1
|
Cordeiro R, Oliveira D, Santo D, Coelho J, Faneca H. Mesoporous silica-glycopolymer hybrid nanoparticles for dual targeted chemotherapy and gene therapy to liver cancer cells. Int J Pharm 2025; 675:125553. [PMID: 40187702 DOI: 10.1016/j.ijpharm.2025.125553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 03/13/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
The development of nanocarriers for pharmaceutical applications is a challenging research field as they have to fulfil several requirements, such as suitable physicochemical properties, biocompatibility, loading capacity for therapeutic agents, high stability in the bloodstream, and specific delivery to the target cells. This task becomes even more difficult when trying to transport two different therapeutic agents simultaneously, as is required by most of the current therapeutic strategies. Mesoporous silica nanoparticles (MSN) fulfil most of these requirements, although they partially fail in the last two. However, these weaknesses can be circumvented if they are combined with another type of material such as polymers. In this context, the main goal of this research work was to develop MSN-based nanocarriers capable to co-transport drugs and nucleic acids and to specifically deliver them in liver cancer cells. To this end, we have prepared MSNs coated with lactobionic acid-based copolymers, as lactobionic acid has a high binding affinity to asialoglycoprotein receptors (ASGPR), which are overexpressed in liver cells. The designed hybrid MSN-based nanocarriers exhibited appropriate physicochemical properties, high ASGPR specificity and high biological activity. These MSN-glycopolymer hybrid nanosystems showed a 280-fold higher transfection activity in liver cancer cells than bare MSN particles. Furthermore, we demonstrated the ability of these nanosystems to efficiently mediate a combined antitumor strategy involving HSV-TK/GCV suicide gene therapy and chemotherapy (epirubicin), in liver cancer cells. Overall, the data obtained showed the great potential of this MSN-based nanoplatform to be applied in combined therapeutic strategies for the treatment of liver cancer.
Collapse
Affiliation(s)
- Rosemeyre Cordeiro
- CNC-UC, Center for Neuroscience and Cell Biology, University of Coimbra 3004-504 Coimbra, Portugal; Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
| | - Daniel Oliveira
- CNC-UC, Center for Neuroscience and Cell Biology, University of Coimbra 3004-504 Coimbra, Portugal
| | - Daniela Santo
- CNC-UC, Center for Neuroscience and Cell Biology, University of Coimbra 3004-504 Coimbra, Portugal; Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal; Centre for Mechanical Engineering, Materials and Processes, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima - Pólo II, 3030-790 Coimbra, Portugal
| | - Jorge Coelho
- Centre for Mechanical Engineering, Materials and Processes, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima - Pólo II, 3030-790 Coimbra, Portugal; IPN, Instituto Pedro Nunes, Associação para a Inovação e Desenvolvimento em Ciência e Tecnologia, Rua Pedro Nunes, 3030-199 Coimbra, Portugal
| | - Henrique Faneca
- CNC-UC, Center for Neuroscience and Cell Biology, University of Coimbra 3004-504 Coimbra, Portugal; Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
2
|
Hetrick B, Siddiqui S, Spear M, Guo J, Liang H, Fu Y, Yang Z, Doyle-Meyers L, Pahar B, Veazey RS, Dufour J, Andalibi A, Ling B, Wu Y. Suppression of viral rebound by a Rev-dependent lentiviral particle in SIV-infected rhesus macaques. Gene Ther 2025; 32:16-24. [PMID: 39025983 PMCID: PMC11785524 DOI: 10.1038/s41434-024-00467-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 07/03/2024] [Accepted: 07/10/2024] [Indexed: 07/20/2024]
Abstract
Persistence of human immunodeficiency virus (HIV) reservoirs prevents viral eradication, and consequently HIV-infected patients require lifetime treatment with antiretroviral therapy (ART) [1-5]. Currently, there are no effective therapeutics to prevent HIV rebound upon ART cessation. Here we describe an HIV/SIV Rev-dependent lentiviral particle that can be administered to inhibit viral rebound [6-9]. Using simian immunodeficiency virus (SIV)-infected rhesus macaques as a model, we demonstrate that the administration of pre-assembled SIV Rev-dependent lentiviral particles into SIVmac239-infected Indian rhesus macaques can lead to reduction of viral rebound upon ART termination. One of the injected animals, KC50, controlled plasma and CNS viremia to an undetectable level most of the time for over two years after ART termination. Surprisingly, detailed molecular and immunological characterization revealed that viremia control was concomitant with the induction of neutralizing antibodies (nAbs) following the administration of the Rev-dependent vectors. This study emphasizes the importance of neutralizing antibodies (nAbs) for viremia control [10-15], and also provides proof of concept that the Rev-dependent vector can be used to target viral reservoirs, including the CNS reservoirs, in vivo. However, future large-scale in vivo studies are needed to understand the potential mechanisms of viremia control induced by the Rev-dependent vector.
Collapse
Affiliation(s)
- Brian Hetrick
- Center for Infectious Disease Research, George Mason University, Manassas, VA, 20110, USA
| | - Summer Siddiqui
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, 70433, USA
| | - Mark Spear
- Center for Infectious Disease Research, George Mason University, Manassas, VA, 20110, USA
| | - Jia Guo
- Center for Infectious Disease Research, George Mason University, Manassas, VA, 20110, USA
| | - Huizhi Liang
- Center for Infectious Disease Research, George Mason University, Manassas, VA, 20110, USA
| | - Yajing Fu
- Center for Infectious Disease Research, George Mason University, Manassas, VA, 20110, USA
| | - Zhijun Yang
- Center for Infectious Disease Research, George Mason University, Manassas, VA, 20110, USA
| | - Lara Doyle-Meyers
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, 70433, USA
| | - Bapi Pahar
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, 70433, USA
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Ronald S Veazey
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, 70433, USA
| | - Jason Dufour
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, 70433, USA
| | - Ali Andalibi
- Center for Infectious Disease Research, George Mason University, Manassas, VA, 20110, USA
| | - Binhua Ling
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, 70433, USA
- Host-Pathogen Interaction Program, Texas Biomedical Research Institute, 8715 W Military Dr., San Antonio, TX, 78227, USA
| | - Yuntao Wu
- Center for Infectious Disease Research, George Mason University, Manassas, VA, 20110, USA.
| |
Collapse
|
3
|
Day IL, Tamboline M, Lipshutz GS, Xu S. Recent developments in translational imaging of in vivo gene therapy outcomes. Mol Ther 2024:S1525-0016(24)00849-9. [PMID: 39741403 DOI: 10.1016/j.ymthe.2024.12.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/18/2024] [Accepted: 12/27/2024] [Indexed: 01/03/2025] Open
Abstract
Gene therapy achieves therapeutic benefits by delivering genetic materials, packaged within a delivery vehicle, to target cells with defective genes. This approach has shown promise in treating various conditions, including cancer, metabolic disorders, and tissue-degenerative diseases. Over the past 5 years, molecular imaging has increasingly supported gene therapy development in both preclinical and clinical studies. High-quality images from positron emission tomography (PET), single-photon emission computed tomography (SPECT), magnetic resonance imaging (MRI), and computed tomography (CT) enable quantitative and reliable monitoring of gene therapy. Most reported studies have applied imaging biomarkers to non-invasively evaluate the outcomes of gene therapy. This review aims to inform researchers in molecular imaging and gene therapy about the integration of these two disciplines. We highlight recent developments in using imaging biomarkers to monitor the outcome of in vivo gene therapy, where the therapeutic delivery vehicle is administered systemically. In addition, we discuss prospects for further incorporating imaging biomarkers to support the development and application of gene therapy.
Collapse
Affiliation(s)
- Isabel L Day
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Crump Institute for Molecular Imaging, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Mikayla Tamboline
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Crump Institute for Molecular Imaging, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Gerald S Lipshutz
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Intellectual and Developmental Disabilities Research Center, University of California, Los Angeles, Los Angeles, CA 90095, USA; Semel Institute for Neuroscience, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Shili Xu
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Crump Institute for Molecular Imaging, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
4
|
Abo Qoura L, Morozova E, Ramaa СS, Pokrovsky VS. Smart nanocarriers for enzyme-activated prodrug therapy. J Drug Target 2024; 32:1029-1051. [PMID: 39045650 DOI: 10.1080/1061186x.2024.2383688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/26/2024] [Accepted: 07/17/2024] [Indexed: 07/25/2024]
Abstract
Exogenous enzyme-activated prodrug therapy (EPT) is a potential cancer treatment strategy that delivers non-human enzymes into or on the surface of the cell and subsequently converts a non-toxic prodrug into an active cytotoxic substance at a specific location and time. The development of several pharmacological pairs based on EPT has been the focus of anticancer research for more than three decades. Numerous of these pharmacological pairs have progressed to clinical trials, and a few have achieved application in specific cancer therapies. The current review highlights the potential of enzyme-activated prodrug therapy as a promising anticancer treatment. Different microbial, plant, or viral enzymes and their corresponding prodrugs that advanced to clinical trials have been listed. Additionally, we discuss new trends in the field of enzyme-activated prodrug nanocarriers, including nanobubbles combined with ultrasound (NB/US), mesoscopic-sized polyion complex vesicles (PICsomes), nanoparticles, and extracellular vesicles (EVs), with special emphasis on smart stimuli-triggered drug release, hybrid nanocarriers, and the main application of nanotechnology in improving prodrugs.
Collapse
Affiliation(s)
- Louay Abo Qoura
- Research Institute of Molecular and Cellular Medicine, People's Friendship University of Russia (RUDN University), Moscow, Russia
- Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Elena Morozova
- Engelhardt Institute of Molecular Biology of the, Russian Academy of Sciences, Moscow, Russia
| | - С S Ramaa
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth's College of Pharmacy, Mumbai, India
| | - Vadim S Pokrovsky
- Research Institute of Molecular and Cellular Medicine, People's Friendship University of Russia (RUDN University), Moscow, Russia
- Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
5
|
Wang H, Xie M. Overcoming drug-resistant tumors with selection gene drives. CELL GENOMICS 2024; 4:100653. [PMID: 39265528 PMCID: PMC11480841 DOI: 10.1016/j.xgen.2024.100653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/14/2024]
Abstract
Drug resistance is a major hurdle prohibiting effective treatment of many diseases, including cancer. Using model-guided designs, Leighow et al.1 engineered a dual-switch selection gene drive system custom designed to combat drug-resistant tumors. By demonstrating remarkable killing efficacies in preclinical models using human non-small lung cancer cells in vitro and in mice, this work describes an attractive mindset to develop next-generation anticancer therapies.
Collapse
Affiliation(s)
- Hui Wang
- Research Center for Life Sciences Computing, Zhejiang Lab, Hangzhou 311100, Zhejiang, China
| | - Mingqi Xie
- School of Medicine, Westlake University, Hangzhou 310024, Zhejiang, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang, China; School of Engineering, Westlake University, Hangzhou 310030, Zhejiang, China.
| |
Collapse
|
6
|
Russell GC, Hamzaoui Y, Rho D, Sutrave G, Choi JS, Missan DS, Reckard GA, Gustafson MP, Kim GB. Synthetic biology approaches for enhancing safety and specificity of CAR-T cell therapies for solid cancers. Cytotherapy 2024; 26:842-857. [PMID: 38639669 DOI: 10.1016/j.jcyt.2024.03.484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/20/2024]
Abstract
CAR-T cell therapies have been successful in treating numerous hematologic malignancies as the T cell can be engineered to target a specific antigen associated with the disease. However, translating CAR-T cell therapies for solid cancers is proving more challenging due to the lack of truly tumor-associated antigens and the high risk of off-target toxicities. To combat this, numerous synthetic biology mechanisms are being incorporated to create safer and more specific CAR-T cells that can be spatiotemporally controlled with increased precision. Here, we seek to summarize and analyze the advancements for CAR-T cell therapies with respect to clinical implementation, from the perspective of synthetic biology and immunology. This review should serve as a resource for further investigation and growth within the field of personalized cellular therapies.
Collapse
Affiliation(s)
- Grace C Russell
- Department of Physiology and Biomedical Engineering, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| | - Yassin Hamzaoui
- Department of Physiology and Biomedical Engineering, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| | - Daniel Rho
- Department of Physiology and Biomedical Engineering, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| | - Gaurav Sutrave
- The University of Sydney, Sydney, Australia; Department of Haematology, Westmead Hospital, Sydney, Australia; Immuno & Gene Therapy Committee, International Society for Cell and Gene Therapy, Vancouver, Canada
| | - Joseph S Choi
- Department of Physiology and Biomedical Engineering, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| | - Dara S Missan
- Department of Laboratory Medicine and Pathology, Mayo Clinic Arizona, Phoenix, Arizona, USA
| | - Gabrielle A Reckard
- Department of Laboratory Medicine and Pathology, Mayo Clinic Arizona, Phoenix, Arizona, USA
| | - Michael P Gustafson
- Immuno & Gene Therapy Committee, International Society for Cell and Gene Therapy, Vancouver, Canada; Department of Laboratory Medicine and Pathology, Mayo Clinic Arizona, Phoenix, Arizona, USA; Department of Immunology, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| | - Gloria B Kim
- Department of Physiology and Biomedical Engineering, Mayo Clinic Arizona, Scottsdale, Arizona, USA; Department of Immunology, Mayo Clinic Arizona, Scottsdale, Arizona, USA.
| |
Collapse
|
7
|
Xiao R, Jin H, Huang F, Huang B, Wang H, Wang YG. Oncolytic virotherapy for hepatocellular carcinoma: A potent immunotherapeutic landscape. World J Gastrointest Oncol 2024; 16:2867-2876. [PMID: 39072175 PMCID: PMC11271782 DOI: 10.4251/wjgo.v16.i7.2867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/24/2024] [Accepted: 05/13/2024] [Indexed: 07/12/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a systemic disease with augmented malignant degree, high mortality and poor prognosis. Since the establishment of the immune mechanism of tumor therapy, people have realized that immunotherapy is an effective means for improvement of HCC patient prognosis. Oncolytic virus is a novel immunotherapy drug, which kills tumor cells and exempts normal cells by directly lysing tumor and inducing anti-tumor immune response, and it has been extensively examined as an HCC therapy. This editorial discusses oncolytic viruses for the treatment of HCC, emphasizing viral immunotherapy strategies and clinical applications related to HCC.
Collapse
Affiliation(s)
- Rong Xiao
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang Province, China
| | - Hao Jin
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang Province, China
| | - Fang Huang
- Department of Pathology, Laboratory Medicine Center, Zhejiang Provincial Peoples’ Hospital, Peoples’ Hospital of Hangzhou Medical College, Hangzhou 310014, Zhejiang Province, China
| | - Biao Huang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang Province, China
| | - Hui Wang
- Department of Oncology, Zhejiang Xiaoshan Hospital, Hangzhou 310018, Zhejiang Province, China
| | - Yi-Gang Wang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang Province, China
| |
Collapse
|
8
|
Leighow SM, Reynolds JA, Sokirniy I, Yao S, Yang Z, Inam H, Wodarz D, Archetti M, Pritchard JR. Programming tumor evolution with selection gene drives to proactively combat drug resistance. Nat Biotechnol 2024:10.1038/s41587-024-02271-7. [PMID: 38965430 DOI: 10.1038/s41587-024-02271-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 05/06/2024] [Indexed: 07/06/2024]
Abstract
Most targeted anticancer therapies fail due to drug resistance evolution. Here we show that tumor evolution can be reproducibly redirected to engineer therapeutic opportunity, regardless of the exact ensemble of pre-existing genetic heterogeneity. We develop a selection gene drive system that is stably introduced into cancer cells and is composed of two genes, or switches, that couple an inducible fitness advantage with a shared fitness cost. Using stochastic models of evolutionary dynamics, we identify the design criteria for selection gene drives. We then build prototypes that harness the selective pressure of multiple approved tyrosine kinase inhibitors and employ therapeutic mechanisms as diverse as prodrug catalysis and immune activity induction. We show that selection gene drives can eradicate diverse forms of genetic resistance in vitro. Finally, we demonstrate that model-informed switch engagement effectively targets pre-existing resistance in mouse models of solid tumors. These results establish selection gene drives as a powerful framework for evolution-guided anticancer therapy.
Collapse
Affiliation(s)
- Scott M Leighow
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, USA
- Huck Institute For The Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Joshua A Reynolds
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Ivan Sokirniy
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, USA
- Huck Institute For The Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Shun Yao
- Huck Institute For The Life Sciences, The Pennsylvania State University, University Park, PA, USA
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
| | - Zeyu Yang
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Haider Inam
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Dominik Wodarz
- Department of Biology, University of California San Diego, San Diego, CA, USA
| | - Marco Archetti
- Huck Institute For The Life Sciences, The Pennsylvania State University, University Park, PA, USA
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
| | - Justin R Pritchard
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, USA.
- Huck Institute For The Life Sciences, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
9
|
Murshed A, Alnoud MAH, Ahmad S, Khan SU, Alissa M, Alsuwat MA, Ahmed AE, Khan MU. Genetic Alchemy unveiled: MicroRNA-mediated gene therapy as the Artisan craft in the battlefront against hepatocellular carcinoma-a comprehensive chronicle of strategies and innovations. Front Genet 2024; 15:1356972. [PMID: 38915826 PMCID: PMC11194743 DOI: 10.3389/fgene.2024.1356972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 05/03/2024] [Indexed: 06/26/2024] Open
Abstract
Investigating therapeutic miRNAs is a rewarding endeavour for pharmaceutical companies. Since its discovery in 1993, our understanding of miRNA biology has advanced significantly. Numerous studies have emphasised the disruption of miRNA expression in various diseases, making them appealing candidates for innovative therapeutic approaches. Hepatocellular carcinoma (HCC) is a significant malignancy that poses a severe threat to human health, accounting for approximately 70%-85% of all malignant tumours. Currently, the efficacy of several HCC therapies is limited. Alterations in various biomacromolecules during HCC progression and their underlying mechanisms provide a basis for the investigation of novel and effective therapeutic approaches. MicroRNAs, also known as miRNAs, have been identified in the last 20 years and significantly impact gene expression and protein translation. This atypical expression pattern is strongly associated with the onset and progression of various malignancies. Gene therapy, a novel form of biological therapy, is a prominent research area. Therefore, miRNAs have been used in the investigation of tumour gene therapy. This review examines the mechanisms of action of miRNAs, explores the correlation between miRNAs and HCC, and investigates the use of miRNAs in HCC gene therapy.
Collapse
Affiliation(s)
- Abduh Murshed
- Department of Intensive Care Unit, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Mohammed A. H. Alnoud
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Saleem Ahmad
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Safir Ullah Khan
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Mohammed Alissa
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Meshari A. Alsuwat
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Ahmed Ezzat Ahmed
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
- Prince Sultan Bin Abdelaziz for Environmental Research and Natural Resources Sustainability Center, King Khalid University, Abha, Saudi Arabia
| | - Munir Ullah Khan
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for XPolymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| |
Collapse
|
10
|
Naing C, Ni H, Aung HH, Htet NH, Nikolova D. Gene therapy for people with hepatocellular carcinoma. Cochrane Database Syst Rev 2024; 6:CD013731. [PMID: 38837373 PMCID: PMC11152182 DOI: 10.1002/14651858.cd013731.pub2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
BACKGROUND Hepatocellular carcinoma is the most common type of liver cancer, accounting for 70% to 85% of individuals with primary liver cancer. Gene therapy, which uses genes to treat or prevent diseases, holds potential for treatment, especially for tumours. Trials on the effects of gene therapy in people with hepatocellular carcinoma have been published or are ongoing. OBJECTIVES To evaluate the benefits and harms of gene therapy in people with hepatocellular carcinoma, irrespective of sex, administered dose, and type of formulation. SEARCH METHODS We identified randomised clinical trials through electronic searches in The Cochrane Hepato-Biliary Group Controlled Trials Register, CENTRAL, MEDLINE, Embase, LILACS, Science Citation Index Expanded, and Conference Proceedings Citation Index-Science. We searched five online clinical trial registries to identify unpublished or ongoing trials. We checked reference lists of the retrieved studies for further trials. The date of last search was 20 January 2023. SELECTION CRITERIA We aimed to include randomised clinical trials assessing any type of gene therapy in people diagnosed with hepatocellular carcinoma, irrespective of year, language of publication, format, or outcomes reported. DATA COLLECTION AND ANALYSIS We followed Cochrane methodology and used Review Manager to prepare the review. The primary outcomes were all-cause mortality/overall survival (whatever data were provided), serious adverse events during treatment, and health-related quality of life. The secondary outcomes were proportion of people with disease progression, adverse events considered non-serious, and proportion of people without improvement in liver function tests. We assessed risk of bias of the included trials using RoB 2 and the certainty of evidence using GRADE. We presented the results of time-to-event outcomes as hazard ratios (HR), dichotomous outcomes as risk ratios (RR), and continuous outcomes as mean difference (MD) with their 95% confidence intervals (CI). Our primary analyses were based on intention-to-treat and outcome data at the longest follow-up. MAIN RESULTS We included six randomised clinical trials with 364 participants. The participants had unresectable (i.e. advanced inoperable) hepatocellular carcinoma. We found no trials assessing the effects of gene therapy in people with operable hepatocellular carcinoma. Four trials were conducted in China, one in several countries (from North America, Asia, and Europe), and one in Egypt. The number of participants in the six trials ranged from 10 to 129 (median 47), median age was 55.2 years, and the mean proportion of males was 72.7%. The follow-up duration ranged from six months to five years. As the trials compared different types of gene therapy and had different controls, we could not perform meta-analyses. Five of the six trials administered co-interventions equally to the experimental and control groups. All trials assessed one or more outcomes of interest in this review. The certainty of evidence was very low in five of the six comparisons and low in the double-dose gene therapy comparison. Below, we reported the results of the primary outcomes only. Pexastimogene devacirepvec (Pexa-Vec) plus best supportive care versus best supportive care alone There is uncertainty about whether there may be little to no difference between the effect of Pexa-Vec plus best supportive care compared with best supportive care alone on overall survival (HR 1.19, 95% CI 0.78 to 1.82; 1 trial (censored observation at 20-month follow-up), 129 participants; very low-certainty evidence) and on serious adverse events (RR 1.42, 95% CI 0.60 to 3.33; 1 trial at 20 months after treatment, 129 participants; very low-certainty evidence). The trial reported quality of life narratively as "assessment of quality of life and time to symptomatic progression was confounded by the high patient dropout rate." Adenovirus-thymidine kinase with ganciclovir (ADV-TK/GCV) plus liver transplantation versus liver transplantation alone There is uncertainty about whether ADV-TK/GCV plus liver transplantation may benefit all-cause mortality at the two-year follow-up (RR 0.39, 95% CI 0.20 to 0.76; 1 trial, 45 participants; very low-certainty evidence). The trial did not report serious adverse events other than mortality or quality of life. Double-dose ADV-TK/GCV plus liver transplantation versus liver transplantation alone There is uncertainty about whether double-dose ADV-TK/GCV plus liver transplantation versus liver transplantation may benefit all-cause mortality at five-year follow-up (RR 0.40, 95% CI 0.22 to 0.73; 1 trial, 86 participants; low-certainty evidence). The trial did not report serious adverse events other than mortality or quality of life. Recombinant human adenovirus-p53 with hydroxycamptothecin (rAd-p53/HCT) versus hydroxycamptothecin alone There is uncertainty about whether there may be little to no difference between the effect of rAd-p53/HCT versus hydroxycamptothecin alone on the overall survival at 12-month follow-up (RR 3.06, 95% CI 0.16 to 60.47; 1 trial, 48 participants; very low-certainty evidence). The trial did not report serious adverse events or quality of life. rAd-p53/5-Fu (5-fluorouracil) plus transarterial chemoembolisation versus transarterial chemoembolisation alone The trial included 46 participants. We had insufficient data to assess overall survival. The trial did not report serious adverse events or quality of life. E1B-deleted (dl1520) adenovirus versus percutaneous ethanol injection The trial included 10 participants. It did not report data on overall survival, serious adverse events, or health-related quality of life. One trial did not provide any information on sponsorship; one trial received a national research grant, one trial by the Pedersen foundation, and three were industry-funded trials. We found five ongoing randomised clinical trials. AUTHORS' CONCLUSIONS The evidence is very uncertain about the effects of gene therapy on the studied outcomes because of high risk of bias and imprecision of outcome results. The trials were underpowered and lacked trial data on clinically important outcomes. There was only one trial per comparison, and we could not perform meta-analyses. Therefore, we do not know if gene therapy may reduce, increase, or have little to no effect on all-cause mortality or overall survival, or serious adverse events in adults with unresectable hepatocellular carcinoma. The impact of gene therapy on adverse events needs to be investigated further. Evidence on the effect of gene therapy on health-related quality of life is lacking.
Collapse
Affiliation(s)
- Cho Naing
- Division of Tropical Health and Medicine, James Cook University, Queensland, Australia
| | - Han Ni
- Department of Medicine, Newcastle University Medicine Malaysia, Johor, Malaysia
| | - Htar Htar Aung
- School of Medicine, IMU University, Kuala Lumpur, Malaysia
| | | | - Dimitrinka Nikolova
- Cochrane Hepato-Biliary Group, Copenhagen Trial Unit, Centre for Clinical Intervention Research, The Capital Region, Copenhagen University Hospital ─ Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
11
|
Yue NN, Xu HM, Xu J, Zhu MZ, Zhang Y, Tian CM, Nie YQ, Yao J, Liang YJ, Li DF, Wang LS. Therapeutic potential of gene therapy for gastrointestinal diseases: Advancements and future perspectives. Mol Ther Oncolytics 2023; 30:193-215. [PMID: 37663132 PMCID: PMC10471515 DOI: 10.1016/j.omto.2023.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023] Open
Abstract
Advancements in understanding the pathogenesis mechanisms underlying gastrointestinal diseases, encompassing inflammatory bowel disease, gastrointestinal cancer, and gastroesophageal reflux disease, have led to the identification of numerous novel therapeutic targets. These discoveries have opened up exciting possibilities for developing gene therapy strategies to treat gastrointestinal diseases. These strategies include gene replacement, gene enhancement, gene overexpression, gene function blocking, and transgenic somatic cell transplantation. In this review, we introduce the important gene therapy targets and targeted delivery systems within the field of gastroenterology. Furthermore, we provide a comprehensive overview of recent progress in gene therapy related to gastrointestinal disorders and shed light on the application of innovative gene-editing technologies in treating these conditions. These developments are fueling a revolution in the management of gastrointestinal diseases. Ultimately, we discuss the current challenges (particularly regarding safety, oral efficacy, and cost) and explore potential future directions for implementing gene therapy in the clinical settings for gastrointestinal diseases.
Collapse
Affiliation(s)
- Ning-ning Yue
- Department of Gastroenterology, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University), Shenzhen 518000, China
| | - Hao-ming Xu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou 510000, China
| | - Jing Xu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou 510000, China
| | - Min-zheng Zhu
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510000, China
| | - Yuan Zhang
- Department of Medical Administration, Huizhou Institute of Occupational Diseases Control and Prevention, Huizhou, Guangdong 516000, China
| | - Cheng-Mei Tian
- Department of Emergency, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University, the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518000, China
| | - Yu-qiang Nie
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou 510000, China
| | - Jun Yao
- Department of Gastroenterology, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University, the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518000, China
| | - Yu-jie Liang
- Department of Child and Adolescent Psychiatry, Shenzhen Kangning Hospital, Shenzhen 518000, China
| | - De-feng Li
- Department of Gastroenterology, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University, the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518000, China
| | - Li-sheng Wang
- Department of Gastroenterology, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University, the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518000, China
| |
Collapse
|
12
|
Thoidingjam S, Sriramulu S, Freytag S, Brown SL, Kim JH, Chetty IJ, Siddiqui F, Movsas B, Nyati S. Oncolytic virus-based suicide gene therapy for cancer treatment: a perspective of the clinical trials conducted at Henry Ford Health. TRANSLATIONAL MEDICINE COMMUNICATIONS 2023; 8:11. [PMID: 37065938 PMCID: PMC10088621 DOI: 10.1186/s41231-023-00144-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
Gene therapy manipulates or modifies a gene that provides a new cellular function to treat or correct a pathological condition, such as cancer. The approach of using gene manipulation to modify patient's cells to improve cancer therapy and potentially find a cure is gaining popularity. Currently, there are 12 gene therapy products approved by US-FDA, EMA and CFDA for cancer management, these include Rexin-G, Gendicine, Oncorine, Provange among other. The Radiation Biology Research group at Henry Ford Health has been actively developing gene therapy approaches for improving clinical outcome in cancer patients. The team was the first to test a replication-competent oncolytic virus armed with a therapeutic gene in humans, to combine this approach with radiation in humans, and to image replication-competent adenoviral gene expression/activity in humans. The adenoviral gene therapy products developed at Henry Ford Health have been evaluated in more than 6 preclinical studies and evaluated in 9 investigator initiated clinical trials treating more than100 patients. Two phase I clinical trials are currently following patients long term and a phase I trial for recurrent glioma was initiated in November 2022. This systematic review provides an overview of gene therapy approaches and products employed for treating cancer patients including the products developed at Henry Ford Health.
Collapse
Affiliation(s)
- Shivani Thoidingjam
- Department of Radiation Oncology, Henry Ford Health, 1 Ford Place, 5D-42, Detroit, MI 48202 USA
| | - Sushmitha Sriramulu
- Department of Radiation Oncology, Henry Ford Health, 1 Ford Place, 5D-42, Detroit, MI 48202 USA
| | - Svend Freytag
- Department of Radiation Oncology, Henry Ford Health, 1 Ford Place, 5D-42, Detroit, MI 48202 USA
| | - Stephen L. Brown
- Department of Radiation Oncology, Henry Ford Health, 1 Ford Place, 5D-42, Detroit, MI 48202 USA
- College of Human Medicine, Michigan State University, East Lansing, MI 48824 USA
| | - Jae Ho Kim
- Department of Radiation Oncology, Henry Ford Health, 1 Ford Place, 5D-42, Detroit, MI 48202 USA
| | - Indrin J. Chetty
- Department of Radiation Oncology, Henry Ford Health, 1 Ford Place, 5D-42, Detroit, MI 48202 USA
| | - Farzan Siddiqui
- Department of Radiation Oncology, Henry Ford Health, 1 Ford Place, 5D-42, Detroit, MI 48202 USA
| | - Benjamin Movsas
- Department of Radiation Oncology, Henry Ford Health, 1 Ford Place, 5D-42, Detroit, MI 48202 USA
- College of Human Medicine, Michigan State University, East Lansing, MI 48824 USA
| | - Shyam Nyati
- Department of Radiation Oncology, Henry Ford Health, 1 Ford Place, 5D-42, Detroit, MI 48202 USA
- College of Human Medicine, Michigan State University, East Lansing, MI 48824 USA
| |
Collapse
|
13
|
Araújo NM, Rubio IGS, Toneto NPA, Morale MG, Tamura RE. The use of adenoviral vectors in gene therapy and vaccine approaches. Genet Mol Biol 2022; 45:e20220079. [PMID: 36206378 PMCID: PMC9543183 DOI: 10.1590/1678-4685-gmb-2022-0079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 07/12/2022] [Indexed: 11/04/2022] Open
Abstract
Adenovirus was first identified in the 1950s and since then this pathogenic group
of viruses has been explored and transformed into a genetic transfer vehicle.
Modification or deletion of few genes are necessary to transform it into a
conditionally or non-replicative vector, creating a versatile tool capable of
transducing different tissues and inducing high levels of transgene expression.
In the early years of vector development, the application in monogenic diseases
faced several hurdles, including short-term gene expression and even a fatality.
On the other hand, an adenoviral delivery strategy for treatment of cancer was
the first approved gene therapy product. There is an increasing interest in
expressing transgenes with therapeutic potential targeting the cancer hallmarks,
inhibiting metastasis, inducing cancer cell death or modulating the immune
system to attack the tumor cells. Replicative adenovirus as vaccines may be even
older and date to a few years of its discovery, application of non-replicative
adenovirus for vaccination against different microorganisms has been
investigated, but only recently, it demonstrated its full potential being one of
the leading vaccination tools for COVID-19. This is not a new vector nor a new
technology, but the result of decades of careful and intense work in this
field.
Collapse
Affiliation(s)
- Natália Meneses Araújo
- Universidade Federal de São Paulo, Laboratório de Biologia Molecular
do Câncer, São Paulo, SP, Brazil.
| | - Ileana Gabriela Sanchez Rubio
- Universidade Federal de São Paulo, Laboratório de Biologia Molecular
do Câncer, São Paulo, SP, Brazil. ,Universidade Federal de São Paulo, Departamento de Ciências
Biológicas, Diadema, SP, Brazil. ,Universidade Federal de São Paulo, Laboratório de Ciências
Moleculares da Tireóide, Diadema, SP, Brazil.
| | | | - Mirian Galliote Morale
- Universidade Federal de São Paulo, Laboratório de Biologia Molecular
do Câncer, São Paulo, SP, Brazil. ,Universidade Federal de São Paulo, Departamento de Ciências
Biológicas, Diadema, SP, Brazil. ,Universidade Federal de São Paulo, Laboratório de Ciências
Moleculares da Tireóide, Diadema, SP, Brazil.
| | - Rodrigo Esaki Tamura
- Universidade Federal de São Paulo, Laboratório de Biologia Molecular
do Câncer, São Paulo, SP, Brazil. ,Universidade Federal de São Paulo, Departamento de Ciências
Biológicas, Diadema, SP, Brazil.
| |
Collapse
|
14
|
Oishi T, Ito M, Koizumi S, Horikawa M, Yamamoto T, Yamagishi S, Yamasaki T, Sameshima T, Suzuki T, Sugimura H, Namba H, Kurozumi K. Efficacy of HSV-TK/GCV system suicide gene therapy using SHED expressing modified HSV-TK against lung cancer brain metastases. Mol Ther Methods Clin Dev 2022; 26:253-265. [PMID: 35892087 PMCID: PMC9307584 DOI: 10.1016/j.omtm.2022.07.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/03/2022] [Indexed: 11/29/2022]
Abstract
Lung cancer is one of the most common cancers, and the number of patients with intracranial metastases is increasing. Previously, we developed an enzyme prodrug suicide gene therapy based on the herpes simplex virus thymidine kinase (HSV-TK)/ganciclovir (GCV) system using various mesenchymal stem cells to induce apoptosis in malignant gliomas through bystander killing effects. Here, we describe stem cells from human exfoliated deciduous teeth (SHED) as gene vehicles of the TK/GCV system against a brain metastasis model of non-small cell lung cancer (NSCLC). We introduced the A168H mutant TK (TKA168H) into SHED to establish the therapeutic cells because of the latent toxicity of wild type. SHED expressing TKA168H (SHED-TK) exhibited chemotaxis to the conditioned medium of NSCLC and migrated toward implanted NSCLC in vivo. SHED-TK demonstrated a strong bystander effect in vitro and in vivo and completely eradicated H1299 NSCLC in the brain. SHED-TK cells implanted intratumorally followed by GCV administration significantly suppressed the growth of H1299 and improved survival time. These results indicate that the TKA168H variant is suitable for establishing therapeutic cells and that intratumoral injection of SHED-TK followed by GCV administration may be a useful strategy for therapeutic approaches.
Collapse
Affiliation(s)
- Tomoya Oishi
- Department of Neurosurgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Masahiko Ito
- Department of Virology and Parasitology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Shinichiro Koizumi
- Department of Neurosurgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Makoto Horikawa
- Department of Neurosurgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Taisuke Yamamoto
- Department of Neurosurgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Satoru Yamagishi
- Department of Organ and Tissue Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan.,Preeminent Medical Photonics Education and Research Center, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tomohiro Yamasaki
- Department of Neurosurgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tetsuro Sameshima
- Department of Neurosurgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tetsuro Suzuki
- Department of Virology and Parasitology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Haruhiko Sugimura
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hiroki Namba
- Department of Neurosurgery, Enshu Hospital, Hamamatsu, Japan
| | - Kazuhiko Kurozumi
- Department of Neurosurgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
15
|
Vaughan HJ, Zamboni CG, Hassan LF, Radant NP, Jacob D, Mease RC, Minn I, Tzeng SY, Gabrielson KL, Bhardwaj P, Guo X, Francisco D, Pomper MG, Green JJ. Polymeric nanoparticles for dual-targeted theranostic gene delivery to hepatocellular carcinoma. SCIENCE ADVANCES 2022; 8:eabo6406. [PMID: 35857843 PMCID: PMC9299552 DOI: 10.1126/sciadv.abo6406] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 06/03/2022] [Indexed: 05/29/2023]
Abstract
Hepatocellular carcinoma (HCC) develops predominantly in the inflammatory environment of a cirrhotic liver caused by hepatitis, toxin exposure, or chronic liver disease. A targeted therapeutic approach is required to enable cancer killing without causing toxicity and liver failure. Poly(beta-amino-ester) (PBAE) nanoparticles (NPs) were used to deliver a completely CpG-free plasmid harboring mutant herpes simplex virus type 1 sr39 thymidine kinase (sr39) DNA to human HCC cells. Transfection with sr39 enables cancer cell killing with the prodrug ganciclovir and accumulation of 9-(4-18F-fluoro-3-hydroxymethylbutyl)guanine (18F-FHBG) for in vivo imaging. Targeting was achieved using a CpG-free human alpha fetoprotein (AFP) promoter (CpGf-AFP-sr39). Expression was restricted to AFP-producing HCC cells, enabling selective transfection of orthotopic HCC xenografts. CpGf-AFP-sr39 NP treatment resulted in 62% reduced tumor size, and therapeutic gene expression was detectable by positron emission tomography (PET). This systemic nanomedicine achieved tumor-specific delivery, therapy, and imaging, representing a promising platform for targeted treatment of HCC.
Collapse
Affiliation(s)
- Hannah J. Vaughan
- Department of Biomedical Engineering and the Institute for NanoBioTechnology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Camila G. Zamboni
- Department of Biomedical Engineering and the Institute for NanoBioTechnology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Laboni F. Hassan
- Department of Biomedical Engineering and the Institute for NanoBioTechnology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Nicholas P. Radant
- Department of Biomedical Engineering and the Institute for NanoBioTechnology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Desmond Jacob
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD 21231, USA
| | - Ronnie C. Mease
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD 21231, USA
| | - Il Minn
- Department of Biomedical Engineering and the Institute for NanoBioTechnology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD 21231, USA
| | - Stephany Y. Tzeng
- Department of Biomedical Engineering and the Institute for NanoBioTechnology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Kathleen L. Gabrielson
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Pranshu Bhardwaj
- Department of Biomedical Engineering and the Institute for NanoBioTechnology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Xin Guo
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - David Francisco
- Department of Biomedical Engineering and the Institute for NanoBioTechnology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Martin G. Pomper
- Department of Biomedical Engineering and the Institute for NanoBioTechnology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD 21231, USA
- Department of Materials Science and Engineering and the Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Jordan J. Green
- Department of Biomedical Engineering and the Institute for NanoBioTechnology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Materials Science and Engineering and the Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21231, USA
- Departments of Neurosurgery, Oncology, Ophthalmology, and Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| |
Collapse
|
16
|
Roshani M, Jafari A, Loghman A, Sheida AH, Taghavi T, Tamehri Zadeh SS, Hamblin MR, Homayounfal M, Mirzaei H. Applications of resveratrol in the treatment of gastrointestinal cancer. Biomed Pharmacother 2022; 153:113274. [PMID: 35724505 DOI: 10.1016/j.biopha.2022.113274] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/28/2022] [Accepted: 06/08/2022] [Indexed: 12/15/2022] Open
Abstract
Natural product compounds have lately attracted interest in the scientific community as a possible treatment for gastrointestinal (GI) cancer, due to their anti-inflammatory and anticancer properties. There are many preclinical, clinical, and epidemiological studies, suggesting that the consumption of polyphenol compounds, which are abundant in vegetables, grains, fruits, and pulses, may help to prevent various illnesses and disorders from developing, including several GI cancers. The development of GI malignancies follows a well-known path, in which normal gastrointestinal cells acquire abnormalities in their genetic composition, causing the cells to continuously proliferate, and metastasize to other sites, especially the brain and liver. Natural compounds with the ability to affect oncogenic pathways might be possible treatments for GI malignancies, and could easily be tested in clinical trials. Resveratrol is a non-flavonoid polyphenol and a natural stilbene, acting as a phytoestrogen with anti-cancer, cardioprotective, anti-oxidant, and anti-inflammatory properties. Resveratrol has been shown to overcome resistance mechanisms in cancer cells, and when combined with conventional anticancer drugs, could sensitize cancer cells to chemotherapy. Several new resveratrol analogs and nanostructured delivery vehicles with improved anti-GI cancer efficacy, absorption, and pharmacokinetic profiles have already been developed. This present review focuses on the in vitro and in vivo effects of resveratrol on GI cancers, as well as the underlying molecular mechanisms of action.
Collapse
Affiliation(s)
- Mohammad Roshani
- Internal Medicine and Gastroenterology, Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ameneh Jafari
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran; Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Amir Hossein Sheida
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | | | | | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Mina Homayounfal
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
17
|
Chakraborty E, Sarkar D. Emerging Therapies for Hepatocellular Carcinoma (HCC). Cancers (Basel) 2022; 14:2798. [PMID: 35681776 PMCID: PMC9179883 DOI: 10.3390/cancers14112798] [Citation(s) in RCA: 162] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 01/30/2023] Open
Abstract
Hepatocellular carcinoma (HCC) arises from hepatocytes and accounts for 90% of primary liver cancer. According to Global Cancer Incidence, Mortality and Prevalence (GLOBOCAN) 2020, globally HCC is the sixth most common cancer and the third most common cause of cancer-related deaths. Reasons for HCC prognosis remaining dismal are that HCC is asymptomatic in its early stages, leading to late diagnosis, and it is markedly resistant to conventional chemo- and radiotherapy. Liver transplantation is the treatment of choice in early stages, while surgical resection, radiofrequency ablation (RFA) and trans arterial chemoembolization (TACE) are Food and Drug Administration (FDA)-approved treatments for advanced HCC. Additional first line therapy for advanced HCC includes broad-spectrum tyrosine kinase inhibitors (TKIs), such as sorafenib and lenvatinib, as well as a combination of immunotherapy and anti-angiogenesis therapy, namely atezolizumab and bevacizumab. However, these strategies provide nominal extension in the survival curve, cause broad spectrum toxic side effects, and patients eventually develop therapy resistance. Some common mutations in HCC, such as in telomerase reverse transcriptase (TERT), catenin beta 1 (CTNNB1) and tumor protein p53 (TP53) genes, are still considered to be undruggable. In this context, identification of appropriate gene targets and specific gene delivery approaches create the potential of gene- and immune-based therapies for the safe and effective treatment of HCC. This review elaborates on the current status of HCC treatment by focusing on potential gene targets and advanced techniques, such as oncolytic viral vectors, nanoparticles, chimeric antigen receptor (CAR)-T cells, immunotherapy, and clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9), and describes future prospects in HCC treatment.
Collapse
Affiliation(s)
- Eesha Chakraborty
- C. Kenneth and Dianne Wright Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Massey Cancer Center, VCU Institute of Molecular Medicine (VIMM), Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
18
|
Vaughan HJ, Green JJ. Recent Advances in Gene Therapy for Cancer Theranostics. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2021; 20:100300. [PMID: 34738046 PMCID: PMC8562678 DOI: 10.1016/j.cobme.2021.100300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
There is great interest in developing gene therapies for many disease indications, including cancer. However, successful delivery of nucleic acids to tumor cells is a major challenge, and in vivo efficacy is difficult to predict. Cancer theranostics is an approach combining anti-tumor therapy with imaging or diagnostic capabilities, with the goal of monitoring successful delivery and efficacy of a therapeutic agent in a tumor. Successful theranostics must maintain a high degree of anticancer targeting and efficacy while incorporating high-contrast imaging agents that are nontoxic and compatible with clinical imaging modalities. This review highlights recent advancements in theranostic strategies, including imaging technologies and genetic engineering approaches. Graphical Abstract.
Collapse
Affiliation(s)
- Hannah J. Vaughan
- Department of Biomedical Engineering, Institute for NanoBioTechnology, and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, 400 N Broadway, Baltimore, MD 21231, USA
| | - Jordan J. Green
- Department of Biomedical Engineering, Institute for NanoBioTechnology, and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, 400 N Broadway, Baltimore, MD 21231, USA
- Departments of Ophthalmology, Oncology, Neurosurgery, Materials Science & Engineering, and Chemical & Biomolecular Engineering, and the Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, 400 N Broadway, Baltimore, MD 21231, USA
| |
Collapse
|
19
|
Adenovirus Type 6: Subtle Structural Distinctions from Adenovirus Type 5 Result in Essential Differences in Properties and Perspectives for Gene Therapy. Pharmaceutics 2021; 13:pharmaceutics13101641. [PMID: 34683934 PMCID: PMC8540711 DOI: 10.3390/pharmaceutics13101641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 01/22/2023] Open
Abstract
Adenovirus vectors are the most frequently used agents for gene therapy, including oncolytic therapy and vaccine development. It’s hard to overestimate the value of adenoviruses during the COVID-19 pandemic as to date four out of four approved viral vector-based SARS-CoV-2 vaccines are developed on adenovirus platform. The vast majority of adenoviral vectors are based on the most studied human adenovirus type 5 (HAdV-C5), however, its immunogenicity often hampers the clinical translation of HAdV-C5 vectors. The search of less seroprevalent adenovirus types led to another species C adenovirus, Adenovirus type 6 (HAdV-C6). HAdV-C6 possesses high oncolytic efficacy against multiple cancer types and remarkable ability to induce the immune response towards carrying antigens. Being genetically very close to HAdV-C5, HAdV-C6 differs from HAdV-C5 in structure of the most abundant capsid protein, hexon. This leads to the ability of HAdV-C6 to evade the uptake by Kupffer cells as well as to distinct opsonization by immunoglobulins and other blood proteins, influencing the overall biodistribution of HAdV-C6 after systemic administration. This review describes the structural features of HAdV-C6, its interaction with liver cells and blood factors, summarizes the previous experiences using HAdV-C6, and provides the rationale behind the use of HAdV-C6 for vaccine and anticancer drugs developments.
Collapse
|
20
|
Sharifian M, Baharvand P, Moayyedkazemi A. Liver Cancer: New Insights into Surgical and Nonsurgical Treatments. CURRENT CANCER THERAPY REVIEWS 2021. [DOI: 10.2174/1573394717666210219104201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Introduction:
Hepatocellular carcinoma (HCC) is the most common type of liver cancer
that has increased in recent years worldwide. Primary liver cancer or HCC is considered the 5th and
7th most common cancer among men and women, respectively. It is also the second leading cause
of cancer death worldwide. Unfortunately, HCC is frequently diagnosed at an advanced stage when
the majority of the patients do not have access to remedial therapies. Furthermore, current systemic
chemotherapy shows low efficacy and minimum survival benefits. Liver cancer therapy is a multidisciplinary,
multiple-choice treatment based on the complex interaction of the tumour stage, the
degree of liver disease, and the patient's general state of health.
Methods:
In this paper, we reviewed new insights into nonsurgical and surgical treatment of liver
cancer in five English databases, including Scopus, PubMed, Web of Science, EMBASE, and Google
Scholar up to December 2019.
Results:
The results demonstrated, in addition to current therapies such as chemotherapy and surgical
resection, new approaches, including immunotherapy, viral therapy, gene therapy, new ablation
therapies, and adjuvant therapy, are widely used for the treatment of HCC. In recent years, biomaterials
such as nanoparticles, liposomes, microspheres, and nanofibers are also regarded as reliable
and innovative patents for the treatment and study of liver cancers.
Conclusion:
Multidisciplinary and multi-choice treatments and therapies are available for this liver
cancer, while there are differences in liver cancer management recommendations among specialties
and geographic areas. Current results have shown that treatment strategies have been combined
with the advancement of novel treatment modalities. In addition, the use of new approaches with
greater efficacy, such as combination therapy, biomaterials, ablation therapy, etc. can be considered
the preferred treatment for patients.
Collapse
Affiliation(s)
- Masoud Sharifian
- Department of Surgery, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Parastoo Baharvand
- Department of Social Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Alireza Moayyedkazemi
- Department of Internal Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
21
|
Concilio SC, Russell SJ, Peng KW. A brief review of reporter gene imaging in oncolytic virotherapy and gene therapy. Mol Ther Oncolytics 2021; 21:98-109. [PMID: 33981826 PMCID: PMC8065251 DOI: 10.1016/j.omto.2021.03.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Reporter gene imaging (RGI) can accelerate development timelines for gene and viral therapies by facilitating rapid and noninvasive in vivo studies to determine the biodistribution, magnitude, and durability of viral gene expression and/or virus infection. Functional molecular imaging systems used for this purpose can be divided broadly into deep-tissue and optical modalities. Deep-tissue modalities, which can be used in animals of any size as well as in human subjects, encompass single photon emission computed tomography (SPECT), positron emission tomography (PET), and functional/molecular magnetic resonance imaging (f/mMRI). Optical modalities encompass fluorescence, bioluminescence, Cerenkov luminescence, and photoacoustic imaging and are suitable only for small animal imaging. Here we discuss the mechanisms of action and relative merits of currently available reporter gene systems, highlighting the strengths and weaknesses of deep tissue versus optical imaging systems and the hardware/reagents that are used for data capture and processing. In light of recent technological advances, falling costs of imaging instruments, better availability of novel radioactive and optical tracers, and a growing realization that RGI can give invaluable insights across the entire in vivo translational spectrum, the approach is becoming increasingly essential to facilitate the competitive development of new virus- and gene-based drugs.
Collapse
Affiliation(s)
| | | | - Kah-Whye Peng
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
22
|
Lai WH, Fang CY, Chou MC, Lin MC, Shen CH, Chao CN, Jou YC, Chang D, Wang M. Peptide-guided JC polyomavirus-like particles specifically target bladder cancer cells for gene therapy. Sci Rep 2021; 11:11889. [PMID: 34088940 PMCID: PMC8178405 DOI: 10.1038/s41598-021-91328-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/25/2021] [Indexed: 12/03/2022] Open
Abstract
The ultimate goal of gene delivery vectors is to establish specific and effective treatments for human diseases. We previously demonstrated that human JC polyomavirus (JCPyV) virus-like particles (VLPs) can package and deliver exogenous DNA into susceptible cells for gene expression. For tissue-specific targeting in this study, JCPyV VLPs were conjugated with a specific peptide for bladder cancer (SPB) that specifically binds to bladder cancer cells. The suicide gene thymidine kinase was packaged and delivered by SPB-conjugated VLPs (VLP-SPBs). Expression of the suicide gene was detected only in human bladder cancer cells and not in lung cancer or neuroblastoma cells susceptible to JCPyV VLP infection in vitro and in vivo, demonstrating the target specificity of VLP-SPBs. The gene transduction efficiency of VLP-SPBs was approximately 100 times greater than that of VLPs without the conjugated peptide. JCPyV VLPs can be specifically guided to target particular cell types when tagged with a ligand molecule that binds to a cell surface marker, thereby improving gene therapy.
Collapse
Affiliation(s)
- Wei-Hong Lai
- Department of Urology, Ditmanson Medical Foundation, Chiayi Christian Hospital, Chiayi, Taiwan
| | - Chiung-Yao Fang
- Department of Medical Research, Ditmanson Medical Foundation, Chiayi Christian Hospital, Chiayi, Taiwan
| | - Ming-Chieh Chou
- Institute of Molecular Biology, National Chung Cheng University, 168, University Rd., Min-Hsiung, Chiayi, 621, Taiwan
| | - Mien-Chun Lin
- Department of Urology, Ditmanson Medical Foundation, Chiayi Christian Hospital, Chiayi, Taiwan
| | - Cheng-Huang Shen
- Department of Urology, Ditmanson Medical Foundation, Chiayi Christian Hospital, Chiayi, Taiwan
| | - Chun-Nun Chao
- Department of Pediatrics, Ditmanson Medical Foundation, Chiayi Christian Hospital, Chiayi, Taiwan
| | - Yeong-Chin Jou
- Department of Urology, Ditmanson Medical Foundation, Chiayi Christian Hospital, Chiayi, Taiwan
| | - Deching Chang
- Institute of Molecular Biology, National Chung Cheng University, 168, University Rd., Min-Hsiung, Chiayi, 621, Taiwan.
| | - Meilin Wang
- Department of Microbiology and Immunology, School of Medicine, Chung-Shan Medical University and Clinical Laboratory, Chung-Shan Medical University Hospital, No. 110, Sec. 1, Jianguo N. Rd., Taichung City, 40201, Taiwan.
| |
Collapse
|
23
|
Wendel P, Reindl LM, Bexte T, Künnemeyer L, Särchen V, Albinger N, Mackensen A, Rettinger E, Bopp T, Ullrich E. Arming Immune Cells for Battle: A Brief Journey through the Advancements of T and NK Cell Immunotherapy. Cancers (Basel) 2021; 13:cancers13061481. [PMID: 33807011 PMCID: PMC8004685 DOI: 10.3390/cancers13061481] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/18/2021] [Accepted: 03/18/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary This review is intended to provide an overview on the history and recent advances of T cell and natural killer (NK) cell-based immunotherapy. While the thymus was discovered as the origin of T cells in the 1960s, and NK cells were first described in 1975, the clinical application of adoptive cell therapies (ACT) only began in the early 1980s with the first lymphokine activated killer (LAK) cell product for the treatment of cancer patients. Over the past decades, further immunotherapies have been developed, including ACT using cytokine-induced killer (CIK) cells, products based on the NK cell line NK-92 as well as specific T and NK cell preparations. Recent advances have successfully improved the effectiveness of T, NK, CIK or NK-92 cells towards tumor-targeting antigens generated by genetic engineering of the immune cells. Herein, we summarize the promising development of ACT over the past decades in the fight against cancer. Abstract The promising development of adoptive immunotherapy over the last four decades has revealed numerous therapeutic approaches in which dedicated immune cells are modified and administered to eliminate malignant cells. Starting in the early 1980s, lymphokine activated killer (LAK) cells were the first ex vivo generated NK cell-enriched products utilized for adoptive immunotherapy. Over the past decades, various immunotherapies have been developed, including cytokine-induced killer (CIK) cells, as a peripheral blood mononuclear cells (PBMCs)-based therapeutic product, the adoptive transfer of specific T and NK cell products, and the NK cell line NK-92. In addition to allogeneic NK cells, NK-92 cell products represent a possible “off-the-shelf” therapeutic concept. Recent approaches have successfully enhanced the specificity and cytotoxicity of T, NK, CIK or NK-92 cells towards tumor-specific or associated target antigens generated by genetic engineering of the immune cells, e.g., to express a chimeric antigen receptor (CAR). Here, we will look into the history and recent developments of T and NK cell-based immunotherapy.
Collapse
Affiliation(s)
- Philipp Wendel
- Children’s Hospital, Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany; (P.W.); (L.M.R.); (T.B.); (L.K.); (N.A.); (E.R.)
- Experimental Immunology, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Lisa Marie Reindl
- Children’s Hospital, Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany; (P.W.); (L.M.R.); (T.B.); (L.K.); (N.A.); (E.R.)
- Experimental Immunology, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Tobias Bexte
- Children’s Hospital, Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany; (P.W.); (L.M.R.); (T.B.); (L.K.); (N.A.); (E.R.)
- Experimental Immunology, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Leander Künnemeyer
- Children’s Hospital, Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany; (P.W.); (L.M.R.); (T.B.); (L.K.); (N.A.); (E.R.)
- Experimental Immunology, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Vinzenz Särchen
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, 60528 Frankfurt am Main, Germany;
| | - Nawid Albinger
- Children’s Hospital, Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany; (P.W.); (L.M.R.); (T.B.); (L.K.); (N.A.); (E.R.)
- Experimental Immunology, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Andreas Mackensen
- Department of Medicine 5, University Hospital Erlangen, University of Erlangen-Nuremberg, 91054 Erlangen, Germany;
| | - Eva Rettinger
- Children’s Hospital, Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany; (P.W.); (L.M.R.); (T.B.); (L.K.); (N.A.); (E.R.)
| | - Tobias Bopp
- Institute for Immunology, University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany;
- Research Center for Immunotherapy (FZI), University Medical Center Mainz, 55131 Mainz, Germany
- University Cancer Center Mainz, University Medical Center, 55131 Mainz, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 69120 Heidelberg, Germany
| | - Evelyn Ullrich
- Children’s Hospital, Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany; (P.W.); (L.M.R.); (T.B.); (L.K.); (N.A.); (E.R.)
- Experimental Immunology, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 69120 Heidelberg, Germany
- Frankfurt Cancer Institute, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany
- Correspondence:
| |
Collapse
|
24
|
Molecular Imaging of Gene Therapy. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00064-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
25
|
Hemmati S, Keshavarz-Fathi M, Razi S, Rezaei N. Gene Therapy and Genetic Vaccines. CANCER IMMUNOLOGY 2021:129-142. [DOI: 10.1007/978-3-030-50287-4_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
26
|
Dogrammatzis C, Waisner H, Kalamvoki M. "Non-Essential" Proteins of HSV-1 with Essential Roles In Vivo: A Comprehensive Review. Viruses 2020; 13:E17. [PMID: 33374862 PMCID: PMC7824580 DOI: 10.3390/v13010017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/19/2022] Open
Abstract
Viruses encode for structural proteins that participate in virion formation and include capsid and envelope proteins. In addition, viruses encode for an array of non-structural accessory proteins important for replication, spread, and immune evasion in the host and are often linked to virus pathogenesis. Most virus accessory proteins are non-essential for growth in cell culture because of the simplicity of the infection barriers or because they have roles only during a state of the infection that does not exist in cell cultures (i.e., tissue-specific functions), or finally because host factors in cell culture can complement their absence. For these reasons, the study of most nonessential viral factors is more complex and requires development of suitable cell culture systems and in vivo models. Approximately half of the proteins encoded by the herpes simplex virus 1 (HSV-1) genome have been classified as non-essential. These proteins have essential roles in vivo in counteracting antiviral responses, facilitating the spread of the virus from the sites of initial infection to the peripheral nervous system, where it establishes lifelong reservoirs, virus pathogenesis, and other regulatory roles during infection. Understanding the functions of the non-essential proteins of herpesviruses is important to understand mechanisms of viral pathogenesis but also to harness properties of these viruses for therapeutic purposes. Here, we have provided a comprehensive summary of the functions of HSV-1 non-essential proteins.
Collapse
Affiliation(s)
| | | | - Maria Kalamvoki
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, KS 66160, USA; (C.D.); (H.W.)
| |
Collapse
|
27
|
Abstract
Hepatocellular carcinoma (HCC) is the most common form of primary liver cancer and the fifth most common cancer worldwide. HCC is recognized as the fourth most common cause of cancer related deaths worldwide due to the lack of effective early diagnostic tools, which often leads to individuals going undiagnosed until the cancer has reached late stage development. The current FDA approved treatments for late stage HCC provide a minimal increase in patient survival and lack tumor specificity, resulting in toxic systemic side effects. Gene therapy techniques, such as chimeric antigen receptor (CAR)-T Cells, viral vectors, and nanoparticles, are being explored as novel treatment options in various genetic diseases. Pre-clinical studies using gene therapy to treat in vitro and in vivo models of HCC have demonstrated potential efficacy for use in human patients. This review highlights genetic targets, techniques, and current clinical trials in HCC utilizing gene therapy.
Collapse
|
28
|
Lai E, Astara G, Ziranu P, Pretta A, Migliari M, Dubois M, Donisi C, Mariani S, Liscia N, Impera V, Persano M, Tolu S, Balconi F, Pinna G, Spanu D, Pireddu A, Saba G, Camera S, Musio F, Puzzoni M, Pusceddu V, Madeddu C, Casadei Gardini A, Scartozzi M. Introducing immunotherapy for advanced hepatocellular carcinoma patients: Too early or too fast? Crit Rev Oncol Hematol 2020; 157:103167. [PMID: 33271389 DOI: 10.1016/j.critrevonc.2020.103167] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 11/02/2020] [Accepted: 11/05/2020] [Indexed: 02/06/2023] Open
Abstract
Advanced hepatocellular carcinoma (HCC) is the most frequent liver cancer. Immunotherapy has been explored in this disease in order to improve survival outcomes. Nowadays, scientific research is focusing especially on immune checkpoint inhibitors, in particular anti-PD1, anti-PD-L1 and anti-CTLA4 monoclonal antibodies (mAbs), as single-agent or in combination with other immunotherapy agents, target therapies, anti-vascular endothelial growth factor (VEGF) and other agents targeting specific molecular pathways. Other immunotherapy strategies have been assessed or are under investigation in advanced HCC, namely cytokines, adoptive cell therapy, oncolytic virus, cancer vaccines. Each treatment presents specific efficacy and toxicity profiles, strictly related to their mechanism of action and to advanced HCC tumour microenvironment (TME). The aim of this review is to outline the state-of-the-art of immunotherapy in advanced HCC treatment, highlighting data on already investigated treatment strategies, safety and toxicity (including HBV/HCV-related HCC), and ongoing clinical trials focusing on new promising therapeutic weapons.
Collapse
Affiliation(s)
- Eleonora Lai
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy. Oncologia Medica, Azienda Ospedaliera Universitaria di Cagliari, Presidio Policlinico Universitario "Duilio Casula" S.S. 554, Km 4,500 Bivio per Sestu, 09042 Monserrato, Cagliari, Italy.
| | - Giorgio Astara
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy. Oncologia Medica, Azienda Ospedaliera Universitaria di Cagliari, Presidio Policlinico Universitario "Duilio Casula" S.S. 554, Km 4,500 Bivio per Sestu, 09042 Monserrato, Cagliari, Italy.
| | - Pina Ziranu
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy. Oncologia Medica, Azienda Ospedaliera Universitaria di Cagliari, Presidio Policlinico Universitario "Duilio Casula" S.S. 554, Km 4,500 Bivio per Sestu, 09042 Monserrato, Cagliari, Italy.
| | - Andrea Pretta
- Medical Oncology Unit, Sapienza University of Rome - University Hospital and University of Cagliari, Cagliari, Italy. Oncologia Medica, Azienda Ospedaliera Universitaria di Cagliari, Presidio Policlinico Universitario "Duilio Casula" S.S. 554, Km 4,500 Bivio per Sestu, 09042 Monserrato, Cagliari, Italy.
| | - Marco Migliari
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy. Oncologia Medica, Azienda Ospedaliera Universitaria di Cagliari, Presidio Policlinico Universitario "Duilio Casula" S.S. 554, Km 4,500 Bivio per Sestu, 09042 Monserrato, Cagliari, Italy.
| | - Marco Dubois
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy. Oncologia Medica, Azienda Ospedaliera Universitaria di Cagliari, Presidio Policlinico Universitario "Duilio Casula" S.S. 554, Km 4,500 Bivio per Sestu, 09042 Monserrato, Cagliari, Italy.
| | - Clelia Donisi
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy. Oncologia Medica, Azienda Ospedaliera Universitaria di Cagliari, Presidio Policlinico Universitario "Duilio Casula" S.S. 554, Km 4,500 Bivio per Sestu, 09042 Monserrato, Cagliari, Italy.
| | - Stefano Mariani
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy. Oncologia Medica, Azienda Ospedaliera Universitaria di Cagliari, Presidio Policlinico Universitario "Duilio Casula" S.S. 554, Km 4,500 Bivio per Sestu, 09042 Monserrato, Cagliari, Italy.
| | - Nicole Liscia
- Medical Oncology Unit, Sapienza University of Rome - University Hospital and University of Cagliari, Cagliari, Italy. Oncologia Medica, Azienda Ospedaliera Universitaria di Cagliari, Presidio Policlinico Universitario "Duilio Casula" S.S. 554, Km 4,500 Bivio per Sestu, 09042 Monserrato, Cagliari, Italy.
| | - Valentino Impera
- Medical Oncology Unit, Sapienza University of Rome - University Hospital and University of Cagliari, Cagliari, Italy. Oncologia Medica, Azienda Ospedaliera Universitaria di Cagliari, Presidio Policlinico Universitario "Duilio Casula" S.S. 554, Km 4,500 Bivio per Sestu, 09042 Monserrato, Cagliari, Italy.
| | - Mara Persano
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy. Oncologia Medica, Azienda Ospedaliera Universitaria di Cagliari, Presidio Policlinico Universitario "Duilio Casula" S.S. 554, Km 4,500 Bivio per Sestu, 09042 Monserrato, Cagliari, Italy.
| | - Simona Tolu
- Medical Oncology Unit, Sapienza University of Rome - University Hospital and University of Cagliari, Cagliari, Italy. Oncologia Medica, Azienda Ospedaliera Universitaria di Cagliari, Presidio Policlinico Universitario "Duilio Casula" S.S. 554, Km 4,500 Bivio per Sestu, 09042 Monserrato, Cagliari, Italy.
| | - Francesca Balconi
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy. Oncologia Medica, Azienda Ospedaliera Universitaria di Cagliari, Presidio Policlinico Universitario "Duilio Casula" S.S. 554, Km 4,500 Bivio per Sestu, 09042 Monserrato, Cagliari, Italy.
| | - Giovanna Pinna
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy. Oncologia Medica, Azienda Ospedaliera Universitaria di Cagliari, Presidio Policlinico Universitario "Duilio Casula" S.S. 554, Km 4,500 Bivio per Sestu, 09042 Monserrato, Cagliari, Italy.
| | - Dario Spanu
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy. Oncologia Medica, Azienda Ospedaliera Universitaria di Cagliari, Presidio Policlinico Universitario "Duilio Casula" S.S. 554, Km 4,500 Bivio per Sestu, 09042 Monserrato, Cagliari, Italy.
| | - Annagrazia Pireddu
- Medical Oncology Unit, Sapienza University of Rome - University Hospital and University of Cagliari, Cagliari, Italy. Oncologia Medica, Azienda Ospedaliera Universitaria di Cagliari, Presidio Policlinico Universitario "Duilio Casula" S.S. 554, Km 4,500 Bivio per Sestu, 09042 Monserrato, Cagliari, Italy.
| | - Giorgio Saba
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy. Oncologia Medica, Azienda Ospedaliera Universitaria di Cagliari, Presidio Policlinico Universitario "Duilio Casula" S.S. 554, Km 4,500 Bivio per Sestu, 09042 Monserrato, Cagliari, Italy.
| | - Silvia Camera
- Department of Medical Oncology, Università Vita-Salute, San Raffaele Hospital IRCCS, 20019, Milan, Italy. Dipartimento di Oncologia, IRCCS Ospedale San Raffaele, via Olgettina 60, Milan, Italy.
| | - Francesca Musio
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy. Oncologia Medica, Azienda Ospedaliera Universitaria di Cagliari, Presidio Policlinico Universitario "Duilio Casula" S.S. 554, Km 4,500 Bivio per Sestu, 09042 Monserrato, Cagliari, Italy.
| | - Marco Puzzoni
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy. Oncologia Medica, Azienda Ospedaliera Universitaria di Cagliari, Presidio Policlinico Universitario "Duilio Casula" S.S. 554, Km 4,500 Bivio per Sestu, 09042 Monserrato, Cagliari, Italy.
| | - Valeria Pusceddu
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy. Oncologia Medica, Azienda Ospedaliera Universitaria di Cagliari, Presidio Policlinico Universitario "Duilio Casula" S.S. 554, Km 4,500 Bivio per Sestu, 09042 Monserrato, Cagliari, Italy.
| | - Clelia Madeddu
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy. Oncologia Medica, Azienda Ospedaliera Universitaria di Cagliari, Presidio Policlinico Universitario "Duilio Casula" S.S. 554, Km 4,500 Bivio per Sestu, 09042 Monserrato, Cagliari, Italy.
| | - Andrea Casadei Gardini
- Department of Medical Oncology, Università Vita-Salute, San Raffaele Hospital IRCCS, 20019, Milan, Italy. Dipartimento di Oncologia, IRCCS Ospedale San Raffaele, via Olgettina 60, Milan, Italy.
| | - Mario Scartozzi
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy. Oncologia Medica, Azienda Ospedaliera Universitaria di Cagliari, Presidio Policlinico Universitario "Duilio Casula" S.S. 554, Km 4,500 Bivio per Sestu, 09042 Monserrato, Cagliari, Italy.
| |
Collapse
|
29
|
Armstrong SA, He AR. Immuno-oncology for Hepatocellular Carcinoma: The Present and the Future. Clin Liver Dis 2020; 24:739-753. [PMID: 33012456 DOI: 10.1016/j.cld.2020.07.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Hepatocellular carcinoma is a highly prevalent and lethal cancer that many therapeutics are being tested for this disease. It has the potential to be a highly immune-responsive tumor given its inflammatory origins. The first immunotherapies were anti-programmed death-1 monotherapies, which improved response rates and survival. Novel immunotherapy combinations and immunotherapy show promise in frontline treatment. The novel antibody therapy combination of atezolizumab and bevacizumab may be practice changing. Although these landmark studies seem to offer new treatment options, the role of immunotherapy in the liver transplant setting is uncertain until the safety of this approach is defined.
Collapse
Affiliation(s)
- Samantha A Armstrong
- Department of Medicine, Division of Hematology and Oncology, Lombardi Comprehensive Cancer Center, MedStar Georgetown University Hospital, 3800 Reservoir Road NW, Washington, DC, 20007, USA
| | - Aiwu Ruth He
- Department of Medicine, Division of Hematology and Oncology, Lombardi Comprehensive Cancer Center, MedStar Georgetown University Hospital, 3800 Reservoir Road NW, Washington, DC, 20007, USA.
| |
Collapse
|
30
|
Nagoshi N, Okano H, Nakamura M. Regenerative therapy for spinal cord injury using iPSC technology. Inflamm Regen 2020; 40:40. [PMID: 33088363 PMCID: PMC7565344 DOI: 10.1186/s41232-020-00149-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/07/2020] [Indexed: 01/04/2023] Open
Abstract
Spinal cord injury (SCI) is a devastating event that causes permanent neurologic impairments. Cell transplantation therapy using neural precursor cells (NPCs) is a promising intervention aiming to replace damaged neural tissue and restore certain functions. Because the protocol to produce human induced pluripotent stem cells (iPSCs) was first established, we have attempted to apply this technology for regenerative therapy in SCI. Our group reported beneficial effects of iPSC-derived NPC transplantation and addressed safety issues on tumorigenicity after grafting. These findings will soon be tested at the clinical trial stage, the protocol of which has already been approved by the Ministry of Health, Labour and Welfare in Japan. Current transplantation therapies treat patients at the subacute phase after injury, highlighting the need for effective treatments for chronic SCI. We recently demonstrated the modest efficacy of gamma secretase inhibitor treatment of iPSC-NPCs before transplantation at the chronic phase. However, more comprehensive strategies involving combinatory therapies are essential to enhance current spinal cord regeneration treatments.
Collapse
Affiliation(s)
- Narihito Nagoshi
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582 Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582 Japan
| | - Masaya Nakamura
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582 Japan
| |
Collapse
|
31
|
Huang A, Pressnall MM, Lu R, Huayamares SG, Griffin JD, Groer C, DeKosky BJ, Forrest ML, Berkland CJ. Human intratumoral therapy: Linking drug properties and tumor transport of drugs in clinical trials. J Control Release 2020; 326:203-221. [PMID: 32673633 DOI: 10.1016/j.jconrel.2020.06.029] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 01/08/2023]
Abstract
Cancer therapies aim to kill tumor cells directly or engage the immune system to fight malignancy. Checkpoint inhibitors, oncolytic viruses, cell-based immunotherapies, cytokines, and adjuvants have been applied to prompt the immune system to recognize and attack cancer cells. However, systemic exposure of cancer therapies can induce unwanted adverse events. Intratumoral administration of potent therapies utilizes small amounts of drugs, in an effort to minimize systemic exposure and off-target toxicities. Here, we discuss the properties of the tumor microenvironment and transport considerations for intratumoral drug delivery. Specifically, we consider various tumor tissue factors and physicochemical factors that can affect tumor retention after intratumoral injection. We also review approved and clinical-stage intratumoral therapies and consider how the molecular and biophysical properties (e.g. size and charge) of these therapies influences intratumoral transport (e.g. tumor retention and cellular uptake). Finally, we offer a critical review and highlight several emerging approaches to promote tumor retention and limit systemic exposure of potent intratumoral therapies.
Collapse
Affiliation(s)
- Aric Huang
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA
| | - Melissa M Pressnall
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA
| | - Ruolin Lu
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA
| | | | - J Daniel Griffin
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA; Bioengineering Graduate Program, University of Kansas, Lawrence, KS, USA
| | | | - Brandon J DeKosky
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA; Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, KS, USA
| | - M Laird Forrest
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA
| | - Cory J Berkland
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA; Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, KS, USA; Bioengineering Graduate Program, University of Kansas, Lawrence, KS, USA.
| |
Collapse
|
32
|
Kamimura K, Yokoo T, Abe H, Sakai N, Nagoya T, Kobayashi Y, Ohtsuka M, Miura H, Sakamaki A, Kamimura H, Miyamura N, Nishina H, Terai S. Effect of Diphtheria Toxin-Based Gene Therapy for Hepatocellular Carcinoma. Cancers (Basel) 2020; 12:472. [PMID: 32085552 PMCID: PMC7072394 DOI: 10.3390/cancers12020472] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/09/2020] [Accepted: 02/15/2020] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a major global malignancy, responsible for >90% of primary liver cancers. Currently available therapeutic options have poor performances due to the highly heterogeneous nature of the tumor cells; recurrence is highly probable, and some patients develop resistances to the therapies. Accordingly, the development of a novel therapy is essential. We assessed gene therapy for HCC using a diphtheria toxin fragment A (DTA) gene-expressing plasmid, utilizing a non-viral hydrodynamics-based procedure. The antitumor effect of DTA expression in HCC cell lines (and alpha-fetoprotein (AFP) promoter selectivity) is assessed in vitro by examining HCC cell growth. Moreover, the effect and safety of the AFP promoter-selective DTA expression was examined in vivo using an HCC mice model established by the hydrodynamic gene delivery of the yes-associated protein (YAP)-expressing plasmid. The protein synthesis in DTA transfected cells is inhibited by the disappearance of tdTomato and GFP expression co-transfected upon the delivery of the DTA plasmid; the HCC cell growth is inhibited by the expression of DTA in HCC cells in an AFP promoter-selective manner. A significant inhibition of HCC occurrence and the suppression of the tumor marker of AFP and des-gamma-carboxy prothrombin can be seen in mice groups treated with hydrodynamic gene delivery of DTA, both 0 and 2 months after the YAP gene delivery. These results suggest that DTA gene therapy is effective for HCC.
Collapse
Affiliation(s)
- Kenya Kamimura
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata 951-8510, Japan; (T.Y.); (H.A.); (N.S.); (T.N.); (Y.K.); (A.S.); (H.K.); (S.T.)
| | - Takeshi Yokoo
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata 951-8510, Japan; (T.Y.); (H.A.); (N.S.); (T.N.); (Y.K.); (A.S.); (H.K.); (S.T.)
| | - Hiroyuki Abe
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata 951-8510, Japan; (T.Y.); (H.A.); (N.S.); (T.N.); (Y.K.); (A.S.); (H.K.); (S.T.)
| | - Norihiro Sakai
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata 951-8510, Japan; (T.Y.); (H.A.); (N.S.); (T.N.); (Y.K.); (A.S.); (H.K.); (S.T.)
| | - Takuro Nagoya
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata 951-8510, Japan; (T.Y.); (H.A.); (N.S.); (T.N.); (Y.K.); (A.S.); (H.K.); (S.T.)
| | - Yuji Kobayashi
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata 951-8510, Japan; (T.Y.); (H.A.); (N.S.); (T.N.); (Y.K.); (A.S.); (H.K.); (S.T.)
| | - Masato Ohtsuka
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, School of Medicine, Tokai University, Isehara, Kanagawa 259-1193, Japan; (M.O.); (H.M.)
| | - Hiromi Miura
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, School of Medicine, Tokai University, Isehara, Kanagawa 259-1193, Japan; (M.O.); (H.M.)
| | - Akira Sakamaki
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata 951-8510, Japan; (T.Y.); (H.A.); (N.S.); (T.N.); (Y.K.); (A.S.); (H.K.); (S.T.)
| | - Hiroteru Kamimura
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata 951-8510, Japan; (T.Y.); (H.A.); (N.S.); (T.N.); (Y.K.); (A.S.); (H.K.); (S.T.)
| | - Norio Miyamura
- Department of Developmental and Regenerative Biology, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan; (N.M.); (H.N.)
| | - Hiroshi Nishina
- Department of Developmental and Regenerative Biology, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan; (N.M.); (H.N.)
| | - Shuji Terai
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata 951-8510, Japan; (T.Y.); (H.A.); (N.S.); (T.N.); (Y.K.); (A.S.); (H.K.); (S.T.)
| |
Collapse
|
33
|
Demonstration of anti-tumour bystander killing with prodrug-preloaded suicide gene-engineered tumour cells: a potential improvement for cancer therapeutics. Cancer Cell Int 2020; 20:26. [PMID: 32002015 PMCID: PMC6986055 DOI: 10.1186/s12935-020-1115-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 01/17/2020] [Indexed: 11/28/2022] Open
Abstract
Background Therapeutic approaches for cancer rely on careful consideration of finding the optimal way of delivering the pro-drug for cellular-based cancer treatment. Cell lines and cell cultures have been used in these studies to compare the in vitro and in vivo efficacy of autologous vs. allogeneic tumour cellular gene therapy. Here we have investigated and are reporting for the first time the effect of prodrug ganciclovir (GCV)-preloading (pre-treatment) in suicide gene therapy of cancer. Methods This study examines the effect of GCV-preloading (pre-treatment) on a range of tumour cell lines in conjunction with suicide gene therapy of cancer. To determine the efficacy of this modality, a series of in vitro and in vivo experiments were conducted using genetically modified and unmodified tumour cell lines. Results Following co-culture of herpes simplex virus thymidine kinase (HSV-TK) modified tumour cells and unmodified tumour cells both in vitro and in vivo, GCV-preloading (pre-treatment) of TK-modified human and mouse mesothelioma cells and ovarian tumour cells allowed them to mediate efficiently bystander killing of neighbouring unmodified tumour cells in vitro. In contrast, GCV-preloading of TK-modified human and mouse mesothelioma cells and ovarian tumour cells abolished their in vivo ability to induce bystander killing of unmodified tumour cells, although there was some tumour regression compared to control groups but this was not statistically significant. These results suggest that preloading TK modified tumour cells with GCV needs further study to define the most effective strategy for an in vivo application to retain their bystander killing potential after exposure to lethal doses of GCV in vitro. Conclusions This study highlights the promising possibility of improving the efficacy of pro-drug system to prevent any damage to the immune system and enhancing this type of suicide gene therapy of cancer, as well as the need for further studies to explore the discrepancies between in vitro and in vivo results.
Collapse
|
34
|
Abstract
Hepatocellular carcinoma (HCC) is the third most common cause of cancer death globally, mainly due to lack of effective treatments – a problem that gene therapy is poised to solve. Successful gene therapy requires safe and efficient delivery vectors, and recent advances in both viral and nonviral vectors have made an important impact on HCC gene therapy delivery. This review explores how adenoviral, retroviral and adeno-associated viral vectors have been modified to increase safety and delivery capacity, highlighting studies and clinical trials using these vectors for HCC gene therapy. Nanoparticles, liposomes, exosomes and virosomes are also featured in their roles as HCC gene delivery vectors. Finally, new discoveries in gene editing technology and their impacts on HCC gene therapy are discussed.
Collapse
|
35
|
Li Y, Zhao S, Zhang F, Jin G, Zhou Y, Li P, Shin D, Yang X. Molecular imaging-monitored radiofrequency hyperthermia-enhanced intratumoral herpes simplex virus-thymidine kinase gene therapy for rat orthotopic ovarian cancer. Int J Hyperthermia 2020; 37:101-109. [PMID: 31969028 PMCID: PMC7034662 DOI: 10.1080/02656736.2020.1711973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 12/02/2019] [Accepted: 12/19/2019] [Indexed: 12/27/2022] Open
Abstract
Objective: To establish the technique of intratumoral combination therapy of radiofrequency hyperthermia (RFH) with herpes simplex virus-thymidine kinase/ganciclovir (HSV-TK/GCV) gene therapy for rat ovarian cancers.Material and methods: This study consisted of three parts: (1) in vitro experiments to establish the 'proof of principal' that combination of RFH and HSV-TK gene therapy has the synergistic effect on human ovarian cancer cells; (2) creation of bioluminescence imaging-detectable rat ovarian cancer model; and (3) in vivo experiments using this rat model to validate the technical feasibility of the combination therapy. Cells and nude rats were divided into four groups: (i) combination therapy (HSV-TK/GCV + RFH); (ii) RFH; (iii) HSV-TK/GCV; and (iv) phosphate-buffered saline (PBS). Data were analyzed using Dunnett t-test or Kruskal-Wallis test.Results: Cell proliferation assay demonstrated significantly greater reduction in viable cells with the combination therapy [0.52 (0.43, 0.61)] compared to other treatments [RFH 0.90 (0.84, 0.96), HSV-TK/GCV 0.71 (0.53, 0.88), PBS 1 (1, 1); p < .05]. For 24 rat models with bioluminescence imaging-detectable orthotopic ovarian cancer (n = 6 per group), optical imaging demonstrated significantly decreased relative bioluminescence signal with the combination therapy [0.81 (0.52, 1.08)] compared to other treatments [RFH 3.60 (2.34, 4.86), HSV-TK/GCV 2.21 (1.71, 2.71), PBS 3.74 (3.19, 4.29); p < .001]. Ultrasound imaging demonstrated the smallest relative tumor volume with the combination therapy [0.78 (0.45, 1.11) versus 3.50 (2.67, 4.33), 2.10 (0.83, 3.37), 3.70 (1.79, 5.61); p < .05].Conclusion: The feasibility of intratumoral RFH-enhanced HSV-TK/GCV gene therapy was established on a unique rat model with molecular imaging-detectable orthotopic ovarian cancer.
Collapse
Affiliation(s)
- Yaying Li
- Image-Guided Bio-Molecular Intervention Research and Division of Vascular & Interventional Radiology, Department of Radiology; University of Washington School of Medicine, Seattle, Washington, USA
- Department of Radiology, Guizhou Provincial People’s Hospital, Affiliated Hospital of Guizhou University, Guiyang, Guizhou Province, China
| | - Shuhui Zhao
- Image-Guided Bio-Molecular Intervention Research and Division of Vascular & Interventional Radiology, Department of Radiology; University of Washington School of Medicine, Seattle, Washington, USA
- Department of Radiology, Xinhua Hospital affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Feng Zhang
- Image-Guided Bio-Molecular Intervention Research and Division of Vascular & Interventional Radiology, Department of Radiology; University of Washington School of Medicine, Seattle, Washington, USA
| | - Guangxin Jin
- Image-Guided Bio-Molecular Intervention Research and Division of Vascular & Interventional Radiology, Department of Radiology; University of Washington School of Medicine, Seattle, Washington, USA
| | - Yiming Zhou
- Image-Guided Bio-Molecular Intervention Research and Division of Vascular & Interventional Radiology, Department of Radiology; University of Washington School of Medicine, Seattle, Washington, USA
| | - Peicheng Li
- Image-Guided Bio-Molecular Intervention Research and Division of Vascular & Interventional Radiology, Department of Radiology; University of Washington School of Medicine, Seattle, Washington, USA
| | - David Shin
- Image-Guided Bio-Molecular Intervention Research and Division of Vascular & Interventional Radiology, Department of Radiology; University of Washington School of Medicine, Seattle, Washington, USA
| | - Xiaoming Yang
- Image-Guided Bio-Molecular Intervention Research and Division of Vascular & Interventional Radiology, Department of Radiology; University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
36
|
Kamimura K, Yokoo T, Abe H, Terai S. Gene Therapy for Liver Cancers: Current Status from Basic to Clinics. Cancers (Basel) 2019; 11:1865. [PMID: 31769427 PMCID: PMC6966544 DOI: 10.3390/cancers11121865] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 02/06/2023] Open
Abstract
The liver is a key organ for metabolism, protein synthesis, detoxification, and endocrine function, and among liver diseases, including hepatitis, cirrhosis, malignant tumors, and congenital disease, liver cancer is one of the leading causes of cancer-related deaths worldwide. Conventional therapeutic options such as embolization and chemotherapy are not effective against advanced-stage liver cancer; therefore, continuous efforts focus on the development of novel therapeutic options, including molecular targeted agents and gene therapy. In this review, we will summarize the progress toward the development of gene therapies for liver cancer, with an emphasis on recent clinical trials and preclinical studies.
Collapse
Affiliation(s)
- Kenya Kamimura
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757, Aasahimachi-Dori, Chuo-Ku, Niigata 9518510, Japan; (T.Y.); (H.A.); (S.T.)
| | | | | | | |
Collapse
|
37
|
Abudoureyimu M, Lai Y, Tian C, Wang T, Wang R, Chu X. Oncolytic Adenovirus-A Nova for Gene-Targeted Oncolytic Viral Therapy in HCC. Front Oncol 2019; 9:1182. [PMID: 31781493 PMCID: PMC6857090 DOI: 10.3389/fonc.2019.01182] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 10/21/2019] [Indexed: 12/25/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most frequent cancers worldwide, particularly in China. Despite the development of HCC treatment strategies, the survival rate remains unpleasant. Gene-targeted oncolytic viral therapy (GTOVT) is an emerging treatment modality-a kind of cancer-targeted therapy-which creates viral vectors armed with anti-cancer genes. The adenovirus is a promising agent for GAOVT due to its many advantages. In spite of the oncolytic adenovirus itself, the host immune response is the determining factor for the anti-cancer efficacy. In this review, we have summarized recent developments in oncolytic adenovirus engineering and the development of novel therapeutic genes utilized in HCC treatment. Furthermore, the diversified roles the immune response plays in oncolytic adenovirus therapy and recent attempts to modulate immune responses to enhance the anti-cancer efficacy of oncolytic adenovirus have been discussed.
Collapse
Affiliation(s)
- Mubalake Abudoureyimu
- Department of Medical Oncology, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, China
| | - Yongting Lai
- Department of Medical Oncology, Jinling Hospital, Nanjing Clinical School of Southern Medical University, Nanjing, China
| | - Chuan Tian
- Department of Medical Oncology, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, China
| | - Ting Wang
- Department of Medical Oncology, Jinling Hospital, Nanjing, China
| | - Rui Wang
- Department of Medical Oncology, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, China
| | - Xiaoyuan Chu
- Department of Medical Oncology, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, China
| |
Collapse
|
38
|
Oyama A, Shiraha H, Uchida D, Iwamuro M, Kato H, Takaki A, Ikeda F, Onishi H, Yasunaka T, Takeuchi Y, Wada N, Iwasaki Y, Sakata M, Okada H, Kumon H. A Phase I/Ib trial of Ad-REIC in liver cancer: study protocol. Future Oncol 2019; 15:3547-3554. [PMID: 31663777 DOI: 10.2217/fon-2019-0115] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 08/15/2019] [Indexed: 12/29/2022] Open
Abstract
This study will assess the safety and efficacy of the administration of adenoviral vector expressing the human-reduced expression in immortalized cells (Ad-REIC) to a liver tumor in patients with hepatocellular carcinoma (HCC) or liver metastasis of pancreatic cancer. A Phase I clinical study of Ad-REIC administration to a liver tumor in a patient with HCC or liver metastasis of pancreatic cancer will be conducted. The study is a single-arm, prospective, nonrandomized, noncomparative, open-label, single-center trial performed in Okayama University Hospital, Okayama, Japan. Ad-REIC will be injected into the liver tumor under ultrasound guidance. Ad-REIC administration will be repeated a total of three-times every 2 weeks. The primary end point is the dose-limiting toxicity and incidence of adverse events. The secondary end points are the objective response rate and disease control rate. This study aims to expand the indication of Ad-REIC by assessing its safety and efficacy in patients with HCC or liver metastasis of pancreatic cancer.
Collapse
Affiliation(s)
- Astushi Oyama
- Department of Gastroenterology & Hepatology, Okayama University Faculty of Medicine, 2-5-1, Shikata-cho, Okayama 700-8558, Japan
| | - Hidenori Shiraha
- Department of Gastroenterology & Hepatology, Okayama University Faculty of Medicine, 2-5-1, Shikata-cho, Okayama 700-8558, Japan
| | - Daisuke Uchida
- Department of Gastroenterology & Hepatology, Okayama University Faculty of Medicine, 2-5-1, Shikata-cho, Okayama 700-8558, Japan
| | - Masaya Iwamuro
- Department of General Medicine, Okayama University Faculty of Medicine, 2-5-1, Shikata-cho, Okayama 700-8558, Japan
| | - Hironari Kato
- Department of Gastroenterology & Hepatology, Okayama University Faculty of Medicine, 2-5-1, Shikata-cho, Okayama 700-8558, Japan
| | - Akinobu Takaki
- Department of Gastroenterology & Hepatology, Okayama University Faculty of Medicine, 2-5-1, Shikata-cho, Okayama 700-8558, Japan
| | - Fusao Ikeda
- Department of Gastroenterology & Hepatology, Okayama University Faculty of Medicine, 2-5-1, Shikata-cho, Okayama 700-8558, Japan
| | - Hideki Onishi
- Department of Gastroenterology & Hepatology, Okayama University Faculty of Medicine, 2-5-1, Shikata-cho, Okayama 700-8558, Japan
| | - Tetsuya Yasunaka
- Department of Gastroenterology & Hepatology, Okayama University Faculty of Medicine, 2-5-1, Shikata-cho, Okayama 700-8558, Japan
| | - Yasuto Takeuchi
- Department of Gastroenterology & Hepatology, Okayama University Faculty of Medicine, 2-5-1, Shikata-cho, Okayama 700-8558, Japan
| | - Nozomu Wada
- Department of Gastroenterology & Hepatology, Okayama University Faculty of Medicine, 2-5-1, Shikata-cho, Okayama 700-8558, Japan
| | - Yoshiaki Iwasaki
- Department of Gastroenterology & Hepatology, Okayama University Faculty of Medicine, 2-5-1, Shikata-cho, Okayama 700-8558, Japan
| | - Masahiro Sakata
- Department of Gastroenterology & Hepatology, Okayama University Faculty of Medicine, 2-5-1, Shikata-cho, Okayama 700-8558, Japan
| | - Hiroyuki Okada
- Department of Gastroenterology & Hepatology, Okayama University Faculty of Medicine, 2-5-1, Shikata-cho, Okayama 700-8558, Japan
| | - Hiromi Kumon
- Innovation Center Okayama for Nanobio-Targeted Therapy (ICONT), Okayama University, 2-5-1, Shikata-cho, Okayama 700-8558, Japan
| |
Collapse
|
39
|
Yu S, Yi M, Qin S, Wu K. Next generation chimeric antigen receptor T cells: safety strategies to overcome toxicity. Mol Cancer 2019; 18:125. [PMID: 31429760 PMCID: PMC6701025 DOI: 10.1186/s12943-019-1057-4] [Citation(s) in RCA: 200] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 08/14/2019] [Indexed: 01/06/2023] Open
Abstract
Chimeric antigen receptor T (CAR-T) cell therapy is an emerging and effective cancer immunotherapy. Especially in hematological malignancies, CAR-T cells have achieved exciting results. Two Anti-CD19 CAR-T therapies have been approved for the treatment of CD19-positive leukemia or lymphoma. However, the application of CAR-T cells is obviously hampered by the adverse effects, such as cytokines release syndrome and on-target off-tumor toxicity. In some clinical trials, patients quitted the treatment of CAR-T cells due to life-threatening toxicity. Seeking to alleviate these toxicities or prevent the occurrence, researchers have developed a number of safety strategies of CAR-T cells, including suicide genes, synthetic Notch receptor, on-switch CAR, combinatorial target-antigen recognition, bispecific T cell engager and inhibitory CAR. This review summarized the preclinical studies and clinical trials of the safety strategies of CAR-T cells and their respective strengths and weaknesses.
Collapse
Affiliation(s)
- Shengnan Yu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
| | - Ming Yi
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
| | - Shuang Qin
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
40
|
Cell therapy for spinal cord injury using induced pluripotent stem cells. Regen Ther 2019; 11:75-80. [PMID: 31245451 PMCID: PMC6581851 DOI: 10.1016/j.reth.2019.05.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/25/2019] [Accepted: 05/28/2019] [Indexed: 01/25/2023] Open
Abstract
For the past few decades, spinal cord injury (SCI) has been believed to be an incurable traumatic condition, but with recent developments in stem cell biology, the field of regenerative medicine has gained hopeful momentum in the development of a treatment for this challenging pathology. Among the treatment candidates, transplantation of neural precursor cells has gained remarkable attention as a reasonable therapeutic intervention to replace the damaged central nervous system cells and promote functional recovery. Here, we highlight transplantation therapy techniques using induced pluripotent stem cells to treat SCI and review the recent research giving consideration to future clinical applications.
Collapse
Key Words
- ASIA, American Spinal Injury Association
- C-ABC, chondroitinase ABC
- CSPGs, chondroitin sulfate proteoglycans
- CST, corticospinal tract
- CiRA, the Center for iPS Cell Research and Application
- Clinical application
- ESCs, embryonic stem cells
- GCV, ganciclovir
- GSI, γ-secretase inhibitor
- HLA, human leukocyte antigen
- HMGB1, high mobility group box-1
- HSVtk, herpes simplex virus type I thymidine kinase
- Induced pluripotent stem cells
- MLR, mixed lymphocyte reaction
- NHPs, nonhuman primates
- NPCs, neural precursor cells
- Neural precursor cells
- OPCs, oligodendrocyte progenitor cells
- PBMCs, peripheral blood mononuclear cells
- SCI, spinal cord injury
- SLA, swine leukocyte antigen
- Spinal cord injury
- drNPCs, directly reprogrammed neural precursor cells
- iPSCs, induced pluripotent stem cells
Collapse
|
41
|
Xie Y, Wu L, Wang M, Cheng A, Yang Q, Wu Y, Jia R, Zhu D, Zhao X, Chen S, Liu M, Zhang S, Wang Y, Xu Z, Chen Z, Zhu L, Luo Q, Liu Y, Yu Y, Zhang L, Chen X. Alpha-Herpesvirus Thymidine Kinase Genes Mediate Viral Virulence and Are Potential Therapeutic Targets. Front Microbiol 2019; 10:941. [PMID: 31134006 PMCID: PMC6517553 DOI: 10.3389/fmicb.2019.00941] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 04/12/2019] [Indexed: 12/20/2022] Open
Abstract
Alpha-herpesvirus thymidine kinase (TK) genes are virulence-related genes and are nonessential for viral replication; they are often preferred target genes for the construction of gene-deleted attenuated vaccines and genetically engineered vectors for inserting and expressing foreign genes. The enzymes encoded by TK genes are key kinases in the nucleoside salvage pathway and have significant substrate diversity, especially the herpes simplex virus 1 (HSV-1) TK enzyme, which phosphorylates four nucleosides and various nucleoside analogues. Hence, the HSV-1 TK gene is exploited for the treatment of viral infections, as a suicide gene in antitumor therapy, and even for the regulation of stem cell transplantation and treatment of parasitic infection. This review introduces the effects of α-herpesvirus TK genes on viral virulence and infection in the host and classifies and summarizes the current main application domains and potential uses of these genes. In particular, mechanisms of action, clinical limitations, and antiviral and antitumor therapy development strategies are discussed.
Collapse
Affiliation(s)
- Ying Xie
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Liping Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - XinXin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yin Wang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Zhiwen Xu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Zhengli Chen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Qihui Luo
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yunya Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yanling Yu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaoyue Chen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
42
|
Kojima K, Miyoshi H, Nagoshi N, Kohyama J, Itakura G, Kawabata S, Ozaki M, Iida T, Sugai K, Ito S, Fukuzawa R, Yasutake K, Renault‐Mihara F, Shibata S, Matsumoto M, Nakamura M, Okano H. Selective Ablation of Tumorigenic Cells Following Human Induced Pluripotent Stem Cell-Derived Neural Stem/Progenitor Cell Transplantation in Spinal Cord Injury. Stem Cells Transl Med 2019; 8:260-270. [PMID: 30485733 PMCID: PMC6392358 DOI: 10.1002/sctm.18-0096] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 10/12/2018] [Indexed: 12/29/2022] Open
Abstract
Tumorigenesis is an important problem that needs to be addressed in the field of human stem/progenitor cell transplantation for the treatment of subacute spinal cord injury (SCI). When certain "tumorigenic" cell lines are transplanted into the spinal cord of SCI mice model, there is initial improvement of motor function, followed by abrupt deterioration secondary to the effect of tumor growth. A significant proportion of the transplanted cells remains undifferentiated after transplantation and is thought to increase the risk of tumorigenesis. In this study, using lentiviral vectors, we introduced the herpes simplex virus type 1 thymidine kinase (HSVtk) gene into a human induced pluripotent stem cell-derived neural stem/progenitor cell (hiPSC-NS/PC) line that is known to undergo tumorigenic transformation. Such approach enables selective ablation of the immature proliferating cells and thereby prevents subsequent tumor formation. In vitro, the HSVtk system successfully ablated the immature proliferative neural cells while preserving mature postmitotic neuronal cells. Similar results were observed in vivo following transplantation into the injured spinal cords of immune-deficient (nonobese diabetic-severe combined immune-deficient) mice. Ablation of the proliferating cells exerted a protective effect on the motor function which was regained after transplantation, simultaneously defending the spinal cord from the harmful tumor growth. These results suggest a potentially promising role of suicide genes in opposing tumorigenesis during stem cell therapy. This system allows both preventing and treating tumorigenesis following hiPSC-NS/PC transplantation without sacrificing the improved motor function. Stem Cells Translational Medicine 2019;8:260&270.
Collapse
Affiliation(s)
- Kota Kojima
- Department of PhysiologyKeio University School of MedicineTokyoJapan
- Department of Orthopaedic SurgeryKeio University School of MedicineTokyoJapan
| | - Hiroyuki Miyoshi
- Department of PhysiologyKeio University School of MedicineTokyoJapan
| | - Narihito Nagoshi
- Department of Orthopaedic SurgeryKeio University School of MedicineTokyoJapan
| | - Jun Kohyama
- Department of PhysiologyKeio University School of MedicineTokyoJapan
| | - Go Itakura
- Department of PhysiologyKeio University School of MedicineTokyoJapan
- Department of Orthopaedic SurgeryKeio University School of MedicineTokyoJapan
| | - Soya Kawabata
- Department of PhysiologyKeio University School of MedicineTokyoJapan
- Department of Orthopaedic SurgeryKeio University School of MedicineTokyoJapan
| | - Masahiro Ozaki
- Department of PhysiologyKeio University School of MedicineTokyoJapan
- Department of Orthopaedic SurgeryKeio University School of MedicineTokyoJapan
| | - Tsuyoshi Iida
- Department of PhysiologyKeio University School of MedicineTokyoJapan
- Department of Orthopaedic SurgeryKeio University School of MedicineTokyoJapan
| | - Keiko Sugai
- Department of PhysiologyKeio University School of MedicineTokyoJapan
- Department of Orthopaedic SurgeryKeio University School of MedicineTokyoJapan
| | - Shuhei Ito
- Department of PhysiologyKeio University School of MedicineTokyoJapan
- Department of Orthopaedic SurgeryKeio University School of MedicineTokyoJapan
| | - Ryuji Fukuzawa
- Department of PathologyInternational University of Health and WelfareChibaJapan
| | - Kaori Yasutake
- Department of Orthopaedic SurgeryKeio University School of MedicineTokyoJapan
| | | | - Shinsuke Shibata
- Department of PhysiologyKeio University School of MedicineTokyoJapan
| | - Morio Matsumoto
- Department of Orthopaedic SurgeryKeio University School of MedicineTokyoJapan
| | - Masaya Nakamura
- Department of Orthopaedic SurgeryKeio University School of MedicineTokyoJapan
| | - Hideyuki Okano
- Department of PhysiologyKeio University School of MedicineTokyoJapan
| |
Collapse
|
43
|
Xiao J, Wang X, Wu Y, Zhao Q, Liu X, Zhang G, Zhao Z, Ning Y, Wang K, Tan Y, Du B. Synergistic effect of resveratrol and HSV-TK/GCV therapy on murine hepatoma cells. Cancer Biol Ther 2018; 20:183-191. [PMID: 30257140 PMCID: PMC6343688 DOI: 10.1080/15384047.2018.1523094] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Despite its low transfer efficiency, suicide gene therapy with HSV-TK is known for its bystander killing effect. The connexin-based gap junction is believed to mediate the bystander effect. Recently, we found that resveratrol, a polyphenol compound, increased the expression of Cx26 and Cx43, which are connexins and important constituents of gap junctions, in murine hepatoma cells. Hypothetically, the resveratrol-induced upregulation of gap junctions may improve the bystander effect that HSV-TK/GCV has on hepatoma cells. Our present investigation revealed that resveratrol could enhance intercellular communication at the gap junctions in CBRH7919 hepatoma cells and thereby enhance the bystander killing effect of GCV on CBRH7919TK cells. However, inhibition of gap junction using its long-term inhibitor alpha-glycyrrhetinic acid had a negative influence on the bystander effect of gene therapy with HSV-TK/GCV. In addition, combined resveratrol and GCV treatment in tumor-bearing mice with CBRH7919TK and CBRH7919WT cells at a ratio of 2:3 resulted in a significant decrease in the volume and weight of the tumor in comparison to GCV or only resveratrol. The present results demonstrate that resveratrol can enhance the bystander effect exerted by the HSV-TK/GCV system by enhancing connexin-mediated gap junctional communication.
Collapse
Affiliation(s)
- Jianyong Xiao
- a Department of Biochemistry , Guangzhou University of Chinese Medicine , Guangzhou , China.,b Research Center for Integrative Medicine , Guangzhou University of Chinese Medicine , Guangzhou , China
| | - Xiaolan Wang
- a Department of Biochemistry , Guangzhou University of Chinese Medicine , Guangzhou , China
| | - Yingya Wu
- a Department of Biochemistry , Guangzhou University of Chinese Medicine , Guangzhou , China
| | - Qing Zhao
- a Department of Biochemistry , Guangzhou University of Chinese Medicine , Guangzhou , China
| | - Xiaodong Liu
- a Department of Biochemistry , Guangzhou University of Chinese Medicine , Guangzhou , China
| | - Guangxian Zhang
- a Department of Biochemistry , Guangzhou University of Chinese Medicine , Guangzhou , China
| | - Zengqiang Zhao
- a Department of Biochemistry , Guangzhou University of Chinese Medicine , Guangzhou , China
| | - Yizhen Ning
- a Department of Biochemistry , Guangzhou University of Chinese Medicine , Guangzhou , China
| | - Kun Wang
- c Department of Pathology , Guangzhou University of Chinese Medicine , Guangzhou , China
| | - Yuhui Tan
- a Department of Biochemistry , Guangzhou University of Chinese Medicine , Guangzhou , China
| | - Biaoyan Du
- c Department of Pathology , Guangzhou University of Chinese Medicine , Guangzhou , China
| |
Collapse
|
44
|
Tenneti P, Borad MJ, Babiker HM. Exploring the role of oncolytic viruses in hepatobiliary cancers. Immunotherapy 2018; 10:971-986. [PMID: 29900755 DOI: 10.2217/imt-2018-0048] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The standard of care for early hepatobiliary cancers (HBC) includes surgical resection. Liver transplantations or locoregional therapies are beneficial in early hepatocellular carcinoma (HCC) under certain circumstances. Systemic treatments have some benefit in advanced HBC, though long-term prognosis remains poor. We evaluated the role of oncolytic viruses in the treatment of HBCs through a systematic literature review. The recombinant vaccinia virus JX-594 improved median survival in patients with local/metastatic HCC more strongly at high dose than at low dose (14.1 vs 6.7 months; p = 0.08) in a Phase II study. A Phase III study with JX-594 and sorafenib in advanced HCC is ongoing. No survival benefit in HCC was seen with two other recombinant adenoviruses (Ad-TK and DL1520). Several preclinical trials using oncolytic viruses in HBC showed promising results, warranting clinical studies.
Collapse
Affiliation(s)
- Pavan Tenneti
- Assistant Professor of Medicine, Department of Medicine, Banner University Medical Center, Tucson, AZ 85721, USA
| | - Mitesh J Borad
- Associate Professor of Medicine, Department of Medicine, Hematology & Oncology division, Mayo Clinic, Scottsdale, AZ 85205, USA
| | - Hani M Babiker
- Assistant Professor of Medicine, Department of Medicine, Hematology & Oncology division, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
45
|
Ji J, Weng Q, Zhang F, Xiong F, Jin Y, Hui J, Song J, Gao J, Chen M, Li Q, Shin D, Yang X. Non-Small-Cell Lung Cancer: Feasibility of Intratumoral Radiofrequency Hyperthermia-enhanced Herpes Simplex Virus Thymidine Kinase Gene Therapy. Radiology 2018; 288:612-620. [PMID: 29893649 DOI: 10.1148/radiol.2018172148] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Purpose To validate the feasibility and efficacy of intratumoral radiofrequency hyperthermia (RFH)-enhanced herpes simplex virus (HSV) thymidine kinase (TK) and ganciclovir (GCV) (hereafter, HSV-TK/GCV) gene therapy for non-small-cell lung cancer (NSCLC). Materials and Methods This study was performed from November 11, 2015, to April 14, 2017, and included (a) in vitro experiments with human NSCLC cells to establish the proof of principle, (b) in vivo experiments using mice with subcutaneous NSCLC to further demonstrate the principle, and (c) in vivo experiments using rats with orthotopic NSCLC to validate the technical feasibility. Cells, nude mice, and nude rats were randomly divided into four groups (six animals per group): (a) combination therapy (HSV-TK/GCV combined with RFH), (b) RFH, (c) HSV-TK/GCV, and (d) phosphate-buffered saline. Data were analyzed by using the Dunnett t test or Kruskal-Wallis test. Results For in vitro experiments, the cell proliferation assay showed significantly diminished viable cells with combination therapy (mean, 0.56; 95% confidence interval [CI]: 0.44, 0.68) versus RFH (mean, 0.89; 95% CI: 0.82, 0.97), HSV-TK/GCV (mean, 0.71; 95% CI: 0.56, 0.86), and phosphate-buffered saline (mean, 1; 95% CI: 1, 1) (P < .05 for all). For in vivo experiments, optical imaging showed significantly decreased relative bioluminescence signal with combination therapy (mean, 0.71 [95% CI: 0.03, 1.39] in mice; 1.29 [95% CI: 0.51, 2.06] in rats) compared with RFH (mean, 2.66 [95% CI: 1.73, 3.59] in mice; 2.26 [95% CI: 1.51, 3.01] in rats), HSV-TK/GCV (mean, 1.37 [95% CI: 0.65, 2.08] in mice; 1.76 [95% CI: 1.20, 2.31] in rats), and phosphate-buffered saline (mean, 3.07 [95% CI: 2.50, 3.65] in mice; 2.94 [95% CI: 2.29, 3.58] in rats) (P < .001 for all). US showed that the smallest relative tumor volumes occurred with combination therapy (mean, 0.60; 95% CI: 0.15, 1.05) versus RFH (mean, 2.43; 95% CI: 1.80, 3.06), HSV-TK/GCV (mean, 1.32; 95% CI: 0.75, 1.89), and phosphate-buffered saline (mean, 2.56; 95% CI: 1.75, 3.38) (P < .05 for all) in the mouse subcutaneous model. Conclusion Intratumoral radiofrequency hyperthermia-enhanced herpes simplex virus thymidine kinase and ganciclovir gene therapy for non-small-cell lung cancer is feasible and can be guided by molecular imaging. © RSNA, 2018.
Collapse
Affiliation(s)
- Jiansong Ji
- From the Image-Guided Bio-Molecular Interventions Research and Division of Interventional Radiology, Department of Radiology, University of Washington School of Medicine, 850 Republican St, S470, Seattle, WA 98109 (J.J., Q.W., F.Z., F.X., Y.J., J.S., J.G., M.C., Q.L., D.S., X.Y.); Key Laboratory of Imaging Diagnosis and Minimally Invasive Interventional Research of Zhejiang Province, Department of Radiology, Zhejiang University Lishui Hospital, Lishui, Zhejiang, China (J.J., Q.W., J.H., J.S., M.C., Q.L.); and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China (Y.J., X.Y.)
| | - Qiaoyou Weng
- From the Image-Guided Bio-Molecular Interventions Research and Division of Interventional Radiology, Department of Radiology, University of Washington School of Medicine, 850 Republican St, S470, Seattle, WA 98109 (J.J., Q.W., F.Z., F.X., Y.J., J.S., J.G., M.C., Q.L., D.S., X.Y.); Key Laboratory of Imaging Diagnosis and Minimally Invasive Interventional Research of Zhejiang Province, Department of Radiology, Zhejiang University Lishui Hospital, Lishui, Zhejiang, China (J.J., Q.W., J.H., J.S., M.C., Q.L.); and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China (Y.J., X.Y.)
| | - Feng Zhang
- From the Image-Guided Bio-Molecular Interventions Research and Division of Interventional Radiology, Department of Radiology, University of Washington School of Medicine, 850 Republican St, S470, Seattle, WA 98109 (J.J., Q.W., F.Z., F.X., Y.J., J.S., J.G., M.C., Q.L., D.S., X.Y.); Key Laboratory of Imaging Diagnosis and Minimally Invasive Interventional Research of Zhejiang Province, Department of Radiology, Zhejiang University Lishui Hospital, Lishui, Zhejiang, China (J.J., Q.W., J.H., J.S., M.C., Q.L.); and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China (Y.J., X.Y.)
| | - Fu Xiong
- From the Image-Guided Bio-Molecular Interventions Research and Division of Interventional Radiology, Department of Radiology, University of Washington School of Medicine, 850 Republican St, S470, Seattle, WA 98109 (J.J., Q.W., F.Z., F.X., Y.J., J.S., J.G., M.C., Q.L., D.S., X.Y.); Key Laboratory of Imaging Diagnosis and Minimally Invasive Interventional Research of Zhejiang Province, Department of Radiology, Zhejiang University Lishui Hospital, Lishui, Zhejiang, China (J.J., Q.W., J.H., J.S., M.C., Q.L.); and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China (Y.J., X.Y.)
| | - Yin Jin
- From the Image-Guided Bio-Molecular Interventions Research and Division of Interventional Radiology, Department of Radiology, University of Washington School of Medicine, 850 Republican St, S470, Seattle, WA 98109 (J.J., Q.W., F.Z., F.X., Y.J., J.S., J.G., M.C., Q.L., D.S., X.Y.); Key Laboratory of Imaging Diagnosis and Minimally Invasive Interventional Research of Zhejiang Province, Department of Radiology, Zhejiang University Lishui Hospital, Lishui, Zhejiang, China (J.J., Q.W., J.H., J.S., M.C., Q.L.); and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China (Y.J., X.Y.)
| | - Junguo Hui
- From the Image-Guided Bio-Molecular Interventions Research and Division of Interventional Radiology, Department of Radiology, University of Washington School of Medicine, 850 Republican St, S470, Seattle, WA 98109 (J.J., Q.W., F.Z., F.X., Y.J., J.S., J.G., M.C., Q.L., D.S., X.Y.); Key Laboratory of Imaging Diagnosis and Minimally Invasive Interventional Research of Zhejiang Province, Department of Radiology, Zhejiang University Lishui Hospital, Lishui, Zhejiang, China (J.J., Q.W., J.H., J.S., M.C., Q.L.); and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China (Y.J., X.Y.)
| | - Jingjing Song
- From the Image-Guided Bio-Molecular Interventions Research and Division of Interventional Radiology, Department of Radiology, University of Washington School of Medicine, 850 Republican St, S470, Seattle, WA 98109 (J.J., Q.W., F.Z., F.X., Y.J., J.S., J.G., M.C., Q.L., D.S., X.Y.); Key Laboratory of Imaging Diagnosis and Minimally Invasive Interventional Research of Zhejiang Province, Department of Radiology, Zhejiang University Lishui Hospital, Lishui, Zhejiang, China (J.J., Q.W., J.H., J.S., M.C., Q.L.); and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China (Y.J., X.Y.)
| | - Jun Gao
- From the Image-Guided Bio-Molecular Interventions Research and Division of Interventional Radiology, Department of Radiology, University of Washington School of Medicine, 850 Republican St, S470, Seattle, WA 98109 (J.J., Q.W., F.Z., F.X., Y.J., J.S., J.G., M.C., Q.L., D.S., X.Y.); Key Laboratory of Imaging Diagnosis and Minimally Invasive Interventional Research of Zhejiang Province, Department of Radiology, Zhejiang University Lishui Hospital, Lishui, Zhejiang, China (J.J., Q.W., J.H., J.S., M.C., Q.L.); and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China (Y.J., X.Y.)
| | - Minjiang Chen
- From the Image-Guided Bio-Molecular Interventions Research and Division of Interventional Radiology, Department of Radiology, University of Washington School of Medicine, 850 Republican St, S470, Seattle, WA 98109 (J.J., Q.W., F.Z., F.X., Y.J., J.S., J.G., M.C., Q.L., D.S., X.Y.); Key Laboratory of Imaging Diagnosis and Minimally Invasive Interventional Research of Zhejiang Province, Department of Radiology, Zhejiang University Lishui Hospital, Lishui, Zhejiang, China (J.J., Q.W., J.H., J.S., M.C., Q.L.); and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China (Y.J., X.Y.)
| | - Qiang Li
- From the Image-Guided Bio-Molecular Interventions Research and Division of Interventional Radiology, Department of Radiology, University of Washington School of Medicine, 850 Republican St, S470, Seattle, WA 98109 (J.J., Q.W., F.Z., F.X., Y.J., J.S., J.G., M.C., Q.L., D.S., X.Y.); Key Laboratory of Imaging Diagnosis and Minimally Invasive Interventional Research of Zhejiang Province, Department of Radiology, Zhejiang University Lishui Hospital, Lishui, Zhejiang, China (J.J., Q.W., J.H., J.S., M.C., Q.L.); and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China (Y.J., X.Y.)
| | - David Shin
- From the Image-Guided Bio-Molecular Interventions Research and Division of Interventional Radiology, Department of Radiology, University of Washington School of Medicine, 850 Republican St, S470, Seattle, WA 98109 (J.J., Q.W., F.Z., F.X., Y.J., J.S., J.G., M.C., Q.L., D.S., X.Y.); Key Laboratory of Imaging Diagnosis and Minimally Invasive Interventional Research of Zhejiang Province, Department of Radiology, Zhejiang University Lishui Hospital, Lishui, Zhejiang, China (J.J., Q.W., J.H., J.S., M.C., Q.L.); and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China (Y.J., X.Y.)
| | - Xiaoming Yang
- From the Image-Guided Bio-Molecular Interventions Research and Division of Interventional Radiology, Department of Radiology, University of Washington School of Medicine, 850 Republican St, S470, Seattle, WA 98109 (J.J., Q.W., F.Z., F.X., Y.J., J.S., J.G., M.C., Q.L., D.S., X.Y.); Key Laboratory of Imaging Diagnosis and Minimally Invasive Interventional Research of Zhejiang Province, Department of Radiology, Zhejiang University Lishui Hospital, Lishui, Zhejiang, China (J.J., Q.W., J.H., J.S., M.C., Q.L.); and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China (Y.J., X.Y.)
| |
Collapse
|
46
|
Devulapally R, Lee T, Barghava-Shah A, Sekar TV, Foygel K, Bachawal SV, Willmann JK, Paulmurugan R. Ultrasound-guided delivery of thymidine kinase-nitroreductase dual therapeutic genes by PEGylated-PLGA/PIE nanoparticles for enhanced triple negative breast cancer therapy. Nanomedicine (Lond) 2018; 13:1051-1066. [PMID: 29790803 PMCID: PMC6219432 DOI: 10.2217/nnm-2017-0328] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 03/06/2018] [Indexed: 11/21/2022] Open
Abstract
AIM Triple-negative breast cancer (TNBC) is an aggressive breast cancer subtype. Since no targeted therapy is available, gene-directed enzyme prodrug therapy (GDEPT) could be an attractive strategy for treating TNBC. MATERIALS & METHODS Polyethylene glycol (PEG)ylated-poly(lactic-co-glycolic acid)/polyethyleneimine nanoparticles (PLGA/PEI NPs) were synthesized and complexed with TK-NTR fusion gene. Ultrasound (US) and microbubble (MB) mediated sonoporation was used for efficient delivery of the TK-NTR-DNA-NP complex to TNBC tumor in vivo for cancer therapy. Therapeutic effect was evaluated by treating TNBC cells in vitro and tumor xenograft in vivo by using prodrugs ganciclovir (GCV) and CB1954. RESULTS TNBC cells treated with GCV/CB1954 prodrugs after transfection of TK-NTR-DNA by PEGylated-PLGA/PEI NP resulted in high apoptotic-index. US-MB image-guided delivery of TK-NTR-DNA-NP complex displayed significant expression level of TK-NTR protein and showed tumor reduction when treated with GCV/CB1954 prodrugs in TNBC xenograft in vivo. CONCLUSION US-MB image-guided delivery of TK-NTR gene by PEGylated-PLGA/PEI NPs could be a potential prodrug therapy for TNBC in the clinic.
Collapse
Affiliation(s)
| | - Taehwa Lee
- Department of Radiology, Stanford University, Palo Alto, CA, USA
| | | | - Thillai V Sekar
- Department of Radiology, Stanford University, Palo Alto, CA, USA
| | - Kira Foygel
- Department of Radiology, Stanford University, Palo Alto, CA, USA
| | | | | | | |
Collapse
|
47
|
Zweiri J, Christmas SE. The impact of γ-irradiation on the induction of bystander killing by genetically engineered ovarian tumor cells: implications for clinical use. Cancer Cell Int 2017; 17:96. [PMID: 29089859 PMCID: PMC5655875 DOI: 10.1186/s12935-017-0465-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 10/13/2017] [Indexed: 11/11/2022] Open
Abstract
Background Cellular based therapeutic approaches for cancer rely on careful consideration of finding the optimal cell to execute the cellular goal of cancer treatment. Cell lines and primary cell cultures have been used in some studies to compare the in vitro and in vivo efficacy of autologous vs allogeneic tumour cell vaccines. Methods This study examines the effect of γ-irradiation on a range of tumor cell lines in conjunction with suicide gene therapy of cancer. To determine the efficacy of this modality, a series of in vitro and in vivo experiments were conducted using genetically modified and unmodified tumor cell lines. Results Following co-culture of HSV-TK modified tumor cells and unmodified tumor cells both in vitro and in vivo we observed that the PA-STK ovarian tumor cells were sensitive to γ-irradiation, completely abolishing their ability to induce bystander killing of unmodified tumor cells. In contrast, TK-modified human and mouse mesothelioma cells were found to retain their in vitro and in vivo bystander killing effect after γ-irradiation. Morphological evidence was consistent with the death of PA-STK cells being by pyknosis after γ-irradiation. These results suggest that PA-STK cells are not suitable for clinical application of suicide gene therapy of cancer, as lethal γ-irradiation (100 Gy) interferes with their bystander killing activity. However, the human mesothelioma cell line CRL-5830-TK retained its bystander killing potential after exposure to similarly lethal γ-irradiation (100 Gy). CRL-5830 may therefore be a suitable vehicle for HSV-TK suicide gene therapy. Conclusions This study highlights the diversity among tumor cell lines and the careful considerations needed to find the optimal tumor cell line for this type of suicide gene therapy of cancer.
Collapse
Affiliation(s)
- Jehad Zweiri
- Department of Molecular and Haematological Medicine, King's College London, The Rayne Institute, 123 Coldharbour Lane, London, SE5 9NU UK.,Institute of Infection & Global Health, University of Liverpool, Liverpool, UK.,Dept. of Clinical Infection & Immunology, Institute of Infection & Global Health, Ronald Ross Building, University of Liverpool, 8, West Derby St, Liverpool, L69 7BE UK
| | - Stephen E Christmas
- Institute of Infection & Global Health, University of Liverpool, Liverpool, UK
| |
Collapse
|
48
|
Poutou J, Bunuales M, Gonzalez-Aparicio M, German B, Zugasti I, Hernandez-Alcoceba R. Adaptation of vectors and drug-inducible systems for controlled expression of transgenes in the tumor microenvironment. J Control Release 2017; 268:247-258. [PMID: 29074407 DOI: 10.1016/j.jconrel.2017.10.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 10/19/2017] [Accepted: 10/20/2017] [Indexed: 12/22/2022]
Abstract
Biological therapies based on recombinant proteins such as antibodies or cytokines are continuously improving the repertoire of treatments against cancer. However, safety and efficacy of this approach is often limited by inappropriate biodistribution and pharmacokinetics of the proteins when they are administered systemically. Local administration of gene therapy vectors encoding these proteins would be a feasible alternative if they could mediate long-term and controlled expression of the transgene after a single intratumoral administration. We describe a new vector platform specially designed for this purpose. Different combinations of transactivators and promoters were evaluated to obtain a fully humanized inducible system responsive to the well-characterized drug mifepristone. The optimal transactivator conformation was based on DNA binding domains from the chimeric protein ZFHD1 fused to the progesterone receptor ligand binding domain and the NFkb p65 activation domain. The expression of this hybrid transactivator under the control of the elongation factor 1α (EF1α) or the chimeric CAG promoters ensured functionality of the system in a variety of cancer types. Expression cassettes with luciferase as a reporter gene were incorporated into High-Capacity adenoviral vectors (HC-Ad) for in vivo evaluation. Systemic administration of the vectors into C57BL/6 mice revealed that the vector based on the EF1α promoter (HCA-EF-ZP) allows tight control of transgene expression and remains stable for at least two months, whereas the CAG promoter suffers a progressive inactivation. Using an orthotopic pancreatic cancer model in syngeneic C57BL/6 mice we show that the local administration of HCA-EF-ZP achieves better tumor/liver ratio of luciferase production than the intravenous route. However, regional spread of the vector led to substantial transgene expression in peritoneal organs. We reduced this leakage through genetic modification of the vector capsid to display RGD and poly-lysine motifs in the fiber knob. Safety and antitumor effect of this gene therapy platform was demonstrated using interleukin-12 as a therapeutic gene. In conclusion, we have developed a new tool that allows local, sustained and controlled production of therapeutic proteins in tumors.
Collapse
Affiliation(s)
- Joanna Poutou
- Gene Therapy Program, Fundacion para la Investigacion Medica Aplicada, CIMA, Universidad de Navarra, Av. Pio XII 55, Pamplona 31008, Spain
| | - Maria Bunuales
- Gene Therapy Program, Fundacion para la Investigacion Medica Aplicada, CIMA, Universidad de Navarra, Av. Pio XII 55, Pamplona 31008, Spain
| | - Manuela Gonzalez-Aparicio
- Gene Therapy Program, Fundacion para la Investigacion Medica Aplicada, CIMA, Universidad de Navarra, Av. Pio XII 55, Pamplona 31008, Spain
| | - Beatriz German
- Gene Therapy Program, Fundacion para la Investigacion Medica Aplicada, CIMA, Universidad de Navarra, Av. Pio XII 55, Pamplona 31008, Spain
| | - Ines Zugasti
- Gene Therapy Program, Fundacion para la Investigacion Medica Aplicada, CIMA, Universidad de Navarra, Av. Pio XII 55, Pamplona 31008, Spain
| | - Ruben Hernandez-Alcoceba
- Gene Therapy Program, Fundacion para la Investigacion Medica Aplicada, CIMA, Universidad de Navarra, Av. Pio XII 55, Pamplona 31008, Spain.
| |
Collapse
|
49
|
Sawahara H, Shiraha H, Uchida D, Kato H, Kato R, Oyama A, Nagahara T, Iwamuro M, Horiguchi S, Tsutsumi K, Mandai M, Mimura T, Wada N, Takeuchi Y, Kuwaki K, Onishi H, Nakamura S, Watanabe M, Sakaguchi M, Takaki A, Nouso K, Yagi T, Nasu Y, Kumon H, Okada H. Promising therapeutic efficacy of a novel reduced expression in immortalized cells/dickkopf-3 expressing adenoviral vector for hepatocellular carcinoma. J Gastroenterol Hepatol 2017; 32:1769-1777. [PMID: 28168749 DOI: 10.1111/jgh.13757] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 01/21/2017] [Accepted: 02/02/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIM Reduced expression in immortalized cells (REIC)/dickkopf-3 (Dkk-3) is a tumor suppressor gene that is downregulated in various cancers. In our previous study of prostate cancer, the REIC/Dkk-3-expressing adenoviral vector (Ad-REIC) was found to induce cancer-selective apoptosis. This study recently developed a novel super gene expression (SGE) system and used this system to re-construct an Ad-REIC vector, termed the Ad-SGE-REIC, to achieve more effective therapeutic outcomes. In this study, the therapeutic effects of Ad-SGE-REIC on hepatocellular carcinoma (HCC) was assessed. METHODS Human HCC cell lines (HLE, Huh7, HepG2, HLF, SK-Hep1, and PLC), human HCC tissues, and mouse HCC cell line (Hepa1-6) were used in this study. REIC/Dkk-3 expression was assessed by immunoblotting and immunohistochemistry. The relative cell viability and the apoptotic effect were examined in vitro, and the anti-tumor effects of Ad-SGE-REIC treatment were analyzed in the mouse xenograft model. This study additionally assessed anti-tumor immunological effects on the immunocompetent mice. RESULTS REIC/Dkk-3 expression was decreased in HCC cell lines and HCC tissues. Ad-SGE-REIC reduced cell viability and induced apoptosis in HCC cell lines (HLE and Huh7), inhibited tumor growth in the mouse xenograft model, and demonstrated in vivo anti-cancer immunostimulatory effects on the HCC cell line (Hepa1-6). CONCLUSIONS Ad-SGE-REIC treatment not only enhanced cell killing effects in vitro but also elicited significant therapeutic effects, with tumor growth suppression, in vivo. REIC/Dkk-3 gene therapy using Ad-SGE-REIC potentially represents an innovative new therapeutic tool for HCC.
Collapse
Affiliation(s)
- Hiroaki Sawahara
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Hidenori Shiraha
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Daisuke Uchida
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Hironari Kato
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Ryo Kato
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Atsushi Oyama
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Teruya Nagahara
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Masaya Iwamuro
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Shigeru Horiguchi
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Koichiro Tsutsumi
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Mari Mandai
- Department of Internal Medicine, Okayama Saiseikai General Hospital, Okayama, Japan
| | - Tetsushige Mimura
- Department of Surgery, Okayama Saiseikai General Hospital, Okayama, Japan
| | - Nozomu Wada
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Yasuto Takeuchi
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Kenji Kuwaki
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Hideki Onishi
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Shinichiro Nakamura
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Masami Watanabe
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
- Department of Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama, Japan
| | - Masakiyo Sakaguchi
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Akinobu Takaki
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Kazuhiro Nouso
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Takahito Yagi
- Department of Gastroenterological Surgery, Transplant, and Surgical Oncology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Yasutomo Nasu
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
- Department of Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama, Japan
| | - Hiromi Kumon
- Department of Innovation Center Okayama for Nanobio-Targeted Therapy, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Hiroyuki Okada
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
50
|
Liu X, Xu J, Wang S, Yu X, Kou B, Chai M, Zang Y, Chen D. Synergistic inhibitory effects on hepatocellular carcinoma with recombinant human adenovirus Aspp2 and oxaliplatin via p53-independent pathway in vitro and in vivo. Int J Oncol 2017; 51:1291-1299. [PMID: 28902369 DOI: 10.3892/ijo.2017.4105] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 07/26/2017] [Indexed: 11/06/2022] Open
Abstract
The present study was designed to investigate the synergistic inhibitory effects on hepatocellular carcinoma with recombinant human adenovirus Aspp2 (Aspp2-ad) and oxaliplatin via p53-independent pathway in vitro and in vivo. After being treated with Aspp2-ad and/or oxaliplatin for 24-48 h, HepG2P53-/- and Hep3B cells showed a significant growth inhibition compared with vehicle control. Combination group showed a synergetic effect, the inhibitory rates were all above 80% at 48 h point in HepG2P53-/- and Hep3B cells. The apoptotic cell numbers of Aspp2-ad and/or oxaliplatin treatment groups were increased remarkably, especially for the combined therapy group in the liver cancer cells. The Hep3B xenograft experiment also showed similar inhibition of Aspp2-ad and/or oxaliplatin to the in vitro experiment. H&E results showed that combination group had the least mitotic indexes and the most necrosis. The immunohistochemistry results showed that PCNA, CD31 expression decreased greatly in treatment groups. These results suggested that Aspp2-ad might inhibit proliferation and vascular growth of hepatocarcinoma. Aspp2 induced apoptosis protein expression in Aspp2-ad and combination groups, the Aspp2, Bax and activation of caspase-3 expression increased greatly both in vitro and in vivo. But interestingly, the autophagy proteins showed different responses not only in HepG2P53-/- and Hep3B cells but also in vitro and in vivo. We found that Aspp2-ad downregulated the p-ERK, p-STAT3 expression, the synergistic effects were observed in combination group, while there was not response of mTOR to Aspp2-ad. In conclusion, Aspp2-ad, in P53-independent manner, regulated ERK and STAT3 signal moleculars to inhibit hepatocarcinoma in coordination with oxaliplatin by influencing the protein expression of proliferation, apoptosis, autophagy and vascular growth. Aspp2-ad has the potential to be developed in gene therapy for HCC, especially for P53 deletion or mutation in HCC.
Collapse
Affiliation(s)
- Xiaoni Liu
- Beijing Institute of Hepatology and Beijing YouAn Hospital, Capital Medical University, Beijing 100069, P.R. China
| | - Jianji Xu
- Beijing Institute of Hepatology and Beijing YouAn Hospital, Capital Medical University, Beijing 100069, P.R. China
| | - Shuang Wang
- Beijing Institute of Hepatology and Beijing YouAn Hospital, Capital Medical University, Beijing 100069, P.R. China
| | - Xiaoxiao Yu
- Beijing Institute of Hepatology and Beijing YouAn Hospital, Capital Medical University, Beijing 100069, P.R. China
| | - Boxin Kou
- Beijing Institute of Hepatology and Beijing YouAn Hospital, Capital Medical University, Beijing 100069, P.R. China
| | - Mengyin Chai
- Beijing Institute of Hepatology and Beijing YouAn Hospital, Capital Medical University, Beijing 100069, P.R. China
| | - Yunjin Zang
- Beijing Institute of Hepatology and Beijing YouAn Hospital, Capital Medical University, Beijing 100069, P.R. China
| | - Dexi Chen
- Beijing Institute of Hepatology and Beijing YouAn Hospital, Capital Medical University, Beijing 100069, P.R. China
| |
Collapse
|