1
|
Arana ÁJ, Sánchez L. Knockout, Knockdown, and the Schrödinger Paradox: Genetic Immunity to Phenotypic Recapitulation in Zebrafish. Genes (Basel) 2024; 15:1164. [PMID: 39336755 PMCID: PMC11431394 DOI: 10.3390/genes15091164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
Previous research has highlighted significant phenotypic discrepancies between knockout and knockdown approaches in zebrafish, raising concerns about the reliability of these methods. However, our study suggests that these differences are not as pronounced as was once believed. By carefully examining the roles of maternal and zygotic gene contributions, we demonstrate that these factors significantly influence phenotypic outcomes, often accounting for the observed discrepancies. Our findings emphasize that morpholinos, despite their potential off-target effects, can be effective tools when used with rigorous controls. We introduce the concept of graded maternal contribution, which explains how the uneven distribution of maternal mRNA and proteins during gametogenesis impacts phenotypic variability. Our research categorizes genes into three types-susceptible, immune, and "Schrödinger" (conditional)-based on their phenotypic expression and interaction with genetic compensation mechanisms. This distinction provides new insights into the paradoxical outcomes observed in genetic studies. Ultimately, our work underscores the importance of considering both maternal and zygotic contributions, alongside rigorous experimental controls, to accurately interpret gene function and the mechanisms underlying disease. This study advocates for the continued use of morpholinos in conjunction with advanced genetic tools like CRISPR/Cas9, stressing the need for a meticulous experimental design to optimize the utility of zebrafish in genetic research and therapeutic development.
Collapse
|
2
|
Sun X, Lin R, Lu X, Wu Z, Qi X, Jiang T, Jiang J, Mu P, Chen Q, Wen J, Deng Y. UPF3B modulates endoplasmic reticulum stress through interaction with inositol-requiring enzyme-1α. Cell Death Dis 2024; 15:587. [PMID: 39138189 PMCID: PMC11322666 DOI: 10.1038/s41419-024-06973-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 07/29/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024]
Abstract
The unfolded protein response (UPR) is a conserved and adaptive intracellular pathway that relieves the endoplasmic reticulum (ER) stress by activating ER transmembrane stress sensors. As a consequence of ER stress, the inhibition of nonsense-mediated mRNA decay (NMD) is due to an increase in the phosphorylation of eIF2α, which has the effect of inhibiting translation. However, the role of NMD in maintaining ER homeostasis remains unclear. In this study, we found that the three NMD factors, up-frameshift (UPF)1, UPF2, or UPF3B, were required to negate the UPR. Among these three NMD factors, only UPF3B interacted with inositol-requiring enzyme-1α (IRE1α). This interaction inhibited the kinase activity of IRE1α, abolished autophosphorylation, and reduced IRE1α clustering for ER stress. BiP and UPF3B jointly control the activation of IRE1α on both sides of the ER membrane. Under stress conditions, the phosphorylation of UPF3B was increased and the phosphorylated sites were identified. Both the UPF3BY160D genetic mutation and phosphorylation at Thr169 of UPF3B abolished its interaction with IRE1α and UPF2, respectively, leading to activation of ER stress and NMD dysfunction. Our study reveals a key physiological role for UPF3B in the reciprocal regulatory relationship between NMD and ER stress.
Collapse
Affiliation(s)
- XingSheng Sun
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- Guangdong provincial key laboratory for the development biology and environmental adaptation of agricultural organisms, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Ruqin Lin
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- Guangdong provincial key laboratory for the development biology and environmental adaptation of agricultural organisms, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Xinxia Lu
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- Guangdong provincial key laboratory for the development biology and environmental adaptation of agricultural organisms, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Zhikai Wu
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- Guangdong provincial key laboratory for the development biology and environmental adaptation of agricultural organisms, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Xueying Qi
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- Guangdong provincial key laboratory for the development biology and environmental adaptation of agricultural organisms, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Tianqing Jiang
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- Guangdong provincial key laboratory for the development biology and environmental adaptation of agricultural organisms, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Jun Jiang
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- Guangdong provincial key laboratory for the development biology and environmental adaptation of agricultural organisms, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Peiqiang Mu
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- Guangdong provincial key laboratory for the development biology and environmental adaptation of agricultural organisms, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Qingmei Chen
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- Guangdong provincial key laboratory for the development biology and environmental adaptation of agricultural organisms, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Jikai Wen
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
- Guangdong provincial key laboratory for the development biology and environmental adaptation of agricultural organisms, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
| | - Yiqun Deng
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
- Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, China.
| |
Collapse
|
3
|
Zhao H, Bi F, Li M, Diao Y, Zhang C. E3 ubiquitin ligase RNF180 impairs IPO4/SOX2 complex stability and inhibits SOX2-mediated malignancy in ovarian cancer. Cell Signal 2024; 113:110961. [PMID: 37923100 DOI: 10.1016/j.cellsig.2023.110961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/17/2023] [Accepted: 10/30/2023] [Indexed: 11/07/2023]
Abstract
RING finger protein 180 (RNF180), an E3 ubiquitin ligase, is thought to be a tumor suppressor gene. However, the detailed mechanism of its effect on ovarian cancer (OV) has not been elucidated. Importin 4 (IPO4) which belongs to transport protein is reported to have cancer-promoting effects on OV. Here, we explored the potential signaling pathways related to RNF180 and IPO4. It was first verified that RNF180 is downregulated and IPO4 is upregulated in OV. By overexpressing or knocking down RNF180 in OV cells, we confirmed that RNF180 inhibited the malignant behaviors of OV cells both in vitro and in vivo. Bioinformatics analysis and proteomics experiments found that RNF180 could interact with IPO4 and promote the degradation of IPO4 through ubiquitination. In addition, overexpression of IPO4 removed the inhibitory effect of RNF180 on OV. We subsequently found that IPO4 could bind to the oncogene Sex determining Region Y-box 2 (SOX2). Knockdown of IPO4 in OV cells decreased SOX2 protein level in nucleus and promoted cyclin-dependent kinase inhibitory protein-1 (p21) expression. Overexpression of RNF180 also inhibited the expression of SOX2 in nucleus. All these results indicated that RNF180 inhibited the nuclear translocation of SOX2 by promoting ubiquitination of IPO4, which ultimately promoted the expression of p21 and then suppressed the progression of OV. This study verified the tumor suppressor effect of RNF180 on OV, elucidated the mechanism of the molecule network related to RNF180 and IPO4 in OV and identified for OV.
Collapse
Affiliation(s)
- Haiyan Zhao
- Department of Rheumatology and Immunology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Fangfang Bi
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Mengyuan Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yuhan Diao
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Chen Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
4
|
Baralle M, Romano M. Age-Related Alternative Splicing: Driver or Passenger in the Aging Process? Cells 2023; 12:2819. [PMID: 38132139 PMCID: PMC10742131 DOI: 10.3390/cells12242819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/01/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023] Open
Abstract
Alternative splicing changes are closely linked to aging, though it remains unclear if they are drivers or effects. As organisms age, splicing patterns change, varying gene isoform levels and functions. These changes may contribute to aging alterations rather than just reflect declining RNA quality control. Three main splicing types-intron retention, cassette exons, and cryptic exons-play key roles in age-related complexity. These events modify protein domains and increase nonsense-mediated decay, shifting protein isoform levels and functions. This may potentially drive aging or serve as a biomarker. Fluctuations in splicing factor expression also occur with aging. Somatic mutations in splicing genes can also promote aging and age-related disease. The interplay between splicing and aging has major implications for aging biology, though differentiating correlation and causation remains challenging. Declaring a splicing factor or event as a driver requires comprehensive evaluation of the associated molecular and physiological changes. A greater understanding of how RNA splicing machinery and downstream targets are impacted by aging is essential to conclusively establish the role of splicing in driving aging, representing a promising area with key implications for understanding aging, developing novel therapeutical options, and ultimately leading to an increase in the healthy human lifespan.
Collapse
Affiliation(s)
- Marco Baralle
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy;
| | - Maurizio Romano
- Department of Life Sciences, University of Trieste, Via A. Valerio 28, 34127 Trieste, Italy
| |
Collapse
|
5
|
Clark JSC, Podsiadło K, Sobalska-Kwapis M, Marciniak B, Rydzewska K, Ciechanowicz A, van de Wetering T, Strapagiel D. rs67047829 genotypes of ERV3-1/ZNF117 are associated with lower body mass index in the Polish population. Sci Rep 2023; 13:17118. [PMID: 37816715 PMCID: PMC10564729 DOI: 10.1038/s41598-023-43323-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 09/22/2023] [Indexed: 10/12/2023] Open
Abstract
There is now substantial evidence that zinc-finger proteins are implicated in adiposity. Aims were to datamine for high-frequency (near-neutral selection) pretermination-codon (PTC) single-nucleotide polymorphisms (SNPs; n = 141) from a database with > 550,000 variants and analyze possible association with body mass index in a large Polish sample (n = 5757). BMI was regressed (males/females together or separately) against genetic models. Regression for rs67047829 uncovered an interaction-independent association with BMI with both sexes together: mean ± standard deviation, kg/m2: [G];[G], 25.4 ± 4.59 (n = 3650); [G](;)[A], 25.0 ± 4.28 (n = 731); [A];[A], 23.4 ± 3.60 (n = 44); additive model adjusted for age and sex: p = 4.08 × 10-5; beta: - 0.0458, 95% confidence interval (CI) - 0.0732 : - 0.0183; surviving Bonferroni correction; for males: [G];[G], 24.8 ± 4.94 (n = 1878); [G](;)[A], 24.2 ± 4.31 (n = 386); [A];[A], 22.4 ± 3.69 (n = 23); p = 4.20 × 10-4; beta: - 0.0573, CI - 0.0947 : - 0.0199. For average-height males the difference between [G];[G] and [A];[A] genotypes would correspond to ~ 6 kg, suggesting considerable protection against increased BMI. rs67047829 gives a pretermination codon in ERV3-1 which shares an exonic region and possibly promoter with ZNF117, previously associated with adiposity and type-2 diabetes. As this result occurs in a near-neutral Mendelian setting, a drug targetting ERV3-1/ZNF117 might potentially provide considerable benefits with minimal side-effects. This result needs to be replicated, followed by analyses of splice-variant mRNAs and protein expression.
Collapse
Affiliation(s)
- Jeremy S C Clark
- Department of Clinical and Molecular Biochemistry, Pomeranian Medical University, al. Powstańców Wlkp. 72, 70-111, Szczecin, Zachodniopomorskie, Poland.
| | - Konrad Podsiadło
- Department of Clinical and Molecular Biochemistry, Pomeranian Medical University, al. Powstańców Wlkp. 72, 70-111, Szczecin, Zachodniopomorskie, Poland
| | - Marta Sobalska-Kwapis
- Biobank Lab, Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Łodż, 90-237, Łódż, Poland
| | - Błażej Marciniak
- Biobank Lab, Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Łodż, 90-237, Łódż, Poland
| | - Kamila Rydzewska
- Department of Clinical and Molecular Biochemistry, Pomeranian Medical University, al. Powstańców Wlkp. 72, 70-111, Szczecin, Zachodniopomorskie, Poland
| | - Andrzej Ciechanowicz
- Department of Clinical and Molecular Biochemistry, Pomeranian Medical University, al. Powstańców Wlkp. 72, 70-111, Szczecin, Zachodniopomorskie, Poland
| | - Thierry van de Wetering
- Department of Clinical and Molecular Biochemistry, Pomeranian Medical University, al. Powstańców Wlkp. 72, 70-111, Szczecin, Zachodniopomorskie, Poland
| | - Dominik Strapagiel
- Biobank Lab, Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Łodż, 90-237, Łódż, Poland
| |
Collapse
|
6
|
Zhou B, Chen N, Chen Z, Chen S, Yang J, Zheng Y, Shen L. Prmt5 deficient mouse B cells display RNA processing complexity and slower colorectal tumor progression. Eur J Immunol 2023; 53:e2250226. [PMID: 37389889 DOI: 10.1002/eji.202250226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/01/2023]
Abstract
Protein arginine methyltransferase 5 (Prmt5) is essential for normal B-cell development; however, the roles of Prmt5 in tumor-infiltrating B cells in tumor therapy have not been well elucidated. Here, we revealed that CD19-cre-Prmt5fl/fl (Prmt5cko) mice showed smaller tumor weights and volumes in the colorectal cancer mouse model; B cells expressed higher levels of Ccl22 and Il12a, which attracted T cells to the tumor site. Furthermore, we used direct RNA sequencing to comprehensively profile RNA processes in Prmt5 deletion B cells to explore underline mechanisms. We found significantly differentially expressed isoforms, mRNA splicing, poly(A) tail lengths, and m6A modification changes between the Prmt5cko and control groups. Cd74 isoform expressions might be regulated by mRNA splicing; the expression of two novel Cd74 isoforms was decreased, while one isoform was elevated in the Prmt5cko group, but the Cd74 gene expression showed no changes. We observed Ccl22, Ighg1, and Il12a expression was significantly increased in the Prmt5cko group, whereas Jak3 and Stat5b expression was decreased. Ccl22 and Ighg1 expression might be associated with poly(A) tail length, Jak3, Stat5b, and Il12a expression might be modulated by m6A modification. Our study demonstrated that Prmt5 regulates B-cell function through different mechanisms and supported the development of Prmt5-targeted antitumor treatments.
Collapse
Affiliation(s)
- Bingqian Zhou
- Department of Laboratory Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Faculty of Medical Laboratory Science, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Artificial Intelligence Medicine, Shanghai Academy of Experimental Medicine, Shanghai, China
| | - Ningdai Chen
- Department of Laboratory Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Faculty of Medical Laboratory Science, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Artificial Intelligence Medicine, Shanghai Academy of Experimental Medicine, Shanghai, China
| | - Zheyi Chen
- Department of Laboratory Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Faculty of Medical Laboratory Science, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Artificial Intelligence Medicine, Shanghai Academy of Experimental Medicine, Shanghai, China
| | - Shiyu Chen
- Department of Laboratory Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Faculty of Medical Laboratory Science, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Artificial Intelligence Medicine, Shanghai Academy of Experimental Medicine, Shanghai, China
| | - Junyao Yang
- Department of Laboratory Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Faculty of Medical Laboratory Science, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Artificial Intelligence Medicine, Shanghai Academy of Experimental Medicine, Shanghai, China
| | - Yingxia Zheng
- Department of Laboratory Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Faculty of Medical Laboratory Science, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Artificial Intelligence Medicine, Shanghai Academy of Experimental Medicine, Shanghai, China
| | - Lisong Shen
- Department of Laboratory Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Faculty of Medical Laboratory Science, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Artificial Intelligence Medicine, Shanghai Academy of Experimental Medicine, Shanghai, China
| |
Collapse
|
7
|
Martins M, Oliveira AR, Martins S, Vieira JP, Perdigão P, Fernandes AR, de Almeida LP, Palma PJ, Sequeira DB, Santos JMM, Duque F, Oliveira G, Cardoso AL, Peça J, Seabra CM. A Novel Genetic Variant in MBD5 Associated with Severe Epilepsy and Intellectual Disability: Potential Implications on Neural Primary Cilia. Int J Mol Sci 2023; 24:12603. [PMID: 37628781 PMCID: PMC10454663 DOI: 10.3390/ijms241612603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
Disruptions in the MBD5 gene have been linked with an array of clinical features such as global developmental delay, intellectual disability, autistic-like symptoms, and seizures, through unclear mechanisms. MBD5 haploinsufficiency has been associated with the disruption of primary cilium-related processes during early cortical development, and this has been reported in many neurodevelopmental disorders. In this study, we describe the clinical history of a 12-year-old child harboring a novel MBD5 rare variant and presenting psychomotor delay and seizures. To investigate the impact of MBD5 haploinsufficiency on neural primary cilia, we established a novel patient-derived cell line and used CRISPR-Cas9 technology to create an isogenic control. The patient-derived neural progenitor cells revealed a decrease in the length of primary cilia and in the total number of ciliated cells. This study paves the way to understanding the impact of MBD5 haploinsufficiency in brain development through its potential impact on neural primary cilia.
Collapse
Affiliation(s)
- Mariana Martins
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ana Rafaela Oliveira
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
| | - Solange Martins
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - José Pedro Vieira
- Neuropediatrics Unit, Central Lisbon Hospital Center, 1169-045 Lisbon, Portugal
| | - Pedro Perdigão
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Ana Rita Fernandes
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Luís Pereira de Almeida
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Paulo Jorge Palma
- Institute of Endodontics, Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal
- Center for Innovation and Research in Oral Sciences (CIROS), Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal
| | - Diana Bela Sequeira
- Institute of Endodontics, Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal
- Center for Innovation and Research in Oral Sciences (CIROS), Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal
| | - João Miguel Marques Santos
- Institute of Endodontics, Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal
- Center for Innovation and Research in Oral Sciences (CIROS), Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal
| | - Frederico Duque
- University Clinic of Pediatrics, Faculty of Medicine, University of Coimbra, 3000-602 Coimbra, Portugal
- Child Developmental Center and Research and Clinical Training Center, Pediatric Hospital, Centro Hospitalar e Universitário de Coimbra (CHUC), 3000-602 Coimbra, Portugal
| | - Guiomar Oliveira
- University Clinic of Pediatrics, Faculty of Medicine, University of Coimbra, 3000-602 Coimbra, Portugal
- Child Developmental Center and Research and Clinical Training Center, Pediatric Hospital, Centro Hospitalar e Universitário de Coimbra (CHUC), 3000-602 Coimbra, Portugal
| | - Ana Luísa Cardoso
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - João Peça
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
- Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Catarina Morais Seabra
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| |
Collapse
|
8
|
Jain A, Gupta AK. Modeling mRNA Translation With Ribosome Abortions. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:1600-1605. [PMID: 36044491 DOI: 10.1109/tcbb.2022.3203171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
We derive a deterministic mathematical model for the flow of ribosomes along a mRNA called the ribosome flow model with extended objects and abortions (RFMEOA). This model incorporates important cellular features such as every ribosome covers several codons and they may detach from various regions along the track due to more realistic biological situations including phenomena of ribosome-ribosome collisions. We prove that the ribosome density profile along the mRNA in the RFMEOA and in particular, the protein production rate converge to a unique steady-state. Simulations of the RFMEOA demonstrate a surprising result that an increase in the initiation rate may sometimes lead to a decrease in the production rate. We believe that this model could be helpful to provide insight into the effects of premature termination on the protein expression and be useful for understanding and re-engineering the translation process.
Collapse
|
9
|
Dozier C, Montigny A, Viladrich M, Culerrier R, Combier JP, Besson A, Plaza S. Small ORFs as New Regulators of Pri-miRNAs and miRNAs Expression in Human and Drosophila. Int J Mol Sci 2022; 23:5764. [PMID: 35628573 PMCID: PMC9144653 DOI: 10.3390/ijms23105764] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/19/2022] [Indexed: 02/01/2023] Open
Abstract
MicroRNAs (miRNAs) are small regulatory non-coding RNAs, resulting from the cleavage of long primary transcripts (pri-miRNAs) in the nucleus by the Microprocessor complex generating precursors (pre-miRNAs) that are then exported to the cytoplasm and processed into mature miRNAs. Some miRNAs are hosted in pri-miRNAs annotated as long non-coding RNAs (lncRNAs) and defined as MIRHGs (for miRNA Host Genes). However, several lnc pri-miRNAs contain translatable small open reading frames (smORFs). If smORFs present within lncRNAs can encode functional small peptides, they can also constitute cis-regulatory elements involved in lncRNA decay. Here, we investigated the possible involvement of smORFs in the regulation of lnc pri-miRNAs in Human and Drosophila, focusing on pri-miRNAs previously shown to contain translatable smORFs. We show that smORFs regulate the expression levels of human pri-miR-155 and pri-miR-497, and Drosophila pri-miR-8 and pri-miR-14, and also affect the expression and activity of their associated miRNAs. This smORF-dependent regulation is independent of the nucleotidic and amino acidic sequences of the smORFs and is sensitive to the ribosome-stalling drug cycloheximide, suggesting the involvement of translational events. This study identifies smORFs as new cis-acting elements involved in the regulation of pri-miRNAs and miRNAs expression, in both Human and Drosophila melanogaster.
Collapse
Affiliation(s)
- Christine Dozier
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France; (R.C.); (A.B.)
| | - Audrey Montigny
- Laboratoire de Recherche en Sciences Végétales, UMR5546 CNRS, UPS Université de Toulouse, INP, 31320 Auzeville-Tolosan, France; (A.M.); (M.V.); (J.-P.C.)
| | - Mireia Viladrich
- Laboratoire de Recherche en Sciences Végétales, UMR5546 CNRS, UPS Université de Toulouse, INP, 31320 Auzeville-Tolosan, France; (A.M.); (M.V.); (J.-P.C.)
| | - Raphael Culerrier
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France; (R.C.); (A.B.)
| | - Jean-Philippe Combier
- Laboratoire de Recherche en Sciences Végétales, UMR5546 CNRS, UPS Université de Toulouse, INP, 31320 Auzeville-Tolosan, France; (A.M.); (M.V.); (J.-P.C.)
| | - Arnaud Besson
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France; (R.C.); (A.B.)
| | - Serge Plaza
- Laboratoire de Recherche en Sciences Végétales, UMR5546 CNRS, UPS Université de Toulouse, INP, 31320 Auzeville-Tolosan, France; (A.M.); (M.V.); (J.-P.C.)
| |
Collapse
|
10
|
Zhou Y, Ng DY, Richards AM, Wang P. Loss of full-length pumilio 1 abrogates miRNA-221-induced gene p27 silencing-mediated cell proliferation in the heart. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 27:456-470. [PMID: 35036057 PMCID: PMC8728526 DOI: 10.1016/j.omtn.2021.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 12/09/2021] [Indexed: 12/02/2022]
Abstract
Upregulated expression of microRNA (miR)-221 is associated with downregulation of p27 and subsequent increased cell proliferation in a variety of human cancers. It is unknown whether miR-221 mimics could trigger neoplastic cellular proliferation. In vitro, we demonstrated miR-221 significantly downregulates the expression of P27 and increases proliferation of H9c2 and cardiac fibroblasts. The knockdown of PUM1 but not PUM2 abolished such effects by miR-221, as verified by RT-qPCR and western blot, direct binding of p27 3′ UTR by luciferase reporter assay and cell proliferation by Ki67. In vivo expression of P27 in the rat liver, heart, kidney, spleen, and muscle were not affected by miR-221 at 1 and 4 mg/kg and concurrently full-length (FL) PUM1 (140 kDa) was not detected. Instead, isoforms of 105 and 90 kDa were observed and generated through alternative RNA slicing verified by cDNA cloning and sequencing and cathepsin K cleavage confirmed by studies with the inhibitor odanacatib. This is the first study to address the possible pro-proliferative effects of miR-221 mimic therapeutics in cardiovascular applications. Loss of FL PUM1 expression is a key factor abrogating miR-221-mediated p27 regulation, although other concurrent mechanisms cannot be excluded. Our findings provide essential insights into the context-dependent nature of miRNA functionality.
Collapse
|
11
|
Molecular Determinants and Specificity of mRNA with Alternatively-Spliced UPF1 Isoforms, Influenced by an Insertion in the 'Regulatory Loop'. Int J Mol Sci 2021; 22:ijms222312744. [PMID: 34884553 PMCID: PMC8657986 DOI: 10.3390/ijms222312744] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 01/25/2023] Open
Abstract
The nonsense-mediated mRNA decay (NMD) pathway rapidly detects and degrades mRNA containing premature termination codons (PTCs). UP-frameshift 1 (UPF1), the master regulator of the NMD process, has two alternatively-spliced isoforms; one carries 353-GNEDLVIIWLR-363 insertion in the ‘regulatory loop (involved in mRNA binding)’. Such insertion can induce catalytic and/or ATPase activity, as determined experimentally; however, the kinetics and molecular level information are not fully understood. Herein, applying all-atom molecular dynamics, we probe the binding specificity of UPF1 with different GC- and AU-rich mRNA motifs and the influence of insertion to the viable control over UPF1 catalytic activity. Our results indicate two distinct conformations between 1B and RecA2 domains of UPF1: ‘open (isoform_2; without insertion)’ and ‘closed (isoform_1; with insertion)’. These structural movements correspond to an important stacking pattern in mRNA motifs, i.e., absence of stack formation in mRNA, with UPF1 isoform_2 results in the ‘open conformation’. Particularly, for UPF1 isoform_1, the increased distance between 1B and RecA2 domains has resulted in reducing the mRNA–UPF1 interactions. Lower fluctuating GC-rich mRNA motifs have better binding with UPF1, compared with AU-rich sequences. Except CCUGGGG, all other GC-rich motifs formed a 4-stack pattern with UPF1. High occupancy R363, D364, T627, and G862 residues were common binding GC-rich motifs, as were R363, N535, and T627 for the AU-rich motifs. The GC-rich motifs behave distinctly when bound to either of the isoforms; lower stability was observed with UPF1 isoform_2. The cancer-associated UPF1 variants (P533L/T and A839T) resulted in decreased protein–mRNA binding efficiency. Lack of mRNA stacking poses in the UPF1P533T system significantly decreased UPF1-mRNA binding efficiency and increased distance between 1B-RecA2. These novel findings can serve to further inform NMD-associated mechanistic and kinetic studies.
Collapse
|
12
|
Wang Y, Fan J, Wang J, Zhu Y, Xu L, Tong D, Cheng H. ZFC3H1 prevents RNA trafficking into nuclear speckles through condensation. Nucleic Acids Res 2021; 49:10630-10643. [PMID: 34530450 PMCID: PMC8501945 DOI: 10.1093/nar/gkab774] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 08/21/2021] [Accepted: 08/26/2021] [Indexed: 01/23/2023] Open
Abstract
Controlling proper RNA pool for nuclear export is important for accurate gene expression. ZFC3H1 is a key controller that not only facilitates nuclear exosomal degradation, but also retains its bound polyadenylated RNAs in the nucleus upon exosome inactivation. However, how ZFC3H1 retains RNAs and how its roles in RNA retention and degradation are related remain largely unclear. Here, we found that upon degradation inhibition, ZFC3H1 forms nuclear condensates to prevent RNA trafficking to nuclear speckles (NSs) where many RNAs gain export competence. Systematic mapping of ZFC3H1 revealed that it utilizes distinct domains for condensation and RNA degradation. Interestingly, ZFC3H1 condensation activity is required for preventing RNA trafficking to NSs, but not for RNA degradation. Considering that no apparent ZFC3H1 condensates are formed in normal cells, our study suggests that nuclear RNA degradation and retention are two independent mechanisms with different preference for controlling proper export RNA pool—degradation is preferred in normal cells, and condensation retention is activated upon degradation inhibition.
Collapse
Affiliation(s)
- Yimin Wang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Jing Fan
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Jianshu Wang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Yi Zhu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Lin Xu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Deng Tong
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Hong Cheng
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China.,School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
13
|
Abrahams L, Savisaar R, Mordstein C, Young B, Kudla G, Hurst LD. Evidence in disease and non-disease contexts that nonsense mutations cause altered splicing via motif disruption. Nucleic Acids Res 2021; 49:9665-9685. [PMID: 34469537 PMCID: PMC8464065 DOI: 10.1093/nar/gkab750] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 12/21/2022] Open
Abstract
Transcripts containing premature termination codons (PTCs) can be subject to nonsense-associated alternative splicing (NAS). Two models have been evoked to explain this, scanning and splice motif disruption. The latter postulates that exonic cis motifs, such as exonic splice enhancers (ESEs), are disrupted by nonsense mutations. We employ genome-wide transcriptomic and k-mer enrichment methods to scrutinize this model. First, we show that ESEs are prone to disruptive nonsense mutations owing to their purine richness and paucity of TGA, TAA and TAG. The motif model correctly predicts that NAS rates should be low (we estimate 5–30%) and approximately in line with estimates for the rate at which random point mutations disrupt splicing (8–20%). Further, we find that, as expected, NAS-associated PTCs are predictable from nucleotide-based machine learning approaches to predict splice disruption and, at least for pathogenic variants, are enriched in ESEs. Finally, we find that both in and out of frame mutations to TAA, TGA or TAG are associated with exon skipping. While a higher relative frequency of such skip-inducing mutations in-frame than out of frame lends some credence to the scanning model, these results reinforce the importance of considering splice motif modulation to understand the etiology of PTC-associated disease.
Collapse
Affiliation(s)
- Liam Abrahams
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK
| | - Rosina Savisaar
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Christine Mordstein
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK.,MRC Human Genetics Unit, The University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK.,Aarhus University, Department of Molecular Biology and Genetics, C F Møllers Allé 3, 8000 Aarhus, Denmark
| | - Bethan Young
- MRC Human Genetics Unit, The University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Grzegorz Kudla
- MRC Human Genetics Unit, The University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Laurence D Hurst
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK
| |
Collapse
|
14
|
Zeng Y, Qian H, Campos MM, Li Y, Vijayasarathy C, Sieving PA. Rs1h -/y exon 3-del rat model of X-linked retinoschisis with early onset and rapid phenotype is rescued by RS1 supplementation. Gene Ther 2021; 29:431-440. [PMID: 34548657 PMCID: PMC8938309 DOI: 10.1038/s41434-021-00290-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/03/2021] [Accepted: 08/18/2021] [Indexed: 12/27/2022]
Abstract
Animal models of X-linked juvenile retinoschisis (XLRS) are valuable tools for understanding basic biochemical function of retinoschisin (RS1) protein and to investigate outcomes of preclinical efficacy and toxicity studies. In order to work with an eye larger than mouse, we generated and characterized an Rs1h−/y knockout rat model created by removing exon 3. This rat model expresses no normal RS1 protein. The model shares features of an early onset and more severe phenotype of human XLRS. The morphologic pathology includes schisis cavities at postnatal day 15 (p15), photoreceptors that are misplaced into the subretinal space and OPL, and a reduction of photoreceptor cell numbers by p21. By 6 mo age only 1–3 rows of photoreceptors nuclei remain, and the inner/outer segment layers and the OPL shows major changes. Electroretinogram recordings show functional loss with considerable reduction of both the a-wave and b-wave by p28, indicating early age loss and dysfunction of photoreceptors. The ratio of b-/a-wave amplitudes indicates impaired synaptic transmission to bipolar cells in addition. Supplementing the Rs1h−/y exon3-del retina with normal human RS1 protein using AAV8-RS1 delivery improved the retinal structure. This Rs1h−/y rat model provides a further tool to explore underlying mechanisms of XLRS pathology and to evaluate therapeutic intervention for the XLRS condition.
Collapse
Affiliation(s)
- Yong Zeng
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Haohua Qian
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Yichao Li
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Paul A Sieving
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA. .,Department of Ophthalmology, University of California Davis, Sacramento, CA, USA. .,Center for Ocular Regenerative Therapy, Department of Ophthalmology and Vision Science, University of California Davis, Sacramento, CA, USA.
| |
Collapse
|
15
|
Direct Nanopore Sequencing of mRNA Reveals Landscape of Transcript Isoforms in Apicomplexan Parasites. mSystems 2021; 6:6/2/e01081-20. [PMID: 33688018 PMCID: PMC8561664 DOI: 10.1128/msystems.01081-20] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Alternative splicing is a widespread phenomenon in metazoans by which single genes are able to produce multiple isoforms of the gene product. However, this has been poorly characterized in apicomplexans, a major phylum of some of the most important global parasites. Efforts have been hampered by atypical transcriptomic features, such as the high AU content of Plasmodium RNA, but also the limitations of short-read sequencing in deciphering complex splicing events. In this study, we utilized the long read direct RNA sequencing platform developed by Oxford Nanopore Technologies to survey the alternative splicing landscape of Toxoplasma gondii and Plasmodium falciparum. We find that while native RNA sequencing has a reduced throughput, it allows us to obtain full-length or nearly full-length transcripts with comparable quantification to Illumina sequencing. By comparing these data with available gene models, we find widespread alternative splicing, particularly intron retention, in these parasites. Most of these transcripts contain premature stop codons, suggesting that in these parasites, alternative splicing represents a pathway to transcriptomic diversity, rather than expanding proteomic diversity. Moreover, alternative splicing rates are comparable between parasites, suggesting a shared splicing machinery, despite notable transcriptomic differences between the parasites. This study highlights a strategy in using long-read sequencing to understand splicing events at the whole-transcript level and has implications in the future interpretation of transcriptome sequencing studies. IMPORTANCE We have used a novel nanopore sequencing technology to directly analyze parasite transcriptomes. The very long reads of this technology reveal the full-length genes of the parasites that cause malaria and toxoplasmosis. Gene transcripts must be processed in a process called splicing before they can be translated to protein. Our analysis reveals that these parasites very frequently only partially process their gene products, in a manner that departs dramatically from their human hosts.
Collapse
|
16
|
Brogna C, Coratti G, Rossi R, Neri M, Messina S, Amico AD, Bruno C, Lucibello S, Vita G, Berardinelli A, Magri F, Ricci F, Pedemonte M, Mongini T, Battini R, Bello L, Pegoraro E, Baranello G, Politano L, Comi GP, Sansone VA, Albamonte E, Donati A, Bertini E, Goemans N, Previtali S, Bovis F, Pane M, Ferlini A, Mercuri E. The nonsense mutation stop+4 model correlates with motor changes in Duchenne muscular dystrophy. Neuromuscul Disord 2021; 31:479-488. [PMID: 33773883 DOI: 10.1016/j.nmd.2021.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/01/2021] [Accepted: 02/17/2021] [Indexed: 10/22/2022]
Abstract
The aim was to assess 3-year longitudinal data using 6MWT in 26 ambulant boys affected by DMD carrying nonsense mutations and to compare their results to other small mutations. We also wished to establish, within the nonsense mutations group, patterns of change according to several variables. Patients with nonsense mutations were categorized according to the stop codon type newly created by the mutation and also including the adjacent 5' (upstream) and 3' (downstream) nucleotides. No significant difference was found between nonsense mutations and other small mutations (p > 0.05) on the 6MWT. Within the nonsense mutations group, there was no difference in 6MWT when the patients were subdivided according to: Type of stop codon, frame status of exons involved, protein domain affected. In contrast, there was a difference when the stop codon together with the 3' adjacent nucleotide ("stop+4 model") was considered (p < 0.05) with patients with stop codon TGA and 3' adjacent nucleotide G (TGAG) having a more rapid decline. Our finding suggest that the stop+4 model may help in predicting functional changes. This data will be useful at the time of interpreting the long term follow up of patients treated with Ataluren that are becoming increasingly available.
Collapse
Affiliation(s)
- Claudia Brogna
- Pediatric Neurology, Università Cattolica del Sacro Cuore, Rome, Italy; Centro Clinico Nemo, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo Agostino Gemelli 8, Rome 00152, Italy
| | - Giorgia Coratti
- Pediatric Neurology, Università Cattolica del Sacro Cuore, Rome, Italy; Centro Clinico Nemo, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo Agostino Gemelli 8, Rome 00152, Italy
| | - Rachele Rossi
- Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Marcella Neri
- Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Sonia Messina
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy; Nemo SUD Clinical Center, University Hospital "G. Martino", Messina, Italy
| | - Adele D' Amico
- Department of Neurosciences, Unit of Neuromuscular and Neurodegenerative Disorders, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Claudio Bruno
- Center of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Simona Lucibello
- Pediatric Neurology, Università Cattolica del Sacro Cuore, Rome, Italy; Centro Clinico Nemo, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo Agostino Gemelli 8, Rome 00152, Italy
| | - Gianluca Vita
- Nemo SUD Clinical Center, University Hospital "G. Martino", Messina, Italy
| | - Angela Berardinelli
- Child Neurology and Psychiatry Unit, ''Casimiro Mondino'' Foundation, Pavia, Italy
| | - Francesca Magri
- Department of Pathophysiology and Transplantation, Fondazione IRCCS Ca' Grande Ospedale Maggiore Policlinico, Dino Ferrari Center, , University of Milan, Milan, Italy
| | - Federica Ricci
- Neuromuscular Center, AOU Città della Salute e della Scienza, University of Torino, Italy
| | - Marina Pedemonte
- Center of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Tiziana Mongini
- Neuromuscular Center, AOU Città della Salute e della Scienza, University of Torino, Italy
| | - Roberta Battini
- Department of Developmental Neuroscience, Stella Maris Institute, Pisa, Italy; Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Luca Bello
- Department of Neurosciences, University of Padua, Padua, Italy
| | - Elena Pegoraro
- Department of Neurosciences, University of Padua, Padua, Italy
| | | | - Luisa Politano
- Cardiomiologia e Genetica Medica, Dipartimento di Medicina Sperimentale, Università della Campania Luigi Vanvitelli, Napoli, Italy
| | - Giacomo P Comi
- Department of Pathophysiology and Transplantation, Fondazione IRCCS Ca' Grande Ospedale Maggiore Policlinico, Dino Ferrari Center, , University of Milan, Milan, Italy
| | - Valeria A Sansone
- The NEMO Center in Milan, Neurorehabilitation Unit, University of Milan, ASST Niguarda Hospital, Milan, Italy
| | - Emilio Albamonte
- The NEMO Center in Milan, Neurorehabilitation Unit, University of Milan, ASST Niguarda Hospital, Milan, Italy
| | - Alice Donati
- Metabolic Unit, A. Meyer Children's Hospital, Florence, Italy
| | - Enrico Bertini
- Department of Neurosciences, Unit of Neuromuscular and Neurodegenerative Disorders, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Nathalie Goemans
- Department of Child Neurology, University Hospitals Leuven, Leuven, Belgium
| | - Stefano Previtali
- Neuromuscular Repair Unit, Inspe and Division of Neuroscience, IRCSS San Raffaele Scientific Institute, Milan, Italy
| | - Francesca Bovis
- Department of Health Sciences (DISSAL), University of Genova, Genoa, Italy
| | - Marika Pane
- Pediatric Neurology, Università Cattolica del Sacro Cuore, Rome, Italy; Centro Clinico Nemo, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo Agostino Gemelli 8, Rome 00152, Italy
| | - Alessandra Ferlini
- Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Eugenio Mercuri
- Pediatric Neurology, Università Cattolica del Sacro Cuore, Rome, Italy; Centro Clinico Nemo, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo Agostino Gemelli 8, Rome 00152, Italy.
| | | |
Collapse
|
17
|
Tan DQ, Li Y, Yang C, Li J, Tan SH, Chin DWL, Nakamura-Ishizu A, Yang H, Suda T. PRMT5 Modulates Splicing for Genome Integrity and Preserves Proteostasis of Hematopoietic Stem Cells. Cell Rep 2020; 26:2316-2328.e6. [PMID: 30811983 DOI: 10.1016/j.celrep.2019.02.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 12/26/2018] [Accepted: 02/01/2019] [Indexed: 12/15/2022] Open
Abstract
Protein arginine methyltransferase 5 (PRMT5) is essential for hematopoiesis, while PRMT5 inhibition remains a promising therapeutic strategy against various cancers. Here, we demonstrate that hematopoietic stem cell (HSC) quiescence and viability are severely perturbed upon PRMT5 depletion, which also increases HSC size, PI3K/AKT/mechanistic target of rapamycin (mTOR) pathway activity, and protein synthesis rate. We uncover a critical role for PRMT5 in maintaining HSC genomic integrity by modulating splicing of genes involved in DNA repair. We found that reducing PRMT5 activity upregulates exon skipping and intron retention events that impair gene expression. Genes across multiple DNA repair pathways are affected, several of which mediate interstrand crosslink repair and homologous recombination. Consequently, loss of PRMT5 activity leads to endogenous DNA damage that triggers p53 activation, induces apoptosis, and culminates in rapid HSC exhaustion, which is significantly delayed by p53 depletion. Collectively, these findings establish the importance of cell-intrinsic PRMT5 activity in HSCs.
Collapse
Affiliation(s)
- Darren Qiancheng Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Ying Li
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Chong Yang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Jia Li
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Shi Hao Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Desmond Wai Loon Chin
- Department of Medicine, Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ayako Nakamura-Ishizu
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Henry Yang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Toshio Suda
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
18
|
Madan V, Li J, Zhou S, Teoh WW, Han L, Meggendorfer M, Malcovati L, Cazzola M, Ogawa S, Haferlach T, Yang H, Koeffler HP. Distinct and convergent consequences of splice factor mutations in myelodysplastic syndromes. Am J Hematol 2020; 95:133-143. [PMID: 31680297 DOI: 10.1002/ajh.25673] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 10/13/2019] [Accepted: 10/30/2019] [Indexed: 01/02/2023]
Abstract
Myelodysplastic syndromes (MDS) are characterized by recurrent somatic alterations often affecting components of RNA splicing machinery. Mutations of splice factors SF3B1, SRSF2, ZRSR2 and U2AF1 occur in >50% of MDS. To assess the impact of spliceosome mutations on splicing and to identify common pathways/genes affected by distinct mutations, we performed RNA-sequencing of MDS bone marrow samples harboring spliceosome mutations (including hotspot alterations of SF3B1, SRSF2 and U2AF1; small deletions of SRSF2 and truncating mutations of ZRSR2), and devoid of other common co-occurring mutations. We uncover the landscape of splicing alterations in each splice factor mutant MDS and demonstrate that small deletions in SRSF2 cause highest number of splicing alterations compared with other spliceosome mutations. Although the mis-spliced events observed in different splice factor mutations were largely non-overlapping, a subset of genes, including EZH2, were aberrantly spliced in multiple mutant groups. We also verified aberrant splicing of key genes USP9X, USP24 (deubiquitinating enzymes), LUC7L2 (splice factor) and EED (PRC2 component) in MDS harboring small deletions of SRSF2. Pathway analysis revealed that mis-spliced genes in different mutant groups were enriched in RNA splicing and transport as well as several signaling cascades, suggesting converging biological consequences downstream of distinct spliceosome mutations. Our study reveals splicing signatures of each splice factor mutation and identifies shared and distinct sets of mis-spliced genes and affected biological processes in different spliceosome mutant MDS.
Collapse
Affiliation(s)
- Vikas Madan
- Cancer Science Institute of Singapore, National University of Singapore Singapore Singapore
| | - Jia Li
- Cancer Science Institute of Singapore, National University of Singapore Singapore Singapore
- Cardiovascular and Metabolic Disorders ProgramDuke‐NUS Medical School Singapore Singapore
| | - Siqin Zhou
- Cancer Science Institute of Singapore, National University of Singapore Singapore Singapore
| | - Weoi Woon Teoh
- Cancer Science Institute of Singapore, National University of Singapore Singapore Singapore
| | - Lin Han
- Cancer Science Institute of Singapore, National University of Singapore Singapore Singapore
- Department of MedicineYong Loo Lin School of Medicine, National University of Singapore Singapore Singapore
| | | | - Luca Malcovati
- Department of Molecular MedicineUniversity of Pavia Pavia Italy
- Department of Hematology OncologyFondazione IRCCS Policlinico San Matteo & University of Pavia Pavia Italy
| | - Mario Cazzola
- Department of Molecular MedicineUniversity of Pavia Pavia Italy
- Department of Hematology OncologyFondazione IRCCS Policlinico San Matteo & University of Pavia Pavia Italy
| | - Seishi Ogawa
- Department of Pathology and Tumor BiologyKyoto University Kyoto Japan
| | | | - Henry Yang
- Cancer Science Institute of Singapore, National University of Singapore Singapore Singapore
| | - H. Phillip Koeffler
- Cancer Science Institute of Singapore, National University of Singapore Singapore Singapore
- Cedars‐Sinai Medical Center, Division of Hematology/OncologyUCLA School of Medicine Los Angeles California
- National University Cancer Institute, National University Hospital Singapore Singapore Singapore
| |
Collapse
|
19
|
Abstract
The RNA exosome is a ribonucleolytic multiprotein complex that is conserved and essential in all eukaryotes. Although we tend to speak of "the" exosome complex, it should be more correctly viewed as several different subtypes that share a common core. Subtypes of the exosome complex are present in the cytoplasm, the nucleus and the nucleolus of all eukaryotic cells, and carry out the 3'-5' processing and/or degradation of a wide range of RNA substrates.Because the substrate specificity of the exosome complex is determined by cofactors, the system is highly adaptable, and different organisms have adjusted the machinery to their specific needs. Here, we present an overview of exosome complexes and their cofactors that have been described in different eukaryotes.
Collapse
Affiliation(s)
- Cornelia Kilchert
- Institut für Biochemie, Justus-Liebig-Universität Gießen, Gießen, Germany.
| |
Collapse
|
20
|
Jeong K, Ryu I, Park J, Hwang HJ, Ha H, Park Y, Oh ST, Kim YK. Staufen1 and UPF1 exert opposite actions on the replacement of the nuclear cap-binding complex by eIF4E at the 5' end of mRNAs. Nucleic Acids Res 2019; 47:9313-9328. [PMID: 31361897 PMCID: PMC6753478 DOI: 10.1093/nar/gkz643] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 07/11/2019] [Accepted: 07/16/2019] [Indexed: 01/31/2023] Open
Abstract
Newly synthesized mRNAs are exported from the nucleus to cytoplasm with a 5′-cap structure bound by the nuclear cap-binding complex (CBC). During or after export, the CBC should be properly replaced by cytoplasmic cap-binding protein eIF4E for efficient protein synthesis. Nonetheless, little is known about how the replacement takes place. Here, we show that double-stranded RNA-binding protein staufen1 (STAU1) promotes efficient replacement by facilitating an association between the CBC–importin α complex and importin β. Our transcriptome-wide analyses and artificial tethering experiments also reveal that the replacement occurs more efficiently when an mRNA associates with STAU1. This event is inhibited by a key nonsense-mediated mRNA decay factor, UPF1, which directly interacts with STAU1. Furthermore, we find that cellular apoptosis that is induced by ionizing radiation is accompanied by inhibition of the replacement via increased association between STAU1 and hyperphosphorylated UPF1. Altogether, our data highlight the functional importance of STAU1 and UPF1 in the course of the replacement of the CBC by eIF4E, adding a previously unappreciated layer of post-transcriptional gene regulation.
Collapse
Affiliation(s)
- Kwon Jeong
- Creative Research Initiatives Center for Molecular Biology of Translation, Korea University, Seoul 02841, Republic of Korea.,Division of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Incheol Ryu
- Creative Research Initiatives Center for Molecular Biology of Translation, Korea University, Seoul 02841, Republic of Korea.,Division of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Joori Park
- Creative Research Initiatives Center for Molecular Biology of Translation, Korea University, Seoul 02841, Republic of Korea.,Division of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Hyun Jung Hwang
- Creative Research Initiatives Center for Molecular Biology of Translation, Korea University, Seoul 02841, Republic of Korea.,Division of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Hongseok Ha
- Creative Research Initiatives Center for Molecular Biology of Translation, Korea University, Seoul 02841, Republic of Korea.,Division of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Yeonkyoung Park
- Creative Research Initiatives Center for Molecular Biology of Translation, Korea University, Seoul 02841, Republic of Korea.,Division of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Sang Taek Oh
- Creative Research Initiatives Center for Molecular Biology of Translation, Korea University, Seoul 02841, Republic of Korea.,Division of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Yoon Ki Kim
- Creative Research Initiatives Center for Molecular Biology of Translation, Korea University, Seoul 02841, Republic of Korea.,Division of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
21
|
Calabrese DR, Wang P, Chong T, Hoover J, Singer JP, Torgerson D, Hays SR, Golden JA, Kukreja J, Dugger D, Christie JD, Greenland JR. Dectin-1 genetic deficiency predicts chronic lung allograft dysfunction and death. JCI Insight 2019; 4:133083. [PMID: 31613800 DOI: 10.1172/jci.insight.133083] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 10/10/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUNDInnate immune activation impacts lung transplant outcomes. Dectin-1 is an innate receptor important for pathogen recognition. We hypothesized that genotypes reducing dectin-1 activity would be associated with infection, graft dysfunction, and death in lung transplant recipients.METHODSWe assessed the rs16910526 CLEC7A gene polymorphism Y238X, which results in dectin-1 truncation, in 321 lung allograft recipients at a single institution and in 1,129 lung allograft recipients in the multicenter Lung Transplant Outcomes Group (LTOG) cohort. Differences in dectin-1 mRNA, cytokines, protein levels, immunophenotypes, and clinical factors were assessed.RESULTSY238X carriers had decreased dectin-1 mRNA expression (P = 0.0001), decreased soluble dectin-1 protein concentrations in bronchoalveolar lavage (P = 0.008) and plasma (P = 0.04), and decreased monocyte surface dectin-1 (P = 0.01) compared with wild-type subjects. Y238X carriers had an increased risk of fungal pathogens (HR 1.17, CI 1.0-1.4), an increased risk of graft dysfunction or death (HR 1.6, CI 1.0-2.6), as well increased mortality in the UCSF cohort (HR 1.8, CI 1.1-3.8) and in the LTOG cohort (HR 1.3, CI 1.1-1.6), compared with wild-type CLEC7A subjects.CONCLUSIONIncreased rates of graft dysfunction and death associated with this dectin-1 polymorphism may be amplified by immunosuppression that drives higher fungal burden from compromised pathogen recognition.FUNDINGThe UCSF Nina Ireland Program for Lung Health Innovative Grant program, the Clinical Sciences Research & Development Service of the VA Office of Research and Development, and the Joel D. Cooper Career Development Award from the International Society for Heart and Lung Transplantation.
Collapse
Affiliation(s)
- Daniel R Calabrese
- Department of Medicine, UCSF, San Francisco, California, USA.,Medical Service, Veterans Affairs Health Care System, San Francisco, California, USA
| | - Ping Wang
- Department of Medicine, UCSF, San Francisco, California, USA
| | - Tiffany Chong
- Department of Medicine, UCSF, San Francisco, California, USA
| | - Jonathan Hoover
- Department of Medicine, UCSF, San Francisco, California, USA
| | | | - Dara Torgerson
- Department of Medicine, UCSF, San Francisco, California, USA
| | - Steven R Hays
- Department of Medicine, UCSF, San Francisco, California, USA
| | | | | | - Daniel Dugger
- Medical Service, Veterans Affairs Health Care System, San Francisco, California, USA
| | - Jason D Christie
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - John R Greenland
- Department of Medicine, UCSF, San Francisco, California, USA.,Medical Service, Veterans Affairs Health Care System, San Francisco, California, USA
| |
Collapse
|
22
|
Fan J, Kuai B, Wang K, Wang L, Wang Y, Wu X, Chi B, Li G, Cheng H. mRNAs are sorted for export or degradation before passing through nuclear speckles. Nucleic Acids Res 2019; 46:8404-8416. [PMID: 30032211 PMCID: PMC6144872 DOI: 10.1093/nar/gky650] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 07/10/2018] [Indexed: 12/14/2022] Open
Abstract
A significant fraction of mRNAs are degraded by the nuclear exosome in normal cells. Here, we studied where and when these exosome target mRNAs are sorted away from properly exported ones in the cells. We show that upon exosome inactivation, polyA RNAs are apparently accumulated in nuclear foci that are distinct from nuclear speckles (NSs), and provide several lines of evidence supporting that these polyA RNAs mainly correspond to accumulating exosome target mRNAs. These results suggest that exosomal mRNA degradation mostly occurs outside of NSs. In support of this possibility, targeting exosome target mRNAs to NSs stabilizes them by preventing exosomal degradation. Furthermore, inhibiting mRNA release from NSs does not attenuate exosomal degradation in normal cells, and results in polyA RNA accumulation both inside and outside of NSs in exosome inactivated cells, suggesting that passage through NSs is not required for sorting mRNAs for degradation or export. Indeed, exosome target mRNAs that normally do not enter NSs are exported upon exosome inactivation. Together, our data suggest that exosome target mRNAs are mainly degraded in the nucleoplasm before entering NSs and rapid removal of these mRNAs is important for preventing their nuclear export.
Collapse
Affiliation(s)
- Jing Fan
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Bin Kuai
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ke Wang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Lantian Wang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yimin Wang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xudong Wu
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Binkai Chi
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Guohui Li
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Hong Cheng
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
23
|
Comprehensive Analysis of Rhodomyrtus tomentosa Chloroplast Genome. PLANTS 2019; 8:plants8040089. [PMID: 30987338 PMCID: PMC6524380 DOI: 10.3390/plants8040089] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/26/2019] [Accepted: 03/29/2019] [Indexed: 11/16/2022]
Abstract
In the last decade, several studies have relied on a small number of plastid genomes to deduce deep phylogenetic relationships in the species-rich Myrtaceae. Nevertheless, the plastome of Rhodomyrtus tomentosa, an important representative plant of the Rhodomyrtus (DC.) genera, has not yet been reported yet. Here, we sequenced and analyzed the complete chloroplast (CP) genome of R. tomentosa, which is a 156,129-bp-long circular molecule with 37.1% GC content. This CP genome displays a typical quadripartite structure with two inverted repeats (IRa and IRb), of 25,824 bp each, that are separated by a small single copy region (SSC, 18,183 bp) and one large single copy region (LSC, 86,298 bp). The CP genome encodes 129 genes, including 84 protein-coding genes, 37 tRNA genes, eight rRNA genes and three pseudogenes (ycf1, rps19, ndhF). A considerable number of protein-coding genes have a universal ATG start codon, except for psbL and ndhD. Premature termination codons (PTCs) were found in one protein-coding gene, namely atpE, which is rarely reported in the CP genome of plants. Phylogenetic analysis revealed that R. tomentosa has a sister relationship with Eugenia uniflora and Psidium guajava. In conclusion, this study identified unique characteristics of the R. tomentosa CP genome providing valuable information for further investigations on species identification and the phylogenetic evolution between R. tomentosa and related species.
Collapse
|
24
|
Wang K, Wang L, Wang J, Chen S, Shi M, Cheng H. Intronless mRNAs transit through nuclear speckles to gain export competence. J Cell Biol 2018; 217:3912-3929. [PMID: 30194269 PMCID: PMC6219727 DOI: 10.1083/jcb.201801184] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 07/04/2018] [Accepted: 08/09/2018] [Indexed: 01/12/2023] Open
Abstract
Nuclear speckles (NSs) store splicing factors. Wang et al. show that many naturally intronless mRNAs associate with NSs and that speckle association enhances their export by facilitating TREX recruitment, suggesting that trafficking to NSs could be an important quality control step in intronless mRNA export. Nuclear speckles (NSs) serve as splicing factor storage sites. In this study, we unexpectedly found that many endogenous intronless mRNAs, which do not undergo splicing, associate with NSs. These associations do not require transcription, polyadenylation, or the polyA tail. Rather, exonic splicing enhancers present in intronless mRNAs and their binding partners, SR proteins, promote intronless mRNA localization to NSs. Significantly, speckle targeting of mRNAs promotes the recruitment of the TREX export complex and their TREX-dependent nuclear export. Furthermore, TREX, which accumulates in NSs, is required for releasing intronless mRNAs from NSs, whereas NXF1, which is mainly detected at nuclear pores, is not. Upon NXF1 depletion, the TREX protein UAP56 loses speckle concentration but coaccumulates with intronless mRNAs and polyA RNAs in the nucleoplasm, and these RNAs are trapped in NSs upon UAP56 codepletion. We propose that the export-competent messenger RNP assembly mainly occurs in NSs for intronless mRNAs and that entering NSs serves as a quality control step in mRNA export.
Collapse
Affiliation(s)
- Ke Wang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lantian Wang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jianshu Wang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Suli Chen
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Min Shi
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hong Cheng
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
25
|
Harahap NIF, Niba ETE, Ar Rochmah M, Wijaya YOS, Saito T, Saito K, Awano H, Morioka I, Iijima K, Lai PS, Matsuo M, Nishio H, Shinohara M. Intron-retained transcripts of the spinal muscular atrophy genes, SMN1 and SMN2. Brain Dev 2018; 40:670-677. [PMID: 29580671 DOI: 10.1016/j.braindev.2018.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 03/02/2018] [Accepted: 03/04/2018] [Indexed: 11/24/2022]
Abstract
BACKGROUND The SMN genes, SMN1 and SMN2, are highly homologous genes which are related to the development or clinical severity of spinal muscular atrophy. Some alternative splicing patterns of the SMN genes have been well documented. In 2007, an SMN1 transcript with a full sequence of intron 3 was reported as the first intron-retained SMN transcript. METHODS Intron-retained SMN transcripts in various cells and tissues were studied using reverse transcription (RT)-PCR. HeLa cells were used for subcellular localization of the transcripts and protein expression analysis with Western blotting. RESULTS Two intron-retained SMN transcripts were detected, which contain full sequences of intron 2b or intron 3. These transcripts were produced from SMN1 and SMN2, and ubiquitously expressed in human cells and tissues. Western blotting analysis showed no proteins derived from the intron-retained transcripts. Fractionation analysis showed that these intron-retained transcripts were localized mainly in the nucleus. Contrary to our expectation, the intron-retained transcript levels decreased during the treatment of cycloheximide, an inhibitor of nonsense-mediated decay (NMD), suggesting that they were not targets of NMD. CONCLUSION Intron 2b-retained SMN transcript and intron3-retained SMN transcript were ubiquitously expressed in human cells and tissues. The intron-retained transcripts were mainly localized in the nucleus and decreased through non-NMD pathway.
Collapse
Affiliation(s)
- Nur Imma Fatimah Harahap
- Department of Community Medicine and Social Healthcare Science, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan; Department of Clinical Pathology, Faculty of Medicine, Universitas Gadjah Mada, Radiopoetro Building 5th Floor, Jl. Farmako, Sekip Utara, Yogyakarta 55281, Indonesia
| | - Emma Tabe Eko Niba
- Department of Community Medicine and Social Healthcare Science, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Mawaddah Ar Rochmah
- Department of Community Medicine and Social Healthcare Science, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan; Department of Neurology, Faculty of Medicine, Universitas Gadjah Mada, Jl. Kesehatan No.1, Sekip, Yogyakarta 55281, Indonesia
| | - Yogik Onky Silvana Wijaya
- Department of Community Medicine and Social Healthcare Science, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Toshio Saito
- Department of Neurology, National Hospital Organization Toneyama National Hospital, Toneyama 5-1-1, Toyonaka, Osaka 560-8552, Japan
| | - Kayoko Saito
- Institute of Medical Genetics, School of Medicine, Tokyo Women's Medical University, 8-1 Kawadacho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Hiroyuki Awano
- Department of Pediatrics, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Ichiro Morioka
- Department of Pediatrics, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Kazumoto Iijima
- Department of Pediatrics, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Poh San Lai
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 12, 119228, Singapore
| | - Masafumi Matsuo
- Department of Physical Therapy, Faculty of Rehabilitation, Kobe Gakuin University, 518 Arise, Ikawadani, Nishi, Kobe 6512180, Japan
| | - Hisahide Nishio
- Department of Community Medicine and Social Healthcare Science, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan.
| | - Masakazu Shinohara
- Department of Community Medicine and Social Healthcare Science, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| |
Collapse
|
26
|
Balak C, Belnap N, Ramsey K, Joss S, Devriendt K, Naymik M, Jepsen W, Siniard AL, Szelinger S, Parker ME, Richholt R, Izatt T, LaFleur M, Terraf P, Llaci L, De Both M, Piras IS, Rangasamy S, Schrauwen I, Craig DW, Huentelman M, Narayanan V. A novel
FBXO28
frameshift mutation in a child with developmental delay, dysmorphic features, and intractable epilepsy: A second gene that may contribute to the 1q41‐q42 deletion phenotype. Am J Med Genet A 2018; 176:1549-1558. [DOI: 10.1002/ajmg.a.38712] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 03/26/2018] [Accepted: 03/27/2018] [Indexed: 01/09/2023]
Affiliation(s)
- Chris Balak
- Neurogenomics Division, Center for Rare Childhood Disorders (C4RCD)Translational Genomics Research InstitutePhoenix Arizona
| | - Newell Belnap
- Neurogenomics Division, Center for Rare Childhood Disorders (C4RCD)Translational Genomics Research InstitutePhoenix Arizona
| | - Keri Ramsey
- Neurogenomics Division, Center for Rare Childhood Disorders (C4RCD)Translational Genomics Research InstitutePhoenix Arizona
| | - Shelagh Joss
- West of Scotland Genetics ServiceQueen Elizabeth University HospitalGlasgow United Kingdom
| | - Koen Devriendt
- Center for Human Genetics (Centrum Menselijke Erfelijkheid)University of LeuvenLeuven Belgium
| | - Marcus Naymik
- Neurogenomics Division, Center for Rare Childhood Disorders (C4RCD)Translational Genomics Research InstitutePhoenix Arizona
| | - Wayne Jepsen
- Neurogenomics Division, Center for Rare Childhood Disorders (C4RCD)Translational Genomics Research InstitutePhoenix Arizona
| | - Ashley L. Siniard
- Neurogenomics Division, Center for Rare Childhood Disorders (C4RCD)Translational Genomics Research InstitutePhoenix Arizona
| | - Szabolcs Szelinger
- Neurogenomics Division, Center for Rare Childhood Disorders (C4RCD)Translational Genomics Research InstitutePhoenix Arizona
- UCLA Pathology & Laboratory MedicineUCLA Center for the Health SciencesLos Angeles California
| | - Mary E. Parker
- Department of Physical TherapyTexas State UniversitySan Marcos Texas
- U.R. Our Hope, Undiagnosed and Rare Disorder OrganizationAustin Texas
| | - Ryan Richholt
- Neurogenomics Division, Center for Rare Childhood Disorders (C4RCD)Translational Genomics Research InstitutePhoenix Arizona
| | - Tyler Izatt
- Neurogenomics Division, Center for Rare Childhood Disorders (C4RCD)Translational Genomics Research InstitutePhoenix Arizona
| | - Madison LaFleur
- Neurogenomics Division, Center for Rare Childhood Disorders (C4RCD)Translational Genomics Research InstitutePhoenix Arizona
| | - Panieh Terraf
- Neurogenomics Division, Center for Rare Childhood Disorders (C4RCD)Translational Genomics Research InstitutePhoenix Arizona
| | - Lorida Llaci
- Neurogenomics Division, Center for Rare Childhood Disorders (C4RCD)Translational Genomics Research InstitutePhoenix Arizona
| | - Matt De Both
- Neurogenomics Division, Center for Rare Childhood Disorders (C4RCD)Translational Genomics Research InstitutePhoenix Arizona
| | - Ignazio S. Piras
- Neurogenomics Division, Center for Rare Childhood Disorders (C4RCD)Translational Genomics Research InstitutePhoenix Arizona
| | - Sampathkumar Rangasamy
- Neurogenomics Division, Center for Rare Childhood Disorders (C4RCD)Translational Genomics Research InstitutePhoenix Arizona
| | - Isabelle Schrauwen
- Neurogenomics Division, Center for Rare Childhood Disorders (C4RCD)Translational Genomics Research InstitutePhoenix Arizona
- Department of Molecular and Human Genetics, Center for Statistical GeneticsBaylor College of MedicineHouston Texas
| | - David W. Craig
- Neurogenomics Division, Center for Rare Childhood Disorders (C4RCD)Translational Genomics Research InstitutePhoenix Arizona
- Department of Translational GenomicsKeck School of Medicine of USCLos Angeles California
| | - Matt Huentelman
- Neurogenomics Division, Center for Rare Childhood Disorders (C4RCD)Translational Genomics Research InstitutePhoenix Arizona
| | - Vinodh Narayanan
- Neurogenomics Division, Center for Rare Childhood Disorders (C4RCD)Translational Genomics Research InstitutePhoenix Arizona
| |
Collapse
|
27
|
Shi M, Zhang H, Wu X, He Z, Wang L, Yin S, Tian B, Li G, Cheng H. ALYREF mainly binds to the 5' and the 3' regions of the mRNA in vivo. Nucleic Acids Res 2017; 45:9640-9653. [PMID: 28934468 PMCID: PMC5766156 DOI: 10.1093/nar/gkx597] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 07/04/2017] [Indexed: 12/04/2022] Open
Abstract
The TREX complex (TREX) plays key roles in nuclear export of mRNAs. However, little is known about its transcriptome-wide binding targets. We used individual cross-linking and immunoprecipitation (iCLIP) to identify the binding sites of ALYREF, an mRNA export adaptor in TREX, in human cells. Consistent with previous in vitro studies, ALYREF binds to a region near the 5′ end of the mRNA in a CBP80-dependent manner. Unexpectedly, we identified PABPN1-dependent ALYREF binding near the 3′ end of the mRNA. Furthermore, the 3′ processing factor CstF64 directly interacts with ALYREF and is required for the overall binding of ALYREF on the mRNA. In addition, we found that numerous middle exons harbor ALYREF binding sites and identified ALYREF-binding motifs that promote nuclear export of intronless mRNAs. Together, our study defines enrichment of ALYREF binding sites at the 5′ and the 3′ regions of the mRNA in vivo, identifies export-promoting ALYREF-binding motifs, and reveals CstF64- and PABPN1-mediated coupling of mRNA nuclear export to 3′ processing.
Collapse
Affiliation(s)
- Min Shi
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Heng Zhang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xudong Wu
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zhisong He
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Lantian Wang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shanye Yin
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Bin Tian
- Departartment of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Guohui Li
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Hong Cheng
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
28
|
Gu M, Cosenza G, Nicolae I, Bota A, Guo Y, Di Stasio L, Pauciullo A. Transcript analysis at DGAT1 reveals different mRNA profiles in river buffaloes with extreme phenotypes for milk fat. J Dairy Sci 2017; 100:8265-8276. [PMID: 28780112 DOI: 10.3168/jds.2017-12771] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 06/13/2017] [Indexed: 11/19/2022]
Abstract
Buffalo DGAT1 (diacylglycerol O-acyltransferase 1) was mainly investigated for the characterization of the gene itself and for the identification of the K232A polymorphism, similar to what has been accomplished in cattle, although no information has been reported so far at the mRNA level. The importance of DGAT1 for lipid metabolism led us to investigate the transcript profiles of lactating buffaloes characterized as high (9.13 ± 0.23) and low (7.94 ± 0.29) for milk fat percentage, and to explore the genetic diversity at the RNA and DNA level. A total of 336 positive clones for the DGAT1 cDNA were analyzed by PCR and chosen for sequencing according to the differences in length. The clone assembling revealed a very complex mRNA pattern with a total of 21 transcripts differently represented in the 2 groups of animals. Apart from the correct transcript (17 exons long), the skipping of exon 12 is the most significant in terms of distribution of clones with 11.6% difference between the 2 groups, whereas a totally different mRNA profile was found in approximately 12% of clones. The sequencing of genomic DNA allowed the identification of 10 polymorphic sites at the intron level, which clarify, at least partially, the genetic events behind the production of complex mRNA. Genetic diversity was found also at the exon level. The single nucleotide polymorphism c.1053C>T represents the first example of polymorphism in a coding region for the DGAT1 in the Italian Mediterranean breed. To establish whether this polymorphism is present in other buffalo breeds, a quick method based on PCR-RFLP was set up for allelic discrimination in the Italian Mediterranean and the Romanian Murrah (200 animals in total). The alleles were equally represented in the overall population, whereas the analysis of the 2 breeds showed different frequencies, likely indicating diverse genetic structure of the 2 breeds. The T allele might be considered as the ancestral condition of the DGAT1 gene, being present in the great part of the sequenced species. These data add knowledge at the transcript and genetic levels for the buffalo DGAT1 and open the opportunity for further investigation of other genes involved in milk fat metabolism for the river buffalo, including the future possibility of selecting alleles with quantitative or qualitative favorable effects (or both).
Collapse
Affiliation(s)
- M Gu
- Department of Agricultural, Forest and Food Science, University of Torino, 10095 Grugliasco (TO), Italy; College of Animal Science and Technology, Beijing University of Agriculture, 102206 Beijing, China
| | - G Cosenza
- Department of Agricultural Sciences, University of Naples "Federico II", 80055 Portici (NA), Italy
| | - I Nicolae
- Research and Development Institute for Bovine Breeding, Balotesti, 077015 Bucharest, Romania
| | - A Bota
- Research and Development Station for Buffalo Breeding, 507195 Şercaia, Romania
| | - Y Guo
- College of Animal Science and Technology, Beijing University of Agriculture, 102206 Beijing, China
| | - L Di Stasio
- Department of Agricultural, Forest and Food Science, University of Torino, 10095 Grugliasco (TO), Italy
| | - A Pauciullo
- Department of Agricultural, Forest and Food Science, University of Torino, 10095 Grugliasco (TO), Italy.
| |
Collapse
|
29
|
Lee ES, Palazzo AF. Assessing mRNA nuclear export in mammalian cells by microinjection. Methods 2017; 126:76-85. [DOI: 10.1016/j.ymeth.2017.05.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 05/23/2017] [Accepted: 05/29/2017] [Indexed: 11/17/2022] Open
|
30
|
Woodley DT, Cogan J, Hou Y, Lyu C, Marinkovich MP, Keene D, Chen M. Gentamicin induces functional type VII collagen in recessive dystrophic epidermolysis bullosa patients. J Clin Invest 2017; 127:3028-3038. [PMID: 28691931 DOI: 10.1172/jci92707] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 05/16/2017] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Recessive dystrophic epidermolysis bullosa (RDEB) is an incurable disease caused by mutations in the gene encoding type VII collagen, the major component of anchoring fibrils (AF). We previously demonstrated that gentamicin produced functional type VII collagen in RDEB cells harboring nonsense mutations. Herein, we determined whether topical or intradermal gentamicin administration induces type VII collagen and AFs in RDEB patients. METHODS A double-blind, placebo-controlled pilot trial assessed safety and efficacy of topical and intradermal gentamicin in 5 RDEB patients with nonsense mutations. The topical arm tested 0.1% gentamicin ointment or placebo application 3 times daily at 2 open erosion sites for 2 weeks. The intradermal arm tested daily intradermal injection of gentamicin solution (8 mg) or placebo into 2 intact skin sites for 2 days in 4 of 5 patients. Primary outcomes were induction of type VII collagen and AFs at the test sites and safety assessment. A secondary outcome assessed wound closure of topically treated erosions. RESULTS Both topical and intradermal gentamicin administration induced type VII collagen and AFs at the dermal-epidermal junction of treatment sites. Newly created type VII collagen varied from 20% to 165% of that expressed in normal human skin and persisted for 3 months. Topical gentamicin corrected dermal-epidermal separation, improved wound closure, and reduced blister formation. There were no untoward side effects from gentamicin treatments. Type VII collagen induction did not generate anti-type VII collagen autoantibodies in patients' blood or skin. CONCLUSION Topical and intradermal gentamicin suppresses nonsense mutations and induces type VII collagen and AFs in RDEB patients. Gentamicin therapy may provide a readily available treatment for RDEB patients with nonsense mutations. TRIAL REGISTRATION ClinicalTrials.gov NCT02698735. FUNDING Epidermolysis Bullosa Research Partnership, Epidermolysis Bullosa Medical Research Foundation, NIH, and VA Merit Award.
Collapse
Affiliation(s)
- David T Woodley
- Department of Dermatology, The Keck School of Medicine, University of Southern California (USC), Los Angeles, California, USA
| | - Jon Cogan
- Department of Dermatology, The Keck School of Medicine, University of Southern California (USC), Los Angeles, California, USA
| | - Yingping Hou
- Department of Dermatology, The Keck School of Medicine, University of Southern California (USC), Los Angeles, California, USA
| | - Chao Lyu
- Department of Dermatology, The Keck School of Medicine, University of Southern California (USC), Los Angeles, California, USA
| | - M Peter Marinkovich
- Department of Dermatology, Stanford University School of Medicine, Stanford, California, USA.,Dermatology, Veteran's Affairs Medical Center, Palo Alto, California, USA
| | - Douglas Keene
- Shriners Hospital for Children, Portland, Oregon, USA
| | - Mei Chen
- Department of Dermatology, The Keck School of Medicine, University of Southern California (USC), Los Angeles, California, USA
| |
Collapse
|
31
|
Urbanek MO, Krzyzosiak WJ. Discriminating RNA variants with single-molecule allele-specific FISH. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2017; 773:230-241. [DOI: 10.1016/j.mrrev.2016.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 09/12/2016] [Accepted: 09/13/2016] [Indexed: 10/21/2022]
|