1
|
Xu H, Chen S, Meng C, He Y, Huang XJ, You HB. Inhibition of CC chemokine receptor 1 ameliorates osteoarthritis in mouse by activating PPAR-γ. Mol Med 2024; 30:74. [PMID: 38831316 PMCID: PMC11149222 DOI: 10.1186/s10020-024-00823-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 04/24/2024] [Indexed: 06/05/2024] Open
Abstract
BACKGROUND Osteoarthritis (OA) is a degenerative joint disease characterized by cartilage destruction and inflammation. CC chemokine receptor 1 (CCR1), a member of the chemokine family and its receptor family, plays a role in the autoimmune response. The impact of BX471, a specific small molecule inhibitor of CCR1, on CCR1 expression in cartilage and its effects on OA remain underexplored. METHODS This study used immunohistochemistry (IHC) to assess CCR1 expression in IL-1β-induced mouse chondrocytes and a medial meniscus mouse model of destabilization of the medial meniscus (DMM). Chondrocytes treated with varying concentrations of BX471 for 24 h were subjected to IL-1β (10 ng/ml) treatment. The levels of the aging-related genes P16INK4a and P21CIP1 were analyzed via western blotting, and senescence-associated β-galactosidase (SA-β-gal) activity was measured. The expression levels of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), aggrecan (AGG), and the transcription factor SOX9 were determined through western blotting and RT‒qPCR. Collagen II, matrix metalloproteinase 13 (MMP13), and peroxisome proliferator-activated receptor (PPAR)-γ expression was analyzed via western blot, RT‒qPCR, and immunofluorescence. The impact of BX471 on inflammatory metabolism-related proteins under PPAR-γ inhibition conditions (using GW-9662) was examined through western blotting. The expression of MAPK signaling pathway-related molecules was assessed through western blotting. In vivo, various concentrations of BX471 or an equivalent medium were injected into DMM model joints. Cartilage destruction was evaluated through Safranin O/Fast green and hematoxylin-eosin (H&E) staining. RESULTS This study revealed that inhibiting CCR1 mitigates IL-1β-induced aging, downregulates the expression of iNOS, COX-2, and MMP13, and alleviates the IL-1β-induced decrease in anabolic indices. Mechanistically, the MAPK signaling pathway and PPAR-γ may be involved in inhibiting the protective effect of CCR1 on chondrocytes. In vivo, BX471 protected cartilage in a DMM model. CONCLUSION This study demonstrated the expression of CCR1 in chondrocytes. Inhibiting CCR1 reduced the inflammatory response, alleviated cartilage aging, and retarded degeneration through the MAPK signaling pathway and PPAR-γ, suggesting its potential therapeutic value for OA.
Collapse
Affiliation(s)
- Hanqing Xu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, China
| | - Sheng Chen
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, China
| | - Cheng Meng
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, China
| | - Yi He
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, China
| | - Xiao-Jian Huang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, China.
| | - Hong-Bo You
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, China.
| |
Collapse
|
2
|
Ouchida T, Isoda Y, Nakamura T, Yanaka M, Tanaka T, Handa S, Kaneko MK, Suzuki H, Kato Y. Establishment of a Novel Anti-Mouse CCR1 Monoclonal Antibody C 1Mab-6. Monoclon Antib Immunodiagn Immunother 2024; 43:67-74. [PMID: 38512465 DOI: 10.1089/mab.2023.0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024] Open
Abstract
C-C motif chemokine receptor 1 (CCR1/CD191) is a member of G-protein-coupled receptors and is expressed on myeloid cells, such as neutrophils and macrophages. Because the CCR1 signaling promotes tumor expansion in the tumor microenvironment (TME), the modification of TME is an effective strategy for cancer therapy. Although CCR1 is an attractive target for solid tumors and hematological malignancies, therapeutic agents for CCR1 have not been approved. Here, we established a novel anti-mouse CCR1 (mCCR1) monoclonal antibody (mAb), C1Mab-6 (rat IgG2b, kappa), using the Cell-Based Immunization and Screening method. Flow cytometry and Western blot analyses showed that C1Mab-6 recognizes mCCR1 specifically. The dissociation constant of C1Mab-6 for mCCR1-overexpressed Chinese hamster ovary-K1 was determined as 3.9 × 10-9 M, indicating that C1Mab-6 possesses a high affinity to mCCR1. These results suggest that C1Mab-6 could be a useful tool for targeting mCCR1 in preclinical mouse models.
Collapse
Affiliation(s)
- Tsunenori Ouchida
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yu Isoda
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takuro Nakamura
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Miyuki Yanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomohiro Tanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Saori Handa
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroyuki Suzuki
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
3
|
Zhao J, Wei K, Jiang P, Chang C, Xu L, Xu L, Shi Y, Guo S, He D. G-Protein-Coupled Receptors in Rheumatoid Arthritis: Recent Insights into Mechanisms and Functional Roles. Front Immunol 2022; 13:907733. [PMID: 35874704 PMCID: PMC9304905 DOI: 10.3389/fimmu.2022.907733] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/20/2022] [Indexed: 12/24/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease that leads to joint damage and even disability. Although there are various clinical therapies for RA, some patients still have poor or no response. Thus, the development of new drug targets remains a high priority. In this review, we discuss the role of G-protein-coupled receptors (GPCRs), including chemokine receptors, melanocortin receptors, lipid metabolism-related receptors, adenosine receptors, and other inflammation-related receptors, on mechanisms of RA, such as inflammation, lipid metabolism, angiogenesis, and bone destruction. Additionally, we summarize the latest clinical trials on GPCR targeting to provide a theoretical basis and guidance for the development of innovative GPCR-based clinical drugs for RA.
Collapse
Affiliation(s)
- Jianan Zhao
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Kai Wei
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Ping Jiang
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Cen Chang
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Lingxia Xu
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Linshuai Xu
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Yiming Shi
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Shicheng Guo
- Computation and Informatics in Biology and Medicine, University of Wisconsin-Madison, Madison, WI, United States
- Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
- *Correspondence: Shicheng Guo, ; Dongyi He,
| | - Dongyi He
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Arthritis Institute of Integrated Traditional and Western Medicine, Shanghai Chinese Medicine Research Institute, Shanghai, China
- *Correspondence: Shicheng Guo, ; Dongyi He,
| |
Collapse
|
4
|
Discovery and mechanistic study of thiazole-4-acylsulfonamide derivatives as potent and orally active ChemR23 inhibitors with a long-acting effect in cynomolgus monkeys. Bioorg Med Chem 2022; 56:116587. [DOI: 10.1016/j.bmc.2021.116587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 11/20/2022]
|
5
|
Huang J, Fu X, Chen X, Li Z, Huang Y, Liang C. Promising Therapeutic Targets for Treatment of Rheumatoid Arthritis. Front Immunol 2021; 12:686155. [PMID: 34305919 PMCID: PMC8299711 DOI: 10.3389/fimmu.2021.686155] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022] Open
Abstract
Rheumatoid arthritis (RA) is a systemic poly-articular chronic autoimmune joint disease that mainly damages the hands and feet, which affects 0.5% to 1.0% of the population worldwide. With the sustained development of disease-modifying antirheumatic drugs (DMARDs), significant success has been achieved for preventing and relieving disease activity in RA patients. Unfortunately, some patients still show limited response to DMARDs, which puts forward new requirements for special targets and novel therapies. Understanding the pathogenetic roles of the various molecules in RA could facilitate discovery of potential therapeutic targets and approaches. In this review, both existing and emerging targets, including the proteins, small molecular metabolites, and epigenetic regulators related to RA, are discussed, with a focus on the mechanisms that result in inflammation and the development of new drugs for blocking the various modulators in RA.
Collapse
Affiliation(s)
- Jie Huang
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Xuekun Fu
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Xinxin Chen
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Zheng Li
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Yuhong Huang
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Chao Liang
- Department of Biology, Southern University of Science and Technology, Shenzhen, China.,Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
6
|
Eiger DS, Boldizsar N, Honeycutt CC, Gardner J, Rajagopal S. Biased agonism at chemokine receptors. Cell Signal 2020; 78:109862. [PMID: 33249087 DOI: 10.1016/j.cellsig.2020.109862] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/07/2020] [Accepted: 11/24/2020] [Indexed: 12/11/2022]
Abstract
In the human chemokine system, interactions between the approximately 50 known endogenous chemokine ligands and 20 known chemokine receptors (CKRs) regulate a wide range of cellular functions and biological processes including immune cell activation and homeostasis, development, angiogenesis, and neuromodulation. CKRs are a family of G protein-coupled receptors (GPCR), which represent the most common and versatile class of receptors in the human genome and the targets of approximately one third of all Food and Drug Administration-approved drugs. Chemokines and CKRs bind with significant promiscuity, as most CKRs can be activated by multiple chemokines and most chemokines can activate multiple CKRs. While these ligand-receptor interactions were previously regarded as redundant, it is now appreciated that many chemokine:CKR interactions display biased agonism, the phenomenon in which different ligands binding to the same receptor signal through different pathways with different efficacies, leading to distinct biological effects. Notably, these biased responses can be modulated through changes in ligand, receptor, and or the specific cellular context (system). In this review, we explore the biochemical mechanisms, functional consequences, and therapeutic potential of biased agonism in the chemokine system. An enhanced understanding of biased agonism in the chemokine system may prove transformative in the understanding of the mechanisms and consequences of biased signaling across all GPCR subtypes and aid in the development of biased pharmaceuticals with increased therapeutic efficacy and safer side effect profiles.
Collapse
Affiliation(s)
| | - Noelia Boldizsar
- Trinity College of Arts and Sciences, Duke University, Durham, NC 27710, USA.
| | | | - Julia Gardner
- Trinity College of Arts and Sciences, Duke University, Durham, NC 27710, USA.
| | - Sudarshan Rajagopal
- Department of Biochemistry, Duke University, Durham, NC 27710, USA; Department of Medicine, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
7
|
Miyabe Y, Miyabe C, Iwai Y, Luster AD. Targeting the Chemokine System in Rheumatoid Arthritis and Vasculitis. JMA J 2020; 3:182-192. [PMID: 33150252 PMCID: PMC7590389 DOI: 10.31662/jmaj.2020-0019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 04/27/2020] [Indexed: 01/01/2023] Open
Abstract
Arrest of circulating leukocytes and subsequent diapedesis is a fundamental component of inflammation. In general, the leukocyte migration cascade is tightly regulated by chemoattractants, such as chemokines. Chemokines, small secreted chemotactic cytokines, as well as their G-protein-coupled seven transmembrane spanning receptors, control the migratory patterns, positioning and cellular interactions of immune cells. Increased levels of chemokines and their receptors are found in the blood and within inflamed tissue in patients with rheumatoid arthritis (RA) and vasculitis. Chemokine ligand-receptor interactions regulate the recruitment of leukocytes into tissue, thus contributing in important ways to the pathogenesis of RA and vasculitis. Despite the fact that blockade of chemokines and chemokine receptors in animal models have yielded promising results, human clinical trials in RA using inhibitors of chemokines and their receptors have generally failed to show clinical benefits. However, recent early phase clinical trials suggest that strategies blocking specific chemokines may have clinical benefits in RA, demonstrating that the chemokine system remains a promising therapeutic target for rheumatic diseases, such as RA and vasuculitis and requires further study.
Collapse
Affiliation(s)
- Yoshishige Miyabe
- Department of Cell Biology, Institute for Advanced Medical Sciences, Nippon Medical School, Tokyo, Japan
| | - Chie Miyabe
- Department of Dermatology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Yoshiko Iwai
- Department of Cell Biology, Institute for Advanced Medical Sciences, Nippon Medical School, Tokyo, Japan
| | - Andrew D Luster
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| |
Collapse
|
8
|
Elemam NM, Hannawi S, Maghazachi AA. Role of Chemokines and Chemokine Receptors in Rheumatoid Arthritis. Immunotargets Ther 2020; 9:43-56. [PMID: 32211348 PMCID: PMC7074856 DOI: 10.2147/itt.s243636] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 02/28/2020] [Indexed: 12/28/2022] Open
Abstract
Rheumatoid arthritis (RA) is one of the most prevalent autoimmune diseases and a prototypic inflammatory disease, affecting the small joints of the hands and feet. Chemokines and chemokine receptors play a critical role in RA pathogenesis via immune cells recruitment. Several chemokines and chemokine receptors are abundant in the peripheral blood and in the local inflamed joints of RA. Furthermore, synthetic and biologics disease modifying anti rheumatic drugs have been reported to affect chemokines expression. Thus, many studies have focused on targeting chemokines and chemokine receptors, where some have shown positive promising results. However, most of the chemokine blockers in human trials of RA treatment displayed some failures that can be attributed to several reasons in their structures and binding affinities. Nevertheless, targeting chemokines will continue to be under development, in order to improve their therapeutic potentials in RA and other autoimmune diseases. In this review we provide an up-to-date knowledge regarding the role of chemokines and chemokine receptors in RA with an emphasis on their activities on immune cells. We also discussed the effects of drugs targeting those molecules in RA. This knowledge might provide impetus for developing new therapeutic modalities to treat this chronic disease.
Collapse
Affiliation(s)
- Noha Mousaad Elemam
- College of Medicine and Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Suad Hannawi
- Ministry of Health and Prevention, Department of Rheumatology, Dubai, United Arab Emirates
| | - Azzam A Maghazachi
- College of Medicine and Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
9
|
Chemokines in rheumatic diseases: pathogenic role and therapeutic implications. Nat Rev Rheumatol 2019; 15:731-746. [PMID: 31705045 DOI: 10.1038/s41584-019-0323-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2019] [Indexed: 12/20/2022]
Abstract
Chemokines, a family of small secreted chemotactic cytokines, and their G protein-coupled seven transmembrane spanning receptors control the migratory patterns, positioning and cellular interactions of immune cells. The levels of chemokines and their receptors are increased in the blood and within inflamed tissue of patients with rheumatic diseases, such as rheumatoid arthritis, systemic lupus erythematosus, systemic sclerosis, vasculitis or idiopathic inflammatory myopathies. Chemokine ligand-receptor interactions control the recruitment of leukocytes into tissue, which are central to the pathogenesis of these rheumatic diseases. Although the blockade of various chemokines and chemokine receptors has yielded promising results in preclinical animal models of rheumatic diseases, human clinical trials have, in general, been disappointing. However, there have been glimmers of hope from several early-phase clinical trials that suggest that sufficiently blocking the relevant chemokine pathway might in fact have clinical benefits in rheumatic diseases. Hence, the chemokine system remains a promising therapeutic target for rheumatic diseases and requires further study.
Collapse
|
10
|
Jordan LA, Erlandsson MC, Fenner BF, Davies R, Harvey AK, Choy EH, Errington R, Bokarewa MI, Williams AS. Inhibition of CCL3 abrogated precursor cell fusion and bone erosions in human osteoclast cultures and murine collagen-induced arthritis. Rheumatology (Oxford) 2019; 57:2042-2052. [PMID: 30053130 PMCID: PMC6199535 DOI: 10.1093/rheumatology/key196] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Indexed: 12/12/2022] Open
Abstract
Objective Macrophage inflammatory protein 1-alpha (CCL3) is a chemokine that regulates macrophage trafficking to the inflamed joint. The agonistic effect of CCL3 on osteolytic lesions in patients with multiple myeloma is recognized; however, its role in skeletal damage during inflammatory arthritis has not been established. The aim of the study was to explore the role of osteoclast-associated CCL3 upon bone resorption, and to test its pharmacological blockade for protecting against bone pathology during inflammatory arthritis. Methods CCL3 production was studied during osteoclast differentiation from osteoclast precursor cells: human CD14-positive mononuclear cells. Mice with CIA were treated with an anti-CCL3 antibody. The effect of CCL3 blockade through mAb was studied through osteoclast number, cytokine production and bone resorption on ivory disks, and in vivo through CIA progression (clinical score, paw diameter, synovial inflammation and bone damage). Results Over time, CCL3 increased in parallel with the number of osteoclasts in culture. Anti-CCL3 treatment achieved a concentration-dependent inhibition of osteoclast fusion and reduced pit formation on ivory disks (P ⩽ 0.05). In CIA, anti-CCL3 treatment reduced joint damage and significantly decreased multinucleated tartrate-resistant acid phosphatase-positive osteoclasts and erosions in the wrists (P < 0.05) and elbows (P < 0.05), while also reducing joint erosions in the hind (P < 0.01) and fore paws (P < 0.01) as confirmed by X-ray. Conclusion Inhibition of osteoclast-associated CCL3 reduced osteoclast formation and function whilst attenuating arthritis-associated bone loss and controlling development of erosion in murine joints, thus uncoupling bone damage from inflammation. Our findings may help future innovations for the diagnosis and treatment of inflammatory arthritis.
Collapse
Affiliation(s)
- Lauren A Jordan
- Division of Infection and Immunity, Cardiff, Wales, UK.,The Cardiff Regional Experimental Arthritis Treatment and Evaluation (CREATE) Centre, Cardiff, Wales, UK
| | - Malin C Erlandsson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, The University of Gothenburg, Göteborg, Sweden
| | | | - Ruth Davies
- Division of Infection and Immunity, Cardiff, Wales, UK.,The Cardiff Regional Experimental Arthritis Treatment and Evaluation (CREATE) Centre, Cardiff, Wales, UK
| | - Ann K Harvey
- Division of Infection and Immunity, Cardiff, Wales, UK
| | - Ernest H Choy
- Division of Infection and Immunity, Cardiff, Wales, UK.,The Cardiff Regional Experimental Arthritis Treatment and Evaluation (CREATE) Centre, Cardiff, Wales, UK
| | - Rachel Errington
- Division of Cancer and Genetics, Cardiff University, School of Medicine, Cardiff, UK
| | - Maria I Bokarewa
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, The University of Gothenburg, Göteborg, Sweden
| | - Anwen S Williams
- Division of Infection and Immunity, Cardiff, Wales, UK.,The Cardiff Regional Experimental Arthritis Treatment and Evaluation (CREATE) Centre, Cardiff, Wales, UK
| |
Collapse
|
11
|
Harcken C, Kuzmich D, Cook B, Mao C, Disalvo D, Razavi H, Swinamer A, Liu P, Zhang Q, Kukulka A, Skow D, Patel M, Patel M, Fletcher K, Sherry T, Joseph D, Smith D, Canfield M, Souza D, Bogdanffy M, Berg K, Brown M. Identification of novel azaindazole CCR1 antagonist clinical candidates. Bioorg Med Chem Lett 2019; 29:441-448. [PMID: 30595446 DOI: 10.1016/j.bmcl.2018.12.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/08/2018] [Accepted: 12/12/2018] [Indexed: 11/27/2022]
Abstract
Exploring various cyclization strategies, using a submicromolar pyrazole HTS screening hit 6 as a starting point, a novel indazole based CCR1 antagonist core was discovered. This report presents the design and SAR of CCR1 indazole and azaindazole antagonists leading to the identification of three development compounds, including 19e that was advanced to early clinical trials.
Collapse
Affiliation(s)
- Christian Harcken
- Medicinal Chemistry Department, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, PO Box 368, Ridgefield, CT 06877-0368, USA.
| | - Daniel Kuzmich
- Medicinal Chemistry Department, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, PO Box 368, Ridgefield, CT 06877-0368, USA
| | - Brain Cook
- Medicinal Chemistry Department, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, PO Box 368, Ridgefield, CT 06877-0368, USA
| | - Can Mao
- Medicinal Chemistry Department, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, PO Box 368, Ridgefield, CT 06877-0368, USA
| | - Darren Disalvo
- Medicinal Chemistry Department, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, PO Box 368, Ridgefield, CT 06877-0368, USA
| | - Hossein Razavi
- Medicinal Chemistry Department, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, PO Box 368, Ridgefield, CT 06877-0368, USA
| | - Alan Swinamer
- Medicinal Chemistry Department, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, PO Box 368, Ridgefield, CT 06877-0368, USA
| | - Pingrong Liu
- Medicinal Chemistry Department, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, PO Box 368, Ridgefield, CT 06877-0368, USA
| | - Qiang Zhang
- Medicinal Chemistry Department, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, PO Box 368, Ridgefield, CT 06877-0368, USA
| | - Alison Kukulka
- Compound Profiling Department, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, PO Box 368, Ridgefield, CT 06877-0368, USA
| | - Donna Skow
- Compound Profiling Department, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, PO Box 368, Ridgefield, CT 06877-0368, USA
| | - Mita Patel
- Drug Discovery Support Department, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, PO Box 368, Ridgefield, CT 06877-0368, USA
| | - Monica Patel
- Drug Discovery Support Department, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, PO Box 368, Ridgefield, CT 06877-0368, USA
| | - Kimberly Fletcher
- Drug Discovery Support Department, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, PO Box 368, Ridgefield, CT 06877-0368, USA
| | - Tara Sherry
- Drug Discovery Support Department, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, PO Box 368, Ridgefield, CT 06877-0368, USA
| | - David Joseph
- Drug Discovery Support Department, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, PO Box 368, Ridgefield, CT 06877-0368, USA
| | - Dustin Smith
- Drug Discovery Support Department, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, PO Box 368, Ridgefield, CT 06877-0368, USA
| | - Melissa Canfield
- Immunology & Respiratory Disease Research Department, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, PO Box 368, Ridgefield, CT 06877-0368, USA
| | - Donald Souza
- Immunology & Respiratory Disease Research Department, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, PO Box 368, Ridgefield, CT 06877-0368, USA
| | - Matthew Bogdanffy
- Non-Clinical Drug Safety Department, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, PO Box 368, Ridgefield, CT 06877-0368, USA
| | - Karen Berg
- Immunology & Respiratory Disease Research Department, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, PO Box 368, Ridgefield, CT 06877-0368, USA
| | - Maryanne Brown
- Immunology & Respiratory Disease Research Department, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, PO Box 368, Ridgefield, CT 06877-0368, USA
| |
Collapse
|
12
|
Harcken C, Sarko C, Mao C, Lord J, Raudenbush B, Razavi H, Liu P, Swinamer A, Disalvo D, Lee T, Lin S, Kukulka A, Grbic H, Patel M, Patel M, Fletcher K, Joseph D, White D, Amodeo L, Berg K, Brown M, Thomson DS. Discovery and optimization of pyrazole amides as antagonists of CCR1. Bioorg Med Chem Lett 2019; 29:435-440. [PMID: 30455146 DOI: 10.1016/j.bmcl.2018.11.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/04/2018] [Accepted: 11/08/2018] [Indexed: 11/25/2022]
Abstract
A HTS screen for CCR1 antagonists afforded a novel sub-micromolar hit 5 containing a pyrazole core. In this report the design, optimization, and SAR of novel CCR1 antagonists based on a pyrazole core motif is presented. Optimization led to the advanced candidate compounds (S)-16q and (S)-16r with 250-fold improved CCR1 potency, excellent off-target selectivity and attractive drug-like properties.
Collapse
Affiliation(s)
- Christian Harcken
- Medicinal Chemistry Department, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, PO Box 368, Ridgefield, CT 06877-0368, USA.
| | - Christopher Sarko
- Medicinal Chemistry Department, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, PO Box 368, Ridgefield, CT 06877-0368, USA
| | - Can Mao
- Medicinal Chemistry Department, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, PO Box 368, Ridgefield, CT 06877-0368, USA
| | - John Lord
- Medicinal Chemistry Department, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, PO Box 368, Ridgefield, CT 06877-0368, USA
| | - Brian Raudenbush
- Medicinal Chemistry Department, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, PO Box 368, Ridgefield, CT 06877-0368, USA
| | - Hossein Razavi
- Medicinal Chemistry Department, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, PO Box 368, Ridgefield, CT 06877-0368, USA
| | - Pingrong Liu
- Medicinal Chemistry Department, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, PO Box 368, Ridgefield, CT 06877-0368, USA
| | - Alan Swinamer
- Medicinal Chemistry Department, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, PO Box 368, Ridgefield, CT 06877-0368, USA
| | - Darren Disalvo
- Medicinal Chemistry Department, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, PO Box 368, Ridgefield, CT 06877-0368, USA
| | - Thomas Lee
- Medicinal Chemistry Department, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, PO Box 368, Ridgefield, CT 06877-0368, USA
| | - Siqi Lin
- Compound Profiling Department, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, PO Box 368, Ridgefield, CT 06877-0368, USA
| | - Alison Kukulka
- Compound Profiling Department, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, PO Box 368, Ridgefield, CT 06877-0368, USA
| | - Heather Grbic
- Drug Discovery Support Department, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, PO Box 368, Ridgefield, CT 06877-0368, USA
| | - Mita Patel
- Drug Discovery Support Department, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, PO Box 368, Ridgefield, CT 06877-0368, USA
| | - Monica Patel
- Drug Discovery Support Department, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, PO Box 368, Ridgefield, CT 06877-0368, USA
| | - Kim Fletcher
- Drug Discovery Support Department, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, PO Box 368, Ridgefield, CT 06877-0368, USA
| | - David Joseph
- Drug Discovery Support Department, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, PO Box 368, Ridgefield, CT 06877-0368, USA
| | - Della White
- Immunology & Respiratory Disease Research Department, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, PO Box 368, Ridgefield, CT 06877-0368, USA
| | - Laura Amodeo
- Immunology & Respiratory Disease Research Department, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, PO Box 368, Ridgefield, CT 06877-0368, USA
| | - Karen Berg
- Immunology & Respiratory Disease Research Department, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, PO Box 368, Ridgefield, CT 06877-0368, USA
| | - Maryanne Brown
- Immunology & Respiratory Disease Research Department, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, PO Box 368, Ridgefield, CT 06877-0368, USA
| | - David S Thomson
- Medicinal Chemistry Department, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, PO Box 368, Ridgefield, CT 06877-0368, USA
| |
Collapse
|
13
|
Ortiz Zacarías NV, van Veldhoven JPD, Portner L, van Spronsen E, Ullo S, Veenhuizen M, van der Velden WJC, Zweemer AJM, Kreekel RM, Oenema K, Lenselink EB, Heitman LH, IJzerman AP. Pyrrolone Derivatives as Intracellular Allosteric Modulators for Chemokine Receptors: Selective and Dual-Targeting Inhibitors of CC Chemokine Receptors 1 and 2. J Med Chem 2018; 61:9146-9161. [PMID: 30256641 PMCID: PMC6328288 DOI: 10.1021/acs.jmedchem.8b00605] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
![]()
The
recent crystal structures of CC chemokine receptors 2 and 9
(CCR2 and CCR9) have provided structural evidence for an allosteric,
intracellular binding site. The high conservation of residues involved
in this site suggests its presence in most chemokine receptors, including
the close homologue CCR1. By using [3H]CCR2-RA-[R], a high-affinity, CCR2 intracellular ligand, we report
an intracellular binding site in CCR1, where this radioligand also
binds with high affinity. In addition, we report the synthesis and
biological characterization of a series of pyrrolone derivatives for
CCR1 and CCR2, which allowed us to identify several high-affinity
intracellular ligands, including selective and potential multitarget
antagonists. Evaluation of selected compounds in a functional [35S]GTPγS assay revealed that they act as inverse agonists
in CCR1, providing a new manner of pharmacological modulation. Thus,
this intracellular binding site enables the design of selective and
multitarget inhibitors as a novel therapeutic approach.
Collapse
Affiliation(s)
- Natalia V Ortiz Zacarías
- Division of Drug Discovery and Safety , Leiden Academic Centre for Drug Research, Leiden University , P.O. Box 9502, 2300 RA Leiden , The Netherlands
| | - Jacobus P D van Veldhoven
- Division of Drug Discovery and Safety , Leiden Academic Centre for Drug Research, Leiden University , P.O. Box 9502, 2300 RA Leiden , The Netherlands
| | - Laura Portner
- Division of Drug Discovery and Safety , Leiden Academic Centre for Drug Research, Leiden University , P.O. Box 9502, 2300 RA Leiden , The Netherlands
| | - Eric van Spronsen
- Division of Drug Discovery and Safety , Leiden Academic Centre for Drug Research, Leiden University , P.O. Box 9502, 2300 RA Leiden , The Netherlands
| | - Salviana Ullo
- Division of Drug Discovery and Safety , Leiden Academic Centre for Drug Research, Leiden University , P.O. Box 9502, 2300 RA Leiden , The Netherlands
| | - Margo Veenhuizen
- Division of Drug Discovery and Safety , Leiden Academic Centre for Drug Research, Leiden University , P.O. Box 9502, 2300 RA Leiden , The Netherlands
| | - Wijnand J C van der Velden
- Division of Drug Discovery and Safety , Leiden Academic Centre for Drug Research, Leiden University , P.O. Box 9502, 2300 RA Leiden , The Netherlands
| | - Annelien J M Zweemer
- Division of Drug Discovery and Safety , Leiden Academic Centre for Drug Research, Leiden University , P.O. Box 9502, 2300 RA Leiden , The Netherlands
| | - Roy M Kreekel
- Division of Drug Discovery and Safety , Leiden Academic Centre for Drug Research, Leiden University , P.O. Box 9502, 2300 RA Leiden , The Netherlands
| | - Kenny Oenema
- Division of Drug Discovery and Safety , Leiden Academic Centre for Drug Research, Leiden University , P.O. Box 9502, 2300 RA Leiden , The Netherlands
| | - Eelke B Lenselink
- Division of Drug Discovery and Safety , Leiden Academic Centre for Drug Research, Leiden University , P.O. Box 9502, 2300 RA Leiden , The Netherlands
| | - Laura H Heitman
- Division of Drug Discovery and Safety , Leiden Academic Centre for Drug Research, Leiden University , P.O. Box 9502, 2300 RA Leiden , The Netherlands
| | - Adriaan P IJzerman
- Division of Drug Discovery and Safety , Leiden Academic Centre for Drug Research, Leiden University , P.O. Box 9502, 2300 RA Leiden , The Netherlands
| |
Collapse
|
14
|
Bernardini G, Benigni G, Scrivo R, Valesini G, Santoni A. The Multifunctional Role of the Chemokine System in Arthritogenic Processes. Curr Rheumatol Rep 2017; 19:11. [PMID: 28265846 DOI: 10.1007/s11926-017-0635-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
PURPOSE OF REVIEW The involvement of chemokines and their receptors in the genesis and perpetuation of rheumatoid arthritis, spondyloarthritis, and osteoarthritis has been clearly recognized for a long time. Nevertheless, the complexity of their contribution to these diseases is now becoming evident and this review focuses on published evidence on their mechanism of action. RECENT FINDINGS Studies performed on patients and in vivo models have identified a number of chemokine-mediated pathways involved in various aspects of arthritogenic processes. Chemokines promote leukocyte infiltration and activation, angiogenesis, osteoclast differentiation, and synoviocyte proliferation and activation and participate to the generation of pain by regulating the release of neurotransmitters. A number of chemokines are expressed in a timely controlled fashion in the joint during arthropathies, regulating all the aspects of inflammation as well as the equilibrium between damage and repair and between relief and pain. Thus, the targeting of specific chemokine/chemokine receptor interactions is considered a promising tool for therapeutic intervention.
Collapse
Affiliation(s)
- Giovanni Bernardini
- Dipartimento di Medicina Molecolare, Sapienza Universita' di Roma, 00161, Rome, Italy
- IRCCS Neuromed, 86077, Pozzilli, IS, Italy
| | - Giorgia Benigni
- Innate Immunity Unit, Institut Pasteur, Paris, 75015, France
| | - Rossana Scrivo
- Dipartimento di Medicina Interna e Specialità Mediche, Reumatologia, Sapienza Università di Roma, Viale del Policlinico 155, 00161, Roma, Italy
| | - Guido Valesini
- Dipartimento di Medicina Interna e Specialità Mediche, Reumatologia, Sapienza Università di Roma, Viale del Policlinico 155, 00161, Roma, Italy.
| | - Angela Santoni
- Dipartimento di Medicina Molecolare, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza Universita' di Roma, Viale Regina Elena 291, 00161, Roma, Italy.
- IRCCS Neuromed, 86077, Pozzilli, IS, Italy.
| |
Collapse
|
15
|
Trummer D, Walzer A, Groettrup-Wolfers E, Schmitz H. Efficacy, safety and tolerability of the CCR1 antagonist BAY 86-5047 for the treatment of endometriosis-associated pelvic pain: a randomized controlled trial. Acta Obstet Gynecol Scand 2017; 96:694-701. [DOI: 10.1111/aogs.13105] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 01/30/2017] [Indexed: 01/04/2023]
Affiliation(s)
- Dietmar Trummer
- R&D Statistics; Bayer Pharma AG; Global Development; Berlin Germany
| | - Anja Walzer
- Global Clinical Development; Bayer Pharma AG; Global Development; Berlin Germany
| | | | - Heinz Schmitz
- Global Clinical Development; Bayer Pharma AG; Global Development; Berlin Germany
| |
Collapse
|
16
|
Bot I, Ortiz Zacarías NV, de Witte WEA, de Vries H, van Santbrink PJ, van der Velden D, Kröner MJ, van der Berg DJ, Stamos D, de Lange ECM, Kuiper J, IJzerman AP, Heitman LH. A novel CCR2 antagonist inhibits atherogenesis in apoE deficient mice by achieving high receptor occupancy. Sci Rep 2017; 7:52. [PMID: 28246398 PMCID: PMC5427923 DOI: 10.1038/s41598-017-00104-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 02/06/2017] [Indexed: 12/21/2022] Open
Abstract
CC Chemokine Receptor 2 (CCR2) and its endogenous ligand CCL2 are involved in a number of diseases, including atherosclerosis. Several CCR2 antagonists have been developed as potential therapeutic agents, however their in vivo clinical efficacy was limited. In this report, we aimed to determine whether 15a, an antagonist with a long residence time on the human CCR2, is effective in inhibiting the development of atherosclerosis in a mouse disease model. First, radioligand binding assays were performed to determine affinity and binding kinetics of 15a on murine CCR2. To assess the in vivo efficacy, western-type diet fed apoE-/- mice were treated daily with 15a or vehicle as control. Treatment with 15a reduced the amount of circulating CCR2+ monocytes and the size of the atherosclerotic plaques in both the carotid artery and the aortic root. We then showed that the long pharmacokinetic half-life of 15a combined with the high drug concentrations ensured prolonged CCR2 occupancy. These data render 15a a promising compound for drug development and confirms high receptor occupancy as a key parameter when targeting chemokine receptors.
Collapse
Affiliation(s)
- Ilze Bot
- Division of Biopharmaceutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, the Netherlands
| | - Natalia V Ortiz Zacarías
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, the Netherlands
| | - Wilhelmus E A de Witte
- Division of Pharmacology, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, the Netherlands
| | - Henk de Vries
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, the Netherlands
| | - Peter J van Santbrink
- Division of Biopharmaceutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, the Netherlands
| | - Daniël van der Velden
- Division of Biopharmaceutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, the Netherlands
| | - Mara J Kröner
- Division of Biopharmaceutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, the Netherlands
| | - Dirk-Jan van der Berg
- Division of Pharmacology, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, the Netherlands
| | | | - Elizabeth C M de Lange
- Division of Pharmacology, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, the Netherlands
| | - Johan Kuiper
- Division of Biopharmaceutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, the Netherlands
| | - Adriaan P IJzerman
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, the Netherlands
| | - Laura H Heitman
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, the Netherlands.
| |
Collapse
|
17
|
Bekker P, Dairaghi D, Seitz L, Leleti M, Wang Y, Ertl L, Baumgart T, Shugarts S, Lohr L, Dang T, Miao S, Zeng Y, Fan P, Zhang P, Johnson D, Powers J, Jaen J, Charo I, Schall TJ. Characterization of Pharmacologic and Pharmacokinetic Properties of CCX168, a Potent and Selective Orally Administered Complement 5a Receptor Inhibitor, Based on Preclinical Evaluation and Randomized Phase 1 Clinical Study. PLoS One 2016; 11:e0164646. [PMID: 27768695 PMCID: PMC5074546 DOI: 10.1371/journal.pone.0164646] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 09/26/2016] [Indexed: 01/21/2023] Open
Abstract
The complement 5a receptor has been an attractive therapeutic target for many autoimmune and inflammatory disorders. However, development of a selective and potent C5aR antagonist has been challenging. Here we describe the characterization of CCX168 (avacopan), an orally administered selective and potent C5aR inhibitor. CCX168 blocked the C5a binding, C5a-mediated migration, calcium mobilization, and CD11b upregulation in U937 cells as well as in freshly isolated human neutrophils. CCX168 retains high potency when present in human blood. A transgenic human C5aR knock-in mouse model allowed comparison of the in vitro and in vivo efficacy of the molecule. CCX168 effectively blocked migration in in vitro and ex vivo chemotaxis assays, and it blocked the C5a-mediated neutrophil vascular endothelial margination. CCX168 was effective in migration and neutrophil margination assays in cynomolgus monkeys. This thorough in vitro and preclinical characterization enabled progression of CCX168 into the clinic and testing of its safety, tolerability, pharmacokinetic, and pharmacodynamic profiles in a Phase 1 clinical trial in 48 healthy volunteers. CCX168 was shown to be well tolerated across a broad dose range (1 to 100 mg) and it showed dose-dependent pharmacokinetics. An oral dose of 30 mg CCX168 given twice daily blocked the C5a-induced upregulation of CD11b in circulating neutrophils by 94% or greater throughout the entire day, demonstrating essentially complete target coverage. This dose regimen is being tested in clinical trials in patients with anti-neutrophil cytoplasmic antibody-associated vasculitis. Trial Registration ISRCTN registry with trial ID ISRCTN13564773.
Collapse
Affiliation(s)
- Pirow Bekker
- Department of Medical and Clinical Affairs, ChemoCentryx, Inc., 850 Maude Avenue, Mountain View, California, United States of America
- * E-mail:
| | - Daniel Dairaghi
- Department of Biology, ChemoCentryx, Inc., 850 Maude Avenue, Mountain View, California, United States of America
| | - Lisa Seitz
- Department of Biology, ChemoCentryx, Inc., 850 Maude Avenue, Mountain View, California, United States of America
| | - Manmohan Leleti
- Department of Chemistry, ChemoCentryx, Inc., 850 Maude Avenue, Mountain View, California, United States of America
| | - Yu Wang
- Department of Biology, ChemoCentryx, Inc., 850 Maude Avenue, Mountain View, California, United States of America
| | - Linda Ertl
- Department of Biology, ChemoCentryx, Inc., 850 Maude Avenue, Mountain View, California, United States of America
| | - Trageen Baumgart
- Department of Biology, ChemoCentryx, Inc., 850 Maude Avenue, Mountain View, California, United States of America
| | - Sarah Shugarts
- Department of Drug Metabolism and Pharmacokinetics, ChemoCentryx, Inc., 850 Maude Avenue, Mountain View, California, United States of America
| | - Lisa Lohr
- Department of Drug Metabolism and Pharmacokinetics, ChemoCentryx, Inc., 850 Maude Avenue, Mountain View, California, United States of America
| | - Ton Dang
- Department of Drug Metabolism and Pharmacokinetics, ChemoCentryx, Inc., 850 Maude Avenue, Mountain View, California, United States of America
| | - Shichang Miao
- Department of Drug Metabolism and Pharmacokinetics, ChemoCentryx, Inc., 850 Maude Avenue, Mountain View, California, United States of America
| | - Yibin Zeng
- Department of Chemistry, ChemoCentryx, Inc., 850 Maude Avenue, Mountain View, California, United States of America
| | - Pingchen Fan
- Department of Chemistry, ChemoCentryx, Inc., 850 Maude Avenue, Mountain View, California, United States of America
| | - Penglie Zhang
- Department of Chemistry, ChemoCentryx, Inc., 850 Maude Avenue, Mountain View, California, United States of America
| | - Daniel Johnson
- Department of Medical and Clinical Affairs, ChemoCentryx, Inc., 850 Maude Avenue, Mountain View, California, United States of America
| | - Jay Powers
- Department of Chemistry, ChemoCentryx, Inc., 850 Maude Avenue, Mountain View, California, United States of America
| | - Juan Jaen
- Department of Discovery and Research, ChemoCentryx, Inc., 850 Maude Avenue, Mountain View, California, United States of America
| | - Israel Charo
- Department of Discovery and Research, ChemoCentryx, Inc., 850 Maude Avenue, Mountain View, California, United States of America
| | - Thomas J. Schall
- Department of Discovery and Research, ChemoCentryx, Inc., 850 Maude Avenue, Mountain View, California, United States of America
| |
Collapse
|
18
|
CCR1 antagonism attenuates T cell trafficking to omentum and liver in obesity-associated cancer. Immunol Cell Biol 2016; 94:531-7. [PMID: 27046081 DOI: 10.1038/icb.2016.26] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 02/16/2016] [Accepted: 02/22/2016] [Indexed: 12/31/2022]
Abstract
Obesity is a global health problem presenting serious risk of disease fuelled by chronic inflammation, including type 2 diabetes mellitus, cardiovascular disease, liver disease and cancer. Visceral fat, in particular the omentum and liver of obese individuals are sites of excessive inflammation. We propose that chemokine-mediated trafficking of pro-inflammatory cells to the omentum and liver contributes to local and subsequent systemic inflammation. Oesophagogastric adenocarcinoma (OAC) is an exemplar model of obesity and inflammation driven cancer. We have demonstrated that T cells actively migrate to the secreted factors from the omentum and liver of OAC patients and that both CD4(+) and CD8(+) T cells bearing the chemokine receptor CCR5 are significantly more prevalent in these tissues compared to matched blood. The CCR5 ligand and inflammatory chemokine MIP-1α is also secreted at significantly higher concentrations in the omentum and liver of our OAC patient cohort compared to matched serum. Furthermore, we report that MIP-1α receptor antagonism can significantly reduce T cell migration to the secreted factors from OAC omentum and liver. These novel data suggest that chemokine receptor antagonism may have therapeutic potential to reduce inflammatory T cell infiltration to the omentum and liver and in doing so, may ameliorate pathological inflammation in obesity and obesity-associated cancer.
Collapse
|
19
|
|
20
|
Szekanecz Z, Koch AE. Successes and failures of chemokine-pathway targeting in rheumatoid arthritis. Nat Rev Rheumatol 2015; 12:5-13. [PMID: 26607389 DOI: 10.1038/nrrheum.2015.157] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Chemokines and chemokine receptors are involved in leukocyte recruitment and angiogenesis underlying the pathogenesis of rheumatoid arthritis (RA) and other inflammatory rheumatic diseases. Numerous chemokines, along with both conventional and atypical cell-surface chemokine receptors, are found in inflamed synovia. Preclinical studies carried out in animal models of arthritis involving agents targeting chemokines and chemokine receptors have yielded promising results. However, most human trials of treatment of RA with antibodies and synthetic compounds targeting chemokine signalling have failed to show clinical improvements. Chemokines can have overlapping actions, and their activities can be altered by chemical modification or proteolytic degradation. Effective targeting of chemokine pathways must take acount of these properties, and can also require high levels of receptor occupancy by therapeutic agents to prevent signalling. CCR1 is a promising target for chemokine-receptor blockade.
Collapse
Affiliation(s)
- Zoltán Szekanecz
- Department of Rheumatology, Institute of Medicine, University of Debrecen Faculty of Medicine, Nagyerdei Str 98, Debrecen, H-4004, Hungary
| | - Alisa E Koch
- University of Michigan Health System, Department of Internal Medicine, Division of Rheumatology, 1500 East Medical Center Drive, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
21
|
Gilchrist A, Gauntner TD, Fazzini A, Alley KM, Pyen DS, Ahn J, Ha SJ, Willett A, Sansom SE, Yarfi JL, Bachovchin KA, Mazzoni MR, Merritt JR. Identifying bias in CCR1 antagonists using radiolabelled binding, receptor internalization, β-arrestin translocation and chemotaxis assays. Br J Pharmacol 2015; 171:5127-38. [PMID: 24990525 DOI: 10.1111/bph.12835] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 06/03/2014] [Accepted: 06/24/2014] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND AND PURPOSE Investigators have suggested that the chemokine receptor CCR1 plays a role in multiple myeloma. Studies using antisense and neutralizing antibodies to CCR1 showed that down-regulation of the receptor altered disease progression in a mouse model. More recently, experiments utilizing scid mice injected with human myeloma cells demonstrated that the CCR1 antagonist BX471 reduced osteolytic lesions, while the CCR1 antagonist MLN-3897 prevented myeloma cell adhesion to osteoclasts. However, information is limited regarding the pharmacology of CCR1 antagonists in myeloma cells. EXPERIMENTAL APPROACH We compared several well-studied CCR1 antagonists including AZD4818, BX471, CCX354, CP-481715, MLN-3897 and PS899877 for their ability to inhibit binding of [(125)I]-CCL3 in vitro using membranes prepared from RPMI 8226 cells, a human multiple myeloma cell line that endogenously expresses CCR1. In addition, antagonists were assessed for their ability to modulate CCL3-mediated internalization of CCR1 and CCL3-mediated cell migration using RPMI 8226 cells. As many GPCRs signal through β-arrestin-dependent pathways that are separate and distinct from those driven by G-proteins, we also evaluated the compounds for their ability to alter β-arrestin translocation. KEY RESULTS There were clear differences between the CCR1 antagonists in their ability to inhibit CCL3 binding to myeloma cells, as well as in their ability to inhibit G-protein-dependent and -independent functional responses. CONCLUSIONS AND IMPLICATIONS Our studies demonstrate that tissue phenotype seems to be relevant with regards to CCR1. Moreover, it appears that for CCR1 antagonists, inhibition of β-arrestin translocation is not necessarily linked to chemotaxis or receptor internalization.
Collapse
Affiliation(s)
- A Gilchrist
- Chicago College of Pharmacy, Midwestern University, Downers Grove, IL, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Kitamura T, Qian BZ, Soong D, Cassetta L, Noy R, Sugano G, Kato Y, Li J, Pollard JW. CCL2-induced chemokine cascade promotes breast cancer metastasis by enhancing retention of metastasis-associated macrophages. ACTA ACUST UNITED AC 2015; 212:1043-59. [PMID: 26056232 PMCID: PMC4493415 DOI: 10.1084/jem.20141836] [Citation(s) in RCA: 480] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 05/11/2015] [Indexed: 11/04/2022]
Abstract
Pulmonary metastasis of breast cancer cells is promoted by a distinct population of macrophages, metastasis-associated macrophages (MAMs), which originate from inflammatory monocytes (IMs) recruited by the CC-chemokine ligand 2 (CCL2). We demonstrate here that, through activation of the CCL2 receptor CCR2, the recruited MAMs secrete another chemokine ligand CCL3. Genetic deletion of CCL3 or its receptor CCR1 in macrophages reduces the number of lung metastasis foci, as well as the number of MAMs accumulated in tumor-challenged lung in mice. Adoptive transfer of WT IMs increases the reduced number of lung metastasis foci in Ccl3 deficient mice. Mechanistically, Ccr1 deficiency prevents MAM retention in the lung by reducing MAM-cancer cell interactions. These findings collectively indicate that the CCL2-triggered chemokine cascade in macrophages promotes metastatic seeding of breast cancer cells thereby amplifying the pathology already extant in the system. These data suggest that inhibition of CCR1, the distal part of this signaling relay, may have a therapeutic impact in metastatic disease with lower toxicity than blocking upstream targets.
Collapse
Affiliation(s)
- Takanori Kitamura
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, the University of Edinburgh, Edinburgh EH16 4TJ, Scotland, UK
| | - Bin-Zhi Qian
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, the University of Edinburgh, Edinburgh EH16 4TJ, Scotland, UK
| | - Daniel Soong
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, the University of Edinburgh, Edinburgh EH16 4TJ, Scotland, UK
| | - Luca Cassetta
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, the University of Edinburgh, Edinburgh EH16 4TJ, Scotland, UK
| | - Roy Noy
- Department of Developmental and Molecular Biology, Center for the Study of Reproductive Biology and Women's Health, Albert Einstein College of Medicine, New York, NY 10461
| | - Gaël Sugano
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, the University of Edinburgh, Edinburgh EH16 4TJ, Scotland, UK
| | - Yu Kato
- Department of Developmental and Molecular Biology, Center for the Study of Reproductive Biology and Women's Health, Albert Einstein College of Medicine, New York, NY 10461
| | - Jiufeng Li
- Department of Developmental and Molecular Biology, Center for the Study of Reproductive Biology and Women's Health, Albert Einstein College of Medicine, New York, NY 10461
| | - Jeffrey W Pollard
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, the University of Edinburgh, Edinburgh EH16 4TJ, Scotland, UK Department of Developmental and Molecular Biology, Center for the Study of Reproductive Biology and Women's Health, Albert Einstein College of Medicine, New York, NY 10461
| |
Collapse
|
23
|
|
24
|
Solari R, Pease JE, Begg M. “Chemokine receptors as therapeutic targets: Why aren’t there more drugs?”. Eur J Pharmacol 2015; 746:363-7. [DOI: 10.1016/j.ejphar.2014.06.060] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 06/19/2014] [Accepted: 06/19/2014] [Indexed: 10/25/2022]
|
25
|
Santella JB, Gardner DS, Duncia JV, Wu H, Dhar M, Cavallaro C, Tebben AJ, Carter PH, Barrish JC, Yarde M, Briceno SW, Cvijic ME, Grafstrom RR, Liu R, Patel SR, Watson AJ, Yang G, Rose AV, Vickery RD, Caceres-Cortes J, Caporuscio C, Camac DM, Khan JA, An Y, Foster WR, Davies P, Hynes J. Discovery of the CCR1 Antagonist, BMS-817399, for the Treatment of Rheumatoid Arthritis. J Med Chem 2014; 57:7550-64. [DOI: 10.1021/jm5003167] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Joseph B. Santella
- Bristol Myers Squibb Company, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Daniel S. Gardner
- Bristol Myers Squibb Company, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - John V. Duncia
- Bristol Myers Squibb Company, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Hong Wu
- Bristol Myers Squibb Company, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Murali Dhar
- Bristol Myers Squibb Company, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Cullen Cavallaro
- Bristol Myers Squibb Company, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Andrew J. Tebben
- Bristol Myers Squibb Company, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Percy H. Carter
- Bristol Myers Squibb Company, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Joel C. Barrish
- Bristol Myers Squibb Company, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Melissa Yarde
- Bristol Myers Squibb Company, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Stephanie W. Briceno
- Bristol Myers Squibb Company, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Mary Ellen Cvijic
- Bristol Myers Squibb Company, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - R. Robert Grafstrom
- Bristol Myers Squibb Company, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Richard Liu
- Bristol Myers Squibb Company, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Sima R. Patel
- Bristol Myers Squibb Company, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Andrew J. Watson
- Bristol Myers Squibb Company, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Guchen Yang
- Bristol Myers Squibb Company, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Anne V. Rose
- Bristol Myers Squibb Company, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Rodney D. Vickery
- Bristol Myers Squibb Company, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Janet Caceres-Cortes
- Bristol Myers Squibb Company, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Christian Caporuscio
- Bristol Myers Squibb Company, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Daniel M. Camac
- Bristol Myers Squibb Company, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Javed A. Khan
- Bristol Myers Squibb Company, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Yongmi An
- Bristol Myers Squibb Company, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - William R. Foster
- Bristol Myers Squibb Company, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Paul Davies
- Bristol Myers Squibb Company, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - John Hynes
- Bristol Myers Squibb Company, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| |
Collapse
|
26
|
Rowley SM, Kuriakose T, Dockery LM, Tran-Nguyen T, Gingerich AD, Wei L, Watford WT. Tumor progression locus 2 (Tpl2) kinase promotes chemokine receptor expression and macrophage migration during acute inflammation. J Biol Chem 2014; 289:15788-97. [PMID: 24713702 DOI: 10.1074/jbc.m114.559344] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In autoimmune diseases, the accumulation of activated leukocytes correlates with inflammation and disease progression, and, therefore, the disruption of leukocyte trafficking is an active area of research. The serine/threonine protein kinase Tpl2 (MAP3K8) regulates leukocyte inflammatory responses and is also being investigated for therapeutic inhibition during autoimmunity. Here we addressed the contribution of Tpl2 to the regulation of macrophage chemokine receptor expression and migration in vivo using a mouse model of Tpl2 ablation. LPS stimulation of bone marrow-derived macrophages induced early CCR1 chemokine receptor expression but repressed CCR2 and CCR5 expression. Notably, early induction of CCR1 expression by LPS was dependent upon a signaling pathway involving Tpl2, PI3K, and ERK. On the contrary, Tpl2 was required to maintain the basal expression of CCR2 and CCR5 as well as to stabilize CCR5 mRNA expression. Consistent with impairments in chemokine receptor expression, tpl2(-/-) macrophages were defective in trafficking to the peritoneal cavity following thioglycollate-induced inflammation. Overall, this study demonstrates a Tpl2-dependent mechanism for macrophage expression of select chemokine receptors and provides further insight into how Tpl2 inhibition may be used therapeutically to disrupt inflammatory networks in vivo.
Collapse
Affiliation(s)
- Sean M Rowley
- From the Department of Infectious Diseases, The University of Georgia, College of Veterinary Medicine, Athens, Georgia 30602 and
| | - Teneema Kuriakose
- From the Department of Infectious Diseases, The University of Georgia, College of Veterinary Medicine, Athens, Georgia 30602 and
| | - Lee M Dockery
- From the Department of Infectious Diseases, The University of Georgia, College of Veterinary Medicine, Athens, Georgia 30602 and
| | - Thi Tran-Nguyen
- From the Department of Infectious Diseases, The University of Georgia, College of Veterinary Medicine, Athens, Georgia 30602 and
| | - Aaron D Gingerich
- From the Department of Infectious Diseases, The University of Georgia, College of Veterinary Medicine, Athens, Georgia 30602 and
| | - Lai Wei
- the Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, China
| | - Wendy T Watford
- From the Department of Infectious Diseases, The University of Georgia, College of Veterinary Medicine, Athens, Georgia 30602 and
| |
Collapse
|
27
|
Abstract
INTRODUCTION Chemokines play important roles in inflammation and in immune responses. This article will discuss the current literature on the C-C chemokine ligand 5 (CCL5), and whether it is a therapeutic target in the context of various allergic, autoimmune or infectious diseases. AREAS COVERED Small-molecule inhibitors, chemokine and chemokine receptor-deficient mice, antibodies and modified chemokines are the current tools available for CCL5 research, and there are several ongoing clinical trials targeting the CCL5 receptors, CCR1, CCR3 and CCR5. There are fewer studies specifically targeting the chemokine itself and clinical studies with anti-CCL5 antibodies are still to be carried out. EXPERT OPINION Although clinical trials are strongly biased toward HIV treatment and prevention with blockers of CCR5, the therapeutic potential for CCL5 and its receptors in other diseases is relevant. Overall, it is not likely that specific targeting of CCL5 will result in new adjunct strategies for the treatment of infectious diseases with a major inflammatory component. However, targeting CCL5 could result in novel therapies for chronic inflammatory diseases, where it may decrease inflammatory responses and fibrosis, and certain solid tumors, where it may have a role in angiogenesis.
Collapse
Affiliation(s)
- Rafael Elias Marques
- Immunopharmacology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais,
Belo Horizonte, Brazil55 31 34092649;
| | - Rodrigo Guabiraba
- Institute of Infection, Immunity and Inflammation, University of Glasgow,
Glasgow, Scotland E-mail:
| | - Remo Castro Russo
- Immunopharmacology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais,
Belo Horizonte, Brazil55 31 34092649;
- Laboratory of Immunology and Pulmonary Mechanics, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais,
Belo Horizonte, Brazil55 31 34092938 E-mail:
| | - Mauro Martins Teixeira
- Immunopharmacology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais,
Belo Horizonte, Brazil55 31 34092649;
| |
Collapse
|
28
|
Braddock M. European League against rheumatism - selected presentation and poster a highlights June 11th to 13th 2013. Expert Opin Investig Drugs 2013; 23:279-89. [PMID: 24206454 DOI: 10.1517/13543784.2013.841139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION The heterogeneous pathology of many autoimmune diseases warrants the continual discovery and development of new drugs. Drawing on selected oral presentations and selected poster displays, this article highlights some new developments in the pharmacological validation of molecular targets implicated in inflammatory autoimmune disease and may be of direct importance to scientists working in this field. AREAS COVERED This report describes the current state of the pharmacology of selected drugs and targets which may have utility in modulating immune function and autoimmune inflammatory disease. EXPERT OPINION Many new molecules are progressing through clinical development for the treatment of rheumatological diseases. The value of the basic nonclinical and clinical research presented is to further pharmacological knowledge of the molecule, better understand the benefit-risk associated with clinical development and to assist in supporting the potential position of a new drug in the current treatment paradigm.
Collapse
Affiliation(s)
- Martin Braddock
- Inflammation, Neuroscience and Respiratory Global Medicines Development, AstraZeneca R&D , Mereside, Alderley Park, Macclesfield, SK10 4TG England , UK +44 0 1625 582828 ;
| |
Collapse
|
29
|
Bachelerie F, Ben-Baruch A, Burkhardt AM, Combadiere C, Farber JM, Graham GJ, Horuk R, Sparre-Ulrich AH, Locati M, Luster AD, Mantovani A, Matsushima K, Murphy PM, Nibbs R, Nomiyama H, Power CA, Proudfoot AEI, Rosenkilde MM, Rot A, Sozzani S, Thelen M, Yoshie O, Zlotnik A. International Union of Basic and Clinical Pharmacology. [corrected]. LXXXIX. Update on the extended family of chemokine receptors and introducing a new nomenclature for atypical chemokine receptors. Pharmacol Rev 2013; 66:1-79. [PMID: 24218476 DOI: 10.1124/pr.113.007724] [Citation(s) in RCA: 653] [Impact Index Per Article: 59.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Sixteen years ago, the Nomenclature Committee of the International Union of Pharmacology approved a system for naming human seven-transmembrane (7TM) G protein-coupled chemokine receptors, the large family of leukocyte chemoattractant receptors that regulates immune system development and function, in large part by mediating leukocyte trafficking. This was announced in Pharmacological Reviews in a major overview of the first decade of research in this field [Murphy PM, Baggiolini M, Charo IF, Hébert CA, Horuk R, Matsushima K, Miller LH, Oppenheim JJ, and Power CA (2000) Pharmacol Rev 52:145-176]. Since then, several new receptors have been discovered, and major advances have been made for the others in many areas, including structural biology, signal transduction mechanisms, biology, and pharmacology. New and diverse roles have been identified in infection, immunity, inflammation, development, cancer, and other areas. The first two drugs acting at chemokine receptors have been approved by the U.S. Food and Drug Administration (FDA), maraviroc targeting CCR5 in human immunodeficiency virus (HIV)/AIDS, and plerixafor targeting CXCR4 for stem cell mobilization for transplantation in cancer, and other candidates are now undergoing pivotal clinical trials for diverse disease indications. In addition, a subfamily of atypical chemokine receptors has emerged that may signal through arrestins instead of G proteins to act as chemokine scavengers, and many microbial and invertebrate G protein-coupled chemokine receptors and soluble chemokine-binding proteins have been described. Here, we review this extended family of chemokine receptors and chemokine-binding proteins at the basic, translational, and clinical levels, including an update on drug development. We also introduce a new nomenclature for atypical chemokine receptors with the stem ACKR (atypical chemokine receptor) approved by the Nomenclature Committee of the International Union of Pharmacology and the Human Genome Nomenclature Committee.
Collapse
Affiliation(s)
- Francoise Bachelerie
- Chair, Subcommittee on Chemokine Receptors, Nomenclature Committee-International Union of Pharmacology, Bldg. 10, Room 11N113, NIH, Bethesda, MD 20892.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Xiao H, Dairaghi DJ, Powers JP, Ertl LS, Baumgart T, Wang Y, Seitz LC, Penfold MET, Gan L, Hu P, Lu B, Gerard NP, Gerard C, Schall TJ, Jaen JC, Falk RJ, Jennette JC. C5a receptor (CD88) blockade protects against MPO-ANCA GN. J Am Soc Nephrol 2013; 25:225-31. [PMID: 24179165 DOI: 10.1681/asn.2013020143] [Citation(s) in RCA: 225] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Necrotizing and crescentic GN (NCGN) with a paucity of glomerular immunoglobulin deposits is associated with ANCA. The most common ANCA target antigens are myeloperoxidase (MPO) and proteinase 3. In a manner that requires activation of the alternative complement pathway, passive transfer of antibodies to mouse MPO (anti-MPO) induces a mouse model of ANCA NCGN that closely mimics human disease. Here, we confirm the importance of C5aR/CD88 in the mediation of anti-MPO-induced NCGN and report that C6 is not required. We further demonstrate that deficiency of C5a-like receptor (C5L2) has the reverse effect of C5aR/CD88 deficiency and results in more severe disease, indicating that C5aR/CD88 engagement enhances inflammation and C5L2 engagement suppresses inflammation. Oral administration of CCX168, a small molecule antagonist of human C5aR/CD88, ameliorated anti-MPO-induced NCGN in mice expressing human C5aR/CD88. These observations suggest that blockade of C5aR/CD88 might have therapeutic benefit in patients with ANCA-associated vasculitis and GN.
Collapse
Affiliation(s)
- Hong Xiao
- Department of Pathology and Laboratory Medicine and
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Sullivan T, Miao Z, Dairaghi DJ, Krasinski A, Wang Y, Zhao BN, Baumgart T, Ertl LS, Pennell A, Seitz L, Powers J, Zhao R, Ungashe S, Wei Z, Boring L, Tsou CL, Charo I, Berahovich RD, Schall TJ, Jaen JC. CCR2 antagonist CCX140-B provides renal and glycemic benefits in diabetic transgenic human CCR2 knockin mice. Am J Physiol Renal Physiol 2013; 305:F1288-97. [PMID: 23986513 DOI: 10.1152/ajprenal.00316.2013] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Chemokine (C-C motif) receptor 2 (CCR2) is central for the migration of monocytes into inflamed tissues. The novel CCR2 antagonist CCX140-B, which is currently in two separate phase 2 clinical trials in diabetic nephropathy, has recently been shown to reduce hemoglobin A1c and fasting blood glucose levels in type 2 diabetics. In this report, we describe the effects of this compound on glycemic and renal function parameters in diabetic mice. Since CCX140-B has a low affinity for mouse CCR2, transgenic human CCR2 knockin mice were generated and rendered diabetic with either a high-fat diet (diet-induced obesity) or by deletion of the leptin receptor gene (db/db). CCX140-B treatment in both models resulted in decreased albuminuria, which was associated with decreased glomerular hypertrophy and increased podocyte density. Moreover, treatment of diet-induced obese mice with CCX140-B resulted in decreased levels of fasting blood glucose and insulin, normalization of homeostatic model assessment of insulin resistance values, and decreased numbers of adipose tissue inflammatory macrophages. Unlike other CCR2 antagonists, CCX140-B had no effect on plasma levels of the CCR2 ligand CCL2 or on the numbers of blood monocytes. These results support the ongoing evaluation of this molecule in diabetic subjects with impaired renal function.
Collapse
|
32
|
Gardner DS, Santella JB, Duncia JV, Carter PH, Dhar T, Wu H, Guo W, Cavallaro C, Van Kirk K, Yarde M, Briceno SW, Robert Grafstrom R, Liu R, Patel SR, Tebben AJ, Camac D, Khan J, Watson A, Yang G, Rose A, Foster WR, Cvijic ME, Davies P, Hynes J. The discovery of BMS-457, a potent and selective CCR1 antagonist. Bioorg Med Chem Lett 2013; 23:3833-40. [DOI: 10.1016/j.bmcl.2013.04.079] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 04/24/2013] [Accepted: 04/29/2013] [Indexed: 02/07/2023]
|
33
|
Pennell AMK, Aggen JB, Sen S, Chen W, Xu Y, Sullivan E, Li L, Greenman K, Charvat T, Hansen D, Dairaghi DJ, Wright JJK, Zhang P. 1-(4-Phenylpiperazin-1-yl)-2-(1H-pyrazol-1-yl)ethanones as novel CCR1 antagonists. Bioorg Med Chem Lett 2013; 23:1228-31. [PMID: 23374868 DOI: 10.1016/j.bmcl.2013.01.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 12/31/2012] [Accepted: 01/02/2013] [Indexed: 11/16/2022]
Abstract
A novel series of CCR1 antagonists based on the 1-(4-phenylpiperazin-1-yl)-2-(1H-pyrazol-1-yl)ethanone scaffold was identified by screening a compound library utilizing CCR1-expressing human THP-1 cells. SAR studies led to the discovery of the highly potent and selective CCR1 antagonist 14 (CCR1 binding IC(50)=4 nM using [(125)I]-CCL3 as the chemokine ligand). Compound 14 displayed promising pharmacokinetic and toxicological profiles in preclinical species.
Collapse
|
34
|
White GE, Iqbal AJ, Greaves DR. CC chemokine receptors and chronic inflammation--therapeutic opportunities and pharmacological challenges. Pharmacol Rev 2013; 65:47-89. [PMID: 23300131 DOI: 10.1124/pr.111.005074] [Citation(s) in RCA: 210] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Chemokines are a family of low molecular weight proteins with an essential role in leukocyte trafficking during both homeostasis and inflammation. The CC class of chemokines consists of at least 28 members (CCL1-28) that signal through 10 known chemokine receptors (CCR1-10). CC chemokine receptors are expressed predominantly by T cells and monocyte-macrophages, cell types associated predominantly with chronic inflammation occurring over weeks or years. Chronic inflammatory diseases including rheumatoid arthritis, atherosclerosis, and metabolic syndrome are characterized by continued leukocyte infiltration into the inflammatory site, driven in large part by excessive chemokine production. Over years or decades, persistent inflammation may lead to loss of tissue architecture and function, causing severe disability or, in the case of atherosclerosis, fatal outcomes such as myocardial infarction or stroke. Despite the existence of several clinical strategies for targeting chronic inflammation, these diseases remain significant causes of morbidity and mortality globally, with a concomitant economic impact. Thus, the development of novel therapeutic agents for the treatment of chronic inflammatory disease continues to be a priority. In this review we introduce CC chemokine receptors as critical mediators of chronic inflammatory responses and explore their potential role as pharmacological targets. We discuss functions of individual CC chemokine receptors based on in vitro pharmacological data as well as transgenic animal studies. Focusing on three key forms of chronic inflammation--rheumatoid arthritis, atherosclerosis, and metabolic syndrome--we describe the pathologic function of CC chemokine receptors and their possible relevance as therapeutic targets.
Collapse
Affiliation(s)
- Gemma E White
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | | | | |
Collapse
|
35
|
Cavallaro CL, Briceno S, Chen J, Cvijic ME, Davies P, Hynes J, Liu RQ, Mandlekar S, Rose AV, Tebben AJ, Van Kirk K, Watson A, Wu H, Yang G, Carter PH. Discovery and Lead Optimization of a Novel Series of CC Chemokine Receptor 1 (CCR1)-Selective Piperidine Antagonists via Parallel Synthesis. J Med Chem 2012; 55:9643-53. [DOI: 10.1021/jm300896d] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Cullen L. Cavallaro
- Research and Development, Bristol-Myers Squibb Company, Route 206 and Provinceline Road, Princeton,
New Jersey 08540, United States
| | - Stephanie Briceno
- Research and Development, Bristol-Myers Squibb Company, Route 206 and Provinceline Road, Princeton,
New Jersey 08540, United States
| | - Jing Chen
- Research and Development, Bristol-Myers Squibb Company, Route 206 and Provinceline Road, Princeton,
New Jersey 08540, United States
| | - Mary Ellen Cvijic
- Research and Development, Bristol-Myers Squibb Company, Route 206 and Provinceline Road, Princeton,
New Jersey 08540, United States
| | - Paul Davies
- Research and Development, Bristol-Myers Squibb Company, Route 206 and Provinceline Road, Princeton,
New Jersey 08540, United States
| | - John Hynes
- Research and Development, Bristol-Myers Squibb Company, Route 206 and Provinceline Road, Princeton,
New Jersey 08540, United States
| | - Rui-Qin Liu
- Research and Development, Bristol-Myers Squibb Company, Route 206 and Provinceline Road, Princeton,
New Jersey 08540, United States
| | - Sandhya Mandlekar
- Research and Development, Bristol-Myers Squibb Company, Route 206 and Provinceline Road, Princeton,
New Jersey 08540, United States
| | - Anne V. Rose
- Research and Development, Bristol-Myers Squibb Company, Route 206 and Provinceline Road, Princeton,
New Jersey 08540, United States
| | - Andrew J. Tebben
- Research and Development, Bristol-Myers Squibb Company, Route 206 and Provinceline Road, Princeton,
New Jersey 08540, United States
| | - Katy Van Kirk
- Research and Development, Bristol-Myers Squibb Company, Route 206 and Provinceline Road, Princeton,
New Jersey 08540, United States
| | - Andrew Watson
- Research and Development, Bristol-Myers Squibb Company, Route 206 and Provinceline Road, Princeton,
New Jersey 08540, United States
| | - Hong Wu
- Research and Development, Bristol-Myers Squibb Company, Route 206 and Provinceline Road, Princeton,
New Jersey 08540, United States
| | - Guchen Yang
- Research and Development, Bristol-Myers Squibb Company, Route 206 and Provinceline Road, Princeton,
New Jersey 08540, United States
| | - Percy H. Carter
- Research and Development, Bristol-Myers Squibb Company, Route 206 and Provinceline Road, Princeton,
New Jersey 08540, United States
| |
Collapse
|
36
|
Affiliation(s)
- James Pease
- Leukocyte Biology Section, National Heart and Lung Institute, Faculty of Medicine, MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, Imperial College London, London SW7 2AZ, U.K
| | | |
Collapse
|
37
|
Dairaghi DJ, Oyajobi BO, Gupta A, McCluskey B, Miao S, Powers JP, Seitz LC, Wang Y, Zeng Y, Zhang P, Schall TJ, Jaen JC. CCR1 blockade reduces tumor burden and osteolysis in vivo in a mouse model of myeloma bone disease. Blood 2012; 120:1449-57. [PMID: 22618707 PMCID: PMC3423783 DOI: 10.1182/blood-2011-10-384784] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 05/12/2012] [Indexed: 01/02/2023] Open
Abstract
The chemokine CCL3/MIP-1α is a risk factor in the outcome of multiple myeloma (MM), particularly in the development of osteolytic bone disease. This chemokine, highly overexpressed by MM cells, can signal mainly through 2 receptors, CCR1 and CCR5, only 1 of which (CCR1) is responsive to CCL3 in human and mouse osteoclast precursors. CCR1 activation leads to the formation of osteolytic lesions and facilitates tumor growth. Here we show that formation of mature osteoclasts is blocked by the highly potent and selective CCR1 antagonist CCX721, an analog of the clinical compound CCX354. We also show that doses of CCX721 selected to completely inhibit CCR1 produce a profound decrease in tumor burden and osteolytic damage in the murine 5TGM1 model of MM bone disease. Similar effects were observed when the antagonist was used prophylactically or therapeutically, with comparable efficacy to that of zoledronic acid. 5TGM1 cells were shown to express minimal levels of CCR1 while secreting high levels of CCL3, suggesting that the therapeutic effects of CCX721 result from CCR1 inhibition on non-MM cells, most likely osteoclasts and osteoclast precursors. These results provide a strong rationale for further development of CCR1 antagonists for the treatment of MM and associated osteolytic bone disease.
Collapse
|
38
|
Allegretti M, Cesta MC, Garin A, Proudfoot AE. Current status of chemokine receptor inhibitors in development. Immunol Lett 2012; 145:68-78. [DOI: 10.1016/j.imlet.2012.04.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 04/13/2012] [Indexed: 01/24/2023]
|
39
|
Abstract
The chemokine receptor CCR1 has been the target of intensive research for nearly two decades. Small-molecule antagonists were first reported in 1998 and, since then, many inhibitors for CCR1 have been brought forth. Yet, with all the money and time spent, to date, no small-molecule antagonists have successfully moved past Phase II clinical trials. With the current advancement of CCR1 antagonists by Bristol-Myers Squibb and Chemocentrix, there has been renewed interest. In this review, we present an overview of CCR1, its activating ligands, methods of signaling, and downstream response. We discuss studies that indicate CCR1 plays an important role in multiple myeloma and the underlying molecular mechanisms. Finally, we present an overview of the clinical and preclinical compounds for CCR1. We address individual structures, discuss their pharmacological précis, and summarize the published evidence to assess their value for use in multiple myeloma.
Collapse
|
40
|
Wijtmans M, Scholten DJ, de Esch IJ, Smit MJ, Leurs R. Therapeutic targeting of chemokine receptors by small molecules. DRUG DISCOVERY TODAY. TECHNOLOGIES 2012; 9:e227-e314. [PMID: 24063737 DOI: 10.1016/j.ddtec.2012.03.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
|
41
|
Why CCR2 and CCR5 blockade failed and why CCR1 blockade might still be effective in the treatment of rheumatoid arthritis. PLoS One 2011; 6:e21772. [PMID: 21747955 PMCID: PMC3128605 DOI: 10.1371/journal.pone.0021772] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2011] [Accepted: 06/07/2011] [Indexed: 12/18/2022] Open
Abstract
Background The aim of this study was to provide more insight into the question as to why blockade of CCR1, CCR2, and CCR5 may have failed in clinical trials in rheumatoid arthritis (RA) patients, using an in vitro monocyte migration system model. Methodology/Principal Findings Monocytes from healthy donors (HD; n = 8) or from RA patients (for CCR2 and CCR5 antibody n = 8; for CCR1 blockade n = 13) were isolated from peripheral blood and pre-incubated with different concentrations of either anti-CCR1, anti-CCR2, or anti-CCR5 blocking antibodies (or medium or isotype controls). In addition, a small molecule CCR1 antagonist (BX471) was tested. Chemotaxis was induced by CCL2/MCP-1 (CCR2 ligand), CCL5/RANTES (CCR1 and CCR5 ligand), or by a mix of 5 RA synovial fluids (SFs), and cellular responses compared to chemotaxis in the presence of medium alone. Anti-CCR2 antibody treatment blocked CCL2/MCP-1-induced chemotaxis of both HD and RA monocytes compared to isotype control. Similarly, anti-CCR5 antibody treatment blocked CCL5/RANTES-induced chemotaxis of RA monocytes. While neither CCR2 nor CCR5 blocking antibodies were able to inhibit SF-induced monocyte chemotaxis, even when both receptors were blocked simultaneously, both anti-CCR1 antibodies and the CCR1 antagonist were able to inhibit SF-induced monocyte chemotaxis. Conclusions/Significance The RA synovial compartment contains several ligands for CCR1, CCR2, and CCR5 as well as other chemokines and receptors involved in monocyte recruitment to the site of inflammation. The results suggest that CCR2 and CCR5 are not critical for the migration of monocytes towards the synovial compartment in RA. In contrast, blockade of CCR1 may be effective. Conceivably, CCR1 blockade failed in clinical trials, not because CCR1 is not a good target, but because very high levels of receptor occupancy at all times may be needed to inhibit monocyte migration in vivo.
Collapse
|