1
|
Schlötzer J, Schmalix A, Hügelschäffer S, Rieger D, Sauer F, Tully MD, Rudel T, Wiesner S, Kisker C. Linkage-specific ubiquitin binding interfaces modulate the activity of the chlamydial deubiquitinase Cdu1 towards poly-ubiquitin substrates. PLoS Pathog 2024; 20:e1012630. [PMID: 39432525 DOI: 10.1371/journal.ppat.1012630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 10/01/2024] [Indexed: 10/23/2024] Open
Abstract
The chlamydial deubiquitinase Cdu1 of the obligate intracellular human pathogenic bacterium Chlamydia trachomatis plays important roles in the maintenance of chlamydial infection. Despite the structural similarities shared with its homologue Cdu2, both DUBs display remarkable differences in their enzymatic activity towards poly-UB chain substrates. Whereas Cdu1 is highly active towards K48- and K63- poly-UB chains, Cdu2 activity is restricted mostly to mono-UB substrates. Here, we shed light on the molecular mechanisms of the differential activity and the substrate specificity of Cdu1 to better understand the cellular processes it is involved in, including infection-related events. We found that the strikingly elevated activity of Cdu1 relative to its paralogue Cdu2 can be attributed to an N-terminally extended α-helix, which has not been observed in Cdu2. Moreover, by employing isothermal titration calorimetry and nuclear magnetic resonance spectroscopy, we demonstrate the differential recognition of K48- and K63-linked poly-UB substrates by Cdu1. Whereas K63-linked poly-UB substrates appear to be recognized by Cdu1 with only two independent ubiquitin interaction sites, up to four different binding interfaces are present for K48-linked ubiquitin chains. Combined, our data suggest that Cdu1 possesses a poly-UB chain directed activity that may enable its function as a multipurpose DUB with a broad substrate specificity.
Collapse
Affiliation(s)
- Jan Schlötzer
- Institute for Structural Biology, Rudolf-Virchow-Zentrum-Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Alexander Schmalix
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, Regensburg, Germany
| | - Sophie Hügelschäffer
- Department of Microbiology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Dominic Rieger
- Institute for Structural Biology, Rudolf-Virchow-Zentrum-Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Florian Sauer
- Institute for Structural Biology, Rudolf-Virchow-Zentrum-Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Mark D Tully
- Structural Biology Group, European Synchrotron Radiation Facility, Grenoble, France
| | - Thomas Rudel
- Department of Microbiology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Silke Wiesner
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, Regensburg, Germany
| | - Caroline Kisker
- Institute for Structural Biology, Rudolf-Virchow-Zentrum-Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| |
Collapse
|
2
|
Wei Y, Zheng H, Li Z, Lockyer PP, Darbaniyan F, Kanagal-Shamanna R, Yang H, Hammond D, Garcia-Manero G. Downregulation of UBA1 expression in myelodysplastic neoplasm. Leukemia 2024; 38:2284-2288. [PMID: 39179668 PMCID: PMC11436355 DOI: 10.1038/s41375-024-02364-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 08/26/2024]
Affiliation(s)
- Yue Wei
- Departments of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Hong Zheng
- Departments of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ziyi Li
- Departments of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Faezeh Darbaniyan
- Departments of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rashmi Kanagal-Shamanna
- Departments of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hui Yang
- Departments of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Danielle Hammond
- Departments of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Guillermo Garcia-Manero
- Departments of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
3
|
Marulanda-Gomez AM, Ribes M, Franzenburg S, Hentschel U, Pita L. Transcriptomic responses of Mediterranean sponges upon encounter with symbiont microbial consortia. BMC Genomics 2024; 25:674. [PMID: 38972970 PMCID: PMC11229196 DOI: 10.1186/s12864-024-10548-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/21/2024] [Indexed: 07/09/2024] Open
Abstract
BACKGROUND Sponges (phylum Porifera) constantly interact with microbes. They graze on microbes from the water column by filter-feeding and they harbor symbiotic partners within their bodies. In experimental setups, sponges take up symbionts at lower rates compared with seawater microbes. This suggests that sponges have the capacity to differentiate between microbes and preferentially graze in non-symbiotic microbes, although the underlying mechanisms of discrimination are still poorly understood. Genomic studies showed that, compared to other animal groups, sponges present an extended repertoire of immune receptors, in particular NLRs, SRCRs, and GPCRs, and a handful of experiments showed that sponges regulate the expression of these receptors upon encounter with microbial elicitors. We hypothesize that sponges may rely on differential expression of their diverse repertoire of poriferan immune receptors to sense different microbial consortia while filter-feeding. To test this, we characterized the transcriptomic response of two sponge species, Aplysina aerophoba and Dysidea avara, upon incubation with microbial consortia extracted from A. aerophoba in comparison with incubation with seawater microbes. The sponges were sampled after 1 h, 3 h, and 5 h for RNA-Seq differential gene expression analysis. RESULTS D. avara incubated with A. aerophoba-symbionts regulated the expression of genes related to immunity, ubiquitination, and signaling. Within the set of differentially-expressed immune genes we identified different families of Nucleotide Oligomerization Domain (NOD)-Like Receptors (NLRs). These results represent the first experimental evidence that different types of NLRs are involved in microbial discrimination in a sponge. In contrast, the transcriptomic response of A. aerophoba to its own symbionts involved comparatively fewer genes and lacked genes encoding for immune receptors. CONCLUSION Our work suggests that: (i) the transcriptomic response of sponges upon microbial exposure may imply "fine-tuning" of baseline gene expression as a result of their interaction with microbes, (ii) the differential response of sponges to microbial encounters varied between the species, probably due to species-specific characteristics or related to host's traits, and (iii) immune receptors belonging to different families of NLR-like genes played a role in the differential response to microbes, whether symbionts or food bacteria. The regulation of these receptors in sponges provides further evidence of the potential role of NLRs in invertebrate host-microbe interactions. The study of sponge responses to microbes exemplifies how investigating different animal groups broadens our knowledge of the evolution of immune specificity and symbiosis.
Collapse
Affiliation(s)
| | - Marta Ribes
- Institut de Ciències del Mar, ICM - CSIC, Barcelona, Spain
| | - Sören Franzenburg
- Research Group Genetics and Bioinformatics/Systems Immunology, Institute of Clinical Molecular Biology, Christian-Albrechts-Universität Kiel, Kiel, Germany
| | - Ute Hentschel
- RD3 Marine Ecology, RU Marine Symbioses, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
- Christian-Albrechts-Universität Kiel, Kiel, Germany
| | - Lucia Pita
- Institut de Ciències del Mar, ICM - CSIC, Barcelona, Spain.
| |
Collapse
|
4
|
Hör J, Wolf SG, Sorek R. Bacteria conjugate ubiquitin-like proteins to interfere with phage assembly. Nature 2024; 631:850-856. [PMID: 39020165 DOI: 10.1038/s41586-024-07616-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 05/28/2024] [Indexed: 07/19/2024]
Abstract
Several immune pathways in humans conjugate ubiquitin-like proteins to virus and host molecules as a means of antiviral defence1-5. Here we studied an antiphage defence system in bacteria, comprising a ubiquitin-like protein, ubiquitin-conjugating enzymes E1 and E2, and a deubiquitinase. We show that during phage infection, this system specifically conjugates the ubiquitin-like protein to the phage central tail fibre, a protein at the tip of the tail that is essential for tail assembly as well as for recognition of the target host receptor. Following infection, cells encoding this defence system release a mixture of partially assembled, tailless phage particles and fully assembled phages in which the central tail fibre is obstructed by the covalently attached ubiquitin-like protein. These phages show severely impaired infectivity, explaining how the defence system protects the bacterial population from the spread of phage infection. Our findings demonstrate that conjugation of ubiquitin-like proteins is an antiviral strategy conserved across the tree of life.
Collapse
Affiliation(s)
- Jens Hör
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
| | - Sharon G Wolf
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Rotem Sorek
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
5
|
Yu SH, Chen SC, Wu PS, Kuo PI, Chen TA, Lee HY, Lin MH. Quantification Quality Control Emerges as a Crucial Factor to Enhance Single-Cell Proteomics Data Analysis. Mol Cell Proteomics 2024; 23:100768. [PMID: 38621647 PMCID: PMC11103571 DOI: 10.1016/j.mcpro.2024.100768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/12/2024] [Accepted: 04/11/2024] [Indexed: 04/17/2024] Open
Abstract
Mass spectrometry (MS)-based single-cell proteomics (SCP) provides us the opportunity to unbiasedly explore biological variability within cells without the limitation of antibody availability. This field is rapidly developed with the main focuses on instrument advancement, sample preparation refinement, and signal boosting methods; however, the optimal data processing and analysis are rarely investigated which holds an arduous challenge because of the high proportion of missing values and batch effect. Here, we introduced a quantification quality control to intensify the identification of differentially expressed proteins (DEPs) by considering both within and across SCP data. Combining quantification quality control with isobaric matching between runs (IMBR) and PSM-level normalization, an additional 12% and 19% of proteins and peptides, with more than 90% of proteins/peptides containing valid values, were quantified. Clearly, quantification quality control was able to reduce quantification variations and q-values with the more apparent cell type separations. In addition, we found that PSM-level normalization performed similar to other protein-level normalizations but kept the original data profiles without the additional requirement of data manipulation. In proof of concept of our refined pipeline, six uniquely identified DEPs exhibiting varied fold-changes and playing critical roles for melanoma and monocyte functionalities were selected for validation using immunoblotting. Five out of six validated DEPs showed an identical trend with the SCP dataset, emphasizing the feasibility of combining the IMBR, cell quality control, and PSM-level normalization in SCP analysis, which is beneficial for future SCP studies.
Collapse
Affiliation(s)
- Sung-Huan Yu
- Institute of Precision Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung, Taiwan; School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Shiau-Ching Chen
- Institute of Precision Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Pei-Shan Wu
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Pei-I Kuo
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ting-An Chen
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Hsiang-Ying Lee
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Miao-Hsia Lin
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan.
| |
Collapse
|
6
|
Pang JD, Jin XM, Liu Y, Dong ZJ, Ding J, Boireau P, Vallée I, Liu MY, Xu N, Liu XL. Trichinella spiralis inhibits myoblast differentiation by targeting SQSTM1/p62 with a secreted E3 ubiquitin ligase. iScience 2024; 27:109102. [PMID: 38380253 PMCID: PMC10877949 DOI: 10.1016/j.isci.2024.109102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/05/2023] [Accepted: 01/30/2024] [Indexed: 02/22/2024] Open
Abstract
Trichinella spiralis infection is associated with the formation of cysts within host skeletal muscle cells, thereby enabling immune evasion and subsequent growth and development; however, the pathogenic factors involved in this process and their mechanisms remain elusive. Here, we found that Ts-RNF secreted by T. spiralis is required for its growth and development in host cells. Further study revealed that Ts-RNF functions as an E3 ubiquitin ligase that targets the UBA domain of SQSTM1/p62 by forming K63-type ubiquitin chains. This modification interferes with autophagic flux, leading to impaired mitochondrial clearance and abnormal myotube differentiation and fusion. Our results established that T. spiralis increases its escape by interfering with host autophagy via the secretion of an E3 ubiquitin ligase.
Collapse
Affiliation(s)
- Jian da Pang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, China
| | - Xue min Jin
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, China
| | - Yi Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, China
| | - Zi jian Dong
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, China
| | - Jing Ding
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, China
| | - Pascal Boireau
- Ecole Nationale Vétérinaire d’Alfort, Laboratoire de Santé Animale, BIPAR, 94700 Maisons-Alfort, France
| | - Isabelle Vallée
- Ecole Nationale Vétérinaire d’Alfort, Laboratoire de Santé Animale, BIPAR, 94700 Maisons-Alfort, France
| | - Ming yuan Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225000, China
| | - Ning Xu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, China
| | - Xiao lei Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, China
| |
Collapse
|
7
|
Bastidas RJ, Kędzior M, Davidson RK, Walsh SC, Dolat L, Sixt BS, Pruneda JN, Coers J, Valdivia RH. The acetylase activity of Cdu1 regulates bacterial exit from infected cells by protecting Chlamydia effectors from degradation. eLife 2024; 12:RP87386. [PMID: 38358795 PMCID: PMC10942603 DOI: 10.7554/elife.87386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Abstract
Many cellular processes are regulated by ubiquitin-mediated proteasomal degradation. Pathogens can regulate eukaryotic proteolysis through the delivery of proteins with de-ubiquitinating (DUB) activities. The obligate intracellular pathogen Chlamydia trachomatis secretes Cdu1 (ChlaDUB1), a dual deubiquitinase and Lys-acetyltransferase, that promotes Golgi remodeling and survival of infected host cells presumably by regulating the ubiquitination of host and bacterial proteins. Here, we determined that Cdu1's acetylase but not its DUB activity is important to protect Cdu1 from ubiquitin-mediated degradation. We further identified three C. trachomatis proteins on the pathogen-containing vacuole (InaC, IpaM, and CTL0480) that required Cdu1's acetylase activity for protection from degradation and determined that Cdu1 and these Cdu1-protected proteins are required for optimal egress of Chlamydia from host cells. These findings highlight a non-canonical mechanism of pathogen-mediated protection of virulence factors from degradation after their delivery into host cells and the coordinated regulation of secreted effector proteins.
Collapse
Affiliation(s)
- Robert J Bastidas
- Department of Integrative Immunobiology, Duke UniversityDurhamUnited States
| | - Mateusz Kędzior
- Department of Integrative Immunobiology, Duke UniversityDurhamUnited States
| | - Robert K Davidson
- Department of Molecular Genetics and Microbiology, Duke UniversityDukeUnited States
| | - Stephen C Walsh
- Department of Molecular Genetics and Microbiology, Duke UniversityDukeUnited States
| | - Lee Dolat
- Department of Integrative Immunobiology, Duke UniversityDurhamUnited States
| | - Barbara S Sixt
- Deparment of Molecular Biology, Umeå UniversityUmeåSweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå UniversityUmeåSweden
- Umeå Centre for Microbial Research (UCMR), Umeå UniversityUmeåSweden
| | - Jonathan N Pruneda
- Department of Molecular Microbiology & Immunology, Oregon Health & Science UniversityPortlandUnited States
| | - Jorn Coers
- Department of Integrative Immunobiology, Duke UniversityDurhamUnited States
- Department of Molecular Genetics and Microbiology, Duke UniversityDukeUnited States
| | - Raphael H Valdivia
- Department of Integrative Immunobiology, Duke UniversityDurhamUnited States
- Department of Molecular Genetics and Microbiology, Duke UniversityDukeUnited States
| |
Collapse
|
8
|
Thai SF, Jones CP, Robinette BL, Nelson GB, Tennant A, Ren H, Vallanat B, Fisher A, Ross JA, Kitchin KT. Effects of multi-walled carbon nanotubes on message and Micro-RNA in human lung BEAS-2B cells. MATERIALS EXPRESS : AN INTERNATIONAL JOURNAL ON MULTIDISCIPLINARY MATERIALS RESEARCH 2024; 14:249-263. [PMID: 39026927 PMCID: PMC467528 DOI: 10.1166/mex.2024.2620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Multi-walled Carbon nanotubes (MWCNTs) lack sufficient quality cytotoxicity, toxicity, genotoxicity and genomic data on which to make environmental and regulatory decisions. Therefore, we did a multidisciplinary in vitro study of 3 MWCNTs in human lung cells (BEAS-2B) with the following endpoints: cytotoxicity, DNA damage, reactive oxygen and nitrogen species, lipid peroxidation and mRNA and microRNA expression analyses. The MWCNTs were either unfunctionalized or functionalized with either -OH or -COOH. Doses studied ranged from 0.3 to 100 ug/ml and were exposed to a human lung cell line in vitro for 72 h., with genomic studies being done from 30 ug/ml downward. Some of the genomic pathways that were altered by MWCNT exposure were NRF2 mediated oxidative stress response, DNA damage repair, nuclear excision repair, base excision repair, mitochondrial dysfunction, oxidative phosphorylation, HIF1α signaling, unfolded protein response, protein ubiquitination, ferroptosis and sirtuin signaling pathways. The data suggested that OH functionalized MWCNT caused more and larger gene/microRNA changes, followed by COOH functionalized MWCNT and unfunctionalized MWCNT being the least biologically active. From microRNA target filter analysis, there were altered signaling hubs. MYC is the only hub that altered by all 3 MWCNTs. Signaling hubs that are common to OH and COOH functionalized MWCNTs are GRB2, AR, TP63 and AGO2. The signaling hubs that were only present in OH functionalized MWCNTs are TP53, STAT3 and BRCA1. These signaling pathways and hubs we found in vitro correlated well with the published in vivo pathological effects like oxidative stress DNA damage, inflammation and cancer in MWCNTs treated mice.
Collapse
Affiliation(s)
- Sheau-Fung Thai
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, 109 TW Alexander Dr., Durham NC 27709, USA
| | - Carlton P Jones
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, 109 TW Alexander Dr., Durham NC 27709, USA
| | - Brian L Robinette
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, 109 TW Alexander Dr., Durham NC 27709, USA
| | - Garret B Nelson
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, 109 TW Alexander Dr., Durham NC 27709, USA
| | - Alan Tennant
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, 109 TW Alexander Dr., Durham NC 27709, USA
| | | | - Beena Vallanat
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, 109 TW Alexander Dr., Durham NC 27709, USA
| | | | | | | |
Collapse
|
9
|
Bhat S, Ansari MI, Kattoor JJ, Sircar S, Dar PS, Deol P, Vinodh Kumar OR, Thomas P, Ghosh S, El Zowalaty ME, Malik YS. Emerging porcine Enterovirus G infections, epidemiological, complete genome sequencing, evolutionary and risk factor analysis in India. Virology 2024; 590:109906. [PMID: 38096748 DOI: 10.1016/j.virol.2023.109906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/28/2023] [Accepted: 10/09/2023] [Indexed: 01/03/2024]
Abstract
The current study reports the in-depth analysis of the epidemiology, risk factors, and molecular characterization of a complete genome of Enterovirus G (EV-G) isolated from Indian pigs. We analysed several genes of EV-G isolates collected from various provinces in India, using phylogenetic analysis, recombination detection, SimPlot, and selection pressure analyses. Our analysis of 534 porcine faecal samples revealed that 11.61% (62/534) of the samples were positive for EV-G. While the G6 genotype was the most predominant, our findings showed that Indian EV-G strains also clustered with EV-G types G1, G6, G8, and G9. Furthermore, Indian EV-G strains exhibited the highest nucleotide similarity with Vietnamese (81.3%) and Chinese EV-G isolates (80.3%). Moreover, we identified a recombinant Indian EV-G strain with a putative origin from a Japanese isolate and South Korean EV-G isolate. In summary, our findings provide significant insights into the epidemiology, genetic diversity, and evolution of EV-G in India.
Collapse
Affiliation(s)
- Sudipta Bhat
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Bareilly 243122, India
| | - Mohd Ikram Ansari
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Bareilly 243122, India; Department of Biosciences, Integral University Lucknow, India
| | - Jobin Jose Kattoor
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Bareilly 243122, India; Department of Comparative Pathobiology, Animal Disease Diagnostic Laboratory, Purdue University, West Lafayette, IN 47907, USA
| | - Shubhankar Sircar
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Bareilly 243122, India; Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA
| | - Parvaiz Sikander Dar
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Bareilly 243122, India
| | - Pallavi Deol
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Bareilly 243122, India; Institute for Modeling Collaboration and Innovation and Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA
| | - O R Vinodh Kumar
- Division of Epidemiology, ICAR-Indian Veterinary Research Institute, Bareilly 243122, India
| | - Prasad Thomas
- Division of Bacteriology and Mycology, ICAR-Indian Veterinary Research Institute, Bareilly 243122, India
| | - Souvik Ghosh
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine,Basseterre P.O. 334, Saint Kitts and Nevis, West Indies
| | - Mohamed E El Zowalaty
- Veterinary Medicine and Food Security Research Group, Medical Laboratory Sciences Program, Faculty of Health Sciences, Abu Dhabi Women Campus, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates.
| | - Yashpal Singh Malik
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Bareilly 243122, India; College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana 141001, India.
| |
Collapse
|
10
|
Spanos M, Gokulnath P, Chatterjee E, Li G, Varrias D, Das S. Expanding the horizon of EV-RNAs: LncRNAs in EVs as biomarkers for disease pathways. EXTRACELLULAR VESICLE 2023; 2:100025. [PMID: 38188000 PMCID: PMC10768935 DOI: 10.1016/j.vesic.2023.100025] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Extracellular vesicles (EVs) are membrane-bound nanoparticles with different types of cargo released by cells and postulated to mediate functions such as intercellular communications. Recent studies have shown that long non-coding RNAs (lncRNAs) or their fragments are present as cargo within EVs. LncRNAs are a heterogeneous group of RNA species with a length exceeding 200 nucleotides with diverse functions in cells based on their localization. While lncRNAs are known for their important functions in cellular regulation, their presence and role in EVs have only recently been explored. While certain studies have observed EV-lncRNAs to be tissue-and disease-specific, it remains to be determined whether or not this is a global observation. Nonetheless, these molecules have demonstrated promising potential to serve as new diagnostic and prognostic biomarkers. In this review, we critically evaluate the role of EV-derived lncRNAs in several prevalent diseases, including cancer, cardiovascular diseases, and neurodegenerative diseases, with a specific focus on their role as biomarkers.
Collapse
Affiliation(s)
- Michail Spanos
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Priyanka Gokulnath
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Emeli Chatterjee
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Guoping Li
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Dimitrios Varrias
- Albert Einstein College of Medicine/Jacobi Medical Center, The Bronx, NY, USA
| | - Saumya Das
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
11
|
Gong Y, Kong B, Shuai W, Chen T, Zhang JJ, Huang H. USP38 regulates inflammatory cardiac remodeling after myocardial infarction. Clin Sci (Lond) 2023; 137:1665-1681. [PMID: 37903290 DOI: 10.1042/cs20230728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/01/2023]
Abstract
BACKGROUND The inflammatory response and subsequent ventricular remodeling are key factors contributing to ventricular arrhythmias (VAs) after myocardial infarction (MI). Ubiquitin-specific protease 38 (USP38) is a member of the USP family, but the impact of USP38 in arrhythmia substrate generation after MI remains unclear. This study aimed to determine the role of USP38 in post-MI VAs and its underlying mechanisms. METHODS AND RESULTS Surgical left descending coronary artery ligation was used to construct MI models. Morphological, biochemical, histological, and electrophysiological studies and molecular analyses were performed after MI on days 3 and 28. We found that the USP38 expression was remarkably increased after MI. Cardiac-conditional USP38 knockout (USP38-CKO) reduces the expression of the inflammatory marker CD68 as well as the inflammatory factors TNF-α and IL-1β after MI, thereby alleviating advanced cardiac fibrosis, electrical remodeling, ion channel remodeling, and susceptibility to VAs. In contrast, cardiac-specific USP38 overexpression (USP38-TG) showed a significant opposite effect, exacerbating the early inflammatory response and cardiac remodeling after MI. Mechanistically, USP38 knockout inhibited activation of the TAK1/NF-κB signaling pathway after MI, whereas USP38 overexpression enhanced activation of the TAK1/NF-κB signaling pathway after MI. CONCLUSIONS Our study confirms that USP38-CKO attenuates the inflammatory response, improves ventricular remodeling after myocardial infarction, and reduces susceptibility to malignant VA by inhibiting the activation of the TAK1/NF-κB pathway, with USP38-TG playing an opposing role. These results suggest that USP38 may be an important target for the treatment of cardiac remodeling and arrhythmias after MI.
Collapse
Affiliation(s)
- Yang Gong
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, Hubei 430060, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Bin Kong
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, Hubei 430060, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Wei Shuai
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, Hubei 430060, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Tao Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, Hubei 430060, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jing Jing Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, Hubei 430060, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - He Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, Hubei 430060, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| |
Collapse
|
12
|
Bastidas RJ, Kędzior M, Davidson RK, Walsh SC, Dolat L, Sixt BS, Pruneda JN, Coers J, Valdivia RH. The acetylase activity of Cdu1 regulates bacterial exit from infected cells by protecting Chlamydia effectors from degradation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.28.530337. [PMID: 36909574 PMCID: PMC10002621 DOI: 10.1101/2023.02.28.530337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Many cellular processes are regulated by ubiquitin-mediated proteasomal degradation. Pathogens can regulate eukaryotic proteolysis through the delivery of proteins with de-ubiquitinating (DUB) activities. The obligate intracellular pathogen Chlamydia trachomatis secretes Cdu1 (ChlaDUB1), a dual deubiquitinase and Lys-acetyltransferase, that promotes Golgi remodeling and survival of infected host cells presumably by regulating the ubiquitination of host and bacterial proteins. Here we determined that Cdu1's acetylase but not its DUB activity is important to protect Cdu1 from ubiquitin-mediated degradation. We further identified three C. trachomatis proteins on the pathogen-containing vacuole (InaC, IpaM, and CTL0480) that required Cdu1's acetylase activity for protection from degradation and determined that Cdu1 and these Cdu1-protected proteins are required for optimal egress of Chlamydia from host cells. These findings highlight a non-canonical mechanism of pathogen-mediated protection of virulence factors from degradation after their delivery into host cells and the coordinated regulation of secreted effector proteins.
Collapse
Affiliation(s)
- Robert J. Bastidas
- Department of Integrative Immunobiology, Duke University, Durham, N.C 27708, USA
| | - Mateusz Kędzior
- Department of Integrative Immunobiology, Duke University, Durham, N.C 27708, USA
| | - Robert K. Davidson
- Department of Molecular Genetics and Microbiology, Duke University, Durham, N.C 27708, USA
| | - Stephen C. Walsh
- Department of Molecular Genetics and Microbiology, Duke University, Durham, N.C 27708, USA
| | - Lee Dolat
- Department of Integrative Immunobiology, Duke University, Durham, N.C 27708, USA
| | - Barbara S. Sixt
- Deparment of Molecular Biology, Umeå University, Umeå, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Jonathan N. Pruneda
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Jörn Coers
- Department of Integrative Immunobiology, Duke University, Durham, N.C 27708, USA
- Department of Molecular Genetics and Microbiology, Duke University, Durham, N.C 27708, USA
| | - Raphael H. Valdivia
- Department of Integrative Immunobiology, Duke University, Durham, N.C 27708, USA
- Department of Molecular Genetics and Microbiology, Duke University, Durham, N.C 27708, USA
| |
Collapse
|
13
|
Scalavino V, Piccinno E, Valentini AM, Schena N, Armentano R, Giannelli G, Serino G. miR-369-3p Modulates Intestinal Inflammatory Response via BRCC3/NLRP3 Inflammasome Axis. Cells 2023; 12:2184. [PMID: 37681916 PMCID: PMC10486421 DOI: 10.3390/cells12172184] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/19/2023] [Accepted: 08/28/2023] [Indexed: 09/09/2023] Open
Abstract
Inflammasomes are multiprotein complexes expressed by immune cells in response to distinct stimuli that trigger inflammatory responses and the release of pro-inflammatory cytokines. Evidence suggests a different role of inflammasome NLRP3 in IBD. NLRP3 inflammasome activation can be controlled by post-translational modifications such as ubiquitination through BRCC3. The aim of this study was to investigate the effect of miR-369-3p on the expression and activation of NLRP3 inflammasomes via BRCC3 regulation. After bioinformatics prediction of Brcc3 as a gene target of miR-369-3p, in vitro, we validated its modulation in bone marrow-derived macrophages (BMDM). The increase in miR-369-3p significantly reduced BRCC3 gene and protein expression. This modulation, in turn, reduced the expression of NLRP3 and blocked the recruitment of ASC adaptor protein by NLRP3. As a result, miR-369-3p reduced the activity of Caspase-1 by the inflammasome, decreasing the cleavage of pro-IL-1β and pro-IL-18. These results support a novel mechanism that seems to act on post-translational modification of NLRP3 inflammasome activation by BRCC3. This may be an interesting new target in the personalized treatment of inflammatory disorders, including IBD.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Grazia Serino
- National Institute of Gastroenterology S. De Bellis, IRCCS Research Hospital, Via Turi 27, 70013 Castellana Grotte, BA, Italy; (V.S.); (E.P.); (A.M.V.); (N.S.); (R.A.); (G.G.)
| |
Collapse
|
14
|
Wang J, He Y, Zhou D. The role of ubiquitination in microbial infection induced endothelial dysfunction: potential therapeutic targets for sepsis. Expert Opin Ther Targets 2023; 27:827-839. [PMID: 37688775 DOI: 10.1080/14728222.2023.2257888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/11/2023] [Accepted: 09/07/2023] [Indexed: 09/11/2023]
Abstract
INTRODUCTION The ubiquitin system is an evolutionarily conserved and universal means of protein modification that regulates many essential cellular processes. Endothelial dysfunction plays a critical role in the pathophysiology of sepsis and organ failure. However, the mechanisms underlying the ubiquitination-mediated regulation on endothelial dysfunction are not fully understood. AREAS COVERED Here we review the advances in basic and clinical research for relevant papers in PubMed database. We attempt to provide an updated overview of diverse ubiquitination events in endothelial cells, discussing the fundamental role of ubiquitination mediated regulations involving in endothelial dysfunction to provide potential therapeutic targets for sepsis. EXPERT OPINION The central event underlying sepsis syndrome is the overwhelming host inflammatory response to the pathogen infection, leading to endothelial dysfunction. As the key components of the ubiquitin system, E3 ligases are at the center stage of the battle between host and microbial pathogens. Such a variety of ubiquitination regulates a multitude of cellular regulatory processes, including signal transduction, autophagy, inflammasome activation, redox reaction and immune response and so forth. In this review, we discuss the many mechanisms of ubiquitination-mediated regulation with a focus on those that modulate endothelial function to provide potential therapeutic targets for the management of sepsis.
Collapse
Affiliation(s)
- Junshuai Wang
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Yang He
- Department of Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Daixing Zhou
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| |
Collapse
|
15
|
Zhang JB, Zou XJ, Zhang Q, Wang AY, Amir MB, Du YM, Liu XQ, Chen W, Lu ZJ, Yu HZ. Quantitative ubiquitylome crosstalk with proteome analysis revealed cytoskeleton proteins influence CLas pathogen infection in Diaphorina citri. Int J Biol Macromol 2023; 232:123411. [PMID: 36706880 DOI: 10.1016/j.ijbiomac.2023.123411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023]
Abstract
Huanglongbing (HLB), also known as citrus greening disease, is caused by Candidatus Liberbacter asiaticus (CLas) and transmitted by Diaphorina citri. Previous studies reported that CLas infection significantly influences the structure of the D. citri cytoskeleton. However, the mechanisms through which CLas manipulates cytoskeleton-related proteins remain unclear. In this study, we performed quantitative ubiquitylome crosstalk with the proteome to reveal the roles of cytoskeleton-related proteins during the infection of D. citri by CLas. Western blotting revealed a significant difference in ubiquitination levels between the CLas-free and CLas-infected groups. According to ubiquitylome and 4D label-free proteome analysis, 343 quantified lysine ubiquitination (Kub) sites and 666 differentially expressed proteins (DEPs) were identified in CLas-infected groups compared with CLas-free groups. A total of 53 sites in 51 DEPs were upregulated, while 290 sites in 192 DEPs were downregulated. Furthermore, functional enrichment analysis indicated that 18 DEPs and 21 lysine ubiquitinated proteins were associated with the cytoskeleton, showing an obvious interaction. Ubiquitination of D. citri tropomyosin was confirmed by immunoprecipitation, Western blotting, and LC-MS/MS. RNAi-mediated knockdown of tropomyosin significantly increased CLas bacterial content in D. citri. In summary, we provided the most comprehensive lysine ubiquitinome analysis of the D. citri response to CLas infection, thus furthering our understanding of the role of the ubiquitination of cytoskeleton proteins in CLas infection.
Collapse
Affiliation(s)
- Jin-Bo Zhang
- College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi 341000, China
| | - Xiao-Jin Zou
- College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi 341000, China
| | - Qin Zhang
- College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi 341000, China
| | - Ai-Yun Wang
- Fruit Bureau of Xinfeng County, Ganzhou, Jiangxi 341000, China
| | - Muhammad Bilal Amir
- College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi 341000, China; South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Yi-Min Du
- College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi 341000, China; National Navel Orange Engineering Research Center, Ganzhou, Jiangxi 341000, China; Ganzhou Key Laboratory of Nanling Insect Biology, Ganzhou, Jiangxi 341000, China
| | - Xiao-Qiang Liu
- College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi 341000, China
| | - Wei Chen
- College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi 341000, China; National Navel Orange Engineering Research Center, Ganzhou, Jiangxi 341000, China; Ganzhou Key Laboratory of Nanling Insect Biology, Ganzhou, Jiangxi 341000, China
| | - Zhan-Jun Lu
- College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi 341000, China; National Navel Orange Engineering Research Center, Ganzhou, Jiangxi 341000, China; Ganzhou Key Laboratory of Nanling Insect Biology, Ganzhou, Jiangxi 341000, China.
| | - Hai-Zhong Yu
- College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi 341000, China; National Navel Orange Engineering Research Center, Ganzhou, Jiangxi 341000, China; Ganzhou Key Laboratory of Nanling Insect Biology, Ganzhou, Jiangxi 341000, China.
| |
Collapse
|
16
|
OTU7B Modulates the Mosquito Immune Response to Beauveria bassiana Infection via Deubiquitination of the Toll Adaptor TRAF4. Microbiol Spectr 2023; 11:e0312322. [PMID: 36537797 PMCID: PMC9927300 DOI: 10.1128/spectrum.03123-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The Aedes aegypti mosquito transmits devastating flaviviruses, such as Zika, dengue, and yellow fever viruses. For more effective control of the vector, the pathogenicity of Beauveria bassiana, a fungus commonly used for biological control of pest insects, may be enhanced based on in-depth knowledge of molecular interactions between the pathogen and its host. Here, we identified a mechanism employed by B. bassiana, which efficiently blocks the Ae. aegypti antifungal immune response by a protease that contains an ovarian tumor (OTU) domain. RNA-sequencing analysis showed that the depletion of OTU7B significantly upregulates the mRNA level of immunity-related genes after a challenge of the fungus. CRISPR-Cas9 knockout of OTU7B conferred a higher resistance of mosquitoes to the fungus B. bassiana. OTU7B suppressed activation of the immune response by preventing nuclear translocation of the NF-κB transcription factor Rel1, a mosquito orthologue of Drosophila Dorsal. Further studies identified tumor necrosis factor receptor-associated factor 4 (TRAF4) as an interacting protein of OTU7B. TRAF4-deficient mosquitoes were more sensitive to fungal infection, indicating TRAF4 to be the adaptor protein that activates the Toll pathway. TRAF4 is K63-link polyubiquitinated at K338 residue upon immune challenge. However, OTU7B inhibited the immune signaling by enzymatically removing the polyubiquitin chains of mosquito TRAF4. Thus, this study has uncovered a novel mechanism of fungal action against the host innate immunity, providing a platform for further improvement of fungal pathogen effectiveness. IMPORTANCE Insects use innate immunity to defend against microbial infection. The Toll pathway is a major immune signaling pathway that is associated with the antifungal immune response in mosquitoes. Our study identified a fungal-induced deubiquitinase, OTU7B, which, when knocked out, promotes the translocation of the NF-κB factor Rel1 into the nucleus and confers enhanced resistance to fungal infection. We further found the counterpart of OTU7B, TRAF4, which is a component of the Toll pathway and acts as an adaptor protein. OTU7B enzymatically removes K63-linked polyubiquitin chains from TRAF4. The immune response is suppressed, and mosquitoes become much more sensitive to the Beauveria bassiana infection. Our findings reveal a novel mechanism of fungal action against the host innate immunity.
Collapse
|
17
|
Shariq M, Quadir N, Alam A, Zarin S, Sheikh JA, Sharma N, Samal J, Ahmad U, Kumari I, Hasnain SE, Ehtesham NZ. The exploitation of host autophagy and ubiquitin machinery by Mycobacterium tuberculosis in shaping immune responses and host defense during infection. Autophagy 2023; 19:3-23. [PMID: 35000542 PMCID: PMC9809970 DOI: 10.1080/15548627.2021.2021495] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Intracellular pathogens have evolved various efficient molecular armaments to subvert innate defenses. Cellular ubiquitination, a normal physiological process to maintain homeostasis, is emerging one such exploited mechanism. Ubiquitin (Ub), a small protein modifier, is conjugated to diverse protein substrates to regulate many functions. Structurally diverse linkages of poly-Ub to target proteins allow enormous functional diversity with specificity being governed by evolutionarily conserved enzymes (E3-Ub ligases). The Ub-binding domain (UBD) and LC3-interacting region (LIR) are critical features of macroautophagy/autophagy receptors that recognize Ub-conjugated on protein substrates. Emerging evidence suggests that E3-Ub ligases unexpectedly protect against intracellular pathogens by tagging poly-Ub on their surfaces and targeting them to phagophores. Two E3-Ub ligases, PRKN and SMURF1, provide immunity against Mycobacterium tuberculosis (M. tb). Both enzymes conjugate K63 and K48-linked poly-Ub to M. tb for successful delivery to phagophores. Intriguingly, M. tb exploits virulence factors to effectively dampen host-directed autophagy utilizing diverse mechanisms. Autophagy receptors contain LIR-motifs that interact with conserved Atg8-family proteins to modulate phagophore biogenesis and fusion to the lysosome. Intracellular pathogens have evolved a vast repertoire of virulence effectors to subdue host-immunity via hijacking the host ubiquitination process. This review highlights the xenophagy-mediated clearance of M. tb involving host E3-Ub ligases and counter-strategy of autophagy inhibition by M. tb using virulence factors. The role of Ub-binding receptors and their mode of autophagy regulation is also explained. We also discuss the co-opting and utilization of the host Ub system by M. tb for its survival and virulence.Abbreviations: APC: anaphase promoting complex/cyclosome; ATG5: autophagy related 5; BCG: bacille Calmette-Guerin; C2: Ca2+-binding motif; CALCOCO2: calcium binding and coiled-coil domain 2; CUE: coupling of ubiquitin conjugation to ER degradation domains; DUB: deubiquitinating enzyme; GABARAP: GABA type A receptor-associated protein; HECT: homologous to the E6-AP carboxyl terminus; IBR: in-between-ring fingers; IFN: interferon; IL1B: interleukin 1 beta; KEAP1: kelch like ECH associated protein 1; LAMP1: lysosomal associated membrane protein 1; LGALS: galectin; LIR: LC3-interacting region; MAPK11/p38: mitogen-activated protein kinase 11; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MAP3K7/TAK1: mitogen-activated protein kinase kinase kinase 7; MAPK8/JNK: mitogen-activated protein kinase 8; MHC-II: major histocompatibility complex-II; MTOR: mechanistic target of rapamycin kinase; NBR1: NBR1 autophagy cargo receptor; NFKB1/p50: nuclear factor kappa B subunit 1; OPTN: optineurin; PB1: phox and bem 1; PE/PPE: proline-glutamic acid/proline-proline-glutamic acid; PknG: serine/threonine-protein kinase PknG; PRKN: parkin RBR E3 ubiquitin protein ligase; RBR: RING-in between RING; RING: really interesting new gene; RNF166: RING finger protein 166; ROS: reactive oxygen species; SMURF1: SMAD specific E3 ubiquitin protein ligase 1; SQSTM1: sequestosome 1; STING1: stimulator of interferon response cGAMP interactor 1; TAX1BP1: Tax1 binding protein 1; TBK1: TANK binding kinase 1; TNF: tumor necrosis factor; TRAF6: TNF receptor associated factor 6; Ub: ubiquitin; UBA: ubiquitin-associated; UBAN: ubiquitin-binding domain in ABIN proteins and NEMO; UBD: ubiquitin-binding domain; UBL: ubiquitin-like; ULK1: unc-51 like autophagy activating kinase 1.
Collapse
Affiliation(s)
- Mohd Shariq
- Inflammation Biology and Cell Signaling Laboratory, National Institute of Pathology-ICMR, Ansari Nagar West, New Delhi, India
| | - Neha Quadir
- Inflammation Biology and Cell Signaling Laboratory, National Institute of Pathology-ICMR, Ansari Nagar West, New Delhi, India,Department of Molecular Medicine, Jamia Hamdard-Institute of Molecular Medicine, Jamia Hamdard, New Delhi, India
| | - Anwar Alam
- Inflammation Biology and Cell Signaling Laboratory, National Institute of Pathology-ICMR, Ansari Nagar West, New Delhi, India
| | - Sheeba Zarin
- Inflammation Biology and Cell Signaling Laboratory, National Institute of Pathology-ICMR, Ansari Nagar West, New Delhi, India,Department of Molecular Medicine, Jamia Hamdard-Institute of Molecular Medicine, Jamia Hamdard, New Delhi, India
| | - Javaid A. Sheikh
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Neha Sharma
- Inflammation Biology and Cell Signaling Laboratory, National Institute of Pathology-ICMR, Ansari Nagar West, New Delhi, India,Department of Molecular Medicine, Jamia Hamdard-Institute of Molecular Medicine, Jamia Hamdard, New Delhi, India
| | - Jasmine Samal
- Inflammation Biology and Cell Signaling Laboratory, National Institute of Pathology-ICMR, Ansari Nagar West, New Delhi, India
| | - Uzair Ahmad
- Inflammation Biology and Cell Signaling Laboratory, National Institute of Pathology-ICMR, Ansari Nagar West, New Delhi, India
| | - Indu Kumari
- Inflammation Biology and Cell Signaling Laboratory, National Institute of Pathology-ICMR, Ansari Nagar West, New Delhi, India
| | - Seyed E. Hasnain
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi (IIT-D), New Delhi, India,Department of Life Science, School of Basic Sciences and Research, Sharda University, Greater Noida, India,Seyed E. Hasnain ; ; Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi (IIT-D), Hauz Khas, New Delhi 110 016, India
| | - Nasreen Z. Ehtesham
- Inflammation Biology and Cell Signaling Laboratory, National Institute of Pathology-ICMR, Ansari Nagar West, New Delhi, India,CONTACT Nasreen Z. Ehtesham ; ICMR-National Institute of Pathology, Ansari Nagar West, New Delhi110029, India
| |
Collapse
|
18
|
Wegner J, Hunkler C, Ciupka K, Hartmann G, Schlee M. Increased IKKϵ protein stability ensures efficient type I interferon responses in conditions of TBK1 deficiency. Front Immunol 2023; 14:1073608. [PMID: 36936901 PMCID: PMC10020501 DOI: 10.3389/fimmu.2023.1073608] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
TBK1 and IKKϵ are related, crucial kinases in antiviral immune signaling pathways downstream of cytosolic nucleic acid receptors such as cGAS and RIG-I-like receptors. Upon activation, they phosphorylate the transcription factors IRF3 and IRF7 and thereby initiate the expression of type I interferons and antiviral effectors. While point mutation-induced loss of TBK1 kinase activity results in clinical hyper-susceptibility to viral infections, a complete lack of TBK1 expression in humans is unexpectedly not associated with diminished antiviral responses. Here, we provide a mechanistic explanation for these so-far unexplained observations by showing that TBK1 controls the protein expression of its related kinase IKKϵ in human myeloid cells. Mechanistically, TBK1 constitutively diminishes the protein stability of IKKϵ independent of TBK1 kinase activity but dependent on its interaction with the scaffold protein TANK. In consequence, depletion of TBK1 protein but not mutation-induced kinase deficiency induces the upregulation of IKKϵ. Due to the functional redundancy of the kinases in cGAS-STING and RIG-I-like receptor signaling in human myeloid cells, enhanced IKKϵ expression can compensate for the loss of TBK1. We show that IKKϵ upregulation is crucial to ensure unmitigated type I interferon production in conditions of TBK1 deficiency: While the type I interferon response to Listeria monocytogenes infection is maintained upon TBK1 loss, it is strongly diminished in cells harboring a kinase-deficient TBK1 variant, in which IKKϵ is not upregulated. Many pathogens induce TBK1 degradation, suggesting that loss of TBK1-mediated destabilization of IKKϵ is a critical backup mechanism to prevent diminished interferon responses upon TBK1 depletion.
Collapse
|
19
|
Huang S, Cheng A, Wang M, Yin Z, Huang J, Jia R. Viruses utilize ubiquitination systems to escape TLR/RLR-mediated innate immunity. Front Immunol 2022; 13:1065211. [PMID: 36505476 PMCID: PMC9732732 DOI: 10.3389/fimmu.2022.1065211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 11/10/2022] [Indexed: 11/26/2022] Open
Abstract
When the viruses invade the body, they will be recognized by the host pattern recognition receptors (PRRs) such as Toll like receptor (TLR) or retinoic acid-induced gene-I like receptor (RLR), thus causing the activation of downstream antiviral signals to resist the virus invasion. The cross action between ubiquitination and proteins in these signal cascades enhances the antiviral signal. On the contrary, more and more viruses have also been found to use the ubiquitination system to inhibit TLR/RLR mediated innate immunity. Therefore, this review summarizes how the ubiquitination system plays a regulatory role in TLR/RLR mediated innate immunity, and how viruses use the ubiquitination system to complete immune escape.
Collapse
Affiliation(s)
- Shanzhi Huang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhongqiong Yin
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Juan Huang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,*Correspondence: Renyong Jia,
| |
Collapse
|
20
|
Zou JP, Zhao QF, Yang T, Shang YF, Ahammed GJ, Zhou J. The E3 ubiquitin ligase RING1 interacts with COP9 Signalosome Subunit 4 to positively regulate resistance to root-knot nematodes in Solanum lycopersicum L. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 322:111344. [PMID: 35659944 DOI: 10.1016/j.plantsci.2022.111344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 05/07/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Globally, root-knot nematodes (RKNs) cause massive production losses in all major crops. E3 ubiquitin ligases are involved in plant growth, development and immune response. But their roles in plant defense against RKNs are largely unclear. Here, we show that tomato E3 ubiquitin ligase RING1 interacts with COP9 Signalosome Subunit 4 (CSN4) which is essential for jasmonic acid (JA)-dependent basal defense against RKNs. Tissue-specific expression analysis showed that RING1 expression was the highest in tomato roots and the expression was significantly increased with RKN (Meloidogyne incognita) infection. Compared with the wild-type plants, the number of egg masses in roots significantly increased in the ring1 mutants, while RING1 overexpression conferred resistance against RKNs. Furthermore, RKN infection increased the accumulation of CSN4 protein in the roots of wild-type plants, which was largely compromised in the ring1 mutants but was enhanced in the RING1 overexpressing plants. The RKN-induced transcripts of JA biosynthetic and signaling genes as well as the accumulation of JA and JA-isoleucine were compromised in ring1 mutants but were increased in RING1 overexpressing plants. These results suggest that RING1 positively regulates JA-dependent basal defense against RKNs by interacting with CSN4 proteins.
Collapse
Affiliation(s)
- Jin-Ping Zou
- Department of Horticulture/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
| | - Qiu-Feng Zhao
- Department of Horticulture/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
| | - Ting Yang
- Department of Horticulture/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
| | - Yi-Fen Shang
- Department of Horticulture/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
| | - Golam Jalal Ahammed
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China
| | - Jie Zhou
- Department of Horticulture/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China; Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Agricultural Ministry of China, Yuhangtang Road 866, Hangzhou 310058, China; Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi 276000, China.
| |
Collapse
|
21
|
Wilke MVMB, Morava-Kozicz E, Koster MJ, Schmitz CT, Foster SK, Patnaik M, Warrington KJ, Klee EW, Pinto E Vairo F. Exome sequencing can misread high variant allele fraction of somatic variants in UBA1 as hemizygous in VEXAS syndrome: a case report. BMC Rheumatol 2022; 6:54. [PMID: 36038944 PMCID: PMC9426024 DOI: 10.1186/s41927-022-00281-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 06/09/2022] [Indexed: 11/11/2022] Open
Abstract
Background VEXAS syndrome (vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic syndrome) is a recently described syndrome caused by a somatic missense variant at the methionine-41 (p.(Met41)) position in the ubiquitin-like modifier activating enzyme 1 (UBA1) in Xp11.3. Germline pathogenic variants in UBA1 are associated with a distinct phenotype: a syndrome with severe neurologic features associated with loss of anterior horn cells and infantile death denominated X-Linked Spinal Muscular Atrophy 2 (SMAX2) (OMIM 301,830).
Case presentation We report a male individual with the phenotype of VEXAS syndrome that was initially identified through exome sequencing (ES) as having a hemizygous germline variant in UBA1 due to high variant allele frequency (VAF). Research Sanger sequencing was able to confirm the absence of the p.(Met41Val) variant in a skin biopsy and in gastric mucosa tissue sample confirming the variant happened as a postzygotic event.
Conclusions The present case exemplifies the diagnostic challenge that was imposed by the high VAF detected by ES that failed to correctly demonstrate that the variant was in a mosaic state. Sequencing of different tissues should be considered when there is conflict between the UBA1 variant status and the clinical findings. Supplementary Information The online version contains supplementary material available at 10.1186/s41927-022-00281-z.
Collapse
Affiliation(s)
| | - Eva Morava-Kozicz
- Department of Clinical Genomics, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA. .,Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA.
| | - Matthew J Koster
- Division of Rheumatology, Department of Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Christopher T Schmitz
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, 55905, USA.,Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Shannon Kaye Foster
- Division of Dermatology, Department of Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Mrinal Patnaik
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Kenneth J Warrington
- Division of Rheumatology, Department of Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Eric W Klee
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, 55905, USA.,Department of Clinical Genomics, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA.,Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, 55905, USA
| | - Filippo Pinto E Vairo
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, 55905, USA.,Department of Clinical Genomics, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA
| |
Collapse
|
22
|
Cheong EZK, Quek JP, Xin L, Li C, Chan JY, Liew CW, Mu Y, Zheng J, Luo D. Crystal structure of the Rubella virus protease reveals a unique papain-like protease fold. J Biol Chem 2022; 298:102250. [PMID: 35835220 PMCID: PMC9271420 DOI: 10.1016/j.jbc.2022.102250] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 11/22/2022] Open
Abstract
Rubella, a viral disease characterized by a red skin rash, is well controlled because of an effective vaccine, but outbreaks are still occurring in the absence of available antiviral treatments. The Rubella virus (RUBV) papain-like protease (RubPro) is crucial for RUBV replication, cleaving the nonstructural polyprotein p200 into two multifunctional proteins, p150 and p90. This protease could represent a potential drug target, but structural and mechanistic details important for the inhibition of this enzyme are unclear. Here, we report a novel crystal structure of RubPro at a resolution of 1.64 Å. The RubPro adopts a unique papain-like protease fold, with a similar catalytic core to that of proteases from Severe acute respiratory syndrome coronavirus 2 and foot-and-mouth disease virus while having a distinctive N-terminal fingers domain. RubPro has well-conserved sequence motifs that are also found in its newly discovered Rubivirus relatives. In addition, we show that the RubPro construct has protease activity in trans against a construct of RUBV protease-helicase and fluorogenic peptides. A protease-helicase construct, exogenously expressed in Escherichia coli, was also cleaved at the p150-p90 cleavage junction, demonstrating protease activity of the protease-helicase protein. We also demonstrate that RubPro possesses deubiquitylation activity, suggesting a potential role of RubPro in modulating the host's innate immune responses. We anticipate that these structural and functional insights of RubPro will advance our current understanding of its function and help facilitate more structure-based research into the RUBV replication machinery, in hopes of developing antiviral therapeutics against RUBV.
Collapse
Affiliation(s)
- Ezekiel Ze Ken Cheong
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore; School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Jun Ping Quek
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore; NTU Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore
| | - Liu Xin
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Chaoqiang Li
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Jing Yi Chan
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - Chong Wai Liew
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore; NTU Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore
| | - Yuguang Mu
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Jie Zheng
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, China
| | - Dahai Luo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore; School of Biological Sciences, Nanyang Technological University, Singapore, Singapore; NTU Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
23
|
Duan X, Shao Y, Che Z, Zhao X, Guo M, Li C, Liang W. Genome-wide identification m 6A modified circRNAs revealed their key roles in skin ulceration syndrome disease development in Apostichopus japonicus. FISH & SHELLFISH IMMUNOLOGY 2022; 127:748-757. [PMID: 35835384 DOI: 10.1016/j.fsi.2022.07.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Circular RNAs (circRNAs) are novel endogenous non-coding RNAs (ncRNAs) and can be acted as competing endogenous RNAs (ceRNAs) to regulate microRNA (miRNA) and downstream gene expression. Recently, m6A modification has been found in circRNA, and m6A circRNAs also play important roles in various biological processes and a variety of diseases. Our previous study had been demonstrated that circRNAs were differentially expressed in skin ulceration syndrome (SUS) diseased sea cucumber Apostichopus japonicus. However, whether the function of circRNAs are dependent on m6A levels are largely unknown. Here, we firstly investigated the genome-wide map of m6A circRNAs in sea cucumbers with different stages of Vibrio splendidus challenge, that's Control group, SUS-diseased group, and SUS-resistant group. MeRIP-seq revealed that m6A abundances were enriched in circRNAs in all three groups, especially for SUS-resistant group. Among them, more than 62% of modified circRNAs harbor only a single m6A peak and about 55% of m6A sites in circRNAs were derived from sense overlapping in each group. After V. splendidus infection, we found that most of m6A peaks in circRNAs were upregulated and less were downregulated in both SUS-diseased and SUS-resistant groups when compared with Control. Furthermore, GO analysis indicated that the host genes of circRNAs with dysregulated m6A peaks in SUS-diseased and SUS-resistant groups were both mainly enriched in the adhesion pathway. More importantly, we discovered that more than 50% m6A circRNAs showed a positive correlation between the circRNAs expression and m6A methylation levels both in SUS-diseased and SUS-resistant groups. Therefore, a core circRNA-miRNA-mRNA (ceRNA) network whether influenced by m6A modification was constructed based on conjoint analysis. Our results indicated that several selected m6A circRNAs bind with miRNAs were mainly targeting to ubiquitylation system and adhesion pathway. What's more, three candidate m6A circRNAs and three target genes were validated by MeRIP-qPCR and qPCR, whose m6A levels in circRNA and mRNA expressions were consistent with disease occurrence or disease resistance. All of our current findings suggested that m6A circRNAs could play important roles during pathogen infection and might be served as a new molecular biomarker in SUS disease diagnose of A. japonicus.
Collapse
Affiliation(s)
- Xuemei Duan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China
| | - Yina Shao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China.
| | - Zhongjie Che
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China
| | - Xuelin Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China
| | - Ming Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China
| | - Chenghua Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, PR China.
| | - Weikang Liang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China.
| |
Collapse
|
24
|
Abstract
The immune repertoires of mollusks beyond commercially important organisms such as the pacific oyster Crassostrea gigas or vectors for human pathogens like the bloodfluke planorb Biomphalaria glabrata are understudied. Despite being an important model for neural aging and the role of inflammation in neuropathic pain, the immune repertoire of Aplysia californica is poorly understood. Recent discovery of a neurotropic nidovirus in Aplysia has highlighted the need for a better understanding of the Aplysia immunome. To address this gap in the literature, the Aplysia reference genome was mined using InterProScan and OrthoFinder for putative immune genes. The Aplysia genome encodes orthologs of all critical components of the classical Toll-like receptor (TLR) signaling pathway. The presence of many more TLRs and TLR associated adapters than known from vertebrates suggest yet uncharacterized, novel TLR associated signaling pathways. Aplysia also retains many nucleotide receptors and antiviral effectors known to play a key role in viral defense in vertebrates. However, the absence of key antiviral signaling adapters MAVS and STING in the Aplysia genome suggests divergence from vertebrates and bivalves in these pathways. The resulting immune gene set of this in silico study provides a basis for interpretation of future immune studies in this important model organism.
Collapse
Affiliation(s)
- Nicholas S Kron
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Cswy, Miami, FL, 33149, USA.
| |
Collapse
|
25
|
Peng J, Li W, Wang B, Zhang S, Xiao Y, Han F, Wang Z. UBE2G1 Is a Critical Component of Immune Response to the Infection of Pseudomonas Plecoglossicida in Large Yellow Croaker (Larimichthys crocea). Int J Mol Sci 2022; 23:ijms23158298. [PMID: 35955424 PMCID: PMC9368838 DOI: 10.3390/ijms23158298] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 12/07/2022] Open
Abstract
The large yellow croaker (Larimichthys crocea) is one of the most economically valuable mariculture fish in China. Infection of Pseudomonas plecoglossicida can cause an outbreak of “internal organ white-spot disease”, which seriously affects the aquaculture of the large yellow croaker. Ubiquitylation is closely related to the post-translation modification of proteins and plays a vital role in many hosts’ immune defense pathways, while the E2-binding enzyme is a key factor in ubiquitination. Our previous genome-wide association study found that the ubiquitin-binding enzyme E2G1 (designed LcUbe2g1) was one of the candidate genes related to disease resistance in large yellow croaker. In this study, we analyzed the molecular characteristics, function, and immune mechanism of the LcUbe2g1. The full-length cDNA is 812 bp, with an open reading frame of 513 bp, encoding 170 amino acid residues. The results of the RT-qPCR and immunohistochemistry analysis revealed that its transcription and translation were significantly activated by the infection of P. plecoglossicida in large yellow croaker. Immunocytochemistry experiments verified the co-localization of LcUBE2G1 and the ubiquitin proteins in the head kidney cells of large yellow croaker. Through GST pull-down, we found that LcUBE2G1 interacted with NEDD8 to co-regulate the ubiquitination process. The above results indicate that LcUBE2G1 is essential in the regulation of ubiquitination against P. plecoglossicida infection in large yellow croaker, which lays a foundation for further study on the resistance mechanism of internal organ white-spot disease.
Collapse
Affiliation(s)
- Jia Peng
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-Environment, Fisheries College, Jimei University, Xiamen 361021, China; (J.P.); (W.L.); (B.W.); (S.Z.); (Y.X.)
| | - Wanbo Li
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-Environment, Fisheries College, Jimei University, Xiamen 361021, China; (J.P.); (W.L.); (B.W.); (S.Z.); (Y.X.)
| | - Bi Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-Environment, Fisheries College, Jimei University, Xiamen 361021, China; (J.P.); (W.L.); (B.W.); (S.Z.); (Y.X.)
| | - Sen Zhang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-Environment, Fisheries College, Jimei University, Xiamen 361021, China; (J.P.); (W.L.); (B.W.); (S.Z.); (Y.X.)
| | - Yao Xiao
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-Environment, Fisheries College, Jimei University, Xiamen 361021, China; (J.P.); (W.L.); (B.W.); (S.Z.); (Y.X.)
| | - Fang Han
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-Environment, Fisheries College, Jimei University, Xiamen 361021, China; (J.P.); (W.L.); (B.W.); (S.Z.); (Y.X.)
- Correspondence: (F.H.); (Z.W.); Tel.: +86-592-618-3816 (F.H.); +86-1-89-5012-4893 (Z.W.)
| | - Zhiyong Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-Environment, Fisheries College, Jimei University, Xiamen 361021, China; (J.P.); (W.L.); (B.W.); (S.Z.); (Y.X.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Correspondence: (F.H.); (Z.W.); Tel.: +86-592-618-3816 (F.H.); +86-1-89-5012-4893 (Z.W.)
| |
Collapse
|
26
|
Stryiński R, Mateos J, Carrera M, Jastrzębski JP, Bogacka I, Łopieńska-Biernat E. Tandem Mass Tagging (TMT) Reveals Tissue-Specific Proteome of L4 Larvae of Anisakis simplex s. s.: Enzymes of Energy and/or Carbohydrate Metabolism as Potential Drug Targets in Anisakiasis. Int J Mol Sci 2022; 23:ijms23084336. [PMID: 35457153 PMCID: PMC9027741 DOI: 10.3390/ijms23084336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 02/04/2023] Open
Abstract
Anisakis simplex s. s. is a parasitic nematode of marine mammals and causative agent of anisakiasis in humans. The cuticle and intestine of the larvae are the tissues most responsible for direct and indirect contact, respectively, of the parasite with the host. At the L4 larval stage, tissues, such as the cuticle and intestine, are fully developed and functional, in contrast to the L3 stage. As such, this work provides for the first time the tissue-specific proteome of A. simplex s. s. larvae in the L4 stage. Statistical analysis (FC ≥ 2; p-value ≤ 0.01) showed that 107 proteins were differentially regulated (DRPs) between the cuticle and the rest of the larval body. In the comparison between the intestine and the rest of the larval body at the L4 stage, 123 proteins were identified as DRPs. Comparison of the individual tissues examined revealed a total of 272 DRPs, with 133 proteins more abundant in the cuticle and 139 proteins more abundant in the intestine. Detailed functional analysis of the identified proteins was performed using bioinformatics tools. Glycolysis and the tricarboxylic acid cycle were the most enriched metabolic pathways by cuticular and intestinal proteins, respectively, in the L4 stage of A. simplex s. s. The presence of two proteins, folliculin (FLCN) and oxoglutarate dehydrogenase (OGDH), was confirmed by Western blot, and their tertiary structure was predicted and compared with other species. In addition, host–pathogen interactions were identified, and potential new allergens were predicted. The result of this manuscript shows the largest number of protein identifications to our knowledge using proteomics tools for different tissues of L4 larvae of A. simplex s. s. The identified tissue-specific proteins could serve as targets for new drugs against anisakiasis.
Collapse
Affiliation(s)
- Robert Stryiński
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
- Correspondence: (R.S.); (M.C.); (E.Ł.-B.)
| | - Jesús Mateos
- Clinical Pharmacology Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, 15-706 A Coruña, Spain;
| | - Mónica Carrera
- Department of Food Technology, Marine Research Institute (IIM), Spanish National Research Council (CSIC), 36-208 Vigo, Spain
- Correspondence: (R.S.); (M.C.); (E.Ł.-B.)
| | - Jan Paweł Jastrzębski
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Iwona Bogacka
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Elżbieta Łopieńska-Biernat
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
- Correspondence: (R.S.); (M.C.); (E.Ł.-B.)
| |
Collapse
|
27
|
Proteomic Profiling and In Silico Characterization of the Secretome of Anisakis simplex Sensu Stricto L3 Larvae. Pathogens 2022; 11:pathogens11020246. [PMID: 35215189 PMCID: PMC8879239 DOI: 10.3390/pathogens11020246] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 02/04/2023] Open
Abstract
Anisakis simplex sensu stricto (s.s.) L3 larvae are one of the major etiological factors of human anisakiasis, which is one of the most important foodborne parasitic diseases. Nevertheless, to date, Anisakis secretome proteins, with important functions in nematode pathogenicity and host-parasite interactions, have not been extensively explored. Therefore, the aim of this study was to identify and characterize the excretory-secretory (ES) proteins of A. simplex L3 larvae. ES proteins of A. simplex were subjected to liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis, and the identified proteins were then analyzed using bioinformatics tools. A total of 158 proteins were detected. Detailed bioinformatic characterization of ES proteins was performed, including Gene Ontology (GO) analysis, identification of enzymes, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analysis, protein family classification, secretory pathway prediction, and detection of essential proteins. Furthermore, of all detected ES proteins, 1 was identified as an allergen, which was Ani s 4, and 18 were potential allergens, most of which were homologs of nematode and arthropod allergens. Nine potential pathogenicity-related proteins were predicted, which were predominantly homologs of chaperones. In addition, predicted host-parasite interactions between the Anisakis ES proteins and both human and fish proteins were identified. In conclusion, this study represents the first global analysis of Anisakis ES proteins. The findings provide a better understanding of survival and invasion strategies of A. simplex L3 larvae.
Collapse
|
28
|
McAlpin BR, Mahalingam R, Singh AK, Dharmaraj S, Chrisikos TT, Boukelmoune N, Kavelaars A, Heijnen CJ. HDAC6 inhibition reverses long-term doxorubicin-induced cognitive dysfunction by restoring microglia homeostasis and synaptic integrity. Theranostics 2022; 12:603-619. [PMID: 34976203 PMCID: PMC8692908 DOI: 10.7150/thno.67410] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/09/2021] [Indexed: 02/07/2023] Open
Abstract
Breast cancer is the most common female malignancy in both the developed and developing world. Doxorubicin is one of the most commonly used chemotherapies for breast cancer. Unfortunately, up to 60% of survivors report long-term chemotherapy-induced cognitive dysfunction (CICD) characterized by deficits in working memory, processing speed and executive function. Currently, no therapeutic standard for treating CICD exists. Here, we hypothesized that treatment with a blood-brain barrier permeable histone deacetylase 6 (HDAC6) inhibitor can successfully reverse long-term doxorubicin-induced cognitive dysfunction. Methods: The puzzle box test and novel object/place recognition test were used to assess cognitive function following a therapeutic doxorubicin dosing schedule in female mice. Mitochondrial function and morphology in neuronal synaptosomes were evaluated using the Seahorse XF24 extracellular flux analyzer and transmission electron microscopy, respectively. Hippocampal postsynaptic integrity was evaluated using immunofluorescence. Hippocampal microglia phenotype was determined using advanced imaging techniques and single-nucleus RNA sequencing. Results: A 14-day treatment with a blood-brain barrier permeable HDAC6 inhibitor successfully reversed long-term CICD in the domains of executive function, working and spatial memory. No significant changes in mitochondrial function or morphology in neuronal synaptosomes were detected. Long-term CICD was associated with a decreased expression of postsynaptic PSD95 in the hippocampus. These changes were associated with decreased microglial ramification and alterations in the microglia transcriptome that suggest a stage 1 disease-associated microglia (DAM) phenotype. HDAC6 inhibition completely reversed these doxorubicin-induced alterations, indicating a restoration of microglial homeostasis. Conclusion: Our results show that decreased postsynaptic integrity and a neurodegenerative microglia phenotype closely resembling stage 1 DAM microglia contribute to long-term CICD. Moreover, HDAC6 inhibition shows promise as an efficacious pharmaceutical intervention to alleviate CICD and improve quality of life of breast cancer survivors.
Collapse
Affiliation(s)
- Blake R McAlpin
- Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Rajasekaran Mahalingam
- Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Anand K Singh
- Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Shruti Dharmaraj
- Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Taylor T Chrisikos
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Nabila Boukelmoune
- Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Annemieke Kavelaars
- Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Cobi J Heijnen
- Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- ✉ Corresponding author: Cobi J. Heijnen, Ph.D., 6565 MD Anderson Blvd., Zayed Building Z8.5034, Houston, Texas 77030, Phone 713-563-0162,
| |
Collapse
|
29
|
Zou M, Zeng QS, Nie J, Yang JH, Luo ZY, Gan HT. The Role of E3 Ubiquitin Ligases and Deubiquitinases in Inflammatory Bowel Disease: Friend or Foe? Front Immunol 2021; 12:769167. [PMID: 34956195 PMCID: PMC8692584 DOI: 10.3389/fimmu.2021.769167] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/17/2021] [Indexed: 02/05/2023] Open
Abstract
Inflammatory bowel disease (IBD), which include Crohn’s disease (CD) and ulcerative colitis (UC), exhibits a complex multifactorial pathogenesis involving genetic susceptibility, imbalance of gut microbiota, mucosal immune disorder and environmental factors. Recent studies reported associations between ubiquitination and deubiquitination and the occurrence and development of inflammatory bowel disease. Ubiquitination modification, one of the most important types of post-translational modifications, is a multi-step enzymatic process involved in the regulation of various physiological processes of cells, including cell cycle progression, cell differentiation, apoptosis, and innate and adaptive immune responses. Alterations in ubiquitination and deubiquitination can lead to various diseases, including IBD. Here, we review the role of E3 ubiquitin ligases and deubiquitinases (DUBs) and their mediated ubiquitination and deubiquitination modifications in the pathogenesis of IBD. We highlight the importance of this type of posttranslational modification in the development of inflammation, and provide guidance for the future development of targeted therapeutics in IBD.
Collapse
Affiliation(s)
- Min Zou
- Department of Gastroenterology and the Center of Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, China.,Lab of Inflammatory Bowel Disease, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Qi-Shan Zeng
- Department of Gastroenterology and the Center of Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, China.,Lab of Inflammatory Bowel Disease, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Jiao Nie
- Lab of Inflammatory Bowel Disease, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.,Department of Geriatrics and National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| | - Jia-Hui Yang
- Lab of Inflammatory Bowel Disease, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.,Department of Geriatrics and National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| | - Zhen-Yi Luo
- Lab of Inflammatory Bowel Disease, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.,Department of Geriatrics and National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| | - Hua-Tian Gan
- Department of Gastroenterology and the Center of Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, China.,Lab of Inflammatory Bowel Disease, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.,Department of Geriatrics and National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
30
|
Gavali S, Liu J, Li X, Paolino M. Ubiquitination in T-Cell Activation and Checkpoint Inhibition: New Avenues for Targeted Cancer Immunotherapy. Int J Mol Sci 2021; 22:10800. [PMID: 34639141 PMCID: PMC8509743 DOI: 10.3390/ijms221910800] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/15/2022] Open
Abstract
The advent of T-cell-based immunotherapy has remarkably transformed cancer patient treatment. Despite their success, the currently approved immunotherapeutic protocols still encounter limitations, cause toxicity, and give disparate patient outcomes. Thus, a deeper understanding of the molecular mechanisms of T-cell activation and inhibition is much needed to rationally expand targets and possibilities to improve immunotherapies. Protein ubiquitination downstream of immune signaling pathways is essential to fine-tune virtually all immune responses, in particular, the positive and negative regulation of T-cell activation. Numerous studies have demonstrated that deregulation of ubiquitin-dependent pathways can significantly alter T-cell activation and enhance antitumor responses. Consequently, researchers in academia and industry are actively developing technologies to selectively exploit ubiquitin-related enzymes for cancer therapeutics. In this review, we discuss the molecular and functional roles of ubiquitination in key T-cell activation and checkpoint inhibitory pathways to highlight the vast possibilities that targeting ubiquitination offers for advancing T-cell-based immunotherapies.
Collapse
Affiliation(s)
| | | | | | - Magdalena Paolino
- Center for Molecular Medicine, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital Solna, 17176 Solna, Sweden; (S.G.); (J.L.); (X.L.)
| |
Collapse
|
31
|
Yang Q, Zhao J, Chen D, Wang Y. E3 ubiquitin ligases: styles, structures and functions. MOLECULAR BIOMEDICINE 2021; 2:23. [PMID: 35006464 PMCID: PMC8607428 DOI: 10.1186/s43556-021-00043-2] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 04/30/2021] [Indexed: 01/10/2023] Open
Abstract
E3 ubiquitin ligases are a large family of enzymes that join in a three-enzyme ubiquitination cascade together with ubiquitin activating enzyme E1 and ubiquitin conjugating enzyme E2. E3 ubiquitin ligases play an essential role in catalyzing the ubiquitination process and transferring ubiquitin protein to attach the lysine site of targeted substrates. Importantly, ubiquitination modification is involved in almost all life activities of eukaryotes. Thus, E3 ligases might be involved in regulating various biological processes and cellular responses to stress signal associated with cancer development. Thanks to their multi-functions, E3 ligases can be a promising target of cancer therapy. A deeper understanding of the regulatory mechanisms of E3 ligases in tumorigenesis will help to find new prognostic markers and accelerate the growth of anticancer therapeutic approaches. In general, we mainly introduce the classifications of E3 ligases and their important roles in cancer progression and therapeutic functions.
Collapse
Affiliation(s)
- Quan Yang
- Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China
| | - Jinyao Zhao
- Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China
| | - Dan Chen
- Department of Pathology, First Affiliated Hospital, Dalian Medical University, Dalian, 116044, China.
| | - Yang Wang
- Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
32
|
Zhou Y, Lei Y, Lu LF, Chen DD, Zhang C, Li ZC, Zhou XY, Li S, Zhang YA. cGAS Is a Negative Regulator of RIG-I-Mediated IFN Response in Cyprinid Fish. THE JOURNAL OF IMMUNOLOGY 2021; 207:784-798. [PMID: 34290106 DOI: 10.4049/jimmunol.2100075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/18/2021] [Indexed: 12/13/2022]
Abstract
In mammals, cyclic GMP-AMP synthase (cGAS) recognizes cytosolic dsDNA to induce the type I IFN response. However, the functional role of cGAS in the IFN response of fish remains unclear or controversial. In this study, we report that cGAS orthologs from crucian carp Carassius auratus (CacGAS) and grass carp Ctenopharyngodon idellus (CicGAS) target the dsRNA sensor retinoic acid-inducible gene I (RIG-I) for negative regulation of the IFN response. First, poly(deoxyadenylic-deoxythymidylic) acid-, polyinosinic-polycytidylic acid-, and spring viremia of carp virus-induced IFN responses were impaired by overexpression of CacGAS and CicGAS. Then, CacGAS and CicGAS interacted with CiRIG-I and CiMAVS and inhibited CiRIG-I- and CiMAVS-mediated IFN induction. Moreover, the K63-linked ubiquitination of CiRIG-I and the interaction between CiRIG-I and CiMAVS were attenuated by CacGAS and CicGAS. Finally, CacGAS and CicGAS decreased CiRIG-I-mediated the cellular antiviral response and facilitated viral replication. Taken together, data in this study identify CacGAS and CicGAS as negative regulators in RIG-I-like receptor signaling, which extends the current knowledge regarding the role of fish cGAS in the innate antiviral response.
Collapse
Affiliation(s)
- Yu Zhou
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, China.,Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Yi Lei
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Long-Feng Lu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Dan-Dan Chen
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Can Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China; and
| | - Zhuo-Cong Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China; and
| | - Xiao-Yu Zhou
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China; and
| | - Shun Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Yong-An Zhang
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, China; .,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
33
|
Zhou Z, Cai X, Zhu J, Li Z, Yu G, Liu X, Ouyang G, Xiao W. Zebrafish otud6b Negatively Regulates Antiviral Responses by Suppressing K63-Linked Ubiquitination of irf3 and irf7. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 207:244-256. [PMID: 34183367 DOI: 10.4049/jimmunol.2000891] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 04/04/2021] [Indexed: 12/15/2022]
Abstract
Ovarian tumor domain-containing 6B (OTUD6B) belongs to the OTU deubiquitylating enzyme family. In this study, we report that zebrafish otud6b is induced upon viral infection, and overexpression of otud6b suppresses cellular antiviral response. Disruption of otud6b in zebrafish increases the survival rate upon spring viremia of carp virus and grass carp reovirus exposure. Further assays indicate that otud6b interacts with irf3 and irf7 and diminishes traf6-mediated K63-linked polyubiquitination of irf3 and irf7. In addition, the OTU domain is required for otud6b to repress IFN-1 activation and K63-linked polyubiquitination of irf3 and irf7. Moreover, otud6b also attenuates tbk1 to bind to irf3 and irf7, resulting in the impairment of irf3 and irf7 phosphorylation. This study provides, to our knowledge, novel insights into otud6b function and sheds new lights on the regulation of irf3 and irf7 by deubiquitination in IFN-1 signaling.
Collapse
Affiliation(s)
- Ziwen Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People's Republic of China.,The Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Chinese Academy of Sciences, Wuhan, People's Republic of China.,The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People's Republic of China.,The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, People's Republic of China; and.,University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xiaolian Cai
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People's Republic of China.,The Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Chinese Academy of Sciences, Wuhan, People's Republic of China.,The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People's Republic of China.,The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, People's Republic of China; and.,University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Junji Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People's Republic of China.,The Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Chinese Academy of Sciences, Wuhan, People's Republic of China.,The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People's Republic of China.,The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, People's Republic of China; and.,University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Zhi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People's Republic of China.,The Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Chinese Academy of Sciences, Wuhan, People's Republic of China.,The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People's Republic of China.,The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, People's Republic of China; and.,University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Guangqing Yu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People's Republic of China.,The Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Chinese Academy of Sciences, Wuhan, People's Republic of China.,The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People's Republic of China.,The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, People's Republic of China; and.,University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xing Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People's Republic of China.,The Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Chinese Academy of Sciences, Wuhan, People's Republic of China.,The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People's Republic of China.,The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, People's Republic of China; and
| | - Gang Ouyang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People's Republic of China.,The Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Chinese Academy of Sciences, Wuhan, People's Republic of China.,The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People's Republic of China.,The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, People's Republic of China; and
| | - Wuhan Xiao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People's Republic of China; .,The Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Chinese Academy of Sciences, Wuhan, People's Republic of China.,The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People's Republic of China.,The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, People's Republic of China; and.,University of Chinese Academy of Sciences, Beijing, People's Republic of China
| |
Collapse
|
34
|
Lei Z, Wang J, Zhang L, Liu CH. Ubiquitination-Dependent Regulation of Small GTPases in Membrane Trafficking: From Cell Biology to Human Diseases. Front Cell Dev Biol 2021; 9:688352. [PMID: 34277632 PMCID: PMC8281112 DOI: 10.3389/fcell.2021.688352] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/09/2021] [Indexed: 01/04/2023] Open
Abstract
Membrane trafficking is critical for cellular homeostasis, which is mainly carried out by small GTPases, a class of proteins functioning in vesicle budding, transport, tethering and fusion processes. The accurate and organized membrane trafficking relies on the proper regulation of small GTPases, which involves the conversion between GTP- and GDP-bound small GTPases mediated by guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). Emerging evidence indicates that post-translational modifications (PTMs) of small GTPases, especially ubiquitination, play an important role in the spatio-temporal regulation of small GTPases, and the dysregulation of small GTPase ubiquitination can result in multiple human diseases. In this review, we introduce small GTPases-mediated membrane trafficking pathways and the biological processes of ubiquitination-dependent regulation of small GTPases, including the regulation of small GTPase stability, activity and localization. We then discuss the dysregulation of small GTPase ubiquitination and the associated human membrane trafficking-related diseases, focusing on the neurological diseases and infections. An in-depth understanding of the molecular mechanisms by which ubiquitination regulates small GTPases can provide novel insights into the membrane trafficking process, which knowledge is valuable for the development of more effective and specific therapeutics for membrane trafficking-related human diseases.
Collapse
Affiliation(s)
- Zehui Lei
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Jing Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Beijing, China
| | - Lingqiang Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Cui Hua Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
35
|
Wang J, Ge P, Lei Z, Lu Z, Qiang L, Chai Q, Zhang Y, Zhao D, Li B, Su J, Peng R, Pang Y, Shi Y, Zhang Y, Gao GF, Qiu XB, Liu CH. Mycobacterium tuberculosis protein kinase G acts as an unusual ubiquitinating enzyme to impair host immunity. EMBO Rep 2021; 22:e52175. [PMID: 33938130 DOI: 10.15252/embr.202052175] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/23/2021] [Accepted: 03/31/2021] [Indexed: 11/09/2022] Open
Abstract
Upon Mycobacterium tuberculosis (Mtb) infection, protein kinase G (PknG), a eukaryotic-type serine-threonine protein kinase (STPK), is secreted into host macrophages to promote intracellular survival of the pathogen. However, the mechanisms underlying this PknG-host interaction remain unclear. Here, we demonstrate that PknG serves both as a ubiquitin-activating enzyme (E1) and a ubiquitin ligase (E3) to trigger the ubiquitination and degradation of tumor necrosis factor receptor-associated factor 2 (TRAF2) and TGF-β-activated kinase 1 (TAK1), thereby inhibiting the activation of NF-κB signaling and host innate responses. PknG promotes the attachment of ubiquitin (Ub) to the ubiquitin-conjugating enzyme (E2) UbcH7 via an isopeptide bond (UbcH7 K82-Ub), rather than the usual C86-Ub thiol-ester bond. PknG induces the discharge of Ub from UbcH7 by acting as an isopeptidase, before attaching Ub to its substrates. These results demonstrate that PknG acts as an unusual ubiquitinating enzyme to remove key components of the innate immunity system, thus providing a potential target for tuberculosis treatment.
Collapse
Affiliation(s)
- Jing Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Beijing, China
| | - Pupu Ge
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Zehui Lei
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Zhe Lu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Lihua Qiang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Qiyao Chai
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Yong Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Beijing, China
| | - Dongdong Zhao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Bingxi Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Beijing, China
| | - Jiaqi Su
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Ruchao Peng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Beijing, China
| | - Yu Pang
- Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Yi Shi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Yu Zhang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - George Fu Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Xiao-Bo Qiu
- Ministry of Education Key Laboratory of Cell Proliferation and Regulation Biology, Department of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Cui Hua Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
36
|
Garcia-Sanchez JA, Ewbank JJ, Visvikis O. Ubiquitin-related processes and innate immunity in C. elegans. Cell Mol Life Sci 2021; 78:4305-4333. [PMID: 33630111 PMCID: PMC11072174 DOI: 10.1007/s00018-021-03787-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/18/2021] [Accepted: 02/03/2021] [Indexed: 02/06/2023]
Abstract
Innate immunity is an evolutionary ancient defence strategy that serves to eliminate infectious agents while maintaining host health. It involves a complex network of sensors, signaling proteins and immune effectors that detect the danger, then relay and execute the immune programme. Post-translational modifications relying on conserved ubiquitin and ubiquitin-like proteins are an integral part of the system. Studies using invertebrate models of infection, such as the nematode Caenorhabditis elegans, have greatly contributed to our understanding of how ubiquitin-related processes act in immune sensing, regulate immune signaling pathways, and participate to host defence responses. This review highlights the interest of working with a genetically tractable model organism and illustrates how C. elegans has been used to identify ubiquitin-dependent immune mechanisms, discover novel ubiquitin-based resistance strategies that mediate pathogen clearance, and unravel the role of ubiquitin-related processes in tolerance, preserving host fitness during pathogen attack. Special emphasis is placed on processes that are conserved in mammals.
Collapse
Affiliation(s)
- Juan A Garcia-Sanchez
- INSERM, C3M, Côte D'Azur University, Nice, France
- INSERM, CNRS, CIML, Turing Centre for Living Systems, Aix-Marseille University, Marseille, France
| | - Jonathan J Ewbank
- INSERM, CNRS, CIML, Turing Centre for Living Systems, Aix-Marseille University, Marseille, France.
| | | |
Collapse
|
37
|
Chiang C, Liu G, Gack MU. Viral Evasion of RIG-I-Like Receptor-Mediated Immunity through Dysregulation of Ubiquitination and ISGylation. Viruses 2021; 13:182. [PMID: 33530371 PMCID: PMC7910861 DOI: 10.3390/v13020182] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 12/15/2022] Open
Abstract
Viral dysregulation or suppression of innate immune responses is a key determinant of virus-induced pathogenesis. Important sensors for the detection of virus infection are the RIG-I-like receptors (RLRs), which, in turn, are antagonized by many RNA viruses and DNA viruses. Among the different escape strategies are viral mechanisms to dysregulate the post-translational modifications (PTMs) that play pivotal roles in RLR regulation. In this review, we present the current knowledge of immune evasion by viral pathogens that manipulate ubiquitin- or ISG15-dependent mechanisms of RLR activation. Key viral strategies to evade RLR signaling include direct targeting of ubiquitin E3 ligases, active deubiquitination using viral deubiquitinating enzymes (DUBs), and the upregulation of cellular DUBs that regulate RLR signaling. Additionally, we summarize emerging new evidence that shows that enzymes of certain coronaviruses such as SARS-CoV-2, the causative agent of the current COVID-19 pandemic, actively deISGylate key molecules in the RLR pathway to escape type I interferon (IFN)-mediated antiviral responses. Finally, we discuss the possibility of targeting virally-encoded proteins that manipulate ubiquitin- or ISG15-mediated innate immune responses for the development of new antivirals and vaccines.
Collapse
Affiliation(s)
| | | | - Michaela U. Gack
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL 34987, USA; (C.C.); (G.L.)
| |
Collapse
|
38
|
Pitsillou E, Liang J, Ververis K, Lim KW, Hung A, Karagiannis TC. Identification of Small Molecule Inhibitors of the Deubiquitinating Activity of the SARS-CoV-2 Papain-Like Protease: in silico Molecular Docking Studies and in vitro Enzymatic Activity Assay. Front Chem 2020; 8:623971. [PMID: 33364229 PMCID: PMC7753156 DOI: 10.3389/fchem.2020.623971] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 11/16/2020] [Indexed: 12/14/2022] Open
Abstract
COVID-19 is an ongoing pandemic caused by the SARS-CoV-2 virus with important political, socio-economic, and public health consequences. Inhibiting replication represents an important antiviral approach, and in this context two viral proteases, the SARS-CoV-2 main and papain-like proteases (PLpro), which cleave pp1a and pp1ab polypeptides, are critical. Along with protease activity, the PLpro possesses deubiquitinating activity, which is important in immune regulation. Naphthalene-based inhibitors, such as the well-investigated GRL-0617 compound, have been shown to possess dual effects, inhibiting both protease and deubiquitinating activity of the PLpro. Rather than binding to the canonical catalytic triad, these type of non-covalent inhibitors target an adjacent pocket, the naphthalene-inhibitor binding site. Using a high-throughput screen, we have previously identified the dietary hypericin, rutin, and cyanidin-3-O-glucoside compounds as potential protease inhibitors targeting the naphthalene-inhibitor binding site. Here, our aim was to investigate the binding characteristics of these compounds to the PLpro, and to evaluate deubiquitinating activity, by analyzing seven different PLpro crystal structures. Molecular docking highlighted the relatively high affinity of GRL-0617 and dietary compounds. In contrast binding of the small molecules was abolished in the presence of ubiquitin in the palm subdomain of the PLpro. Further, docking the small molecules in the naphthalene-inhibitor binding site, followed by protein-protein docking revealed displacement of ubiquitin in a conformation inconsistent with functional activity. Finally, the deubiquitinating activity was validated in vitro using an enzymatic activity assay. The findings indicated that the dietary compounds inhibited deubiquitinase activity in the micromolar range with an order of activity of GRL-0167, hypericin >> rutin, cyanidin-3-O-glucoside > epigallocatechin gallate, epicatechin gallate, and cefotaxime. Our findings are in accordance with mechanisms and potential antiviral effects of the naphthalene-based, GRL-0617 inhibitor, which is currently progressing in preclinical trials. Further, our findings indicate that in particular hypericin, rutin, and cyanidin-3-O-glucoside, represent suitable candidates for subsequent evaluation as PLpro inhibitors.
Collapse
Affiliation(s)
- Eleni Pitsillou
- Epigenomic Medicine, Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, Australia
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC, Australia
| | - Julia Liang
- Epigenomic Medicine, Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, Australia
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC, Australia
| | - Katherine Ververis
- Epigenomic Medicine, Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Kah Wai Lim
- Epigenomic Medicine, Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, VIC, Australia
| | - Andrew Hung
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC, Australia
| | - Tom C. Karagiannis
- Epigenomic Medicine, Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
39
|
Saeed AFUH, Ouyang S. Ubiquitin: there's no quitting. Sci Bull (Beijing) 2020; 65:1327-1329. [PMID: 36659208 DOI: 10.1016/j.scib.2020.04.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 04/17/2020] [Indexed: 01/21/2023]
Affiliation(s)
- Abdullah F U H Saeed
- The Key Laboratory of Innate Immune Biology of Fujian Province, Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Biomedical Research Center of South China, Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China; College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350117, China
| | - Songying Ouyang
- The Key Laboratory of Innate Immune Biology of Fujian Province, Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Biomedical Research Center of South China, Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China.
| |
Collapse
|
40
|
Li Z, Fan S, Wang J, Chen X, Liao Q, Liu X, Ouyang G, Cao H, Xiao W. Zebrafish F-box Protein fbxo3 Negatively Regulates Antiviral Response through Promoting K27-Linked Polyubiquitination of the Transcription Factors irf3 and irf7. THE JOURNAL OF IMMUNOLOGY 2020; 205:1897-1908. [DOI: 10.4049/jimmunol.2000305] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 07/29/2020] [Indexed: 12/23/2022]
|
41
|
Chai Q, Wang L, Liu CH, Ge B. New insights into the evasion of host innate immunity by Mycobacterium tuberculosis. Cell Mol Immunol 2020; 17:901-913. [PMID: 32728204 PMCID: PMC7608469 DOI: 10.1038/s41423-020-0502-z] [Citation(s) in RCA: 147] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 06/22/2020] [Indexed: 12/26/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) is an extremely successful intracellular pathogen that causes tuberculosis (TB), which remains the leading infectious cause of human death. The early interactions between Mtb and the host innate immune system largely determine the establishment of TB infection and disease development. Upon infection, host cells detect Mtb through a set of innate immune receptors and launch a range of cellular innate immune events. However, these innate defense mechanisms are extensively modulated by Mtb to avoid host immune clearance. In this review, we describe the emerging role of cytosolic nucleic acid-sensing pathways at the host-Mtb interface and summarize recently revealed mechanisms by which Mtb circumvents host cellular innate immune strategies such as membrane trafficking and integrity, cell death and autophagy. In addition, we discuss the newly elucidated strategies by which Mtb manipulates the host molecular regulatory machinery of innate immunity, including the intranuclear regulatory machinery, the ubiquitin system, and cellular intrinsic immune components. A better understanding of innate immune evasion mechanisms adopted by Mtb will provide new insights into TB pathogenesis and contribute to the development of more effective TB vaccines and therapies.
Collapse
Affiliation(s)
- Qiyao Chai
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, 100101, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, 101408, Beijing, China
| | - Lin Wang
- Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 200433, Shanghai, China
| | - Cui Hua Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, 100101, Beijing, China. .,Savaid Medical School, University of Chinese Academy of Sciences, 101408, Beijing, China.
| | - Baoxue Ge
- Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 200433, Shanghai, China.
| |
Collapse
|
42
|
Schregle R, Mueller S, Legler DF, Rossy J, Krueger WA, Groettrup M. FAT10 localises in dendritic cell aggresome-like induced structures and contributes to their disassembly. J Cell Sci 2020; 133:jcs240085. [PMID: 32546531 DOI: 10.1242/jcs.240085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 06/04/2020] [Indexed: 08/31/2023] Open
Abstract
Dendritic cell (DC) aggresome-like induced structures (DALIS) are protein aggregates of polyubiquitylated proteins that form transiently during DC maturation. DALIS scatter randomly throughout the cytosol and serve as antigen storage sites synchronising DC maturation and antigen presentation. Maturation of DCs is accompanied by the induction of the ubiquitin-like modifier FAT10 (also known as UBD), which localises to aggresomes, structures that are similar to DALIS. FAT10 is conjugated to substrate proteins and serves as a signal for their rapid and irreversible degradation by the 26S proteasome similar to, yet independently of ubiquitin, thereby contributing to antigen presentation. Here, we have investigated whether FAT10 is involved in the formation and turnover of DALIS, and whether proteins accumulating in DALIS can be modified through conjunction to FAT10 (FAT10ylated). We found that FAT10 localises to DALIS in maturing DCs and that this localisation occurs independently of its conjugation to substrates. Additionally, we investigated the DALIS turnover in FAT10-deficient and -proficient DCs, and observed FAT10-mediated disassembly of DALIS. Thus, we report further evidence that FAT10 is involved in antigen processing, which may provide a functional rationale as to why FAT10 is selectively induced upon DC maturation.
Collapse
Affiliation(s)
- Richard Schregle
- Division of Immunology, Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
| | - Stefanie Mueller
- Division of Immunology, Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
| | - Daniel F Legler
- Biotechnology Institute Thurgau at the University of Konstanz, CH-8280 Kreuzlingen, Switzerland
| | - Jérémie Rossy
- Biotechnology Institute Thurgau at the University of Konstanz, CH-8280 Kreuzlingen, Switzerland
| | | | - Marcus Groettrup
- Division of Immunology, Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
- Biotechnology Institute Thurgau at the University of Konstanz, CH-8280 Kreuzlingen, Switzerland
| |
Collapse
|
43
|
Chai Q, Lu Z, Liu CH. Host defense mechanisms against Mycobacterium tuberculosis. Cell Mol Life Sci 2020; 77:1859-1878. [PMID: 31720742 PMCID: PMC11104961 DOI: 10.1007/s00018-019-03353-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/30/2019] [Accepted: 10/21/2019] [Indexed: 12/19/2022]
Abstract
Tuberculosis (TB), which is caused by Mycobacterium tuberculosis (Mtb), remains the leading cause of death worldwide from a single infectious pathogen. Mtb is a paradigmatic intracellular pathogen that primarily invades the lungs after host inhalation of bacteria-containing droplets via the airway. However, the majority of Mtb-exposed individuals can spontaneously control the infection by virtue of a robust immune defense system. The mucosal barriers of the respiratory tract shape the first-line defense against Mtb through various mucosal immune responses. After arriving at the alveoli, the surviving mycobacteria further encounter a set of host innate immune cells that exert multiple cellular bactericidal functions. Adaptive immunity, predominantly mediated by a range of different T cell and B cell subsets, is subsequently activated and participates in host anti-mycobacterial defense. During Mtb infection, host bactericidal immune responses are exquisitely adjusted and balanced by multifaceted mechanisms, including genetic and epigenetic regulation, metabolic regulation and neuroendocrine regulation, which are indispensable for maintaining host immune efficiency and avoiding excessive tissue injury. A better understanding of the integrated and equilibrated host immune defense system against Mtb will contribute to the development of rational TB treatment regimens especially novel host-directed therapeutics.
Collapse
Affiliation(s)
- Qiyao Chai
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Zhe Lu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cui Hua Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
- Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China.
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
44
|
Mu T, Zhao X, Zhu Y, Fan H, Tang H. The E3 Ubiquitin Ligase TRIM21 Promotes HBV DNA Polymerase Degradation. Viruses 2020; 12:v12030346. [PMID: 32245233 PMCID: PMC7150939 DOI: 10.3390/v12030346] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 12/26/2022] Open
Abstract
The tripartite motif (TRIM) protein family is an E3 ubiquitin ligase family. Recent reports have indicated that some TRIM proteins have antiviral functions, especially against retroviruses. However, most studies mainly focus on the relationship between TRIM21 and interferon or other antiviral effectors. The effect of TRIM21 on virus-encoded proteins remains unclear. In this study, we screened candidate interacting proteins of HBV DNA polymerase (Pol) by FLAG affinity purification and mass spectrometry assay and identified TRIM21 as its regulator. We used a coimmunoprecipitation (co-IP) assay to demonstrate that TRIM21 interacted with the TP domain of HBV DNA Pol. In addition, TRIM21 promoted the ubiquitination and degradation of HBV DNA Pol using its RING domain, which has E3 ubiquitin ligase activity. Lys260 and Lys283 of HBV DNA Pol were identified as targets for ubiquitination mediated by TRIM21. Finally, we uncovered that TRIM21 degrades HBV DNA Pol to restrict HBV DNA replication, and its SPRY domain is critical for this activity. Taken together, our results indicate that TRIM21 suppresses HBV DNA replication mainly by promoting the ubiquitination of HBV DNA Pol, which may provide a new potential target for the treatment of HBV.
Collapse
Affiliation(s)
| | | | | | | | - Hua Tang
- Correspondence: ; Tel./Fax: +86-22-2354-2503
| |
Collapse
|
45
|
Lou Y, Han M, Song Y, Zhong J, Zhang W, Chen YH, Wang H. The SCF β-TrCP E3 Ubiquitin Ligase Regulates Immune Receptor Signaling by Targeting the Negative Regulatory Protein TIPE2. THE JOURNAL OF IMMUNOLOGY 2020; 204:2122-2132. [PMID: 32188758 DOI: 10.4049/jimmunol.1901142] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 02/07/2020] [Indexed: 12/11/2022]
Abstract
TNFAIP8-like 2 (TIPE2) is a negative regulator of immune receptor signaling that maintains immune homeostasis. Dysregulated TIPE2 expression has been observed in several types of human immunological disorders. However, how TIPE2 expression is regulated remains to be determined. We report in this study that the SCFβ-TrCP E3 ubiquitin ligase regulates TIPE2 protein abundance by targeting it for ubiquitination and subsequent degradation via the 26S proteasome. Silencing of either cullin-1 or β-TrCP1 resulted in increased levels of TIPE2 in immune cells. TAK1 phosphorylated the Ser3 in the noncanonical degron motif of TIPE2 to trigger its interaction with β-TrCP for subsequent ubiquitination and degradation. Importantly, the amount of TIPE2 protein in immune cells determined the strength of TLR 4-induced signaling and downstream gene expression. Thus, our study has uncovered a mechanism by which SCFβ-TrCP E3 ubiquitin ligase regulates TLR responses.
Collapse
Affiliation(s)
- Yunwei Lou
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan 453003, People's Republic of China.,Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Medical University, Xinxiang, Henan 453003, People's Republic of China
| | - Meijuan Han
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan 453003, People's Republic of China.,Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Medical University, Xinxiang, Henan 453003, People's Republic of China
| | - Yaru Song
- Department of Pulmonary Medicine, The Affiliated Renmin Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, People's Republic of China
| | - Jiateng Zhong
- Department of Pathology, Xinxiang Medical University, Xinxiang, Henan 453003, People's Republic of China; and
| | - Wen Zhang
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Medical University, Xinxiang, Henan 453003, People's Republic of China
| | - Youhai H Chen
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | - Hui Wang
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan 453003, People's Republic of China; .,Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Medical University, Xinxiang, Henan 453003, People's Republic of China
| |
Collapse
|
46
|
The 'dark matter' of ubiquitin-mediated processes: opportunities and challenges in the identification of ubiquitin-binding domains. Biochem Soc Trans 2020; 47:1949-1962. [PMID: 31829417 DOI: 10.1042/bst20190869] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 11/05/2019] [Accepted: 11/28/2019] [Indexed: 12/19/2022]
Abstract
Ubiquitin modifications of target proteins act to localise, direct and specify a diverse range of cellular processes, many of which are biomedically relevant. To allow this diversity, ubiquitin modifications exhibit remarkable complexity, determined by a combination of polyubiquitin chain length, linkage type, numbers of ubiquitin chains per target, and decoration of ubiquitin with other small modifiers. However, many questions remain about how different ubiquitin signals are specifically recognised and transduced by the decoding ubiquitin-binding domains (UBDs) within ubiquitin-binding proteins. This review briefly outlines our current knowledge surrounding the diversity of UBDs, identifies key challenges in their discovery and considers recent structural studies with implications for the increasing complexity of UBD function and identification. Given the comparatively low numbers of functionally characterised polyubiquitin-selective UBDs relative to the ever-expanding variety of polyubiquitin modifications, it is possible that many UBDs have been overlooked, in part due to limitations of current approaches used to predict their presence within the proteome. Potential experimental approaches for UBD discovery are considered; web-based informatic analyses, Next-Generation Phage Display, deubiquitinase-resistant diubiquitin, proximity-dependent biotinylation and Ubiquitin-Phototrap, including possible advantages and limitations. The concepts discussed here work towards identifying new UBDs which may represent the 'dark matter' of the ubiquitin system.
Collapse
|
47
|
Ma K, Zhen X, Zhou B, Gan N, Cao Y, Fan C, Ouyang S, Luo ZQ, Qiu J. The bacterial deubiquitinase Ceg23 regulates the association of Lys-63-linked polyubiquitin molecules on the Legionella phagosome. J Biol Chem 2020; 295:1646-1657. [PMID: 31907282 PMCID: PMC7008378 DOI: 10.1074/jbc.ra119.011758] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 12/19/2019] [Indexed: 01/07/2023] Open
Abstract
Legionella pneumophila is the causative agent of the lung malady Legionnaires' disease, it modulates host function to create a niche termed the Legionella-containing vacuole (LCV) that permits intracellular L. pneumophila replication. One important aspect of such modulation is the co-option of the host ubiquitin network with a panel of effector proteins. Here, using recombinantly expressed and purified proteins, analytic ultracentrifugation, structural analysis, and computational modeling, along with deubiquitinase (DUB), and bacterial infection assays, we found that the bacterial defective in organelle trafficking/intracellular multiplication effector Ceg23 is a member of the ovarian tumor (OTU) DUB family. We found that Ceg23 displays high specificity toward Lys-63-linked polyubiquitin chains and is localized on the LCV, where it removes ubiquitin moieties from proteins ubiquitinated by the Lys-63-chain type. Analysis of the crystal structure of a Ceg23 variant lacking two putative transmembrane domains at 2.80 Å resolution revealed that despite very limited homology to established members of the OTU family at the primary sequence level, Ceg23 harbors a catalytic motif resembling those associated with typical OTU-type DUBs. ceg23 deletion increased the association of Lys-63-linked polyubiquitin with the bacterial phagosome, indicating that Ceg23 regulates Lys-63-linked ubiquitin signaling on the LCV. In summary, our findings indicate that Ceg23 contributes to the regulation of the association of Lys-63 type polyubiquitin with the Legionella phagosome. Future identification of host substrates targeted by Ceg23 could clarify the roles of these polyubiquitin chains in the intracellular life cycle of L. pneumophila and Ceg23's role in bacterial virulence.
Collapse
Affiliation(s)
- Kelong Ma
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xiangkai Zhen
- Key Laboratory of Innate Immune Biology of Fujian Province, Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Biao Zhou
- Key Laboratory of Innate Immune Biology of Fujian Province, Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Ninghai Gan
- Purdue Institute for Inflammation, Immunology and Infectious Disease and Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907
| | - Yang Cao
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Chengpeng Fan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Wuhan University, Wuhan 430072, China
| | - Songying Ouyang
- Key Laboratory of Innate Immune Biology of Fujian Province, Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| | - Zhao-Qing Luo
- Purdue Institute for Inflammation, Immunology and Infectious Disease and Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907.
| | - Jiazhang Qiu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China.
| |
Collapse
|
48
|
González-Miguel J, Becerro-Recio D, Sotillo J, Simón F, Siles-Lucas M. Set up of an in vitro model to study early host-parasite interactions between newly excysted juveniles of Fasciola hepatica and host intestinal cells using a quantitative proteomics approach. Vet Parasitol 2020; 278:109028. [PMID: 31986420 DOI: 10.1016/j.vetpar.2020.109028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 01/13/2020] [Accepted: 01/13/2020] [Indexed: 12/20/2022]
Abstract
Fasciola hepatica is the causative agent of fasciolosis, a parasitic zoonosis of global distribution causing significant economic losses in animal production and a human public health problem in low-income countries. Hosts are infected by ingestion of aquatic plants carrying metacercariae. Once ingested, the juvenile parasites excyst in the small intestine and, after crossing it, they follow a complex migratory route that lead the parasites to their definitive location in the bile ducts. Despite being a critical event in the progression of the infection, the available data on the cross-talk relationships between the parasite and the host at an early stage of the infection are scarce. The objective of the present work is to characterize the proteomic changes occurring in both the parasite and the host, through the development of a novel in vitro model, to shed light on the molecular pathways of communication between the newly excysted juveniles (NEJ) from F. hepatica and the host's intestinal epithelium. For this, in vitro excystation of F. hepatica metacercariae was carried out and NEJ were obtained. Additionally, optimal conditions of growth and expansion of mouse primary small intestinal epithelial cells (MPSIEC) in culture were fine-tuned. Tegumentary and somatic parasite antigens (NEJ-Teg and NEJ-Som), as well as host cell protein lysate (MPSIEC-Lys) were obtained before and after 24 h co-culture of NEJ with MPSIEC. We used an isobaric tags for relative and absolute quantitation (iTRAQ)-based strategy to detect 191 and 62 up-regulated, and 112 and 57 down-regulated proteins in the NEJ-Teg and NEJ-Som extracts, respectively. Similarly, 87 up-regulated and 73 down-regulated proteins in the MPSIEC-Lys extract were identified. Taking into account the biological processes in which these proteins were involved, interesting mechanisms related to parasite development, invasion and evasion, as well as manipulation of the host intestinal epithelial cell adhesion, immunity and apoptosis pathways, among others, could be inferred, taking place at the host-parasite interface. The further understanding of these processes could constitute promising therapeutic targets in the future against fasciolosis.
Collapse
Affiliation(s)
- Javier González-Miguel
- Institute of Natural Resources and Agrobiology (IRNASA, CSIC), Sustainable Development Department, C/Cordel de Merinas, 52, 37008, Salamanca, Spain; Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, Moscow, Russia.
| | - David Becerro-Recio
- Institute of Natural Resources and Agrobiology (IRNASA, CSIC), Sustainable Development Department, C/Cordel de Merinas, 52, 37008, Salamanca, Spain
| | - Javier Sotillo
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain; Centre for Molecular Therapeutics, Australian Institute for Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Fernando Simón
- Laboratory of Parasitology, Faculty of Pharmacy, University of Salamanca, 37007, Salamanca, Spain
| | - Mar Siles-Lucas
- Institute of Natural Resources and Agrobiology (IRNASA, CSIC), Sustainable Development Department, C/Cordel de Merinas, 52, 37008, Salamanca, Spain
| |
Collapse
|
49
|
Identification of Differentially Expressed Proteins in Sugarcane in Response to Infection by Xanthomonas albilineans Using iTRAQ Quantitative Proteomics. Microorganisms 2020; 8:microorganisms8010076. [PMID: 31947808 PMCID: PMC7023244 DOI: 10.3390/microorganisms8010076] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/16/2019] [Accepted: 12/28/2019] [Indexed: 01/02/2023] Open
Abstract
Sugarcane can suffer severe yield losses when affected by leaf scald, a disease caused by Xanthomonas albilineans. This bacterial pathogen colonizes the vascular system of sugarcane, which can result in reduced plant growth and plant death. In order to better understand the molecular mechanisms involved in the resistance of sugarcane to leaf scald, a comparative proteomic study was performed with two sugarcane cultivars inoculated with X. albilineans: one resistant (LCP 85-384) and one susceptible (ROC20) to leaf scald. The iTRAQ (isobaric tags for relative and absolute quantification) approach at 0 and 48 h post-inoculation (hpi) was used to identify and annotate differentially expressed proteins (DEPs). A total of 4295 proteins were associated with 1099 gene ontology (GO) terms by GO analysis. Among those, 285 were DEPs during X. albilineans infection in cultivars LCP 85-384 and ROC20. One hundred seventy-two DEPs were identified in resistant cultivar LCP 85-384, and 113 of these proteins were upregulated and 59 were downregulated. One hundred ninety-two DEPs were found in susceptible cultivar ROC20 and half of these (92) were upregulated, whereas the other half corresponded to downregulated proteins. The significantly upregulated DEPs in LCP 85-384 were involved in metabolic pathways, the biosynthesis of secondary metabolites, and the phenylpropanoid biosynthesis pathway. Additionally, the expression of seven candidate genes related to photosynthesis and glycolytic pathways, plant innate immune system, glycosylation process, plant cytochrome P450, and non-specific lipid transfer protein was verified based on transcription levels in sugarcane during infection by X. albilineans. Our findings shed new light on the differential expression of proteins in sugarcane cultivars in response to infection by X. albilineans. The identification of these genes provides important information for sugarcane variety improvement programs using molecular breeding strategies.
Collapse
|
50
|
Margalit A, Kavanagh K, Carolan JC. Characterization of the Proteomic Response of A549 Cells Following Sequential Exposure to Aspergillus fumigatus and Pseudomonas aeruginosa. J Proteome Res 2020; 19:279-291. [PMID: 31693381 DOI: 10.1021/acs.jproteome.9b00520] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Aspergillus fumigatus and Pseudomonas aeruginosa are the most prevalent fungal and bacterial pathogens associated with cystic-fibrosis-related infections, respectively. P. aeruginosa eventually predominates as the primary pathogen, though it is unknown why this is the case. Label-free quantitative proteomics was employed to investigate the cellular response of the alveolar epithelial cell line, A549, to coexposure of A. fumigatus and P. aeruginosa. These studies revealed a significant increase in the rate of P. aeruginosa proliferation where A. fumigatus was present. Shotgun proteomics performed on A549 cells exposed to either A. fumigatus or P. aeruginosa or to A. fumigatus and P. aeruginosa sequentially revealed distinct changes to the host cell proteome in response to either or both pathogens. While key signatures of infection were retained among all pathogen-exposed groups, including changes in mitochondrial activity and energy output, the relative abundance of proteins associated with endocytosis, phagosomes, and lysosomes was decreased in sequentially exposed cells compared to cells exposed to either pathogen. Our findings indicate that A. fumigatus renders A549 cells unable to internalize bacteria, thus providing an environment in which P. aeruginosa can proliferate. This research provides novel insights into the whole-cell proteomic response of A549 cells to A. fumigatus and P. aeruginosa and highlights distinct differences in the proteome following sequential exposure to both pathogens, which may explain why P. aeruginosa can predominate.
Collapse
Affiliation(s)
- Anatte Margalit
- Department of Biology , Maynooth University , Maynooth, Co. Kildare W23F2H6 , Ireland
| | - Kevin Kavanagh
- Department of Biology , Maynooth University , Maynooth, Co. Kildare W23F2H6 , Ireland
| | - James C Carolan
- Department of Biology , Maynooth University , Maynooth, Co. Kildare W23F2H6 , Ireland
| |
Collapse
|