1
|
Kuenzel NA, Dobner J, Reichert D, Rossi A, Boukamp P, Esser C. Vδ1 T Cells Integrated in Full-Thickness Skin Equivalents: A Model for the Role of Human Skin-Resident γδT Cells. J Invest Dermatol 2024:S0022-202X(24)02173-0. [PMID: 39384018 DOI: 10.1016/j.jid.2024.08.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/25/2024] [Accepted: 08/12/2024] [Indexed: 10/11/2024]
Abstract
Vδ1 T cells are a subpopulation of γδT cells found in human dermis. Much less is known regarding their role and function in skin health and disease than regarding the roles of murine skin-resident γδT cells. In this study, we report the successful integration of Vδ1 T cells into long-term fibroblast-derived matrix skin equivalents. We isolated Vδ1 T cells from human blood, where they are rare, and established conditions for the integration and maintenance of the freshly isolated Vδ1 T cells in the skin equivalents. Plated on top of the dermal equivalents, almost all Vδ1 T cells migrated into the dermal matrix where they exerted their influence on both the dermal equivalents and the epithelium. Vδ1 T cells contributed to epidermal differentiation of HaCaT cells as indicated by histology, expression of epidermal differentiation markers, and RNA-sequencing expression profile. When complemented with the carcinoma-derived SCC13 cells instead of HaCaT, our data suggest a role for Vδ1 T cells in slowing growth of the tumor cells, as indicated by reduced stratification and changes in gene expression profiles. Together, we demonstrate the successful establishment of human Vδ1 T cell-competent skin equivalents and skin carcinoma equivalents and provide evidence for molecular and functional consequences of the Vδ1 T cells on their respective environment.
Collapse
Affiliation(s)
| | - Jochen Dobner
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Doreen Reichert
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Andrea Rossi
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Petra Boukamp
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany; German Cancer Research Centre, Heidelberg, Germany
| | - Charlotte Esser
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany.
| |
Collapse
|
2
|
Sjøgren T, Islam S, Filippov I, Jebrzycka A, Sulen A, Breivik LE, Hellesen A, Jørgensen AP, Lima K, Tserel L, Kisand K, Peterson P, Ranki A, Husebye ES, Oftedal BE, Wolff AS. Single cell characterization of blood and expanded regulatory T cells in autoimmune polyendocrine syndrome type 1. iScience 2024; 27:109610. [PMID: 38632993 PMCID: PMC11022049 DOI: 10.1016/j.isci.2024.109610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/06/2024] [Accepted: 03/25/2024] [Indexed: 04/19/2024] Open
Abstract
Immune tolerance fails in autoimmune polyendocrine syndrome type 1 (APS-1) because of AIRE mutations. We have used single cell transcriptomics to characterize regulatory T cells (Tregs) sorted directly from blood and from in vitro expanded Tregs in APS-1 patients compared to healthy controls. We revealed only CD52 and LTB (down) and TXNIP (up) as consistently differentially expressed genes in the datasets. There were furthermore no large differences of the TCR-repertoire of expanded Tregs between the cohorts, but unique patients showed a more restricted use of specific clonotypes. We also found that in vitro expanded Tregs from APS-1 patients had similar suppressive capacity as controls in co-culture assays, despite expanding faster and having more exhausted cells. Our results suggest that APS-1 patients do not have intrinsic defects in their Treg functionality, and that their Tregs can be expanded ex vivo for potential therapeutic applications.
Collapse
Affiliation(s)
- Thea Sjøgren
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Shahinul Islam
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Igor Filippov
- QIAGEN Aarhus A/S, Aarhus, Denmark
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | | | - André Sulen
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Lars E. Breivik
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | | | | | - Kari Lima
- Department of Medicine, Akershus University Hospital, Lørenskog, Norway
| | - Liina Tserel
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Kai Kisand
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Pärt Peterson
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Annamari Ranki
- Department of Dermatology, Allergology and Venereology, University of Helsinki and Helsinki University Hospital, Inflammation Centre, Helsinki, Finland
| | - Eystein S. Husebye
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Bergithe E. Oftedal
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Anette S.B. Wolff
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
3
|
Ruz-Maldonado I, Gonzalez JT, Zhang H, Sun J, Bort A, Kabir I, Kibbey RG, Suárez Y, Greif DM, Fernández-Hernando C. Heterogeneity of hepatocyte dynamics restores liver architecture after chemical, physical or viral damage. Nat Commun 2024; 15:1247. [PMID: 38341404 PMCID: PMC10858916 DOI: 10.1038/s41467-024-45439-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
Midlobular hepatocytes are proposed to be the most plastic hepatic cell, providing a reservoir for hepatocyte proliferation during homeostasis and regeneration. However, other mechanisms beyond hyperplasia have been little explored and the contribution of other hepatocyte subpopulations to regeneration has been controversial. Thus, re-examining hepatocyte dynamics during regeneration is critical for cell therapy and treatment of liver diseases. Using a mouse model of hepatocyte- and non-hepatocyte- multicolor lineage tracing, we demonstrate that midlobular hepatocytes also undergo hypertrophy in response to chemical, physical, and viral insults. Our study shows that this subpopulation also combats liver impairment after infection with coronavirus. Furthermore, we demonstrate that pericentral hepatocytes also expand in number and size during the repair process and Galectin-9-CD44 pathway may be critical for driving these processes. Notably, we also identified that transdifferentiation and cell fusion during regeneration after severe injury contribute to recover hepatic function.
Collapse
Affiliation(s)
- Inmaculada Ruz-Maldonado
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
- Yale Center of Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, CT, 06520, USA
- Departments of Internal Medicine (Endocrinology) and Cellular & Molecular Physiology, Yale University, New Haven, CT, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - John T Gonzalez
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
- Yale Center of Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Hanming Zhang
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
- Yale Center of Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Jonathan Sun
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
- Yale Center of Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Alicia Bort
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
- Yale Center of Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Inamul Kabir
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06511, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Richard G Kibbey
- Yale Center of Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, CT, 06520, USA
- Departments of Internal Medicine (Endocrinology) and Cellular & Molecular Physiology, Yale University, New Haven, CT, USA
| | - Yajaira Suárez
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
- Yale Center of Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Daniel M Greif
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06511, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Carlos Fernández-Hernando
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, 06520, USA.
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA.
- Yale Center of Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, CT, 06520, USA.
- Department of Pathology, Yale University School of Medicine, New Haven, CT, 06520, USA.
| |
Collapse
|
4
|
Azim S, Zubair H, Rousselle T, McDaniels JM, Shetty AC, Kuscu C, Kuscu C, Talwar M, Eason JD, Maluf DG, Mas VR. Single-cell RNA sequencing reveals peripheral blood mononuclear immune cell landscape associated with operational tolerance in a kidney transplant recipient. Am J Transplant 2023; 23:1434-1445. [PMID: 37201755 PMCID: PMC10527369 DOI: 10.1016/j.ajt.2023.04.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/29/2023] [Accepted: 04/15/2023] [Indexed: 05/20/2023]
Abstract
Operational tolerance (OT) after kidney transplantation is defined as stable graft acceptance without the need for immunosuppression therapy. However, it is not clear which cellular and molecular pathways are driving tolerance in these patients. In this first-of-its-kind pilot study, we assessed the immune landscape associated with OT using single-cell analyses. Peripheral mononuclear cells from a kidney transplant recipient with OT (Tol), 2 healthy individuals (HC), and a kidney transplant recipient with normal kidney function on standard-of-care immunosuppression (SOC) were evaluated. The immune landscape of the Tol was drastically different from that of SOC and emerged closer to the profile of HC. TCL1A+ naive B cells and LSGAL1+ regulatory T cells (Tregs) were in higher proportions in Tol. We were unable to identify the Treg subcluster in SOC. The ligand-receptor analysis in HC and Tol identified interactions between B cells, and Tregs that enhance the proliferation and suppressive function of Tregs. SOC reported the highest proportion of activated B cells with more cells in the G2M phase. Our single-cell RNA sequencing study identified the mediators of tolerance; however, it emphasizes the requirement of similar investigations on a larger cohort to reaffirm the role of immune cells in tolerance.
Collapse
Affiliation(s)
- Shafquat Azim
- Surgical Sciences Division, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Haseeb Zubair
- Surgical Sciences Division, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Thomas Rousselle
- Surgical Sciences Division, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jennifer M McDaniels
- Surgical Sciences Division, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Amol C Shetty
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Cem Kuscu
- Department of Surgery, Transplant Research Institute, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Canan Kuscu
- Department of Surgery, Transplant Research Institute, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Manish Talwar
- James D. Eason Transplant Institute, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - James D Eason
- James D. Eason Transplant Institute, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Daniel G Maluf
- Program in Transplantation, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Valeria R Mas
- Surgical Sciences Division, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
5
|
Mayer-Blackwell K, Ryu H, Codd AS, Parks KR, MacMillan HR, Cohen KW, Stewart TL, Seese A, Lemos MP, De Rosa SC, Czartoski JL, Moodie Z, Nguyen LT, McGuire DJ, Ahmed R, Fiore-Gartland A, McElrath MJ, Newell EW. mRNA vaccination boosts S-specific T cell memory and promotes expansion of CD45RA int T EMRA-like CD8 + T cells in COVID-19 recovered individuals. Cell Rep Med 2023; 4:101149. [PMID: 37552991 PMCID: PMC10439252 DOI: 10.1016/j.xcrm.2023.101149] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/01/2023] [Accepted: 07/17/2023] [Indexed: 08/10/2023]
Abstract
SARS-CoV-2 infection and mRNA vaccination both elicit spike (S)-specific T cell responses. To analyze how T cell memory from prior infection influences T cell responses to vaccination, we evaluated functional T cell responses in naive and previously infected vaccine recipients. Pre-vaccine S-specific responses are predictive of subsequent CD8+ T cell vaccine-response magnitudes. Comparing baseline with post-vaccination TCRβ repertoires, we observed large clonotypic expansions correlated with the frequency of spike-specific T cells. Epitope mapping the largest CD8+ T cell responses confirms that an HLA-A∗03:01 epitope was highly immunodominant. Peptide-MHC tetramer staining together with mass cytometry and single-cell sequencing permit detailed phenotyping and clonotypic tracking of these S-specific CD8+ T cells. Our results demonstrate that infection-induced S-specific CD8+ T cell memory plays a significant role in shaping the magnitude and clonal composition of the circulating T cell repertoire after vaccination, with mRNA vaccination promoting CD8+ memory T cells to a TEMRA-like phenotype.
Collapse
Affiliation(s)
- Koshlan Mayer-Blackwell
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Heeju Ryu
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Amy S Codd
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - K Rachael Parks
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Hugh R MacMillan
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Kristen W Cohen
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Terri L Stewart
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Aaron Seese
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Maria P Lemos
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Stephen C De Rosa
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Julie L Czartoski
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Zoe Moodie
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Long T Nguyen
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Donald J McGuire
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30329, USA; Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Rafi Ahmed
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30329, USA; Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Andrew Fiore-Gartland
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - M Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA.
| | - Evan W Newell
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA.
| |
Collapse
|
6
|
Parthasarathy U, Martinelli R, Vollmann EH, Best K, Therien AG. The impact of DAMP-mediated inflammation in severe COVID-19 and related disorders. Biochem Pharmacol 2022; 195:114847. [PMID: 34801526 PMCID: PMC8600760 DOI: 10.1016/j.bcp.2021.114847] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 01/08/2023]
Abstract
The host response to SARS-CoV-2, the virus that causes COVID-19, is highly heterogeneous, ranging from mild/asymptomatic to severe. The moderate to severe forms of COVID-19 often require hospitalization, are associated with a high rate of mortality, and appear to be caused by an inappropriately exaggerated inflammatory response to the virus. Emerging data confirm the involvement of both innate and adaptive immune pathways both in protection from SARS-CoV-2, and in driving the pathology of severe COVID-19. In particular, innate immune cells including neutrophils appear to be key players in the inflammation that causes the vicious cycle of damage and inflammation that underlies the symptomatology of severe COVID-19. Several recent studies support a link between damage and inflammation, with damage-associated molecular patterns (DAMPs) playing a key role in the pathology of severe COVID-19. In this review, we put into perspective the role of DAMPs and of components of the DAMP-signaling cascade, including Siglecs and their cognate ligands CD24 and CD52, in COVID-19. Further, we review clinical data on proposed therapeutics targeting DAMP pathways to treat SARS-CoV-2 infection and the regulation of these signaling cascades in COVID-19. We also discuss the potential impact of DAMP-mediated inflammation in other indications related to COVID-19, such as ARDS, endothelial dysfunction, hypercoagulation, and sepsis.
Collapse
Affiliation(s)
| | | | | | - Katharine Best
- Exploratory Science Center, MRL, Merck & Co., Inc, Cambridge, MA, USA
| | - Alex G Therien
- Exploratory Science Center, MRL, Merck & Co., Inc, Cambridge, MA, USA.
| |
Collapse
|
7
|
Cho JW, Park S, Kim G, Han H, Shim HS, Shin S, Bae YS, Park SY, Ha SJ, Lee I, Kim HR. Dysregulation of T FH-B-T RM lymphocyte cooperation is associated with unfavorable anti-PD-1 responses in EGFR-mutant lung cancer. Nat Commun 2021; 12:6068. [PMID: 34663810 PMCID: PMC8523541 DOI: 10.1038/s41467-021-26362-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 09/29/2021] [Indexed: 12/26/2022] Open
Abstract
Patients with non-small cell lung cancer (NSCLC) with epidermal growth factor receptor (EGFR) mutations exhibit an unfavorable response to PD-1 inhibitor through unclear mechanisms. Hypothesizing that EGFR mutations alter tumor-immune interactions, we compare tumor-infiltrating lymphocytes between EGFR mutant (EGFR-MT) and wild type (EGFR-WT) tumors through single-cell transcriptomic analysis. We find that B cells, CXCL13-producing follicular helper CD4+ T (TFH)-like cells, and tissue-resident memory CD8+ T (TRM)-like cells decreased in EGFR-MT tumors. The NOTCH-RBPJ regulatory network, which is vital for persistence of TRM state, is perturbed, and the interactions between TFH and B cells through the CXCL13-CXCR5 axis disappear in EGFR-MT tumors. Notably, the proportion of TRM-like cells is predictive for anti-PD-1 response in NSCLC. Our findings suggest that the impairment of TFH-B-TRM cooperation in tertiary lymphoid structure formation, accompanied by the dysregulation of TRM homeostasis and the loss of TFH-B crosstalk, underlies unfavorable anti-PD-1 response in EGFR-MT lung tumors.
Collapse
Affiliation(s)
- Jae-Won Cho
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Seyeon Park
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Gamin Kim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Heonjong Han
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Hyo Sup Shim
- Department of Pathology, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Sunhye Shin
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Yong-Soo Bae
- Department of Biological Sciences, Science Research Center (SRC) for Immune Research on Non-lymphoid Organ (CIRNO), Sungkyunkwan University, Jangan-gu, Suwon, Gyeonggi-do, 16419, Korea
| | - Seong Yong Park
- Department of Thoracic and Cardiovascular Surgery, Yonsei University College of Medicine, Seoul, 03722, Korea.
| | - Sang-Jun Ha
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea.
| | - Insuk Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea.
| | - Hye Ryun Kim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, 03722, Korea.
| |
Collapse
|
8
|
Huang GH, Zhang YH, Chen L, Li Y, Huang T, Cai YD. Identifying Lung Cancer Cell Markers with Machine Learning Methods and Single-Cell RNA-Seq Data. Life (Basel) 2021; 11:life11090940. [PMID: 34575089 PMCID: PMC8467493 DOI: 10.3390/life11090940] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 11/21/2022] Open
Abstract
Non-small cell lung cancer is a major lethal subtype of epithelial lung cancer, with high morbidity and mortality. The single-cell sequencing technique plays a key role in exploring the pathogenesis of non-small cell lung cancer. We proposed a computational method for distinguishing cell subtypes from the different pathological regions of non-small cell lung cancer on the basis of transcriptomic profiles, including a group of qualitative classification criteria (biomarkers) and various rules. The random forest classifier reached a Matthew’s correlation coefficient (MCC) of 0.922 by using 720 features, and the decision tree reached an MCC of 0.786 by using 1880 features. The obtained biomarkers and rules were analyzed in the end of this study.
Collapse
Affiliation(s)
- Guo-Hua Huang
- School of Life Sciences, Shanghai University, Shanghai 200444, China;
- Department of Mechanical and Energy Engineering, Shaoyang University, Shaoyang 422000, China;
| | - Yu-Hang Zhang
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
| | - Lei Chen
- Department of College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China;
| | - You Li
- Department of Mechanical and Energy Engineering, Shaoyang University, Shaoyang 422000, China;
| | - Tao Huang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China
- Correspondence: (T.H.); (Y.-D.C.); Tel.: +86-21-54923269 (T.H.); +86-21-66136132 (Y.-D.C.)
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai 200444, China;
- Correspondence: (T.H.); (Y.-D.C.); Tel.: +86-21-54923269 (T.H.); +86-21-66136132 (Y.-D.C.)
| |
Collapse
|
9
|
Harrop S, Abeyakoon C, Van Der Weyden C, Prince HM. Targeted Approaches to T-Cell Lymphoma. J Pers Med 2021; 11:481. [PMID: 34072040 PMCID: PMC8229513 DOI: 10.3390/jpm11060481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/12/2022] Open
Abstract
The T-cell lymphomas are a rare group of Non-Hodgkin's lymphomas derived from mature T-lymphocytes. They are divided broadly into the Peripheral T-cell lymphomas and the Cutaneous T-cell lymphomas. Clinical outcomes vary widely but are generally unsatisfactory with current treatments. The development of an understanding of the various critical pathways in T-cell lymphogenesis and subsequent identification of therapeutic targets has led to a rapid expansion of the previously underwhelming T-cell lymphoma armament. This review aims to provide an up-to-date overview of the current state of targeted therapies in the T-cell lymphomas, including novel antibody-based treatments, small molecule inhibitors and immune-based therapies.
Collapse
Affiliation(s)
- Sean Harrop
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; (C.V.D.W.); (H.M.P.)
| | | | | | - H. Miles Prince
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; (C.V.D.W.); (H.M.P.)
- Epworth Healthcare, Melbourne, VIC 3002, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC 3000, Australia
| |
Collapse
|
10
|
Mao R, Yang F, Zhang Y, Liu H, Guo P, Liu Y, Zhang T. High expression of CD52 in adipocytes: a potential therapeutic target for obesity with type 2 diabetes. Aging (Albany NY) 2021; 13:11043-11060. [PMID: 33705353 PMCID: PMC8109061 DOI: 10.18632/aging.202714] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/03/2021] [Indexed: 12/12/2022]
Abstract
The aim of the present study was to evaluate the involvement of CD52 in adipocytes as well as to explore its effect on type 2 diabetes mellitus (T2DM), and to improve our understanding of the potential molecular events of obesity with type 2 diabetes. Global changes in the CD52 expression patterns were detected in adipocytes and preadipocytes derived from obese and lean individuals. In particular, CD52 was identified as significantly differentially upregulated and was analyzed, both in vitro and in vivo, using various approaches. In vitro experiments, CD52 was a significantly up-regulated mRNA in mature adipocytes and preadipocytes. In addition, CD52 gradually increased with the differentiation of preadipocytes. In vivo experiments, the expression of CD52 in high-fat diet (HFD) -fed mice tended to be higher than that in regular diet (RD) -fed mice. Further analysis showed that CD52 expression was positively correlated with Smad3 and TGF-β in mice, and the downregulation of CD52 was accompanied by increased glucose tolerance and insulin sensitivity. Moreover, a comparison of CD4+CD52high T cells and CD4+CD52low T cells showed that many T2DM-related genes were aberrantly expressed. Overall, CD52 may functioned as an important potential target for obesity with T2DM via TGF-β/Smad3 axis.
Collapse
Affiliation(s)
- Rui Mao
- The Center of Gastrointestinal and Minimally Invasive Surgery, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu 610031, China
| | - Fan Yang
- Emergency Department, Third Clinical Medical College, Peking University, Beijing 100191, China
| | - Yu Zhang
- The Center of Gastrointestinal and Minimally Invasive Surgery, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu 610031, China
| | - Hongtao Liu
- The Center of Gastrointestinal and Minimally Invasive Surgery, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu 610031, China
| | - Pengsen Guo
- The Center of Gastrointestinal and Minimally Invasive Surgery, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu 610031, China
| | - Yanjun Liu
- The Center of Gastrointestinal and Minimally Invasive Surgery, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu 610031, China
| | - Tongtong Zhang
- The Center of Gastrointestinal and Minimally Invasive Surgery, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu 610031, China.,Medical Research Center, The Third People's Hospital of Chengdu, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu 610031, China
| |
Collapse
|
11
|
Kazer SW, Aicher TP, Muema DM, Carroll SL, Ordovas-Montanes J, Miao VN, Tu AA, Ziegler CGK, Nyquist SK, Wong EB, Ismail N, Dong M, Moodley A, Berger B, Love JC, Dong KL, Leslie A, Ndhlovu ZM, Ndung'u T, Walker BD, Shalek AK. Integrated single-cell analysis of multicellular immune dynamics during hyperacute HIV-1 infection. Nat Med 2020; 26:511-518. [PMID: 32251406 PMCID: PMC7237067 DOI: 10.1038/s41591-020-0799-2] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 02/12/2020] [Indexed: 02/07/2023]
Abstract
Cellular immunity is critical for controlling intracellular pathogens, but individual cellular dynamics and cell-cell cooperativity in evolving human immune responses remain poorly understood. Single-cell RNA-sequencing (scRNA-seq) represents a powerful tool for dissecting complex multicellular behaviors in health and disease1,2 and nominating testable therapeutic targets3. Its application to longitudinal samples could afford an opportunity to uncover cellular factors associated with the evolution of disease progression without potentially confounding inter-individual variability4. Here, we present an experimental and computational methodology that uses scRNA-seq to characterize dynamic cellular programs and their molecular drivers, and apply it to HIV infection. By performing scRNA-seq on peripheral blood mononuclear cells from four untreated individuals before and longitudinally during acute infection5, we were powered within each to discover gene response modules that vary by time and cell subset. Beyond previously unappreciated individual- and cell-type-specific interferon-stimulated gene upregulation, we describe temporally aligned gene expression responses obscured in bulk analyses, including those involved in proinflammatory T cell differentiation, prolonged monocyte major histocompatibility complex II upregulation and persistent natural killer (NK) cell cytolytic killing. We further identify response features arising in the first weeks of infection, for example proliferating natural killer cells, which potentially may associate with future viral control. Overall, our approach provides a unified framework for characterizing multiple dynamic cellular responses and their coordination.
Collapse
Affiliation(s)
- Samuel W Kazer
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Institute for Medical Engineering and Science (IMES), Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Toby P Aicher
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Institute for Medical Engineering and Science (IMES), Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Daniel M Muema
- African Health Research Institute, Durban, South Africa
- HIV Pathogenesis Programme, Nelson R. Mandela School of Medicine, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Shaina L Carroll
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Jose Ordovas-Montanes
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Institute for Medical Engineering and Science (IMES), Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Gastroenterology, Boston Children's Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Vincent N Miao
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Institute for Medical Engineering and Science (IMES), Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Health Sciences and Technology, Harvard Medical School & Massachusetts Institute of Technology, Boston, MA, USA
| | - Ang A Tu
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Carly G K Ziegler
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Institute for Medical Engineering and Science (IMES), Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Health Sciences and Technology, Harvard Medical School & Massachusetts Institute of Technology, Boston, MA, USA
| | - Sarah K Nyquist
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Institute for Medical Engineering and Science (IMES), Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Computational and Systems Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Emily B Wong
- African Health Research Institute, Durban, South Africa
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
- Division of Infection and Immunity, University College London, London, UK
- Harvard Medical School, Boston, MA, USA
| | - Nasreen Ismail
- HIV Pathogenesis Programme, Nelson R. Mandela School of Medicine, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Mary Dong
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Amber Moodley
- HIV Pathogenesis Programme, Nelson R. Mandela School of Medicine, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Bonnie Berger
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - J Christopher Love
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Krista L Dong
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Alasdair Leslie
- African Health Research Institute, Durban, South Africa
- Division of Infection and Immunity, University College London, London, UK
| | - Zaza M Ndhlovu
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- African Health Research Institute, Durban, South Africa
- HIV Pathogenesis Programme, Nelson R. Mandela School of Medicine, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Thumbi Ndung'u
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- African Health Research Institute, Durban, South Africa
- HIV Pathogenesis Programme, Nelson R. Mandela School of Medicine, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
- Division of Infection and Immunity, University College London, London, UK
- Max Planck Institute for Infection Biology, Berlin, Germany
| | - Bruce D Walker
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA.
- HIV Pathogenesis Programme, Nelson R. Mandela School of Medicine, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| | - Alex K Shalek
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA.
- Institute for Medical Engineering and Science (IMES), Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Program in Health Sciences and Technology, Harvard Medical School & Massachusetts Institute of Technology, Boston, MA, USA.
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Program in Computational and Systems Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
12
|
Umeda M, Koga T, Ichinose K, Igawa T, Sato T, Takatani A, Shimizu T, Fukui S, Nishino A, Horai Y, Hirai Y, Kawashiri SY, Iwamoto N, Aramaki T, Tamai M, Nakamura H, Yamamoto K, Abiru N, Origuchi T, Ueki Y, Kawakami A. CD4 + CD52 lo T-cell expression contributes to the development of systemic lupus erythematosus. Clin Immunol 2017; 187:50-57. [PMID: 29031579 DOI: 10.1016/j.clim.2017.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/11/2017] [Accepted: 10/11/2017] [Indexed: 12/11/2022]
Abstract
The cell-surface glycoprotein CD52 is widely expressed in lymphocytes. CD4+CD52hi T cells are functioning suppressor CD4+T cells. We investigated the role of the immune regulation of CD4+CD52 T cells in systemic lupus erythematosus (SLE). CD4+CD52lo T cells were increased in SLE patients, in positive correlation with SLEDAI, anti-ds-DNA antibody, and IgG concentration. Circulating follicular helper-like T cells (Tfh-like cells) were also increased in SLE, in positive correlation with CD4+CD52lo T cells. Chemokine receptor 8 (CCR8) expression in CD4+CD52lo T cells was increased. In vitro experiments using CD4 T cells of SLE patients showed that thymus and activation-regulated chemokine (TARC), a ligand of CCR8, contributed to the development of CD4+CD52hi T cells into CD4+CD52lo T cells. Our findings suggest that CD4+CD52lo T-cell upregulation is involved in the production of pathogens by autoantibodies, and TARC may contribute to the development of SLE through an aberrant induction of CD4+CD52lo T cells.
Collapse
Affiliation(s)
- Masataka Umeda
- Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Tomohiro Koga
- Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan; Center for Bioinformatics and Molecular Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.
| | - Kunihiro Ichinose
- Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.
| | - Takashi Igawa
- Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Tomohito Sato
- Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Ayuko Takatani
- Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Toshimasa Shimizu
- Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Shoichi Fukui
- Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Ayako Nishino
- Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yoshiro Horai
- Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan; Department of Rheumatology, Clinical Research Center, National Hospital Organization Nagasaki Medical Center
| | - Yasuko Hirai
- Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Shin-Ya Kawashiri
- Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Naoki Iwamoto
- Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | | | - Mami Tamai
- Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hideki Nakamura
- Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kazuo Yamamoto
- Biomedical Research Support Center, Nagasaki University School of Medicine, Nagasaki, Japan
| | - Norio Abiru
- Department of Endocrinology and Metabolism, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Tomoki Origuchi
- Department of Rehabilitation Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yukitaka Ueki
- Department of Rheumatology, Sasebo Chuo Hospital, Nagasaki, Japan
| | - Atsushi Kawakami
- Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
13
|
Global analysis of chromosome 1 genes among patients with lung adenocarcinoma, squamous carcinoma, large-cell carcinoma, small-cell carcinoma, or non-cancer. Cancer Metastasis Rev 2016; 34:249-64. [PMID: 25937073 DOI: 10.1007/s10555-015-9558-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The present study aimed at investigating genetic variations, specific signal pathways, or biological processes of chromosome 1 genes between subtypes and stages of lung cancer and prediction of selected targeting genes for patient survival rate. About 537 patients with lung adenocarcinoma (ADC), 140 with lung squamous carcinoma (SCC), 9 with lung large-cell carcinoma (LCC), 56 with small-cell lung cancer (SCLC), and 590 without caner were integrated from 16 databases and analyzed in the present study. Three (ASPM, CDC20, KIAA1799) or 28 genes significantly up- or down-expressed in four subtypes of lung cancer. The activated cell division and down-regulated immune responses were identified in patients with lung cancer. Keratinocyte development associated genes S100 and SPRR families dominantly up-expressed in SCC and AKT3 and NRAS in SCLC. Subtype-specific genes of ADC, SCC, LCC, or SCLC were also identified. C1orf106, CAPN8, CDC20, COL11A1, CRABP2, and NBPF9 up-expressed at four stages of ADC. Fifty six related with keratinocytes or potassium channels up-expressed in three stages of SCC. CDC20, IL10, ECM1, GABPB2, CRABP2, and COL11A1 significantly predicted the poor overall survival of ADC patients and S100A2 and TIMM17A in SCC patients. Our data indicate that a number of altered chromosome 1 genes have the subtype and stage specificities of lung cancer and can be considered as diagnostic and prognosis biomarkers.
Collapse
|
14
|
Tati K, Yazdanpanah-Samani M, Ramezani A, Mahmoudi Maymand E, Ghaderi A. Establishment a CHO Cell Line Expressing Human CD52 Molecule. Rep Biochem Mol Biol 2016; 5:56-61. [PMID: 28070536 PMCID: PMC5214685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 05/22/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND CD52 is a small glycoprotein with a GPI anchor at its C-terminus. CD52 is expressed by Normal and malignant T and B lymphocytes and monocytes. There are detectable amounts of soluble CD52 in plasma of patients with CLL and could be used as a tumor marker. Although the biological function of CD52 is unknown but it seems that CD52 may be involved in migration and activation of T-cells .The aim of this study was to clone and express human CD52 gene in CHO cell line and studying its function in more details. METHODS Based on GenBank databases two specific primers were designed for amplification of cd52 gene. Total RNA was extracted from Raji cell line and cDNA synthesized. Amplified fragment was cloned in pBudCE4.1 vector. The new construct was transfected to CHO-K1 cell line using electroporation method. Expression of recombinant CD52 protein was evaluated by Real time PCR and flow cytometry methods. RESULTS Amplification of CD52 gene using specific primers on Raji cDNA showed a 209 bp band. New construct was confirmed by PCR and restriction pattern and sequence analysis. The new construct was designated as pBudKT1. RT-PCR analysis detected cd52 mRNAs in transfected cells and Flow cytometry Results showed that 78.4 % of cells represented CD52 in their surfaces. CONCLUSION In conclusion, we established a human CD52 positive cell line, CHO-CD52, and the protein was expressed on the membrane. Cloning of the CD52 gene could be the first step for the production of therapeutic monoclonal antibodies and detection systems for soluble CD52 in biological fluids.
Collapse
Affiliation(s)
- Khadijeh Tati
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical sciences, Shiraz, Iran
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahsa Yazdanpanah-Samani
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical sciences, Shiraz, Iran
| | - Amin Ramezani
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical sciences, Shiraz, Iran
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elham Mahmoudi Maymand
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical sciences, Shiraz, Iran
| | - Abbas Ghaderi
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical sciences, Shiraz, Iran
| |
Collapse
|