1
|
Rafeeq H, Hussain A, Shabbir S, Ali S, Bilal M, Sher F, Iqbal HMN. Esterases as emerging biocatalysts: Mechanistic insights, genomic and metagenomic, immobilization, and biotechnological applications. Biotechnol Appl Biochem 2022; 69:2176-2194. [PMID: 34699092 DOI: 10.1002/bab.2277] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 10/20/2021] [Indexed: 02/05/2023]
Abstract
Esterase enzymes are a family of hydrolases that catalyze the breakdown and formation of ester bonds. Esterases have gained a prominent position in today's world's industrial enzymes market. Due to their unique biocatalytic attributes, esterases contribute to environmentally sustainable design approaches, including biomass degradation, food and feed industry, dairy, clothing, agrochemical (herbicides, insecticides), bioremediation, biosensor development, anticancer, antitumor, gene therapy, and diagnostic purposes. Esterases can be isolated by a diverse range of mammalian tissues, animals, and microorganisms. The isolation of extremophilic esterases increases the interest of researchers in the extraction and utilization of these enzymes at the industrial level. Genomic, metagenomic, and immobilization techniques have opened innovative ways to extract esterases and utilize them for a longer time to take advantage of their beneficial activities. The current study discusses the types of esterases, metagenomic studies for exploring new esterases, and their biomedical applications in different industrial sectors.
Collapse
Affiliation(s)
- Hamza Rafeeq
- Department of Biochemistry, Riphah International University, Faisalabad, Pakistan
| | - Asim Hussain
- Department of Biochemistry, Riphah International University, Faisalabad, Pakistan
| | - Sumaira Shabbir
- Department of Zoology, Wildlife, and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | - Sabir Ali
- Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, China
| | - Farooq Sher
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, Mexico
| |
Collapse
|
2
|
Mercer-Smith AR, Buckley A, Valdivia A, Jiang W, Thang M, Bell N, Kumar RJ, Bomba HN, Woodell AS, Luo J, Floyd SR, Hingtgen SD. Next-generation Tumor-homing Induced Neural Stem Cells as an Adjuvant to Radiation for the Treatment of Metastatic Lung Cancer. Stem Cell Rev Rep 2022; 18:2474-2493. [PMID: 35441348 DOI: 10.1007/s12015-022-10375-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2022] [Indexed: 10/18/2022]
Abstract
The spread of non-small cell lung cancer (NSCLC) to the leptomeninges is devastating with a median survival of only a few months. Radiation offers symptomatic relief, but new adjuvant therapies are desperately needed. Spheroidal, human induced neural stem cells (hiNeuroS) secreting the cytotoxic protein, TRAIL, have innate tumoritropic properties. Herein, we provide evidence that hiNeuroS-TRAIL cells can migrate to and suppress growth of NSCLC metastases in combination with radiation. In vitro cell tracking and post-mortem tissue analysis showed that hiNeuroS-TRAIL cells migrate to NSCLC tumors. Importantly, isobolographic analysis suggests that TRAIL with radiation has a synergistic cytotoxic effect on NSCLC tumors. In vivo, mice treated with radiation and hiNeuroS-TRAIL showed significant (36.6%) improvements in median survival compared to controls. Finally, bulk mRNA sequencing analysis showed both NSCLC and hiNeuroS-TRAIL cells showed changes in genes involved in migration following radiation. Overall, hiNeuroS-TRAIL cells +/- radiation have the capacity to treat NSCLC metastases.
Collapse
Affiliation(s)
- Alison R Mercer-Smith
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Andrew Buckley
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Alain Valdivia
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Wulin Jiang
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Morrent Thang
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Noah Bell
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Rashmi J Kumar
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Hunter N Bomba
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Alex S Woodell
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Jie Luo
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Scott R Floyd
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Shawn D Hingtgen
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA. .,Department of Neurosurgery, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
3
|
Sadanandan N, Shear A, Brooks B, Saft M, Cabantan DAG, Kingsbury C, Zhang H, Anthony S, Wang ZJ, Salazar FE, Lezama Toledo AR, Rivera Monroy G, Vega Gonzales-Portillo J, Moscatello A, Lee JY, Borlongan CV. Treating Metastatic Brain Cancers With Stem Cells. Front Mol Neurosci 2021; 14:749716. [PMID: 34899179 PMCID: PMC8651876 DOI: 10.3389/fnmol.2021.749716] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/20/2021] [Indexed: 12/12/2022] Open
Abstract
Stem cell therapy may present an effective treatment for metastatic brain cancer and glioblastoma. Here we posit the critical role of a leaky blood-brain barrier (BBB) as a key element for the development of brain metastases, specifically melanoma. By reviewing the immunological and inflammatory responses associated with BBB damage secondary to tumoral activity, we identify the involvement of this pathological process in the growth and formation of metastatic brain cancers. Likewise, we evaluate the hypothesis of regenerating impaired endothelial cells of the BBB and alleviating the damaged neurovascular unit to attenuate brain metastasis, using the endothelial progenitor cell (EPC) phenotype of bone marrow-derived mesenchymal stem cells. Specifically, there is a need to evaluate the efficacy for stem cell therapy to repair disruptions in the BBB and reduce inflammation in the brain, thereby causing attenuation of metastatic brain cancers. To establish the viability of stem cell therapy for the prevention and treatment of metastatic brain tumors, it is crucial to demonstrate BBB repair through augmentation of vasculogenesis and angiogenesis. BBB disruption is strongly linked to metastatic melanoma, worsens neuroinflammation during metastasis, and negatively influences the prognosis of metastatic brain cancer. Using stem cell therapy to interrupt inflammation secondary to this leaky BBB represents a paradigm-shifting approach for brain cancer treatment. In this review article, we critically assess the advantages and disadvantages of using stem cell therapy for brain metastases and glioblastoma.
Collapse
Affiliation(s)
| | - Alex Shear
- University of Florida, Gainesville, FL, United States
| | - Beverly Brooks
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, United States
| | - Madeline Saft
- University of Michigan, Ann Arbor, MI, United States
| | | | - Chase Kingsbury
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, United States
| | - Henry Zhang
- University of Florida, Gainesville, FL, United States
| | - Stefan Anthony
- Lake Erie College of Osteopathic Medicine, Bradenton, FL, United States
| | - Zhen-Jie Wang
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, United States
| | - Felipe Esparza Salazar
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud (FCS), Universidad Anáhuac México Campus Norte, Huixquilucan, Mexico
| | - Alma R. Lezama Toledo
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud (FCS), Universidad Anáhuac México Campus Norte, Huixquilucan, Mexico
| | - Germán Rivera Monroy
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud (FCS), Universidad Anáhuac México Campus Norte, Huixquilucan, Mexico
| | | | - Alexa Moscatello
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, United States
| | - Jea-Young Lee
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, United States
| | - Cesario V. Borlongan
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, United States
- Center of Excellence for Aging and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, United States
| |
Collapse
|
4
|
Mercer-Smith AR, Jiang W, Bago JR, Valdivia A, Thang M, Woodell AS, Montgomery SA, Sheets KT, Anders CK, Hingtgen SD. Cytotoxic Engineered Induced Neural Stem Cells as an Intravenous Therapy for Primary Non-Small Cell Lung Cancer and Triple-Negative Breast Cancer. Mol Cancer Ther 2021; 20:2291-2301. [PMID: 34433662 DOI: 10.1158/1535-7163.mct-21-0109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 06/30/2021] [Accepted: 08/16/2021] [Indexed: 11/16/2022]
Abstract
Converting human fibroblasts into personalized induced neural stem cells (hiNSC) that actively seek out tumors and deliver cytotoxic agents is a promising approach for treating cancer. Herein, we provide the first evidence that intravenously-infused hiNSCs secreting cytotoxic agent home to and suppress the growth of non-small cell lung cancer (NSCLC) and triple-negative breast cancer (TNBC). Migration of hiNSCs to NSCLC and TNBC in vitro was investigated using time-lapse motion analysis, which showed directional movement of hiNSCs to both tumor cell lines. In vivo, migration of intravenous hiNSCs to orthotopic NSCLC or TNBC tumors was determined using bioluminescent imaging (BLI) and immunofluorescent post-mortem tissue analysis, which indicated that hiNSCs colocalized with tumors within 3 days of intravenous administration and persisted through 14 days. In vitro, efficacy of hiNSCs releasing cytotoxic TRAIL (hiNSC-TRAIL) was monitored using kinetic imaging of co-cultures, in which hiNSC-TRAIL therapy induced rapid killing of both NSCLC and TNBC. Efficacy was determined in vivo by infusing hiNSC-TRAIL or control cells intravenously into mice bearing orthotopic NSCLC or TNBC and tracking changes in tumor volume using BLI. Mice treated with intravenous hiNSC-TRAIL showed a 70% or 72% reduction in NSCLC or TNBC tumor volume compared with controls within 14 or 21 days, respectively. Safety was assessed by hematology, blood chemistry, and histology, and no significant changes in these safety parameters was observed through 28 days. These results indicate that intravenous hiNSCs-TRAIL seek out and kill NSCLC and TNBC tumors, suggesting a potential new strategy for treating aggressive peripheral cancers.
Collapse
Affiliation(s)
- Alison R Mercer-Smith
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Wulin Jiang
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Juli R Bago
- Department of Hemato-Oncology, University of Ostrava, Ostrava, Czech Republic
| | - Alain Valdivia
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Morrent Thang
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Alex S Woodell
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Stephanie A Montgomery
- Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Kevin T Sheets
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Carey K Anders
- Department of Medicine, Duke University, Durham, North Carolina
| | - Shawn D Hingtgen
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.
- Department of Neurosurgery, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
5
|
López Vázquez M, Du W, Kanaya N, Kitamura Y, Shah K. Next-generation immunotherapies for brain metastatic cancers. Trends Cancer 2021; 7:809-822. [PMID: 33722479 DOI: 10.1016/j.trecan.2021.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/29/2020] [Accepted: 02/09/2021] [Indexed: 02/06/2023]
Abstract
Patients with extracranial tumors, like lung, breast, and skin cancers, often develop brain metastases (BM) during the course of their diseases and BM commonly represent the terminal stage of cancer progression. Recent insights in the immune biology of BM and the increasing focus of immunotherapy as a therapeutic option for cancer has prompted testing of promising biological immunotherapies, including immune cell-targeting, virotherapy, vaccines, and different cell-based therapies. Here, we review the pathobiology of BM progression and evaluate the potential of next-generation immunotherapies for BM tumors. We also provide future perspectives on the development and implementation of such therapies for brain metastatic cancer patients.
Collapse
Affiliation(s)
- María López Vázquez
- Center for Stem Cell Therapeutics and Imaging (CSTI), Harvard Medical School, Boston, MA 02115, USA; Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Wanlu Du
- Center for Stem Cell Therapeutics and Imaging (CSTI), Harvard Medical School, Boston, MA 02115, USA; Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1085, USA
| | - Nobuhiko Kanaya
- Center for Stem Cell Therapeutics and Imaging (CSTI), Harvard Medical School, Boston, MA 02115, USA; Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Yohei Kitamura
- Center for Stem Cell Therapeutics and Imaging (CSTI), Harvard Medical School, Boston, MA 02115, USA; Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Khalid Shah
- Center for Stem Cell Therapeutics and Imaging (CSTI), Harvard Medical School, Boston, MA 02115, USA; Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
6
|
Portnow J, Badie B, Suzette Blanchard M, Kilpatrick J, Tirughana R, Metz M, Mi S, Tran V, Ressler J, D'Apuzzo M, Aboody KS, Synold TW. Feasibility of intracerebrally administering multiple doses of genetically modified neural stem cells to locally produce chemotherapy in glioma patients. Cancer Gene Ther 2020; 28:294-306. [PMID: 32895489 PMCID: PMC8843788 DOI: 10.1038/s41417-020-00219-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/04/2020] [Accepted: 08/19/2020] [Indexed: 12/13/2022]
Abstract
Neural stem cells (NSCs) are tumor tropic and can be genetically modified to produce anti-cancer therapies locally in the brain. In a prior first-in-human study we demonstrated that a single dose of intracerebrally administered allogeneic NSCs, which were retrovirally transduced to express cytosine deaminase (CD), tracked to glioma sites and converted oral 5-fluorocytosine (5-FC) to 5-fluorouracil (5-FU). The next step in the clinical development of this NSC-based anti-cancer strategy was to assess the feasibility of administering multiple intracerebral doses of CD-expressing NSCs (CD-NSCs) in patients with recurrent high grade gliomas. CD-NSCs were given every 2 weeks using an indwelling brain catheter, followed each time by a 7-day course of oral 5-FC (and leucovorin in the final patient cohort). Fifteen evaluable patients received a median of 4 (range 2–10) intracerebral CD-NSC doses; doses were escalated from 50 x 106 to 150 x 106 CD-NSCs. Neuropharmacokinetic data confirmed that CD-NSCs continuously produced 5-FU in the brain during the course of 5-FC. There were no clinical signs of immunogenicity, and only three patients developed anti-NSC antibodies. Our results suggest intracerebral administration of serial doses of CD-NSCs is safe and feasible and identified a recommended dose for phase II testing of 150 x 106 CD-NSCs.
Collapse
Affiliation(s)
- Jana Portnow
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, CA, 91010, USA.
| | - Behnam Badie
- Department of Surgery, Division of Neurosurgery, City of Hope Comprehensive Cancer Center, Duarte, CA, 91010, USA
| | - M Suzette Blanchard
- Department of Computational and Quantitative Medicine, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Julie Kilpatrick
- Department of Clinical Research, City of Hope Comprehensive Cancer Center, Duarte, CA, 91010, USA
| | - Revathiswari Tirughana
- Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA.,Office of IND Development and Regulatory Affairs, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Marianne Metz
- Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Shu Mi
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Vivi Tran
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Julie Ressler
- Department of Diagnostic Radiology, City of Hope Comprehensive Cancer Center, Duarte, CA, 91010, USA
| | - Massimo D'Apuzzo
- Department of Pathology, City of Hope Comprehensive Cancer Center, Duarte, CA, 91010, USA
| | - Karen S Aboody
- Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Timothy W Synold
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| |
Collapse
|
7
|
Tuazon JP, Castelli V, Lee JY, Desideri GB, Stuppia L, Cimini AM, Borlongan CV. Neural Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1201:79-91. [PMID: 31898782 DOI: 10.1007/978-3-030-31206-0_4] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Neural stem cell (NSC) transplantation has provided the basis for the development of potentially powerful new therapeutic cell-based strategies for a broad spectrum of clinical diseases, including stroke, psychiatric illnesses such as fetal alcohol spectrum disorders, and cancer. Here, we discuss pertinent preclinical investigations involving NSCs, including how NSCs can ameliorate these diseases, the current barriers hindering NSC-based treatments, and future directions for NSC research. There are still many translational requirements to overcome before clinical therapeutic applications, such as establishing optimal dosing, route of delivery, and timing regimens and understanding the exact mechanism by which transplanted NSCs lead to enhanced recovery. Such critical lab-to-clinic investigations will be necessary in order to refine NSC-based therapies for debilitating human disorders.
Collapse
Affiliation(s)
- Julian P Tuazon
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa, FL, USA
| | - Vanessa Castelli
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa, FL, USA
| | - Jea-Young Lee
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa, FL, USA
| | | | - Liborio Stuppia
- Department of Psychological, Humanistic and Territorial Sciences, University G. D'Annunzio, Chieti, Italy
| | - Anna Maria Cimini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine, Department of Biology, Temple University, Philadelphia, PA, USA
| | - Cesar V Borlongan
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa, FL, USA.
| |
Collapse
|
8
|
Pavlou MAS, Grandbarbe L, Buckley NJ, Niclou SP, Michelucci A. Transcriptional and epigenetic mechanisms underlying astrocyte identity. Prog Neurobiol 2018; 174:36-52. [PMID: 30599178 DOI: 10.1016/j.pneurobio.2018.12.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/20/2018] [Accepted: 12/28/2018] [Indexed: 12/14/2022]
Abstract
Astrocytes play a significant role in coordinating neural development and provide critical support for the function of the CNS. They possess important adaptation capacities that range from their transition towards reactive astrocytes to their ability to undergo reprogramming, thereby revealing their potential to retain latent features of neural progenitor cells. We propose that the mechanisms underlying reactive astrogliosis or astrocyte reprogramming provide an opportunity for initiating neuronal regeneration, a process that is notably reduced in the mammalian nervous system throughout evolution. Conversely, this plasticity may also affect normal astrocytic functions resulting in pathologies ranging from neurodevelopmental disorders to neurodegenerative diseases and brain tumors. We postulate that epigenetic mechanisms linking extrinsic cues and intrinsic transcriptional programs are key factors to maintain astrocyte identity and function, and critically, to control the balance of regenerative and degenerative activity. Here, we will review the main evidences supporting this concept. We propose that unravelling the epigenetic and transcriptional mechanisms underlying the acquisition of astrocyte identity and plasticity, as well as understanding how these processes are modulated by the local microenvironment under specific threatening or pathological conditions, may pave the way to new therapeutic avenues for several neurological disorders including neurodegenerative diseases and brain tumors of astrocytic lineage.
Collapse
Affiliation(s)
- Maria Angeliki S Pavlou
- Life Sciences Research Unit, University of Luxembourg, Esch-sur-Alzette, Luxembourg; NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Luc Grandbarbe
- Life Sciences Research Unit, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Noel J Buckley
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, United Kingdom
| | - Simone P Niclou
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg; KG Jebsen Brain Tumour Research Center, Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Alessandro Michelucci
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg; Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-Belval, Luxembourg.
| |
Collapse
|
9
|
Mooney R, Hammad M, Batalla‐Covello J, Abdul Majid A, Aboody KS. Concise Review: Neural Stem Cell-Mediated Targeted Cancer Therapies. Stem Cells Transl Med 2018; 7:740-747. [PMID: 30133188 PMCID: PMC6186269 DOI: 10.1002/sctm.18-0003] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 03/28/2018] [Accepted: 04/24/2018] [Indexed: 12/27/2022] Open
Abstract
Cancer is one of the leading causes of morbidity and mortality worldwide, with 1,688,780 new cancer cases and 600,920 cancer deaths projected to occur in 2017 in the U.S. alone. Conventional cancer treatments including surgical, chemo-, and radiation therapies can be effective, but are often limited by tumor invasion, off-target toxicities, and acquired resistance. To improve clinical outcomes and decrease toxic side effects, more targeted, tumor-specific therapies are being developed. Delivering anticancer payloads using tumor-tropic cells can greatly increase therapeutic distribution to tumor sites, while sparing non-tumor tissues therefore minimizing toxic side effects. Neural stem cells (NSCs) are tumor-tropic cells that can pass through normal organs quickly, localize to invasive and metastatic tumor foci throughout the body, and cross the blood-brain barrier to reach tumors in the brain. This review focuses on the potential use of NSCs as vehicles to deliver various anticancer payloads selectively to tumor sites. The use of NSCs in cancer treatment has been studied most extensively in the brain, but the findings are applicable to other metastatic solid tumors, which will be described in this review. Strategies include NSC-mediated enzyme/prodrug gene therapy, oncolytic virotherapy, and delivery of antibodies, nanoparticles, and extracellular vesicles containing oligonucleotides. Preclinical discovery and translational studies, as well as early clinical trials, will be discussed. Stem Cells Translational Medicine 2018;7:740-747.
Collapse
Affiliation(s)
- Rachael Mooney
- Department of Developmental and Stem Cell BiologyBeckman Research Institute City of Hope DuarteCaliforniaUSA
- Irell and Manella Graduate, School of Biological SciencesBeckman Research InstituteCity of Hope DuarteCaliforniaUSA
| | - Mohamed Hammad
- Department of Developmental and Stem Cell BiologyBeckman Research Institute City of Hope DuarteCaliforniaUSA
| | - Jennifer Batalla‐Covello
- Department of Developmental and Stem Cell BiologyBeckman Research Institute City of Hope DuarteCaliforniaUSA
- Irell and Manella Graduate, School of Biological SciencesBeckman Research InstituteCity of Hope DuarteCaliforniaUSA
| | - Asma Abdul Majid
- Department of Developmental and Stem Cell BiologyBeckman Research Institute City of Hope DuarteCaliforniaUSA
| | - Karen S. Aboody
- Department of Developmental and Stem Cell BiologyBeckman Research Institute City of Hope DuarteCaliforniaUSA
| |
Collapse
|
10
|
Li Z, Yu XF, Chu PK. Recent advances in cell-mediated nanomaterial delivery systems for photothermal therapy. J Mater Chem B 2018; 6:1296-1311. [DOI: 10.1039/c7tb03166a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cell-mediated “Trojan Horse” delivery vehicles overcome the drug delivery barriers to transport nano-agents enhancing the efficiency of photothermal therapy.
Collapse
Affiliation(s)
- Zhibin Li
- Department of Physics and Department of Materials Science and Engineering
- City University of Hong Kong
- Kowloon
- China
- Center for Biomedical Materials and Interfaces
| | - Xue-Feng Yu
- Center for Biomedical Materials and Interfaces
- Shenzhen Institutes of Advanced Technology
- Chinese Academy of Sciences
- Shenzhen 518055
- P. R. China
| | - Paul K. Chu
- Department of Physics and Department of Materials Science and Engineering
- City University of Hong Kong
- Kowloon
- China
| |
Collapse
|
11
|
|
12
|
Portnow J, Synold TW, Badie B, Tirughana R, Lacey SF, D'Apuzzo M, Metz MZ, Najbauer J, Bedell V, Vo T, Gutova M, Frankel P, Chen M, Aboody KS. Neural Stem Cell-Based Anticancer Gene Therapy: A First-in-Human Study in Recurrent High-Grade Glioma Patients. Clin Cancer Res 2016; 23:2951-2960. [PMID: 27979915 DOI: 10.1158/1078-0432.ccr-16-1518] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 11/08/2016] [Accepted: 11/29/2016] [Indexed: 11/16/2022]
Abstract
Purpose: Human neural stem cells (NSC) are inherently tumor tropic, making them attractive drug delivery vehicles. Toward this goal, we retrovirally transduced an immortalized, clonal NSC line to stably express cytosine deaminase (HB1.F3.CD.C21; CD-NSCs), which converts the prodrug 5-fluorocytosine (5-FC) to 5-fluorouracil (5-FU).Experimental Design: Recurrent high-grade glioma patients underwent intracranial administration of CD-NSCs during tumor resection or biopsy. Four days later, patients began taking oral 5-FC every 6 hours for 7 days. Study treatment was given only once. A standard 3 + 3 dose escalation schema was used to increase doses of CD-NSCs from 1 × 107 to 5 × 107 and 5-FC from 75 to 150 mg/kg/day. Intracerebral microdialysis was performed to measure brain levels of 5-FC and 5-FU. Serial blood samples were obtained to assess systemic drug concentrations as well as to perform immunologic correlative studies.Results: Fifteen patients underwent study treatment. We saw no dose-limiting toxicity (DLT) due to the CD-NSCs. There was 1 DLT (grade 3 transaminitis) possibly related to 5-FC. We did not see development of anti-CD-NSC antibodies and did not detect CD-NSCs or replication-competent retrovirus in the systemic circulation. Intracerebral microdialysis revealed that CD-NSCs produced 5-FU locally in the brain in a 5-FC dose-dependent manner. Autopsy data indicate that CD-NSCs migrated to distant tumor sites and were nontumorigenic.Conclusions: Collectively, our results from this first-in-human study demonstrate initial safety and proof of concept regarding the ability of NSCs to target brain tumors and locally produce chemotherapy. Clin Cancer Res; 23(12); 2951-60. ©2016 AACR.
Collapse
Affiliation(s)
- Jana Portnow
- Department of Medical Oncology & Therapeutics Research, City of Hope, Duarte, California.
| | | | - Behnam Badie
- Division of Neurosurgery, City of Hope, Duarte, California
| | | | - Simon F Lacey
- Clinical Immunobiology Correlative Studies Laboratory, City of Hope, Duarte, California
| | | | - Marianne Z Metz
- Department of Developmental & Stem Cell Biology, City of Hope, Duarte, California
| | - Joseph Najbauer
- Department of Developmental & Stem Cell Biology, City of Hope, Duarte, California
| | | | - Tien Vo
- Department of Developmental & Stem Cell Biology, City of Hope, Duarte, California
| | - Margarita Gutova
- Department of Developmental & Stem Cell Biology, City of Hope, Duarte, California
| | - Paul Frankel
- Division of Biostatistics, City of Hope, Duarte, California
| | - Mike Chen
- Division of Neurosurgery, City of Hope, Duarte, California
| | - Karen S Aboody
- Division of Neurosurgery, City of Hope, Duarte, California.,Department of Developmental & Stem Cell Biology, City of Hope, Duarte, California
| |
Collapse
|
13
|
Shah K. Stem cell-based therapies for tumors in the brain: are we there yet? Neuro Oncol 2016; 18:1066-78. [PMID: 27282399 DOI: 10.1093/neuonc/now096] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 04/08/2016] [Indexed: 12/18/2022] Open
Abstract
Advances in understanding adult stem cell biology have facilitated the development of novel cell-based therapies for cancer. Recent developments in conventional therapies (eg, tumor resection techniques, chemotherapy strategies, and radiation therapy) for treating both metastatic and primary tumors in the brain, particularly glioblastoma have not resulted in a marked increase in patient survival. Preclinical studies have shown that multiple stem cell types exhibit inherent tropism and migrate to the sites of malignancy. Recent studies have validated the feasibility potential of using engineered stem cells as therapeutic agents to target and eliminate malignant tumor cells in the brain. This review will discuss the recent progress in the therapeutic potential of stem cells for tumors in the brain and also provide perspectives for future preclinical studies and clinical translation.
Collapse
Affiliation(s)
- Khalid Shah
- Stem Cell Therapeutics and Imaging Program, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts (K.S.); Molecular Neurotherapy and Imaging Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts (K.S.); Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts (K.S.); Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts (K.S.); Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts (K.S.)
| |
Collapse
|
14
|
Abstract
Clinical investigations using stem cell products in regenerative medicine are addressing a wide spectrum of conditions using a variety of stem cell types. To date, there have been few reports of safety issues arising from autologous or allogeneic transplants. Many cells administered show transient presence for a few days with trophic influences on immune or inflammatory responses. Limbal stem cells have been registered as a product for eye burns in Europe and mesenchymal stem cells have been approved for pediatric graft versus host disease in Canada and New Zealand. Many other applications are progressing in trials, some with early benefits to patients.
Collapse
Affiliation(s)
- Alan Trounson
- Hudson Institute for Medical Research, 27-31 Wright Street, Clayton, VIC 3168, Australia.
| | - Courtney McDonald
- Hudson Institute for Medical Research, 27-31 Wright Street, Clayton, VIC 3168, Australia
| |
Collapse
|
15
|
Choi SS, Chi BH, Chang IH, Kim KD, Lee SR, Kim SU, Lee HJ. Human Neural Stem Cells Overexpressing a Carboxylesterase Inhibit Bladder Tumor Growth. Mol Cancer Ther 2016; 15:1201-7. [PMID: 27009215 DOI: 10.1158/1535-7163.mct-15-0636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 03/02/2016] [Indexed: 11/16/2022]
Abstract
Bladder cancer is a significant clinical and economic problem. Despite intravesical chemotherapy and immunotherapy, up to 80% of patients with non-muscle-invasive bladder cancer develop recurrent tumors, of which 20% to 30% evolve into more aggressive, potentially lethal tumors. Recently, bladder cancer cells are considered to be mediators of resistance to current therapies and therefore represent strong candidates as biologic targets. No effective chemotherapy has yet been developed for advanced bladder cancer. It is desirable that a drug can be delivered directly and specifically to bladder cancer cells. Stem cells have selective migration ability toward cancer cells, and therapeutic genes can be easily transduced into stem cells. In suicide gene therapy for cancer, stem cells carry a gene encoding a carboxylesterase (CE) enzyme that transforms an inert CPT-11 prodrug into a toxic SN-38 product, a topoisomerase 1 inhibitor. In immunodeficient mice, systemically transplanted HB1.F3.CE stem cells migrated toward the tumor implanted by the TCCSUP bladder cancer cell line, and, in combination with CPT-11, the volume of tumors was significantly reduced. These findings may contribute to the development of a new selective chemotherapeutic strategy against bladder cancer. Mol Cancer Ther; 15(6); 1201-7. ©2016 AACR.
Collapse
Affiliation(s)
- Sung S Choi
- Biomedical Research Institute, Chung-Ang University Hospital, Seoul, Republic of Korea
| | - Byung Hoon Chi
- Department of Urology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - In Ho Chang
- Department of Urology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Kyung Do Kim
- Department of Urology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Sang-Rae Lee
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Ochang, Chungbuk, Republic of Korea
| | - Seung U Kim
- Division of Neurology, Department of Medicine, UBC Hospital, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Hong J Lee
- Biomedical Research Institute, Chung-Ang University Hospital, Seoul, Republic of Korea.
| |
Collapse
|
16
|
Yin PT, Han E, Lee KB. Engineering Stem Cells for Biomedical Applications. Adv Healthc Mater 2016; 5:10-55. [PMID: 25772134 PMCID: PMC5810416 DOI: 10.1002/adhm.201400842] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 02/14/2015] [Indexed: 12/19/2022]
Abstract
Stem cells are characterized by a number of useful properties, including their ability to migrate, differentiate, and secrete a variety of therapeutic molecules such as immunomodulatory factors. As such, numerous pre-clinical and clinical studies have utilized stem cell-based therapies and demonstrated their tremendous potential for the treatment of various human diseases and disorders. Recently, efforts have focused on engineering stem cells in order to further enhance their innate abilities as well as to confer them with new functionalities, which can then be used in various biomedical applications. These engineered stem cells can take on a number of forms. For instance, engineered stem cells encompass the genetic modification of stem cells as well as the use of stem cells for gene delivery, nanoparticle loading and delivery, and even small molecule drug delivery. The present Review gives an in-depth account of the current status of engineered stem cells, including potential cell sources, the most common methods used to engineer stem cells, and the utilization of engineered stem cells in various biomedical applications, with a particular focus on tissue regeneration, the treatment of immunodeficiency diseases, and cancer.
Collapse
Affiliation(s)
- Perry T Yin
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Road, Piscataway, NJ, 08854, USA
| | - Edward Han
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON, M5S 3G9, Canada
| | - Ki-Bum Lee
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Road, Piscataway, NJ, 08854, USA
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, NJ, 08854, USA
| |
Collapse
|
17
|
Abstract
Stem cell-based therapies are emerging as a promising strategy to tackle cancer. Multiple stem cell types have been shown to exhibit inherent tropism towards tumours. Moreover, when engineered to express therapeutic agents, these pathotropic delivery vehicles can effectively target sites of malignancy. This perspective considers the current status of stem cell-based treatments for cancer and provides a rationale for translating the most promising preclinical studies into the clinic.
Collapse
Affiliation(s)
- Daniel W Stuckey
- Molecular Neurotherapy and Imaging Laboratory and the Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Khalid Shah
- Molecular Neurotherapy and Imaging Laboratory and the Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA; and the Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|