1
|
Guerrero-Peña L, Suarez-Bregua P, Sánchez-Ruiloba L, Méndez-Martínez L, García-Fernández P, Tur R, Tena JJ, Rotllant J. Unraveling the transcriptomic landscape of eye migration and visual adaptations during flatfish metamorphosis. Commun Biol 2024; 7:253. [PMID: 38429383 PMCID: PMC10907633 DOI: 10.1038/s42003-024-05951-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/21/2024] [Indexed: 03/03/2024] Open
Abstract
Flatfish undergo a remarkable metamorphosis from symmetrical pelagic larvae to fully asymmetrical benthic juveniles. The most distinctive features of this transformation is the migration of one eye. The molecular role of thyroid hormone in the metamorphosis process in flatfishes is well established. However, the regulatory network that facilitates eye movement remains enigmatic. This paper presents a morphological investigation of the metamorphic process in turbot eyes, using advanced imaging techniques and a global view of gene expression. The study covers migrant and non-migrant eyes and aims to identify the genes that are active during ocular migration. Our transcriptomic analysis shows a significant up-regulation of immune-related genes. The analysis of eye-specific genes reveals distinct patterns during the metamorphic process. Myosin is highlighted in the non-migrant eye, while ependymin is highlighted in the migrant eye, possibly involved in optic nerve regeneration. Furthermore, a potential association between the alx3 gene and cranial restructuring has been identified. Additionally, it confirmed simultaneous adaptation to low light in both eyes, as described by changes in opsins expression during the metamorphic process. The study also revealed that ocular migration activates systems asynchronously in both eyes, providing insight into multifaceted reorganization processes during metamorphosis of flatfish.
Collapse
Affiliation(s)
- Laura Guerrero-Peña
- Aquatic Biotechnology Lab., Institute of Marine Research, Spanish National Research Council (IIM-CSIC), 36208, Vigo, Spain
| | - Paula Suarez-Bregua
- Aquatic Biotechnology Lab., Institute of Marine Research, Spanish National Research Council (IIM-CSIC), 36208, Vigo, Spain
| | - Lucía Sánchez-Ruiloba
- Institute of Marine Research, Spanish National Research Council (IIM-CSIC), 36208, Vigo, Spain
| | - Luis Méndez-Martínez
- Aquatic Biotechnology Lab., Institute of Marine Research, Spanish National Research Council (IIM-CSIC), 36208, Vigo, Spain
| | | | - Ricardo Tur
- Nueva Pescanova Biomarine Center, S.L., 36980, O Grove, Spain
| | - Juan J Tena
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide, 41013, Sevilla, Spain
| | - Josep Rotllant
- Aquatic Biotechnology Lab., Institute of Marine Research, Spanish National Research Council (IIM-CSIC), 36208, Vigo, Spain.
| |
Collapse
|
2
|
Haselman JT, Nichols JW, Mattingly KZ, Hornung MW, Degitz SJ. A biologically based computational model for the hypothalamic-pituitary-thyroid (HPT) axis in Xenopus laevis larvae. Math Biosci 2023; 362:109021. [PMID: 37201649 PMCID: PMC11556306 DOI: 10.1016/j.mbs.2023.109021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/28/2023] [Accepted: 05/11/2023] [Indexed: 05/20/2023]
Abstract
A biologically based computational model was developed to describe the hypothalamic-pituitary-thyroid (HPT) axis in developing Xenopus laevis larvae. The goal of this effort was to develop a tool that can be used to better understand mechanisms of thyroid hormone-mediated metamorphosis in X. laevis and predict organismal outcomes when those mechanisms are perturbed by chemical toxicants. In this report, we describe efforts to simulate the normal biology of control organisms. The structure of the model borrows from established models of HPT axis function in mammals. Additional features specific to X. laevis account for the effects of organism growth, growth of the thyroid gland, and developmental changes in regulation of thyroid stimulating hormone (TSH) by circulating thyroid hormones (THs). Calibration was achieved by simulating observed changes in stored and circulating levels of THs during a critical developmental window (Nieuwkoop and Faber stages 54-57) that encompasses widely used in vivo chemical testing protocols. The resulting model predicts that multiple homeostatic processes, operating in concert, can act to preserve circulating levels of THs despite profound impairments in TH synthesis. Represented in the model are several biochemical processes for which there are high-throughput in vitro chemical screening assays. By linking the HPT axis model to a toxicokinetic model of chemical uptake and distribution, it may be possible to use this in vitro effects information to predict chemical effects in X. laevis larvae resulting from defined chemical exposures.
Collapse
Affiliation(s)
- Jonathan T Haselman
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, Great Lakes Toxicology and Ecology Division, 6201 Congdon Boulevard, Duluth, MN, 55804, United States of America.
| | - John W Nichols
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, Great Lakes Toxicology and Ecology Division, 6201 Congdon Boulevard, Duluth, MN, 55804, United States of America
| | - Kali Z Mattingly
- SpecPro Professional Services (SPS), Contractor to U.S. Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, 6201 Congdon Boulevard, Duluth, MN, 55804, United States of America
| | - Michael W Hornung
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, Great Lakes Toxicology and Ecology Division, 6201 Congdon Boulevard, Duluth, MN, 55804, United States of America
| | - Sigmund J Degitz
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, Great Lakes Toxicology and Ecology Division, 6201 Congdon Boulevard, Duluth, MN, 55804, United States of America
| |
Collapse
|
3
|
Guerrero-Peña L, Suarez-Bregua P, Gil-Gálvez A, Naranjo S, Méndez-Martínez L, Tur R, García-Fernández P, Tena JJ, Rotllant J. Genome-wide chromatin accessibility and gene expression profiling during flatfish metamorphosis. Sci Data 2023; 10:196. [PMID: 37031231 PMCID: PMC10082842 DOI: 10.1038/s41597-023-02111-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/28/2023] [Indexed: 04/10/2023] Open
Abstract
Metamorphosis is a widely studied post-embryonic process in which many tissues undergo dramatic modifications to adapt to the new adult lifestyle. Flatfishes represent a good example of metamorphosis in teleost fishes. During metamorphosis of flatfish, organ regression and neoformation occur, with one of the most notable changes being the migration of one of the eyes to the other side of the body. In order to create a useful and reliable tool to advance the molecular study of metamorphosis in flatfish, we generated a chromatin accessible atlas as well as gene expression profile during four developmental stages ranging from a phylotypic to a post-metamorphic stage. We identified 29,019 differentially accessible chromatin regions and 3,253 differentially expressed genes. We found stage-specific regulatory regions and gene expression profiles, supporting the quality of the results. Our work provides strongly reproducible data for further studies to elucidate the regulatory elements that ensure successful metamorphosis in flatfish species.
Collapse
Affiliation(s)
- Laura Guerrero-Peña
- Aquatic Biotechnology Lab, Institute of Marine Research, Spanish National Research Council (IIM-CSIC), Vigo, Spain
| | - Paula Suarez-Bregua
- Aquatic Biotechnology Lab, Institute of Marine Research, Spanish National Research Council (IIM-CSIC), Vigo, Spain.
| | - Alejandro Gil-Gálvez
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
| | - Silvia Naranjo
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
| | - Luis Méndez-Martínez
- Aquatic Biotechnology Lab, Institute of Marine Research, Spanish National Research Council (IIM-CSIC), Vigo, Spain
| | - Ricardo Tur
- Nueva Pescanova Biomarine Center, S.L, O Grove, Spain
| | | | - Juan J Tena
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
| | - Josep Rotllant
- Aquatic Biotechnology Lab, Institute of Marine Research, Spanish National Research Council (IIM-CSIC), Vigo, Spain.
| |
Collapse
|
4
|
Grott SC, Israel N, Lima D, Bitschinski D, Abel G, Alves TC, da Silva EB, de Albuquerque CAC, Mattos JJ, Bainy ACD, de Almeida EA. Influence of temperature on growth, development and thyroid metabolism of American bullfrog tadpoles (Lithobates catesbeianus) exposed to the herbicide tebuthiuron. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 94:103910. [PMID: 35718323 DOI: 10.1016/j.etap.2022.103910] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 05/23/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
The influence of temperature (25 and 32 °C) on the negative effects of the herbicide tebuthiuron (TBU, 0, 10, 50 and 200 ng.L-1, 16 days) on thyroid function and metamorphosis of Lithobates catesbeianus tadpoles was evaluated. Metamorphosis was accelerated by TBU exposure at 25 ºC, but delayed at 32 ºC with considerable losses of body mass. T3 and T4 levels were not altered. The highest TBU concentrarion at 25 ºC increased TR β and DIO3 transcript levels, which is consistent with development acceleration in tadpoles. At 32 ºC TR β transcript levels were lower than the values recorded at 25 ºC, and those tadpoles exposed to the highest TBU concentration presented increased diameter of thyroid follicles compared to controls at same temperature. This study evidences that TBU at environmentally realistic concentrations is able to disrupt thyroidogenesis in bullfrog tadpoles, impairing their development. These effects are influenced by temperature.
Collapse
Affiliation(s)
- Suelen C Grott
- Environmental Engineering Post-Graduation Program, University of Blumenau, Blumenau, SC, Brazil
| | - Nicole Israel
- Center for Studies in Aquatic Toxicology, CETAq/FURB, Brazil
| | - Daína Lima
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | | | - Gustavo Abel
- Center for Studies in Aquatic Toxicology, CETAq/FURB, Brazil
| | - Thiago C Alves
- Environmental Engineering Post-Graduation Program, University of Blumenau, Blumenau, SC, Brazil
| | - Elizia B da Silva
- Department of Natural Science, University of Blumenau, Blumenau, SC, Brazil
| | | | - Jacó J Mattos
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Afonso C D Bainy
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Eduardo A de Almeida
- Environmental Engineering Post-Graduation Program, University of Blumenau, Blumenau, SC, Brazil.
| |
Collapse
|
5
|
Wang H, Liu Y, Chai L, Wang H. Effects of nitrite exposure on metamorphosis and skeletal development of Bufo gargarizans. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:51847-51859. [PMID: 35253106 DOI: 10.1007/s11356-022-19468-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Nitrite, as a part of nitrogen cycle, is one of the most common toxic compounds in aquatic ecosystems. Since skeletal development is an essential process during amphibian metamorphosis, exposure of larval amphibians to nitrite might disrupt skeletal development. To evaluate whether nitrite affects skeletal development of amphibian larvae, Bufo gargarizans larvae at Gs26 were exposed to 10, 100, 500 and 1000 μg/L nitrite-nitrogen (NO2-N) in the present study. The metamorphosis rate, body weight, body length, forelimb length and hindlimb length of B. gargarizans exposed to NO2-N were decreased. The microscopic structures of thyroid gland were altered under NO2-N exposure at Gs42. The skeletal lengths of the humerus, femur and fibulare of tadpole at Gs42 were significantly reduced under 100, 500 and 1000 μg/L NO2-N treatment groups, and the lengths of humerus, tibia-fibula and tibiale of tadpole at Gs46 were significantly reduced under 1000 μg/L NO2-N treatment groups. In addition, the expression levels of thyroid hormone (TH) and endochondral ossification-related genes of tadpoles at Gs42 and Gs46 were tested by qRT-PCR. Overall, NO2-N exposure could affect the expressions of these genes and then may influence the activity and function of thyroid gland, further disturbing the amphibian metamorphosis and skeletal development of amphibian larvae.
Collapse
Affiliation(s)
- Hemei Wang
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Yutian Liu
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Lihong Chai
- School of Water and Environment, Chang'an University, Xi'an 710054, China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, 710062, China
| | - Hongyuan Wang
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
6
|
Sudo R, Yada T. Anguillid Eels as a Model Species for Understanding Endocrinological Influences on the Onset of Spawning Migration of Fishes. BIOLOGY 2022; 11:biology11060934. [PMID: 35741455 PMCID: PMC9219620 DOI: 10.3390/biology11060934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/13/2022] [Accepted: 06/16/2022] [Indexed: 11/21/2022]
Abstract
Simple Summary Endocrine regulation has been thought to play a major role in the onset of migration. Anguillid eels provide a good model for studying the onset mechanisms of migrations to breeding areas, because the process of the onset of migration occurs in inland waters. In this review, we summarize information about the silvering process in anguillid eels and the dynamics of mRNA expression of neurohormones and pituitary hormones, thyroid hormones, and sex steroids associated with the onset of the spawning migration. We also provide new results. Because 11-KT drastically increases during silvering, the role of 11-KT in the onset of spawning migration was discussed in detail. Abstract Anguillid eels are the iconic example of catadromous fishes, because of their long-distance offshore spawning migrations. They are also a good model for research on the onset mechanisms of migrations to breeding areas, because the migrations begin in inland waters. When eels transform from yellow eels to silver eels, it is called silvering. Silver eels show various synchronous external and internal changes during silvering, that include coloration changes, eye-size increases, and gonadal development, which appear to be pre-adaptations to the oceanic environment and for reproductive maturation. A strong gonadotropic axis activation occurs during silvering, whereas somatotropic and thyrotropic axes are not activated. Among various hormones, 11-ketotestosterone (11-KT) drastically increases during spawning migration onset. Gradual water temperature decreases simulating the autumn migratory season, inducing 11-KT increases. Administration of 11-KT appeared to cause changes related to silvering, such as early-stage oocyte growth and eye enlargement. Moreover, 11-KT may be an endogenous factor that elevates the migratory drive needed for the spawning migration onset. These findings suggested that water temperature decreases cause 11-KT to increase in autumn and this induces silvering and increases migratory drive. In addition, we newly report that 11-KT is associated with a corticotropin-releasing hormone that influences migratory behavior of salmonids. This evidence that 11-KT might be among the most important factors in the spawning migration onset of anguillid eels can help provide useful knowledge for understanding endocrinological mechanisms of the initiation of spawning migrations.
Collapse
Affiliation(s)
- Ryusuke Sudo
- Fisheries Technology Institute, Minamiizu Field Station, Japan Fisheries Research and Education Agency, Minamiizu, Kamo, Shizuoka 415-0156, Japan
- Correspondence: ; Tel.: +81-558-65-1185; Fax: +81-558-65-1188
| | - Takashi Yada
- Fisheries Technology Institute, Nikko Field Station, Japan Fisheries Research and Education Agency, Chugushi, Nikko 321-1661, Japan;
| |
Collapse
|
7
|
Chen A, Deng H, Song X, Liu X, Chai L. Effects of Separate and Combined Exposure of Cadmium and Lead on the Endochondral Ossification in Bufo gargarizans. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:1228-1245. [PMID: 35040517 DOI: 10.1002/etc.5296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/12/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Cadmium (Cd) and lead (Pb) are ubiquitous in aquatic environments and most studies have examined the potential effects of Cd or Pb alone on aquatic organisms. In the present study, chronic effects of Cd and Pb, alone and in combination, on Bufo gargarizans were investigated by exposing embryos to these contaminants throughout metamorphosis. Significant reductions in body mass and snout-to-vent length were observed in B. gargarizans at Gosner stage 42 (Gs 42) and Gs 46 exposed to a Cd/Pb mixture. Single and combined exposure with Cd and Pb induced histological alterations of the thyroid gland characterized by reduced colloid area and thickness of epithelial cells. There was a significant decrease in the maximum jump distance of froglets exposed to Cd alone and the Cd/Pb mixture, and the jumping capacity showed a positive correlation with hind limb length and tibia/fibula. Moreover, single metals and their mixture induced reduction of endochondral bone formation in B. gargarizans. Transcriptomic and real-time quantitative polymerase chain reaction results showed that genes involved in skeletal ossification (TRα, TRβ, Dio2, Dio3, MMP9, MMP13, Runx1, Runx2, and Runx3) were transcriptionally dysregulated by Cd and Pb exposure alone or in combination. Our results suggested that despite the low concentration tested, the Cd/Pb mixture induced more severe impacts on B. gargarizans. In addition, the Cd/Pb mixture might reduce chances of survival for B. gargarizans froglets by decreasing size at metamorphosis, impaired skeletal ossification, and reduction in jumping ability, which might result from dysregulation of genes involved in thyroid hormone action and endochondral ossification. The findings obtained could add a new dimension to understanding of the mechanisms underpinning skeletal ossification response to heavy metals in amphibians. Environ Toxicol Chem 2022;41:1228-1245. © 2022 SETAC.
Collapse
Affiliation(s)
- Aixia Chen
- School of Water and Environment, Chang'an University, Xi'an, China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, China
| | - Hongzhang Deng
- School of Water and Environment, Chang'an University, Xi'an, China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, China
| | - Xiuling Song
- School of Water and Environment, Chang'an University, Xi'an, China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, China
| | - Xiaoli Liu
- School of Water and Environment, Chang'an University, Xi'an, China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, China
| | - Lihong Chai
- School of Water and Environment, Chang'an University, Xi'an, China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, China
| |
Collapse
|
8
|
Guerrero-Peña L, Suarez-Bregua P, Méndez-Martínez L, García-Fernández P, Tur R, Rubiolo JA, Tena JJ, Rotllant J. Brains in Metamorphosis: Temporal Transcriptome Dynamics in Hatchery-Reared Flatfishes. BIOLOGY 2021; 10:biology10121256. [PMID: 34943172 PMCID: PMC8698573 DOI: 10.3390/biology10121256] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 04/12/2023]
Abstract
Metamorphosis is a captivating process of change during which the morphology of the larva is completely reshaped to face the new challenges of adult life. In the case of fish, this process initiated in the brain has traditionally been considered to be a critical rearing point and despite the pioneering molecular work carried out in other flatfishes, the underlying molecular basis is still relatively poorly characterized. Turbot brain transcriptome of three developmental stages (pre-metamorphic, climax of metamorphosis and post-metamorphic) were analyzed to study the gene expression dynamics throughout the metamorphic process. A total of 1570 genes were differentially expressed in the three developmental stages and we found a specific pattern of gene expression at each stage. Unexpectedly, at the climax stage of metamorphosis, we found highly expressed genes related to the immune response, while the biological pathway enrichment analysis in pre-metamorphic and post-metamorphic were related to cell differentiation and oxygen carrier activity, respectively. In addition, our results confirm the importance of thyroid stimulating hormone, increasing its expression during metamorphosis. Based on our findings, we assume that immune system activation during the climax of metamorphosis stage could be related to processes of larval tissue inflammation, resorption and replacement, as occurs in other vertebrates.
Collapse
Affiliation(s)
- Laura Guerrero-Peña
- Aquatic Biotechnology Lab., Institute of Marine Research, Spanish National Research Council (IIM-CSIC), 36208 Vigo, Spain; (L.G.-P.); (L.M.-M.)
| | - Paula Suarez-Bregua
- Aquatic Biotechnology Lab., Institute of Marine Research, Spanish National Research Council (IIM-CSIC), 36208 Vigo, Spain; (L.G.-P.); (L.M.-M.)
- Correspondence: (P.S.-B.); (J.R.)
| | - Luis Méndez-Martínez
- Aquatic Biotechnology Lab., Institute of Marine Research, Spanish National Research Council (IIM-CSIC), 36208 Vigo, Spain; (L.G.-P.); (L.M.-M.)
| | | | - Ricardo Tur
- Nueva Pescanova Biomarine Center, S.L., 36980 O Grove, Spain; (P.G.-F.); (R.T.)
| | - Juan A. Rubiolo
- Facultad de Ciencias Bioquímicas y Farmacéuticas-Centro Científico y Tecnológico Acuario del Río Paraná, Universidad Nacional de Rosario, Rosario S2002LRK, Argentina;
- Departamento de Genética, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain
| | - Juan J. Tena
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide, 41013 Sevilla, Spain;
| | - Josep Rotllant
- Aquatic Biotechnology Lab., Institute of Marine Research, Spanish National Research Council (IIM-CSIC), 36208 Vigo, Spain; (L.G.-P.); (L.M.-M.)
- Correspondence: (P.S.-B.); (J.R.)
| |
Collapse
|
9
|
Oxidative Stress Parameters in Goitrogen-Exposed Crested Newt Larvae ( Triturus spp.): Arrested Metamorphosis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18189653. [PMID: 34574576 PMCID: PMC8464833 DOI: 10.3390/ijerph18189653] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/04/2021] [Accepted: 09/09/2021] [Indexed: 11/17/2022]
Abstract
Thiourea is an established disruptor of thyroid hormone synthesis and is frequently used as an inhibitor of metamorphosis. The changes caused by thiourea can affect processes associated with the oxidative status of individuals (metabolic rate, the HPI axis, antioxidant system). We investigated the parameters of oxidative stress in crested newt (Triturus spp.) larvae during normal development in late larval stage 62 and newly metamorphosed individuals, and during thiourea-stimulated metamorphosis arrest in individuals exposed to low (0.05%) and high (0.1%) concentrations of thiourea. Both groups of crested newts exposed to thiourea retained their larval characteristics until the end of the experiment. The low activities of antioxidant enzymes and the high lipid peroxidation level pointed to increased oxidative stress in larvae at the beginning of stage 62 as compared to fully metamorphosed individuals. The activities of catalase (CAT) and glutathione-S-transferase (GST) and the concentration of sulfhydryl (SH) groups were significantly lower in larvae reared in aqueous solutions containing thiourea than in newly metamorphosed individuals. The high thiourea concentration (0.1%) affected the antioxidative parameters to the extent that oxidative damage could not be avoided, contrary to a lower concentration. Our results provide a first insight into the physiological adaptations of crested newts during normal development and simulated metamorphosis arrest.
Collapse
|
10
|
Aman AJ, Kim M, Saunders LM, Parichy DM. Thyroid hormone regulates abrupt skin morphogenesis during zebrafish postembryonic development. Dev Biol 2021; 477:205-218. [PMID: 34089732 PMCID: PMC10069294 DOI: 10.1016/j.ydbio.2021.05.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 10/21/2022]
Abstract
Thyroid hormone is a key regulator of post-embryonic vertebrate development. Skin is a biomedically important thyroid hormone target organ, but the cellular and molecular mechanisms underlying skin pathologies associated with thyroid dysfunction remain obscure. The transparent skin of zebrafish is an accessible model system for studying vertebrate skin development. During post-embryonic development of the zebrafish, scales emerge in the skin from a hexagonally patterned array of dermal papillae, like other vertebrate skin appendages such as feathers and hair follicles. We show here that thyroid hormone regulates the rate of post-embryonic dermal development through interaction with nuclear hormone receptors. This couples skin development with body growth to generate a well ordered array of correctly proportioned scales. This work extends our knowledge of thyroid hormone actions on skin by providing in-vivo evidence that thyroid hormone regulates multiple aspects of dermal development.
Collapse
Affiliation(s)
- Andrew J Aman
- Department of Biology, University of Virginia, Charlottesville, VA, 22903, USA
| | - Margaret Kim
- Department of Biology, University of Virginia, Charlottesville, VA, 22903, USA
| | - Lauren M Saunders
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA
| | - David M Parichy
- Department of Biology, University of Virginia, Charlottesville, VA, 22903, USA; Department of Cell Biology, University of Virginia, Charlottesville, VA, 22903, USA.
| |
Collapse
|
11
|
Babalola OO, Truter JC, Archer E, van Wyk JH. Exposure Impacts of Environmentally Relevant Concentrations of a Glufosinate Ammonium Herbicide Formulation on Larval Development and Thyroid Histology of Xenopus laevis. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 80:717-725. [PMID: 32948887 DOI: 10.1007/s00244-020-00758-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 09/05/2020] [Indexed: 06/11/2023]
Abstract
Thyroid hormones play critical roles in body growth and development as well as reproduction. They also influence the activities of a wider variety of tissues and biological functions, such as osmoregulation, metabolism, and especially metamorphosis in organisms, such as frogs. These complex activities of thyroid hormones are prone to disruption by agricultural pesticides, often leading to modulation of growth and the reproductive system in particular. These substances include Glufosinate ammonium, Glyphosates, Imazapyr, Penoxsulam, and Diquat dibromide among other herbicides. In this study, the standardized Xenopus Metamorphosis Assay protocol was used to assess the potential thyroid-modulatory properties of the Glufosinate ammonium Basta formulation, at relevant environmental concentrations (0.05 mg/L, 0.15 mg/L, and 0.25 mg/L) for 21 days. The results showed that this formulation only reduced the hind-limb length among the morphological endpoints. Histological evaluation showed that the mean thyroid gland area and the mean thyroidal follicle epithelium height were significantly increased following 0.15 and 0.25 mg/L exposures. The present study confirmed that this Basta formulation interacts with the thyroid axis and therefore potentially pose health hazard to amphibian in particular and potentially metamorphic aquatic vertebrates. Furthermore, the result is a signal of inherent potential thyroid disrupting activities that must be further investigated and characterised in some of the aquatic herbicide formulations to safeguard the aquatic biodiversity.
Collapse
Affiliation(s)
- Oluwaseun O Babalola
- Department of Botany and Zoology, Stellenbosch University, Stellenbosch, South Africa.
- Zoology and Environmental Biology, Lagos State University, Lagos, Nigeria.
| | - J Christoff Truter
- Department of Botany and Zoology, Stellenbosch University, Stellenbosch, South Africa
- Department of Paraclinical Sciences, University of Pretoria, Pretoria, South Africa
| | - Edward Archer
- Department of Botany and Zoology, Stellenbosch University, Stellenbosch, South Africa
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| | - Johannes H van Wyk
- Department of Botany and Zoology, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
12
|
Chen X, Ren C, Teng Y, Shen Y, Wu M, Xiao H, Wang H. Effects of temperature on growth, development and the leptin signaling pathway of Bufo gargarizans. J Therm Biol 2020; 96:102822. [PMID: 33627262 DOI: 10.1016/j.jtherbio.2020.102822] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 11/27/2022]
Abstract
Climate change is one of the most important causes of the decline in amphibians. Changes in temperature have an important effect on the growth and development and energy metabolism of amphibians. The aim of this study is to unravel the effects of temperature on the leptin signaling pathway of Bufo gargarizans and its molecular mechanisms. Our results showed that high temperature accelerated the development rate of tadpoles, but reduced body size and mass, while low temperature deferred the development of tadpoles, but increased size and mass. Both high temperature and low temperature exposure caused pathological damage of the liver in B. gargarizans. The results of RT-qPCR revealed that the high temperature treatment significantly upregulated the transcript levels of genes related to thyroid hormone (DIO2 (D2), Thyroid Hormone Receptor-α (TRα)) and the leptin signaling pathway (Leptin Receptor (LepR), Janus kinase 1 (JAK1), Janus kinase 2 (JAK2), Tyrosine kinase 2 (TYK2), Signal Transducer And Activator Of Transcription 3 (STAT3), Signal Transducer And Activator Of Transcription 3.1 (STAT3.1), and Signal Transducer And Activator Of Transcription 6 (STAT6)), while there was a decrease of mRNA expression of these genes (TRα, Thyroid Hormone Receptor-Beta (TRβ), LepR, JAK1, and TYK2) in the liver of tadpoles exposed to high temperature compared with the intermediate temperature treatment. Therefore, our results suggested that temperature extremes might interfere with the thyroid and leptin signaling pathways and affect the growth and development of B. gargarizans. Furthermore, tissue injury of the liver could occur due to exposure to temperature extremes. This work promotes public awareness of environmental protection and species conservation needs, also provides valuable experimental data and a theoretical basis for the protection of amphibians.
Collapse
Affiliation(s)
- Xiaoyan Chen
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, China
| | - Chaolu Ren
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, China
| | - Yiran Teng
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, China
| | - Yujia Shen
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, China
| | - Minyao Wu
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, China
| | - Hui Xiao
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, China
| | - Hongyuan Wang
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, China.
| |
Collapse
|
13
|
Development of yeast reporter assays for the enhanced detection of environmental ligands of thyroid hormone receptors α and β from Xenopus tropicalis. Toxicol In Vitro 2016; 37:15-24. [PMID: 27544454 DOI: 10.1016/j.tiv.2016.08.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 06/10/2016] [Accepted: 08/16/2016] [Indexed: 11/21/2022]
Abstract
Thyroid hormones (THs) are involved in the regulation of metabolic homeostasis during the development and differentiation of vertebrates, particularly amphibian metamorphosis, which is entirely controlled by internal TH levels. Some artificial chemicals have been shown to exhibit TH-disrupting activities. In order to detect TH disruptors for amphibians, we herein developed a reporter assay using yeast strains expressing the thyroid hormone receptors (TRs) α and β together with the transcriptional coactivator SRC-1, all of which were derived from the frog Xenopus tropicalis (XT). These yeast strains responded to endogenous THs (T2, T3, and T4) in a dose-dependent manner. They detected the TR ligand activities of some artificial chemicals suspected to exhibit TH-disrupting activities, as well as TR ligand activity in river water collected downstream of sewage plant discharges, which may have originated from human excrement. Moreover, the responses of XT TR strains to these endogenous and artificial ligands were stronger than those of yeast strains for human TRα and β assays, which had previously been established in our laboratory. These results indicate that the yeast reporter assay system for XT TRα and β is valuable for assessing TR ligand activities in environmental samples that may be particularly potent in amphibians.
Collapse
|
14
|
Gomes AS, Alves RN, Rønnestad I, Power DM. Orchestrating change: The thyroid hormones and GI-tract development in flatfish metamorphosis. Gen Comp Endocrinol 2015; 220:2-12. [PMID: 24975541 DOI: 10.1016/j.ygcen.2014.06.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 06/06/2014] [Accepted: 06/10/2014] [Indexed: 10/25/2022]
Abstract
Metamorphosis in flatfish (Pleuronectiformes) is a late post-embryonic developmental event that prepares the organism for the larval-to-juvenile transition. Thyroid hormones (THs) play a central role in flatfish metamorphosis and the basic elements that constitute the thyroid axis in vertebrates are all present at this stage. The advantage of using flatfish to study the larval-to-juvenile transition is the profound change in external morphology that accompanies metamorphosis making it easy to track progression to climax. This important lifecycle transition is underpinned by molecular, cellular, structural and functional modifications of organs and tissues that prepare larvae for a successful transition to the adult habitat and lifestyle. Understanding the role of THs in the maturation of organs and tissues with diverse functions during metamorphosis is a major challenge. The change in diet that accompanies the transition from a pelagic larvae to a benthic juvenile in flatfish is associated with structural and functional modifications in the gastrointestinal tract (GI-tract). The present review will focus on the maturation of the GI-tract during metamorphosis giving particular attention to organogenesis of the stomach a TH triggered event. Gene transcripts and biological processes that are associated with GI-tract maturation during Atlantic halibut metamorphosis are identified. Gene ontology analysis reveals core biological functions and putative TH-responsive genes that underpin TH-driven metamorphosis of the GI-tract in Atlantic halibut. Deciphering the specific role remains a challenge. Recent advances in characterizing the molecular, structural and functional modifications that accompany the appearance of a functional stomach in Atlantic halibut are considered and future research challenges identified.
Collapse
Affiliation(s)
- A S Gomes
- Department of Biology, University of Bergen, 5020 Bergen, Norway
| | - R N Alves
- Centre for Marine Sciences (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - I Rønnestad
- Department of Biology, University of Bergen, 5020 Bergen, Norway
| | - D M Power
- Centre for Marine Sciences (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| |
Collapse
|
15
|
Santillo A, Burrone L, Ferrara D, Minucci S, Pinelli C, Chieffi Baccari G. Thyroid hormone receptor-β gene expression in the brain of the frog Pelophylax esculentus: seasonal, hormonal and temperature regulation. Gen Comp Endocrinol 2012; 178:511-8. [PMID: 22841764 DOI: 10.1016/j.ygcen.2012.07.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 07/02/2012] [Accepted: 07/15/2012] [Indexed: 11/25/2022]
Abstract
Thyroid hormone receptor-β (trβ) cDNA was identified in the adult of Pelophylax esculentus (previously: Rana esculenta), a seasonally breeding species, in order to detect spatial brain trβ expression, its levels through the seasons and in response to 6-n-propyl-2-thiouracil, T(4) and T(3) administrations as well as to thermal manipulations. The deduced amino acid sequence of P. esculentus trβ showed a high similarity to the homologous of other vertebrates. By in situ hybridization we found trβ mRNA signal in the anterior preoptic nucleus, the habenulae, the hypothalamic-pituitary region and the ependyma. Brain trβ transcript levels varied through the seasons, and they were well correlated with brain T(4) levels but only partially with T(3) levels. Experimentally-induced hypothyroidism decreased brain trβ expression. The administration of exogenous thyroid hormones increased brain trβ expression, with T(4) appearing more potent than T(3). The experiments of thermal manipulations further strengthen the hypothesis that T(4) is more effective than T(3) in brain trβ regulation. This study also shows that, as in other vertebrates, deiodinase enzymes could modulate trβ expression via thyroid hormone regulation.
Collapse
Affiliation(s)
- Alessandra Santillo
- Dipartimento di Scienze della Vita, Seconda Università di Napoli, via Vivaldi 43, 81100 Caserta, Italy
| | | | | | | | | | | |
Collapse
|
16
|
Miyata K, Ose K. Thyroid Hormone-disrupting Effects and the Amphibian Metamorphosis Assay. J Toxicol Pathol 2012; 25:1-9. [PMID: 22481853 PMCID: PMC3320151 DOI: 10.1293/tox.25.1] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 12/05/2011] [Indexed: 11/19/2022] Open
Abstract
There are continued concerns about endocrine-disrupting chemical effects, and appropriate vertebrate models for assessment of risk are a high priority. Frog tadpoles are very sensitive to environmental substances because of their habitat and the complex processes of metamorphosis regulated by the endocrine system, mainly thyroid hormones. During metamorphosis, marked alteration in hormonal factors occurs, as well as dramatic structural and functional changes in larval tissues. There are a variety of mechanisms determining thyroid hormone balance or disruption directly or indirectly. Direct-acting agents can cause changes in thyroxine synthesis and/or secretion in thyroid through effects on peroxidases, thyroidal iodide uptake, deiodinase, and proteolysis. At the same time, indirect action may result from biochemical processes such as sulfation, deiodination and glucuronidation. Because their potential to disrupt thyroid hormones has been identified as an important consideration for the regulation of chemicals, the OECD and the EPA have each established guidelines that make use of larval African clawed frogs (Xenopus laevis) and frog metamorphosis for screening and testing of potential endocrine disrupters. The guidelines are based on evaluation of alteration in the hypothalamic-pituitary-thyroid axis. One of the primary endpoints is thyroid gland histopathology. Others are mortality, developmental stage, hind limb length, snout-vent length and wet body weight. Regarding histopathological features, the guidelines include core criteria and additional qualitative parameters along with grading. Taking into account the difficulties in evaluating amphibian thyroid glands, which change continuously throughout metamorphosis, histopathological examination has been shown to be a very sensitive approach.
Collapse
Affiliation(s)
- Kaori Miyata
- Environmental Health Science Laboratory, Sumitomo Chemical Company Limited, 1-98 Kasugadenaka 3 chome, Konohana-ku, Osaka 554-8558, Japan
| | | |
Collapse
|
17
|
Hasebe T, Kajita M, Iwabuchi M, Ohsumi K, Ishizuya-Oka A. Thyroid hormone-regulated expression of nuclear lamins correlates with dedifferentiation of intestinal epithelial cells during Xenopus laevis metamorphosis. Dev Genes Evol 2011; 221:199-208. [PMID: 21866414 DOI: 10.1007/s00427-011-0371-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2011] [Accepted: 07/04/2011] [Indexed: 11/26/2022]
Abstract
In the Xenopus laevis intestine during metamorphosis, which is triggered by thyroid hormone (TH), the adult epithelium develops and replaces the larval one undergoing apoptosis. We have previously shown that progenitor/stem cells of the adult epithelium originate from some differentiated larval epithelial cells. To investigate molecular mechanisms underlying larval epithelial dedifferentiation into the adult progenitor/stem cells, we here focused on nuclear lamin A (LA) and lamin LIII (LIII), whose expression is generally known to be correlated with the state of cell differentiation. We analyzed the spatiotemporal expression of LA and LIII during X. laevis intestinal remodeling by reverse transcription PCR, Western blotting, and immunohistochemistry. At the onset of natural metamorphosis, when the adult epithelial progenitor cells appear as small islets, the expression of LA is down-regulated, but that of LIII is up-regulated only in the islets. Then, as the adult progenitor cells differentiate, the expression of LA is up-regulated, whereas that of LIII is down-regulated in the adult cells. As multiple intestinal folds form, adult epithelial cells positive for LIII become restricted only to the troughs of the folds. In addition, we have shown that TH up- or down-regulates the expression of these lamins in the premetamorphic intestine as during natural metamorphosis. These results indicate that TH-regulated expression of LA and LIII closely correlates with dedifferentiation of the epithelial cells in the X. laevis intestine, suggesting the involvement of the lamins in the process of dedifferentiation during amphibian metamorphosis.
Collapse
Affiliation(s)
- Takashi Hasebe
- Department of Biology, Nippon Medical School, 2-297-2 Kosugi-cho, Nakahara-ku, Kawasaki, Kanagawa 211-0063, Japan
| | | | | | | | | |
Collapse
|
18
|
Heimeier RA, Shi YB. Amphibian metamorphosis as a model for studying endocrine disruption on vertebrate development: effect of bisphenol A on thyroid hormone action. Gen Comp Endocrinol 2010; 168:181-9. [PMID: 20178801 DOI: 10.1016/j.ygcen.2010.02.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 02/17/2010] [Accepted: 02/18/2010] [Indexed: 10/19/2022]
Abstract
Thyroid hormone (TH) is essential for proper development in vertebrates. TH deficiency during gestation and early postnatal development produces severe neurological, skeletal, metabolism and growth abnormalities. It is therefore important to consider environmental chemicals that may interfere with TH signaling. Exposure to environmental contaminants that disrupt TH action may underlie the increasing incidence of human developmental disorders worldwide. One contaminant of concern is the xenoestrogen bisphenol A (BPA), a chemical widely used to manufacture polycarbonate plastics and epoxy resins. The difficulty in studying uterus-enclosed mammalian embryos has hampered the analysis on the direct effects of BPA during vertebrate development. As TH action at the cellular level is highly conserved across vertebrate species, amphibian metamorphosis serves as an important TH-dependent in vivo vertebrate model for studying potential contributions of BPA toward human developmental disorders. Using Xenopus laevis as a model, we and others have demonstrated the inhibitory effects of BPA exposure on metamorphosis. Genome-wide gene expression analysis revealed that surprisingly, BPA primarily targets the TH-signaling pathway essential for metamorphosis in Xenopus laevis. Given the importance of the genomic effects of TH during metamorphosis and the conservation in its regulation in higher vertebrates, these observations suggest that the effect of BPA in human embryogenesis is through the inhibition of the TH pathway and warrants further investigation. Our findings further argue for the critical need to use in vivo animal models coupled with systematic molecular analysis to determine the developmental effects of endocrine disrupting compounds.
Collapse
Affiliation(s)
- Rachel A Heimeier
- Institute of Environmental Medicine, Karolinska Institutet, Nobels väg 13, S-171 77 Stockholm, Sweden.
| | | |
Collapse
|
19
|
Gene switching at Xenopus laevis metamorphosis. Dev Biol 2009; 338:117-26. [PMID: 19896938 DOI: 10.1016/j.ydbio.2009.10.041] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Revised: 10/28/2009] [Accepted: 10/28/2009] [Indexed: 11/24/2022]
Abstract
During the climax of amphibian metamorphosis many tadpole organs remodel. The different remodeling strategies are controlled by thyroid hormone (TH). The liver, skin, and tail fibroblasts shut off tadpole genes and activate frog genes in the same cell without DNA replication. We refer to this as "gene switching". In contrast, the exocrine pancreas and the intestinal epithelium dedifferentiate to a progenitor state and then redifferentiate to the adult cell type. Tadpole and adult globin are not present in the same cell. Switching from red cells containing tadpole-specific globin to those with frog globin in the liver occurs at a progenitor cell stage of development and is preceded by DNA replication. Red cell switching is the only one of these remodeling strategies that resembles a stem cell mechanism.
Collapse
|
20
|
Fort DJ, Degitz S, Tietge J, Touart LW. The Hypothalamic-Pituitary-Thyroid (HPT) Axis in Frogs and Its Role in Frog Development and Reproduction. Crit Rev Toxicol 2008; 37:117-61. [PMID: 17364707 DOI: 10.1080/10408440601123545] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Metamorphosis of the amphibian tadpole is a thyroid hormone (TH)-dependent developmental process. For this reason, the tadpole is considered to be an ideal bioassay system to identify disruption of thyroid function by environmental contaminants. Here we provide an in-depth review of the amphibian thyroid system with particular focus on the role that TH plays in metamorphosis. The amphibian thyroid system is similar to that of mammals and other tetrapods. We review the amphibian hypothalamic-pituitary-thyroid (HPT) axis, focusing on thyroid hormone synthesis, transport, and metabolism. We also discuss the molecular mechanisms of TH action, including the role of TH receptors, the actions of TH on organogenesis, and the mechanisms that underlie the pleiotropic actions of THs. Finally, we discuss methods for evaluating thyroid disruption in frogs, including potential sites of action, relevant endpoints, candidate protocols for measuring thyroid axis disruption, and current gaps in our knowledge. The utility of amphibian metamorphosis as a model for evaluating thyroid axis disruption has recently led to the development of a bioassay using Xenopus laevis.
Collapse
Affiliation(s)
- Douglas J Fort
- Fort Environmental Laboratories, Stillwater, Oklahoma 74074, USA.
| | | | | | | |
Collapse
|
21
|
Halliday DCT, Kennedy GC, Hamilton NHR, Tarmo S, Alderman J, Siddon NA, Robinson AJ. Genes induced during the early developmental stages of the Cane Toad, Bufo (Chaunus) marinus. Gene Expr Patterns 2008; 8:424-432. [PMID: 18541458 DOI: 10.1016/j.gep.2008.04.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2007] [Revised: 02/25/2008] [Accepted: 04/19/2008] [Indexed: 11/17/2022]
Abstract
Metamorphosis, a critical stage in the development of toads and frogs, involves rapid levels of morphological change. In the current study, we have used microarray analysis to identify shifts in gene expression between tadpole and toadlet stages of the cane toad, Bufo (Chaunus) marinus. Here, we report on nine genes that show the greatest induction during metamorphosis; the gut-associated gastrokine and trefoil factor, blood components haemoglobins alpha/beta, apolipoprotein and serum albumin, a nasal gene olfactomedin, a lens gene gamma-crystallin, and a novel gene with low homology to frog harderin. We present both temporal and spatial expression patterns of these genes identified in developing and adult cane toads. This study extends our knowledge of the molecular basis of toad metamorphosis, and not only offers insights to the genes induced during the general remodelling that occurs but also reveals possible targets for control and manipulation of amphibian pest species, for example, the cane toad in Australia.
Collapse
Affiliation(s)
- Damien C T Halliday
- CSIRO Entomology, Clunies Ross Street, GPO Box 1700, Canberra, ACT 2601, Australia.
| | | | | | | | | | | | | |
Collapse
|
22
|
Kostich MS, Lazorchak JM. Risks to aquatic organisms posed by human pharmaceutical use. THE SCIENCE OF THE TOTAL ENVIRONMENT 2008; 389:329-39. [PMID: 17936335 DOI: 10.1016/j.scitotenv.2007.09.008] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2007] [Revised: 09/11/2007] [Accepted: 09/11/2007] [Indexed: 05/18/2023]
Abstract
In order to help prioritize future research efforts within the US, risks associated with exposure to human prescription pharmaceutical residues in wastewater were estimated from marketing and pharmacological data. Masses of 371 active pharmaceutical ingredients (APIs) dispensed in the US in 2004 were estimated from marketing data, and then divided by therapeutic dose rate to normalize for potency. Metabolic inactivation of the 50 most dispensed APIs was estimated from published data, and active metabolites were tabulated. Comparing maximum likely average wastewater concentrations of API-associated activity to exposure rates that produce therapeutic effects in humans suggests that the threat to healthy human adults from aquatic exposure is low, even when likely mixture effects are considered. Comparing predicted wastewater concentrations to human therapeutic plasma concentrations suggests that some APIs may be present at sufficient concentrations to affect organisms which eliminate them inefficiently. Comparing predicted antimicrobial concentrations to published minimum inhibitory concentrations suggests that antibacterial APIs in wastewater, but probably not antifungal APIs, may select for low-level antimicrobial resistance. The taxonomic distribution of molecular targets of the 50 most dispensed APIs suggests that potential effects of some APIs are likely restricted to vertebrates, while other APIs can probably affect many eukaryotic and prokaryotic clades.
Collapse
Affiliation(s)
- Mitchell S Kostich
- Ecological Exposure Research Division, U.S. Environmental Protection Agency, 26 W. Martin Luther King Drive, Cincinnati, OH 45268, USA.
| | | |
Collapse
|
23
|
Hasebe T, Kajita M, Fujimoto K, Yaoita Y, Ishizuya-Oka A. Expression profiles of the duplicated matrix metalloproteinase-9 genes suggest their different roles in apoptosis of larval intestinal epithelial cells duringXenopus laevis metamorphosis. Dev Dyn 2007; 236:2338-45. [PMID: 17654707 DOI: 10.1002/dvdy.21252] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Matrix metalloproteinases (MMPs) play a pivotal role in development and/or pathogenesis through degrading extracellular matrix (ECM) components. We have previously shown that Xenopus MMP-9 gene is duplicated. To assess possible roles of MMP-9 and MMP-9TH in X. laevis intestinal remodeling, we here analyzed their expression profiles by in situ hybridization and show that their expression is transiently up-regulated during thyroid hormone-dependent metamorphosis. Of interest, MMP-9TH mRNA is strictly localized in the connective tissue and most highly expressed just beneath the larval epithelium that begins to undergo apoptosis. On the other hand, cells expressing MMP-9 mRNA become first detectable in the connective tissue and then, after the start of epithelial apoptosis, also in the larval epithelium. These results strongly suggest that MMP-9TH is responsible in the larval epithelial apoptosis through degrading ECM components in the basal lamina, whereas MMP-9 is involved in the removal of dying epithelial cells during amphibian intestinal remodeling.
Collapse
Affiliation(s)
- Takashi Hasebe
- Department of Biology, Nippon Medical School, Nakahara-ku, Kawasaki, Kanagawa, Japan
| | | | | | | | | |
Collapse
|
24
|
Balch GC, Vélez-Espino LA, Sweet C, Alaee M, Metcalfe CD. Inhibition of metamorphosis in tadpoles of Xenopus laevis exposed to polybrominated diphenyl ethers (PBDEs). CHEMOSPHERE 2006; 64:328-38. [PMID: 16455129 DOI: 10.1016/j.chemosphere.2005.12.019] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Tadpoles of the African clawed frog, Xenopus laevis were exposed, beginning at stage 50, to a commercial pentabromodiphenyl ether mixture (DE-71) through the diet. Subsequent experiments were conducted using a single intraperitoneal injection at stage 58 with limited quantities of two purified brominated diphenyl ether (BDE) congeners, BDE47 and BDE99 and DE-71 to determine the relative potency of these BDE congeners within the commercial mixture. Significant inhibition of tail resorption, delayed metamorphosis and impacts on skin pigmentation were observed in Xenopus exposed to DE-71 in the diet at nominal doses of 1000 and 5000 microgg(-1) of food. The estimated time required for 50% of the tadpoles to complete metamorphosis was significantly lengthened in Xenopus exposed to a dietary concentration of 1 microg DE-71 per gram of food. Analysis of PBDEs (sum of 32 congeners) in Xenopus from the treatment with 5000 microgg(-1) of DE-71 indicated that the frogs accumulated an average of 1030 microgg(-1) (wet weight) of PBDEs. In the intraperitoneal injection trials, similar inhibitory responses were observed in Xenopus injected with DE-71 at a nominal dose of 60 microg per tadpole, or injected with BDE47 at a nominal dose of 100 microg per tadpole. No responses were observed in Xenopus injected with BDE99 at doses up to 100 microg per tadpole. Complete inhibition of metamorphosis was observed only in the highest DE-71 dietary treatment. The results of this study are consistent with a mechanism of action of PBDEs involving competitive inhibition of binding of thyroid hormones to transporter proteins, although the mechanism cannot be definitively determined from this study. The observed effects may have occurred through other mechanisms, including sublethal toxicity. The doses used in this study are greater than the levels of PBDEs to which anurans are exposed in the environment, so further studies are required to determine whether exposure to PBDEs at environmentally relevant concentrations can affect frog metamorphosis.
Collapse
Affiliation(s)
- Gordon C Balch
- Environmental and Resource Studies Program, Trent University, 1600 West Bank Drive, Peterborough, Ont., Canada
| | | | | | | | | |
Collapse
|
25
|
Furlow JD, Yang HY, Hsu M, Lim W, Ermio DJ, Chiellini G, Scanlan TS. Induction of larval tissue resorption in Xenopus laevis tadpoles by the thyroid hormone receptor agonist GC-1. J Biol Chem 2004; 279:26555-62. [PMID: 15056670 DOI: 10.1074/jbc.m402847200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
A major challenge in understanding nuclear hormone receptor function is to determine how the same ligand can cause very different tissue-specific responses. Tissue specificity may result from the presence of more than one receptor subtype arising from multiple receptor genes or alternative splicing. Recently, high affinity analogs of nuclear receptor ligands have been synthesized that show subtype selectivity. These analogs can greatly facilitate the study of receptor subtype-specific functions in organisms where mutational analysis is problematic or where it is desirable for receptors to be expressed in their normal physiological contexts. We describe here the effects of the synthetic thyroid hormone analog GC-1 on the metamorphosis of the frog Xenopus laevis. The most potent natural thyroid hormone, 3,5,3'-triidothyronine or T3, shows similar binding affinity and transactivation dose-response curves for both thyroid hormone receptor isotypes, designated TRalpha and TRbeta. GC-1, however, binds to and activates TRbeta at least an order of magnitude better than it does TRalpha. GC-1 efficiently induces death and resorption of premetamorphic tadpole tissues such as the gills and the tail, two tissues that strongly induce thyroid hormone receptor beta during metamorphosis. GC-1 has less effect on the growth of adult tissues such as the hindlimbs, which express high TRalpha levels. The effectiveness of GC-1 in inducing tail resorption and tail gene expression correlates with increasing TRbeta levels. These results illustrate the utility of subtype selective ligands as probes of nuclear receptor function in vivo.
Collapse
Affiliation(s)
- J David Furlow
- Section of Neurobiology, Physiology, and Behavior, University of California, Davis, California 95616-8519, USA.
| | | | | | | | | | | | | |
Collapse
|
26
|
Damjanovski S, Amano T, Li Q, Pei D, Shi YB. Overexpression of matrix metalloproteinases leads to lethality in transgenicXenopus laevis: Implications for tissue-dependent functions of matrix metalloproteinases during late embryonic development. Dev Dyn 2001; 221:37-47. [PMID: 11357192 DOI: 10.1002/dvdy.1123] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The extracellular matrix (ECM) functions as the structural support of cells and as a medium for cell-cell interactions. It is understood to play critical roles in development. ECM remodeling is mediated largely through the action of matrix metalloproteinases (MMPs), a family of Zn2+-dependent proteases capable of degrading various proteinaceous components of the ECM. MMPs are expressed in many developmental and pathologic processes. However, few studies have been carried out to investigate the function of MMPs during embryogenesis and postembryonic organogenesis. By using Xenopus development as a model system, we have previously shown that several MMP genes are expressed from neurulation to the completion of embryogenesis in distinct tissues/organs, suggesting that ECM remodeling during mid- to late embryogenesis occurs in an organ-specific manner. By using the recently developed transgenic technology for Xenopus laevis, we overexpressed Xenopus MMPs stromelysin-3 (ST3) and collagenase-4 (Col4) under the control of a ubiquitous promoter and observed that embryos with overexpressed ST3 or Col4, but not the control green fluorescent protein (GFP), died in a dose-dependent manner during late embryogenesis. The specificity of this embryonic lethal phenotype was confirmed by the failure of a catalytically inactive mutant of ST3 to affect development. Finally, overexpression of a mammalian membrane type-MMP also led to late embryonic lethality in Xenopus embryos, suggesting that membrane type-MMPs have functions in vivo for ECM remodeling, in addition to being activators of other pro-MMPs. These data together with the developmental expression of several MMPs during Xenopus development, suggest that MMPs play important roles during mid- to late embryogenesis and that proper regulation of MMP genes is critical for tissue morphogenesis and organogenesis.
Collapse
Affiliation(s)
- S Damjanovski
- Laboratory of Molecular Embryology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
27
|
Billoni N, Buan B, Gautier B, Gaillard O, Mahé YF, Bernard BA. Thyroid hormone receptor beta1 is expressed in the human hair follicle. Br J Dermatol 2000; 142:645-52. [PMID: 10792213 DOI: 10.1046/j.1365-2133.2000.03408.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To understand better the mechanisms by which thyroid hormone can exert its effects on the hair follicle, we looked for the expression of members of the thyroid hormone receptor (TR) family in human hair follicles. Immunoreactive TRs were detected in both dermal and epithelial compartments of the human pilosebaceous unit. Using reverse transcriptase-polymerase chain reaction, we established that TRbeta1 was the predominant form of TR expressed in the human hair follicle. In addition, we investigated the effects of 3,3', 5-triiodo-L-thyronine (T3) on the survival of human hair follicles in vitro, to understand the role of this thyroid hormone on hair follicle homeostasis. A physiological level of free T3 significantly enhanced human hair survival in vitro.
Collapse
Affiliation(s)
- N Billoni
- Life Sciences, L'OREAL Advanced Research Laboratories, L'OREAL Hair Biology Group, 90 rue du général Roguet, 92583 Clichy cedex, France
| | | | | | | | | | | |
Collapse
|