugiyanto RN, Metzger C, Inal A, Truckenmueller F, Gür K, Eiteneuer E, Huth T, Fraas A, Heinze I, Kirkpatrick J, Sticht C, Albrecht T, Goeppert B, Poth T, Pusch S, Mehrabi A, Schirmacher P, Ji J, Ori A, Roessler S. Proteomic profiling reveals CEACAM6 function in driving gallbladder cancer aggressiveness through integrin receptor, PRKCD and AKT/ERK signaling. Cell Death Dis 2024; 15:780. [PMID: 39468006 PMCID: PMC11519453 DOI: 10.1038/s41419-024-07171-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 10/08/2024] [Accepted: 10/18/2024] [Indexed: 10/30/2024]
Abstract
Gallbladder cancer (GBC) presents as an aggressive malignancy with poor patient outcome. Like other epithelial cancers, the mechanisms of GBC cancer progression remain vague and efforts in finding targeted therapies fall below expectations. This study combined proteomic analysis of formalin-fixed paraffin-embedded (FFPE) GBC samples, functional and molecular characterization of potential oncogenes and identification of potential therapeutic strategies for GBC. We identified Carcinoembryonic Antigen-related Cell Adhesion Molecule 6 (CEACAM6) as one of the significantly most upregulated proteins in GBC. CEACAM6 overexpression has been observed in other cancer entities but the molecular function remains unclear. Our functional analyses in vitro and in vivo mouse models revealed that CEACAM6 supported the initial steps of cancer progression and metastasis by decreasing cell adhesion and promoting migration and invasion of GBC cells. Conversely, CEACAM6 knockdown abolished GBC aggressiveness by increasing cell adhesion while reducing cell migration, cell proliferation, and colony formation. BirA-BioID followed by mass-spectrometry revealed Integrin Beta-1 (ITGB1) and Protein Kinase C Delta (PRKCD) as direct molecular and functional partners of CEACAM6 supporting GBC cell migration. ERK and AKT signaling and their downstream target genes were regulated by CEACAM6 and thus the treatment with AKT inhibitor capivasertib or ERK inhibitor ulixertinib mitigated the CEACAM6-induced migration. These findings demonstrate that CEACAM6 is crucially involved in gallbladder cancer progression by promoting migration and inhibiting cell adhesion through ERK and AKT signaling providing specific options for treatment of CEACAM6-positive cancers.
Collapse
Affiliation(s)
- Raisatun Nisa Sugiyanto
- Institute of Pathology, University Hospital Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Carmen Metzger
- Institute of Pathology, University Hospital Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Aslihan Inal
- Institute of Pathology, University Hospital Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Felicia Truckenmueller
- Institute of Pathology, University Hospital Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Kira Gür
- Institute of Pathology, University Hospital Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Eva Eiteneuer
- Institute of Pathology, University Hospital Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Thorben Huth
- Institute of Pathology, University Hospital Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Angelika Fraas
- Institute of Pathology, University Hospital Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Ivonne Heinze
- Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany
| | | | - Carsten Sticht
- NGS Core Facility, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Thomas Albrecht
- Institute of Pathology, University Hospital Heidelberg, Heidelberg University, Heidelberg, Germany
- Liver Cancer Centre Heidelberg (LCCH), Heidelberg, Germany
| | - Benjamin Goeppert
- Institute of Pathology, University Hospital Heidelberg, Heidelberg University, Heidelberg, Germany
- Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
- Institute of Pathology and Neuropathology, RKH Hospital Ludwigsburg, Ludwigsburg, Germany
| | - Tanja Poth
- Center for Model System and Comparative Pathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Stefan Pusch
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Arianeb Mehrabi
- Liver Cancer Centre Heidelberg (LCCH), Heidelberg, Germany
- Department of General Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Peter Schirmacher
- Institute of Pathology, University Hospital Heidelberg, Heidelberg University, Heidelberg, Germany
- Liver Cancer Centre Heidelberg (LCCH), Heidelberg, Germany
| | - Junfang Ji
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Alessandro Ori
- Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany
| | - Stephanie Roessler
- Institute of Pathology, University Hospital Heidelberg, Heidelberg University, Heidelberg, Germany.
- Liver Cancer Centre Heidelberg (LCCH), Heidelberg, Germany.
| |
Collapse
|
4
|
Zhang J, Xu S. High aggressiveness of papillary thyroid cancer: from clinical evidence to regulatory cellular networks. Cell Death Discov 2024; 10:378. [PMID: 39187514 PMCID: PMC11347646 DOI: 10.1038/s41420-024-02157-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 08/28/2024] Open
Abstract
The global incidence of thyroid cancer has increased over recent decades. Papillary thyroid cancer (PTC) is the most common type of thyroid cancer and accounts for nearly 90% of all cases. Typically, PTC has a good prognosis. However, some PTC variants exhibit more aggressive behaviour, which significantly increases the risk of postoperative recurrence. Over the past decade, the high metastatic potential of PTC has drawn the attention of many researchers and these studies have provided useful molecular markers for improved diagnosis, risk stratification and clinical approaches. The aim of this review is to discuss the progress in epidemiology, metastatic features, risk factors and molecular mechanisms associated with PTC aggressiveness. We present a detailed picture showing that epithelial-to-mesenchymal transition, cancer metabolic reprogramming, alterations in important signalling pathways, epigenetic aberrations and the tumour microenvironment are crucial drivers of PTC metastasis. Further research is needed to more fully elucidate the pathogenesis and biological behaviour underlying the aggressiveness of PTC.
Collapse
Affiliation(s)
- Junsi Zhang
- Department of Thyroid and Breast Surgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Sunwang Xu
- Department of Thyroid and Breast Surgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
- Department of Thyroid and Breast Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
- Fujian Provincial Key Laboratory of Precision Medicine for Cancer, Fuzhou, China.
| |
Collapse
|
5
|
Chen W, Chen M, Hong L, Xiahenazi A, Huang M, Tang N, Yang X, She F, Chen Y. M2-like tumor-associated macrophage-secreted CCL2 facilitates gallbladder cancer stemness and metastasis. Exp Hematol Oncol 2024; 13:83. [PMID: 39138521 PMCID: PMC11320879 DOI: 10.1186/s40164-024-00550-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 07/30/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND The predominant immune cells in solid tumors are M2-like tumor-associated macrophages (M2-like TAMs), which significantly impact the promotion of epithelial-mesenchymal transition (EMT) in tumors, enhancing stemness and facilitating tumor invasion and metastasis. However, the contribution of M2-like TAMs to tumor progression in gallbladder cancer (GBC) is partially known. METHODS Immunohistochemistry was used to evaluate the expression of M2-like TAMs and cancer stem cell (CSC) markers in 24 pairs of GBC and adjacent noncancerous tissues from patients with GBC. Subsequently, GBC cells and M2-like TAMs were co-cultured to examine the expression of CSC markers, EMT markers, and migratory behavior. Proteomics was performed on the culture supernatant of M2-like TAMs. The mechanisms underlying the induction of EMT, stemness, and metastasis in GBC by M2-like TAMs were elucidated using proteomics and transcriptomics. GBC cells were co-cultured with undifferentiated macrophages (M0) and analyzed. The therapeutic effect of gemcitabine combined with a chemokine (C-C motif) receptor 2 (CCR2) antagonist on GBC was observed in vivo. RESULTS The expression levels of CD68 and CD163 in M2-like TAMs and CD44 and CD133 in gallbladder cancer stem cells (GBCSCs) were increased and positively correlated in GBC tissues compared with those in neighboring noncancerous tissues. M2-like TAMs secreted a significant amount of chemotactic cytokine ligand 2 (CCL2), which activated the MEK/extracellular regulated protein kinase (ERK) pathway and enhanced SNAIL expression after binding to the receptor CCR2 on GBC cells. Activation of the ERK pathway caused nuclear translocation of ELK1, which subsequently led to increased SNAIL expression. GBCSCs mediated the recruitment and polarization of M0 into M2-like TAMs within the GBC microenvironment via CCL2 secretion. In the murine models, the combination of a CCR2 antagonist and gemcitabine efficiently inhibited the growth of subcutaneous tumors in GBC. CONCLUSIONS The interaction between M2-like TAMs and GBC cells is mediated by the chemokine CCL2, which activates the MEK/ERK/ELK1/SNAIL pathway in GBC cells, promoting EMT, stemness, and metastasis. A combination of a CCR2 inhibitor and gemcitabine effectively suppressed the growth of subcutaneous tumors. Consequently, our study identified promising therapeutic targets and strategies for treating GBC.
Collapse
Affiliation(s)
- Weihong Chen
- Department of Hepatobiliary Surgery, Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
- Fujian Medical University Cancer Center, Fuzhou, 350108, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350108, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, 350108, Fujian, China
| | - Mingyuan Chen
- Department of Hepatobiliary Surgery, Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
- Fujian Medical University Cancer Center, Fuzhou, 350108, China
| | - Lingju Hong
- Department of Hepatobiliary Surgery, Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
| | - Abudukeremu Xiahenazi
- Department of Hepatobiliary Surgery, Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
- Fujian Medical University Cancer Center, Fuzhou, 350108, China
| | - Maotuan Huang
- Department of Hepatobiliary Surgery, Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
- Fujian Medical University Cancer Center, Fuzhou, 350108, China
| | - Nanhong Tang
- Department of Hepatobiliary Surgery, Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
- Fujian Medical University Cancer Center, Fuzhou, 350108, China
| | - Xinyue Yang
- Department of Hepatobiliary Surgery, Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
- Fujian Medical University Cancer Center, Fuzhou, 350108, China
| | - Feifei She
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350108, China.
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, 350108, Fujian, China.
| | - Yanling Chen
- Department of Hepatobiliary Surgery, Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China.
- Fujian Medical University Cancer Center, Fuzhou, 350108, China.
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350108, China.
| |
Collapse
|
6
|
Jeeyar V, Prasad Singh S, Dixit M. Functional relevance of MMP2 promoter variants in gallbladder cancer: A case-control study in an Eastern Indian Population. Gene 2024; 913:148372. [PMID: 38499214 DOI: 10.1016/j.gene.2024.148372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 03/09/2024] [Accepted: 03/12/2024] [Indexed: 03/20/2024]
Abstract
Gallbladder cancer (GBC) is a prevalent and deadly form of bile duct cancer, associated with poor prognosis. This study aimed to investigate the genetic factors contributing to the high incidence of GBC in certain geographical regions, particularly in the Northern and Eastern parts of India. The present case-control study focused on MMP2, a gene involved in tumor progression and metastasis, as a potential candidate in GBC pathogenesis. We scanned MMP2 promoter for twelve SNPs using Sanger's sequencing and carried out a case-control study in 300 cases and 300 control samples. We found five rare variants (rs1961998763, rs1961996235, rs1391392808, rs1488656253, and rs17859816) and one nonpolymorphic SNP (rs17859817). Our results revealed a significant association between GBC and MMP2 promoter SNPs, rs243865 (Allelic-Padjusted = 0.0353) and g.55477735G > A (Allelic-Padjusted = 9.22E-05). Moreover, the haplotype "C-C-A-C-C" exhibited a significant association with GBC (P = 4.23E-05). Genotype-phenotype correlation for variant rs243865, in the GBC patient tissue samples, established that 'T' risk allele carriers had higher expression levels of MMP2. Additionally, luciferase reporter assay in HEK293T cells revealed the probable regulatory role of rs243865 variant allele 'T' in MMP2 expression. Our study uncovers the association of MMP2 promoter SNPs with GBC and their role in regulating its expression.
Collapse
Affiliation(s)
- Vinay Jeeyar
- National Institute of Science Education and Research, School of Biological Sciences, Bhubaneswar, Odisha 752050, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Shivaram Prasad Singh
- Sriram Chandra Bhanja Medical College & Hospital, Department of Gastroenterology, Cuttack, Odisha 753007, India
| | - Manjusha Dixit
- National Institute of Science Education and Research, School of Biological Sciences, Bhubaneswar, Odisha 752050, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India.
| |
Collapse
|
7
|
Khan F, Pitstick L, Lara J, Ventrella R. Rho-Associated Protein Kinase Activity Is Required for Tissue Homeostasis in the Xenopus laevis Ciliated Epithelium. J Dev Biol 2024; 12:17. [PMID: 38921484 PMCID: PMC11204898 DOI: 10.3390/jdb12020017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 06/27/2024] Open
Abstract
Lung epithelial development relies on the proper balance of cell proliferation and differentiation to maintain homeostasis. When this balance is disturbed, it can lead to diseases like cancer, where cells undergo hyperproliferation and then can undergo migration and metastasis. Lung cancer is one of the deadliest cancers, and even though there are a variety of therapeutic approaches, there are cases where treatment remains elusive. The rho-associated protein kinase (ROCK) has been thought to be an ideal molecular target due to its role in activating oncogenic signaling pathways. However, in a variety of cases, inhibition of ROCK has been shown to have the opposite outcome. Here, we show that ROCK inhibition with y-27632 causes abnormal epithelial tissue development in Xenopus laevis embryonic skin, which is an ideal model for studying lung cancer development. We found that treatment with y-27632 caused an increase in proliferation and the formation of ciliated epithelial outgrowths along the tail edge. Our results suggest that, in certain cases, ROCK inhibition can disturb tissue homeostasis. We anticipate that these findings could provide insight into possible mechanisms to overcome instances when ROCK inhibition results in heightened proliferation. Also, these findings are significant because y-27632 is a common pharmacological inhibitor used to study ROCK signaling, so it is important to know that in certain in vivo developmental models and conditions, this treatment can enhance proliferation rather than lead to cell cycle suppression.
Collapse
Affiliation(s)
- Fayhaa Khan
- Biomedical Sciences Program, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA; (F.K.); (J.L.)
| | - Lenore Pitstick
- Department of Biochemistry and Molecular Genetics, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA;
| | - Jessica Lara
- Biomedical Sciences Program, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA; (F.K.); (J.L.)
| | - Rosa Ventrella
- Precision Medicine Program, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA
| |
Collapse
|
8
|
Murahashi M, Ntege EH, Ide K, Maruyama N, Shirakawa J, Koyama H, Kawano T, Goto T, Shimizu Y, Nishihara K, Nakamura H. Metastatic gallbladder cancer presenting as numb chin syndrome: A case report and literature review. Biomed Rep 2024; 20:61. [PMID: 38476609 PMCID: PMC10928479 DOI: 10.3892/br.2024.1749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/04/2023] [Indexed: 03/14/2024] Open
Abstract
Gallbladder cancer (GBC) is an uncommon malignancy that is highly aggressive in the advanced stages. However, it rarely metastasizes to the mandible. Numb chin syndrome (NCS) is a rare neurological manifestation associated with various underlying causes, including occult primary cancers and distant metastases. It is often considered to be a significant indicator of malignancy, and thorough investigation is essential in the presence of unclear etiology. The current study reported on the case of a 69-year-old Japanese woman who presented with numbness and mild pain in the lower lip and chin area for three months. No other systemic symptoms were observed. Immunocytochemical examination revealed the presence of an adenocarcinoma and TNM staging as per the Union for International Cancer Control and the American Joint Committee on Cancer guidelines confirmed stage IVb GBC. Comprehensive full-body positron emission tomography-computed tomography examination using 18F-fluoro-2-deoxy-D-glucose revealed additional bone and soft-tissue metastases. Palliative chemotherapy and radiation treatment were initiated based on the advanced stage of disease at the time of diagnosis. However, the patient succumbed to multiple organ failure six months later. The simultaneous occurrence of GBC, mandibular metastasis and NCS is rare and associated with poor prognosis. Despite the widespread nature of the disease, it can often manifest as non-specific oral symptoms without any systemic indications. The current study emphasizes the critical importance of timely confirmatory testing for accurate diagnosis and initiation of appropriate management for such complex conditions.
Collapse
Affiliation(s)
- Makoto Murahashi
- Department of Oral and Maxillofacial Functional Rehabilitation, Graduate School of Medicine, University of The Ryukyus, Nishihara, Okinawa 903-0215, Japan
- Department of Oral and Maxillofacial Surgery, Okinawa Red Cross Hospital, Naha, Okinawa 902-8588, Japan
| | - Edward Hosea Ntege
- Department of Oral and Maxillofacial Functional Rehabilitation, Graduate School of Medicine, University of The Ryukyus, Nishihara, Okinawa 903-0215, Japan
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, University of the Ryukyus, Nishihara, Okinawa 903-0215, Japan
| | - Kentaro Ide
- Department of Oral and Maxillofacial Functional Rehabilitation, Graduate School of Medicine, University of The Ryukyus, Nishihara, Okinawa 903-0215, Japan
| | - Nobuyuki Maruyama
- Department of Oral and Maxillofacial Functional Rehabilitation, Graduate School of Medicine, University of The Ryukyus, Nishihara, Okinawa 903-0215, Japan
| | - Jumpei Shirakawa
- Department of Oral and Maxillofacial Functional Rehabilitation, Graduate School of Medicine, University of The Ryukyus, Nishihara, Okinawa 903-0215, Japan
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, University of Miyazaki, Kiyotake, Miyazaki 889-1692, Japan
| | - Hiroki Koyama
- Department of Oral and Maxillofacial Functional Rehabilitation, Graduate School of Medicine, University of The Ryukyus, Nishihara, Okinawa 903-0215, Japan
| | - Toshihiro Kawano
- Department of Oral and Maxillofacial Functional Rehabilitation, Graduate School of Medicine, University of The Ryukyus, Nishihara, Okinawa 903-0215, Japan
| | - Takahiro Goto
- Department of Oral and Maxillofacial Surgery, Okinawa Red Cross Hospital, Naha, Okinawa 902-8588, Japan
| | - Yusuke Shimizu
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, University of the Ryukyus, Nishihara, Okinawa 903-0215, Japan
| | - Kazuhide Nishihara
- Department of Oral and Maxillofacial Surgery, Okinawa Red Cross Hospital, Naha, Okinawa 902-8588, Japan
| | - Hiroyuki Nakamura
- Department of Oral and Maxillofacial Functional Rehabilitation, Graduate School of Medicine, University of The Ryukyus, Nishihara, Okinawa 903-0215, Japan
| |
Collapse
|
9
|
Doghish AS, Radwan AF, Zaki MB, Elfar N, Moussa R, Walash Z, Alhamshry NAA, Mohammed OA, Abdel-Reheim MA, Elimam H. Decoding the role of long non-coding RNAs in gallbladder cancer pathogenesis: A review focus on signaling pathways interplay. Int J Biol Macromol 2024; 264:130426. [PMID: 38428766 DOI: 10.1016/j.ijbiomac.2024.130426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/03/2024]
Abstract
Gallbladder cancer (GBC) is one of the most aggressive types of biliary tree cancers and the commonest despite its rarity. It is infrequently diagnosed at an early stage, further contributing to its poor prognosis and low survival rate. The lethal nature of the disease has underlined a crucial need to discern the underlying mechanisms of GBC carcinogenesis which are still largely unknown. However, with the continual evolution in the research of cancer biology and molecular genetics, studies have found that non-coding RNAs (ncRNAs) play an active role in the molecular pathophysiology of GBC development. Dysregulated long non-coding RNAs (lncRNAs) and their interaction with intracellular signaling pathways contribute to malignancy and disease development. LncRNAs, a subclass of ncRNAs with over 200 nucleotides, regulate gene expression at transcriptional, translational, and post-translational levels and especially as epigenetic modulators. Thus, their expression abnormalities have been linked to malignancy and therapeutic resistance. lnsRNAs have also been found in GBC patients' serum and tumor tissue biopsies, highlighting their potential as novel biomarkers and for targeted therapy. This review will examine the growing involvement of lncRNAs in GBC pathophysiology, including related signaling pathways and their wider clinical use.
Collapse
Affiliation(s)
- Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| | - Abdullah F Radwan
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Cairo 11829, Egypt
| | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City 32897, Egypt
| | - Nourhan Elfar
- School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, New Administrative Capital 11578, Cairo, Egypt; Egyptian Drug Authority (EDA), Ministry of Health and Population, Cairo 11567, Egypt
| | - Rewan Moussa
- Faculty of Medicine, Helwan University, Cairo, Egypt
| | - Zahraa Walash
- Faculty of Medicine, Helwan University, Cairo, Egypt
| | - Nora A A Alhamshry
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City 32897, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef 62521, Egypt.
| | - Hanan Elimam
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City 32897, Egypt.
| |
Collapse
|
10
|
Hong L, Chen M, Huang M, Chen W, Abudukeremu X, She F, Chen Y. FOXA2 suppresses gallbladder carcinoma cell migration, invasion, and epithelial-mesenchymal transition by targeting SERPINB5. ENVIRONMENTAL TOXICOLOGY 2024; 39:708-722. [PMID: 37665156 DOI: 10.1002/tox.23953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/11/2023] [Accepted: 08/20/2023] [Indexed: 09/05/2023]
Abstract
BACKGROUND Gallbladder cancer (GBC), a highly malignant gastrointestinal tumor, lacks effective therapies. Foxhead box A2 (FOXA2) is a tumor suppressor that is poorly expressed in various human malignancies. This study aimed to ascertain FOXA2 expression in GBC and its relevance to tumor metastasis, and to elucidate its regulatory mechanism with epithelial-mesenchymal transition (EMT) as an entry point, in the hope of providing a potential therapeutic target for GBC. METHODS FOXA2 expression in GBC tissues was first detected using immunohistochemistry (IHC), followed by correlation analysis with clinicopathological characteristics and survival prognosis. Subsequently, the effects of FOXA2 on GBC cell migration and invasion, as well as EMT induction, were evaluated by scratch, Transwell, RT-PCR, and Western blot assays, together with animal experimentation. Ultimately, mRNA sequencing was carried out to identify the key downstream target genes of FOXA2 in controlling the EMT process in GBC cells, and dual-luciferase reporter and chromatin immunoprecipitation assays were used to determine its regulatory mechanism. RESULTS FOXA2 was underexpressed in GBC tissues and inversely correlated with tumor node metastasis stage, lymph node metastasis, and poor patient prognosis. FOXA2 exerts suppressive effects on EMT and metastasis of GBC in vivo and in vitro. FOXA2 can impede GBC cell migratory and invasive functions and EMT by positively mediating serine protein kinase inhibitor B5 (SERPINB5) expression. CONCLUSION FOXA2 directly binds to the SERPINB5 promoter region to stimulate its transcription, thereby modulating the migration and invasion behaviors of GBC cells as well as the EMT process, which might be an effective therapeutic target against GBC.
Collapse
Affiliation(s)
- Lingju Hong
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fujian Medical University, Fuzhou, China
- Fujian Medical University Cancer Center, Fujian Medical University, Fuzhou, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Mingyuan Chen
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fujian Medical University, Fuzhou, China
- Fujian Medical University Cancer Center, Fujian Medical University, Fuzhou, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Maotuan Huang
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fujian Medical University, Fuzhou, China
- Fujian Medical University Cancer Center, Fujian Medical University, Fuzhou, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Weihong Chen
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fujian Medical University, Fuzhou, China
- Fujian Medical University Cancer Center, Fujian Medical University, Fuzhou, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Xiahenazi Abudukeremu
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fujian Medical University, Fuzhou, China
- Fujian Medical University Cancer Center, Fujian Medical University, Fuzhou, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Feifei She
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Yanling Chen
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fujian Medical University, Fuzhou, China
- Fujian Medical University Cancer Center, Fujian Medical University, Fuzhou, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| |
Collapse
|
11
|
Rodas F, Vidal-Vidal JA, Herrera D, Brown-Brown DA, Vera D, Veliz J, Püschel P, Erices JI, Sánchez Hinojosa V, Tapia JC, Silva-Pavez E, Quezada-Monrás C, Mendoza-Soto P, Salazar-Onfray F, Carrasco C, Niechi I. Targeting the Endothelin-1 pathway to reduce invasion and chemoresistance in gallbladder cancer cells. Cancer Cell Int 2023; 23:318. [PMID: 38072958 PMCID: PMC10710704 DOI: 10.1186/s12935-023-03145-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/14/2023] [Indexed: 01/03/2025] Open
Abstract
BACKGROUND Gallbladder cancer (GBC) is a prevalent and deadly biliary tract carcinoma, often diagnosed at advanced stages with limited treatment options. The 5-year survival rate varies widely from 4 to 60%, mainly due to differences in disease stage detection. With only a small fraction of patients having resectable tumors and a high incidence of metastasis, advanced GBC stages are characterized by significant chemoresistance. Identification of new therapeutic targets is crucial, and recent studies have shown that the Endothelin-1 (ET-1) signaling pathway, involving ETAR and/or ETBR receptors (ETRs), plays a crucial role in promoting tumor aggressiveness in various cancer models. Blocking one or both receptors has been reported to reduce invasiveness and chemoresistance in cancers like ovarian, prostate, and colon. Furthermore, transcriptomic studies have associated ET-1 levels with late stages of GBC; however, it remains unclear whether its signaling or its inhibition has implications for its aggressiveness. Although the role of ET-1 signaling in gallbladder physiology is minimally understood, its significance in other tumor models leads us to hypothesize its involvement in GBC malignancy. RESULTS In this study, we investigated the expression of ET-1 pathway proteins in three GBC cell lines and a primary GBC culture. Our findings demonstrated that both ETAR and ETBR receptors are expressed in GBC cells and tumor samples. Moreover, we successfully down-regulated ET-1 signaling using a non-selective ETR antagonist, Macitentan, which resulted in reduced migratory and invasive capacities of GBC cells. Additionally, Macitentan treatment chemosensitized the cells to Gemcitabine, a commonly used therapy for GBC. CONCLUSION For the first time, we reveal the role of the ET-1 pathway in GBC cells, providing insight into the potential therapeutic targeting of its receptors to mitigate invasion and chemoresistance in this cancer with limited treatment options. These findings pave the way for further exploration of Macitentan or other ETR antagonists as potential therapeutic strategies for GBC management. In summary, our study represents a groundbreaking contribution to the field by providing the first evidence of the ET 1 pathway's pivotal role in modulating the behavior and aggressiveness of GBC cells, shedding new light on potential therapeutic targets.
Collapse
Affiliation(s)
- Francisco Rodas
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Jetzabel A Vidal-Vidal
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Daniela Herrera
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - David A Brown-Brown
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Diego Vera
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Joaquín Veliz
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Pilar Püschel
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - José I Erices
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Verónica Sánchez Hinojosa
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Julio C Tapia
- Laboratorio de transformación celular, Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, 8380453, Santiago, Chile
| | - Eduardo Silva-Pavez
- Facultad de Odontología y Ciencias de la Rehabilitación, Universidad San Sebastián, Bellavista, Santiago, Chile
| | - Claudia Quezada-Monrás
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
- Millennium Institute on Immunology and Immunotherapy, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Pablo Mendoza-Soto
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Flavio Salazar-Onfray
- Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, Universidad de Chile, 8380453, Santiago, Chile
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, 8380453, Santiago, Chile
| | - Cristian Carrasco
- Subdepartamento de Anatomía Patológica, Hospital Base de Valdivia, 5090000, Valdivia, Chile
| | - Ignacio Niechi
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile.
- Millennium Institute on Immunology and Immunotherapy, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile.
| |
Collapse
|
12
|
Yoo C, Javle MM, Verdaguer Mata H, de Braud F, Trojan J, Raoul JL, Kim JW, Ueno M, Lee CK, Hijioka S, Cubillo A, Furuse J, Azad N, Sato M, Vugmeyster Y, Machl A, Bajars M, Bridgewater J, Oh DY, Borad MJ. Phase 2 trial of bintrafusp alfa as second-line therapy for patients with locally advanced/metastatic biliary tract cancers. Hepatology 2023; 78:758-770. [PMID: 36999533 PMCID: PMC10442127 DOI: 10.1097/hep.0000000000000365] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 04/01/2023]
Abstract
BACKGROUND AND AIMS Biliary tract cancers are rare, heterogeneous cancers with poor prognoses. Bintrafusp alfa, a first-in-class bifunctional fusion protein composed of the extracellular domain of TGF-βRII (a TGF-β "trap") fused to a human IgG1 monoclonal antibody blocking programmed death ligand 1, was evaluated in patients with locally advanced/metastatic chemorefractory biliary tract cancers. APPROACH AND RESULTS This multicenter, single-arm, open-label, phase 2 study (NCT03833661) enrolled adults with locally advanced or metastatic biliary tract cancer that was intolerant to or had failed first-line systemic platinum-based chemotherapy. Patients received 1200 mg bintrafusp alfa intravenously Q2W. The primary endpoint was confirmed objective response according to Response Evaluation Criteria in Solid Tumors 1.1 assessed by IRC. Secondary endpoints included duration of response, durable response rate, safety, progression-free survival, and overall survival.Between March 2019 and January 2020, 159 patients were enrolled. Median follow-up was 16.1 (range, 0.0-19.3) months; 17 patients (10.7%; 95% CI: 6.4%-16.6%) achieved an objective response. Median duration of response was 10.0 (range, 1.9-15.7) months; 10 patients (6.3%; 95% CI: 3.1%-11.3%) had a durable response (≥6 mo). Median progression-free survival was 1.8 months (95% CI: 1.7-1.8 mo); median overall survival was 7.6 months (95% CI: 5.8-9.7 mo). Overall survival rates were 57.9% (6 mo) and 38.8% (12 mo). Grade ≥3 adverse events occurred in 26.4% of patients, including one treatment-related death (hepatic failure). Frequent grade ≥3 adverse events included anemia (3.8%), pruritus (1.9%), and increased alanine aminotransferase (1.9%). CONCLUSIONS Although this study did not meet its prespecified primary endpoint, bintrafusp alfa demonstrated clinical activity as second-line treatment in this hard-to-treat cancer, with durable responses and a manageable safety profile.
Collapse
Affiliation(s)
- Changhoon Yoo
- Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Milind M. Javle
- The University of Texas, MD Anderson Cancer Center, Houston, Texas, USA
| | | | | | - Jörg Trojan
- Goethe University Hospital, Frankfurt, Germany
| | | | - Jin Won Kim
- Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Makoto Ueno
- Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| | - Choong-kun Lee
- Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea
| | | | - Antonio Cubillo
- HM Madrid Sanchinarro University Hospital, Clara Campal Comprehensive Cancer Center, Madrid, Spain
- UCJC HM Hospital School of Health Sciences, Madrid, Spain
| | - Junji Furuse
- Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| | - Nilofer Azad
- The Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Masashi Sato
- Merck Biopharma Co., Ltd., Tokyo, Japan, an affiliate of Merck KGaA, Darmstadt, Germany
| | | | | | - Marcis Bajars
- The Healthcare Business of Merck KGaA, Darmstadt, Germany
| | | | - Do-Youn Oh
- Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine, Integrated Major in Innovative Medical Science, Seoul National University Graduate School, Seoul, South Korea
| | | |
Collapse
|
13
|
Malyla V, Paudel KR, Rubis GD, Hansbro NG, Hansbro PM, Dua K. Extracellular Vesicles Released from Cancer Cells Promote Tumorigenesis by Inducing Epithelial to Mesenchymal Transition via β-Catenin Signaling. Int J Mol Sci 2023; 24:ijms24043500. [PMID: 36834913 PMCID: PMC9960428 DOI: 10.3390/ijms24043500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 02/12/2023] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths globally, in part due to a lack of early diagnostic tools and effective pharmacological interventions. Extracellular vesicles (EVs) are lipid-based membrane-bound particles released from all living cells in both physiological and pathological states. To understand the effects of lung-cancer-derived EVs on healthy cells, we isolated and characterized EVs derived from A549 lung adenocarcinoma cells and transferred them to healthy human bronchial epithelial cells (16HBe14o). We found that A549-derived EVs carry oncogenic proteins involved in the pathway of epithelial to mesenchymal transition (EMT) that are regulated by β-catenin. The exposure of 16HBe14o cells to A549-derived EVs resulted in a significant increase in cell proliferation, migration, and invasion via upregulating EMT markers such as E-Cadherin, Snail, and Vimentin and cell adhesion molecules such as CEACAM-5, ICAM-1, and VCAM-1, with concomitant downregulation of EpCAM. Our study suggests a role for cancer-cell-derived EVs to induce tumorigenesis in adjacent healthy cells by promoting EMT via β-catenin signaling.
Collapse
Affiliation(s)
- Vamshikrishna Malyla
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia
- Centre for Inflammation, Faculty of Science, School of Life Sciences, Centenary Institute and University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Keshav Raj Paudel
- Centre for Inflammation, Faculty of Science, School of Life Sciences, Centenary Institute and University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Gabriele De Rubis
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Nicole G. Hansbro
- Centre for Inflammation, Faculty of Science, School of Life Sciences, Centenary Institute and University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Philip M. Hansbro
- Centre for Inflammation, Faculty of Science, School of Life Sciences, Centenary Institute and University of Technology Sydney, Sydney, NSW 2007, Australia
- Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
- Correspondence: (P.M.H.); (K.D.)
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia
- Centre for Inflammation, Faculty of Science, School of Life Sciences, Centenary Institute and University of Technology Sydney, Sydney, NSW 2007, Australia
- Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
- Correspondence: (P.M.H.); (K.D.)
| |
Collapse
|
14
|
NCK-associated protein 1 regulates metastasis and is a novel prognostic marker for colorectal cancer. Cell Death Dis 2023; 9:7. [PMID: 36639705 PMCID: PMC9839720 DOI: 10.1038/s41420-023-01303-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/21/2022] [Accepted: 01/04/2023] [Indexed: 01/14/2023]
Abstract
Metastatic colorectal cancer (CRC) remains a substantial problem for mortality and requires screening and early detection efforts to increase survival. Epithelial-mesenchymal transition (EMT) and circulation of tumor cells in the blood play important roles in metastasis. To identify a novel target for metastasis of CRC, we conducted a gene microarray analysis using extracted RNA from the blood of preclinical models. We found that NCK-associated protein 1 (NCKAP1) was significantly increased in the blood RNA of patient-derived xenograft (PDX) models of colon cancer. In the NCKAP1 gene knockdown-induced human colon cancer cell lines HCT116 and HT29, there was a reduced wound healing area and significant inhibition of migration and invasion. As the result of marker screening for cytoskeleton and cellular interactions, CRC treated with siRNA of NCKAP1 exhibited significant induction of CDH1 and phalloidin expression, which indicates enhanced adherent cell junctions and cytoskeleton. In HCT116 cells with a mesenchymal state induced by TGFβ1, metastasis was inhibited by NCKAP1 gene knockdown through the inhibition of migration, and there was increased CTNNB1 expression and decreased FN expression. We established metastasis models for colon cancer to liver transition by intrasplenic injection shRNA of NCKAP1-transfected HCT116 cells or by implanting tumor tissue generated with the cells on cecal pouch. In metastasis xenograft models, tumor growth and liver metastasis were markedly reduced. Taken together, these data demonstrate that NCKAP1 is a novel gene regulating EMT that can contribute to developing a diagnostic marker for the progression of metastasis and new therapeutics for metastatic CRC treatment.
Collapse
|
15
|
Agarwal A, AlRawaili AM, AlZalbani MK, AlAnazi GK, AlAnazi SK, AlEnezi SAD. Immune-Markers in GallBladder Lesions and their Clinico-Diagnostic and Prognostic Significance - An Overview. INTERNATIONAL JOURNAL OF PHARMACEUTICAL RESEARCH AND ALLIED SCIENCES 2023. [DOI: 10.51847/nbes0vkqmp] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
16
|
Islam MS, Morshed MR, Babu G, Khan MA. The role of inflammations and EMT in carcinogenesis. ADVANCES IN CANCER BIOLOGY - METASTASIS 2022; 5:100055. [DOI: 10.1016/j.adcanc.2022.100055] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
|
17
|
Zhang Y, Li H, Lv C, Wu B, Yu Y, Zhong C, Lang Q, Liang Z, Li Y, Shi Y, Jian J, Xu F, Tian Y. HHLA2 promotes tumor progression by long non‑coding RNA H19 in human gallbladder cancer. Int J Oncol 2022; 61:112. [PMID: 35920182 PMCID: PMC9374468 DOI: 10.3892/ijo.2022.5402] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/16/2022] [Indexed: 12/24/2022] Open
Abstract
Advanced gallbladder cancer (GBC) is one of the most malignant of all types of biliary tract cancers that is associated with poor prognosis and high mortality. Accumulating evidence suggest that the B7 family of proteins serve an essential role in various types of cancers, including GBC. However, the potential function and regulatory mechanism of human endogenous retrovirus-H long terminal repeat-associating protein 2 (HHLA2; also known as B7-H7 or B7H5) in GBC remain poorly understood. In the present study, immunohistochemistry was used to examine the expression pattern of HHLA2 in samples from 89 patients with GBC. The possible association between HHLA2 expression and the clinicopathological parameters, including prognosis, were then assessed. Using lentiviruses, overexpression of HHLA2 plasmid or short-hairpin RNA (shRNA) of HHLA2 were transfected into GBC-SD cells to overexpress or knock down HHLA2 expression, respectively. The effects of HHLA2 overexpression and knockdown on the epithelial-mesenchymal transition (EMT) process on GBC-SD cells were measured by the western blotting and immunofluorescence staining of collagen I, N-cadherin, E-cadherin, vimentin and α-SMA. By contrast, changes in cell proliferation were measured using EdU assay. Cell invasion and migration were assessed using Transwell and wound-healing assays, respectively. In addition, a xenograft mouse model was established to evaluate the tumorigenic ability of the GBC cell line in vivo after stable transfection with lentivirus for HHLA2 overexpression or shRNA for HHLA2 knockdown. The regulatory relationships among TGF-β1, long non-coding RNA (lncRNA) H19 (H19) and HHLA2 were then investigated. The mRNA expression of lncRNA H19 were assessed using reverse transcription-quantitative PCR, whereas the expression levels of HHLA2 were detected by western blotting and immunofluorescence staining. HHLA2 expression was found to gradually increase as the stages of the GBC samples become more advanced. In addition, the expression level of HHLA2 was calculated to be positively associated with the Nevin stage, American Joint Committee on Cancer stage, tumor invasion and regional lymph node metastasis but was negatively associated with the overall patient survival (OS). In vitro experiments demonstrated that overexpression of HHLA2 promoted GBC migration, invasion, proliferation and EMT, whereas in vivo experiments found a promoting role of HHLA2 overexpression on GBC tumor growth. After transfection with lentiviruses encoding the overexpression plasmid of lncRNA H19, GBC migration, invasion, proliferation and EMT were increased. By contrast, knocking down HHLA2 expression suppressed TGF-β1- or lncRNA H19 overexpression-induced GBC migration, invasion, proliferation and EMT. In addition, HHLA2 knockdown significantly reduced the sizes of the GBC tumors in vivo. These results suggest that HHLA2 overexpression can promote GBC progression. Conversely, ablation of HHLA2 expression inhibited both TGF-β1- and lncRNA H19-induced GBC progression, suggesting that HHLA2 is a potential therapeutic target for this disease.
Collapse
Affiliation(s)
- Yizhou Zhang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Hanrong Li
- Department of Ophthalmology, Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110005, P.R. China
| | - Chao Lv
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Baokang Wu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Yang Yu
- Department of Surgery, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Chongli Zhong
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Qi Lang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Zhiyun Liang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Yang Li
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Yu Shi
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Jian Jian
- Department of Oncology, Liaoyang Central Hospital of China Medical University, Liaoyang, Liaoning 111010, P.R. China
| | - Feng Xu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Yu Tian
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
18
|
Iser IC, Vedovatto S, Oliveira FD, Beckenkamp LR, Lenz G, Wink MR. The crossroads of adenosinergic pathway and epithelial-mesenchymal plasticity in cancer. Semin Cancer Biol 2022; 86:202-213. [PMID: 35779713 DOI: 10.1016/j.semcancer.2022.06.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/24/2022] [Accepted: 06/26/2022] [Indexed: 10/31/2022]
Abstract
Epithelial-mesenchymal transition (EMT) is a key mechanism related to tumor progression, invasion, metastasis, resistance to therapy and poor prognosis in several types of cancer. However, targeting EMT or partial-EMT, as well as the molecules involved in this process, has remained a challenge. Recently, the CD73 enzyme, which hydrolyzes AMP to produce adenosine (ADO), has been linked to the EMT process. This relationship is not only due to the production of the immunosuppressant ADO but also to its role as a receptor for extracellular matrix proteins, being involved in cell adhesion and migration. This article reviews the crosstalk between the adenosinergic pathway and the EMT program and the impact of this interrelation on cancer development and progression. An in silico analysis of RNAseq datasets showed that several tumor types have a significant correlation between an EMT score and NT5E (CD73) and ENTPD1 (CD39) expressions, with the strongest correlations in prostate adenocarcinoma. Furthermore, it is evident that the cooperation between EMT and adenosinergic pathway in tumor progression is context and tumor-dependent. The increased knowledge about this topic will help broaden the view to explore new treatments and therapies for different types of cancer.
Collapse
Affiliation(s)
- Isabele Cristiana Iser
- Department of Basics Health Sciences and Laboratory of Cell Biology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Samlai Vedovatto
- Department of Biophysics and Center of Biotechnology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Fernanda Dittrich Oliveira
- Department of Biophysics and Center of Biotechnology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Liziane Raquel Beckenkamp
- Department of Basics Health Sciences and Laboratory of Cell Biology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Guido Lenz
- Department of Biophysics and Center of Biotechnology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Márcia Rosângela Wink
- Department of Basics Health Sciences and Laboratory of Cell Biology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil.
| |
Collapse
|
19
|
Chu SC, Hsieh YS, Hsu LS, Lin CY, Lai YA, Chen PN. Cinnamaldehyde decreases the invasion and u-PA expression of osteosarcoma by down-regulating the FAK signalling pathway. Food Funct 2022; 13:6574-6582. [PMID: 35678522 DOI: 10.1039/d2fo00634k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cancer metastasis is the major cause of the high mortality risk of patients with osteosarcoma. Cinnamaldehyde has been shown to exhibit multiple tumour-suppressing activities, but its role in human osteosarcoma is not yet completely defined. In this study, the antimetastatic effect of cinnamaldehyde on highly metastatic human osteosarcoma cells was observed in vitro and in vivo using Saos-2 and 143B cells. Cinnamaldehyde reduced the activity and protein level of urokinase-type plasminogen activator (u-PA) and suppressed the invasion ability of osteosarcoma cells by inhibiting the phosphorylation of focal adhesion kinase. In addition, cinnamaldehyde reduced cell movement, cell-matrix adhesion, and the expression of the mesenchymal markers of epithelial-to-mesenchymal transition, namely, fibronectin and N-cadherin. Importantly, the oral administration of cinnamaldehyde remarkably suppressed the pulmonary metastasis of osteosarcoma in mice. Results indicated that cinnamaldehyde has therapeutic potential for inhibiting osteosarcoma metastasis.
Collapse
Affiliation(s)
- Shu-Chen Chu
- Institute and Department of Food Science, Central Taiwan University of Science and Technology, Taichung, Taiwan
| | - Yih-Shou Hsieh
- Department of Biochemistry, School of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Li-Sung Hsu
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.
| | - Chin-Yin Lin
- Department of Biochemistry, School of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.
| | - Yi-An Lai
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.
| | - Pei-Ni Chen
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan. .,Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
20
|
Zheng L, Cai X, Song J, Shi H, Zhang J, Ke X, Li H, Chen Y. MicroRNA-30c-2-3p represses malignant progression of gastric adenocarcinoma cells via targeting ARHGAP11A. Bioengineered 2022; 13:14534-14544. [PMID: 35754342 PMCID: PMC9342190 DOI: 10.1080/21655979.2022.2090222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
MicroRNAs are crucial tumor regulators to tumor development and progression. MiR-30c-2-3p can suppress malignant progression of tumor cells, but no study has reported the modulatory process of miR-30c-2-3p in gastric adenocarcinoma (GA). We herein investigated role of miR-30c-2-3p in GA cells. Here, we evaluated gene level in cancer cells by qRT-PCR. CCK-8, colony formation, flow cytometry, and transwell assays revealed biological functions of miR-30c-2-3p and ARHGAP11A. Genes downstream of miR-30c-2-3p were acquired through bioinformatics analysis. Our results suggested a low level of miR-30c-2-3p in GA tissue and cells, while its high expression could repress the malignant progression and promote cell cycle arrest and apoptosis of GA cells. Besides, ARHGAP11A was downstream of miR-30c-2-3p, with up-regulated ARHGAP11A facilitating malignant progression and repressing cell cycle arrest and apoptosis of GA cells. In addition, changes in GA cell functions caused by high ARHGAP11A expression could be partially offset by enhancing miR-30c-2-3p. Thus, our observations indicated that miR-30c-2-3p was a tumor repressor that could inhibit GA progression via modulating ARHGAP11A.
Collapse
Affiliation(s)
- Liang Zheng
- Department of Abdominal Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - Xiongchao Cai
- Department of Abdominal Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - Jintian Song
- Department of Abdominal Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - Huaijing Shi
- Department of Gynecology Surgery, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - Jiulong Zhang
- Department of Thoracic Surgical Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - Xi Ke
- Department of Abdominal Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - Hui Li
- Department of Abdominal Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - Yigui Chen
- Department of Abdominal Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, Fujian, China
| |
Collapse
|
21
|
Cao L, Bridle KR, Shrestha R, Prithviraj P, Crawford DHG, Jayachandran A. CD73 and PD-L1 as Potential Therapeutic Targets in Gallbladder Cancer. Int J Mol Sci 2022; 23:ijms23031565. [PMID: 35163489 PMCID: PMC8836068 DOI: 10.3390/ijms23031565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/21/2022] [Accepted: 01/28/2022] [Indexed: 12/24/2022] Open
Abstract
Gallbladder cancer (GBC) is one of the most common and aggressive biliary tract cancers with a dismal prognosis. Ongoing clinical trials are evaluating a few selected immune checkpoint inhibitors (ICIs) as monotherapy for the treatment of GBC patients. However, only a subset of patients benefits from these treatments. To improve ICI therapy response, molecular mechanisms that confer resistance to immune checkpoint (IC) blockade needs to be explored. Epithelial-to-mesenchymal transition (EMT) program and cancer stem cells (CSCs) have been implicated as key processes that confer ICI treatment resistance. However, in GBC the EMT-CSC-IC axis has not yet been clearly elucidated. This study aims to examine the aberrant expression of ICs associated with CSC and EMT. We successfully enriched CSCs by utilizing a 3-dimensional culture system and established a reversible EMT model with human GBC NOZ cell line. Notably, ICs CD73 and PD-L1 were closely associated with both CSC and EMT phenotypes. Knockdown of CD73 or PD-L1 reduced the proliferative and motile abilities of both adherent monolayers and anchorage-free spheroids. In conclusion, blocking CD73 and PD-L1 offer a promising therapeutic strategy for targeting highly aggressive populations with CSC and EMT phenotype to improve GBC patient prognosis.
Collapse
Affiliation(s)
- Lu Cao
- Faculty of Medicine, The University of Queensland, Brisbane, QLD 4120, Australia; (L.C.); (K.R.B.); (R.S.); (D.H.G.C.)
- Gallipoli Medical Research Institute, Greenslopes Private Hospital, Brisbane, QLD 4120, Australia
| | - Kim R. Bridle
- Faculty of Medicine, The University of Queensland, Brisbane, QLD 4120, Australia; (L.C.); (K.R.B.); (R.S.); (D.H.G.C.)
- Gallipoli Medical Research Institute, Greenslopes Private Hospital, Brisbane, QLD 4120, Australia
| | - Ritu Shrestha
- Faculty of Medicine, The University of Queensland, Brisbane, QLD 4120, Australia; (L.C.); (K.R.B.); (R.S.); (D.H.G.C.)
- Gallipoli Medical Research Institute, Greenslopes Private Hospital, Brisbane, QLD 4120, Australia
| | | | - Darrell H. G. Crawford
- Faculty of Medicine, The University of Queensland, Brisbane, QLD 4120, Australia; (L.C.); (K.R.B.); (R.S.); (D.H.G.C.)
- Gallipoli Medical Research Institute, Greenslopes Private Hospital, Brisbane, QLD 4120, Australia
| | - Aparna Jayachandran
- Faculty of Medicine, The University of Queensland, Brisbane, QLD 4120, Australia; (L.C.); (K.R.B.); (R.S.); (D.H.G.C.)
- Gallipoli Medical Research Institute, Greenslopes Private Hospital, Brisbane, QLD 4120, Australia
- Fiona Elsey Cancer Research Institute, Ballarat, VIC 3350, Australia;
- Correspondence:
| |
Collapse
|
22
|
Wang J, Wang D, Fei Z, Feng D, Zhang B, Gao P, Hu G, Li W, Huang X, Chen D, Ding X, Wu W. KIF15 knockdown suppresses gallbladder cancer development. Eur J Cell Biol 2021; 100:151182. [PMID: 34781077 DOI: 10.1016/j.ejcb.2021.151182] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 10/26/2021] [Accepted: 11/03/2021] [Indexed: 11/17/2022] Open
Abstract
Gallbladder cancer (GBC) is commonly regarded as one of the most lethal malignant tumor types with poor prognosis. Kinesin family member 15 (KIF15) is reported to be tightly related with progression of multiple cancer types which, however, has not been clarified in GBC so far. KIF15 was significantly up-regulated in clinical GBC tissues compared with that in para-carcinoma tissues and the expression level was also correlated with tumor malignancies. In addition to tissues, GBC cells also exhibited a high expression abundance of KIF15. After down-regulating KIF15 via lentiviral transfection, GBC cell proliferation and migration were both inhibited, while cell apoptosis was promoted markedly. Likewise, silencing KIF15 significantly interfered the growth of nude mouse xenografts. Our experiments in GBC cell lines also demonstrated that KIF15 overexpression accelerated cell proliferation but lessened cell apoptosis in both GBC-SD and SGC-996 cells. Further investigation of the mechanism occurring in GBC inhibition mediated by KIF15 knockdown revealed that KIF15 deficiency led to decreased activity of several signaling pathways (TNF, PI3K/AKT and MAPK), a reduction of CDK6 expression regulated by enhanced p21, and HSP60 absence. Following the treatment of shCtrl- and shKIF15-transfected cells with AKT activator, we found that anti-tumor effects resulting from KIF15 deficiency could be relieved by AKT activator in both experimental cells. Overall, for the first time, we demonstrated that KIF15 was overexpressed in GBC and displayed a close relationship between KIF15 levels and GBC clinical stages. Furthermore, low expression of KIF15 resulted in obvious anti-tumor effects.
Collapse
Affiliation(s)
- Jun Wang
- Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Chongming Branch, Shanghai, China
| | - Dandan Wang
- Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Chongming Branch, Shanghai, China
| | - Zhewei Fei
- Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Chongming Branch, Shanghai, China
| | - Dongxu Feng
- Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Chongming Branch, Shanghai, China
| | - Bo Zhang
- Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Chongming Branch, Shanghai, China
| | - Pingfa Gao
- Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Chongming Branch, Shanghai, China
| | - Gangfeng Hu
- Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Chongming Branch, Shanghai, China
| | - Wenbing Li
- Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Chongming Branch, Shanghai, China
| | - Xia Huang
- Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Chongming Branch, Shanghai, China
| | - Dawei Chen
- Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Chongming Branch, Shanghai, China
| | - Xinde Ding
- Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Chongming Branch, Shanghai, China
| | - Wei Wu
- Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Chongming Branch, Shanghai, China.
| |
Collapse
|
23
|
Chong ZX, Yeap SK, Ho WY. Unraveling the roles of miRNAs in regulating epithelial-to-mesenchymal transition (EMT) in osteosarcoma. Pharmacol Res 2021; 172:105818. [PMID: 34400316 DOI: 10.1016/j.phrs.2021.105818] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/01/2021] [Accepted: 08/12/2021] [Indexed: 12/16/2022]
Abstract
Osteosarcoma is one of the most prevalent primary bone tumors with a high metastatic and recurrence rate with poor prognosis. MiRNAs are short and non-coding RNAs that could regulate various cellular activities and one of them is the epithelial-to-mesenchymal transition (EMT). Osteosarcoma cells that have undergone EMT would lose their cellular polarity and acquire invasive and metastatic characteristics. Our literature search showed that many pre-clinical and clinical studies have reported the roles of miRNAs in modulating the EMT process in osteosarcoma and compared to other cancers like breast cancer, there is a lack of review article which effectively summarizes the various roles of EMT-regulating miRNAs in osteosarcoma. This review, therefore, was aimed to discuss and summarize the EMT-promoting and EMT-suppressing roles of different miRNAs in osteosarcoma. The review would begin with the discussion on the concepts and principles of EMT, followed by the exploration of the diverse roles of EMT-regulating miRNAs in osteosarcoma. Subsequently, the potential use of miRNAs as prognostic biomarkers in osteosarcoma to predict the likelihood of metastases and as therapeutic agents would be discussed.
Collapse
Affiliation(s)
- Zhi Xiong Chong
- Faculty of Science and Engineering, University of Nottingham Malaysia, 43500 Semenyih, Selangor, Malaysia.
| | - Swee Keong Yeap
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, 43900 Sepang, Selangor, Malaysia.
| | - Wan Yong Ho
- Faculty of Science and Engineering, University of Nottingham Malaysia, 43500 Semenyih, Selangor, Malaysia.
| |
Collapse
|
24
|
Tang H, Shi X, Zhu P, Guo W, Li J, Yan B, Zhang S. Melatonin inhibits gallbladder cancer cell migration and invasion via ERK-mediated induction of epithelial-to-mesenchymal transition. Oncol Lett 2021; 22:609. [PMID: 34188711 PMCID: PMC8227585 DOI: 10.3892/ol.2021.12870] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/19/2021] [Indexed: 12/13/2022] Open
Abstract
Melatonin is a naturally occurring molecule secreted by the pineal gland that exhibits antitumor properties and prevents the development of human cancer. However, little is known regarding the effects of melatonin on gallbladder cancer (GBC) cells. The present study aimed to investigate the role of melatonin on the prevention of GBC cell invasion. The GBC cell line, GBC-SD, was treated with different concentrations of melatonin for different time periods, and the data indicated that melatonin markedly inhibited the invasion of GBC cells. Following treatment of GBC cells with melatonin, the protein levels of the epithelial marker, E-cadherin, significantly increased, while the expression levels of the mesenchymal markers, N-cadherin, Snail and vimentin, notably decreased. In addition, melatonin inhibited the phosphorylation of ERK1/2. Following treatment of the cells with the ERK activator, tert-Butylhydroquinone, the anti-invasive effects of melatonin were reversed by rescuing epithelial-to-mesenchymal transition in GBC cells. Taken together, these results suggest that melatonin inhibits GBC invasiveness by blocking the ERK signaling pathway. Thus, melatonin may be used as a potential novel cancer therapeutic drug for the treatment of GBC.
Collapse
Affiliation(s)
- Hongwei Tang
- ZhengZhou Engineering Laboratory of Organ Transplantation Technique and Application, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China.,Henan Engineering Technology Research Center of Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Xiaoyi Shi
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Pengfei Zhu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Jie Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Bing Yan
- ZhengZhou Engineering Laboratory of Organ Transplantation Technique and Application, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China.,Henan Engineering Technology Research Center of Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Shuijun Zhang
- ZhengZhou Engineering Laboratory of Organ Transplantation Technique and Application, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China.,Henan Engineering Technology Research Center of Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China.,Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
25
|
Tulsyan S, Hussain S, Mittal B, Saluja SS, Tanwar P, Rath GK, Goodman M, Kaur T, Mehrotra R. A systematic review with in silico analysis on transcriptomic profile of gallbladder carcinoma. Semin Oncol 2020; 47:398-408. [PMID: 33162112 DOI: 10.1053/j.seminoncol.2020.02.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 02/21/2020] [Indexed: 01/17/2023]
|
26
|
Chen K, Tang H, Zhu P, Ye J, Liu D, Pu Y, Zhang L, Zhai W. Interleukin 17A promotes gallbladder cancer invasiveness via ERK/NF-κB signal pathway mediated epithelial-to-mesenchymal transition. J Cancer 2020; 11:4406-4412. [PMID: 32489459 PMCID: PMC7255371 DOI: 10.7150/jca.40656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 03/27/2020] [Indexed: 01/17/2023] Open
Abstract
As a pro-inflammatory cytokine, Interleukin 17A (IL-17A) plays an important role in pathology of tumor microenvironment and inflammatory diseases. In this study, we intend to investigate the role of IL-17A on the metastasis of gallbladder cancer (GBC) and related mechanisms. The serum levels of IL-17A were associated with node metastasis and advanced stage. We also found the pro-invasion effect of IL-17A on GBC cells. When treated with IL-17A, the protein level of epithelial marker E-cadherin in GBC cells was significantly down-regulated, while the protein level of the mesenchymal phenotype marker vimentin was significantly increased. IL-17A increased the expression of transcription factor slug, the phosphorylation of ERK1/2 and the nuclear translocation of NF-κB/p50 and p65 in a concentration-dependent manner. Pretreatment of cells with U0126 could reverse the nuclear translocation of NF-κB/p50 and p65 and EMT induced by IL-17A. IL-17A promotes gallbladder cancer invasiveness via ERK/NF-κB signal pathway mediated epithelial-to-mesenchymal transition. As a new therapeutic targets and diagnostic marker, IL-17A may play an important role in the treatment of GBC.
Collapse
Affiliation(s)
- Kunlun Chen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Hongwei Tang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Pengfei Zhu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Jianwen Ye
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Dong Liu
- Departments of Gastroenterology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, China
| | - Yansong Pu
- Departments of General Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, China
| | - Lei Zhang
- Hepatic Surgery Center, Institute of Hepato-Pancreato-Bililary Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wenlong Zhai
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| |
Collapse
|
27
|
Lau DK, Mouradov D, Wasenang W, Luk IY, Scott CM, Williams DS, Yeung YH, Limpaiboon T, Iatropoulos GF, Jenkins LJ, Reehorst CM, Chionh F, Nikfarjam M, Croagh D, Dhillon AS, Weickhardt AJ, Muramatsu T, Saito Y, Tebbutt NC, Sieber OM, Mariadason JM. Genomic Profiling of Biliary Tract Cancer Cell Lines Reveals Molecular Subtypes and Actionable Drug Targets. iScience 2019; 21:624-637. [PMID: 31731200 PMCID: PMC6889747 DOI: 10.1016/j.isci.2019.10.044] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/21/2019] [Accepted: 10/22/2019] [Indexed: 01/07/2023] Open
Abstract
Biliary tract cancers (BTCs) currently have no approved targeted therapies. Although genomic profiling of primary BTCs has identified multiple potential drug targets, accurate models are needed for their evaluation. Genomic profiling of 22 BTC cell lines revealed they harbor similar mutational signatures, recurrently mutated genes, and genomic alterations to primary tumors. Transcriptomic profiling identified two major subtypes, enriched for epithelial and mesenchymal genes, which were also evident in patient-derived organoids and primary tumors. Interrogating these models revealed multiple mechanisms of MAPK signaling activation in BTC, including co-occurrence of low-activity BRAF and MEK mutations with receptor tyrosine kinase overexpression. Finally, BTC cell lines with altered ERBB2 or FGFRs were exquisitely sensitive to specific targeted agents, whereas surprisingly, IDH1-mutant lines did not respond to IDH1 inhibitors in vitro. These findings establish BTC cell lines as robust models of primary disease, reveal specific molecular disease subsets, and highlight specific molecular vulnerabilities in these cancers. BTC cell lines harbor similar genomic alterations to primary tumors Transcriptomic profiling of BTC cell lines identified two molecular subtypes MAPK signaling is activated in BTC via multiple mechanisms BTC lines with deregulated ERBB2 or FGFRs respond to specific targeted therapies
Collapse
Affiliation(s)
- David K Lau
- Olivia Newton John Cancer Research Institute, Austin Health, Level 5 ONJ Centre, 145 Studley Road, Heidelberg, Melbourne, VIC 3084, Australia; School of Cancer Medicine, La Trobe University, Melbourne, VIC 3084, Australia
| | - Dmitri Mouradov
- Systems Biology and Personalised Medicine Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, VIC 3052, Australia
| | - Wiphawan Wasenang
- School of Cancer Medicine, La Trobe University, Melbourne, VIC 3084, Australia; Centre for Research and Development of Medical Diagnostic Laboratories, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Ian Y Luk
- Olivia Newton John Cancer Research Institute, Austin Health, Level 5 ONJ Centre, 145 Studley Road, Heidelberg, Melbourne, VIC 3084, Australia; School of Cancer Medicine, La Trobe University, Melbourne, VIC 3084, Australia
| | - Cameron M Scott
- Olivia Newton John Cancer Research Institute, Austin Health, Level 5 ONJ Centre, 145 Studley Road, Heidelberg, Melbourne, VIC 3084, Australia
| | - David S Williams
- Olivia Newton John Cancer Research Institute, Austin Health, Level 5 ONJ Centre, 145 Studley Road, Heidelberg, Melbourne, VIC 3084, Australia; School of Cancer Medicine, La Trobe University, Melbourne, VIC 3084, Australia
| | - Yvonne H Yeung
- Olivia Newton John Cancer Research Institute, Austin Health, Level 5 ONJ Centre, 145 Studley Road, Heidelberg, Melbourne, VIC 3084, Australia
| | - Temduang Limpaiboon
- Centre for Research and Development of Medical Diagnostic Laboratories, Khon Kaen University, Khon Kaen 40002, Thailand
| | - George F Iatropoulos
- Olivia Newton John Cancer Research Institute, Austin Health, Level 5 ONJ Centre, 145 Studley Road, Heidelberg, Melbourne, VIC 3084, Australia; School of Cancer Medicine, La Trobe University, Melbourne, VIC 3084, Australia
| | - Laura J Jenkins
- Olivia Newton John Cancer Research Institute, Austin Health, Level 5 ONJ Centre, 145 Studley Road, Heidelberg, Melbourne, VIC 3084, Australia; School of Cancer Medicine, La Trobe University, Melbourne, VIC 3084, Australia
| | - Camilla M Reehorst
- Olivia Newton John Cancer Research Institute, Austin Health, Level 5 ONJ Centre, 145 Studley Road, Heidelberg, Melbourne, VIC 3084, Australia; School of Cancer Medicine, La Trobe University, Melbourne, VIC 3084, Australia
| | - Fiona Chionh
- Olivia Newton John Cancer Research Institute, Austin Health, Level 5 ONJ Centre, 145 Studley Road, Heidelberg, Melbourne, VIC 3084, Australia
| | - Mehrdad Nikfarjam
- Department of Surgery, University of Melbourne, Melbourne, VIC 3084, Australia
| | - Daniel Croagh
- Department of Surgery, Monash Medical Centre, Monash University, Melbourne, VIC 3168, Australia
| | - Amardeep S Dhillon
- Olivia Newton John Cancer Research Institute, Austin Health, Level 5 ONJ Centre, 145 Studley Road, Heidelberg, Melbourne, VIC 3084, Australia; School of Medicine, Deakin University, Geelong, VIC 3216, Australia
| | - Andrew J Weickhardt
- Olivia Newton John Cancer Research Institute, Austin Health, Level 5 ONJ Centre, 145 Studley Road, Heidelberg, Melbourne, VIC 3084, Australia; School of Cancer Medicine, La Trobe University, Melbourne, VIC 3084, Australia
| | - Toshihide Muramatsu
- Division of Pharmacotherapeutics, Keio University Faculty of Pharmacy, Tokyo 105-8512, Japan
| | - Yoshimasa Saito
- Division of Pharmacotherapeutics, Keio University Faculty of Pharmacy, Tokyo 105-8512, Japan
| | - Niall C Tebbutt
- Olivia Newton John Cancer Research Institute, Austin Health, Level 5 ONJ Centre, 145 Studley Road, Heidelberg, Melbourne, VIC 3084, Australia; School of Cancer Medicine, La Trobe University, Melbourne, VIC 3084, Australia
| | - Oliver M Sieber
- Systems Biology and Personalised Medicine Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, VIC 3052, Australia; Department of Surgery, University of Melbourne, Melbourne, VIC 3084, Australia; Department of Biochemistry & Molecular Biology, Monash University, Melbourne, VIC 3800, Australia; Department of Medicine, The University of Melbourne, Melbourne, VIC 3052, Australia
| | - John M Mariadason
- Olivia Newton John Cancer Research Institute, Austin Health, Level 5 ONJ Centre, 145 Studley Road, Heidelberg, Melbourne, VIC 3084, Australia; School of Cancer Medicine, La Trobe University, Melbourne, VIC 3084, Australia; Department of Medicine, The University of Melbourne, Melbourne, VIC 3052, Australia.
| |
Collapse
|
28
|
Montalvo-Jave EE, Rahnemai-Azar AA, Papaconstantinou D, Deloiza ME, Tsilimigras DI, Moris D, Mendoza-Barrera GE, Weber SM, Pawlik TM. Molecular pathways and potential biomarkers in gallbladder cancer: A comprehensive review. Surg Oncol 2019; 31:83-89. [PMID: 31541911 DOI: 10.1016/j.suronc.2019.09.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 09/12/2019] [Indexed: 12/13/2022]
Abstract
The most common malignancy of the biliary tract, gallbladder cancer (GBC) often has a dismal prognosis. The aggressive nature of the tumor, delayed diagnosis at advanced stages of the disease, and lack of effective treatment options are some of the factors that contribute to a poor outcome. Early detection and accurate assessment of disease burden is critical to optimize management and improve long-term survival, as well as identify patients for adjuvant therapy and clinical trials. With recent advances in the understanding of the molecular pathogenesis of GBC, several specific diagnostic and biomarkers have been proposed as being of diagnostic and prognostic importance. Indeed, identification of novel diagnostic and prognostic markers has an important role in early diagnosis and development of targeted therapies among patients with GBC. Next-generation sequencing technology and genomewide data analysis have provided novel insight into understanding the molecular pathogenesis of biliary tract cancers, thereby identifying potential biomarkers for clinical use. We herein review available GBC biomarkers and the potential clinical implications in the management of GBC.
Collapse
Affiliation(s)
- Eduardo E Montalvo-Jave
- Servicio de Cirugía General, Clínica de Cirugía Hepato-Pancreato-Biliary, Hospital General de México, Mexico; Departamento de Cirugía, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico
| | - Amir A Rahnemai-Azar
- Department of Surgery, Division of Surgical Oncology, Kaiser Permanente School of Medicine, Los Angeles, CA, USA
| | | | - Mariana Espejel Deloiza
- Departamento de Cirugía, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico
| | - Diamantis I Tsilimigras
- Department of Surgery, Division of Surgical Oncology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Dimitrios Moris
- Department of Surgery, Division of Surgical Oncology, The Ohio State University College of Medicine, Columbus, OH, USA
| | | | - Sharon M Weber
- Department of Surgery, Division of Surgical Oncology, University of Wisconsin Hospital, Madison, WI, USA
| | - Timothy M Pawlik
- Department of Surgery, Division of Surgical Oncology, The Ohio State University College of Medicine, Columbus, OH, USA.
| |
Collapse
|
29
|
Wensheng L, Bo Z, Qiangsheng H, Wenyan X, Shunrong J, Jin X, Quanxing N, Xianjun Y, Xiaowu X. MBD1 promotes the malignant behavior of gallbladder cancer cells and induces chemotherapeutic resistance to gemcitabine. Cancer Cell Int 2019; 19:232. [PMID: 31516389 PMCID: PMC6734348 DOI: 10.1186/s12935-019-0948-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 08/27/2019] [Indexed: 12/19/2022] Open
Abstract
Background Methyl-CpG binding domain protein 1 (MBD1), which couples DNA methylation to transcriptional repression, has been implicated in transcriptional regulation, heterochromatin formation, genomic stability, cell cycle progression and development. It has also been proven that MBD1 is involved in tumor development and progression. However, whether MBD1 is involved in tumorigenesis, especially in gallbladder cancer, is totally unknown. Methods Human GBC-SD and SGC996 cells were used to perform experiments. Invasion, wound healing and colony formation assays were performed to evaluate cell viability. A CCK-8 assay was performed to assess gallbladder cancer cell viability after gemcitabine treatment. Western blot analysis was used to evaluate changes in protein expression. Human gallbladder cancer tissues and adjacent nontumor tissues were subjected to immunohistochemical staining to detect protein expression. Results We found that MBD1 expression was significantly upregulated in gallbladder cancer tissues compared with that in surrounding normal tissues according to immunohistochemical analysis of 84 surgically resected gallbladder cancer specimens. These data also indicated that higher MBD1 expression was correlated with lymph node metastasis and poor survival in gallbladder cancer patients. Overexpression and deletion in vitro validated MBD1 as a potent oncogene promoting malignant behaviors in gallbladder cancer cells, including invasion, proliferation and migration, as well as epithelial–mesenchymal transition. Studies have demonstrated that epithelial–mesenchymal transition is common in gallbladder cancer, and it is well known that drug resistance and epithelial–mesenchymal transition are very closely correlated. Herein, our data show that targeting MBD1 restored gallbladder cancer cell sensitivity to gemcitabine chemotherapy. Conclusions Taken together, the results of our study revealed a novel function of MBD1 in gallbladder cancer tumor development and progression through participation in the gallbladder cancer epithelial–mesenchymal transition program, which is involved in resistance to gemcitabine chemotherapy. Thus, MBD1 may be a potential therapeutic target for gallbladder cancer.
Collapse
Affiliation(s)
- Liu Wensheng
- 1Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 200032 Shanghai, China.,2Pancreatic Cancer Institute, Fudan University, 200032 Shanghai, People's Republic of China.,3Shanghai Pancreatic Cancer Institute, 200032 Shanghai, China
| | - Zhang Bo
- 1Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 200032 Shanghai, China.,2Pancreatic Cancer Institute, Fudan University, 200032 Shanghai, People's Republic of China.,3Shanghai Pancreatic Cancer Institute, 200032 Shanghai, China
| | - Hu Qiangsheng
- 1Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 200032 Shanghai, China.,2Pancreatic Cancer Institute, Fudan University, 200032 Shanghai, People's Republic of China.,3Shanghai Pancreatic Cancer Institute, 200032 Shanghai, China
| | - Xu Wenyan
- 1Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 200032 Shanghai, China.,2Pancreatic Cancer Institute, Fudan University, 200032 Shanghai, People's Republic of China.,3Shanghai Pancreatic Cancer Institute, 200032 Shanghai, China
| | - Ji Shunrong
- 1Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 200032 Shanghai, China.,2Pancreatic Cancer Institute, Fudan University, 200032 Shanghai, People's Republic of China.,3Shanghai Pancreatic Cancer Institute, 200032 Shanghai, China
| | - Xu Jin
- 1Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 200032 Shanghai, China.,2Pancreatic Cancer Institute, Fudan University, 200032 Shanghai, People's Republic of China.,3Shanghai Pancreatic Cancer Institute, 200032 Shanghai, China
| | - Ni Quanxing
- 1Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 200032 Shanghai, China.,2Pancreatic Cancer Institute, Fudan University, 200032 Shanghai, People's Republic of China.,3Shanghai Pancreatic Cancer Institute, 200032 Shanghai, China
| | - Yu Xianjun
- 1Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 200032 Shanghai, China.,2Pancreatic Cancer Institute, Fudan University, 200032 Shanghai, People's Republic of China.,3Shanghai Pancreatic Cancer Institute, 200032 Shanghai, China
| | - Xu Xiaowu
- 1Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 200032 Shanghai, China.,2Pancreatic Cancer Institute, Fudan University, 200032 Shanghai, People's Republic of China.,3Shanghai Pancreatic Cancer Institute, 200032 Shanghai, China
| |
Collapse
|
30
|
Mota STS, Vecchi L, Zóia MAP, Oliveira FM, Alves DA, Dornelas BC, Bezerra SM, Andrade VP, Maia YCP, Neves AF, Goulart LR, Araújo TG. New Insights into the Role of Polybromo-1 in Prostate Cancer. Int J Mol Sci 2019; 20:ijms20122852. [PMID: 31212728 PMCID: PMC6627401 DOI: 10.3390/ijms20122852] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/29/2019] [Accepted: 05/30/2019] [Indexed: 01/22/2023] Open
Abstract
The human protein Polybromo-1 (PBMR1/BAF180) is a component of the SWI/SNF chromatin-remodeling complex that has been reported to be deregulated in tumors. However, its role in prostate cancer (PCa) is largely unknown. In this study, we described the PBRM1 transcriptional levels and the protein expression/localization in tissues of PCa patients and in prostatic cell lines. Increased PBRM1 mRNA levels were found in PCa samples, when compared to benign disease, and were correlated with higher Gleason score. We also verified that only the nuclear localization of PBRM1 protein is correlated with a more aggressive disease and high Prostate-Specific Antigen (PSA) levels in tissue microarrays. Intriguing expression patterns of mRNA and protein were identified in the cell lines. Although PBRM1 protein was restricted to the nuclei, in tumor cell lines in non-neoplastic cells, it was also present in vesicular-like structures that were dispersed within the cytoplasm. We knocked-down PBRM1 in the castration-resistant PCa (CRPC) cell line PC-3 and we verified that PBRM1 promotes the expression of several markers of aggressiveness, including EpCAM, TGF-β, and N-Cadherin. Therefore, our data supported the hypothesis that PBRM1 displays a pivotal role in the promotion and maintenance of the malignant behavior of PCa, especially in CRPC.
Collapse
Affiliation(s)
- Sara T S Mota
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Federal University of Uberlandia, Patos de Minas-MG 387400-128, Brazil.
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlandia, Uberlandia-MG 38400-902, Brazil.
| | - Lara Vecchi
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlandia, Uberlandia-MG 38400-902, Brazil.
| | - Mariana A P Zóia
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlandia, Uberlandia-MG 38400-902, Brazil.
| | - Fabrícia M Oliveira
- Faculty of Mathematics, Federal University of Uberlandia, Patos de Minas-MG 387400-128, Brazil.
| | - Douglas A Alves
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Federal University of Uberlandia, Patos de Minas-MG 387400-128, Brazil.
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlandia, Uberlandia-MG 38400-902, Brazil.
| | - Bruno C Dornelas
- Pathology Division, Internal Medicine, University Hospital, Federal University of Uberlandia, Uberlandia-MG 38400-902, Brazil.
| | | | | | - Yara C P Maia
- Medical Faculty, Federal University of Uberlandia, Uberlandia-MG 38400-902, Brazil.
| | - Adriana F Neves
- Laboratory of Molecular Biology, Federal University of Goias-GO, Goiânia-GO 75704-020, Brazil.
| | - Luiz Ricardo Goulart
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlandia, Uberlandia-MG 38400-902, Brazil.
- University of California Davis, Department of Medical Microbiology and Immunology, Davis, CA 95616, USA.
| | - Thaise G Araújo
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Federal University of Uberlandia, Patos de Minas-MG 387400-128, Brazil.
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlandia, Uberlandia-MG 38400-902, Brazil.
| |
Collapse
|
31
|
Huang C, Tao L, Wang X, Pang Z. Berberine reversed the epithelial‐mesenchymal transition of normal colonic epithelial cells induced by SW480 cells through regulating the important components in the TGF‐β pathway. J Cell Physiol 2018; 234:11679-11691. [PMID: 30536375 DOI: 10.1002/jcp.27835] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 11/06/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Chao Huang
- Institute of Pharmacology, Sun Yat‐Sen Zhongshan Medical College, Sun Yat‐Sen University Guangzhou China
| | - Liang Tao
- Institute of Pharmacology, Sun Yat‐Sen Zhongshan Medical College, Sun Yat‐Sen University Guangzhou China
| | - Xiu‐lian Wang
- Department of Traditional Chinese Medicine Affiliated Bao’an Hospital of Traditional Chinese Medicine of Shenzhen, Traditional Chinese Medicine University Of Guangzhou Shenzhen China
| | - Zuoliang Pang
- Department of Oncology Affiliated Bao’an Hospital of Shenzhen, Southern Medical University Shenzhen China
| |
Collapse
|
32
|
Ghosh S, Shang P, Terasaki H, Stepicheva N, Hose S, Yazdankhah M, Weiss J, Sakamoto T, Bhutto IA, Xia S, Zigler JS, Kannan R, Qian J, Handa JT, Sinha D. A Role for βA3/A1-Crystallin in Type 2 EMT of RPE Cells Occurring in Dry Age-Related Macular Degeneration. Invest Ophthalmol Vis Sci 2018; 59:AMD104-AMD113. [PMID: 30098172 PMCID: PMC6058694 DOI: 10.1167/iovs.18-24132] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Purpose The RPE cells have a major role in the development of dry age-related macular degeneration (AMD). We present novel evidence that βA3/A1-crystallin, encoded by the Cryba1 gene, a protein known to be important for lysosomal clearance in the RPE, also has a role in epithelial-to-mesenchymal transition (EMT) of RPE cells. Methods RPE from dry AMD globes, genetically engineered mice lacking Cryba1 globally or specifically in the RPE, spontaneous mutant rats (Nuc1) with a loss-of-function mutation in Cryba1, and the melanoma OCM3 cell line were used. Spatial localization of proteins was demonstrated with immunofluorescence, gene expression levels were determined by quantitative PCR (qPCR), and protein levels by Western blotting. Cell movement was evaluated using wound healing and cell migration assays. Co-immunoprecipitation was used to identify binding partners of βA3/A1-crystallin. Results βA3/A1-crystallin is upregulated in polarized RPE cells compared to undifferentiated cells. Loss of βA3/A1-crystallin in murine and human RPE cells resulted in upregulation of Snail and vimentin, downregulation of E-cadherin, and increased cell migration. βA3/A1-crystallin binds to cortactin, and loss of βA3/A1-crystallin resulted in increased P-cortactinY421. The RPE from AMD samples had increased Snail and vimentin, and decreased E-cadherin, compared to age-matched controls. Conclusions We introduced a novel concept of dry AMD initiation induced by lysosomal clearance defects in the RPE and subsequent attempts by RPE cells to avoid the resulting stress by undergoing EMT. We demonstrate that βA3/A1-crystallin is a potential therapeutic target for AMD through rejuvenation of lysosomal dysfunction and potentially, reversal of EMT.
Collapse
Affiliation(s)
- Sayan Ghosh
- Glia Research Laboratory, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Peng Shang
- Glia Research Laboratory, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Hiroto Terasaki
- Arnold and Mabel Beckman Macular Research Center, Doheny Eye Institute, Los Angeles, California, United States.,Department of Ophthalmology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Nadezda Stepicheva
- Glia Research Laboratory, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Stacey Hose
- Glia Research Laboratory, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Meysam Yazdankhah
- Glia Research Laboratory, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Joseph Weiss
- Glia Research Laboratory, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Taiji Sakamoto
- Arnold and Mabel Beckman Macular Research Center, Doheny Eye Institute, Los Angeles, California, United States.,Department of Ophthalmology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Imran A Bhutto
- Glia Research Laboratory, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Shuli Xia
- Hugo W. Moser Research Institute at Kennedy Krieger and Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - J Samuel Zigler
- The Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Ram Kannan
- Arnold and Mabel Beckman Macular Research Center, Doheny Eye Institute, Los Angeles, California, United States
| | - Jiang Qian
- The Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - James T Handa
- The Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Debasish Sinha
- Glia Research Laboratory, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States.,The Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
33
|
Lin C, Gao B, Yan X, Lei Z, Chen K, Li Y, Zeng Q, Chen Z, Li H. MicroRNA 628 suppresses migration and invasion of breast cancer stem cells through targeting SOS1. Onco Targets Ther 2018; 11:5419-5428. [PMID: 30233203 PMCID: PMC6129021 DOI: 10.2147/ott.s164575] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Purpose The purpose of this study is to evaluate the effects of miR-628 on migration and invasion of breast cancer stem cells (CSCs), which are essential for tumor recurrence and metastasis. Materials and methods Quantitative reverse transcription-polymerase chain reaction was used to determine the expression of microRNAs and mRNAs. A subpopulation of CD44+/CD24− breast CSCs were sorted by flow cytometry. Transwell assays were used to evaluate cell migration and invasion. Luciferase reporter assays were performed to verify whether miR-628 targeted SOS Ras/Rac guanine nucleotide exchange factor 1 (SOS1). pcDNA3.1(+)-SOS1 was constructed for overexpressing SOS1 after transfection. Results Compared with primary breast cancer cells, bone metastatic breast cancer cells showed significant downregulation of miR-628. The CD44+/CD24− breast CSC subpopulations in MDA-MB-231 and MCF-7 cell lines were analyzed and sorted. Transfection with an miR-628 mimic significantly suppressed the migration and invasion of these breast CSCs by targeting SOS1, which plays an essential role in epithelial-to-mesenchymal transition. Overexpression of SOS1 rescued miR-628-mediated migration and invasion by upregulating Snail and vimentin, and downregulating E-cadherin. Conclusion miR-628 suppressed migration and invasion of breast CSCs of MDA-MB-231 and MCF-7 cells by directly targeting SOS1. Enhancement of miR-628 expression might be an effective strategy for managing breast cancer metastasis.
Collapse
Affiliation(s)
- Chenghui Lin
- Department of Medical oncology, TangXia Hospital of DongGuan, DongGuan, P.R. China
| | - Bin Gao
- Department of Orthopedics, TangXia Hospital of DongGuan, DongGuan, P.R. China
| | - Xuemao Yan
- Department of Orthopedics, TangXia Hospital of DongGuan, DongGuan, P.R. China
| | - Zixiong Lei
- Department of Musculoskeletal Oncology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, P.R. China,
| | - Kebing Chen
- Department of Musculoskeletal Oncology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, P.R. China,
| | - Yuquan Li
- Department of Orthopedics, TangXia Hospital of DongGuan, DongGuan, P.R. China
| | - Qing Zeng
- Department of Orthopedics, TangXia Hospital of DongGuan, DongGuan, P.R. China
| | - Zeqin Chen
- Department of Orthopedics, TangXia Hospital of DongGuan, DongGuan, P.R. China
| | - Haomiao Li
- Department of Musculoskeletal Oncology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, P.R. China,
| |
Collapse
|
34
|
Dong L, Li Y, Xue D, Liu Y. PCMT1 is an unfavorable predictor and functions as an oncogene in bladder cancer. IUBMB Life 2018. [PMID: 29517839 DOI: 10.1002/iub.1717] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Liming Dong
- Department of Urology; The Fourth Affiliated Hospital of China Medical University, No. 4 Chongshan Road East, Huanggu District; Liaoning Shenyang China
| | - Yanpei Li
- Department of Urology; The Fourth Affiliated Hospital of China Medical University, No. 4 Chongshan Road East, Huanggu District; Liaoning Shenyang China
| | - Dongwei Xue
- Department of Urology; The Fourth Affiliated Hospital of China Medical University, No. 4 Chongshan Road East, Huanggu District; Liaoning Shenyang China
| | - Yili Liu
- Department of Urology; The Fourth Affiliated Hospital of China Medical University, No. 4 Chongshan Road East, Huanggu District; Liaoning Shenyang China
| |
Collapse
|