1
|
Nugraha MAR, Lin YR, Dewi NR, Huang HT, Nan FH, Hu YF. Effects of Taiwanese indigenous cinnamon (Cinnamomum osmophloeum) leaf hot-water extract on nonspecific immune responses, resistance against Vibrio parahaemolyticus, nonviable cells, and haemocyte subpopulations in white shrimp (Penaeusvannamei). FISH & SHELLFISH IMMUNOLOGY 2024; 151:109680. [PMID: 38849108 DOI: 10.1016/j.fsi.2024.109680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/04/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
This study investigated the effects of Cinnamomum osmophloeum leaf hot-water extract (CLWE) on nonspecific immune responses and resistance to Vibrio parahaemolyticus in white shrimp (Penaeus vannamei). Firstly, a cell viability assay demonstrated that the CLWE is safe to white shrimp heamocytes in the concentration of 0-500 mg L-1. Haemocytes incubated in vitro with 10 and 50 mg L-1 of CLWE showed significantly higher response in superoxide anion production, PO activity, and phagocytic activity. In the in vivo trials, white shrimp were fed with 0, 0.5, 1, 5, and 10 g kg-1 CLWE supplemented feeds (designated as CLWE 0, CLWE 0.5, CLWE 1, CLWE 5, and CLWE 10, respectively) over a period of 28 days. In vivo experiments demonstrated that CLWE 0.5 feeding group resulted in the highest total haemocyte count, superoxide anion production, phenoloxidase activity, and phagocytic activity. Moreover, CLWE 0.5 supplemented feed significantly upregulated the clotting system, antimicrobial peptides, pattern recognition receptors, pattern recognition proteins, and antioxidant defences in white shrimp. Furthermore, the shrimp were infected with V. parahaemolyticus injections after 14 days of feeding as challenge test. Based on the challenge test result, both CLWE 0.5 and CLWE 5 demonstrated a strong resistance to V. parahaemolyticus. These two dosages effectively reduced the number of nonviable cells and activated different haemocyte subpopulations. These findings indicated that treatment with CLWE 0.5 could promote nonspecific immune responses, immune-related gene expression, and resistance to V. parahaemolyticus in white shrimp.
Collapse
Affiliation(s)
| | - Yu-Ru Lin
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan, ROC
| | - Novi Rosmala Dewi
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan, ROC
| | - Huai-Ting Huang
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan, ROC
| | - Fan-Hua Nan
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan, ROC
| | - Yeh-Fang Hu
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan, ROC.
| |
Collapse
|
2
|
Zhuo H, Zhang Y, Fu S, Lin L, Li J, Zhou X, Wu G, Guo C, Liu J. miR-8-3p regulates the antioxidant response and apoptosis in white shrimp, Litopenaeus vannamei under ammonia-N stress. Int J Biol Macromol 2024; 274:133305. [PMID: 38914409 DOI: 10.1016/j.ijbiomac.2024.133305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/31/2024] [Accepted: 06/06/2024] [Indexed: 06/26/2024]
Abstract
Exposure to excess ammonia-N (NH3/NH4+) in aquaculture can disrupt physiological function in shrimp leading to enhanced oxidative stress and apoptosis, but little is known concerning the post-transcriptional regulation mechanism. In this study, the first miR-200 family member in crustacean was identified and characterized from Litopenaeus vannamei (designed as Lva-miR-8-3p). Lva-miR-8-3p was highly expressed in eyestalks, brainganglion, and gills. The expression of Lva-miR-8-3p in gills significantly decreased after ammonia-N stress, and Lva-miR-8-3p was confirmed to target IKKβ 3'UTR for negatively regulating IKKβ/NF-κB pathway. Overexpression of miR-8-3p promoted the hemolymph ammonia-N accumulation, total hemocyte count (THC) decrease, and gills tissue damage, thus resulting in a decreased survival rate of ammonia-exposed shrimp. Besides, Lva-miR-8-3p silencing could enhance the antioxidant enzymes activities and reduce the oxidative damage, whereas overexpression of Lva-miR-8-3p exerted the opposite effects. Furthermore, Lva-miR-8-3p overexpression was found to aggravate ammonia-N induced apoptosis in gills. In primarily cultured hemocytes, the cell viability decreased, the ROS content and caspase-3 activity increased after agomiR-8-3p transfection, while antagomiR-8-3p transfection caused the opposite change except the cell viability. These findings indicate that Lva-miR-8-3p acts as a post-transcriptional regulator in ammonia-N induced antioxidant response and apoptosis by negatively regulating IKKβ/NF-κB pathway.
Collapse
Affiliation(s)
- Hongbiao Zhuo
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China
| | - Yuan Zhang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Shuo Fu
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Lanting Lin
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jinyan Li
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xiaoxun Zhou
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Guangbo Wu
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Chaoan Guo
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China
| | - Jianyong Liu
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China.
| |
Collapse
|
3
|
Nanakorn Z, Kawai T, Tassanakajon A. Cytokine-like-Vago-mediated antiviral response in Penaeus monodon via IKK-NF-κB signaling pathway. iScience 2024; 27:110161. [PMID: 38974974 PMCID: PMC11226982 DOI: 10.1016/j.isci.2024.110161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/15/2024] [Accepted: 05/29/2024] [Indexed: 07/09/2024] Open
Abstract
Interferon (IFN) system is the primary mechanism of innate antiviral defense in immune response. To date, limited studies of IFN system were conducted in crustaceans. Previous report in Penaeus monodon demonstrated the interconnection of cytokine-like molecule Vago and inhibitor of kappa B kinase-nuclear factor κB (IKK-NF-κB) cascade against white spot syndrome virus (WSSV). This study further identified five different PmVago isoforms. Upon immune stimulation, PmVagos expressed against shrimp pathogens. PmVago1, PmVago4, and PmVago5 highly responded to WSSV, whereas, PmVago1 and PmVago4 RNAi exhibited a rapid mortality with elevated WSSV replication. Suppression of PmVago1 and PmVago4 negatively affected proPO system, genes in signal transduction, and AMPs. WSSV infection additionally induced PmVaog4 granule accumulation and cellular translocation to the area of cell membrane. More importantly, PmVago1 and PmVago4 promoters were stimulated by PmIKK overexpression; meanwhile, they further activated Dorsal and Relish promoter activities. These results suggested the possible roles of the cytokine-like PmVago via IKK-NF-κB cascade against WSSV infection.
Collapse
Affiliation(s)
- Zittipong Nanakorn
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Taro Kawai
- Laboratory of Molecular Immunobiology, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara 630-0192, Japan
| | - Anchalee Tassanakajon
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
4
|
Li H, Di X, Wang S, Li Q, Weng S, He J, Li C. Nucleic Acid Sensing by STING Induces an IFN-like Antiviral Response in a Marine Invertebrate. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1945-1957. [PMID: 38700419 DOI: 10.4049/jimmunol.2300669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 04/09/2024] [Indexed: 05/05/2024]
Abstract
The cytosolic detection of pathogen-derived nucleic acids has evolved as an essential strategy for host innate immune defense in mammals. One crucial component in this process is the stimulator of IFN genes (STING), which acts as a vital signaling adaptor, connecting the cytosolic detection of DNA by cyclic GMP-AMP (cGAMP) synthase (cGAS) to the downstream type I IFN signaling pathway. However, this process remains elusive in invertebrates. In this study, we present evidence demonstrating that STING, an ortholog found in a marine invertebrate (shrimp) called Litopenaeus vannamei, can directly detect DNA and initiate an IFN-like antiviral response. Unlike its homologs in other eukaryotic organisms, which exclusively function as sensors for cyclic dinucleotides, shrimp STING has the ability to bind to both double-stranded DNA and cyclic dinucleotides, including 2'3'-cGAMP. In vivo, shrimp STING can directly sense DNA nucleic acids from an infected virus, accelerate IFN regulatory factor dimerization and nuclear translocation, induce the expression of an IFN functional analog protein (Vago4), and finally establish an antiviral state. Taken together, our findings unveil a novel double-stranded DNA-STING-IKKε-IRF-Vago antiviral axis in an arthropod, providing valuable insights into the functional origins of DNA-sensing pathways in evolution.
Collapse
Affiliation(s)
- Haoyang Li
- State Key Laboratory of Biocontrol/Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/Guangdong Provincial Key Laboratory of Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangzhou, China
| | - Xuanzheng Di
- State Key Laboratory of Biocontrol/Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/Guangdong Provincial Key Laboratory of Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangzhou, China
| | - Sheng Wang
- State Key Laboratory of Biocontrol/Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/Guangdong Provincial Key Laboratory of Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangzhou, China
| | - Qinyao Li
- State Key Laboratory of Biocontrol/Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/Guangdong Provincial Key Laboratory of Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangzhou, China
| | - Shaoping Weng
- State Key Laboratory of Biocontrol/Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/Guangdong Provincial Key Laboratory of Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangzhou, China
| | - Jianguo He
- State Key Laboratory of Biocontrol/Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/Guangdong Provincial Key Laboratory of Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangzhou, China
| | - Chaozheng Li
- State Key Laboratory of Biocontrol/Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/Guangdong Provincial Key Laboratory of Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangzhou, China
| |
Collapse
|
5
|
Ko HJ, Jang HA, Park KB, Kim CE, Patnaik BB, Lee YS, Han YS, Jo YH. IKKβ regulates antimicrobial innate immune responses in the yellow mealworm, Tenebrio molitor. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 147:104761. [PMID: 37331676 DOI: 10.1016/j.dci.2023.104761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/20/2023]
Abstract
Toll and IMD pathways regulate antimicrobial innate immune responses in insect model systems. The transcriptional activation of antimicrobial peptides (AMPs) confers humoral immunity in the host against invaded pathogens. The IKK kinase complex (IKKα, IKKβ, and the regulatory subunit IKKγ/NEMO) centrally regulates the NF-κB response to various stimuli. It triggers an appropriate antimicrobial immune response in the host. In this study, a TmIKKβ (or TmIrd5) homolog was screened from the RNA-seq database of the coleopteran beetle, Tenebrio molitor. A single exon characterizes the TmIKKβ gene, and the open reading frame (ORF) comprises of 2112 bp that putatively encodes a polypeptide of 703 amino acid residues. TmIKKβ contains a serine/threonine kinase domain and is phylogenetically close to Tribolium castaneum IKKβ homolog (TcIKKβ). TmIKKβ transcripts were highly expressed in the early pupal (P1) and adult (A5) stages. Among the tissues, TmIKKβ showed higher expression in the integument of the last instar larvae and the fat body and hemocytes of 5-day-old adults. TmIKKβ mRNA was upregulated post-E. coli challenge to the host. Moreover, RNAi-based TmIKKβ mRNA silencing increased host larvae' susceptibility against E. coli, S. aureus and C. albicans. TmIKKβ RNAi in the fat body led to a downregulation in mRNA expression of ten out of fourteen AMP genes, including TmTenecin1, -2, and -4; TmDefensin, and -like; TmColeoptericinA, and -B; and TmAttacin1a, -1b, and -2, suggesting the requirement of the gene in antimicrobial innate immune responses. Further, a decrease in the mRNA expression of NF-κB factors such as TmRelish, TmDorsal1, and TmDorsal2 in the fat body of T. molitor larvae was observed post-microorganisms challenge. Thus, TmIKKβ regulates antimicrobial innate immune responses in T. molitor.
Collapse
Affiliation(s)
- Hye Jin Ko
- Division of Plant Biotechnology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Ho Am Jang
- Department of Biology, College of Natural Sciences, Soonchunhyang University, Asan City, 31538, Republic of Korea
| | - Ki Beom Park
- Division of Plant Biotechnology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Chang Eun Kim
- Division of Plant Biotechnology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Bharat Bhusan Patnaik
- Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, South Korea; P.G Department of Biosciences and Biotechnology, Fakir Mohan University, Nuapadhi, Balasore, Odisha, 756089, India
| | - Yong Seok Lee
- Department of Biology, College of Natural Sciences, Soonchunhyang University, Asan City, 31538, Republic of Korea; Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, South Korea
| | - Yeon Soo Han
- Division of Plant Biotechnology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea.
| | - Yong Hun Jo
- Department of Biology, College of Natural Sciences, Soonchunhyang University, Asan City, 31538, Republic of Korea.
| |
Collapse
|
6
|
Sriphuttha C, Limkul S, Pongsetkul J, Phiwthong T, Massu A, Sumniangyen N, Boontawan P, Ketudat-Cairns M, Boontawan A, Boonchuen P. Effect of fed dietary yeast (Rhodotorula paludigena CM33) on shrimp growth, gene expression, intestinal microbial, disease resistance, and meat composition of Litopenaeus vannamei. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 147:104896. [PMID: 37473826 DOI: 10.1016/j.dci.2023.104896] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/16/2023] [Accepted: 07/18/2023] [Indexed: 07/22/2023]
Abstract
Yeast is a health-promoting and bio-therapeutic probiotic that is commonly used in aquaculture. Rhodotorula paludigena CM33 can accumulate amounts of intracellular carotenoids and lipid, which are regarded as nutritionally beneficial compounds in various aspects. The aim of this study was to evaluate the impact of different levels of R. paludigena CM33 (RD) incorporated in a dietary composition at 0% (control), 1% (1% RD), 2% (2% RD), and 5% (5% RD) on the growth of shrimp (Litopenaeus vannamei), their immune-related gene expression, intestinal health, resistance to Vibrio parahaemolyticus (VPAHPND) infection, and meat composition. The results showed significant improvements in the specific growth rate, weight gain, and survival of shrimp fed with 1% RD, 2% RD, and 5% RD, which were higher than the control group after 4 weeks of administration. The administration of 5% RD group resulted in a decrease in cumulative mortality upon VPAHPND challenge when compared to the control group. Furthermore, the expression levels of immune-responsive genes, including proPO system (prophenoloxidase-2: PO2), antioxidant enzyme (superoxide dismutase: SOD, glutathione peroxidase: GPX, and catalase: CAT), JAK/STAT pathway (signal transducer and activator of transcription: STAT, gamma interferon inducible lysosomal thiol reductase: GILT), IMD pathway (inhibitor of nuclear factor kappa-B kinase subunit beta and epsilon: IKKb and IKKe), and Toll pathway (Lysozyme) genes, were up-regulated in the 5% RD group. In the context of microbiota, microbiome analysis revealed that the main phyla in shrimp intestines were Proteobacteria, Firmicutes, Bacteroidota, Campilobacterota, Actinobacteriota, and Verrucomicrobiota. At the genus level, Vibrio was found to be reduced in the 5% RD group, whereas the abundance of potentially beneficial bacteria Bifidobacterium was increased. The 5% RD group showed a significant increase in the levels of crude protein and crude lipid, both of which are essential nutritious components. Our results show the capability of R. paludigena CM33 as a probiotic supplement in shrimp feed in improving growth, antimicrobial responses against VPAHPND, and meat quality by increasing protein and lipid content in shrimp.
Collapse
Affiliation(s)
- Cheeranan Sriphuttha
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Muang District, Nakhon Ratchasima, 30000, Thailand
| | - Sirawich Limkul
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Muang District, Nakhon Ratchasima, 30000, Thailand
| | - Jaksuma Pongsetkul
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Muang District, Nakhon Ratchasima, 30000, Thailand
| | - Tannatorn Phiwthong
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Muang District, Nakhon Ratchasima, 30000, Thailand
| | - Amarin Massu
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Muang District, Nakhon Ratchasima, 30000, Thailand
| | - Naruemon Sumniangyen
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Muang District, Nakhon Ratchasima, 30000, Thailand
| | - Pailin Boontawan
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Muang District, Nakhon Ratchasima, 30000, Thailand
| | - Mariena Ketudat-Cairns
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Muang District, Nakhon Ratchasima, 30000, Thailand
| | - Apichat Boontawan
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Muang District, Nakhon Ratchasima, 30000, Thailand.
| | - Pakpoom Boonchuen
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Muang District, Nakhon Ratchasima, 30000, Thailand.
| |
Collapse
|
7
|
Tran NT, Liang H, Li J, Deng T, Bakky MAH, Zhang M, Li S. Cellular responses in crustaceans under white spot syndrome virus infection. FISH & SHELLFISH IMMUNOLOGY 2023; 140:108984. [PMID: 37549875 DOI: 10.1016/j.fsi.2023.108984] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/29/2023] [Accepted: 08/01/2023] [Indexed: 08/09/2023]
Abstract
Innate immunity plays the most important system responsible for protecting crustaceans against invading pathogens. White spot syndrome virus (WSSV) is considered a serious pathogen in crustaceans with high cumulative mortality and morbidity in infected animals. Understanding the mechanism of the response of hosts to WSSV infection is necessary, which is useful for effective prevention in controlling infection. In this review, we summarize the participation of signaling pathways (toll, immune deficiency, JAK/STAT, endocytosis, mitogen-activated protein kinase, PI3K/Akt/mTOR, cGAS-STING, Wingless/Integrated signal transduction, and prophenoloxidase (proPO) cascade) and the activity of cells (apoptosis, autophagy, as well as, reactive oxygen species and antioxidant enzymes) in the cellular-mediated immune response of crustaceans during WSSV infection. The information presented in this current review is important for a better understanding of the mechanism of the response of hosts to pathogens. Additionally, this provides a piece of basic knowledge for discovering approaches to strengthen the immune system and resistance of cultured animals against viral infections.
Collapse
Affiliation(s)
- Ngoc Tuan Tran
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Institute of Marine Sciences, Shantou University, Shantou, 515063, China.
| | - Huifen Liang
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Jinkun Li
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Taoqiu Deng
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Md Akibul Hasan Bakky
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Ming Zhang
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Shengkang Li
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Institute of Marine Sciences, Shantou University, Shantou, 515063, China.
| |
Collapse
|
8
|
Bunduruș IA, Balta I, Butucel E, Callaway T, Popescu CA, Iancu T, Pet I, Stef L, Corcionivoschi N. Natural Antimicrobials Block the Host NF-κB Pathway and Reduce Enterocytozoon hepatopenaei Infection Both In Vitro and In Vivo. Pharmaceutics 2023; 15:1994. [PMID: 37514180 PMCID: PMC10383616 DOI: 10.3390/pharmaceutics15071994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/15/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
The objective of this work was to investigate, for the first time, the antioxidant effect of a mixture of natural antimicrobials in an Enterocytozoon hepatopenaei (EHP) shrimp-gut model of infection and the biological mechanisms involved in their way of action. The study approach included investigations, firstly, in vitro, on shrimp-gut primary (SGP) epithelial cells and in vivo by using EHP-challenged shrimp. Our results show that exposure of EHP spores to 0.1%, 0.5%, 1%, and 2% AuraAqua (Aq) significantly reduced spore activity at all concentrations but was more pronounced after exposure to 0.5% Aq. The Aq was able to reduce EHP infection of SGP cells regardless of cells being pretreated or cocultured during infection with Aq. The survivability of SGP cells infected with EHP spores was significantly increased in both scenarios; however, a more noticeable effect was observed when the infected cells were pre-exposed to Aq. Our data show that infection of SGP cells by EHP activates the host NADPH oxidases and the release of H2O2 produced. When Aq was used during infection, a significant reduction in H2O2 was observed concomitant with a significant increase in the levels of CAT and SOD enzymes. Moreover, in the presence of 0.5% Aq, the overproduction of CAT and SOD was correlated with the inactivation of the NF-κB pathway, which, otherwise, as we show, is activated upon EHP infection of SGP cells. In a challenge test, Aq was able to significantly reduce mortality in EHP-infected shrimp and increase the levels of CAT and SOD in the gut tissue. Conclusively, these results show, for the first time, that a mixture of natural antimicrobials (Aq) can reduce the EHP-spore activity, improve the survival rates of primary gut-shrimp epithelial cells and reduce the oxidative damage caused by EHP infection. Moreover, we show that Aq was able to stop the H2O2 activation of the NF-κB pathway of Crustins, Penaeidins, and the lysozyme, and the CAT and SOD activity both in vitro and in a shrimp challenge test.
Collapse
Affiliation(s)
- Iulia Adelina Bunduruș
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Mihai I from Timisoara, 300645 Timisoara, Romania
| | - Igori Balta
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Mihai I from Timisoara, 300645 Timisoara, Romania
| | - Eugenia Butucel
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Mihai I from Timisoara, 300645 Timisoara, Romania
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast BT4 3SD, UK
| | - Todd Callaway
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA
| | - Cosmin Alin Popescu
- Faculty of Agriculture, University of Life Sciences King Mihai I from Timisoara, 300645 Timisoara, Romania
| | - Tiberiu Iancu
- Faculty of Management and Rural Tourism, University of Life Sciences King Mihai I from Timisoara, 300645 Timisoara, Romania
| | - Ioan Pet
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Mihai I from Timisoara, 300645 Timisoara, Romania
| | - Lavinia Stef
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Mihai I from Timisoara, 300645 Timisoara, Romania
| | - Nicolae Corcionivoschi
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Mihai I from Timisoara, 300645 Timisoara, Romania
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast BT4 3SD, UK
- Academy of Romanian Scientists, Ilfov Street, No. 3, 050044 Bucharest, Romania
| |
Collapse
|
9
|
Shi XZ, Yang MC, Kang XL, Li YX, Hong PP, Zhao XF, Vasta G, Wang JX. Scavenger receptor B2, a type III membrane pattern recognition receptor, senses LPS and activates the IMD pathway in crustaceans. Proc Natl Acad Sci U S A 2023; 120:e2216574120. [PMID: 37276415 PMCID: PMC10268257 DOI: 10.1073/pnas.2216574120] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 04/24/2023] [Indexed: 06/07/2023] Open
Abstract
The immune deficiency (IMD) pathway is critical for elevating host immunity in both insects and crustaceans. The IMD pathway activation in insects is mediated by peptidoglycan recognition proteins, which do not exist in crustaceans, suggesting a previously unidentified mechanism involved in crustacean IMD pathway activation. In this study, we identified a Marsupenaeus japonicus B class type III scavenger receptor, SRB2, as a receptor for activation of the IMD pathway. SRB2 is up-regulated upon bacterial challenge, while its depletion exacerbates bacterial proliferation and shrimp mortality via abolishing the expression of antimicrobial peptides. The extracellular domain of SRB2 recognizes bacterial lipopolysaccharide (LPS), while its C-terminal intracellular region containing a cryptic RHIM-like motif interacts with IMD, and activates the pathway by promoting nuclear translocation of RELISH. Overexpressing shrimp SRB2 in Drosophila melanogaster S2 cells potentiates LPS-induced IMD pathway activation and diptericin expression. These results unveil a previously unrecognized SRB2-IMD axis responsible for antimicrobial peptide induction and restriction of bacterial infection in crustaceans and provide evidence of biological diversity of IMD signaling in animals. A better understanding of the innate immunity of crustaceans will permit the optimization of prevention and treatment strategies against the arising shrimp diseases.
Collapse
Affiliation(s)
- Xiu-Zhen Shi
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, 266237, Qingdao, Shandong, China
| | - Ming-Chong Yang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, 266237, Qingdao, Shandong, China
- State Key Laboratory of Microbial Technology, Shandong University, 266237, Qingdao, Shandong, China
| | - Xin-Le Kang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, 266237, Qingdao, Shandong, China
| | - Yan-Xue Li
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, 266237, Qingdao, Shandong, China
| | - Pan-Pan Hong
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, 266237, Qingdao, Shandong, China
| | - Xiao-Fan Zhao
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, 266237, Qingdao, Shandong, China
| | - Gerardo R. Vasta
- Department of Microbiology and Immunology, School of Medicine, Institute of Marine and Environmental Technology, University of Maryland Baltimore, Baltimore, MD21202
| | - Jin-Xing Wang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, 266237, Qingdao, Shandong, China
- State Key Laboratory of Microbial Technology, Shandong University, 266237, Qingdao, Shandong, China
| |
Collapse
|
10
|
Jatuyosporn T, Laohawutthichai P, Romo JPO, Gallardo-Becerra L, Lopez FS, Tassanakajon A, Ochoa-Leyva A, Krusong K. White spot syndrome virus impact on the expression of immune genes and gut microbiome of black tiger shrimp Penaeus monodon. Sci Rep 2023; 13:996. [PMID: 36653369 PMCID: PMC9849358 DOI: 10.1038/s41598-023-27906-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 01/10/2023] [Indexed: 01/19/2023] Open
Abstract
The gut microbiome plays an essential role in the immune system of invertebrates and vertebrates. Pre and pro-biotics could enhance the shrimp immune system by increasing the phenoloxidase (PO), prophenoloxidase (ProPO), and superoxide dismutase activities. During viral infection, the host immune system alteration could influence the gut microbiome composition and probably lead to other pathogenic infections. Since the JAK/STAT pathway is involved in white spot syndrome virus (WSSV) infection, we investigated the intestine immune genes of STAT-silenced shrimp. During WSSV infection, expression levels of PmVago1, PmDoral, and PmSpätzle in PmSTAT-silenced shrimp were higher than normal. In addition, the transcription levels of antimicrobial peptides, including crustinPm1, crustinPm7, and PmPEN3, were higher in WSSV-challenged PmSTAT-silenced shrimp than the WSSV-infected normal shrimp. Meanwhile, PmSTAT silencing suppressed PmProPO1, PmProPO2, and PmPPAE1 expressions during WSSV infection. The microbiota from four shrimp tested groups (control group, WSSV-infected, PmSTAT-silenced, and PmSTAT-silenced infected by WSSV) was significantly different, with decreasing richness and diversity due to WSSV infection. The relative abundance of Bacteroidetes, Actinobacteria, and Planctomycetes was reduced in WSSV-challenged shrimp. However, at the species level, P. damselae, a pathogen to human and marine animals, significantly increased in WSSV-challenged shrimp. In constrast, Shewanella algae, a shrimp probiotic, was decreased in WSSV groups. In addition, the microbiota structure between control and PmSTAT-silenced shrimp was significantly different, suggesting the importance of STAT to maintain the homeostasis interaction with the microbiota.
Collapse
Affiliation(s)
- Thapanan Jatuyosporn
- Center of Excellence in Structural and Computational Biology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.,Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Pasunee Laohawutthichai
- Center of Excellence in Structural and Computational Biology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.,Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Juan Pablo Ochoa Romo
- Departamento de Microbiología Molecular, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Av. Universidad #2001, Col. Chamilpa, 62210, Cuernavaca, Morelos, Mexico
| | - Luigui Gallardo-Becerra
- Departamento de Microbiología Molecular, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Av. Universidad #2001, Col. Chamilpa, 62210, Cuernavaca, Morelos, Mexico
| | - Filiberto Sánchez Lopez
- Departamento de Microbiología Molecular, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Av. Universidad #2001, Col. Chamilpa, 62210, Cuernavaca, Morelos, Mexico
| | - Anchalee Tassanakajon
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Adrian Ochoa-Leyva
- Departamento de Microbiología Molecular, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Av. Universidad #2001, Col. Chamilpa, 62210, Cuernavaca, Morelos, Mexico.
| | - Kuakarun Krusong
- Center of Excellence in Structural and Computational Biology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
11
|
Characterisation of a novel crustin isoform from mud crab, Scylla serrata (Forsskål, 1775) and its functional analysis in silico. In Silico Pharmacol 2022; 11:2. [PMID: 36582926 PMCID: PMC9795441 DOI: 10.1007/s40203-022-00138-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/18/2022] [Indexed: 12/29/2022] Open
Abstract
A 336-base pair (bp) sized mRNA sequence encoding 111 amino acid size crustin isoform (MC-crustin) was obtained from the gill sample of the green mud crab, Scylla serrata. MC-crustin possessed an N-terminal signal peptide region comprising of 21 amino acid residues, followed by a 90 amino acid mature peptide region having a molecular weight of 10.164 kDa, charge + 4.25 and theoretical pI of 8.27. Sequence alignment and phylogenetic tree analyses revealed the peptide to be a Type I crustin, with four conserved cysteine residues forming the cysteine rich region, followed by WAP domain. MC-crustin was cationic with cysteine/proline rich structure and was predicted with antimicrobial, anti-inflammatory, anti-angiogenic and anti-hypertensive property making it a potential molecule for possible therapeutic applications.
Collapse
|
12
|
Li L, Liu W, Fan N, Li F, Huang B, Liu Q, Wang X, Zheng Y, Sang X, Dong J, Wang X, Wei L, Liu Y, Zhang M, Ma J, Chen J, Qi Y, Wang X. Scallop IKK1 Responds to Bacterial and Virus-Related Pathogen Stimulation and Interacts With MyD88 Adaptor of Toll-Like Receptor Pathway Signaling. Front Immunol 2022; 13:869845. [PMID: 35422814 PMCID: PMC9002017 DOI: 10.3389/fimmu.2022.869845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 03/07/2022] [Indexed: 11/17/2022] Open
Abstract
IKK proteins are key signaling molecules in the innate immune system of animals, and act downstream of pattern recognition receptors. However, research on IKKs in invertebrates, especially marine mollusks, remains scarce. In this study, we cloned CfIKK1 gene from the Zhikong scallop (Chlamys farreri) and studied its function and the signaling it mediates. The open reading frame of CfIKK1 was 2190 bp and encoded 729 amino acids. Phylogenetic analysis showed that CfIKK1 belonged to the invertebrate IKKα/IKKβ family. Quantitative real-time PCR analysis revealed the ubiquitous expression of CfIKK1 mRNA in all scallop tissues and challenge with lipopolysaccharide, peptidoglycan, or poly(I:C) significantly upregulated the expression of CfIKK1. Co-immunoprecipitation assays confirmed the interaction of CfIKK1 with scallop MyD88 (Myeloid differentiation actor 88, the key adaptor of the TLR signaling pathway) via its N-terminal kinase domain. Additionally, CfIKK1 protein could form homodimers and even oligomers, with N-terminal kinase domain and C-terminal scaffold dimerization domain playing key roles in this process. Finally, the results of RNAi experiments showed that when the scallop IKK1 gene was suppressed, the expression of IRF genes also decreased significantly. In conclusion, CfIKK1 could respond to PAMPs challenge and interact with MyD88 protein of scallop TLR signaling, with the formation of CfIKK1 dimers or oligomers. At the same time, the results of RNAi experiments revealed the close regulatory relationship between IKK1 and IRF genes of scallop. Therefore, as a key signal transduction molecule and immune activity regulator, CfIKK1 plays important roles in the innate immune system of scallops.
Collapse
Affiliation(s)
- Lingling Li
- School of Agriculture, Ludong University, Yantai, China.,Ocean School, Yantai University, Yantai, China
| | - Wenjuan Liu
- School of Agriculture, Ludong University, Yantai, China
| | - Nini Fan
- Changdao Enhancement and Experiment Station, Chinese Academy of Fishery Sciences, Yantai, China
| | - Fangshu Li
- School of Agriculture, Ludong University, Yantai, China
| | - Baoyu Huang
- School of Agriculture, Ludong University, Yantai, China
| | - Qian Liu
- School of Agriculture, Ludong University, Yantai, China
| | - Xiaomei Wang
- Changdao Enhancement and Experiment Station, Chinese Academy of Fishery Sciences, Yantai, China
| | - Yanxin Zheng
- Changdao Enhancement and Experiment Station, Chinese Academy of Fishery Sciences, Yantai, China
| | - Xiuxiu Sang
- School of Agriculture, Ludong University, Yantai, China
| | - Juan Dong
- School of Agriculture, Ludong University, Yantai, China
| | - Xiaona Wang
- School of Agriculture, Ludong University, Yantai, China
| | - Lei Wei
- School of Agriculture, Ludong University, Yantai, China
| | - Yaqiong Liu
- School of Agriculture, Ludong University, Yantai, China
| | - Meiwei Zhang
- School of Agriculture, Ludong University, Yantai, China
| | - Jilv Ma
- School of Agriculture, Ludong University, Yantai, China
| | - Jiwen Chen
- School of Agriculture, Ludong University, Yantai, China
| | - Yitao Qi
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Xiaotong Wang
- School of Agriculture, Ludong University, Yantai, China
| |
Collapse
|
13
|
Tran NT, Liang H, Zhang M, Bakky MAH, Zhang Y, Li S. Role of Cellular Receptors in the Innate Immune System of Crustaceans in Response to White Spot Syndrome Virus. Viruses 2022; 14:v14040743. [PMID: 35458473 PMCID: PMC9028835 DOI: 10.3390/v14040743] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 01/27/2023] Open
Abstract
Innate immunity is the only defense system for resistance against infections in crustaceans. In crustaceans, white spot diseases caused by white spot syndrome virus (WSSV) are a serious viral disease with high accumulative mortality after infection. Attachment and entry into cells have been known to be two initial and important steps in viral infection. However, systematic information about the mechanisms related to WSSV infection in crustaceans is still limited. Previous studies have reported that cellular receptors are important in the innate immune system and are responsible for the recognition of foreign microorganisms and in the stimulation of the immune responses during infections. In this review, we summarize the current understanding of the functions of cellular receptors, including Toll, C-type lectin, scavenger receptor, β-integrin, polymeric immunoglobulin receptor, laminin receptor, globular C1q receptor, lipopolysaccharide-and β-1,3-glucan-binding protein, chitin-binding protein, Ras-associated binding, and Down syndrome cell adhesion molecule in the innate immune defense of crustaceans, especially shrimp and crabs, in response to WSSV infection. The results of this study provide information on the interaction between viruses and hosts during infections, which is important in the development of preventative strategies and antiviral targets in cultured aquatic animals.
Collapse
Affiliation(s)
- Ngoc Tuan Tran
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China; (N.T.T.); (H.L.); (M.Z.); (M.A.H.B.); (Y.Z.)
- Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Huifen Liang
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China; (N.T.T.); (H.L.); (M.Z.); (M.A.H.B.); (Y.Z.)
- Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Ming Zhang
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China; (N.T.T.); (H.L.); (M.Z.); (M.A.H.B.); (Y.Z.)
- Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Md. Akibul Hasan Bakky
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China; (N.T.T.); (H.L.); (M.Z.); (M.A.H.B.); (Y.Z.)
- Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Yueling Zhang
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China; (N.T.T.); (H.L.); (M.Z.); (M.A.H.B.); (Y.Z.)
- Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Shengkang Li
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China; (N.T.T.); (H.L.); (M.Z.); (M.A.H.B.); (Y.Z.)
- Institute of Marine Sciences, Shantou University, Shantou 515063, China
- Correspondence: ; Tel.: +86-754-86502485; Fax: +86-754-86503473
| |
Collapse
|
14
|
Sun M, Li S, Jin S, Li X, Xiang J, Li F. A Novel TRIM9 Protein Promotes NF-κB Activation Through Interacting With LvIMD in Shrimp During WSSV Infection. Front Immunol 2022; 13:819881. [PMID: 35281067 PMCID: PMC8904877 DOI: 10.3389/fimmu.2022.819881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/28/2022] [Indexed: 11/25/2022] Open
Abstract
The TRIpartite Motif (TRIM) proteins play key roles in cell differentiation, apoptosis, development, autophagy, and innate immunity in vertebrates. In the present study, a novel TRIM9 homolog (designated as LvTRIM9-1) specifically expressed in the lymphoid organ of shrimp was identified from the Pacific whiteleg shrimp Litopenaeus vannamei. Its deduced amino acid sequence possesses the typical features of TRIM proteins, including a RING domain, two B-boxes, a coiled-coil domain, a FN3 domain, and a SPRY domain. The transcripts of LvTRIM9-1 were mainly located in the lymphoid tubules of the lymphoid organ. Knockdown of LvTRIM9-1 could apparently inhibit the transcriptions of some genes from white spot syndrome virus (WSSV) and reduce the viral propagation in the lymphoid organ. Overexpression of LvTRIM9-1 in mammalian cells could activate the promoter activity of NF-κB, and an in vivo experiment in shrimp showed that knockdown of LvTRIM9-1 reduced the expression of LvRelish in the lymphoid organ. Yeast two-hybridization and co-immunoprecipitation (Co-IP) assays confirmed that LvTRIM9-1 could directly interact with LvIMD, a key component of the IMD pathway, through its SPRY domain. These data suggest that LvTRIM9-1 could activate the IMD pathway in shrimp via interaction with LvIMD. This is the first evidence to show the regulation of a TRIM9 protein on the IMD pathway through its direct interaction with IMD, which will enrich our knowledge on the role of TRIM proteins in innate immunity of invertebrates.
Collapse
Affiliation(s)
- Mingzhe Sun
- Chinese Academy of Sciences (CAS) and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Shihao Li
- Chinese Academy of Sciences (CAS) and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Songjun Jin
- Chinese Academy of Sciences (CAS) and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Xuechun Li
- University of Chinese Academy of Sciences, Beijing, China
| | - Jianhai Xiang
- Chinese Academy of Sciences (CAS) and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Fuhua Li
- Chinese Academy of Sciences (CAS) and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
15
|
Panigrahi A, Esakkiraj P, Saranya C, Das RR, Sundaram M, Sudheer NS, Biju IF, Jayanthi M. A Biofloc-Based Aquaculture System Bio-augmented with Probiotic Bacteria Bacillus tequilensis AP BFT3 Improves Culture Environment, Production Performances, and Proteomic Changes in Penaeus vannamei. Probiotics Antimicrob Proteins 2022; 14:277-287. [PMID: 35192183 DOI: 10.1007/s12602-022-09926-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2022] [Indexed: 02/06/2023]
Abstract
Experiments were conducted to evaluate the probiotic effect of bio-augmented Bacillus tequilensis AP BFT3 on improving production, immune response, and proteomic changes of Penaeus vannamei reared in a biofloc system. Penaeus vannamei larvae (PL13) were stocked in 100-L tanks at a rate of 100 no per tank to study the effect of B. tequilensis AP BFT3 with and without biofloc (BFT-PRO and PRO). Control tanks devoid of probiotic strain were maintained in a clear water system. The growth and survival considerably increased in probiotic added biofloc reared shrimp than probiotic added clear water reared ones and control. Water quality significantly improved in probiotic added (PRO) and biofloc-probiotics (BFT-PRO) system than control. Microbiological investigations indicate increased heterotrophic bacterial load in BFT-PRO compared to the PRO and control. The quality of the isolated microbes was analyzed in terms of enzyme production, and an abundance of enzyme-producing bacterial population was observed in BFT-PRO shrimp. Immune-related genes were significantly upregulated in BFT-PRO shrimp, followed by the PRO and control. The proteomic data (2D gel electrophoresis and MALDI-TOF) of muscle tissue from the experimental animals identified 11 differentially expressed proteins. The Daxx OS and Lit v 1 tropomyosin was found upregulated in BFT-PRO shrimps. Downregulation of Na+/K+ATPase was observed in biofloc with probiotic-supplied groups. The findings revealed that the BFT system's efficacy could be improved through the addition of probiotics. The addition of B. tequilensis AP BFT3 as a probiotic in biofloc induced the expression of essential proteins, reducing contracting diseases during culture.
Collapse
Affiliation(s)
- A Panigrahi
- Crustacean Culture Division, ICAR-Central Institute of Brackishwater Aquaculture, 75 Santhome High Road, R. A. Puram, Chennai, 600 028, India.
| | - P Esakkiraj
- Crustacean Culture Division, ICAR-Central Institute of Brackishwater Aquaculture, 75 Santhome High Road, R. A. Puram, Chennai, 600 028, India
| | - C Saranya
- Crustacean Culture Division, ICAR-Central Institute of Brackishwater Aquaculture, 75 Santhome High Road, R. A. Puram, Chennai, 600 028, India
| | - R R Das
- Crustacean Culture Division, ICAR-Central Institute of Brackishwater Aquaculture, 75 Santhome High Road, R. A. Puram, Chennai, 600 028, India
| | - M Sundaram
- Crustacean Culture Division, ICAR-Central Institute of Brackishwater Aquaculture, 75 Santhome High Road, R. A. Puram, Chennai, 600 028, India
| | - N S Sudheer
- Crustacean Culture Division, ICAR-Central Institute of Brackishwater Aquaculture, 75 Santhome High Road, R. A. Puram, Chennai, 600 028, India
| | - I F Biju
- Crustacean Culture Division, ICAR-Central Institute of Brackishwater Aquaculture, 75 Santhome High Road, R. A. Puram, Chennai, 600 028, India
| | - M Jayanthi
- Crustacean Culture Division, ICAR-Central Institute of Brackishwater Aquaculture, 75 Santhome High Road, R. A. Puram, Chennai, 600 028, India
| |
Collapse
|
16
|
Zheng Y, Deng J, Han L, Zhuang MW, Xu Y, Zhang J, Nan ML, Xiao Y, Zhan P, Liu X, Gao C, Wang PH. SARS-CoV-2 NSP5 and N protein counteract the RIG-I signaling pathway by suppressing the formation of stress granules. Signal Transduct Target Ther 2022; 7:22. [PMID: 35075101 PMCID: PMC8785035 DOI: 10.1038/s41392-022-00878-3] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 12/17/2021] [Accepted: 01/10/2022] [Indexed: 02/06/2023] Open
Abstract
As a highly pathogenic human coronavirus, SARS-CoV-2 has to counteract an intricate network of antiviral host responses to establish infection and spread. The nucleic acid-induced stress response is an essential component of antiviral defense and is closely related to antiviral innate immunity. However, whether SARS-CoV-2 regulates the stress response pathway to achieve immune evasion remains elusive. In this study, SARS-CoV-2 NSP5 and N protein were found to attenuate antiviral stress granule (avSG) formation. Moreover, NSP5 and N suppressed IFN expression induced by infection of Sendai virus or transfection of a synthetic mimic of dsRNA, poly (I:C), inhibiting TBK1 and IRF3 phosphorylation, and restraining the nuclear translocalization of IRF3. Furthermore, HEK293T cells with ectopic expression of NSP5 or N protein were less resistant to vesicular stomatitis virus infection. Mechanistically, NSP5 suppressed avSG formation and disrupted RIG-I-MAVS complex to attenuate the RIG-I-mediated antiviral immunity. In contrast to the multiple targets of NSP5, the N protein specifically targeted cofactors upstream of RIG-I. The N protein interacted with G3BP1 to prevent avSG formation and to keep the cofactors G3BP1 and PACT from activating RIG-I. Additionally, the N protein also affected the recognition of dsRNA by RIG-I. This study revealed the intimate correlation between SARS-CoV-2, the stress response, and innate antiviral immunity, shedding light on the pathogenic mechanism of COVID-19.
Collapse
Affiliation(s)
- Yi Zheng
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Jian Deng
- Key Laboratory for Experimental Teratology of Ministry of Education and Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Lulu Han
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Meng-Wei Zhuang
- Key Laboratory for Experimental Teratology of Ministry of Education and Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Yanwen Xu
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Jing Zhang
- Key Laboratory for Experimental Teratology of Ministry of Education and Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Mei-Ling Nan
- Key Laboratory for Experimental Teratology of Ministry of Education and Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Yang Xiao
- Key Laboratory for Experimental Teratology of Ministry of Education and Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
- China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
- China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Chengjiang Gao
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| | - Pei-Hui Wang
- Key Laboratory for Experimental Teratology of Ministry of Education and Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
- Suzhou Research Institute, Shandong University, Shandong University, Suzhou, Jiangsu, 215123, China.
| |
Collapse
|
17
|
Hsieh SL, Wu YC, Xu RQ, Chen YT, Chen CW, Singhania RR, Dong CD. Effect of polyethylene microplastics on oxidative stress and histopathology damages in Litopenaeus vannamei. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 288:117800. [PMID: 34329062 DOI: 10.1016/j.envpol.2021.117800] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/07/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
There has been a significant increase in the microplastic (MP) polluting the ocean in recent time which is regarded as toxic for living organisms. In this study, Fluorescent red polyethylene microspheres (FRPE) were administered intramuscularly to Litopenaeus vannamei juveniles at the concentration of 0.1, 0.2, 0.5 and 1.0 μg (g shrimp)-1, and the survival rate was recorded. Analysis of the hepatopancreas for antioxidant enzyme activity and gene expression were done after seven days. Further tissue morphology and accumulation of FRPE was analysed. The results showed that FRPE at 0.5 and 1.0 μg (g shrimp)-1 reduce the survival rate of L. vannamei. FRPE at 0.5 and 1.0 μg (g shrimp)-1 reduced superoxide dismutase (SOD) activity; FRPE at different concentrations reduced catalase (CAT) activity; FRPE at 0.2, 0.5 and 1.0 μg (g shrimp)-1 increased the lipid peroxide thiobarbituric acid (TBARS) content. FRPE at 0.1, 0.2, and 0.5 μg (g shrimp)-1 significantly affect the performance of SOD and CAT genes; FRPE at 0.2 and 0.5 μg (g shrimp)-1 significantly improves GPx gene performance; FRPE at 1.0 μg (g shrimp)-1 significantly reduced the expression of GPx genes. Analysis of tissue morphology shows that FRPE cause muscle, midgut gland, and hepatopancreas, and gill damage at different concentrations. In the results of accumulation of microplastic, FRPE accumulated in gill tissue at 0.2 and 0.5 μg (g shrimp)-1; FRPE accumulated in gill, muscle and hepatopancreas tissue at 1.0 μg (g shrimp)-1. Based on the above results, FRPE at 0.5 and 1.0 μg (g shrimp)-1 can regulate the antioxidant enzymes of L. vannamei, increase lipid peroxide content, cause tissue damage by accumulating in the tissues. The rate of survival decreased in L. vannamei, and the impact of FRPE at 1.0 μg (g shrimp)-1 was significant.
Collapse
Affiliation(s)
- Shu-Ling Hsieh
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan
| | - Yi-Chen Wu
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan
| | - Ruo-Qi Xu
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan
| | - Ya-Ting Chen
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan
| | - Reeta Rani Singhania
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan.
| |
Collapse
|
18
|
Gao RL, Liu LK, Guo LM, Wang KJ, Liu HP. CqPP2A inhibits white spot syndrome virus infection by up-regulating antimicrobial substances expression in red claw crayfish Cherax quadricarinatus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 116:103913. [PMID: 33137394 DOI: 10.1016/j.dci.2020.103913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/27/2020] [Accepted: 10/27/2020] [Indexed: 06/11/2023]
Abstract
Protein phosphatase 2A (PP2A) is an important serine/threonine phosphatase, a highly conserved enzyme widely expressed in eukaryotic cells, which accounts for a majority of the serine/threonine phosphatase activity in cells implicated in regulation of immune signaling pathways and antiviral response. However, most of studies about PP2A have been conducted in mammals but few in crustaceans. In this study, two subunits of PP2A (named as CqPP2Ab and CqPP2Ac) were characterized to be involved in white spot syndrome virus (WSSV) infection in the haematopoietic tissue (Hpt) cells from red claw crayfish Cherax quadricarinatus. The open reading frame (ORF) of CqPP2Ab was 1341 bp encoding 446 amino acids with seven WD40 domains, and the ORF of CqPP2Ac was 930 bp encoding 309 amino acids with a PP2Ac domain. Tissue distribution analysis showed that the mRNA transcript of CqPP2Ab and CqPP2Ac were both widely expressed in all the tested tissues with the highest expression in hemocyte, followed by high expression in Hpt. The gene expressions of CqPP2Ab and CqPP2Ac were both significantly down-regulated at 6 h post WSSV infection (6 hpi) in Hpt cells. Importantly, the expression of viral immediate early gene IE1 and late viral gene envelope protein VP28 were both significantly increased post WSSV infection after gene silencing of CqPP2Ab or CqPP2Ac in Hpt cells, suggesting that CqPP2Ab and CqPP2Ac could inhibit WSSV infection in Hpt cells, probably by increasing the antimicrobial substances expression in consideration to the significantly reduced expression of anti-lipopolysaccharide factor, crustin, and lysozyme after gene silencing of CqPP2Ab or CqPP2Ac, respectively. These findings provide a new light on the mechanism of WSSV infection and the antiviral response in crustaceans.
Collapse
Affiliation(s)
- Rui-Lin Gao
- State Key Laboratory of Marine Environmental Science, State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, Fujian, China
| | - Ling-Ke Liu
- State Key Laboratory of Marine Environmental Science, State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, Fujian, China
| | - Li-Mei Guo
- State Key Laboratory of Marine Environmental Science, State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, Fujian, China
| | - Ke-Jian Wang
- State Key Laboratory of Marine Environmental Science, State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, Fujian, China
| | - Hai-Peng Liu
- State Key Laboratory of Marine Environmental Science, State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, Fujian, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
19
|
Zheng Y, Zhuang MW, Han L, Zhang J, Nan ML, Zhan P, Kang D, Liu X, Gao C, Wang PH. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) membrane (M) protein inhibits type I and III interferon production by targeting RIG-I/MDA-5 signaling. Signal Transduct Target Ther 2020; 5:299. [PMID: 33372174 PMCID: PMC7768267 DOI: 10.1038/s41392-020-00438-7] [Citation(s) in RCA: 216] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 11/05/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has quickly spread worldwide and has affected more than 10 million individuals. A typical feature of COVID-19 is the suppression of type I and III interferon (IFN)-mediated antiviral immunity. However, the molecular mechanism by which SARS-CoV-2 evades antiviral immunity remains elusive. Here, we reported that the SARS-CoV-2 membrane (M) protein inhibits the production of type I and III IFNs induced by the cytosolic dsRNA-sensing pathway mediated by RIG-I/MDA-5-MAVS signaling. In addition, the SARS-CoV-2 M protein suppresses type I and III IFN induction stimulated by SeV infection or poly (I:C) transfection. Mechanistically, the SARS-CoV-2 M protein interacts with RIG-I, MAVS, and TBK1, thus preventing the formation of the multiprotein complex containing RIG-I, MAVS, TRAF3, and TBK1 and subsequently impeding the phosphorylation, nuclear translocation, and activation of IRF3. Consequently, ectopic expression of the SARS-CoV-2 M protein facilitates the replication of vesicular stomatitis virus. Taken together, these results indicate that the SARS-CoV-2 M protein antagonizes type I and III IFN production by targeting RIG-I/MDA-5 signaling, which subsequently attenuates antiviral immunity and enhances viral replication. This study provides insight into the interpretation of SARS-CoV-2-induced antiviral immune suppression and illuminates the pathogenic mechanism of COVID-19.
Collapse
Affiliation(s)
- Yi Zheng
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, 250012, Jinan, China
| | - Meng-Wei Zhuang
- Key Laboratory for Experimental Teratology of Ministry of Education and Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, 250012, Jinan, China
| | - Lulu Han
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, 250012, Jinan, China
| | - Jing Zhang
- Key Laboratory for Experimental Teratology of Ministry of Education and Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, 250012, Jinan, China
| | - Mei-Ling Nan
- Key Laboratory for Experimental Teratology of Ministry of Education and Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, 250012, Jinan, China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
- China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
- China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
- China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Chengjiang Gao
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, 250012, Jinan, China.
| | - Pei-Hui Wang
- Key Laboratory for Experimental Teratology of Ministry of Education and Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, 250012, Jinan, China.
- Suzhou Research Institute, Shandong University, Shandong University, Suzhou, Jiangsu, 215123, China.
| |
Collapse
|
20
|
Ko HJ, Jo YH, Patnaik BB, Park KB, Kim CE, Keshavarz M, Jang HA, Lee YS, Han YS. IKKγ/NEMO Is Required to Confer Antimicrobial Innate Immune Responses in the Yellow Mealworm, Tenebrio Molitor. Int J Mol Sci 2020; 21:ijms21186734. [PMID: 32937897 PMCID: PMC7555931 DOI: 10.3390/ijms21186734] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/31/2020] [Accepted: 09/07/2020] [Indexed: 12/14/2022] Open
Abstract
IKKγ/NEMO is the regulatory subunit of the IκB kinase (IKK) complex, which regulates the NF-κB signaling pathway. Within the IKK complex, IKKγ/NEMO is the non-catalytic subunit, whereas IKKα and IKKβ are the structurally related catalytic subunits. In this study, TmIKKγ was screened from the Tenebrio molitor RNA-Seq database and functionally characterized using RNAi screening for its role in regulating T. molitor antimicrobial peptide (AMP) genes after microbial challenges. The TmIKKγ transcript is 1521 bp that putatively encodes a polypeptide of 506 amino acid residues. TmIKKγ contains a NF-κB essential modulator (NEMO) and a leucine zipper domain of coiled coil region 2 (LZCC2). A phylogenetic analysis confirmed its homology to the red flour beetle, Tribolium castaneum IKKγ (TcIKKγ). The expression of TmIKKγ mRNA showed that it might function in diverse tissues of the insect, with a higher expression in the hemocytes and the fat body of the late-instar larvae. TmIKKγ mRNA expression was induced by Escherichia coli, Staphylococcus aureus, and Candida albicans challenges in the whole larvae and in tissues such as the hemocytes, gut and fat body. The knockdown of TmIKKγ mRNA significantly reduced the survival of the larvae after microbial challenges. Furthermore, we investigated the tissue-specific induction patterns of fourteen T. molitor AMP genes in TmIKKγ mRNA-silenced individuals after microbial challenges. In general, the mRNA expression of TmTenecin1, -2, and -4; TmDefensin1 and -2; TmColeoptericin1 and 2; and TmAttacin1a, 1b, and 2 were found to be downregulated in the hemocytes, gut, and fat body tissues in the TmIKKγ-silenced individuals after microbial challenges. Under similar conditions, TmRelish (NF-κB transcription factor) mRNA was also found to be downregulated. Thus, TmIKKγ is an important factor in the antimicrobial innate immune response of T. molitor.
Collapse
Affiliation(s)
- Hye Jin Ko
- Department of Applied Biology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Korea; (H.J.K.); (Y.H.J.); (K.B.P.); (C.E.K.); (M.K.); (H.A.J.)
| | - Yong Hun Jo
- Department of Applied Biology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Korea; (H.J.K.); (Y.H.J.); (K.B.P.); (C.E.K.); (M.K.); (H.A.J.)
| | - Bharat Bhusan Patnaik
- School of Biotech Sciences, Trident Academy of Creative Technology (TACT), Chandrasekharpur, Bhubaneswar, Odisha 751024, India;
- P.G. Department of Bio-Sciences and Bio-Technology, Fakir Mohan University, Nuapadhi, Balasore, Odisha 756089, India
| | - Ki Beom Park
- Department of Applied Biology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Korea; (H.J.K.); (Y.H.J.); (K.B.P.); (C.E.K.); (M.K.); (H.A.J.)
| | - Chang Eun Kim
- Department of Applied Biology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Korea; (H.J.K.); (Y.H.J.); (K.B.P.); (C.E.K.); (M.K.); (H.A.J.)
| | - Maryam Keshavarz
- Department of Applied Biology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Korea; (H.J.K.); (Y.H.J.); (K.B.P.); (C.E.K.); (M.K.); (H.A.J.)
| | - Ho Am Jang
- Department of Applied Biology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Korea; (H.J.K.); (Y.H.J.); (K.B.P.); (C.E.K.); (M.K.); (H.A.J.)
| | - Yong Seok Lee
- School of Biotechnology and Life Sciences, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-Myeon, Asan, Chungchungnam-do 31538, Korea;
| | - Yeon Soo Han
- Department of Applied Biology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Korea; (H.J.K.); (Y.H.J.); (K.B.P.); (C.E.K.); (M.K.); (H.A.J.)
- Correspondence: ; Tel.: +82-62-530-2072
| |
Collapse
|
21
|
Li H, Wu X, Chen T, Jiang X, Ren C. Molecular characterization, inducible expression and functional analysis of an IKKβ from the tropical sea cucumber Holothuria leucospilota. FISH & SHELLFISH IMMUNOLOGY 2020; 104:622-632. [PMID: 32585358 DOI: 10.1016/j.fsi.2020.06.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/28/2020] [Accepted: 06/10/2020] [Indexed: 06/11/2023]
Abstract
The inhibitory kappa B kinase (IKK) is a critical regulator for the nuclear factor-κB (NF-κB) pathway. In this study, an IKKβ named as HLIKKβ was identified from the sea cucumber Holothuria leucospilota. The full-length cDNA of HLIKKβ is 4246 bp in size, containing a 132 bp 5'-untranslated region (UTR), a 1783 bp 3'-UTR and a 2331 bp open reading frame (ORF) encoding a protein of 776 amino acids with a deduced molecular weight of 89.66 kDa. HLIKKβ contains a kinase domain (KD) at its N-terminal, a leucine zipper (LZ) and a helix-loop-helix (HLH) motif at its C-terminal. In the KD, a conserved active loop (SXXXS) were identified. The results of luciferase reporter assay and ELISA assay showed that over-expressed HLIKKβ in HEK293T cells could activate the nuclear factor-κB (NF-κB) and induce the secretion of proinflammatory cytokines TNF-α and IL-1β. When HLIKKβ was silenced by siRNA, the apoptosis rate of sea cucumber coelomocytes was increased significantly, indicating the anti-apoptotic function of HLIKKβ. Moreover, the up-regulation of HLIKKβ mRNA was observed in the sea cucumber coelomocytes after polyriboinosinic polyribocytidylic acid [Poly (I:C)] or lipopolysaccharides (LPS) challenge, suggesting that the HLIKKβ might play important roles in the innate immune defense of sea cucumber against the viral and bacterial infections.
Collapse
Affiliation(s)
- Haipeng Li
- Guangzhou University, School of Environmental Science and Engineering, Guangzhou, 510006, PR China.
| | - Xiaofen Wu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China; Institution of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, ISEE, CAS, PR China.
| | - Ting Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China; Institution of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, ISEE, CAS, PR China.
| | - Xiao Jiang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China; Institution of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, ISEE, CAS, PR China.
| | - Chunhua Ren
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China; Institution of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, ISEE, CAS, PR China.
| |
Collapse
|
22
|
Priyathilaka TT, Bathige SDNK, Lee S, Yang H, Jeong T, Lee S, Lee J. Structural and functional analysis of three Iκb kinases (IKK) in disk abalone (Haliotis discus discus): Investigating their role in the innate immune responses. FISH & SHELLFISH IMMUNOLOGY 2020; 103:111-125. [PMID: 32320761 DOI: 10.1016/j.fsi.2020.04.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 04/11/2020] [Accepted: 04/14/2020] [Indexed: 06/11/2023]
Abstract
The IκB kinases (IKK) are large multiprotein complexes that regulate the activation of the transcription factor NF-κB and are involved in a diverse range of biological processes, including innate immunity, inflammation, and development. To explore the potential roles of invertebrate IKKs on immunity, three IKK encoding genes have been identified from molluscan species disk abalone and designed as AbIKK1, AbIKK2 and AbIKK3 at the transcriptional level. Coding sequences of AbIKK1, AbIKK2 and AbIKK3 encode the peptides of 746, 751 and 713 amino acids with the predicted molecular mass of 86.16, 86.12 and 81.88 kDa respectively. All three AbIKKs were found to share conserved IKK family features including the kinase superfamily domain (KD), ubiquitin-like domain (ULD), and α-helical scaffold/dimerization domain (SDD), similar to their mammalian counterparts. Under normal physiological conditions, AbIKKs were ubiquitously detected in six different tissues, with the highest abundance in the digestive tract and gills. Temporal transcriptional profiles in abalone hemocytes revealed the induction of AbIKK1, AbIKK2, and AbIKK3 expression following exposure to Gram-negative (Vibrio parahemolyticus) and Gram-positive (Listeria monocytogenes) bacteria, viruses (viral hemorrhagic septicemia virus, VHSV), LPS, or poly I:C. The overexpression of AbIKKs in HEK293T or RAW264.7 murine macrophage cells induced NF-κB promoter activation independent of stimulation by TNF-α or LPS. Moreover, iNOS and COX2 expression was induced in AbIKK transfected RAW264.7 murine macrophage cells and the induced state was maintained post-LPS treatment. Furthermore, mRNA levels of three selected cytokine-encoding genes (IL-1β, IL-6, and TNF-α) were found to be elevated in abalone IKK overexpressed RAW264.7 murine macrophage cells, both with and without LPS exposure. Overall, our findings demonstrated that AbIKKs identified in this study were positively involved in eliciting innate immune responses in abalone. In addition, the data revealed the presence of an evolutionarily conserved signaling mechanism for IKK mediated NF-κB activation in mollusks.
Collapse
Affiliation(s)
| | - S D N K Bathige
- Sri Lanka Institute of Nanotechnology (SLINTEC), Nanotechnology and Science Park, Mahenwatta, Pitipana, Homagama, Sri Lanka
| | - Seongdo Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - Hyerim Yang
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Taehyug Jeong
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - Sukkyoung Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea.
| |
Collapse
|
23
|
He L, Zhao Y, Tang L, Yu X, Ye Z, Lin H, Zhang Y, Li S, Lu D. Molecular characterization and functional analysis of IKKα in orange-spotted grouper (Epinephelus coioides). FISH & SHELLFISH IMMUNOLOGY 2020; 101:159-167. [PMID: 32194248 DOI: 10.1016/j.fsi.2020.03.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/12/2020] [Accepted: 03/14/2020] [Indexed: 06/10/2023]
Abstract
Inhibitor of nuclear factor kappa-B kinase subunit alpha (IKKα) plays crucial roles in regulating activation of nuclear factor kappa-B (NF-κB) in response to pathogens infections. Here, we cloned and identified IKKα gene of orange-spotted grouper (Epinephelus coioides), named as EcIKKα. The gene transcript contained a 2262 bp open reading frame, which encoded 753 amino acids. The typically conserved IKKα structure, including serine kinase domain (KD), leucine chain (LZ) structure, helix-loop-helix (HLH) motif and IKKβ-NEMO-binding domain, was identified in EcIKKα. Phylogenetic analysis suggested that EcIKKα had the closest relationship with large yellow croaker (Larimichthy crocea) IKKα. Ecikkα was ubiquitously expressed in all tissues tested and the highest expression level was in ovary. After lipopolysaccharide (LPS), flagellin, polyinosinic-polycytidylic acid (poly I:C), polyadenylic-polyuridylic acid (poly A:U), and Vibrio parahaemolyticus stimulation, the expression of Ecikkα increased in grouper spleen (GS) cells. In the luciferase assay, NF-κB-luc activity was significantly up-regulated when human embryonic kidney 293T (HEK 293T) cells were transfected with EcIKKα plasmid. Moreover, overexpression of EcIKKα significantly increased LPS- and flagellin-induced proinflammatory cytokines (interleukin-6 (il-6) and tumor necrosis factor-α (tnf-α)) expression, but did not significantly affect poly I:C- and poly A:U-induced cytokines (il-6 and tnf-α) expression. Overall, these results suggested that EcIKKα functions like that of mammals to activate NF-κB, and it could be involved in host defense against invading pathogens.
Collapse
Affiliation(s)
- Liangge He
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Yulin Zhao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Lin Tang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Xue Yu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Zhifeng Ye
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Haoran Lin
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266373, PR China; College of Ocean, Hainan University, Haikou, 570228, PR China
| | - Yong Zhang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266373, PR China
| | - Shuisheng Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China.
| | - Danqi Lu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China.
| |
Collapse
|
24
|
Alvarez-Lee A, Martínez-Díaz SF, Gutiérrez-Rivera JN, Lanz-Mendoza H. Induction of innate immune response in whiteleg shrimp (Litopenaeus vannamei) embryos. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 105:103577. [PMID: 31852626 DOI: 10.1016/j.dci.2019.103577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/12/2019] [Accepted: 12/14/2019] [Indexed: 06/10/2023]
Abstract
The immune response of commercially relevant marine invertebrates has been extensively studied, in search of new disease-control strategies. Immune training is considered a novel approach that could help improve resistance to different pathogens. Here, we stimulated the white shrimp (Litopenaeus vannamei) during embryo development by exposure to heat-killed bacteria and evaluated their effect on hatching, larval development, and the expression of immune-related genes. In addition, we evaluated its impact on the response of shrimp nauplii during a challenge with Vibrio parahaemolyticus. We observed that the percentage of hatching and the resistance to bacterial infection increased due to the treatment of embryos with heat-killed cells of Vibrio and Bacillus. Apparently different stimuli could generate a differential pattern of gene expression, e.g., Vibrio induced a strong effector immune response whereas Bacillus elicited a protective immune profile. In addition, each response was triggered by molecular patterns detected in the environment. The results obtained in this study provide new insights for immune training to improve shrimp farming.
Collapse
Affiliation(s)
- Angélica Alvarez-Lee
- Instituto Politécnico Nacional-Centro Interdisciplinario de Ciencias Marinas, Av. Instituto Politecnico Nacional SN, Playa Palo de Santa Rita, 23096, La Paz, B.C.S, Mexico
| | - Sergio F Martínez-Díaz
- Instituto Politécnico Nacional-Centro Interdisciplinario de Ciencias Marinas, Av. Instituto Politecnico Nacional SN, Playa Palo de Santa Rita, 23096, La Paz, B.C.S, Mexico.
| | - Jesus Neftalí Gutiérrez-Rivera
- Centro de Investigaciones Biológicas del Noroeste, Mar Bermejo 195, Colonia Playa Palo de Santa Rita, 23090, La Paz, BCS, Mexico
| | - Humberto Lanz-Mendoza
- Instituto Nacional de Salud Pública, Avenida Universidad No. 655 Colonia Santa María Ahuacatitlán, Cerrada Los Pinos y Caminera, 62100, Cuernavaca, MOR, Mexico.
| |
Collapse
|
25
|
Rudtanatip T, Boonsri B, Praiboon J, Wongprasert K. Bioencapsulation efficacy of sulfated galactans in adult Artemia salina for enhancing immunity in shrimp Litopenaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2019; 94:90-98. [PMID: 31470138 DOI: 10.1016/j.fsi.2019.08.065] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 07/10/2019] [Accepted: 08/24/2019] [Indexed: 06/10/2023]
Abstract
Live food organisms like Artemia have been used for delivery of different substances such as nutrients, probiotics and immune-stimulants to aquatic animals. Previously, we reported that sulfated galactans (SG) from the red seaweed Gracilaria fisheri (G. fisheri) increased immune activity in shrimp. In the present study we further investigated the capacity and efficiency of bioencapsulation of SG in adult Artemia for delivery to tissues and potentially boosting the expression of immune genes in post larvae shrimp. SG were labelled with FITC (FITC-SG) for in vivo tracking in shrimp. Bioencapsulation of adult Artemia with FITC-SG (0-100 μg mL-1) was performed and the fluorescence intensity was detected in the gut lumen after enrichment periods of 30 min, 1 h, 2 h, 6 h and 24 h. The results showed the Artemia took up SG over time in a concentration-dependent manner. Shrimp were fed with the bioencapsulated Artemia (FITC-SG, 20 μg mL-1) and the shrimp were evaluated under a stereo-fluorescent microscope. At 24 h after administration, FITC-SG was located in gills and hepatopancreas and also bound with haemocytes. With daily SG administration, the genes IMD, IKKβ were up-regulated (after 1 day) while genes dicer and proPO-I were up-regulated later (after 7 days). Moreover, continued monitoring of shrimp fed for 3 consecutive days only with SG at the dose of 0.5 mg g-1 BW showed increases in the expression of IMD, IKKβ genes on day 1 and which gradually declined to normal levels on day 14, while the expression of dicer and proPO-I was increased on day 3 and remained high on day 14. These results demonstrate that bioencapsulation of SG in adult Artemia successfully delivers SG to shrimp tissues, which then bind with haemocytes and subsequently activate immune genes, and potentially increase immunity in shrimp. In addition, the present study suggests that a 3-consecutive-day regimen of SG supplemented in Artemia (0.5 mg g-1 BW) may boost and sustain the enhanced immune functions in post larvae shrimp.
Collapse
Affiliation(s)
- Tawut Rudtanatip
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Mittraphap Road, Muang District, Khon Kaen, 40002, Thailand
| | - Boonyakorn Boonsri
- Department of Anatomy, Faculty of Science, Mahidol University, Rama 6th Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Jantana Praiboon
- Department of Fishery Biology, Faculty of Fisheries, Kasetsart University, Paholyotin Road, Chatujak, Bangkok, 10900, Thailand
| | - Kanokpan Wongprasert
- Department of Anatomy, Faculty of Science, Mahidol University, Rama 6th Road, Ratchathewi, Bangkok, 10400, Thailand.
| |
Collapse
|
26
|
Peruzza L, Shekhar MS, Kumar KV, Swathi A, Karthic K, Hauton C, Vijayan KK. Temporal changes in transcriptome profile provide insights of White Spot Syndrome Virus infection in Litopenaeus vannamei. Sci Rep 2019; 9:13509. [PMID: 31534145 PMCID: PMC6751192 DOI: 10.1038/s41598-019-49836-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 08/30/2019] [Indexed: 02/08/2023] Open
Abstract
Shrimp aquaculture is severely affected by WSSV. Despite an increasing effort to understand host/virus interaction by characterizing changes in gene expression (GE) following WSSV infection, the majority of published studies have focussed on a single time-point, providing limited insight on the development of host-pathogen interaction over the infection cycle. Using RNA-seq, we contrasted GE in gills of Litopenaeus vannamei at 1.5, 18 and 56 hours-post-infection (hpi), between WSSV-challenged and control shrimps. Time course analysis revealed 5097 differentially expressed genes: 63 DEGs were viral genes and their expression in WSSV group either peaked at 18 hpi (and decreased at 56 hpi) or increased linearly up to 56 hpi, suggesting a different role played by these genes during the course of infection. The remaining DEGs showed that WSSV altered the expression of metabolic, immune, apoptotic and cytoskeletal genes and was able to inhibit NF-κB and JAK/STAT pathways. Interestingly, GE changes were not consistent through the course of infection but were dynamic with time, suggesting the complexity of host-pathogen interaction. These data offer novel insights into the cellular functions that are affected during the course of infection and ultimately provide a valuable resource towards our understanding of the host-pathogen dynamics and its variation with time.
Collapse
Affiliation(s)
- Luca Peruzza
- School of Ocean and Earth Science, University of Southampton, Hampshire, SO14 3ZH, United Kingdom.
| | - M S Shekhar
- Genetics and Biotechnology Unit, Central Institute of Brackishwater Aquaculture, 75 Santhome High Road, R.A. Puram, Chennai, 600004, Tamil Nadu, India
| | - K Vinaya Kumar
- Genetics and Biotechnology Unit, Central Institute of Brackishwater Aquaculture, 75 Santhome High Road, R.A. Puram, Chennai, 600004, Tamil Nadu, India
| | - A Swathi
- Genetics and Biotechnology Unit, Central Institute of Brackishwater Aquaculture, 75 Santhome High Road, R.A. Puram, Chennai, 600004, Tamil Nadu, India
| | - K Karthic
- Genetics and Biotechnology Unit, Central Institute of Brackishwater Aquaculture, 75 Santhome High Road, R.A. Puram, Chennai, 600004, Tamil Nadu, India
| | - Chris Hauton
- School of Ocean and Earth Science, University of Southampton, Hampshire, SO14 3ZH, United Kingdom
| | - K K Vijayan
- Genetics and Biotechnology Unit, Central Institute of Brackishwater Aquaculture, 75 Santhome High Road, R.A. Puram, Chennai, 600004, Tamil Nadu, India
| |
Collapse
|
27
|
Huang B, Zhang L, Xu F, Tang X, Li L, Wang W, Liu M, Zhang G. Oyster Versatile IKKα/βs Are Involved in Toll-Like Receptor and RIG-I-Like Receptor Signaling for Innate Immune Response. Front Immunol 2019; 10:1826. [PMID: 31417578 PMCID: PMC6685332 DOI: 10.3389/fimmu.2019.01826] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/18/2019] [Indexed: 01/08/2023] Open
Abstract
IκB kinases (IKKs) play critical roles in innate immunity through signal-induced activation of the key transcription factors nuclear factor-κB (NF-κB) and interferon regulatory factors (IRFs). However, studies of invertebrate IKK functions remain scarce. In this study, we performed phylogenetic analysis of IKKs and IKK-related kinases encoded in the Pacific oyster genome. We then cloned and characterized the oyster IKKα/β-2 gene. We found that oyster IKKα/β-2, a homolog of human IKKα/IKKβ, responded to challenge with lipopolysaccharide (LPS), peptidoglycan (PGN), and polyinosinic-polycytidylic acid [poly(I:C)]. As a versatile immune molecule, IKKα/β-2 activated the promoters of NF-κB, TNFα, and IFNβ, as well as IFN-stimulated response element (ISRE)-containing promoters, initiating an antibacterial or antiviral immune state in mammalian cells. Importantly, together with the cloned oyster IKKα/β-1, we investigated the signal transduction pathways mediated by these two IKKα/β proteins. Our results showed that IKKα/β-1 and IKKα/β-2 could interact with the oyster TNF receptor-associated factor 6 (TRAF6) and that IKKα/β-2 could also bind to the oyster myeloid differentiation factor 88 (MyD88) protein directly, suggesting that oyster IKKα/βs participate in both RIG-I-like receptor (RLR) and Toll-like receptor (TLR) signaling for the reception of upstream immune signals. The fact that IKKα/β-1 and IKKα/β-2 formed homodimers by interacting with themselves and heterodimers by interacting with each other, along with the fact that both oyster IKKα/β proteins interacted with NEMO protein, indicates that oyster IKKα/βs and the scaffold protein NEMO form an IKK complex, which may be a key step in phosphorylating IκB proteins and activating NF-κB. Moreover, we found that oyster IKKα/βs could interact with IRF8, and this may be related to the IKK-mediated activation of ISRE promotors and their involvement in the oyster "interferon (IFN)-like" antiviral pathway. Moreover, the expression of oyster IKKα/β-1 and IKKα/β-2 may induce the phosphorylation of IκB proteins to activate NF-κB. These results reveal the immune function of oyster IKKα/β-2 and establish the existence of mollusk TLR and RLR signaling mediated by IKKα/β proteins for the first time. Our findings should be helpful in deciphering the immune mechanisms of invertebrates and understanding the development of the vertebrate innate immunity network.
Collapse
Affiliation(s)
- Baoyu Huang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,National & Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Linlin Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Fei Xu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Xueying Tang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,National & Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Li Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,National & Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Fisheries and Aquaculture, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Wei Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,National & Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Fisheries and Aquaculture, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Mingkun Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,National & Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Guofan Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,National & Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
28
|
Li C, Wang S, He J. The Two NF-κB Pathways Regulating Bacterial and WSSV Infection of Shrimp. Front Immunol 2019; 10:1785. [PMID: 31417561 PMCID: PMC6683665 DOI: 10.3389/fimmu.2019.01785] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 07/15/2019] [Indexed: 12/13/2022] Open
Abstract
The outbreak of diseases ordinarily results from the disruption of the balance and harmony between hosts and pathogens. Devoid of adaptive immunity, shrimp rely largely on the innate immune system to protect themselves from pathogenic infection. Two nuclear factor-κB (NF-κB) pathways, the Toll and immune deficiency (IMD) pathways, are generally regarded as the major regulators of the immune response in shrimp, which have been extensively studied over the years. Bacterial infection can be recognized by Toll and IMD pathways, which activate two NF-κB transcription factors, Dorsal and Relish, respectively, to eventually lead to boosting the expression of various antimicrobial peptides (AMPs). In response to white-spot-syndrome-virus (WSSV) infection, these two pathways appear to be subverted and hijacked to favor viral survival. In this review, the recent progress in elucidating microbial recognition, signal transduction, and effector regulation within both shrimp Toll and IMD pathways will be discussed. We will also highlight and discuss the similarities and differences between shrimps and their Drosophila or mammalian counterparts. Understanding the interplay between pathogens and shrimp NF-κB pathways may provide new opportunities for disease-prevention strategies in the future.
Collapse
Affiliation(s)
- Chaozheng Li
- State Key Laboratory for Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou, China.,Southern Laboratory of Ocean Science and Engineering, Zhuhai, China
| | - Sheng Wang
- State Key Laboratory for Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou, China.,Southern Laboratory of Ocean Science and Engineering, Zhuhai, China.,School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jianguo He
- State Key Laboratory for Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou, China.,Southern Laboratory of Ocean Science and Engineering, Zhuhai, China.,School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
29
|
Nhnhkorn Z, Amparyup P, Kawai T, Tassanakajon A. Penaeus monodon IKKs Participate in Regulation of Cytokine-Like System and Antiviral Responses of Innate Immune System. Front Immunol 2019; 10:1430. [PMID: 31293588 PMCID: PMC6604761 DOI: 10.3389/fimmu.2019.01430] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 06/06/2019] [Indexed: 12/13/2022] Open
Abstract
The IKK-NF-κB signaling cascade is one of the crucial responsive mechanisms in inflammatory and immune responses. The key kinase proteins called inhibitor of kappa B kinases (IKKs) serve as the core elements involved in cascade activation. Here, the complete ORFs of IKK homologs, PmIKKβ, PmIKKε1, and PmIKKε2, from the black tiger shrimp Penaeus monodon were identified and characterized for their functions in shrimp antiviral responses. The PmIKK transcripts were widely expressed in various examined tissues and the PmIKKε protein was detected in all three types of shrimp hemocytes. Only the PmIKKε1 and PmIKKε2 were responsive to white spot syndrome virus (WSSV), yellow head virus (YHV) and a bacterium Vibrio harveyi infection, while the PmIKKβ exhibited no significant response to pathogen infection. On the contrary, suppression of PmIKKβ and PmIKKε by dsRNA-mediated RNA interference (RNAi) resulted in a rapid death of WSSV-infected shrimp and the significant reduction of an IFN-like PmVago4 transcript. Whereas, the mRNA levels of the antimicrobial peptides, ALFPm3 and CrustinPm5, and a transcription factor, PmDorsal were significantly increased, those of ALFPm6, CrustinPm1, CrustinPm7, PmVago1, PmRelish, and PmCactus were unaffected. Overexpression of PmIKKβ and PmIKKε in HEK293T cells differentially activated the NF-κB and IFNβ promoter activities, respectively. These results suggest that the PmIKKβ and PmIKKε may act as common factors regulating the expression of immune-related genes from various signaling pathways. Interestingly, the PmIKKs may also contribute a possible role in shrimp cytokine-like system and cross-talking between signaling transductions in innate immune responses.
Collapse
Affiliation(s)
- Zittipong Nhnhkorn
- Faculty of Science, Department of Biochemistry, Center of Excellence for Molecular Biology and Genomics of Shrimp, Chulalongkorn University, Bangkok, Thailand
| | - Piti Amparyup
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, Thailand
| | - Taro Kawai
- Laboratory of Molecular Immunobiology, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
| | - Anchalee Tassanakajon
- Faculty of Science, Department of Biochemistry, Center of Excellence for Molecular Biology and Genomics of Shrimp, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
30
|
Yang W, Liu C, Xu Q, Qu C, Sun J, Huang S, Kong N, Lv X, Liu Z, Wang L, Song L. Beclin-1 is involved in the regulation of antimicrobial peptides expression in Chinese mitten crab Eriocheir sinensis. FISH & SHELLFISH IMMUNOLOGY 2019; 89:207-216. [PMID: 30936045 DOI: 10.1016/j.fsi.2019.03.065] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 06/09/2023]
Abstract
Beclin-1, the mammalian ortholog of yeast Atg6, plays essential roles in the regulation of various processes, including autophagy, apoptosis, embryonic development and immune responses in vertebrates. However, the information about Beclin-1 in invertebrates especially in crustaceans is still very limited. In the present study, a novel Beclin-1 (designated as EsBeclin-1) was identified from Chinese mitten crab Eriocheir sinensis. The open reading frame of EsBeclin-1 cDNA was of 1,275 bp, encoding a typical APG6 domain. The deduced amino acid sequence of EsBeclin-1 shared high similarity ranging from 42.9% to 63.6% with the previously identified Beclins. In the phylogenetic tree, EsBeclin-1 was firstly clustered with Drosophila melanogaster Atg6 and then assigned into the branch of invertebrate Beclin-1. The mRNA transcripts of EsBeclin-1 were highly expressed in hepatopancreas, hemocytes and gill. After lipopolysaccharide (LPS) and Aeromonas hydrophila stimulations, the relative mRNA expression of EsBeclin-1 in hemocytes was significantly increased from 3 to 24 h with the peak level of 4.70-fold (p < 0.01) and 2.91-fold (p < 0.01) at 6 h, respectively. EsBeclin-1 protein was diffusely distributed in the cytoplasm of crab hemocytes under normal conditions, whereas it displayed predominantly punctuate distribution after LPS stimulation. After EsBeclin-1 was interfered with specific EsBeclin-1-dsRNA, the mRNA transcripts of some antimicrobial peptides, including EsALF2, EsLYZ, EsCrus and EsCrus2 in crab hemocytes were significantly decreased at 6 h post LPS stimulation. These results implicated that EsBeclin-1 played a role in regulating the antimicrobial peptides expressions in the immune responses of E. sinensis.
Collapse
Affiliation(s)
- Wen Yang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Chao Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Qingsong Xu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Chen Qu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Jiejie Sun
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Shu Huang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Ning Kong
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Xiaojing Lv
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Zhaoqun Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
31
|
Li C, Weng S, He J. WSSV-host interaction: Host response and immune evasion. FISH & SHELLFISH IMMUNOLOGY 2019; 84:558-571. [PMID: 30352263 DOI: 10.1016/j.fsi.2018.10.043] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/15/2018] [Accepted: 10/20/2018] [Indexed: 06/08/2023]
Abstract
As invertebrates, shrimps rely on multiple innate defense reactions, including humoral immunity and cellular immunity to recognize and eliminate various invaders, such as viruses. White spot syndrome virus (WSSV) causes the most prevalent and devastating viral disease in penaeid shrimps, which are the most widely cultured species in the coastal waters worldwide. In the last couple of decades, studies about WSSV implicate a dual role of the immune system in protecting shrimps against the infection; these studies also explore on the pathogenesis of WSSV infection. Herein, we review our current knowledge of the innate immune responses of shrimps to WSSV, as well as the molecular mechanisms used by this virus to evade host immune responses or actively subvert them for its own benefit. Deciphering the interactions between WSSV and the shrimp host is paramount to understanding the mechanisms that regulate the balance between immune-mediated protection and pathogenesis during viral infection and to the development of a safe and effective WSSV defensive strategy.
Collapse
Affiliation(s)
- Chaozheng Li
- State Key Laboratory for Biocontrol / School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou, PR China
| | - Shaoping Weng
- State Key Laboratory for Biocontrol / School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China; School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou, PR China
| | - Jianguo He
- State Key Laboratory for Biocontrol / School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China; School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou, PR China.
| |
Collapse
|
32
|
Nucleic Acid Sensing in Invertebrate Antiviral Immunity. NUCLEIC ACID SENSING AND IMMUNITY - PART B 2019; 345:287-360. [DOI: 10.1016/bs.ircmb.2018.11.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
33
|
Zhou YL, Wang LZ, Gu WB, Wang C, Zhu QH, Liu ZP, Chen YY, Shu MA. Identification and functional analysis of immune deficiency (IMD) from Scylla paramamosain: The first evidence of IMD signaling pathway involved in immune defense against bacterial infection in crab species. FISH & SHELLFISH IMMUNOLOGY 2018; 81:150-160. [PMID: 30017928 DOI: 10.1016/j.fsi.2018.07.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 07/09/2018] [Accepted: 07/10/2018] [Indexed: 06/08/2023]
Abstract
Immune deficiency (IMD) pathway, one of the most essential pattern recognition receptor signaling pathways, plays vital roles in innate immune responses to eliminate pathogen infection in invertebrates. In the present study, an immune deficiency (IMD) gene and two NF-κB family members, Relish and Dorsal, were identified and characterized in mud crab Scylla paramamosain for the first time. The deduced SpIMD, SpRelish and SpDorsal protein contained conserved death domain and classical NF-κB domains, respectively. Phylogenetic analysis suggested that SpIMD was classified into the invertebrate IMD branch, and SpRelish could be classified into the type I NF-κB class while SpDorsal could be grouped into the type II NF-κB class. Tissue distribution results showed these three genes were ubiquitously expressed in all tested tissues. The expression patterns of IMD signaling pathway and NF-κB genes, including SpIMD, SpIKKβ, SpIKKε, SpRelish and SpDorsal, were distinct when crabs were stimulated with Vibro alginolyticus, indicating that they might be involved in responding to bacterial infection. When SpIMD was silenced by in vivo RNA interference assay, the expression levels of IMD pathway and antimicrobial peptides (AMPs) genes, including SpIKKβ, SpRelish, SpALF1-6 and SpCrustin, were significantly down-regulated (p < 0.05). Correspondingly, the bacteria clearance ability of hemolymph was extremely impaired in IMD silenced crabs. Overall, the IMD played vital roles in innate immune response by regulating the expressions of its down-stream signaling genes and AMPs in S. paramamosain. These findings might pave the way for a better understanding of innate immune system and establish a fundamental network for the IMD signaling pathway in crustaceans.
Collapse
Affiliation(s)
- Yi-Lian Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Lan-Zhi Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wen-Bin Gu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Cong Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qi-Hui Zhu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ze-Peng Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yu-Yin Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Miao-An Shu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
34
|
Yang Z, Xu X, Li F, Yang F. Characterization of the promoter of white spot syndrome virus immediate-early gene wsv249. Virus Res 2018; 252:76-81. [PMID: 29753890 DOI: 10.1016/j.virusres.2018.05.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 05/07/2018] [Accepted: 05/09/2018] [Indexed: 11/28/2022]
Abstract
White spot syndrome virus immediate early (IE) gene wsv249 encodes an E3 ubiquitin ligase that can interact with a shrimp ubiquitin-conjugating enzyme to mediate ubiquitination. In this study, to understand the transcriptional regulation of wsv249, a serial of 5'-truncated mutations were made on its promoter and the activities of mutated promoters was analyzed. Four 25 bp regions potentially containing either positive or negative regulatory elements were identified. Notably, the deletion of -275/-250, which abolished a cAMP-response element (CRE), greatly reduced the promoter activity by 84.2%. CRE serves as the binding site for proteins belong to the cAMP responsive element-binding proteins (CREBs) family and the activator protein 1 (AP-1) family. Electrophoretic mobility shift assay (EMSA) showed that Lvc-Jun could directly bind to the CRE element in the promoter region of wsv249. In addition, the regulation of shrimp homolog of c-Jun and CREB on wsv249 promoter was further investigated. We found that Lvc-Jun greatly upregulated the activity of wsv249 promoter by ∼12.4 fold, and the CRE at -212/-205 but not the one at -256/-249 was essential for the regulation. In contrast, LvCREB-3 could not activate wsv249 promoter activity. These findings extend our knowledge of the transcriptional regulation of WSSV IE genes.
Collapse
Affiliation(s)
- Zi Yang
- State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of State Oceanic Administration, Third Institute of Oceanography, Xiamen, 361005, PR China; College of Ocean and Earth Science, Xiamen University, Xiamen,361005, PR China
| | - Xiaomin Xu
- State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of State Oceanic Administration, Third Institute of Oceanography, Xiamen, 361005, PR China; School of life Science, Xiamen University, Xiamen,361005, PR China
| | - Fang Li
- State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of State Oceanic Administration, Third Institute of Oceanography, Xiamen, 361005, PR China.
| | - Feng Yang
- State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of State Oceanic Administration, Third Institute of Oceanography, Xiamen, 361005, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, PR China.
| |
Collapse
|
35
|
Jiang M, Tu DD, Gu WB, Zhou YL, Zhu QH, Guo XL, Shu MA. Identification and functional analysis of inhibitor of NF-κB kinase (IKK) from Scylla paramamosain: The first evidence of three IKKs in crab species and their expression profiles under biotic and abiotic stresses. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 84:199-212. [PMID: 29454832 DOI: 10.1016/j.dci.2018.02.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 02/11/2018] [Accepted: 02/14/2018] [Indexed: 06/08/2023]
Abstract
IKK (inhibitor of NF-κB kinase) is the critical regulator for NF-κB (nuclear factor-κB) pathway against pathogenic invasion in vertebrates or invertebrates. However, the IKK from crab species has not yet been identified. In the present study, three full-length cDNA sequences of IKKs from mud crab Scylla paramamosain, designated as SpIKKβ, SpIKKε1 and SpIKKε2, were firstly cloned through RT-PCR and RACE methods. This is also the first report about the identification of two IKKε genes in mud crab and even in crustaceans. The SpIKKβ cDNA was 2824 bp in length with an open reading frame (ORF) of 2382 bp, which encoded a putative protein of 793 amino acids (aa). The ORF of two SpIKKε isoforms, SpIKKε1 and SpIKKε2, were 2400 bp and 2331 bp in length encoding 799 aa and 776 aa, respectively. The crucial conserved residues and functional domains, including the kinase domains (KDs) and leucine zipper (LZ), were identified in all SpIKKs. Phylogenetic analysis suggested that SpIKKβ was classified into the IKKs class while SpIKKεs could be grouped into the IKK-related kinases class. The qRT-PCR analysis showed that three SpIKKs were constitutively expressed in all tested tissues and the highest expression levels of SpIKKβ and SpIKKεs were all in hemocyte. The gene expression profiles of SpIKKs were distinct when crabs suffered biotic and abiotic stresses including the exposures of Vibrio alginolyticus, poly (I:C), cadmium and air exposure, suggesting that the SpIKKs might play different roles in response to pathogens infections, heavy metal and air exposure. Moreover, IKKs from mud crab can significantly activate mammalian NF-κB pathway, suggesting the function of IKKs might be evolutionally well-conserved. Results of the RNAi experiments suggested that SpIKKs might regulate the immune signaling pathway when hemocytes were challenged with V. parahemolyticus or virus-analog poly (I:C). All of these results indicated that the obtained SpIKKs might be involved in stress responses against biotic or abiotic stresses, and it also highlighted their functional conservation in the innate immune system from crustaceans to mammals.
Collapse
Affiliation(s)
- Mei Jiang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Dan-Dan Tu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wen-Bin Gu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yi-Lian Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qi-Hui Zhu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiao-Ling Guo
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Miao-An Shu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
36
|
Soponpong S, Amparyup P, Tassanakajon A. A cytosolic sensor, PmDDX41, mediates antiviral immune response in black tiger shrimp Penaeus monodon. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 81:291-302. [PMID: 29248385 DOI: 10.1016/j.dci.2017.12.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 12/13/2017] [Accepted: 12/13/2017] [Indexed: 06/07/2023]
Abstract
DEAD (Asp-Glu-Ala-Asp)-box polypeptide 41 (DDX41), a receptor belonging to the DExD family, has recently been identified as an intracellular DNA sensor in vertebrates. Here, we report on the identification and functional characterization of PmDDX41, the first cytosolic DNA sensor in shrimp. By searching a Penaeus monodon expressed sequence tag (EST) database (http://pmonodon.biotec.or.th), three cDNA fragments exhibiting similarity to DDX41 in various species were identified and assembled, resulting in a complete open reading frame of PmDDX41 that contains 1863-bp and encodes a putative protein of 620 amino acids. PmDDX41 shares 83% and 79% similarity to DDX41 homolog from the bee Apis florea and fruit fly Drosophila melanogaster, respectively and contains three conserved domains in the protein: DEADc domain, HELICc domain, and zinc finger domain. The transcript of PmDDX41 was detected in all tested tissues and was up-regulated upon infection with a DNA virus, white spot syndrome virus (WSSV). However, PmDDX41 mRNA expression was not significantly changed and down-regulated in response to a bacterium, Vibrio harveyi, or an RNA virus, yellow head virus (YHV), respectively, compared with the control phosphate-buffered saline-injected shrimp. Furthermore, the suppression of PmDDX41 by dsRNA-mediated gene silencing resulted in more rapid death of WSSV-infected shrimp and a significant decrease in the mRNA expression levels of several immune-related genes (PmIKKβ, PmIKKɛ, PmRelish, PmCactus, PmDorsal, PmPEN3, PmPEN5, and ALFPm6). These results suggest that PmDDX41 is involved in the antiviral response, probably via a DNA-sensing pathway that is triggered through the IκB kinase complex and leads to the activation of several immune-related genes.
Collapse
Affiliation(s)
- Suthinee Soponpong
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Piti Amparyup
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand
| | - Anchalee Tassanakajon
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
37
|
Tassanakajon A, Rimphanitchayakit V, Visetnan S, Amparyup P, Somboonwiwat K, Charoensapsri W, Tang S. Shrimp humoral responses against pathogens: antimicrobial peptides and melanization. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 80:81-93. [PMID: 28501515 DOI: 10.1016/j.dci.2017.05.009] [Citation(s) in RCA: 165] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/10/2017] [Accepted: 05/10/2017] [Indexed: 06/07/2023]
Abstract
Diseases have caused tremendous economic losses and become the major problem threatening the sustainable development of shrimp aquaculture. The knowledge of host defense mechanisms against invading pathogens is essential for the implementation of efficient strategies to prevent disease outbreaks. Like other invertebrates, shrimp rely on the innate immune system to defend themselves against a range of microbes by recognizing and destroying them through cellular and humoral immune responses. Detection of microbial pathogens triggers the signal transduction pathways including the NF-κB signaling, Toll and Imd pathways, resulting in the activation of genes involved in host defense responses. In this review, we update the discovery of components of the Toll and Imd pathways in shrimp and their participation in the regulation of shrimp antimicrobial peptide (AMP) synthesis. We also focus on a recent progress on the two most powerful and the best-studied shrimp humoral responses: AMPs and melanization. Shrimp AMPs are mainly cationic peptides with sequence diversity which endues them the broad range of activities against microorganisms. Melanization, regulated by the prophenoloxidase activating cascade, also plays a crucial role in killing and sequestration of invading pathogens. The progress and emerging research on mechanisms and functional characterization of components of these two indispensable humoral responses in shrimp immunity are summarized and discussed. Interestingly, the pattern recognition protein (PRP) crosstalk is evidenced between the proPO activating cascade and the AMP synthesis pathways in shrimp, which enables the innate immune system to build up efficient immune responses.
Collapse
Affiliation(s)
- Anchalee Tassanakajon
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phyathai Road, Bangkok 10330, Thailand.
| | - Vichien Rimphanitchayakit
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phyathai Road, Bangkok 10330, Thailand
| | - Suwattana Visetnan
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phyathai Road, Bangkok 10330, Thailand
| | - Piti Amparyup
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Road, Klong1, Klong Luang, Pathumthani 12120, Thailand
| | - Kunlaya Somboonwiwat
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phyathai Road, Bangkok 10330, Thailand
| | - Walaiporn Charoensapsri
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Road, Klong1, Klong Luang, Pathumthani 12120, Thailand
| | - Sureerat Tang
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Road, Klong1, Klong Luang, Pathumthani 12120, Thailand
| |
Collapse
|
38
|
Qiu W, He JH, Zuo H, Niu S, Li C, Zhang S, Weng S, He J, Xu X. Identification, characterization, and function analysis of the NF-κB repressing factor (NKRF) gene from Litopenaeus vannamei. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 76:83-92. [PMID: 28564581 DOI: 10.1016/j.dci.2017.05.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/26/2017] [Accepted: 05/26/2017] [Indexed: 06/07/2023]
Abstract
The NF-κB family transcription factors regulate a wide spectrum of biological processes, in particular immune responses. The studies in human suggest that the NF-κB repressing factor (NKRF) negatively regulates the activity of NF-κB through a direct protein-protein interaction. However, the function of NKRF has not been studied outside mammals up to now. The current study identified a NKRF gene (LvNKRF) from the Pacific white shrimp, Litopenaeus vannamei, which showed homology with NKRFs from insects, fishes and mammals. LvNKRF was high expressed in intestine, stomach and muscle tissues and was localized in the nucleus. LvNKRF could interact with both Dorsal and Relish, the two members of the shrimp NF-κB family. Interestingly, although sharing a similar protein structure with that of human NKRF, LvNKRF showed no inhibitory but instead enhancing effects on activities of Dorsal and Relish, which was contrary to those of mammalian NKRFs. The expression of LvNKRF could not be induced by Gram-positive and -negative bacteria and immunostimulants lipopolysaccharide (LPS) and poly (I:C) but was significantly up-regulated after white spot syndrome virus (WSSV) infection. Silencing of LvNKRF significantly decreased the mortalities of shrimp caused by WSSV infection and down-regulated the WSSV copies and the expression of WSSV structural gene in tissues. These suggested that LvNKRF could facilitate the infection of shrimp by WSSV, which may be an additional strategy for WSSV to hijack the host NF-κB pathway to favor its own replication. The current study could provide a valuable context for further investigating the evolutionary derivation of NKRFs and facilitate the study of regulatory mechanisms of invertebrate NF-κB pathways.
Collapse
Affiliation(s)
- Wei Qiu
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China; School of Biology and Engineering, Guizhou Medical University, Guiyang 550025, China
| | - Jian-Hui He
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China
| | - Hongliang Zuo
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China; School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China; South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), Guangzhou, PR China
| | - Shengwen Niu
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China
| | - Chaozheng Li
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China; School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Shuang Zhang
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China
| | - Shaoping Weng
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China
| | - Jianguo He
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China; School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China; South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), Guangzhou, PR China.
| | - Xiaopeng Xu
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China; South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), Guangzhou, PR China.
| |
Collapse
|
39
|
Sun J, Ruan L, Zhou C, Shi H, Xu X. Characterization and function of a β-catenin homolog from Litopenaeus vannamei in WSSV infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 76:412-419. [PMID: 28689772 DOI: 10.1016/j.dci.2017.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/03/2017] [Accepted: 07/05/2017] [Indexed: 06/07/2023]
Abstract
As a conserved signaling pathway, Wnt/β-catenin signaling pathway participates in many physiological activities, including cell differentiation, apoptosis and so on. β-catenin is the key molecule of Wnt/β-catenin signaling pathway and plays a pivotal role. In this article, a β-catenin homolog from Litopenaeus vannamei (designed as Lv-β-catenin) was cloned and its role in WSSV infection was investigated. Sequence analysis suggested that Lv-β-catenin had characters of β-catenin family. Semi-quantitative RT-PCR showed that Lv-β-catenin transcripted in all detected tissues. In the subsequent WSSV infection experiments, it was found that the transcription levels of Lv-β-catenin were down-regulated, as well as the expression levels. Immunofluorescence assay further confirmed that WSSV could reduce the amount of Lv-β-catenin and promoted Lv-β-catenin to translocate into the nucleus. Moreover, we found that WSSV could influence the amount of Lv-β-catenin by ubiquitination. While Lv-β-catenin was up-regulated by a β-catenin activator GSK-3 Inhibitor IX, the transcription of virus immediate early gene WSSV069 was significantly inhibited. In addition, it was found that Lv-β-catenin could interact with WSSV069. Conclusively, our study provided evidences that β-catenin may participate in the WSSV infection, and Wnt/β-catenin signal pathway may play an important role in immune regulation.
Collapse
Affiliation(s)
- Jiazhen Sun
- School of Life Science, University of Science and Technology of China, Hefei 230000, People's Republic of China
| | - Lingwei Ruan
- State Key Laboratory Breeding Base of Marine Genetic Resources, Xiamen 361005, People's Republic of China; Key Laboratory of Marine Genetic Resources of State Oceanic Administration, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, People's Republic of China; Fujian Key Laboratory of Marine Genetic Resources, Xiamen 361005, People's Republic of China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Xiamen 361005, People's Republic of China.
| | - Congzhao Zhou
- School of Life Science, University of Science and Technology of China, Hefei 230000, People's Republic of China
| | - Hong Shi
- State Key Laboratory Breeding Base of Marine Genetic Resources, Xiamen 361005, People's Republic of China; Key Laboratory of Marine Genetic Resources of State Oceanic Administration, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, People's Republic of China; Fujian Key Laboratory of Marine Genetic Resources, Xiamen 361005, People's Republic of China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Xiamen 361005, People's Republic of China
| | - Xun Xu
- State Key Laboratory Breeding Base of Marine Genetic Resources, Xiamen 361005, People's Republic of China; Key Laboratory of Marine Genetic Resources of State Oceanic Administration, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, People's Republic of China; Fujian Key Laboratory of Marine Genetic Resources, Xiamen 361005, People's Republic of China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Xiamen 361005, People's Republic of China
| |
Collapse
|
40
|
Liu Q, Xu D, Jiang S, Huang J, Zhou F, Yang Q, Jiang S, Yang L. Toll-receptor 9 gene in the black tiger shrimp (Penaeus monodon) induced the activation of the TLR-NF-κB signaling pathway. Gene 2017; 639:27-33. [PMID: 28982619 DOI: 10.1016/j.gene.2017.09.060] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 09/22/2017] [Accepted: 09/26/2017] [Indexed: 12/11/2022]
Abstract
Toll receptors are important pathogen recognition receptors (PRRs) in shrimps, which play a vital role in defending against virus and bacterial challenge. In this paper, the characterization and functional analysis of a Toll9 receptor gene from Penaeus monodon was performed in HEK293T cells. Data showed that PmToll9 can activate the NF-κB promoter activities of TLR pathway, while ISRE and IFN-β promoter cannot be activated obviously in HEK293T cells using dual-luciferase reporter system. The downstream immune factors of IL-8, IκB-α, and TRAF6 were activated by PmToll9 and IL-8 showed the most significant up-regulation in expression levels, indicating the activities of NF-κB can be mediated by PmToll9. Six LRRs-deletion mutants were constructed and results showed these mutants had obvious declines in luciferase activities, among which the mutant pCMV-DeLRR4 showed the most significant decline. qPCR data indicated LRRs-deletion mutants efficiently impaired the activities of the downstream immune factors IL-8, IκB-α, and TRAF6. It demonstrates that LRRs-deletion mutants could result in the weaken abilities of PmToll9 in signaling transduction. Overexpression of PmToll9-GFP fusion protein in Hela cells revealed the primary cellular localization of PmToll9 is in the cytoplasm.
Collapse
Affiliation(s)
- Qian Liu
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; College of Aqua-life Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, Guangzhou 510300, China
| | - Dan Xu
- College of Aqua-life Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Shigui Jiang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, Guangzhou 510300, China
| | - Jianhua Huang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Falin Zhou
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Qibin Yang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Song Jiang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Lishi Yang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China.
| |
Collapse
|
41
|
Pan C, Wang W, Yuan H, Yang L, Chen B, Li D, Chen J. The immediate early protein WSV187 can influence viral replication via regulation of JAK/STAT pathway in Drosophila. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 72:89-96. [PMID: 28232015 DOI: 10.1016/j.dci.2017.02.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 02/17/2017] [Accepted: 02/18/2017] [Indexed: 06/06/2023]
Abstract
The world production of shrimp is seriously affected by the white spot syndrome virus (WSSV). Viral immediate-early (IE) genes encode regulatory proteins critical for the viral lifecycle. In spite of their importance, only five out of the 21 identified WSSV IE genes are functionally characterized. Here, we report the use of Drosophila melanogaster as a model to explore the role of WSSV IE gene wsv187. In vivo expression of WSV187 in transgenic flies show WSV187 localized in the cytoplasm. Overexpression of wsv187 results wing defects consistent with phenotypes observed in JAK/STAT exacerbated flies. After artificial infection of the DCV virus, the flies expressing wsv187 showed a lower viral load, a higher survival rate and an up-regulated STAT92E expression. These data demonstrate wsv187 plays a role in the controlling of virus replication by activating host JAK/STAT pathway.
Collapse
Affiliation(s)
- Changkun Pan
- School of Marine Sciences, Ningbo University, Ningbo 315211, Zhejiang, China; State Key Laboratory Breeding Base of Marine Genetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, Fujian, China
| | - Wei Wang
- State Key Laboratory Breeding Base of Marine Genetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, Fujian, China.
| | - Huifang Yuan
- State Key Laboratory Breeding Base of Marine Genetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, Fujian, China
| | - Lirong Yang
- State Key Laboratory Breeding Base of Marine Genetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, Fujian, China
| | - Baoru Chen
- State Key Laboratory Breeding Base of Marine Genetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, Fujian, China
| | - Dengfeng Li
- School of Marine Sciences, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Jianming Chen
- State Key Laboratory Breeding Base of Marine Genetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, Fujian, China.
| |
Collapse
|
42
|
Hauton C. Recent progress toward the identification of anti-viral immune mechanisms in decapod crustaceans. J Invertebr Pathol 2017; 147:111-117. [DOI: 10.1016/j.jip.2017.01.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 11/28/2016] [Accepted: 01/03/2017] [Indexed: 01/08/2023]
|
43
|
Tian Y, Jiang Y, Shang Y, Zhang YP, Geng CF, Wang LQ, Chang YQ. Establishment of lysozyme gene RNA interference systemand its involvement in salinity tolerance in sea cucumber (Apostichopus japonicus). FISH & SHELLFISH IMMUNOLOGY 2017; 65:71-79. [PMID: 28359949 DOI: 10.1016/j.fsi.2017.03.046] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 03/22/2017] [Accepted: 03/26/2017] [Indexed: 06/07/2023]
Abstract
The lysozyme gene was silenced using RNA interference (RNAi) to analyze the function of lysozyme in sea cucumber under salt stress. The interfering efficiency of four lysozyme RNAi oligos ranged from 0.55 to 0.70. From the four oligos, p-miR-L245 was used for further interfering experiments because it had the best silencing efficiency. Peristomial film injection of p-miR-L245 (10 μg) was used for further interfering experiments. The lowest gene expression, determined by RT-PCR assay, in muscle, coelomic fluid, and parapodium occurred 48 h after p-miR-L245 injection, while that of body wall and tube foot was 96 h and 24 h, respectively. Lysozyme activity in muscle and body wall was significantly lower than the controls. The lowest lysozyme activity in muscle, body wall and parapodium, was found at 48, 72, and 48 h, respectively, which was consistent with the transcription expression of lysozyme. The lowest point of lysozyme activity was at 96 h in coelomic fluid and tube foot, which was laid behind lysozyme expression in transcription level. The expression profile of the lysozyme transcription level and lysozyme activity in the body wall and tube foot increased at 12 h after p-miR-L245 injection before the interference effect appeared. NKA gene expression was expressed at a high level in the positive control (PC) and negative control (NC) groups at 12, 24, and 48 h, while NKA was expressed at low levels in the lysozyme RNAi injection group at 12 and 24 h. The level of NKA gene expression recovered to the level of the PC and NC group at 48, 72, and 96 h after the lysozyme RNAi injection. NKCC1 gene expression was high in the PC and NC groups at 96 h, while the NKCC1 was expressed at a low level 96 h after lysozyme RNAi injection. The results suggest that lysozyme decay involves NKA and NKCC1 gene expression under salinity 18 psμ. The K+ and Cl- concentration after lysozyme RNAi injection was lower than in the PC and NC group.
Collapse
Affiliation(s)
- Yi Tian
- Key Laboratory of Mariculture, Ministry of Agriculture, Dalian Ocean University, 116023, Dalian, China.
| | - Yanan Jiang
- Key Laboratory of Mariculture, Ministry of Agriculture, Dalian Ocean University, 116023, Dalian, China
| | - Yanpeng Shang
- Key Laboratory of Mariculture, Ministry of Agriculture, Dalian Ocean University, 116023, Dalian, China
| | - Yu-Peng Zhang
- Key Laboratory of Mariculture, Ministry of Agriculture, Dalian Ocean University, 116023, Dalian, China
| | - Chen-Fan Geng
- Key Laboratory of Mariculture, Ministry of Agriculture, Dalian Ocean University, 116023, Dalian, China
| | - Li-Qiang Wang
- Key Laboratory of Mariculture, Ministry of Agriculture, Dalian Ocean University, 116023, Dalian, China
| | - Ya-Qing Chang
- Key Laboratory of Mariculture, Ministry of Agriculture, Dalian Ocean University, 116023, Dalian, China
| |
Collapse
|
44
|
Wang S, Li M, Yin B, Li H, Xiao B, Lǚ K, Huang Z, Li S, He J, Li C. Shrimp TAB1 interacts with TAK1 and p38 and activates the host innate immune response to bacterial infection. Mol Immunol 2017; 88:10-19. [PMID: 28577391 DOI: 10.1016/j.molimm.2017.05.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 05/17/2017] [Accepted: 05/19/2017] [Indexed: 10/19/2022]
Abstract
Mammalian TAB1 has been previously identified as transforming growth factor-β (TGF-β)-activated kinase 1 (TAK1) binding protein, which functions as the activator of TAK1 and p38. This report, for the first time, identified and characterized the homolog of TAB1 in shrimp, to be specific, the homolog gene from Litopenaeus vannamei, containing a 1560-bp open reading frame (ORF) that encoded a putative protein of 519 amino acids with the conserved PP2Cc (Serine/threonine phosphatases, family 2C, catalytic) domain in N-terminal and a TAK1 binding motif in C-terminus, has been cloned and named LvTAB1. LvTAB1 was most abundant in gills and its expression could respond significantly to a series of stimuli, including LPS, Vibrio parahemolyticus and Staphylococcus aureus. Moreover, Co-immunoprecipitation (Co-IP) experiments showed that LvTAB1 could combine with LvTAK1 as well as Lvp38, two members of IMD-NF-κB/MAPK pathway, which meant LvTAB1 could have a role in regulating the activities of these kinases. Over-expression of LvTAB1 in drosophila S2 cells could improve the transcriptional levels of antimicrobial peptide genes (AMPs) such as Diptericin (Dpt), the hallmark of drosophila NF-κB activated genes, indicating its activation effect on NF-κB pathway. Furthermore, suppression of LvTAB1 expression in vivo by RNA-interference increased the sensibility of shrimps to V. parahaemolyticus infection, implying its protective role against bacterial infection. In conclusion, these results provide some insight into the function of LvTAB1 during bacterial infection.
Collapse
Affiliation(s)
- Sheng Wang
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Guangdong Province Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China
| | - Mengqiao Li
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Guangdong Province Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China
| | - Bin Yin
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Guangdong Province Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China
| | - Haoyang Li
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Guangdong Province Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China
| | - Bang Xiao
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Guangdong Province Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China
| | - Kai Lǚ
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Guangdong Province Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China
| | - Zhijian Huang
- Guangdong Province Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China; School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China; South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), PR China
| | - Sedong Li
- Fisheries Research Institute of Zhanjiang, Zhanjiang, PR China
| | - Jianguo He
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Guangdong Province Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China; School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China; South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), PR China.
| | - Chaozheng Li
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Guangdong Province Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China; School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China; South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), PR China.
| |
Collapse
|
45
|
Yuan K, Yuan FH, Weng SP, He JG, Chen YH. Identification and functional characterization of a novel Spätzle gene in Litopenaeus vannamei. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 68:46-57. [PMID: 27884706 DOI: 10.1016/j.dci.2016.11.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 11/18/2016] [Accepted: 11/18/2016] [Indexed: 06/06/2023]
Abstract
Shrimp innate immunity is the first line of resistance against pathogenic bacteria. The Toll-like receptor (TLR)-NF-κB pathway is vital in this immunity process. In this study, a novel Spätzle gene (LvSpz4) of Litopenaeus vannamei was cloned and functionally characterized. The open reading frame of LvSpz4 was 918 bp, which encoded a putative protein with 305 amino acids. LvSpz4 was most expressed in the gills of L. vannamei. This expression was induced by Vibrio alginolyticus or Staphylococcus aureus infection or lipopolysaccharide stimulation. The reporter gene assay showed that LvSpz4 could activate the promoters of Pen4, Drs, AttA, Mtk, and white spot syndrome virus immediate early gene1 in Drosophila Schneider 2 (S2) cells. Knockdown LvSpz4 increased the cumulative mortality of L. vannamei upon V. alginolyticus infection. The unfolded protein response (UPR) induced the expression of LvSpz4 in L. vannamei. Moreover, the promoter of LvSpz4 was activated by L. vannamei X-Box binding protein 1 and activating transcription factor 4 in S2 cells. These results suggested that LvSpz4 was involved in L. vannamei innate immunity and caused the crosstalk between the TLR-NF-κB pathway and UPR.
Collapse
Affiliation(s)
- Kai Yuan
- School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China; State Key Laboratory for Biocontrol, MOE Key Laboratory of Aquatic Product Safety, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China
| | - Feng-Hua Yuan
- School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China; State Key Laboratory for Biocontrol, MOE Key Laboratory of Aquatic Product Safety, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China
| | - Shao-Ping Weng
- School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China; State Key Laboratory for Biocontrol, MOE Key Laboratory of Aquatic Product Safety, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China
| | - Jian-Guo He
- Key Laboratory of Marine Resources and Coastal Engineering in Guangdong Province, South China Sea Bio-Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), School of Marine Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China; School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China; State Key Laboratory for Biocontrol, MOE Key Laboratory of Aquatic Product Safety, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China
| | - Yi-Hong Chen
- Key Laboratory of Marine Resources and Coastal Engineering in Guangdong Province, South China Sea Bio-Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), School of Marine Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China; State Key Laboratory for Biocontrol, MOE Key Laboratory of Aquatic Product Safety, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China.
| |
Collapse
|
46
|
Lan JF, Wei S, Wang YQ, Dai YJ, Tu JG, Zhao LJ, Li XC, Qin QW, Chen N, Lin L. PcToll3 was involved in anti-Vibrio response by regulating the expression of antimicrobial peptides in red swamp crayfish, Procambarus clarkii. FISH & SHELLFISH IMMUNOLOGY 2016; 57:17-24. [PMID: 27531577 DOI: 10.1016/j.fsi.2016.08.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 08/10/2016] [Accepted: 08/11/2016] [Indexed: 06/06/2023]
Abstract
Tolls and Toll-like receptors (TLRs) play an important role in host immune defenses by regulating the expression of antimicrobial peptides (AMPs) and cytokines, but the functional differences of crustacean Tolls from Drosophila Tolls or Mammal TLRs are largely unknown. A novel Toll receptor, named PcToll3, was identified from red swamp crayfish, Procambarus clarkii. It was widely expressed in all detected tissues, and its transcript in hemocytes was up-regulated at 12 h after Vibrio parahemolyticus (Vibrio) injection or at 24 h post white spot syndrome virus (WSSV) challenge. After knockdown of PcToll3, the activity of bacterial clearance was inhibited, and the expression levels of AMPs including Crustin1 (Cru1), Anti-lippopolysaccharide factor 1 (ALF1), and Lysozymes1 (Lys1), which could be up-regulated by Vibrio, were all affected. Meanwhile, PcToll3 silencing influenced the expression of myeloid differentiation factor 88 (PcMyd88), tumor necrosis factor-associated factor 6 (PcTRAF6), and PcDorsal, which were the counterparts of Drosophila Toll signaling pathway. Interestingly, PcToll3 silencing inhibited translocation of PcDorsal from cytoplasm to nucleus. Furthermore, the knockdown of PcDorsal also impaired the expression of AMPs after Vibrio challenge. Hence, we concluded that, besides participating in antiviral immunity, PcToll3 might also regulate the expression of Cru1 and Lys1 to participate in anti-Vibrio immune responses by promoting PcDorsal translocation into nucleus.
Collapse
Affiliation(s)
- Jiang-Feng Lan
- Department of Aquatic Animal Medicine, Research Center for Marine Biology, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Shun Wei
- Department of Aquatic Animal Medicine, Research Center for Marine Biology, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yu-Qing Wang
- Department of Aquatic Animal Medicine, Research Center for Marine Biology, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yun-Jia Dai
- Department of Aquatic Animal Medicine, Research Center for Marine Biology, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Jia-Gang Tu
- Department of Aquatic Animal Medicine, Research Center for Marine Biology, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Li-Juan Zhao
- Department of Aquatic Animal Medicine, Research Center for Marine Biology, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Xin-Cang Li
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China
| | - Qi-Wei Qin
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Nan Chen
- Department of Aquatic Animal Medicine, Research Center for Marine Biology, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| | - Li Lin
- Department of Aquatic Animal Medicine, Research Center for Marine Biology, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China.
| |
Collapse
|
47
|
Tang X, Huang B, Zhang L, Li L, Zhang G. TANK-binding kinase-1 broadly affects oyster immune response to bacteria and viruses. FISH & SHELLFISH IMMUNOLOGY 2016; 56:330-335. [PMID: 27422757 DOI: 10.1016/j.fsi.2016.07.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 06/28/2016] [Accepted: 07/09/2016] [Indexed: 06/06/2023]
Abstract
As a benthic filter feeder of estuaries, the immune system of oysters provides one of the best models for studying the genetic and molecular basis of the innate immune pathway in marine invertebrates and examining the influence of environmental factors on the immune system. Here, the molecular function of molluscan TANK-binding kinase-1 (TBK1) (which we named CgTBK1) was studied in the Pacific oyster, Crassostrea gigas. Compared with known TBK1 proteins in other model organisms, CgTBK1 contains a conserved S-TKc domain and a coiled coil domain at the N- and C-terminals but lacks an important ubiquitin domain. Quantitative real-time PCR analysis revealed that the expression level of CgTBK1 was ubiquitous in all selected tissues, with highest expression in the gills. CgTBK1 expression was significantly upregulated in response to infections with Vibrio alginolyticus, ostreid herpesvirus 1 (OsHV-1 reference strain and μvar), and polyinosinic:polycytidylic acid sodium salt, suggesting its broad function in immune response. Subcellular localization showed the presence of CgTBK1 in the cytoplasm of HeLa cells, suggesting its potential function as the signal transducer between the receptor and transcription factor. We further demonstrated that CgTBK1 interacted with CgSTING in HEK293T cells, providing evidence that CgTBK1 could be activated by direct binding to CgSTING. In summary, we characterized the TBK1 gene in C. gigas and demonstrated its role in the innate immune response to pathogen infections.
Collapse
Affiliation(s)
- Xueying Tang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong 266071, China; University of Chinese Academy of Sciences, Beijing 100039, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266071, China; National & Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, Shandong 266071, China
| | - Baoyu Huang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266071, China; National & Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, Shandong 266071, China
| | - Linlin Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266071, China; National & Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, Shandong 266071, China
| | - Li Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong 266071, China; Laboratory for Marine Fisheries and Aquaculture, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266071, China; National & Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, Shandong 266071, China.
| | - Guofan Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266071, China; National & Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, Shandong 266071, China.
| |
Collapse
|
48
|
Wang S, Li H, Lǚ K, Qian Z, Weng S, He J, Li C. Identification and characterization of transforming growth factor β-activated kinase 1 from Litopenaeus vannamei involved in anti-bacterial host defense. FISH & SHELLFISH IMMUNOLOGY 2016; 52:278-288. [PMID: 27033469 DOI: 10.1016/j.fsi.2016.03.149] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 03/22/2016] [Indexed: 06/05/2023]
Abstract
LvTAK1, a member of transforming growth factor β-activated kinase 1 (TAK1) families, has been identified from Litopenaeus vannamei in this study. The full length of LvTAK1 is 2670 bp, including a 2277 bp open reading frame (ORF) that encoded a putative protein of 758 amino acids with a calculated molecular weight of ∼83.4 kDa LvTAK1 expression was most abundant in muscles and was up-regulated in gills after LPS, Vibrio parahaemolyticus, Staphylococcus aureus, Poly (I:C) and WSSV challenge. Both in vivo and in vitro experiments indicated that LvTAK1 could activate the expression of several antimicrobial peptide genes (AMPs). In addition, the dsRNA-mediated knockdown of LvTAK1 enhanced the susceptibility of shrimps to Vibrio parahaemolyticus, a kind of Gram-negative bacteria. These results suggested LvTAK1 played important roles in anti-bacterial infection. CoIP and subcellular localization assay demonstrated that LvTAK1 could interact with its binding protein LvTAB2, a key component of IMD pathway. Moreover, over-expression of LvTAK1 in Drosophila S2 cell could strongly induce the promoter activity of Diptericin (Dpt), a typical AMP which is used to read out of the activation of IMD pathway. These findings suggested that LvTAK1 could function as a component of IMD pathway. Interestingly, with the over-expression of LvTAK1 in S2 cell, the promoter activity of Metchnikowin (Mtk), a main target gene of Toll/Dif pathway, was up-regulated over 30 times, suggesting that LvTAK1 may also take part in signal transduction of the Toll pathway. In conclusion, we provided some evidences that the involvement of LvTAK1 in the regulation of both Toll and IMD pathways, as well as innate immune against bacterial infection in shrimp.
Collapse
Affiliation(s)
- Sheng Wang
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China
| | - Haoyang Li
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China
| | - Kai Lǚ
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China
| | - Zhe Qian
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Shaoping Weng
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China
| | - Jianguo He
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China; School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China; South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), PR China.
| | - Chaozheng Li
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China; School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China; South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), PR China.
| |
Collapse
|
49
|
Co-expression of Dorsal and Rel2 Negatively Regulates Antimicrobial Peptide Expression in the Tobacco Hornworm Manduca sexta. Sci Rep 2016; 6:20654. [PMID: 26847920 PMCID: PMC4742911 DOI: 10.1038/srep20654] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 12/30/2015] [Indexed: 12/14/2022] Open
Abstract
Nuclear factor κB (NF-κB) plays an essential role in regulation of innate immunity. In mammals, NF-κB factors can form homodimers and heterodimers to activate gene expression. In insects, three NF-κB factors, Dorsal, Dif and Relish, have been identified to activate antimicrobial peptide (AMP) gene expression. However, it is not clear whether Dorsal (or Dif) and Relish can form heterodimers. Here we report the identification and functional analysis of a Dorsal homologue (MsDorsal) and two Relish short isoforms (MsRel2A and MsRel2B) from the tobacco hornworm, Manduca sexta. Both MsRel2A and MsRel2B contain only a Rel homology domain (RHD) and lack the ankyrin-repeat inhibitory domain. Overexpression of the RHD domains of MsDorsal and MsRel2 in Drosophila melanogaster S2 and Spodoptera frugiperda Sf9 cells can activate AMP gene promoters from M. sexta and D. melanogaster. We for the first time confirmed the interaction between MsDorsal-RHD and MsRel2-RHD, and suggesting that Dorsal and Rel2 may form heterodimers. More importantly, co-expression of MsDorsal-RHD with MsRel2-RHD suppressed activation of several M. sexta AMP gene promoters. Our results suggest that the short MsRel2 isoforms may form heterodimers with MsDorsal as a novel mechanism to prevent over-activation of antimicrobial peptides.
Collapse
|
50
|
Wang S, Qian Z, Li H, Lu K, Xu X, Weng S, He J, Li C. Identification and characterization of MKK7 as an upstream activator of JNK in Litopenaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2016; 48:285-294. [PMID: 26707780 DOI: 10.1016/j.fsi.2015.12.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 12/10/2015] [Accepted: 12/12/2015] [Indexed: 06/05/2023]
Abstract
Mitogen-activated protein kinase kinase 7 (MKK7) is a key signal transduction regulator in c-Jun N-terminal kinase (JNK) signaling pathway, which is involved in a wide range of physiological and pathological processes. In this study, we described the molecular cloning of a new member of MKK7 group from Litopenaeus vannamei named as LvMKK7. The full-length cDNA of LvMKK7 was 3093 bp in length, with an open reading frame (ORF) of 1440bp encoding a putative protein of 479 amino acids. LvMKK7 contained a conserved kinase domain of 261 amino acids in which there was a characteristic S-K-A-K-T motif as a potential target site of phosphorylation by MKKK. Moreover, subcellular localization showed LvMKK7 was located in both the cytoplasm and the nucleus of Drosophila S2 cells. Real-time PCR indicated that LvMKK7 was universally expressed in all tested tissues and its expression in hepatopancreas was responsive to the challenge of LPS, Poly (I:C), Vibrio parahaemolyticus, Staphhylococcus aureus and white spot syndrome virus (WSSV). In addition, co-immunoprecipitation assay demonstrated that LvJNK was phosphorylated and activated by LvMKK7, which suggested LvMKK7 was the upper regulator of LvJNK. Furthermore, RNAi-mediated knockdown of LvMKK7 enhanced the sensitivity of shrimps to V. parahaemolyticus infection. Overall, our results suggested that LvMKK7 may play important roles in the shrimp innate immunity.
Collapse
Affiliation(s)
- Sheng Wang
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Bio Control, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou, PR China
| | - Zhe Qian
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Bio Control, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Haoyang Li
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Bio Control, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou, PR China
| | - Kai Lu
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Bio Control, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou, PR China
| | - Xiaopeng Xu
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Bio Control, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou, PR China
| | - Shaoping Weng
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Bio Control, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou, PR China
| | - Jianguo He
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Bio Control, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou, PR China; School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China.
| | - Chaozheng Li
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Bio Control, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou, PR China; School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China.
| |
Collapse
|