1
|
Martins Fernandes Pereira K, de Carvalho AC, Ventura Fernandes BH, Dos Santos Grecco S, Rodrigues E, da Silva Fernandes MJ, de Carvalho LRS, Nakamura MU, Guo S, Hernández RB. Systems toxicology studies reveal important insights about chronic exposure of zebrafish to Kalanchoe pinnata (Lam.) Pers leaf - KPL: Implications for medicinal use. JOURNAL OF ETHNOPHARMACOLOGY 2025; 338:119044. [PMID: 39532221 DOI: 10.1016/j.jep.2024.119044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The prevalence of depression and anxiety is high during pregnancy. Several traditional medicines use the plant Kalanchoe pinnata (Lam.) Pers. (KP) to treat emotional disorders, inflammation, and to prevent preterm delivery, but the effects on the exposed offspring and the mechanism behind these events remain unknown. AIM OF THE STUDY In this work, integrated systems toxicology (INSYSTA) was used to investigate traditional toxicological outcomes and behavioral performance in zebrafish larvae after chronic exposure (from 2 to 96 hpf) to K. pinnata leaf extracts (KPL). MATERIALS AND METHODS We investigated light/dark preference, thigmotaxis and locomotor activity parameters, followed by gene expression and systems biology approaches to discover the mechanisms behind toxicological endpoint and phenomics. RESULTS The embryos exposed to 700 mg/L KPL showed retarded development including hatching delay. Larvae exposed to 500 mg/L KPL resulted in decreased dark avoidance and increased locomotor activity, while 700 mg/L showed opposite effects. The INSYSTA revealed sixteen genes down-regulated after KPL chronic treatment; they are involved in folding, sorting, and degradation of proteins as well as DNA replication and repair mechanisms. This may result in deregulation of the organismal functions, including those of immune and endocrine systems. These physiological changes appear to make embryos more sensitive to infections and disorders that resemble 47 human diseases. CONCLUSION These findings suggest that the medicinal use of plant extracts requires strict toxicological, pharmacological, and medical supervision. At the same time, it suggests a polypharmacological pathway for KPL extract that goes beyond preventing premature delivery and controlling anxiety.
Collapse
Affiliation(s)
- Kássia Martins Fernandes Pereira
- Department of Neurology and Neurosurgery, Escola Paulista de Medicina, Universidade Federal de São Paulo, 04021-001, São Paulo, SP, Brazil.
| | | | - Bianca H Ventura Fernandes
- Technical Directorate of Support for Teaching, Research and Innovation at the Faculty of Medicine of the University of São Paulo, São Paulo, SP, Brazil.
| | - Simone Dos Santos Grecco
- Department of Chemistry, Universidade Federal de São Paulo, 09972-270, Diadema, SP, Brazil; Triplet Biotechnology Solutions, São Paulo, Brazil.
| | - Eliana Rodrigues
- Center for Ethnobotanical and Ethnopharmacological Studies, Department of Environmental Sciences, Universidade Federal de São Paulo, São Paulo, SP, Brazil.
| | - Maria José da Silva Fernandes
- Department of Neurology and Neurosurgery, Escola Paulista de Medicina, Universidade Federal de São Paulo, 04021-001, São Paulo, SP, Brazil.
| | - Luciani Renata Silveira de Carvalho
- Technical Directorate of Support for Teaching, Research and Innovation at the Faculty of Medicine of the University of São Paulo, São Paulo, SP, Brazil; Discipline of Endocrinology, Laboratory of Hormones and Molecular Genetics-LIM42, Hospital das Clínicas of the University of São Paulo, São Paulo, SP, Brazil.
| | - Mary Uchiyama Nakamura
- Department of Obstetrics, Universidade Federal de São Paulo, São Paulo, SP, 04021-001, Brazil.
| | - Su Guo
- Department of Bioengineering and Therapeutic Sciences, Programs in Biological Sciences and Human Genetics, University of California, San Francisco, CA, 94158-2811, USA.
| | - Raúl Bonne Hernández
- Laboratory of Bioinorganic and Environmental Toxicology - LABITA, Department of Exact and Earth Sciences, Universidade Federal de São Paulo, 09972-270, Diadema, SP, Brazil.
| |
Collapse
|
2
|
Zaccarelli-Magalhães J, Citadin CT, Langman J, Smith DJ, Matuguma LH, Lin HW, Udo MSB. Protein arginine methyltransferases as regulators of cellular stress. Exp Neurol 2025; 384:115060. [PMID: 39551462 DOI: 10.1016/j.expneurol.2024.115060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/19/2024]
Abstract
Arginine modification can be a "switch" to regulate DNA transcription and a post-translational modification via methylation of a variety of cellular targets involved in signal transduction, gene transcription, DNA repair, and mRNA alterations. This consequently can turn downstream biological effectors "on" and "off". Arginine methylation is catalyzed by protein arginine methyltransferases (PRMTs 1-9) in both the nucleus and cytoplasm, and is thought to be involved in many disease processes. However, PRMTs have not been well-documented in the brain and their function as it relates to metabolism, circulation, functional learning and memory are understudied. In this review, we provide a comprehensive overview of PRMTs relevant to cellular stress, and future directions into PRMTs as therapeutic regulators in brain pathologies.
Collapse
Affiliation(s)
- Julia Zaccarelli-Magalhães
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Cristiane Teresinha Citadin
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Julia Langman
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Drew James Smith
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Luiz Henrique Matuguma
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Hung Wen Lin
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA.
| | - Mariana Sayuri Berto Udo
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA.
| |
Collapse
|
3
|
Luo Y, Liang G, Zhang Q, Luo B. The role of cGAS-STING signaling pathway in colorectal cancer immunotherapy: Mechanism and progress. Int Immunopharmacol 2024; 143:113447. [PMID: 39515043 DOI: 10.1016/j.intimp.2024.113447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/09/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024]
Abstract
Colorectal cancer (CRC) is a common malignant tumor in the gastrointestinal tract, it is known as the "silent killer", which poses a serious threat to the lives of patients. The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon gene (STING) signaling pathway responds to DNA by sensing, which plays an important role in anti-infection, autoimmune diseases and anti-tumor immunity. Recent studies have found that the activation of cGAS-STING pathway in CRC can induce the expression and secretion of type I interferon (IFN-I) and a variety of inflammatory factors, further activate anti-tumor CD8+ T cells, exert anti-tumor immune response, and inhibit the progression of CRC. Therefore, targeting the cGAS-STING pathway and developing drugs that can regulate the cGAS-STING pathway are of great significance for improving the therapeutic effect and prognosis of CRC patients. In this review, we introduce the cGAS-STING signaling pathway and the regulatory role of this signaling pathway in CRC immune microenvironment. In addition, we discussed the research progress of cGAS-STING pathway in CRC immunotherapy and the clinical research status of STING agonists developed against this pathway, emphasizing the clinical potential of CRC immunotherapy based on the cGAS-STING signaling pathway.
Collapse
Affiliation(s)
- Yan Luo
- Department of Abdominal Radiotherapy, Hubei Provincial Cancer Hospital, Wuhan, China; Colorectal Cancer Clinical Medical Research Center of Hubei Province, Wuhan, China; Colorectal Cancer Clinical Medical Research Center of Wuhan, China.
| | - Gai Liang
- Department of Abdominal Radiotherapy, Hubei Provincial Cancer Hospital, Wuhan, China; Colorectal Cancer Clinical Medical Research Center of Hubei Province, Wuhan, China; Colorectal Cancer Clinical Medical Research Center of Wuhan, China
| | - Qu Zhang
- Department of Abdominal Radiotherapy, Hubei Provincial Cancer Hospital, Wuhan, China; Colorectal Cancer Clinical Medical Research Center of Hubei Province, Wuhan, China; Colorectal Cancer Clinical Medical Research Center of Wuhan, China
| | - Bo Luo
- Department of Abdominal Radiotherapy, Hubei Provincial Cancer Hospital, Wuhan, China; Colorectal Cancer Clinical Medical Research Center of Hubei Province, Wuhan, China; Colorectal Cancer Clinical Medical Research Center of Wuhan, China.
| |
Collapse
|
4
|
Wang J, Liu F, Heng J, Li G. Identification of EXO1 as a potential biomarker associated with prognosis and tumor immune microenvironment for specific human cancers. Mamm Genome 2024:10.1007/s00335-024-10092-x. [PMID: 39718579 DOI: 10.1007/s00335-024-10092-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 12/11/2024] [Indexed: 12/25/2024]
Abstract
Exonuclease 1 (EXO1) is an evolutionarily conserved exonuclease, which have function on maintaining genomic stability. Elevated expression of EXO1 has been reported in certain cancers. However, a comprehensive pan-cancer analysis of EXO1 is still lacking and its role in human cancer development remains poorly understood. This study aims to investigate the genetic alterations and expression perturbations of EXO1 and evaluate its potential clinical relevance in different cancer types. By employing powerful bioinformatics tools and utilizing data sourced from The Cancer Genome Atlas and the Genotype-Tissue Expression datasets, a comprehensive pan-cancer analysis of EXO1 was conducted, including an examination of gene expression, alterations in genetics, DNA methylation patterns, survival outcomes, clinical traits, immune features, and functional enrichment analysis. EXO1 was found to be highly expressed across 20 tumor types, including lung adenocarcinoma, lung squamous cell carcinoma, and breast invasive carcinoma. The expression levels of EXO1 are frequently associated with later clinical stages and unfavorable outcomes. Genetic alterations in EXO1 were predominantly found to be amplified in a pan-cancer context. A total of 131 missense mutations, 24 truncation mutations, 1 in-frame mutation, 6 splice site mutations, and 1 fusion mutation were identified. Interestingly, a significant co-occurrence of alterations in EXO1 with other ten gene alterations were identified. The expression of EXO1 in multiple tumors showed a significant correlation with tumor mutational burden, microsatellite instability, and genes related to immunological checkpoints. In most types of cancer, a strong correlation exists between the expression of EXO1 and the infiltration of CD4+ Th2 cells, memory CD4+ T cells, myeloid-derived suppressor cells, and common lymphoid progenitors. Analysis of 150 genes related to EXO1 demonstrate an enrichment in processes such as cell cycle regulation, DNA damage repair, and relevant signaling pathways, suggesting a possible mechanism through which EXO1 may facilitate tumor development. This study offers a deep insight into the role of EXO1 in different types of human cancers, indicating that EXO1 could act as an important prognostic biomarker and a therapeutic target for certain types of cancer.
Collapse
Affiliation(s)
- Jingyun Wang
- Department of Obstetrics and Gynecology, Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), Changsha, China
| | - Fen Liu
- Department of Obstetrics and Gynecology, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University (The First Hospital of Changsha), Changsha, China
| | - Jianfu Heng
- Hunan Cancer Hospital, Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, China
| | - Guoli Li
- Department of Nephrology and Laboratory of Kidney Disease, Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), No. 61# Jiefang West Road, Changsha, 410005, Hunan, China.
- Hunan Clinical Research Center for Chronic Kidney Disease, Changsha, China.
- Hunan Engineering Research Center for Kidney Disease Prevention and Rehabilitation, Changsha, China.
| |
Collapse
|
5
|
Bottery MJ, van Rhijn N, Chown H, Rhodes JL, Celia-Sanchez BN, Brewer MT, Momany M, Fisher MC, Knight CG, Bromley MJ. Elevated mutation rates in multi-azole resistant Aspergillus fumigatus drive rapid evolution of antifungal resistance. Nat Commun 2024; 15:10654. [PMID: 39681549 DOI: 10.1038/s41467-024-54568-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 11/15/2024] [Indexed: 12/18/2024] Open
Abstract
The environmental use of azole fungicides has led to selective sweeps across multiple loci in the Aspergillus fumigatus genome causing the rapid global expansion of a genetically distinct cluster of resistant genotypes. Isolates within this cluster are also more likely to be resistant to agricultural antifungals with unrelated modes of action. Here we show that this cluster is not only multi-azole resistant but has increased propensity to develop resistance to next generation antifungals because of variants in the DNA mismatch repair system. A variant in msh6-G233A is found almost exclusively within azole resistant isolates harbouring the canonical cyp51A azole resistance allelic variant TR34/L98H. Naturally occurring isolates with this msh6 variant display up to 5-times higher rate of mutation, leading to an increased likelihood of evolving resistance to other antifungals. Furthermore, unlike hypermutator strains, the G233A variant conveys no measurable fitness cost and has become globally distributed. Our findings further suggest that resistance to next-generation antifungals is more likely to emerge within organisms that are already multi-azole resistant due to close linkage between TR34/L98H and msh6-G233A, posing a major problem due to the prospect of dual use of novel antifungals in clinical and agricultural settings.
Collapse
Affiliation(s)
- Michael J Bottery
- Manchester Fungal Infection Group, Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| | - Norman van Rhijn
- Manchester Fungal Infection Group, Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Harry Chown
- Manchester Fungal Infection Group, Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Medical Research Council Centre for Global Infectious Disease Analysis, Imperial College London, London, UK
| | - Johanna L Rhodes
- Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Brandi N Celia-Sanchez
- Fungal Biology Group and Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA
| | - Marin T Brewer
- Fungal Biology Group and Department of Plant Pathology, University of Georgia, Athens, GA, 30602, USA
| | - Michelle Momany
- Fungal Biology Group and Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA
| | - Matthew C Fisher
- Medical Research Council Centre for Global Infectious Disease Analysis, Imperial College London, London, UK
| | - Christopher G Knight
- Department of Earth and Environmental Sciences, School of Natural Sciences, Faculty of Science and Engineering, The University of Manchester, Manchester, UK
| | - Michael J Bromley
- Manchester Fungal Infection Group, Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| |
Collapse
|
6
|
Chen H, Chen H, Fang J, Huang X, Zhu X, Chai T, Chen X, Huang L, Yu P. Clinicopathological features and prognostic significance of TAF1L in gastric cancer. BMC Gastroenterol 2024; 24:445. [PMID: 39623292 PMCID: PMC11613484 DOI: 10.1186/s12876-024-03534-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/21/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND TAF1L may play an important role in the occurrence and development of gastric cancer (GC), but the correlation between the expression of TAF1L and the clinicopathological factors and prognosis of GC is still unclear. METHODS A total of 1053 GC patients in Zhejiang Cancer Hospital between January 1st, 2018 to December 31th, 2019 were screened. Finally, 120 patients met the inclusion criteria. TAF1L expression was detected by immunohistochemistry, and the correlations of TAF1L in clinicopathological characteristics and prognosis were analyzed. TCGA GC dataset was used to perform further bioinformatics analysis. RESULTS In this study, TAF1L expression was evaluated in 120 clinical samples of GC. TAF1L expression was higher in tumor tissues and was associated with tumor differentiation (p = 0.046), signet-ring cells (p = 0.043), dMMR status (p = 0.011), lympho-vascular invasion (p = 0.038), and neural invasion (p = 0.005) in our cohort. Cases with high expression of TAF1L presented worse mean OS than those with low expression (40.3 months vs. 51.8 months, p = 0.019), and the difference was also significant in HER2-positive cases (20.9 months vs. 51.2 months, p = 0.007) as well as pMMR cases (38.8 months vs. 51.6 months, p = 0.006). Multivariate Cox regression analysis showed that TAF1L (HR = 2.044, 95%CI = 1.007-4.147, p = 0.048) and HER2 status (HR = 2.383, 95%CI = 1.087-5.222, p = 0.030) were independent prognosis factors of these patients. In subgroup analysis, TAF1L was the independent prognostic risk factor in HER2-positive patients (HR = 6.736, 95%CI = 1.373-33.032, p = 0.019). and pMMR patients (HR = 2.291, 95%CI = 1.126-4.660, p = 0.022). Besides, HER2 status was the independent prognostic risk factor in TAF1L-H patients (HR = 4.832, 95%CI = 1.908-12.239, p = 0.001). TCGA dataset also indicated the higher expression of TAF1L in tumors than normal tissues (p < 0.001). High TAF1L expression is linked to worse survival in MSS (11.0 months vs. 35.0 months, p = 0.0046) groups, and is negatively associated with overall survival in HER2-positive cases (24.0 months vs. 57.0 months, p = 0.0039). CONCLUSION TAF1L is closely related to the occurrence and development of GC. Our results suggested that TAF1L is a significant biomarker for predicting prognosis of GC and may play an important role in immunotherapy and targeted therapy.
Collapse
Affiliation(s)
- Han Chen
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
- Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, 310022, Zhejiang, China
| | - Hang Chen
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
- Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, 310022, Zhejiang, China
| | - Jingquan Fang
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Xingmao Huang
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Xiu Zhu
- Department of Pathology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Tengjiao Chai
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Xiangliu Chen
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Ling Huang
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Pengfei Yu
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China.
| |
Collapse
|
7
|
Kim-Yip RP, McNulty R, Joyce B, Mollica A, Chen PJ, Ravisankar P, Law BK, Liu DR, Toettcher JE, Ivakine EA, Posfai E, Adamson B. Efficient prime editing in two-cell mouse embryos using PEmbryo. Nat Biotechnol 2024; 42:1822-1830. [PMID: 38321114 PMCID: PMC11631759 DOI: 10.1038/s41587-023-02106-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 12/14/2023] [Indexed: 02/08/2024]
Abstract
Using transient inhibition of DNA mismatch repair during a permissive stage of development, we demonstrate highly efficient prime editing of mouse embryos with few unwanted, local byproducts (average 58% precise edit frequency, 0.5% on-target error frequency across 13 substitution edits at 8 sites), enabling same-generation phenotyping of founders. Whole-genome sequencing reveals that mismatch repair inhibition increases off-target indels at low-complexity regions in the genome without any obvious phenotype in mice.
Collapse
Affiliation(s)
- Rebecca P Kim-Yip
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Ryan McNulty
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Bradley Joyce
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Antonio Mollica
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Peter J Chen
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
- Prime Medicine, Inc., Cambridge, MA, USA
| | - Purnima Ravisankar
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Benjamin K Law
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Jared E Toettcher
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Evgueni A Ivakine
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Eszter Posfai
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| | - Britt Adamson
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
8
|
Zhang Y, Liu X, Li Z, Li H, Miao Z, Wan B, Xu X. Advances on the Mechanisms and Therapeutic Strategies in Non-coding CGG Repeat Expansion Diseases. Mol Neurobiol 2024; 61:10722-10735. [PMID: 38780719 DOI: 10.1007/s12035-024-04239-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 05/02/2024] [Indexed: 05/25/2024]
Abstract
Non-coding CGG repeat expansions within the 5' untranslated region are implicated in a range of neurological disorders, including fragile X-associated tremor/ataxia syndrome, oculopharyngeal myopathy with leukodystrophy, and oculopharyngodistal myopathy. This review outlined the general characteristics of diseases associated with non-coding CGG repeat expansions, detailing their clinical manifestations and neuroimaging patterns, which often overlap and indicate shared pathophysiological traits. We summarized the underlying molecular mechanisms of these disorders, providing new insights into the roles that DNA, RNA, and toxic proteins play. Understanding these mechanisms is crucial for the development of targeted therapeutic strategies. These strategies include a range of approaches, such as antisense oligonucleotides, RNA interference, genomic DNA editing, small molecule interventions, and other treatments aimed at correcting the dysregulated processes inherent in these disorders. A deeper understanding of the shared mechanisms among non-coding CGG repeat expansion disorders may hold the potential to catalyze the development of innovative therapies, ultimately offering relief to individuals grappling with these debilitating neurological conditions.
Collapse
Affiliation(s)
- Yutong Zhang
- Departments of Neurology, The First Affiliated Hospital of Soochow University, Suzhou City, China
| | - Xuan Liu
- Departments of Neurology, The First Affiliated Hospital of Soochow University, Suzhou City, China
| | - Zeheng Li
- Departments of Neurology, The First Affiliated Hospital of Soochow University, Suzhou City, China
| | - Hao Li
- Departments of Neurology, The First Affiliated Hospital of Soochow University, Suzhou City, China
- Department of Neurology, The Fourth Affiliated Hospital of Soochow University, Suzhou, 215124, China
| | - Zhigang Miao
- The Institute of Neuroscience, Soochow University, Suzhou City, China
| | - Bo Wan
- The Institute of Neuroscience, Soochow University, Suzhou City, China
| | - Xingshun Xu
- Departments of Neurology, The First Affiliated Hospital of Soochow University, Suzhou City, China.
- The Institute of Neuroscience, Soochow University, Suzhou City, China.
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China.
| |
Collapse
|
9
|
Albertí-Valls M, Olave S, Olomí A, Macià A, Eritja N. Advances in Immunotherapy for Endometrial Cancer: Insights into MMR Status and Tumor Microenvironment. Cancers (Basel) 2024; 16:3918. [PMID: 39682106 DOI: 10.3390/cancers16233918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Endometrial cancer is one of the most common gynecological malignancies, and while early-stage cases are highly treatable, recurrent or advanced EC remains challenging to manage. Immunotherapy, particularly immune checkpoint inhibitors, has revolutionized treatment approaches in oncology, and its application in EC has shown promising results. Key to immunotherapy efficacy in EC is the tumor's mismatch repair status, with MMR-deficient tumors demonstrating a higher tumor mutational burden and increased PD-L1 expression, making them more susceptible to immune checkpoint inhibitors (ICIs) such as pembrolizumab, durvalumab, and dostarlimab. However, not all mismatch repair-deficient (MMRd) tumors respond to ICIs, particularly those with a "cold" tumor microenvironment (TME) characterized by poor immune infiltration. In contrast, some MMR-proficient tumors with a "hot" TME respond well to ICIs, underscoring the complex interplay between MMR status, tumor mutational burden (TMB), and TME. To overcome resistance in cold tumors, novel therapies, including Chimeric Antigen Receptor (CAR) T cells and tumor-infiltrating lymphocytes are being explored, offering targeted immune-based strategies to enhance treatment efficacy. This review discusses the current understanding of immunotherapy in EC, emphasizing the prognostic and therapeutic implications of MMR status, TME composition, and emerging cell-based therapies.
Collapse
Affiliation(s)
- Manel Albertí-Valls
- Oncologic Pathology Group, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida (UdL), Av. Rovira Roure 80, 25198 Lleida, Spain
| | - Sara Olave
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Anna Olomí
- Developmental and Oncogenic Signaling, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida (UdL), Av. Rovira Roure 80, 25198 Lleida, Spain
| | - Anna Macià
- Oncologic Pathology Group, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida (UdL), Av. Rovira Roure 80, 25198 Lleida, Spain
| | - Núria Eritja
- Oncologic Pathology Group, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida (UdL), Av. Rovira Roure 80, 25198 Lleida, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| |
Collapse
|
10
|
Hashemi M, Khoushab S, Aghmiuni MH, Anaraki SN, Alimohammadi M, Taheriazam A, Farahani N, Entezari M. Non-coding RNAs in oral cancer: Emerging biomarkers and therapeutic frontier. Heliyon 2024; 10:e40096. [PMID: 39583806 PMCID: PMC11582460 DOI: 10.1016/j.heliyon.2024.e40096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 10/13/2024] [Accepted: 11/01/2024] [Indexed: 11/26/2024] Open
Abstract
Around the world, oral cancer (OC) is a major public health problem, resulting in a significant number of deaths each year. Early detection and treatment are crucial for improving patient outcomes. Recent progress in DNA sequencing and transcriptome profiling has revealed extensive non-coding RNAs (ncRNAs) transcription, underscoring their regulatory importance. NcRNAs influence genomic transcription and translation and molecular signaling pathways, making them valuable for various clinical applications. Combining spatial transcriptomics (ST) and spatial metabolomics (SM) with single-cell RNA sequencing provides deeper insights into tumor microenvironments, enhancing diagnostic and therapeutic precision for OC. Additionally, the exploration of salivary biomarkers offers a non-invasive diagnostic avenue. This article explores the potential of ncRNAs as diagnostic and therapeutic tools for OC.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saloomeh Khoushab
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mina Hobabi Aghmiuni
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saeid Nemati Anaraki
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Operative, Faculty of Dentistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University,Tehran, Iran
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
11
|
Villmoare B, Klein D, Liénard P, McHale TS. Evolutionary origins of temporal discounting: Modeling how time and uncertainty constrain optimal decision-making strategies across taxa. PLoS One 2024; 19:e0310658. [PMID: 39531436 PMCID: PMC11556739 DOI: 10.1371/journal.pone.0310658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 09/04/2024] [Indexed: 11/16/2024] Open
Abstract
The propensity of humans and non-human animals to discount future returns for short-term benefits is well established. This contrasts with the ability of organisms to unfold complex developmental sequences over months or years efficiently. Research has focused on various descriptive and predictive parameters of 'temporal discounting' in behavior, and researchers have proposed models to explain temporal preference in terms of fitness-maximizing outcomes. Still, the underlying ultimate cause of this phenomenon has not been deeply explored across taxa. Here, we propose an ultimate (i.e., evolutionary) causal explanation for the selection of temporal discounting largely conserved across taxa. We propose that preference for a short-term reward (e.g., heightened impulsivity) often is less than optimal and likely is the product of constraints imposed on natural selection with respect to predicting events in a temporal framework in the context of future uncertainty. Using a simple Newtonian model for time across a fitness landscape in which movement by organisms is only possible in one direction, we examine several factors that influence the ability of an organism to choose a distant reward over a more temporally proximate reward: including the temporal distance of the far reward, the relative value of the distant reward, and the effect of uncertainty about the value and presence of the distant reward. Our results indicate that an organism may choose a more distant reward, but only if it is not too far into the future and has a substantially higher-value fitness payoff relative to the short-term reward. Notably, any uncertainty about the distant reward made it extremely unlikely for an organism to choose the delayed reward strategy compared to choosing a closer reward, even if the distant reward had a much higher payoff because events that are uncertain are only partially visible to natural selection pressures. The results help explain why natural selection is constrained to promote more optimal behavioral strategies and why it has difficulty selecting a distant reward over a lower-value short-term reward. The degree of uncertainty is an especially salient ecological variable in promoting and preferencing short-term behavioral strategies across taxa. These results further help illustrate why, from an ultimate causal perspective, human and non-human taxa have difficulty making more optimal long-term decisions.
Collapse
Affiliation(s)
- Brian Villmoare
- Department of Anthropology, University of Nevada Las Vegas, Las Vegas, Nevada, United States of America
| | - David Klein
- University of California, San Luis Obispo, California, United States of America
| | - Pierre Liénard
- Department of Anthropology, University of Nevada Las Vegas, Las Vegas, Nevada, United States of America
| | - Timothy S. McHale
- Social Sciences Department, California Polytechnic State University, San Luis Obispo, California, United States of America
| |
Collapse
|
12
|
Provasek VE, Bacolla A, Rangaswamy S, Mitra J, Kodavati M, Yusuf IO, Malojirao VH, Vasquez V, Britz GW, Li GM, Xu Z, Mitra S, Garruto RM, Tainer JA, Hegde ML. RNA/DNA Binding Protein TDP43 Regulates DNA Mismatch Repair Genes with Implications for Genome Stability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.16.594552. [PMID: 38798341 PMCID: PMC11118483 DOI: 10.1101/2024.05.16.594552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
TAR DNA-binding protein 43 (TDP43) is increasingly recognized for its involvement in neurodegenerative diseases, particularly amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). TDP43 proteinopathy, characterized by dysregulated nuclear export and cytoplasmic aggregation, is present in most ALS/FTD cases and is associated with a loss of nuclear function and genomic instability in neurons. Building on prior evidence linking TDP43 pathology to DNA double-strand breaks (DSBs), this study identifies a novel regulatory role for TDP43 in the DNA mismatch repair (MMR) pathway. We demonstrate that depletion or overexpression of TDP43 affects the expression of key MMR genes, including MLH1, MSH6, MSH2, MSH3, and PMS2. Specifically, TDP43 modulates the expression of MLH1 and MSH6 proteins through alternative splicing and transcript stability. These findings are validated in ALS mice models, patient-derived neural progenitor cells and autopsied brain tissues from ALS patients. Furthermore, MMR depletion showed a partial rescue of TDP43-induced DNA damage in neuronal cells. Bioinformatics analysis of TCGA cancer database reveals significant correlations between TDP43 and MMR gene expressions and mutational burden across various cancer subtypes. These results collectively establish TDP43 as a critical regulator of the MMR pathway, with broad implications for understanding the genomic instability underlying neurodegenerative and neoplastic diseases.
Collapse
Affiliation(s)
- Vincent E Provasek
- Division of DNA Repair Research within the Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA
- School of Medicine, Texas A&M University, College Station, TX 77843, USA
| | - Albino Bacolla
- Department of Molecular and Cellular Oncology, Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Suganya Rangaswamy
- Division of DNA Repair Research within the Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Joy Mitra
- Division of DNA Repair Research within the Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Manohar Kodavati
- Division of DNA Repair Research within the Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Issa O Yusuf
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, 01655, USA
| | - Vikas H Malojirao
- Division of DNA Repair Research within the Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Velmarini Vasquez
- Division of DNA Repair Research within the Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Gavin W Britz
- Division of DNA Repair Research within the Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Neurosurgery and Department of Neuroscience, Weill Cornell Medical College, New York, NY 10065, USA
| | - Guo-Min Li
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zuoshang Xu
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, 01655, USA
| | - Sankar Mitra
- Division of DNA Repair Research within the Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Ralph M Garruto
- Department of Biological Sciences, Binghamton University, State University of New York, Binghamton, NY 13902
| | - John A Tainer
- Department of Molecular and Cellular Oncology, Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Muralidhar L Hegde
- Division of DNA Repair Research within the Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Neuroscience, Weill Cornell Medical College, New York, NY 10065, USA
| |
Collapse
|
13
|
Shojaeisaadi H, Schoenrock A, Meier MJ, Williams A, Norris JM, Palmer ND, Yauk CL, Marchetti F. Mutational signature analyses in multi-child families reveal sources of age-related increases in human germline mutations. Commun Biol 2024; 7:1451. [PMID: 39506086 PMCID: PMC11541588 DOI: 10.1038/s42003-024-07140-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 10/24/2024] [Indexed: 11/08/2024] Open
Abstract
Whole-genome sequencing studies of parent-offspring trios have provided valuable insights into the potential impact of de novo mutations (DNMs) on human health and disease. However, the molecular mechanisms that drive DNMs are unclear. Studies with multi-child families can provide important insight into the causes of inter-family variability in DNM rates but they are highly limited. We characterized 2479 de novo single nucleotide variants (SNVs) in 13 multi-child families of Mexican-American ethnicity. We observed a strong paternal age effect on validated de novo SNVs with extensive inter-family variability in the yearly rate of increase. Children of older fathers showed more C > T transitions at CpG sites than children from younger fathers. Validated SNVs were examined against one cancer (COSMIC) and two non-cancer (human germline and CRISPR-Cas 9 knockout of human DNA repair genes) mutational signature databases. These analyses suggest that inaccurate DNA mismatch repair during repair initiation and excision processes, along with DNA damage and replication errors, are major sources of human germline de novo SNVs. Our findings provide important information for understanding the potential sources of human germline de novo SNVs and the critical role of DNA mismatch repair in their genesis.
Collapse
Affiliation(s)
| | - Andrew Schoenrock
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
- Research Computing Services, Carleton University, Ottawa, ON, Canada
| | - Matthew J Meier
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Jill M Norris
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Nicholette D Palmer
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Carole L Yauk
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Francesco Marchetti
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada.
| |
Collapse
|
14
|
Domingo-Sabugo C, Willis-Owen SA, Mandal A, Nastase A, Dwyer S, Brambilla C, Gálvez JH, Zhuang Q, Popat S, Eveleigh R, Munter M, Lim E, Nicholson AG, Lathrop GM, Cookson WO, Moffatt MF. Genomic analysis defines distinct pancreatic and neuronal subtypes of lung carcinoid. J Pathol 2024; 264:332-343. [PMID: 39329437 DOI: 10.1002/path.6352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/14/2024] [Accepted: 08/20/2024] [Indexed: 09/28/2024]
Abstract
Lung carcinoids (L-CDs) are rare, poorly characterised neuroendocrine tumours (NETs). L-CDs are more common in women and are not the consequence of cigarette smoking. They are classified histologically as typical carcinoids (TCs) or atypical carcinoids (ACs). ACs confer a worse survival. Histological classification is imperfect, and there is increasing interest in molecular markers. We therefore investigated global transcriptomic and epigenomic profiles of 15 L-CDs resected with curative intent at Royal Brompton Hospital. We identified underlying mutations and structural abnormalities through whole-exome sequencing (WES) and single nucleotide polymorphism (SNP) genotyping. Transcriptomic clustering algorithms identified two distinct L-CD subtypes. These showed similarities either to pancreatic or neuroendocrine tumours at other sites and so were named respectively L-CD-PanC and L-CD-NeU. L-CD-PanC tumours featured upregulation of pancreatic and metabolic pathway genes matched by promoter hypomethylation of genes for beta cells and insulin secretion (p < 1 × 10-6). These tumours were centrally located and showed mutational signatures of activation-induced deaminase/apolipoprotein B editing complex activity, together with genome-wide DNA methylation loss enriched in repetitive elements (p = 2.2 × 10-16). By contrast, the L-CD-NeU group exhibited upregulation of neuronal markers (adjusted p < 0.01) and was characterised by focal spindle cell morphology (p = 0.04), peripheral location (p = 0.01), high mutational load (p = 2.17 × 10-4), recurrent copy number alterations, and enrichment for ACs. Mutations affected chromatin remodelling and SWI/SNF complex pathways. L-CD-NeU tumours carried a mutational signature attributable to aflatoxin and aristolochic acid (p = 0.05), suggesting a possible environmental exposure in their pathogenesis. Immunologically, myeloid and T-cell markers were enriched in L-CD-PanC and B-cell markers in L-CD-NeU tumours. The substantial epigenetic and non-coding differences between L-CD-PanC and L-CD-NeU open new possibilities for biomarker selection and targeted treatment of L-CD. © 2024 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
| | | | - Amit Mandal
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Anca Nastase
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Sarah Dwyer
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Cecilia Brambilla
- National Heart and Lung Institute, Imperial College London, London, UK
- Department of Histopathology, Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - José Héctor Gálvez
- Victor Phillip Dahdaleh Institute of Genomic Medicine at McGill University, Montréal, QC, Canada
| | - Qinwei Zhuang
- Victor Phillip Dahdaleh Institute of Genomic Medicine at McGill University, Montréal, QC, Canada
| | - Sanjay Popat
- Royal Marsden Hospital NHS Foundation Trust, London and Surrey, UK
- The Institute of Cancer Research, London, UK
| | - Robert Eveleigh
- Victor Phillip Dahdaleh Institute of Genomic Medicine at McGill University, Montréal, QC, Canada
| | - Markus Munter
- Victor Phillip Dahdaleh Institute of Genomic Medicine at McGill University, Montréal, QC, Canada
| | - Eric Lim
- Department of Thoracic Surgery, Royal Brompton Hospital, London, UK
| | - Andrew G Nicholson
- National Heart and Lung Institute, Imperial College London, London, UK
- Department of Histopathology, Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - G Mark Lathrop
- Victor Phillip Dahdaleh Institute of Genomic Medicine at McGill University, Montréal, QC, Canada
| | | | - Miriam F Moffatt
- National Heart and Lung Institute, Imperial College London, London, UK
| |
Collapse
|
15
|
Ghosh A, Riester M, Pal J, Lainde KA, Tangermann C, Wanninger A, Dueren UK, Dhamija S, Diederichs S. Suppressive cancer nonstop extension mutations increase C-terminal hydrophobicity and disrupt evolutionarily conserved amino acid patterns. Nat Commun 2024; 15:9209. [PMID: 39448564 PMCID: PMC11502859 DOI: 10.1038/s41467-024-52779-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/20/2024] [Indexed: 10/26/2024] Open
Abstract
Nonstop extension mutations, a.k.a. stop-lost or stop-loss mutations, convert a stop codon into a sense codon resulting in translation into the 3' untranslated region until the next in-frame stop codon, thereby extending the C-terminus of a protein. In cancer, only nonstop mutations in SMAD4 have been functionally characterized, while the impact of other nonstop mutations remain unknown. Here, we exploit our pan-cancer NonStopDB dataset and test all 2335 C-terminal extensions arising from somatic nonstop mutations in cancer for their impact on protein expression. In a high-throughput screen, 56.1% of the extensions effectively reduce protein abundance. Extensions of multiple tumor suppressor genes like PTEN, APC, B2M, CASP8, CDKN1B and MLH1 are effective and validated for their suppressive impact. Importantly, the effective extensions possess a higher hydrophobicity than the neutral extensions linking C-terminal hydrophobicity with protein destabilization. Analyzing the proteomes of eleven different species reveals conserved patterns of amino acid distribution in the C-terminal regions of all proteins compared to the proteomes like an enrichment of lysine and arginine and a depletion of glycine, leucine, valine and isoleucine across species and kingdoms. These evolutionary selection patterns are disrupted in the cancer-derived effective nonstop extensions.
Collapse
Affiliation(s)
- Avantika Ghosh
- Division of Cancer Research, Department of Thoracic Surgery, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany
- German Cancer Consortium (DKTK), partner site Freiburg, a partnership between DKFZ and University Medical Center Freiburg, Freiburg, Germany
| | - Marisa Riester
- Division of Cancer Research, Department of Thoracic Surgery, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Jagriti Pal
- Division of Cancer Research, Department of Thoracic Surgery, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Kadri-Ann Lainde
- Division of Cancer Research, Department of Thoracic Surgery, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Carla Tangermann
- Division of Cancer Research, Department of Thoracic Surgery, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany
- German Cancer Consortium (DKTK), partner site Freiburg, a partnership between DKFZ and University Medical Center Freiburg, Freiburg, Germany
| | - Angela Wanninger
- Division of Cancer Research, Department of Thoracic Surgery, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany
- German Cancer Consortium (DKTK), partner site Freiburg, a partnership between DKFZ and University Medical Center Freiburg, Freiburg, Germany
| | - Ursula K Dueren
- Division of Cancer Research, Department of Thoracic Surgery, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Sonam Dhamija
- Division of Cancer Research, Department of Thoracic Surgery, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany
- German Cancer Consortium (DKTK), partner site Freiburg, a partnership between DKFZ and University Medical Center Freiburg, Freiburg, Germany
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Sven Diederichs
- Division of Cancer Research, Department of Thoracic Surgery, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany.
- German Cancer Consortium (DKTK), partner site Freiburg, a partnership between DKFZ and University Medical Center Freiburg, Freiburg, Germany.
| |
Collapse
|
16
|
Yu X, Zhang H, Zhang H, Hou C, Wang X, Gu P, Han Y, Yang Z, Zou W. The role of epigenetic methylations in thyroid Cancer. World J Surg Oncol 2024; 22:281. [PMID: 39456011 PMCID: PMC11515417 DOI: 10.1186/s12957-024-03568-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 10/19/2024] [Indexed: 10/28/2024] Open
Abstract
Thyroid cancer (TC) represents one of the most prevalent endocrine malignancies, with a rising incidence worldwide. Epigenetic alterations, which modify gene expression without altering the underlying DNA sequence, have garnered significant attention in recent years. Increasing evidence underscores the pivotal role of epigenetic modifications, including DNA methylation, RNA methylation, and histone methylation, in the pathogenesis of TC. This review provides a comprehensive overview of these reversible and environmentally influenced epigenetic modifications, highlighting their molecular mechanisms and functional roles in TC. Additionally, the clinical implications, challenges associated with studying these epigenetic modifications, and potential future research directions are explored.
Collapse
Affiliation(s)
- Xiaojie Yu
- Department of Thyroid Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, P.R. China
| | - Hao Zhang
- Department of Thyroid Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, P.R. China
| | - Haojie Zhang
- Department of Thyroid Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, P.R. China
| | - Changran Hou
- Department of Thyroid Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, P.R. China
| | - Xiaohong Wang
- Department of Breast Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, P.R. China
| | - Pengfei Gu
- Department of Thyroid Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, P.R. China
| | - Yong Han
- Department of Thyroid Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, P.R. China.
| | - Zhenlin Yang
- Department of Thyroid Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, P.R. China.
| | - Weiwei Zou
- Department of Thyroid Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, P.R. China.
| |
Collapse
|
17
|
Azzouz D, Palaniyar N. How Do ROS Induce NETosis? Oxidative DNA Damage, DNA Repair, and Chromatin Decondensation. Biomolecules 2024; 14:1307. [PMID: 39456240 PMCID: PMC11505619 DOI: 10.3390/biom14101307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/05/2024] [Accepted: 09/13/2024] [Indexed: 10/28/2024] Open
Abstract
Neutrophil extracellular traps (NETs) are intricate, DNA-based, web-like structures adorned with cytotoxic proteins. They play a crucial role in antimicrobial defense but are also implicated in autoimmune diseases and tissue injury. The process of NET formation, known as NETosis, is a regulated cell death mechanism that involves the release of these structures and is unique to neutrophils. NETosis is heavily dependent on the production of reactive oxygen species (ROS), which can be generated either through NADPH oxidase (NOX) or mitochondrial pathways, leading to NOX-dependent or NOX-independent NETosis, respectively. Recent research has revealed an intricate interplay between ROS production, DNA repair, and NET formation in different contexts. UV radiation can trigger a combined process of NETosis and apoptosis, known as apoNETosis, driven by mitochondrial ROS and DNA repair. Similarly, in calcium ionophore-induced NETosis, both ROS and DNA repair are key components, but only play a partial role. In the case of bacterial infections, the early stages of DNA repair are pivotal. Interestingly, in serum-free conditions, spontaneous NETosis occurs through NOX-derived ROS, with early-stage DNA repair inhibition halting the process, while late-stage inhibition increases it. The intricate balance between DNA repair processes and ROS production appears to be a critical factor in regulating NET formation, with different pathways being activated depending on the nature of the stimulus. These findings not only deepen our understanding of the mechanisms behind NETosis but also suggest potential therapeutic targets for conditions where NETs contribute to disease pathology.
Collapse
Affiliation(s)
- Dhia Azzouz
- Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Nades Palaniyar
- Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
18
|
Yasuda T, Nakajima N, Ogi T, Yanaka T, Tanaka I, Gotoh T, Kagawa W, Sugasawa K, Tajima K. Heavy water inhibits DNA double-strand break repairs and disturbs cellular transcription, presumably via quantum-level mechanisms of kinetic isotope effects on hydrolytic enzyme reactions. PLoS One 2024; 19:e0309689. [PMID: 39361575 PMCID: PMC11449287 DOI: 10.1371/journal.pone.0309689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/16/2024] [Indexed: 10/05/2024] Open
Abstract
Heavy water, containing the heavy hydrogen isotope, is toxic to cells, although the underlying mechanism remains incompletely understood. In addition, certain enzymatic proton transfer reactions exhibit kinetic isotope effects attributed to hydrogen isotopes and their temperature dependencies, indicative of quantum tunneling phenomena. However, the correlation between the biological effects of heavy water and the kinetic isotope effects mediated by hydrogen isotopes remains elusive. In this study, we elucidated the kinetic isotope effects arising from hydrogen isotopes of water and their temperature dependencies in vitro, focusing on deacetylation, DNA cleavage, and protein cleavage, which are crucial enzymatic reactions mediated by hydrolysis. Intriguingly, the intracellular isotope effects of heavy water, related to the in vitro kinetic isotope effects, significantly impeded multiple DNA double-strand break repair mechanisms crucial for cell survival. Additionally, heavy water exposure enhanced histone acetylation and associated transcriptional activation in cells, consistent with the in vitro kinetic isotope effects observed in histone deacetylation reactions. Moreover, as observed for the in vitro kinetic isotope effects, the cytotoxic effect on cell proliferation induced by heavy water exhibited temperature-dependency. These findings reveal the substantial impact of heavy water-induced isotope effects on cellular functions governed by hydrolytic enzymatic reactions, potentially mediated by quantum-level mechanisms underlying kinetic isotope effects.
Collapse
Affiliation(s)
- Takeshi Yasuda
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Nakako Nakajima
- QST Hospital, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Tomoo Ogi
- Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Tomoko Yanaka
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Izumi Tanaka
- Institute for Radiological Sciences, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Takaya Gotoh
- Department of Health Science, Daito Bunka University, Saitama, Japan
| | - Wataru Kagawa
- Department of Interdisciplinary Science and Engineering, Program in Chemistry and Life Science, School of Science and Engineering, Meisei University, Tokyo, Japan
| | - Kaoru Sugasawa
- Biosignal Research Center, and Graduate School of Science, Kobe University, Kobe, Japan
| | - Katsushi Tajima
- Department of Hematology, Yamagata Prefectural Central Hospital, Yamagata, Japan
| |
Collapse
|
19
|
Splichal RC, Chen K, Walton SP, Chan C. The Role of Endoplasmic Reticulum Stress on Reducing Recombinant Protein Production in Mammalian Cells. Biochem Eng J 2024; 210:109434. [PMID: 39220803 PMCID: PMC11360842 DOI: 10.1016/j.bej.2024.109434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Therapeutic recombinant protein production relies on industrial scale culture of mammalian cells to produce active proteins in quantities sufficient for clinical use. The combination of stresses from industrial cell culture environment and recombinant protein production can overwhelm the protein synthesis machinery in the endoplasmic reticulum (ER). This leads to a buildup of improperly folded proteins which induces ER stress. Cells respond to ER stress by activating the Unfolded Protein Response (UPR). To restore proteostasis, ER sensor proteins reduce global protein synthesis and increase chaperone protein synthesis, and if that is insufficient the proteins are degraded. If proteostasis is still not restored, apoptosis is initiated. Increasing evidence suggests crosstalk between ER proteostasis and DNA damage repair (DDR) pathways. External factors (e.g., metabolites) from the cellular environment as well as internal factors (e.g., transgene copy number) can impact genome stability. Failure to maintain genome integrity reduces cell viability and in turn protein production. This review focuses on the association between ER stress and processes that affect protein production and secretion. The processes mediated by ER stress, including inhibition of global protein translation, chaperone protein production, degradation of misfolded proteins, DNA repair, and protein secretion, impact recombinant protein production. Recombinant protein production can be reduced by ER stress through increased autophagy and protein degradation, reduced protein secretion, and reduced DDR response.
Collapse
Affiliation(s)
- R. Chauncey Splichal
- Department of Chemical Engineering and Materials Science, Michigan State University, MI, USA
| | - Kevin Chen
- Department of Chemical Engineering and Materials Science, Michigan State University, MI, USA
| | - S. Patrick Walton
- Department of Chemical Engineering and Materials Science, Michigan State University, MI, USA
| | - Christina Chan
- Department of Chemical Engineering and Materials Science, Michigan State University, MI, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, MI, USA
- Department of Computer Science and Engineering, Michigan State University, MI, USA
- Institute for Quantitative Health Science and Engineering, Division of Medical Devices, Michigan State University, MI, USA
| |
Collapse
|
20
|
Kamal R, Awasthi A, Paul P, Mir MS, Singh SK, Dua K. Novel drug delivery systems in colorectal cancer: Advances and future prospects. Pathol Res Pract 2024; 262:155546. [PMID: 39191194 DOI: 10.1016/j.prp.2024.155546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/10/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024]
Abstract
Colorectal cancer (CRC) is an abnormal proliferation of cells within the colon and rectum, leading to the formation of polyps and disruption of mucosal functions. The disease development is influenced by a combination of factors, including inflammation, exposure to environmental mutagens, genetic alterations, and impairment in signaling pathways. Traditional treatments such as surgery, radiation, and chemotherapy are often used but have limitations, including poor solubility and permeability, treatment resistance, side effects, and post-surgery issues. Novel Drug Delivery Systems (NDDS) have emerged as a superior alternative, offering enhanced drug solubility, precision in targeting cancer cells, and regulated drug release. Thereby addressing the shortcomings of conventional therapies and showing promise for more effective CRC management. The present review sheds light on the pathogenesis, signaling pathways, biomarkers, conventional treatments, need for NDDS, and application of NDDS against CRC. Additionally, clinical trials, ongoing clinical trials, marketed formulations, and patents on CRC are also covered in the present review.
Collapse
Affiliation(s)
- Raj Kamal
- Department of Quality Assurance, ISF College of Pharmacy, Moga, Punjab 142001, India; School of Pharmacy, Desh Bhagat University, Mandi Gobindgarh, Punjab 147301, India
| | - Ankit Awasthi
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab 142001, India; Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India.
| | - Priyanka Paul
- Department of Pharmaceutical Science, PCTE Group of Institute, Ludhiana, Punjab, India
| | - Mohammad Shabab Mir
- School of Pharmacy, Desh Bhagat University, Mandi Gobindgarh, Punjab 147301, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
21
|
Zeverijn LJ, Geurts BS, Battaglia TW, van Berge Henegouwen JM, de Wit GF, Hoes LR, van der Wijngaart H, van der Noort V, Roepman P, de Leng WWJ, Jansen AML, Chalabi M, van Herpen CML, Devriese LA, Erdkamp FLG, Labots M, de Jonge MJA, Kerver ED, Bins AD, Leek LVM, Notohardjo JCL, van den Eertwegh AJM, Wessels LFA, Verheul HMW, Gelderblom H, van de Haar J, Voest EE. The Innate Immune Landscape of dMMR/MSI Cancers Predicts the Outcome of Nivolumab Treatment: Results from the Drug Rediscovery Protocol. Clin Cancer Res 2024; 30:4339-4351. [PMID: 39024037 DOI: 10.1158/1078-0432.ccr-24-0480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/24/2024] [Accepted: 07/16/2024] [Indexed: 07/20/2024]
Abstract
PURPOSE The treatment efficacy of nivolumab was evaluated in patients with advanced, treatment-refractory solid mismatch repair deficiency/microsatellite-instable (dMMR/MSI) tumors, and in-depth biomarker analyses were performed to inform precision immunotherapy approaches. PATIENTS AND METHODS Patients with dMMR/MSI tumors who exhausted standard-of-care treatment options were enrolled in the Drug Rediscovery Protocol, a pan-cancer clinical trial that treats patients with cancer based on their tumor molecular profile with off-label anticancer drugs (NCT02925234). Patients received nivolumab (four cycles of 240 mg every 2 weeks, thereafter 480 mg every 4 weeks). The primary endpoint was clinical benefit (CB: objective response or stable disease ≥16 weeks). Whole-genome sequencing and RNA sequencing were performed on pretreatment tumor biopsies. RESULTS A total of 130 evaluable patients were enrolled with 16 different cancer types. CB was observed in 62% [95% confidence interval (CI), 53-70], with an objective response in 45% (95% CI, 36-54). After a median follow-up of 14.5 months (95% CI, 13-19), the median progression-free survival was 18 months (95% CI, 9-not reached), and the median overall survival was not reached. Whereas CB was not, or only weakly, associated with markers of adaptive immune cell infiltration, CB was strongly associated with expression of a broad set of innate immune receptors/ligands. This clearly contrasted findings in melanoma, in which markers of adaptive immunity dominated the biomarker landscape. CONCLUSIONS Nivolumab proved highly effective in advanced dMMR/MSI tumors. Expression of key innate immune receptors/ligands was the main predictor of a good treatment outcome, contrasting findings in melanoma and strengthening the rationale for tumor type-specific biomarkers for guiding immunotherapy.
Collapse
Affiliation(s)
- Laurien J Zeverijn
- Division of Molecular Oncology & Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Birgit S Geurts
- Division of Molecular Oncology & Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Thomas W Battaglia
- Division of Molecular Oncology & Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
- Division of Molecular Carcinogenesis, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | | | - Gijs F de Wit
- Division of Molecular Oncology & Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Louisa R Hoes
- Division of Molecular Oncology & Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Hanneke van der Wijngaart
- Department of Medical Oncology, Department of Internal Medicine, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, the Netherlands
| | | | - Paul Roepman
- Hartwig Medical Foundation, Amsterdam, the Netherlands
| | - Wendy W J de Leng
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Anne M L Jansen
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Myriam Chalabi
- Department of Gastrointestinal Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Carla M L van Herpen
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Lot A Devriese
- Division Beeld & Oncologie, Department of Medical Oncology, Utrecht University Medical Center, Utrecht, the Netherlands
| | - Frans L G Erdkamp
- Department of Medical Oncology, Zuyderland Hospital, Sittard-Geleen, the Netherlands
| | - Mariette Labots
- Department of Medical Oncology, Amsterdam University Medical Center, location VUMC, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Maja J A de Jonge
- Department of Medical Oncology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Emile D Kerver
- Department of Medical Oncology, OLVG, Amsterdam, the Netherlands
| | - Adriaan D Bins
- Department of Medical Oncology, Amsterdam University Medical Center, location VUMC, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Lindsay V M Leek
- Division of Molecular Oncology & Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Jessica C L Notohardjo
- Department of Medical Oncology, Amsterdam University Medical Center, location VUMC, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Alfonsus J M van den Eertwegh
- Department of Medical Oncology, Amsterdam University Medical Center, location VUMC, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Lodewyk F A Wessels
- Oncode Institute, Utrecht, the Netherlands
- Division of Molecular Carcinogenesis, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Henk M W Verheul
- Department of Medical Oncology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Hans Gelderblom
- Department of Medical Oncology, Leiden University Medical Center, Leiden, the Netherlands
| | - Joris van de Haar
- Division of Molecular Oncology & Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Emile E Voest
- Division of Molecular Oncology & Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
- Center for Personalized Cancer Treatment, Rotterdam, the Netherlands
| |
Collapse
|
22
|
Wang SW, Zheng QY, Hong WF, Tang BF, Hsu SJ, Zhang Y, Zheng XB, Zeng ZC, Gao C, Ke AW, Du SS. Mechanism of immune activation mediated by genomic instability and its implication in radiotherapy combined with immune checkpoint inhibitors. Radiother Oncol 2024; 199:110424. [PMID: 38997092 DOI: 10.1016/j.radonc.2024.110424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/27/2024] [Accepted: 07/05/2024] [Indexed: 07/14/2024]
Abstract
Various genetic and epigenetic changes associated with genomic instability (GI), including DNA damage repair defects, chromosomal instability, and mitochondrial GI, contribute to development and progression of cancer. These alterations not only result in DNA leakage into the cytoplasm, either directly or through micronuclei, but also trigger downstream inflammatory signals, such as the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway. Apart from directly inducing DNA damage to eliminate cancer cells, radiotherapy (RT) exerts its antitumor effects through intracellular DNA damage sensing mechanisms, leading to the activation of downstream inflammatory signaling pathways. This not only enables local tumor control but also reshapes the immune microenvironment, triggering systemic immune responses. The combination of RT and immunotherapy has emerged as a promising approach to increase the probability of abscopal effects, where distant tumors respond to treatment due to the systemic immunomodulatory effects. This review emphasizes the importance of GI in cancer biology and elucidates the mechanisms by which RT induces GI remodeling of the immune microenvironment. By elucidating the mechanisms of GI and RT-induced immune responses, we aim to emphasize the crucial importance of this approach in modern oncology. Understanding the impact of GI on tumor biological behavior and therapeutic response, as well as the possibility of activating systemic anti-tumor immunity through RT, will pave the way for the development of new treatment strategies and improve prognosis for patients.
Collapse
Affiliation(s)
- Si-Wei Wang
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai 200030, China; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai 200030, China
| | - Qiu-Yi Zheng
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| | - Wei-Feng Hong
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| | - Bu-Fu Tang
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| | - Shu-Jung Hsu
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| | - Yang Zhang
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| | - Xiao-Bin Zheng
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| | - Zhao-Chong Zeng
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| | - Chao Gao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai 200030, China.
| | - Ai-Wu Ke
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai 200030, China.
| | - Shi-Suo Du
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai 200030, China.
| |
Collapse
|
23
|
Varol A, Boulos JC, Jin C, Klauck SM, Zhitkovich A, Efferth T. Inhibition of MSH6 augments the antineoplastic efficacy of cisplatin in non-small cell lung cancer as autophagy modulator. Chem Biol Interact 2024; 402:111193. [PMID: 39168426 DOI: 10.1016/j.cbi.2024.111193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/18/2024] [Accepted: 08/07/2024] [Indexed: 08/23/2024]
Abstract
The altered response to chemotherapeutic agents predominantly stems from heightened single-point mutations within coding regions and dysregulated expression levels of genes implicated in drug resistance mechanisms. The identification of biomarkers based on mutation profiles and expression levels is pivotal for elucidating the underlying mechanisms of altered drug responses and for refining combinatorial therapeutic strategies in the field of oncology. Utilizing comprehensive bioinformatic analyses, we investigated the impact of eight mismatch repair (MMR) genes on overall survival across 23 cancer types, encompassing more than 7500 tumors, by integrating their mutation profiles. Among these genes, MSH6 emerged as the most predictive biomarker, characterized by a pronounced mutation frequency and elevated expression levels, which correlated with poorer patient survival outcomes. The wet lab experiments disclosed the impact of MSH6 in mediating altered drug responses. Cytotoxic assays conducted revealed that the depletion of MSH6 in H460 non-small lung cancer cells augmented the efficacy of cisplatin, carboplatin, and gemcitabine. Pathway analyses further delineated the involvement of MSH6 as a modulator, influencing the delicate equilibrium between the pro-survival and pro-death functions of autophagy. Our study elucidates the intricate interplay between MSH6, autophagy, and cisplatin efficacy, highlighting MSH6 as a potential therapeutic target to overcome cisplatin resistance. By revealing the modulation of autophagy pathways by MSH6 inhibition, our findings offer insights into novel approaches for enhancing the efficacy of cisplatin-based cancer therapy through targeted interventions.
Collapse
Affiliation(s)
- Ayşegül Varol
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University-Mainz, 55128, Mainz, Germany
| | - Joelle C Boulos
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University-Mainz, 55128, Mainz, Germany
| | - Chunmei Jin
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University-Mainz, 55128, Mainz, Germany
| | - Sabine M Klauck
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ) Heidelberg, National Center for Tumor Diseases (NCT), NCT Heidelberg, a Partnership Between DKFZ and University Hospital Heidelberg, 69120, Heidelberg, Germany
| | - Anatoly Zhitkovich
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, 02903, USA
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University-Mainz, 55128, Mainz, Germany.
| |
Collapse
|
24
|
Ali-Fehmi R, Krause HB, Morris RT, Wallbillich JJ, Corey L, Bandyopadhyay S, Kheil M, Elbashir L, Zaiem F, Quddus MR, Abada E, Herzog T, Karnezis AN, Antonarakis ES, Kasi PM, Wei S, Swensen J, Elliott A, Xiu J, Hechtman J, Spetzler D, Abraham J, Radovich M, Sledge G, Oberley MJ, Bryant D. Analysis of Concordance Between Next-Generation Sequencing Assessment of Microsatellite Instability and Immunohistochemistry-Mismatch Repair From Solid Tumors. JCO Precis Oncol 2024; 8:e2300648. [PMID: 39565978 PMCID: PMC11594015 DOI: 10.1200/po.23.00648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 06/28/2024] [Accepted: 08/12/2024] [Indexed: 11/22/2024] Open
Abstract
PURPOSE The new CAP guideline published in August 2022 recommends using immunohistochemistry (IHC) to test for mismatch repair defects in gastroesophageal (GE), small bowel (SB), or endometrial carcinoma (EC) cancers over next-generation sequencing assessment of microsatellite instability (NGS-MSI) for immune checkpoint inhibitor (ICI) therapy eligibility and states there is a preference to use IHC over NGS-MSI in colorectal carcinoma (CRC). METHODS We assessed the concordance of NGS-MSI and IHC-MMR from a very large cohort across the spectrum of solid tumors. RESULTS Of the over 190,000 samples with both NGS-MSI and IHC-MMR about 1,160 were initially flagged as discordant. Of those samples initially flagged as discordant, 50.9% remained discordant after being reviewed by an additional pathologist. This resulted in a final discordance rate of 0.31% (590/191,767). Among CRC, GE, SB and EC, 55.4% of mismatch repair proficient/MSI high (MMRp/MSI-H) tumors had at least one somatic pathogenic mutation in an MMR gene or POLE. Mismatch repair deficient/microsatellite stable (MMRd/MSS) tumors had a significantly lower rate of high tumor mutational burden than MMRp/MSI-H tumors. Across all solid tumors, MMRd/MSI-H tumors had significantly longer overall survival (OS; hazard ratio [HR], 1.47, P < .001) and post-ICI survival (HR, 1.82, P < .001) as compared with MMRp/MSS tumors. The OS for the MMRd/MSS group was slightly worse compared to the MMRp/MSI-H tumors, but this difference was not statistically significant (HR, 0.73, P = .058), with a similar pattern when looking at post-ICI survival (HR, 0.43, P = .155). CONCLUSION This study demonstrates that NGS-MSI is noninferior to IHC-MMR and can identify MSI-H tumors that IHC-MMR is unable to detect and conversely IHC-MMR can identify MMRd tumors that NGS-MSI misses.
Collapse
Affiliation(s)
| | | | - Robert T. Morris
- Karmanos Cancer Institute, Detroit, MI
- Wayne State University School of Medicine, Detroit, MI
| | - John J. Wallbillich
- Karmanos Cancer Institute, Detroit, MI
- Wayne State University School of Medicine, Detroit, MI
| | - Logan Corey
- Karmanos Cancer Institute, Detroit, MI
- Wayne State University School of Medicine, Detroit, MI
| | - Sudeshna Bandyopadhyay
- Karmanos Cancer Institute, Detroit, MI
- Wayne State University School of Medicine, Detroit, MI
| | - Mira Kheil
- Karmanos Cancer Institute, Detroit, MI
- Wayne State University School of Medicine, Detroit, MI
| | - Leana Elbashir
- Karmanos Cancer Institute, Detroit, MI
- Wayne State University School of Medicine, Detroit, MI
| | - Fadi Zaiem
- Karmanos Cancer Institute, Detroit, MI
- Wayne State University School of Medicine, Detroit, MI
| | - M. Ruhul Quddus
- Women & Infants Hospital/Alpert Medical School of Brown University, Providence, RI
| | - Evi Abada
- Karmanos Cancer Institute, Detroit, MI
- Women & Infants Hospital/Alpert Medical School of Brown University, Providence, RI
| | - Thomas Herzog
- University of Cincinnati Medical Center, Cincinnati, OH
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Mendiola M, Heredia-Soto V, Ruz-Caracuel I, Baillo A, Ramon-Patino JL, Berjon A, Escudero FJ, Pelaez-Garcia A, Hernandez A, Feliu J, Hardisson D, Redondo A. Performance of the Idylla microsatellite instability test in endometrial cancer. Mol Cell Probes 2024; 77:101976. [PMID: 39069012 DOI: 10.1016/j.mcp.2024.101976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/25/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
CONTEXT DNA mismatch repair (MMR) deficiency (dMMR) testing is now recommended in endometrial cancer. Defect identification in the molecules participating in this pathway, or the presence of microsatellite instability, are commonly employed for this purpose. Novel methods are continuously evolving to report dMMR/microsatellite instability and to easily perform routine diagnoses. OBJECTIVE The main aim of this study was to compare the concordance of the Idylla microsatellite instability test for the identification of dMMR endometrial cancer samples defined by immunohistochemistry and MMR genomic status. DESIGN We applied the Idylla MSI test to 126 early-stage endometrial cancer cases with MMR testing by immunohistochemistry and genomic characterization (methylation in MLH1 and sequence alterations in MLH1, PMS2, MSH2 and MSH6). Individual markers and overall specific performance indicators were explored. RESULTS The Idylla platform achieved a higher global concordance rate with MMR genomic status than with immunohistochemistry (75 % and 66 %, respectively). Sensitivity and specificity are also higher (75 % vs 66 % and 96 % vs 90 %, respectively). Clustering analysis split the patients into 2 well-differentiated clusters, the pMMR and the dMMR group, represented by MLH1/PMS2 loss and the MLH1 methylated promoter. Overall, immunohistochemistry and MMR genomic status identified more dMMR cases than did the Idylla test, although correlations were improved with a modified Idylla test cut-off. CONCLUSIONS Performance of the Idylla test was better correlated with MMR genomic status than MMR immunohistochemistry status, which improved with a modified test cut-off. Further studies are needed to confirm the cut-off accuracy.
Collapse
Affiliation(s)
- Marta Mendiola
- Molecular Pathology and Therapeutic Targets Group, Hospital La Paz Institute for Health Research (IdiPAZ), 28046, Madrid, Spain; Center for Biomedical Research in the Cancer Network (CIBERONC), Instituto de Salud Carlos III, 28029, Madrid, Spain.
| | - Victoria Heredia-Soto
- Center for Biomedical Research in the Cancer Network (CIBERONC), Instituto de Salud Carlos III, 28029, Madrid, Spain; Translational Oncology Research Laboratory, Hospital La Paz Institute for Health Research (IdiPAZ), 28046, Madrid, Spain
| | - Ignacio Ruz-Caracuel
- Center for Biomedical Research in the Cancer Network (CIBERONC), Instituto de Salud Carlos III, 28029, Madrid, Spain; Department of Pathology, La Paz University Hospital, 28046, Madrid, Spain
| | - Amparo Baillo
- Mathematics Department, Autonomous University of Madrid, 28049, Madrid, Spain
| | | | - Alberto Berjon
- Molecular Pathology and Therapeutic Targets Group, Hospital La Paz Institute for Health Research (IdiPAZ), 28046, Madrid, Spain; Department of Pathology, La Paz University Hospital, 28046, Madrid, Spain
| | - Francisco Javier Escudero
- Translational Oncology Research Laboratory, Hospital La Paz Institute for Health Research (IdiPAZ), 28046, Madrid, Spain
| | - Alberto Pelaez-Garcia
- Molecular Pathology and Therapeutic Targets Group, Hospital La Paz Institute for Health Research (IdiPAZ), 28046, Madrid, Spain
| | - Alicia Hernandez
- Department of Obstetrics and Gynecology, La Paz University Hospital, 28046, Madrid, Spain; School of Medicine, Autonomous University of Madrid, 28046, Madrid, Spain
| | - Jaime Feliu
- Center for Biomedical Research in the Cancer Network (CIBERONC), Instituto de Salud Carlos III, 28029, Madrid, Spain; Translational Oncology Research Laboratory, Hospital La Paz Institute for Health Research (IdiPAZ), 28046, Madrid, Spain; Department of Medical Oncology, La Paz University Hospital, 28046, Madrid, Spain; School of Medicine, Autonomous University of Madrid, 28046, Madrid, Spain; Cátedra UAM-ANGEM, Faculty of Medicine, Autonomous University of Madrid, 28046, Madrid, Spain
| | - David Hardisson
- Molecular Pathology and Therapeutic Targets Group, Hospital La Paz Institute for Health Research (IdiPAZ), 28046, Madrid, Spain; Center for Biomedical Research in the Cancer Network (CIBERONC), Instituto de Salud Carlos III, 28029, Madrid, Spain; Department of Pathology, La Paz University Hospital, 28046, Madrid, Spain; School of Medicine, Autonomous University of Madrid, 28046, Madrid, Spain
| | - Andres Redondo
- Translational Oncology Research Laboratory, Hospital La Paz Institute for Health Research (IdiPAZ), 28046, Madrid, Spain; Department of Medical Oncology, La Paz University Hospital, 28046, Madrid, Spain; School of Medicine, Autonomous University of Madrid, 28046, Madrid, Spain; Cátedra UAM-ANGEM, Faculty of Medicine, Autonomous University of Madrid, 28046, Madrid, Spain.
| |
Collapse
|
26
|
Zhou G, Shimura T, Yoneima T, Nagamachi A, Kanai A, Doi K, Sasatani M. Age-Dependent Differences in Radiation-Induced DNA Damage Responses in Intestinal Stem Cells. Int J Mol Sci 2024; 25:10213. [PMID: 39337697 PMCID: PMC11431935 DOI: 10.3390/ijms251810213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/20/2024] [Accepted: 09/21/2024] [Indexed: 09/30/2024] Open
Abstract
Age at exposure is a critical modifier of the risk of radiation-induced cancer. However, the effects of age on radiation-induced carcinogenesis remain poorly understood. In this study, we focused on tissue stem cells using Lgr5-eGFP-ires-CreERT2 mice to compare radiation-induced DNA damage responses between Lgr5+ and Lgr5- intestinal stem cells. Three-dimensional immunostaining analyses demonstrated that radiation induced apoptosis and the mitotic index more efficiently in adult Lgr5- stem cells than in adult Lgr5+ stem cells but not in infants, regardless of Lgr5 expression. Supporting this evidence, rapid and transient p53 activation occurred after irradiation in adult intestinal crypts but not in infants. RNA sequencing revealed greater variability in gene expression in adult Lgr5+ stem cells than in infant Lgr5+ stem cells after irradiation. Notably, the cell cycle and DNA repair pathways were more enriched in adult stem cells than in infant stem cells after irradiation. Our findings suggest that radiation-induced DNA damage responses in mouse intestinal crypts differ between infants and adults, potentially contributing to the age-dependent susceptibility to radiation carcinogenesis.
Collapse
Grants
- none Research project on the Health Effects of Radiation organized by Ministry of the Environment, Japan.
- 23K25008 Japan Society for the Promotion of Science, JSPS KAKENHI
- 22H03754 Japan Society for the Promotion of Science, JSPS KAKENHI
- 23K28232 Japan Society for the Promotion of Science, JSPS KAKENHI
- 23H03542 Japan Society for the Promotion of Science, JSPS KAKENHI
- 20K21846 Japan Society for the Promotion of Science, JSPS KAKENHI
- NIFS20KOCA004 National Institute for Fusion Science Collaborative Research Program
- NIFS23HDCF005 National Institute for Fusion Science Collaborative Research Program
- none QST Research Collaboration
- none the Program of the Network-Type Joint Usage/Research Center for Radiation Disaster Medical Science at Hiroshima University, Nagasaki University, and Fukushima Medical University.
- none Initiative for Realizing Diversity in the Research Environment (Specific Correspondence Type), a support project for the Development of Human Resources in Science and Technology conducted by the Ministry of Education, Culture, Sports, Science and Technolo
- NIFS17KOCA002 National Institute for Fusion Science Collaborative Research Program
Collapse
Affiliation(s)
- Guanyu Zhou
- Department of Experimental Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 754-8553, Japan;
| | - Tsutomu Shimura
- Department of Environmental Health, National Institute of Public Health, Saitama 351-0197, Japan
| | - Taiki Yoneima
- School of Medicine, Hiroshima University, Hiroshima 754-8551, Japan
| | - Akiko Nagamachi
- Department of Molecular Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 754-8553, Japan
| | - Akinori Kanai
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8561, Japan
| | - Kazutaka Doi
- Department of Radiation Regulatory Science Research, Institute for Radiological Sciences, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Megumi Sasatani
- Department of Experimental Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 754-8553, Japan;
| |
Collapse
|
27
|
Xu S, Chen X, Ying H, Chen J, Ye M, Lin Z, Zhang X, Shen T, Li Z, Zheng Y, Zhang D, Ke Y, Chen Z, Lu Z. Multi‑omics identification of a signature based on malignant cell-associated ligand-receptor genes for lung adenocarcinoma. BMC Cancer 2024; 24:1138. [PMID: 39267056 PMCID: PMC11395699 DOI: 10.1186/s12885-024-12911-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/06/2024] [Indexed: 09/14/2024] Open
Abstract
PURPOSE Lung adenocarcinoma (LUAD) significantly contributes to cancer-related mortality worldwide. The heterogeneity of the tumor immune microenvironment in LUAD results in varied prognoses and responses to immunotherapy among patients. Consequently, a clinical stratification algorithm is necessary and inevitable to effectively differentiate molecular features and tumor microenvironments, facilitating personalized treatment approaches. METHODS We constructed a comprehensive single-cell transcriptional atlas using single-cell RNA sequencing data to reveal the cellular diversity of malignant epithelial cells of LUAD and identified a novel signature through a computational framework coupled with 10 machine learning algorithms. Our study further investigates the immunological characteristics and therapeutic responses associated with this prognostic signature and validates the predictive efficacy of the model across multiple independent cohorts. RESULTS We developed a six-gene prognostic model (MYO1E, FEN1, NMI, ZNF506, ALDOA, and MLLT6) using the TCGA-LUAD dataset, categorizing patients into high- and low-risk groups. This model demonstrates robust performance in predicting survival across various LUAD cohorts. We observed distinct molecular patterns and biological processes in different risk groups. Additionally, analysis of two immunotherapy cohorts (N = 317) showed that patients with a high-risk signature responded more favorably to immunotherapy compared to those in the low-risk group. Experimental validation further confirmed that MYO1E enhances the proliferation and migration of LUAD cells. CONCLUSION We have identified malignant cell-associated ligand-receptor subtypes in LUAD cells and developed a robust prognostic signature by thoroughly analyzing genomic, transcriptomic, and immunologic data. This study presents a novel method to assess the prognosis of patients with LUAD and provides insights into developing more effective immunotherapies.
Collapse
Affiliation(s)
- Shengshan Xu
- Department of Thoracic Surgery, Jiangmen Central Hospital, Jiangmen, Guangdong, China.
| | - Xiguang Chen
- Department of Medical Oncology, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Haoxuan Ying
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jiarong Chen
- Department of Oncology, Jiangmen Central Hospital, Jiangmen, Guangdong, China
| | - Min Ye
- Department of Thoracic Surgery, Jiangmen Central Hospital, Jiangmen, Guangdong, China
| | - Zhichao Lin
- Department of Thoracic Surgery, Jiangmen Central Hospital, Jiangmen, Guangdong, China
| | - Xin Zhang
- Clinical Experimental Center, Jiangmen Key Laboratory of Clinical Biobanks and Translational Research, Jiangmen Central Hospital, Jiangmen, Guangdong, China
| | - Tao Shen
- Department of Thoracic Surgery, Jiangmen Central Hospital, Jiangmen, Guangdong, China
| | - Zumei Li
- Department of Thoracic Surgery, Jiangmen Central Hospital, Jiangmen, Guangdong, China
| | - Youbin Zheng
- Department of Radiology, Jiangmen Wuyi Hospital of Traditional Chinese Medicine, Jiangmen, Guangdong, China
| | - Dongxi Zhang
- Department of Thoracic Surgery, Jiangmen Central Hospital, Jiangmen, Guangdong, China
| | - Yongwen Ke
- Department of Thoracic Surgery, Jiangmen Central Hospital, Jiangmen, Guangdong, China
| | - Zhuowen Chen
- Department of Thoracic Surgery, Jiangmen Central Hospital, Jiangmen, Guangdong, China
| | - Zhuming Lu
- Department of Thoracic Surgery, Jiangmen Central Hospital, Jiangmen, Guangdong, China.
| |
Collapse
|
28
|
Tejwani V, Carroll T, Macartney T, Bandau S, Alabert C, Saredi G, Toth R, Rouse J. PROTAC-mediated conditional degradation of the WRN helicase as a potential strategy for selective killing of cancer cells with microsatellite instability. Sci Rep 2024; 14:20824. [PMID: 39242638 PMCID: PMC11379953 DOI: 10.1038/s41598-024-71160-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/26/2024] [Indexed: 09/09/2024] Open
Abstract
Multiple studies have demonstrated that cancer cells with microsatellite instability (MSI) are intolerant to loss of the Werner syndrome helicase (WRN), whereas microsatellite-stable (MSS) cancer cells are not. Therefore, WRN represents a promising new synthetic lethal target for developing drugs to treat cancers with MSI. Given the uncertainty of how effective inhibitors of WRN activity will prove in clinical trials, and the likelihood of tumours developing resistance to WRN inhibitors, alternative strategies for impeding WRN function are needed. Proteolysis-targeting chimeras (PROTACs) are heterobifunctional small molecules that target specific proteins for degradation. Here, we engineered the WRN locus so that the gene product is fused to a bromodomain (Bd)-tag, enabling conditional WRN degradation with the AGB-1 PROTAC specific for the Bd-tag. Our data revealed that WRN degradation is highly toxic in MSI but not MSS cell lines. In MSI cells, WRN degradation caused G2/M arrest, chromosome breakage and ATM kinase activation. We also describe a multi-colour cell-based platform for facile testing of selective toxicity in MSI versus MSS cell lines. Together, our data show that a degrader approach is a potentially powerful way of targeting WRN in MSI cancers and paves the way for the development of WRN-specific PROTAC compounds.
Collapse
Affiliation(s)
- Vikram Tejwani
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, DD1 5EH, UK
| | - Thomas Carroll
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, DD1 5EH, UK
| | - Thomas Macartney
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, DD1 5EH, UK
| | - Susanne Bandau
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, Wellcome Trust Biocentre, University of Dundee, Dundee, DD1 5EH, UK
| | - Constance Alabert
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, Wellcome Trust Biocentre, University of Dundee, Dundee, DD1 5EH, UK
| | - Giulia Saredi
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, DD1 5EH, UK
| | - Rachel Toth
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, DD1 5EH, UK
| | - John Rouse
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, DD1 5EH, UK.
| |
Collapse
|
29
|
Pavelescu LA, Enache RM, Roşu OA, Profir M, Creţoiu SM, Gaspar BS. Predictive Biomarkers and Resistance Mechanisms of Checkpoint Inhibitors in Malignant Solid Tumors. Int J Mol Sci 2024; 25:9659. [PMID: 39273605 PMCID: PMC11395316 DOI: 10.3390/ijms25179659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024] Open
Abstract
Predictive biomarkers for immune checkpoint inhibitors (ICIs) in solid tumors such as melanoma, hepatocellular carcinoma (HCC), colorectal cancer (CRC), non-small cell lung cancer (NSCLC), endometrial carcinoma, renal cell carcinoma (RCC), or urothelial carcinoma (UC) include programmed cell death ligand 1 (PD-L1) expression, tumor mutational burden (TMB), defective deoxyribonucleic acid (DNA) mismatch repair (dMMR), microsatellite instability (MSI), and the tumor microenvironment (TME). Over the past decade, several types of ICIs, including cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) inhibitors, anti-programmed cell death 1 (PD-1) antibodies, anti-programmed cell death ligand 1 (PD-L1) antibodies, and anti-lymphocyte activation gene-3 (LAG-3) antibodies have been studied and approved by the Food and Drug Administration (FDA), with ongoing research on others. Recent studies highlight the critical role of the gut microbiome in influencing a positive therapeutic response to ICIs, emphasizing the importance of modeling factors that can maintain a healthy microbiome. However, resistance mechanisms can emerge, such as increased expression of alternative immune checkpoints, T-cell immunoglobulin (Ig), mucin domain-containing protein 3 (TIM-3), LAG-3, impaired antigen presentation, and alterations in the TME. This review aims to synthesize the data regarding the interactions between microbiota and immunotherapy (IT). Understanding these mechanisms is essential for optimizing ICI therapy and developing effective combination strategies.
Collapse
Affiliation(s)
- Luciana Alexandra Pavelescu
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Robert Mihai Enache
- Department of Radiology and Medical Imaging, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Oana Alexandra Roşu
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Oncology, Elias University Emergency Hospital, 011461 Bucharest, Romania
| | - Monica Profir
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Oncology, Elias University Emergency Hospital, 011461 Bucharest, Romania
| | - Sanda Maria Creţoiu
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Bogdan Severus Gaspar
- Department of Surgery, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Surgery Clinic, Bucharest Emergency Clinical Hospital, 014461 Bucharest, Romania
| |
Collapse
|
30
|
Dzhemileva LU, D'yakonov VA, Egorova KS, Ananikov VP. Mechanisms of cytotoxicity in six classes of ionic liquids: Evaluating cell cycle impact and genotoxic and apoptotic effects. CHEMOSPHERE 2024; 364:142964. [PMID: 39074667 DOI: 10.1016/j.chemosphere.2024.142964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/03/2024] [Accepted: 07/26/2024] [Indexed: 07/31/2024]
Abstract
Ionic liquids (ILs), earlier praised for their eco-friendliness, have emerged as key chemicals in advancing green chemistry, catalysis, solvent development, and more. However, the discovery of their notable toxicity has led to a controversial reputation of ILs and has shifted the research landscape towards understanding their biological impacts. The present study examines the mechanism of cytotoxicity of 32 ILs across six classes, highlighting their effects on the cell cycle of the Jurkat cell line. Focusing on five ILs with pronounced cytotoxicity, we uncover their genotoxic effects and their role in inducing apoptosis. Our findings suggest intricate interplay between the extrinsic and intrinsic apoptotic pathways at different time points after exposure to ILs. Moreover, the ILs studied displayed marked genotoxicity, likely stemming from the accumulation of double-strand DNA breaks in the Jurkat cells. This investigation offers a comprehensive view on interactions of ILs with eukaryotic cells, thereby providing new guidelines for developing safer pharmaceutical and industrial applications of these chemicals. The results not only broaden and enhance the previous perceptions but also open new avenues in research, emphasizing the dual potential of ILs in innovation and safety, and marking a significant step towards integrating chemical innovations with biological safety.
Collapse
Affiliation(s)
- Lilya U Dzhemileva
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Vladimir A D'yakonov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Ksenia S Egorova
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, 119991, Russia.
| | - Valentine P Ananikov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, 119991, Russia.
| |
Collapse
|
31
|
Duan C, He B, Wang Y, Liu W, Bao W, Yu L, Xin J, Gui H, Lei J, Yang Z, Liu J, Tao W, Qin J, Luo J, Dong Z. Stanniocalcin-1 promotes temozolomide resistance of glioblastoma through regulation of MGMT. Sci Rep 2024; 14:20199. [PMID: 39215105 PMCID: PMC11364827 DOI: 10.1038/s41598-024-68902-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Temozolomide (TMZ) resistance is a major challenge in the treatment of glioblastoma (GBM). Tumour reproductive cells (TRCs) have been implicated in the development of chemotherapy resistance. By culturing DBTRG cells in three-dimensional soft fibrin gels to enrich GBM TRCs and performing RNA-seq analysis, the expression of stanniocalcin-1 (STC), a gene encoding a secreted glycoprotein, was found to be upregulated in TRCs. Meanwhile, the viability of TMZ-treated TRC cells was significantly higher than that of TMZ-treated 2D cells. Analysis of clinical data from CGGA (Chinese Glioma Genome Atlas) database showed that high expression of STC1 was closely associated with poor prognosis, glioma grade and resistance to TMZ treatment, suggesting that STC1 may be involved in TMZ drug resistance. The expression of STC1 in tissues and cells was examined, as well as the effect of STC1 on GBM cell proliferation and TMZ-induced DNA damage. The results showed that overexpression of STC1 promoted and knockdown of STC1 inhibited TMZ-induced DNA damage. These results were validated in an intracranial tumour model. These data revealed that STC1 exerts regulatory functions on MGMT expression in GBM, and provides a rationale for targeting STC1 to overcome TMZ resistance.
Collapse
Affiliation(s)
- Chao Duan
- Center for Neurological Disease Research, Taihe Hospital, Hubei University of Medicine, 32 Renmin South Rd, Shiyan, 442000, Hubei, China
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Bincan He
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Yiqi Wang
- Center for Neurological Disease Research, Taihe Hospital, Hubei University of Medicine, 32 Renmin South Rd, Shiyan, 442000, Hubei, China
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Wanying Liu
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Wendai Bao
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Li Yu
- Center for Neurological Disease Research, Taihe Hospital, Hubei University of Medicine, 32 Renmin South Rd, Shiyan, 442000, Hubei, China
| | - Jinxin Xin
- Center for Neurological Disease Research, Taihe Hospital, Hubei University of Medicine, 32 Renmin South Rd, Shiyan, 442000, Hubei, China
| | - Hui Gui
- Center for Neurological Disease Research, Taihe Hospital, Hubei University of Medicine, 32 Renmin South Rd, Shiyan, 442000, Hubei, China
| | - Junrong Lei
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, 32 Renmin South Rd, Shiyan, 442000, Hubei, China
| | - Zehao Yang
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, 32 Renmin South Rd, Shiyan, 442000, Hubei, China
| | - Jun Liu
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, 32 Renmin South Rd, Shiyan, 442000, Hubei, China
| | - Weiwei Tao
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Jun Qin
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, 32 Renmin South Rd, Shiyan, 442000, Hubei, China.
| | - Jie Luo
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, 32 Renmin South Rd, Shiyan, 442000, Hubei, China.
| | - Zhiqiang Dong
- Center for Neurological Disease Research, Taihe Hospital, Hubei University of Medicine, 32 Renmin South Rd, Shiyan, 442000, Hubei, China.
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
- Central Laboratory, Hubei Cancer Hospital, Wuhan, 430070, Hubei, China.
| |
Collapse
|
32
|
Shi G, Pang Q, Lin Z, Zhang X, Huang K. Repetitive Sequence Stability in Embryonic Stem Cells. Int J Mol Sci 2024; 25:8819. [PMID: 39201503 PMCID: PMC11354519 DOI: 10.3390/ijms25168819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/07/2024] [Accepted: 08/12/2024] [Indexed: 09/02/2024] Open
Abstract
Repetitive sequences play an indispensable role in gene expression, transcriptional regulation, and chromosome arrangements through trans and cis regulation. In this review, focusing on recent advances, we summarize the epigenetic regulatory mechanisms of repetitive sequences in embryonic stem cells. We aim to bridge the knowledge gap by discussing DNA damage repair pathway choices on repetitive sequences and summarizing the significance of chromatin organization on repetitive sequences in response to DNA damage. By consolidating these insights, we underscore the critical relationship between the stability of repetitive sequences and early embryonic development, seeking to provide a deeper understanding of repetitive sequence stability and setting the stage for further research and potential therapeutic strategies in developmental biology and regenerative medicine.
Collapse
Affiliation(s)
- Guang Shi
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research and SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (Q.P.); (Z.L.); (X.Z.)
| | - Qianwen Pang
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research and SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (Q.P.); (Z.L.); (X.Z.)
| | - Zhancheng Lin
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research and SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (Q.P.); (Z.L.); (X.Z.)
| | - Xinyi Zhang
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research and SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (Q.P.); (Z.L.); (X.Z.)
| | - Kaimeng Huang
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA;
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| |
Collapse
|
33
|
Rahman R, Shi DD, Reitman ZJ, Hamerlik P, de Groot JF, Haas-Kogan DA, D’Andrea AD, Sulman EP, Tanner K, Agar NYR, Sarkaria JN, Tinkle CL, Bindra RS, Mehta MP, Wen PY. DNA damage response in brain tumors: A Society for Neuro-Oncology consensus review on mechanisms and translational efforts in neuro-oncology. Neuro Oncol 2024; 26:1367-1387. [PMID: 38770568 PMCID: PMC11300028 DOI: 10.1093/neuonc/noae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Abstract
DNA damage response (DDR) mechanisms are critical to maintenance of overall genomic stability, and their dysfunction can contribute to oncogenesis. Significant advances in our understanding of DDR pathways have raised the possibility of developing therapies that exploit these processes. In this expert-driven consensus review, we examine mechanisms of response to DNA damage, progress in development of DDR inhibitors in IDH-wild-type glioblastoma and IDH-mutant gliomas, and other important considerations such as biomarker development, preclinical models, combination therapies, mechanisms of resistance and clinical trial design considerations.
Collapse
Affiliation(s)
- Rifaquat Rahman
- Department of Radiation Oncology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Diana D Shi
- Department of Radiation Oncology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Zachary J Reitman
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, USA
| | - Petra Hamerlik
- Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - John F de Groot
- Division of Neuro-Oncology, University of California San Francisco, San Francisco, California, USA
| | - Daphne A Haas-Kogan
- Department of Radiation Oncology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Alan D D’Andrea
- Department of Radiation Oncology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Erik P Sulman
- Department of Radiation Oncology, New York University, New York, New York, USA
| | - Kirk Tanner
- National Brain Tumor Society, Newton, Massachusetts, USA
| | - Nathalie Y R Agar
- Department of Neurosurgery and Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jann N Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Christopher L Tinkle
- Department of Radiation Oncology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Ranjit S Bindra
- Department of Therapeutic Radiology, Yale University, New Haven, Connecticut, USA
| | - Minesh P Mehta
- Miami Cancer Institute, Baptist Hospital, Miami, Florida, USA
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
34
|
Gutierrez R, Chan AYS, Lai SWT, Itoh S, Lee DH, Sun K, Battad A, Chen S, O'Connor TR, Shuck SC. Lack of mismatch repair enhances resistance to methylating agents for cells deficient in oxidative demethylation. J Biol Chem 2024; 300:107492. [PMID: 38925328 PMCID: PMC11326903 DOI: 10.1016/j.jbc.2024.107492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/21/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
The human alkylation B (AlkB) homologs, ALKBH2 and ALKBH3, respond to methylation damage to maintain genomic integrity and cellular viability. Both ALKBH2 and ALKBH3 are direct reversal repair enzymes that remove 1-methyladenine (1meA) and 3-methylcytosine (3meC) lesions commonly generated by alkylating chemotherapeutic agents. Thus, the existence of deficiencies in ALKBH proteins can be exploited in synergy with chemotherapy. In this study, we investigated possible interactions between ALKBH2 and ALKBH3 with other proteins that could alter damage response and discovered an interaction with the mismatch repair (MMR) system. To test whether the lack of active MMR impacts ALKBH2 and/or ALKBH3 response to methylating agents, we generated cells deficient in ALKBH2, ALKBH3, or both in addition to Mlh homolog 1 (MLH1), another MMR protein. We found that MLH1koALKBH3ko cells showed enhanced resistance toward SN1- and SN2-type methylating agents, whereas MLH1koALKBH2ko cells were only resistant to SN1-type methylating agents. Concomitant loss of ALKBH2 and ALKBH3 (ALKBH2ko3ko) rendered cells sensitive to SN1- and SN2-agents, but the additional loss of MLH1 enhanced resistance to both types of damage. We also showed that ALKBH2ko3ko cells have an ATR-dependent arrest at the G2/M checkpoint, increased apoptotic signaling, and replication fork stress in response to methylation. However, these responses were not observed with the loss of functional MLH1 in MLH1koALKBH2ko3ko cells. Finally, in MLH1koALKBH2ko3ko cells, we observed elevated mutant frequency in untreated and temozolomide treated cells. These results suggest that obtaining a more accurate prognosis of chemotherapeutic outcome requires information on the functionality of ALKBH2, ALKBH3, and MLH1.
Collapse
Affiliation(s)
- Roberto Gutierrez
- Department of Cancer Biology, Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute at the City of Hope, Duarte, California, USA
| | - Annie Yin S Chan
- Department of Cancer Biology, Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute at the City of Hope, Duarte, California, USA
| | - Seigmund Wai Tsuen Lai
- Department of Diabetes and Cancer Metabolism, Beckman Research Institute at the City of Hope, Duarte, California, USA
| | - Shunsuke Itoh
- Department of Cancer Biology, Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute at the City of Hope, Duarte, California, USA
| | - Dong-Hyun Lee
- Department of Biological Sciences, College of Natural Sciences, Chonnam National University, Gwangju, South Korea
| | - Kelani Sun
- Department of Diabetes and Cancer Metabolism, Beckman Research Institute at the City of Hope, Duarte, California, USA
| | - Alana Battad
- Department of Diabetes and Cancer Metabolism, Beckman Research Institute at the City of Hope, Duarte, California, USA
| | - Shiuan Chen
- Department of Cancer Biology, Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute at the City of Hope, Duarte, California, USA
| | - Timothy R O'Connor
- Department of Cancer Biology, Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute at the City of Hope, Duarte, California, USA.
| | - Sarah C Shuck
- Department of Diabetes and Cancer Metabolism, Beckman Research Institute at the City of Hope, Duarte, California, USA.
| |
Collapse
|
35
|
Yi L, Solanki R, Strous M. In search of the pH limit of growth in halo-alkaliphilic cyanobacteria. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13323. [PMID: 39128846 PMCID: PMC11317126 DOI: 10.1111/1758-2229.13323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/12/2024] [Indexed: 08/13/2024]
Abstract
Cyanobacteria have many biotechnological applications. Increasing their cultivation pH can assist in capturing carbon dioxide and avoiding invasion by other organisms. However, alkaline media may have adverse effects on cyanobacteria, such as reducing the Carbon-Concentrating Mechanism's efficiency. Here, we cultivated two halo-alkaliphilic cyanobacteria consortia in chemostats at pH 10.2-11.4. One consortium was dominated by Ca. Sodalinema alkaliphilum, the other by a species of Nodosilinea. These two cyanobacteria dominate natural communities in Canadian and Asian alkaline soda lakes. We show that increasing the pH decreased biomass yield. This decrease was caused, in part, by a dramatic increase in carbon transfer to heterotrophs. At pH 11.4, cyanobacterial growth became limited by bicarbonate uptake, which was mainly ATP dependent. In parallel, the higher the pH, the more sensitive cyanobacteria became to light, resulting in photoinhibition and upregulation of DNA repair systems.
Collapse
Affiliation(s)
- Lianchun Yi
- Department of Earth, Energy, and EnvironmentUniversity of CalgaryCalgaryAlbertaCanada
| | - Ruchita Solanki
- Department of Earth, Energy, and EnvironmentUniversity of CalgaryCalgaryAlbertaCanada
| | - Marc Strous
- Department of Earth, Energy, and EnvironmentUniversity of CalgaryCalgaryAlbertaCanada
| |
Collapse
|
36
|
Varol A, Klauck SM, Dantzer F, Efferth T. Enhancing cisplatin drug sensitivity through PARP3 inhibition: The influence on PDGF and G-coupled signal pathways in cancer. Chem Biol Interact 2024; 398:111094. [PMID: 38830565 DOI: 10.1016/j.cbi.2024.111094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/07/2024] [Accepted: 05/31/2024] [Indexed: 06/05/2024]
Abstract
Drug resistance poses a significant challenge in cancer treatment despite the clinical efficacy of cisplatin. Identifying and targeting biomarkers open new ways to improve therapeutic outcomes. In this study, comprehensive bioinformatic analyses were employed, including a comparative analysis of multiple datasets, to evaluate overall survival and mutation hotspots in 27 base excision repair (BER) genes of more than 7,500 tumors across 23 cancer types. By using various parameters influencing patient survival, revealing that the overexpression of 15 distinct BER genes, particularly PARP3, NEIL3, and TDG, consistently correlated with poorer survival across multiple factors such as race, gender, and metastasis. Single nucleotide polymorphism (SNP) analyses within protein-coding regions highlighted the potential deleterious effects of mutations on protein structure and function. The investigation of mutation hotspots in BER proteins identified PARP3 due to its high mutation frequency. Moving from bioinformatics to wet lab experiments, cytotoxic experiments demonstrated that the absence of PARP3 by CRISPR/Cas9-mediated knockdown in MDA-MB-231 breast cancer cells increased drug activity towards cisplatin, carboplatin, and doxorubicin. Pathway analyses indicated the impact of PARP3 absence on the platelet-derived growth factor (PDGF) and G-coupled signal pathways on cisplatin exposure. PDGF, a critical regulator of various cellular functions, was downregulated in the absence of PARP3, suggesting a role in cancer progression. Moreover, the influence of PARP3 knockdown on G protein-coupled receptors (GPCRs) affects their function in the presence of cisplatin. In conclusion, the study demonstrated a synthetic lethal interaction between GPCRs, PDGF signaling pathways, and PARP3 gene silencing. PARP3 emerged as a promising target.
Collapse
Affiliation(s)
- Ayşegül Varol
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University-Mainz, 55128, Mainz, Germany
| | - Sabine M Klauck
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ) Heidelberg, National Center for Tumor Diseases (NCT), NCT Heidelberg, a Partnership between DKFZ and University Hospital Heidelberg, 69120, Heidelberg, Germany
| | - Françoise Dantzer
- Poly(ADP-ribosyl)ation and Genome Integrity, Laboratoire d'Excellence Medalis, UMR7242, Centre Nationale de la Recherche Scientifique/Université de Strasbourg, Institut de Recherche de l'Ecole de Biotechnologie de Strasbourg, 300 bld. S. Brant, CS10413, 67412, Illkirch, France
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University-Mainz, 55128, Mainz, Germany.
| |
Collapse
|
37
|
Uboveja A, Aird KM. Interplay between altered metabolism and DNA damage and repair in ovarian cancer. Bioessays 2024; 46:e2300166. [PMID: 38873912 DOI: 10.1002/bies.202300166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/15/2024]
Abstract
Ovarian cancer is the most lethal gynecological malignancy and is often associated with both DNA repair deficiency and extensive metabolic reprogramming. While still emerging, the interplay between these pathways can affect ovarian cancer phenotypes, including therapeutic resistance to the DNA damaging agents that are standard-of-care for this tumor type. In this review, we will discuss what is currently known about cellular metabolic rewiring in ovarian cancer that may impact DNA damage and repair in addition to highlighting how specific DNA repair proteins also promote metabolic changes. We will also discuss relevant data from other cancers that could be used to inform ovarian cancer therapeutic strategies. Changes in the choice of DNA repair mechanism adopted by ovarian cancer are a major factor in promoting therapeutic resistance. Therefore, the impact of metabolic reprogramming on DNA repair mechanisms in ovarian cancer has major clinical implications for targeted combination therapies for the treatment of this devastating disease.
Collapse
Affiliation(s)
- Apoorva Uboveja
- Department of Pharmacology & Chemical Biology, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Katherine M Aird
- Department of Pharmacology & Chemical Biology, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
38
|
Kulkarni S, Gajjar K, Madhusudan S. Poly (ADP-ribose) polymerase inhibitor therapy and mechanisms of resistance in epithelial ovarian cancer. Front Oncol 2024; 14:1414112. [PMID: 39135999 PMCID: PMC11317305 DOI: 10.3389/fonc.2024.1414112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024] Open
Abstract
Advanced epithelial ovarian cancer is the commonest cause of gynaecological cancer deaths. First-line treatment for advanced disease includes a combination of platinum-taxane chemotherapy (post-operatively or peri-operatively) and maximal debulking surgery whenever feasible. Initial response rate to chemotherapy is high (up to 80%) but most patients will develop recurrence (approximately 70-90%) and succumb to the disease. Recently, poly-ADP-ribose polymerase (PARP) inhibition (by drugs such as Olaparib, Niraparib or Rucaparib) directed synthetic lethality approach in BRCA germline mutant or platinum sensitive disease has generated real hope for patients. PARP inhibitor (PARPi) maintenance therapy can prolong survival but therapeutic response is not sustained due to intrinsic or acquired secondary resistance to PARPi therapy. Reversion of BRCA1/2 mutation can lead to clinical PARPi resistance in BRCA-germline mutated ovarian cancer. However, in the more common platinum sensitive sporadic HGSOC, the clinical mechanisms of development of PARPi resistance remains to be defined. Here we provide a comprehensive review of the current status of PARPi and the mechanisms of resistance to therapy.
Collapse
Affiliation(s)
- Sanat Kulkarni
- Department of Medicine, Sandwell and West Birmingham NHS Trust, West Bromwich, United Kingdom
| | - Ketankumar Gajjar
- Department of Gynaecological Oncology, Nottingham University Hospitals, Nottingham, United Kingdom
| | - Srinivasan Madhusudan
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham, United Kingdom
- Department of Oncology, Nottingham University Hospitals, Nottingham, United Kingdom
| |
Collapse
|
39
|
Gibson TM, Spendlove MD, Rapier-Sharman N, Pickett BE. Transcriptomic Meta-Analysis Identifies Upregulated Clotting and Fibrinolysis Pathways in Colorectal Cancer Tumors Containing Hereditary PMS2 Mismatch Repair Deficiency. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001159. [PMID: 39139583 PMCID: PMC11320117 DOI: 10.17912/micropub.biology.001159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/15/2024]
Abstract
Lynch Syndrome is characterized by deficient mismatch repair (dMMR) components. We performed a meta-analysis of multiple RNA-sequencing datasets from patients with different dMMR variants (PMS2, MLH1, and MSH2) to better characterize the unique transcriptional profiles. Our results reveal enriched signaling pathways from tumor samples with germline mutations in the PMS2 gene including upregulation in pathways related to intrinsic and extrinsic prothrombin activation, fibrinolysis, and uPA/uPAR-mediated signaling. These pathways have been associated with tumor growth, invasiveness, and metastasis. This work provides support for further exploration into the role of PMS2 in tumor development, and as a potential therapeutic mechanism.
Collapse
Affiliation(s)
- Trenton M Gibson
- Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, United States
| | - Mauri D Spendlove
- Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, United States
| | - Naomi Rapier-Sharman
- Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, United States
| | - Brett E Pickett
- Microbiology and Molecular Biology, Brigham Young University
| |
Collapse
|
40
|
Fujii S, Fuchs RP. Accidental Encounter of Repair Intermediates in Alkylated DNA May Lead to Double-Strand Breaks in Resting Cells. Int J Mol Sci 2024; 25:8192. [PMID: 39125763 PMCID: PMC11311527 DOI: 10.3390/ijms25158192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
In clinics, chemotherapy is often combined with surgery and radiation to increase the chances of curing cancers. In the case of glioblastoma (GBM), patients are treated with a combination of radiotherapy and TMZ over several weeks. Despite its common use, the mechanism of action of the alkylating agent TMZ has not been well understood when it comes to its cytotoxic effects in tumor cells that are mostly non-dividing. The cellular response to alkylating DNA damage is operated by an intricate protein network involving multiple DNA repair pathways and numerous checkpoint proteins that are dependent on the type of DNA lesion, the cell type, and the cellular proliferation state. Among the various alkylating damages, researchers have placed a special on O6-methylguanine (O6-mG). Indeed, this lesion is efficiently removed via direct reversal by O6-methylguanine-DNA methyltransferase (MGMT). As the level of MGMT expression was found to be directly correlated with TMZ efficiency, O6-mG was identified as the critical lesion for TMZ mode of action. Initially, the mode of action of TMZ was proposed as follows: when left on the genome, O6-mG lesions form O6-mG: T mispairs during replication as T is preferentially mis-inserted across O6-mG. These O6-mG: T mispairs are recognized and tentatively repaired by a post-replicative mismatched DNA correction system (i.e., the MMR system). There are two models (futile cycle and direct signaling models) to account for the cytotoxic effects of the O6-mG lesions, both depending upon the functional MMR system in replicating cells. Alternatively, to explain the cytotoxic effects of alkylating agents in non-replicating cells, we have proposed a "repair accident model" whose molecular mechanism is dependent upon crosstalk between the MMR and the base excision repair (BER) systems. The accidental encounter between these two repair systems will cause the formation of cytotoxic DNA double-strand breaks (DSBs). In this review, we summarize these non-exclusive models to explain the cytotoxic effects of alkylating agents and discuss potential strategies to improve the clinical use of alkylating agents.
Collapse
Affiliation(s)
- Shingo Fujii
- Cancer Research Center of Marseille, Department of Genome Integrity, CNRS UMR7258, Inserm U1068, Institut Paoli-Calmettes, Aix Marseille University, 13273 Marseille, France
| | - Robert P. Fuchs
- SAS bioHalosis, Zone Luminy Biotech, 13009 Marseille, France
| |
Collapse
|
41
|
Sloan DB, Broz AK, Kuster SA, Muthye V, Peñafiel-Ayala A, Marron JR, Lavrov DV, Brieba LG. Expansion of the MutS Gene Family in Plants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.17.603841. [PMID: 39071318 PMCID: PMC11275761 DOI: 10.1101/2024.07.17.603841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
The MutS gene family is distributed across the tree of life and is involved in recombination, DNA repair, and protein translation. Multiple evolutionary processes have expanded the set of MutS genes in plants relative to other eukaryotes. Here, we investigate the origins and functions of these plant-specific genes. Land plants, green algae, red algae, and glaucophytes share cyanobacterial-like MutS1 and MutS2 genes that presumably were gained via plastid endosymbiotic gene transfer. MutS1 was subsequently lost in some taxa, including seed plants, whereas MutS2 was duplicated in Viridiplantae (i.e., land plants and green algae) with widespread retention of both resulting paralogs. Viridiplantae also have two anciently duplicated copies of the eukaryotic MSH6 gene (i.e., MSH6 and MSH7) and acquired MSH1 via horizontal gene transfer - potentially from a nucleocytovirus. Despite sharing the same name, "plant MSH1" is not directly related to the gene known as MSH1 in some fungi and animals, which may be an ancestral eukaryotic gene acquired via mitochondrial endosymbiosis and subsequently lost in most eukaryotic lineages. There has been substantial progress in understanding the functions of MSH1 and MSH6/MSH7 in plants, but the roles of the cyanobacterial-like MutS1 and MutS2 genes remain uncharacterized. Known functions of bacterial homologs and predicted protein structures, including fusions to diverse nuclease domains, provide hypotheses about potential molecular mechanisms. Because most plant-specific MutS proteins are targeted to the mitochondria and/or plastids, the expansion of this family appears to have played a large role in shaping plant organelle genetics.
Collapse
Affiliation(s)
- Daniel B. Sloan
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| | - Amanda K. Broz
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| | - Shady A. Kuster
- Department of Biology, Colorado State University, Fort Collins, CO, USA
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO, USA
| | - Viraj Muthye
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Alejandro Peñafiel-Ayala
- Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Gto, México
| | | | - Dennis V. Lavrov
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Luis G. Brieba
- Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Gto, México
| |
Collapse
|
42
|
Richardson TE, Walker JM, Hambardzumyan D, Brem S, Hatanpaa KJ, Viapiano MS, Pai B, Umphlett M, Becher OJ, Snuderl M, McBrayer SK, Abdullah KG, Tsankova NM. Genetic and epigenetic instability as an underlying driver of progression and aggressive behavior in IDH-mutant astrocytoma. Acta Neuropathol 2024; 148:5. [PMID: 39012509 PMCID: PMC11252228 DOI: 10.1007/s00401-024-02761-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/17/2024]
Abstract
In recent years, the classification of adult-type diffuse gliomas has undergone a revolution, wherein specific molecular features now represent defining diagnostic criteria of IDH-wild-type glioblastomas, IDH-mutant astrocytomas, and IDH-mutant 1p/19q-codeleted oligodendrogliomas. With the introduction of the 2021 WHO CNS classification, additional molecular alterations are now integrated into the grading of these tumors, given equal weight to traditional histologic features. However, there remains a great deal of heterogeneity in patient outcome even within these established tumor subclassifications that is unexplained by currently codified molecular alterations, particularly in the IDH-mutant astrocytoma category. There is also significant intercellular genetic and epigenetic heterogeneity and plasticity with resulting phenotypic heterogeneity, making these tumors remarkably adaptable and robust, and presenting a significant barrier to the design of effective therapeutics. Herein, we review the mechanisms and consequences of genetic and epigenetic instability, including chromosomal instability (CIN), microsatellite instability (MSI)/mismatch repair (MMR) deficits, and epigenetic instability, in the underlying biology, tumorigenesis, and progression of IDH-mutant astrocytomas. We also discuss the contribution of recent high-resolution transcriptomics studies toward defining tumor heterogeneity with single-cell resolution. While intratumoral heterogeneity is a well-known feature of diffuse gliomas, the contribution of these various processes has only recently been considered as a potential driver of tumor aggressiveness. CIN has an independent, adverse effect on patient survival, similar to the effect of histologic grade and homozygous CDKN2A deletion, while MMR mutation is only associated with poor overall survival in univariate analysis but is highly correlated with higher histologic/molecular grade and other aggressive features. These forms of genomic instability, which may significantly affect the natural progression of these tumors, response to therapy, and ultimately clinical outcome for patients, are potentially measurable features which could aid in diagnosis, grading, prognosis, and development of personalized therapeutics.
Collapse
Affiliation(s)
- Timothy E Richardson
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, Annenberg Building, 15.238, New York, NY, 10029, USA.
| | - Jamie M Walker
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, Annenberg Building, 15.238, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Dolores Hambardzumyan
- Department of Oncological Sciences, The Tisch Cancer Institute, Mount Sinai Icahn School of Medicine, New York, NY, 10029, USA
- Department of Neurosurgery, Mount Sinai Icahn School of Medicine, New York, NY, 10029, USA
| | - Steven Brem
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Glioblastoma Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kimmo J Hatanpaa
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Mariano S Viapiano
- Department of Neuroscience and Physiology, State University of New York, Upstate Medical University, Syracuse, NY, 13210, USA
- Department of Neurosurgery, State University of New York, Upstate Medical University, Syracuse, NY, 13210, USA
| | - Balagopal Pai
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, Annenberg Building, 15.238, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Melissa Umphlett
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, Annenberg Building, 15.238, New York, NY, 10029, USA
| | - Oren J Becher
- Department of Oncological Sciences, The Tisch Cancer Institute, Mount Sinai Icahn School of Medicine, New York, NY, 10029, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Matija Snuderl
- Department of Pathology, New York University Langone Health, New York, NY, 10016, USA
| | - Samuel K McBrayer
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Kalil G Abdullah
- Department of Neurosurgery, University of Pittsburgh School of Medicine, 200 Lothrop St, Pittsburgh, PA, 15213, USA
- Hillman Comprehensive Cancer Center, University of Pittsburgh Medical Center, 5115 Centre Ave, Pittsburgh, PA, 15232, USA
| | - Nadejda M Tsankova
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, Annenberg Building, 15.238, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| |
Collapse
|
43
|
Hathout L, Sherwani ZK, Alegun J, Ohri N, Fields EC, Shah S, Beriwal S, Horne ZD, Kidd EA, Leung EW, Song J, Taunk NK, Chino J, Huang C, Russo AL, Dyer M, Li J, Albuquerque KV, Damast S. Prognostic Effect of Mismatch Repair Status in Early-Stage Endometrial Cancer Treated With Adjuvant Radiation: A Multi-institutional Analysis. Int J Radiat Oncol Biol Phys 2024; 119:1158-1165. [PMID: 38253292 DOI: 10.1016/j.ijrobp.2024.01.203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024]
Abstract
PURPOSE The aim of this work was to report the effect of mismatch repair (MMR) status on outcomes of patients with stage I-II endometrioid endometrial adenocarcinoma (EEC) who receive adjuvant radiation therapy. METHODS AND MATERIALS This is a multi-institutional retrospective cohort study across 11 institutions in North America. Patients with known MMR status and stage I-II EEC status postsurgical staging were included. Overall survival (OS) and recurrence-free survival (RFS) rates were estimated via the Kaplan-Meier method. Univariable and multivariable analyses were performed via Cox proportional hazard models for RFS and OS. Statistical analyses were conducted using SPSS version 27. RESULTS In total, 744 patients with a median age at diagnosis of 65 years (IQR, 58-71) were included. Most patients were White (69.4%) and had Federation of Obstetrics and Gynecology 2009 stage I (84%) and Federation of Obstetrics and Gynecology grade 1 to 2 (73%). MMR deficiency was reported in 234 patients (31.5%), whereas 510 patients (68.5%) had preserved MMR. External beam radiation therapy with or without vaginal brachytherapy was delivered to 186 patients (25%), whereas 558 patients (75%) received vaginal brachytherapy alone. At a median follow-up of 43.5 months, the estimated crude OS and RFS rates for the entire cohort were 92.5% and 84%, respectively. MMR status was significantly correlated with RFS. RFS was inferior for MMR deficiency compared with preserved MMR (74.3% vs 88.6%, P < .001). However, no difference in OS was seen (90.8% vs 93.2%, P = .5). On multivariable analysis, MMR deficiency status was associated with worse RFS (hazard ratio, 1.86; P = .001) but not OS. CONCLUSIONS MMR status was independently associated with RFS but not OS in patients with early-stage EEC who were treated with adjuvant radiation therapy. These findings suggest that differential approaches to surveillance and/or treatment based on MMR status could be warranted.
Collapse
Affiliation(s)
- Lara Hathout
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey.
| | - Zohaib K Sherwani
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| | - Josephine Alegun
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| | - Nisha Ohri
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| | - Emma C Fields
- Department of Radiation Oncology, Virginia Commonwealth University Health System, Massey Cancer Center, Richmond, Virginia
| | - Shubhangi Shah
- Department of Radiation Oncology, Virginia Commonwealth University Health System, Massey Cancer Center, Richmond, Virginia
| | | | | | - Elizabeth A Kidd
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Eric W Leung
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Jiheon Song
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Neil K Taunk
- Department of Radiation Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Junzo Chino
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - Christina Huang
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - Andrea L Russo
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Michael Dyer
- Department of Radiation Oncology, Brigham and Women's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Jessie Li
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, Connecticut
| | - Kevin V Albuquerque
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Shari Damast
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
44
|
Wang N, Zhang S, Langfelder P, Ramanathan L, Plascencia M, Gao F, Vaca R, Gu X, Deng L, Dionisio LE, Prasad BC, Vogt T, Horvath S, Aaronson JS, Rosinski J, Yang XW. Msh3 and Pms1 Set Neuronal CAG-repeat Migration Rate to Drive Selective Striatal and Cortical Pathogenesis in HD Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.09.602815. [PMID: 39026894 PMCID: PMC11257559 DOI: 10.1101/2024.07.09.602815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Modifiers of Huntington's disease (HD) include mismatch repair (MMR) genes; however, their underlying disease-altering mechanisms remain unresolved. Knockout (KO) alleles for 9 HD GWAS modifiers/MMR genes were crossed to the Q140 Huntingtin (mHtt) knock-in mice to probe such mechanisms. Four KO mice strongly ( Msh3 and Pms1 ) or moderately ( Msh2 and Mlh1 ) rescue a triad of adult-onset, striatal medium-spiny-neuron (MSN)-selective phenotypes: somatic Htt DNA CAG-repeat expansion, transcriptionopathy, and mHtt protein aggregation. Comparatively, Q140 cortex also exhibits an analogous, but later-onset, pathogenic triad that is Msh3 -dependent. Remarkably, Q140/homozygous Msh3-KO lacks visible mHtt aggregates in the brain, even at advanced ages (20-months). Moreover, Msh3 -deficiency prevents striatal synaptic marker loss, astrogliosis, and locomotor impairment in HD mice. Purified Q140 MSN nuclei exhibit highly linear age-dependent mHtt DNA repeat expansion (i.e. repeat migration), with modal-CAG increasing at +8.8 repeats/month (R 2 =0.98). This linear rate is reduced to 2.3 and 0.3 repeats/month in Q140 with Msh3 heterozygous and homozygous alleles, respectively. Our study defines somatic Htt CAG-repeat thresholds below which there are no detectable mHtt nuclear or neuropil aggregates. Mild transcriptionopathy can still occur in Q140 mice with stabilized Htt 140-CAG repeats, but the majority of transcriptomic changes are due to somatic repeat expansion. Our analysis reveals 479 genes with expression levels highly correlated with modal-CAG length in MSNs. Thus, our study mechanistically connects HD GWAS genes to selective neuronal vulnerability in HD, in which Msh3 and Pms1 set the linear rate of neuronal mHtt CAG-repeat migration to drive repeat-length dependent pathogenesis; and provides a preclinical platform for targeting these genes for HD suppression across brain regions. One Sentence Summary Msh3 and Pms1 are genetic drivers of sequential striatal and cortical pathogenesis in Q140 mice by mediating selective CAG-repeat migration in HD vulnerable neurons.
Collapse
|
45
|
Dagar G, Gupta A, Shankar A, Chauhan R, Macha MA, Bhat AA, Das D, Goyal R, Bhoriwal S, Pandita RK, Prasad CP, Sarkar PS, Pandita TK, Singh M. The future of cancer treatment: combining radiotherapy with immunotherapy. Front Mol Biosci 2024; 11:1409300. [PMID: 39044839 PMCID: PMC11263218 DOI: 10.3389/fmolb.2024.1409300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/12/2024] [Indexed: 07/25/2024] Open
Abstract
Radiotherapy (RT) and immunotherapy (IT) are the powerful tools for cancer treatment which act through the stimulation of immune response, and evidence suggest that combinatorial actions of these therapies may augment each other's beneficial effect through complex synergistic mechanisms. These molecular strategies are designed to target rapidly dividing cancer cells by either directly or indirectly inducing DNA damage. However, when cells detect DNA damage, they activate a range of signalling pathways known as the DNA damage response (DDR) to repair. Strategies are being developed to interfere with the DDR pathways in cancer cells to ensure their damage-induced degeneration. The stability of a cell's genetic material is largely dependent on the efficacy of DNA repair and therefore, an in-depth understanding of DNA damages and repair mechanism(s) in cancer cells is important to develop a promising therapeutic strategies for ensuring the efficacy of damage-induced tumor cell death. In recent years, a wide range of small molecule drugs have been developed which are currently being employed to combat the DNA repair deficiencies associated with tumor cells. Sequential or concurrent use of these two modalities significantly enhances the anti-tumor response, however with a concurrent probability of increased incidence of symptomatic adverse effects. With advent of newer IT agents, and administration of higher doses of radiation per fraction, such effects are more difficult to predict owing to the paucity of randomized trial data. It is well established that anti cytotoxic-T-lymphocyte-associated antigen 4 (CTLA-4), anti- Programmed cell death protein 1(PD-1), anti-Programmed cell death one ligand 1 (PD-L1) can be safely administered with RT and many studies have demonstrated survival benefit with such combination for patients with metastatic malignancy. However, the biology of radioimmunotherapy (RT/IT) is still an open area where research need to be focused to determine optimum dosage specially the interaction of the RT/IT pathways to determine optimum dosing schedule. In the current article we have summarised the possible intracellular immunological events that might be triggered when RT and IT modalities are combined with the DDR antagonists and highlighted present clinical practices, outcome, and toxicity profile of this novel treatment strategy.
Collapse
Affiliation(s)
- Gunjan Dagar
- Department of Medical Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Ashna Gupta
- Department of Medical Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Abhishek Shankar
- Department of Radiation Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Ravi Chauhan
- Department of Medical Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Muzafar A. Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Pulwama, Jammu And Kashmir, India
| | - Ajaz A. Bhat
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Dayasagar Das
- Department of Medicine, NYU Langone Health, New York City, NY, United States
| | - Rajeev Goyal
- Department of Biochemistry, Lady Harding Medical College, New Delhi, India
| | - Sandeep Bhoriwal
- Department of Surgical Oncology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Raj K. Pandita
- Center for Genomics and Precision Medicine, Texas A and M College of Medicine, Houston, TX, United States
| | - Chandra Prakash Prasad
- Department of Medical Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Partha S. Sarkar
- Department of Neurobiology and Department of Neurology, University of Texas Medical Branch, Galveston, TX, United States
| | - Tej K. Pandita
- Center for Genomics and Precision Medicine, Texas A and M College of Medicine, Houston, TX, United States
| | - Mayank Singh
- Department of Medical Oncology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
46
|
Zeng Y, Li P, Liu S, Shen M, Liu Y, Zhou X. Salmonella enteritidis acquires phage resistance through a point mutation in rfbD but loses some of its environmental adaptability. Vet Res 2024; 55:85. [PMID: 38970094 PMCID: PMC11227202 DOI: 10.1186/s13567-024-01341-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/07/2024] [Indexed: 07/07/2024] Open
Abstract
Phage therapy holds promise as an alternative to antibiotics for combating multidrug-resistant bacteria. However, host bacteria can quickly produce progeny that are resistant to phage infection. In this study, we investigated the mechanisms of bacterial resistance to phage infection. We found that Rsm1, a mutant strain of Salmonella enteritidis (S. enteritidis) sm140, exhibited resistance to phage Psm140, which was originally capable of lysing its host at sm140. Whole genome sequencing analysis revealed a single nucleotide mutation at position 520 (C → T) in the rfbD gene of Rsm1, resulting in broken lipopolysaccharides (LPS), which is caused by the replacement of CAG coding glutamine with a stop codon TAG. The knockout of rfbD in the sm140ΔrfbD strain caused a subsequent loss of sensitivity toward phages. Furthermore, the reintroduction of rfbD in Rsm1 restored phage sensitivity. Moreover, polymerase chain reaction (PCR) amplification of rfbD in 25 resistant strains revealed a high percentage mutation rate of 64% within the rfbD locus. We assessed the fitness of four bacteria strains and found that the acquisition of phage resistance resulted in slower bacterial growth, faster sedimentation velocity, and increased environmental sensitivity (pH, temperature, and antibiotic sensitivity). In short, bacteria mutants lose some of their abilities while gaining resistance to phage infection, which may be a general survival strategy of bacteria against phages. This study is the first to report phage resistance caused by rfbD mutation, providing a new perspective for the research on phage therapy and drug-resistant mechanisms.
Collapse
Affiliation(s)
- Yukun Zeng
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Ping Li
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Shenglong Liu
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Mangmang Shen
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Yuqing Liu
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China.
| | - Xin Zhou
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou, 225009, China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
47
|
Salva de Torres C, Baraibar I, Saoudi González N, Ros J, Salva F, Rodríguez-Castells M, Alcaraz A, García A, Tabernero J, Élez E. Current and Emerging Treatment Paradigms in Colorectal Cancer: Integrating Hallmarks of Cancer. Int J Mol Sci 2024; 25:6967. [PMID: 39000083 PMCID: PMC11241496 DOI: 10.3390/ijms25136967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/23/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
The treatment of unresectable metastatic colorectal cancer has evolved over the last two decades, as knowledge of cancer biology has broadened and new targets have emerged. 'The Hallmarks of Cancer' illustrate the crucial capabilities acquired by cells to become malignant and represent the evolution of knowledge of tumor biology. This review integrates these novel targets and therapies into selected hallmarks: sustaining proliferative signaling, inducing vasculature, avoiding immune destruction, genome instability and mutation, reprogramming cellular metabolism, and resisting cell death. The different strategies and combinations under study are based on treatments with anti-EGFR, anti-VEGF, and anti-HER2 agents, KRAS G12C inhibitors, BRAF and MEK inhibitors, and immune checkpoint inhibitors. However, new approaches are emerging, including vaccines, WEE1 inhibitors, and PARP inhibitors, among others. The further deciphering of cancer biology will unravel new targets, develop novel therapies, and improve patients' outcomes.
Collapse
Affiliation(s)
| | - Iosune Baraibar
- Medical Oncology Department, Vall d’Hebron University Hospital, Vall d’Hebron Institute of Oncology (VHIO), E-08035 Barcelona, Spain; (I.B.); (N.S.G.); (J.R.); (F.S.); (M.R.-C.), (J.T.)
| | - Nadia Saoudi González
- Medical Oncology Department, Vall d’Hebron University Hospital, Vall d’Hebron Institute of Oncology (VHIO), E-08035 Barcelona, Spain; (I.B.); (N.S.G.); (J.R.); (F.S.); (M.R.-C.), (J.T.)
| | - Javier Ros
- Medical Oncology Department, Vall d’Hebron University Hospital, Vall d’Hebron Institute of Oncology (VHIO), E-08035 Barcelona, Spain; (I.B.); (N.S.G.); (J.R.); (F.S.); (M.R.-C.), (J.T.)
| | - Francesc Salva
- Medical Oncology Department, Vall d’Hebron University Hospital, Vall d’Hebron Institute of Oncology (VHIO), E-08035 Barcelona, Spain; (I.B.); (N.S.G.); (J.R.); (F.S.); (M.R.-C.), (J.T.)
| | - Marta Rodríguez-Castells
- Medical Oncology Department, Vall d’Hebron University Hospital, Vall d’Hebron Institute of Oncology (VHIO), E-08035 Barcelona, Spain; (I.B.); (N.S.G.); (J.R.); (F.S.); (M.R.-C.), (J.T.)
| | - Adriana Alcaraz
- Vall d’Hebron Institute of Oncology (VHIO), E-08035 Barcelona, Spain; (A.A.); (A.G.)
| | - Ariadna García
- Vall d’Hebron Institute of Oncology (VHIO), E-08035 Barcelona, Spain; (A.A.); (A.G.)
| | - Josep Tabernero
- Medical Oncology Department, Vall d’Hebron University Hospital, Vall d’Hebron Institute of Oncology (VHIO), E-08035 Barcelona, Spain; (I.B.); (N.S.G.); (J.R.); (F.S.); (M.R.-C.), (J.T.)
| | - Elena Élez
- Medical Oncology Department, Vall d’Hebron University Hospital, Vall d’Hebron Institute of Oncology (VHIO), E-08035 Barcelona, Spain; (I.B.); (N.S.G.); (J.R.); (F.S.); (M.R.-C.), (J.T.)
| |
Collapse
|
48
|
Ye Z, Zhong Y, Zhang Z. Pan-cancer multi-omics analysis of PTBP1 reveals it as an inflammatory, progressive and prognostic marker in glioma. Sci Rep 2024; 14:14584. [PMID: 38918441 PMCID: PMC11199703 DOI: 10.1038/s41598-024-64979-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 06/14/2024] [Indexed: 06/27/2024] Open
Abstract
PTBP1 is an oncogene that regulates the splicing of precursor mRNA. However, the relationship between PTBP1 expression and gene methylation, cancer prognosis, and tumor microenvironment remains unclear. The expression profiles of PTBP1 across various cancers were derived from the TCGA, as well as the GTEx and CGGA databases. The CGGA mRNA_325, CGGA mRNA_301, and CGGA mRNA_693 datasets were utilized as validation cohorts. Immune cell infiltration scores were approximated using the TIMER 2.0 tool. Functional enrichment analysis for groups with high and low PTBP1 expression was conducted using Gene Set Enrichment Analysis (GSEA). Methylation data were predominantly sourced from the SMART and Mexpress databases. Linked-omics analysis was employed to perform functional enrichment analysis of genes related to PTBP1 methylation, as well as to conduct protein functional enrichment analysis. Single-cell transcriptome analysis and spatial transcriptome analysis were carried out using Seurat version 4.10. Compared to normal tissues, PTBP1 is significantly overexpressed and hypomethylated in various cancers. It is implicated in prognosis, immune cell infiltration, immune checkpoint expression, genomic variation, tumor neoantigen load, and tumor mutational burden across a spectrum of cancers, with particularly notable effects in low-grade gliomas. In the context of gliomas, PTBP1 expression correlates with WHO grade and IDH1 mutation status. PTBP1 expression and methylation play an important role in a variety of cancers. PTBP1 can be used as a marker of inflammation, progression and prognosis in gliomas.
Collapse
Affiliation(s)
- Zheng Ye
- Institute of Computational Science and Technology, Guangzhou University, Guangzhou, 510006, Guangdong, China
- Zhongda Hospital, Southeast University, Nanjing, China
| | - Yan Zhong
- People's Hospital of Dongxihu District, Wuhan, China
| | - Zhiyuan Zhang
- Department of Neurosurgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
49
|
Prieto Otoya TD, McQuaid KT, Paterson NG, Cardin DJ, Kellett A, Cardin CJ. Re-pairing DNA: binding of a ruthenium phi complex to a double mismatch. Chem Sci 2024; 15:9096-9103. [PMID: 38903237 PMCID: PMC11186304 DOI: 10.1039/d4sc01448k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/11/2024] [Indexed: 06/22/2024] Open
Abstract
We report a crystal structure at atomic resolution (0.9 Å) of a ruthenium complex bound to a consecutive DNA double mismatch, which results in a TA basepair with flipped out thymine, together with the formation of an adenine bulge. The structure shows a form of metalloinsertion interaction of the Λ-[Ru(phen)2phi]2+ (phi = 9,10-phenanthrenediimine) complex at the bulge site. The metal complex interacts with the DNA via the major groove, where specific interactions between the adenines of the DNA and the phen ligands of the complex are formed. One Δ-[Ru(phen)2phi]2+ complex interacts via the minor groove, which shows sandwiching of its phi ligand between the phi ligands of the other two ruthenium complexes, and no interaction of its phen ligands with DNA. To our knowledge, this binding model represents a new form of metalloinsertion in showing major rather than minor groove insertion.
Collapse
Affiliation(s)
| | - Kane T McQuaid
- Department of Chemistry, University of Reading Whiteknights Reading, RG6 6AD UK
| | - Neil G Paterson
- Diamond Light Source Ltd Harwell Science and Innovation Campus Didcot Oxfordshire OX11 0DE UK
| | - David J Cardin
- Department of Chemistry, University of Reading Whiteknights Reading, RG6 6AD UK
| | - Andrew Kellett
- SSPC, The Science Foundation Ireland Research Centre for Pharmaceuticals, School of Chemical Sciences, Dublin City University Glasnevin Dublin 9 Ireland
| | - Christine J Cardin
- Department of Chemistry, University of Reading Whiteknights Reading, RG6 6AD UK
| |
Collapse
|
50
|
Ferguson R, Goold R, Coupland L, Flower M, Tabrizi SJ. Therapeutic validation of MMR-associated genetic modifiers in a human ex vivo model of Huntington disease. Am J Hum Genet 2024; 111:1165-1183. [PMID: 38749429 PMCID: PMC11179424 DOI: 10.1016/j.ajhg.2024.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/18/2024] [Accepted: 04/18/2024] [Indexed: 06/09/2024] Open
Abstract
The pathological huntingtin (HTT) trinucleotide repeat underlying Huntington disease (HD) continues to expand throughout life. Repeat length correlates both with earlier age at onset (AaO) and faster progression, making slowing its expansion an attractive therapeutic approach. Genome-wide association studies have identified candidate variants associated with altered AaO and progression, with many found in DNA mismatch repair (MMR)-associated genes. We examine whether lowering expression of these genes affects the rate of repeat expansion in human ex vivo models using HD iPSCs and HD iPSC-derived striatal medium spiny neuron-enriched cultures. We have generated a stable CRISPR interference HD iPSC line in which we can specifically and efficiently lower gene expression from a donor carrying over 125 CAG repeats. Lowering expression of each member of the MMR complexes MutS (MSH2, MSH3, and MSH6), MutL (MLH1, PMS1, PMS2, and MLH3), and LIG1 resulted in characteristic MMR deficiencies. Reduced MSH2, MSH3, and MLH1 slowed repeat expansion to the largest degree, while lowering either PMS1, PMS2, or MLH3 slowed it to a lesser degree. These effects were recapitulated in iPSC-derived striatal cultures where MutL factor expression was lowered. CRISPRi-mediated lowering of key MMR factor expression to levels feasibly achievable by current therapeutic approaches was able to effectively slow the expansion of the HTT CAG tract. We highlight members of the MutL family as potential targets to slow pathogenic repeat expansion with the aim to delay onset and progression of HD and potentially other repeat expansion disorders exhibiting somatic instability.
Collapse
Affiliation(s)
- Ross Ferguson
- Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK; Dementia Research Institute at UCL, London WC1N 3BG, UK
| | - Robert Goold
- Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK; Dementia Research Institute at UCL, London WC1N 3BG, UK
| | - Lucy Coupland
- Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK; Dementia Research Institute at UCL, London WC1N 3BG, UK
| | - Michael Flower
- Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK; Dementia Research Institute at UCL, London WC1N 3BG, UK
| | - Sarah J Tabrizi
- Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK; Dementia Research Institute at UCL, London WC1N 3BG, UK.
| |
Collapse
|