1
|
Pan C, Zhao H, Cai X, Wu M, Qin B, Li J. The connection between autophagy and ferroptosis in AKI: recent advances regarding selective autophagy. Ren Fail 2024; 46:2379601. [PMID: 39099238 DOI: 10.1080/0886022x.2024.2379601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 08/06/2024] Open
Abstract
Acute kidney injury (AKI) is a significant issue in public health, displaying a high occurrence rate and mortality rate. Ferroptosis, a form of programmed cell death (PCD), is characterized by iron accumulation and intensified lipid peroxidation. Recent studies have demonstrated the pivotal significance of ferroptosis in AKI caused by diverse stimuli, including ischemia-reperfusion injury (IRI), sepsis and toxins. Autophagy, a multistep process that targets damaged organelles and macromolecules for degradation and recycling, also plays an essential role in AKI. Previous research has demonstrated that autophagy deletion in proximal tubules could aggravate tubular injury and renal function loss, indicating the protective function of autophagy in AKI. Consequently, finding ways to stimulate autophagy has become a crucial therapeutic strategy. The recent discovery of the role of selective autophagy in influencing ferroptosis has identified new therapeutic targets for AKI and has highlighted the importance of understanding the cross-talk between autophagy and ferroptosis. This study aims to provide an overview of the signaling pathways involved in ferroptosis and autophagy, focusing on the mechanisms and functions of selective autophagy and autophagy-dependent ferroptosis. We hope to establish a foundation for future investigations into the interaction between autophagy and ferroptosis in AKI as well as other diseases.
Collapse
Affiliation(s)
- Chunyu Pan
- Department of Nephrology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hairui Zhao
- Department of Nephrology, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Xiaojing Cai
- Department of Nephrology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Manyi Wu
- Department of Nephrology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bowen Qin
- Department of Nephrology, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Junhua Li
- Department of Nephrology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Nephrology, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Wu Y, Chen Y, Tian X, Shao G, Lin Q, Sun A. Ubiquitination regulates autophagy in cancer: simple modifications, promising targets. J Transl Med 2024; 22:985. [PMID: 39482684 PMCID: PMC11526641 DOI: 10.1186/s12967-024-05565-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 08/02/2024] [Indexed: 11/03/2024] Open
Abstract
Autophagy is an important lysosomal degradation process that digests and recycles bio-molecules, protein or lipid aggregates, organelles, and invaded pathogens. Autophagy plays crucial roles in regulation of metabolic and oxidative stress and multiple pathological processes. In cancer, the role of autophagy is dual and paradoxical. Ubiquitination has been identified as a key regulator of autophagy that can influence various steps in the autophagic process, with autophagy-related proteins being targeted for ubiquitination, thus impacting cancer progression and the effectiveness of therapeutic interventions. This review will concentrate on mechanisms underlying autophagy, ubiquitination, and their interactions in cancer, as well as explore the use of drugs that target the ubiquitin-proteasome system (UPS) and ubiquitination process in autophagy as part of cancer therapy.
Collapse
Affiliation(s)
- Yihui Wu
- Institute of Urinary System Diseases, The Affiliated People's Hospital, Jiangsu University, 8 Dianli Road, Zhenjiang, 212002, China
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Yifei Chen
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Xianyan Tian
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Genbao Shao
- Institute of Urinary System Diseases, The Affiliated People's Hospital, Jiangsu University, 8 Dianli Road, Zhenjiang, 212002, China
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Qiong Lin
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| | - Aiqin Sun
- Institute of Urinary System Diseases, The Affiliated People's Hospital, Jiangsu University, 8 Dianli Road, Zhenjiang, 212002, China.
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| |
Collapse
|
3
|
Shi Y, He Y, Li Y, Zhang M, Liu Y, Wang H, Shen Z, Zhao X, Wang R, Ma T, Yang P, Chen J. Downregulation of heat shock protein 47 caused lysosomal dysfunction leading to excessive chondrocyte apoptosis. Exp Cell Res 2024; 443:114294. [PMID: 39447624 DOI: 10.1016/j.yexcr.2024.114294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 10/19/2024] [Accepted: 10/20/2024] [Indexed: 10/26/2024]
Abstract
Heat shock protein 47 (HSP47) is a collagen-specific chaperone present in several regions of the endoplasmic reticulum and cytoplasm. Elevated HSP47 expression in cells causes various cancers and fibrotic disorders. However, the consequences of HSP47 downregulation leading to chondrocyte death, as well as the underlying pathways, remain largely unclear. This study presents the first experimental evidence of the localization of HSP47 on lysosomes. Additionally, it successfully designed and generated shRNA HSP47 target sequences to suppress the expression of HSP47 in ATDC5 chondrocytes using lentiviral vectors. By employing a chondrocyte model that has undergone stable downregulation of HSP47, we observed that HSP47 downregulation in chondrocytes, disturbs the acidic homeostatic environment of chondrocyte lysosomes, causes hydrolytic enzyme activity dysregulation, impairs the lysosome-mediated autophagy-lysosome pathway, and causes abnormal expression of lysosomal morphology, number, and functional effector proteins. This implies the significance of the presence of HSP47 in maintaining proper lysosomal function. Significantly, the inhibitor CA-074 Me, which can restore the dysfunction of lysosomes, successfully reversed the negative effects of HSP47 on the autophagy-lysosomal pathway and partially reduced the occurrence of excessive cell death in chondrocytes. This suggests that maintaining proper lysosomal function is crucial for preventing HSP47-induced apoptosis in chondrocytes. The existence of HSP47 is crucial for preserving optimal lysosomal function and autophagic flux, while also inhibiting excessive apoptosis in ATDC5 chondrocytes.
Collapse
Affiliation(s)
- Yawen Shi
- School of Public Health, Xi'an Jiaotong University, Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, 710061, China
| | - Ying He
- School of Public Health, Xi'an Jiaotong University, Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, 710061, China
| | - Yanan Li
- School of Energy and Power Engineering, Xi'an Jiaotong University, Key Laboratory of Thermo-Fluid Science and Engineering, Ministry of Education, Xi'an, Shaanxi, 710049, China
| | - Meng Zhang
- School of Public Health, Xi'an Jiaotong University, Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, 710061, China
| | - Yinan Liu
- School of Public Health, Xi'an Jiaotong University, Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, 710061, China
| | - Hui Wang
- School of Public Health, Xi'an Jiaotong University, Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, 710061, China
| | - Zhiran Shen
- School of Public Health, Xi'an Jiaotong University, Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, 710061, China
| | - Xiaoru Zhao
- School of Public Health, Xi'an Jiaotong University, Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, 710061, China
| | - Rui Wang
- School of Public Health, Xi'an Jiaotong University, Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, 710061, China; Xi'an No. 3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, 710018, China
| | - Tianyou Ma
- School of Public Health, Xi'an Jiaotong University, Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, 710061, China
| | - Pinglin Yang
- Department of Orthopaedic Surgery, Second Affiliated Hospital of Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China.
| | - Jinghong Chen
- School of Public Health, Xi'an Jiaotong University, Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, 710061, China.
| |
Collapse
|
4
|
Gupta S, Cassel SL, Sutterwala FS, Dagvadorj J. Regulation of the NLRP3 inflammasome by autophagy and mitophagy. Immunol Rev 2024. [PMID: 39417249 DOI: 10.1111/imr.13410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The NLRP3 inflammasome is a multiprotein complex that upon activation by the innate immune system drives a broad inflammatory response. The primary initial mediators of this response are pro-IL-1β and pro-IL-18, both of which are in an inactive form. Formation and activation of the NLRP3 inflammasome activates caspase-1, which cleaves pro-IL-1β and pro-IL-18 and triggers the formation of gasdermin D pores. Gasdermin D pores allow for the secretion of active IL-1β and IL-18 initiating the organism-wide inflammatory response. The NLRP3 inflammasome response can be beneficial to the host; however, if the NLRP3 inflammasome is inappropriately activated it can lead to significant pathology. While the primary components of the NLRP3 inflammasome are known, the precise details of assembly and activation are less well defined and conflicting. Here, we discuss several of the proposed pathways of activation of the NLRP3 inflammasome. We examine the role of subcellular localization and the reciprocal regulation of the NLRP3 inflammasome by autophagy. We focus on the roles of mitochondria and mitophagy in activating and regulating the NLRP3 inflammasome. Finally, we detail the impact of pathologic NLRP3 responses in the development and manifestations of pulmonary disease.
Collapse
Affiliation(s)
- Suman Gupta
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Suzanne L Cassel
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Fayyaz S Sutterwala
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Jargalsaikhan Dagvadorj
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
5
|
Ryu KJ, Lee KW, Park SH, Kim T, Hong KS, Kim H, Kim M, Ok DW, Kwon GNB, Park YJ, Kwon HK, Hwangbo C, Kim KD, Lee JE, Yoo J. Chaperone-mediated autophagy modulates Snail protein stability: implications for breast cancer metastasis. Mol Cancer 2024; 23:227. [PMID: 39390584 PMCID: PMC11468019 DOI: 10.1186/s12943-024-02138-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/24/2024] [Indexed: 10/12/2024] Open
Abstract
Breast cancer remains a significant health concern, with triple-negative breast cancer (TNBC) being an aggressive subtype with poor prognosis. Epithelial-mesenchymal transition (EMT) is important in early-stage tumor to invasive malignancy progression. Snail, a central EMT component, is tightly regulated and may be subjected to proteasomal degradation. We report a novel proteasomal independent pathway involving chaperone-mediated autophagy (CMA) in Snail degradation, mediated via its cytosolic interaction with HSC70 and lysosomal targeting, which prevented its accumulation in luminal-type breast cancer cells. Conversely, Snail predominantly localized to the nucleus, thus evading CMA-mediated degradation in TNBC cells. Starvation-induced CMA activation downregulated Snail in TNBC cells by promoting cytoplasmic translocation. Evasion of CMA-mediated Snail degradation induced EMT, and enhanced metastatic potential of luminal-type breast cancer cells. Our findings elucidate a previously unrecognized role of CMA in Snail regulation, highlight its significance in breast cancer, and provide a potential therapeutic target for clinical interventions.
Collapse
Affiliation(s)
- Ki-Jun Ryu
- Division of Applied Life Science (Brain Korea 21 Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju, 52828, Korea
| | - Ki Won Lee
- Division of Applied Life Science (Brain Korea 21 Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju, 52828, Korea
| | - Seung-Ho Park
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Korea
| | - Taeyoung Kim
- Division of Applied Life Science (Brain Korea 21 Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju, 52828, Korea
| | - Keun-Seok Hong
- Division of Applied Life Science (Brain Korea 21 Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju, 52828, Korea
| | - Hyemin Kim
- Division of Applied Life Science (Brain Korea 21 Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju, 52828, Korea
| | - Minju Kim
- Division of Applied Life Science (Brain Korea 21 Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju, 52828, Korea
| | - Dong Woo Ok
- Division of Applied Life Science (Brain Korea 21 Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju, 52828, Korea
| | - Gu Neut Bom Kwon
- Division of Applied Life Science (Brain Korea 21 Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju, 52828, Korea
| | - Young-Jun Park
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Korea
| | - Hyuk-Kwon Kwon
- Division of Applied Life Science (Brain Korea 21 Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju, 52828, Korea
- Division of Life Science, College of Natural Sciences, Gyeongsang National University, Jinju, 52828, Korea
| | - Cheol Hwangbo
- Division of Applied Life Science (Brain Korea 21 Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju, 52828, Korea
- Division of Life Science, College of Natural Sciences, Gyeongsang National University, Jinju, 52828, Korea
| | - Kwang Dong Kim
- Division of Applied Life Science (Brain Korea 21 Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju, 52828, Korea
- Division of Life Science, College of Natural Sciences, Gyeongsang National University, Jinju, 52828, Korea
| | - J Eugene Lee
- Division of Biometrology, Korea Research Institute of Standards and Science, Daejeon, 34113, Korea
| | - Jiyun Yoo
- Division of Applied Life Science (Brain Korea 21 Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju, 52828, Korea.
- Division of Life Science, College of Natural Sciences, Gyeongsang National University, Jinju, 52828, Korea.
| |
Collapse
|
6
|
Yang S, Li M, Lian G, Wu Y, Cui J, Wang L. ABHD8 antagonizes inflammation by facilitating chaperone-mediated autophagy-mediated degradation of NLRP3. Autophagy 2024:1-14. [PMID: 39225180 DOI: 10.1080/15548627.2024.2395158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 08/16/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024] Open
Abstract
The NLRP3 inflammasome is a multiprotein complex that plays a vital role in the innate immune system in response to microbial infections and endogenous danger signals. Aberrant activation of the NLRP3 inflammasome is implicated in a spectrum of inflammatory and autoimmune diseases, emphasizing the necessity for precise regulation of the NLRP3 inflammasome to maintain immune homeostasis. The protein level of NLRP3 is a limiting step for inflammasome activation, which must be tightly controlled to avoid detrimental consequences. Here, we demonstrate that ABHD8, a member of the α/β-hydrolase domain-containing (ABHD) family, interacts with NLRP3 and promotes its degradation through the chaperone-mediated autophagy (CMA) pathway. ABHD8 acts as a scaffold to recruit palmitoyltransferase ZDHHC12 to NLRP3 for its palmitoylation as well as subsequent CMA-mediated degradation. Notably, ABHD8 deficiency results in the stabilization of NLRP3 protein and promotes NLRP3 inflammasome activation. We further confirm that ABHD8 overexpression ameliorates LPS- or alum-triggered NLRP3 inflammasome activation in vivo. Interestingly, the nucleocapsid (N) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) impairs the ABHD8-NLRP3 association, resulting in an elevation in NLRP3 protein level and excessive inflammasome activation. These findings demonstrate that ABHD8 May represent a potential therapeutic target in conditions associated with NLRP3 inflammasome dysregulation.Abbreviations: 3-MA: 3-methyladenine; ABHD: α/β-hydrolase domain-containing; BMDMs: Bone marrow-derived macrophages; CFZ: carfilzomib; CHX: cycloheximide; CMA: chaperone-mediated autophagy; CQ: chloroquine; DAMPs: danger/damage-associated molecular patterns; HSPA8/HSC70: heat shock protein family A (Hsp70) member 8; LAMP2A: lysosomal associated membrane protein 2A; NH4Cl: ammonium chloride; NLRP3: NLR family pyrin domain containing 3; PAMPs: pathogen-associated molecular patterns; SARS-CoV-2: severe acute respiratory syndrome coronavirus 2.
Collapse
Affiliation(s)
- Shuai Yang
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences of Sun Yat-sen university, Guangzhou, Guangdong, China
| | - Mengqiu Li
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences of Sun Yat-sen university, Guangzhou, Guangdong, China
| | - Guangyu Lian
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences of Sun Yat-sen university, Guangzhou, Guangdong, China
| | - Yaoxing Wu
- Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jun Cui
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences of Sun Yat-sen university, Guangzhou, Guangdong, China
| | - Liqiu Wang
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences of Sun Yat-sen university, Guangzhou, Guangdong, China
| |
Collapse
|
7
|
Martinez-Canton M, Galvan-Alvarez V, Gallego-Selles A, Gelabert-Rebato M, Garcia-Gonzalez E, Gonzalez-Henriquez JJ, Martin-Rincon M, Calbet JAL. Activation of macroautophagy and chaperone-mediated autophagy in human skeletal muscle by high-intensity exercise in normoxia and hypoxia and after recovery with or without post-exercise ischemia. Free Radic Biol Med 2024; 222:607-624. [PMID: 39009244 DOI: 10.1016/j.freeradbiomed.2024.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/25/2024] [Accepted: 07/11/2024] [Indexed: 07/17/2024]
Abstract
Autophagy is essential for the adaptive response to exercise and physiological skeletal muscle functionality. However, the mechanisms leading to the activation of macroautophagy and chaperone-mediated autophagy in human skeletal muscle in response to high-intensity exercise remain elusive. Our findings demonstrate that macroautophagy and chaperone-mediated autophagy are stimulated by high-intensity exercise in normoxia (PIO2: 143 mmHg) and severe acute hypoxia (PIO2: 73 mmHg) in healthy humans. High-intensity exercise induces macroautophagy initiation through AMPKα phosphorylation, which phosphorylates and activates ULK1. ULK1 phosphorylates BECN1 at Ser15, eliciting the dissociation of BECN1-BCL2 crucial for phagophore formation. Besides, high-intensity exercise elevates the LC3B-II:LC3B-I ratio, reduces total SQSTM1/p62 levels, and induces p-Ser349 SQSTM1/p62 phosphorylation, suggesting heightened autophagosome degradation. PHAF1/MYTHO, a novel macroautophagy biomarker, is highly upregulated in response to high-intensity exercise. The latter is accompanied by elevated LAMP2A expression, indicating chaperone-mediated autophagy activation regardless of post-exercise HSPA8/HSC70 downregulation. Despite increased glycolytic metabolism, severe acute hypoxia does not exacerbate the autophagy signaling response. Signaling changes revert within 1 min of recovery with free circulation, while the application of immediate post-exercise ischemia impedes recovery. Our study concludes that macroautophagy and chaperone-mediated autophagy pathways are strongly activated by high-intensity exercise, regardless of PO2, and that oxygenation is necessary to revert these signals to pre-exercise values. PHAF1/MYTHO emerges as a pivotal exercise-responsive autophagy marker positively associated with the LC3B-II:LC3B-I ratio.
Collapse
Affiliation(s)
- Miriam Martinez-Canton
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Victor Galvan-Alvarez
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Angel Gallego-Selles
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Miriam Gelabert-Rebato
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Eduardo Garcia-Gonzalez
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Juan Jose Gonzalez-Henriquez
- Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Canary Islands, Spain; Department of Mathematics, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain
| | - Marcos Martin-Rincon
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Jose A L Calbet
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Canary Islands, Spain; Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway.
| |
Collapse
|
8
|
Wu N, Zheng W, Zhou Y, Tian Y, Tang M, Feng X, Ashrafizadeh M, Wang Y, Niu X, Tambuwala M, Wang L, Tergaonkar V, Sethi G, Klionsky D, Huang L, Gu M. Autophagy in aging-related diseases and cancer: Principles, regulatory mechanisms and therapeutic potential. Ageing Res Rev 2024; 100:102428. [PMID: 39038742 DOI: 10.1016/j.arr.2024.102428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/05/2024] [Accepted: 07/15/2024] [Indexed: 07/24/2024]
Abstract
Macroautophagy/autophagy is primarily accountable for the degradation of damaged organelles and toxic macromolecules in the cells. Regarding the essential function of autophagy for preserving cellular homeostasis, changes in, or dysfunction of, autophagy flux can lead to disease development. In the current paper, the complicated function of autophagy in aging-associated pathologies and cancer is evaluated, highlighting the underlying molecular mechanisms that can affect longevity and disease pathogenesis. As a natural biological process, a reduction in autophagy is observed with aging, resulting in an accumulation of cell damage and the development of different diseases, including neurological disorders, cardiovascular diseases, and cancer. The MTOR, AMPK, and ATG proteins demonstrate changes during aging, and they are promising therapeutic targets. Insulin/IGF1, TOR, PKA, AKT/PKB, caloric restriction and mitochondrial respiration are vital for lifespan regulation and can modulate or have an interaction with autophagy. The specific types of autophagy, such as mitophagy that degrades mitochondria, can regulate aging by affecting these organelles and eliminating those mitochondria with genomic mutations. Autophagy and its specific types contribute to the regulation of carcinogenesis and they are able to dually enhance or decrease cancer progression. Cancer hallmarks, including proliferation, metastasis, therapy resistance and immune reactions, are tightly regulated by autophagy, supporting the conclusion that autophagy is a promising target in cancer therapy.
Collapse
Affiliation(s)
- Na Wu
- Department of Infectious Diseases, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Wenhui Zheng
- Department of Anesthesiology, The Shengjing Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Yundong Zhou
- Department of Thoracic Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang 315040, China
| | - Yu Tian
- School of Public Health, Benedictine University, No.5700 College Road, Lisle, IL 60532, USA; Research Center, the Huizhou Central People's Hospital, Guangdong Medical University, Huizhou, Guangdong, China
| | - Min Tang
- Department of Oncology, Chongqing General Hospital, Chongqing University, Chongqing 401120, China
| | - Xiaoqiang Feng
- Center of Stem Cell and Regenerative Medicine, Gaozhou People's Hospital, Gaozhou, Guangdong 525200, China
| | - Milad Ashrafizadeh
- Department of Radiation Oncology, Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong 250000, China; Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yuzhuo Wang
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC V6H3Z6, Canada
| | - Xiaojia Niu
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC V6H3Z6, Canada
| | - Murtaza Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln LN6 7TS, UK
| | - Lingzhi Wang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore 117600, Singapore
| | - Vinay Tergaonkar
- Laboratory of NF-κB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A⁎STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore 117600, Singapore; NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore.
| | - Daniel Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| | - Li Huang
- Center of Stem Cell and Regenerative Medicine, Gaozhou People's Hospital, Gaozhou, Guangdong 525200, China.
| | - Ming Gu
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China.
| |
Collapse
|
9
|
Falbo L, Técher H, Sannino V, Robusto M, Fagà G, Pezzimenti F, Romeo F, Colombo LG, Vultaggio S, Fancelli D, Monzani S, Cecatiello V, Pasqualato S, Varasi M, Mercurio C, Costanzo V. A high-throughput screening identifies MCM chromatin loading inhibitors targeting cells with increased replication origins. iScience 2024; 27:110567. [PMID: 39184446 PMCID: PMC11342271 DOI: 10.1016/j.isci.2024.110567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/25/2024] [Accepted: 07/18/2024] [Indexed: 08/27/2024] Open
Abstract
Replication origin assembly is a pivotal step in chromosomal DNA replication. In this process, the ORC complex binds DNA and, together with the CDC6 and CDT1, promotes the loading of the MCM helicase. Chemicals targeting origin assembly might be useful to sensitize highly proliferative cancer cells. However, identifying such compounds is challenging due to the multistage nature of this process. Here, using Xenopus laevis egg extract we set up a high-throughput screening to isolate MCM chromatin loading inhibitors, which led to the identification of NSC-95397 as a powerful inhibitor of replication origin assembly that targets CDC6 protein and promotes its degradation. Using systems developed to test selective drug-induced lethality we show that NSC-95397 triggers cell death both in human cells and Xenopus embryos that have higher proliferative ability. These findings demonstrate the effectiveness of molecules disrupting DNA replication processes in targeting hyperproliferating cells, highlighting their potential as anti-cancer molecules.
Collapse
Affiliation(s)
- Lucia Falbo
- IFOM-ETS, The AIRC Institute of Molecular Oncology, Milan, Italy
- Department of Oncology and Hematology-Oncology, University of Milan, 20133 Milan, Italy
| | - Hervé Técher
- IFOM-ETS, The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Vincenzo Sannino
- IFOM-ETS, The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Michela Robusto
- IFOM-ETS, The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Giovanni Fagà
- IFOM-ETS, The AIRC Institute of Molecular Oncology, Milan, Italy
| | | | - Francesco Romeo
- IFOM-ETS, The AIRC Institute of Molecular Oncology, Milan, Italy
- Department of Oncology and Hematology-Oncology, University of Milan, 20133 Milan, Italy
| | | | | | - Daniele Fancelli
- IFOM-ETS, The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Silvia Monzani
- Department of Experimental Oncology, European Institute of Oncology (IEO) IRCCS, 20141 Milan, Italy
| | - Valentina Cecatiello
- Department of Experimental Oncology, European Institute of Oncology (IEO) IRCCS, 20141 Milan, Italy
| | - Sebastiano Pasqualato
- Department of Experimental Oncology, European Institute of Oncology (IEO) IRCCS, 20141 Milan, Italy
| | - Mario Varasi
- IFOM-ETS, The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Ciro Mercurio
- IFOM-ETS, The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Vincenzo Costanzo
- IFOM-ETS, The AIRC Institute of Molecular Oncology, Milan, Italy
- Department of Oncology and Hematology-Oncology, University of Milan, 20133 Milan, Italy
| |
Collapse
|
10
|
Andriani L, Ling YX, Yang SY, Zhao Q, Ma XY, Huang MY, Zhang YL, Zhang FL, Li DQ, Shao ZM. Sideroflexin-1 promotes progression and sensitivity to lapatinib in triple-negative breast cancer by inhibiting TOLLIP-mediated autophagic degradation of CIP2A. Cancer Lett 2024; 597:217008. [PMID: 38849012 DOI: 10.1016/j.canlet.2024.217008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/15/2024] [Accepted: 05/30/2024] [Indexed: 06/09/2024]
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer and it lacks specific therapeutic targets and effective treatment protocols. By analyzing a proteomic TNBC dataset, we found significant upregulation of sideroflexin 1 (SFXN1) in tumor tissues. However, the precise function of SFXN1 in TNBC remains unclear. Immunoblotting was performed to determine SFXN1 expression levels. Label-free quantitative proteomics and liquid chromatography-tandem mass spectrometry were used to identify the downstream targets of SFXN1. Mechanistic studies of SFXN1 and cellular inhibitor of PP2A (CIP2A) were performed using immunoblotting, immunofluorescence staining, and reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Functional experiments were used to investigate the role of SFXN1 in TNBC cells. SFXN1 was significantly overexpressed in TNBC tumor tissues and was associated with unfavorable outcomes in patients with TNBC. Functional experiments demonstrated that SFXN1 promoted TNBC growth and metastasis in vitro and in vivo. Mechanistic studies revealed that SFXN1 promoted TNBC progression by inhibiting the autophagy receptor TOLLIP (toll interacting protein)-mediated autophagic degradation of CIP2A. The pro-tumorigenic effect of SFXN1 overexpression was partially prevented by lapatinib-mediated inhibition of the CIP2A/PP2A/p-AKT pathway. These findings may provide a new targeted therapy for patients with TNBC.
Collapse
Affiliation(s)
- Lisa Andriani
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yun-Xiao Ling
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Shao-Ying Yang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Qian Zhao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xiao-Yan Ma
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Min-Ying Huang
- Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Yin-Ling Zhang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Fang-Lin Zhang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Da-Qiang Li
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Zhi-Ming Shao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
11
|
Pareek G, Kundu M. Physiological functions of ULK1/2. J Mol Biol 2024; 436:168472. [PMID: 38311233 PMCID: PMC11382334 DOI: 10.1016/j.jmb.2024.168472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024]
Abstract
UNC-51-like kinases 1 and 2 (ULK1/2) are serine/threonine kinases that are best known for their evolutionarily conserved role in the autophagy pathway. Upon sensing the nutrient status of a cell, ULK1/2 integrate signals from upstream cellular energy sensors such as mTOR and AMPK and relay them to the downstream components of the autophagy machinery. ULK1/2 also play indispensable roles in the selective autophagy pathway, removing damaged mitochondria, invading pathogens, and toxic protein aggregates. Additional functions of ULK1/2 have emerged beyond autophagy, including roles in protein trafficking, RNP granule dynamics, and signaling events impacting innate immunity, axon guidance, cellular homeostasis, and cell fate. Therefore, it is no surprise that alterations in ULK1/2 expression and activity have been linked with pathophysiological processes, including cancer, neurological disorders, and cardiovascular diseases. Growing evidence suggests that ULK1/2 function as biological rheostats, tuning cellular functions to intra and extra-cellular cues. Given their broad physiological relevance, ULK1/2 are candidate targets for small molecule activators or inhibitors that may pave the way for the development of therapeutics for the treatment of diseases in humans.
Collapse
Affiliation(s)
- Gautam Pareek
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Mondira Kundu
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
12
|
Zhang J, Pan X, Ji W, Zhou J. Autophagy mediated targeting degradation, a promising strategy in drug development. Bioorg Chem 2024; 149:107466. [PMID: 38843684 DOI: 10.1016/j.bioorg.2024.107466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 06/17/2024]
Abstract
Targeted protein degradation (TPD) technologies have become promising therapeutic approaches through degrading disease-causing proteins via the protein degradation system. Autophagy is a fundamental biological process with a high relationship to protein degradation, which belongs to one of two main protein degradation pathways, the autophagy-lysosomal system. Recently, various autophagy-based TPD techniques ATTECs, AUTACs, and AUTOTACs, etc, have also been gradually developed, and they have achieved efficient degradation potency for the targeted protein, expanding the potential of degradation for large-size proteins or protein aggregates. Herein, we introduce the machinery of autophagy and its relation to protein degradation, and multiple methods for using autophagy to specifically degrade target proteins.
Collapse
Affiliation(s)
- Jiantao Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, PR China
| | - Xiangyi Pan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, PR China
| | - Wenshu Ji
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, PR China
| | - Jinming Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, PR China.
| |
Collapse
|
13
|
Benedetti R, Romeo MA, Arena A, Gilardini Montani MS, D’Orazi G, Cirone M. ATF6 supports lysosomal function in tumor cells to enable ER stress-activated macroautophagy and CMA: impact on mutant TP53 expression. Autophagy 2024; 20:1854-1867. [PMID: 38566314 PMCID: PMC11262222 DOI: 10.1080/15548627.2024.2338577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 03/31/2024] [Indexed: 04/04/2024] Open
Abstract
The inhibition of the unfolded protein response (UPR), which usually protects cancer cells from stress, may be exploited to potentiate the cytotoxic effect of drugs inducing ER stress. However, in this study, we found that ER stress and UPR activation by thapsigargin or tunicamycin promoted the lysosomal degradation of mutant (MUT) TP53 and that the inhibition of the UPR sensor ATF6, but not of ERN1/IRE1 or EIF2AK3/PERK, counteracted such an effect. ATF6 activation was indeed required to sustain the function of lysosomes, enabling the execution of chaperone-mediated autophagy (CMA) as well as of macroautophagy, processes involved in the degradation of MUT TP53 in stressed cancer cells. At the molecular level, by pharmacological and genetic approaches, we demonstrated that the inhibition of ATF6 correlated with the activation of MTOR and with TFEB and LAMP1 downregulation in thapsigargin-treated MUT TP53 carrying cells. We hypothesize that the rescue of MUT TP53 expression by ATF6 inhibition, could further activate MTOR and maintain lysosomal dysfunction, further inhibiting MUT TP53 degradation, in a vicious circle. The findings of this study suggest that the presence of MUT TP53, which often exerts oncogenic properties, should be considered before approaching treatments combining ER stressors with ATF6 inhibitors against cancer cells, while it could represent a promising strategy against cancer cells that harbor WT TP53.
Collapse
Affiliation(s)
- Rossella Benedetti
- Department of Experimental Medicine, “Sapienza” University of Rome, Rome, Italy
| | - Maria Anele Romeo
- Department of Experimental Medicine, “Sapienza” University of Rome, Rome, Italy
| | - Andrea Arena
- Department of Experimental Medicine, “Sapienza” University of Rome, Rome, Italy
| | | | - Gabriella D’Orazi
- Department of Neurosciences, Imaging and Clinical Sciences, University “G. D’Annunzio”, Chieti, Italy
| | - Mara Cirone
- Department of Experimental Medicine, “Sapienza” University of Rome, Rome, Italy
| |
Collapse
|
14
|
Wang Y, Wu L, Van Kaer L. Role of canonical and noncanonical autophagy pathways in shaping the life journey of B cells. Front Immunol 2024; 15:1426204. [PMID: 39139569 PMCID: PMC11319164 DOI: 10.3389/fimmu.2024.1426204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/16/2024] [Indexed: 08/15/2024] Open
Abstract
Autophagy is a regulated intracellular catabolic process by which invading pathogens, damaged organelles, aggregated proteins, and other macromolecules are degraded in lysosomes. It has been widely appreciated that autophagic activity plays an important role in regulating the development, fate determination, and function of cells in the immune system, including B lymphocytes. Autophagy encompasses several distinct pathways that have been linked to B cell homeostasis and function. While B cell presentation of major histocompatibility complex (MHC) class II-restricted cytosolic antigens to T cells involves both macroautophagy and chaperone-mediated autophagy (CMA), plasma cells and memory B cells mainly rely on macroautophagy for their survival. Emerging evidence indicates that core autophagy factors also participate in processes related to yet clearly distinct from classical autophagy. These autophagy-related pathways, referred to as noncanonical autophagy or conjugation of ATG8 to single membranes (CASM), contribute to B cell homeostasis and functions, including MHC class II-restricted antigen presentation to T cells, germinal center formation, plasma cell differentiation, and recall responses. Dysregulation of B cell autophagy has been identified in several autoimmune and autoinflammatory diseases such as systemic lupus erythematosus, rheumatoid arthritis, and inflammatory bowel disease. In this review, we discuss recent advances in understanding the role of canonical and noncanonical autophagy in B cells, including B cell development and maturation, antigen processing and presentation, pathogen-specific antibody responses, cytokine secretion, and autoimmunity. Unraveling the molecular mechanisms of canonical and noncanonical autophagy in B cells will improve our understanding of B cell biology, with implications for the development of autophagy-based immunotherapies.
Collapse
Affiliation(s)
| | | | - Luc Van Kaer
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States
| |
Collapse
|
15
|
Zhao X, Ma D, Yang B, Wang Y, Zhang L. Research progress of T cell autophagy in autoimmune diseases. Front Immunol 2024; 15:1425443. [PMID: 39104538 PMCID: PMC11298352 DOI: 10.3389/fimmu.2024.1425443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/03/2024] [Indexed: 08/07/2024] Open
Abstract
T cells, as a major lymphocyte population involved in the adaptive immune response, play an important immunomodulatory role in the early stages of autoimmune diseases. Autophagy is a cellular catabolism mediated by lysosomes. Autophagy maintains cell homeostasis by recycling degraded cytoplasmic components and damaged organelles. Autophagy has a protective effect on cells and plays an important role in regulating T cell development, activation, proliferation and differentiation. Autophagy mediates the participation of T cells in the acquired immune response and plays a key role in antigen processing as well as in the maintenance of T cell homeostasis. In autoimmune diseases, dysregulated autophagy of T cells largely influences the pathological changes. Therefore, it is of great significance to study how T cells play a role in the immune mechanism of autoimmune diseases through autophagy pathway to guide the clinical treatment of diseases.
Collapse
Affiliation(s)
| | | | | | | | - Liyun Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| |
Collapse
|
16
|
Chlubek M, Baranowska-Bosiacka I. Selected Functions and Disorders of Mitochondrial Metabolism under Lead Exposure. Cells 2024; 13:1182. [PMID: 39056765 PMCID: PMC11275214 DOI: 10.3390/cells13141182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Mitochondria play a fundamental role in the energy metabolism of eukaryotic cells. Numerous studies indicate lead (Pb) as a widely occurring environmental factor capable of disrupting oxidative metabolism by modulating the mitochondrial processes. The multitude of known molecular targets of Pb and its strong affinity for biochemical pathways involving divalent metals suggest that it may pose a health threat at any given dose. Changes in the bioenergetics of cells exposed to Pb have been repeatedly demonstrated in research, primarily showing a reduced ability to synthesize ATP. In addition, lead interferes with mitochondrial-mediated processes essential for maintaining homeostasis, such as apoptosis, mitophagy, mitochondrial dynamics, and the inflammatory response. This article describes selected aspects of mitochondrial metabolism in relation to potential mechanisms of energy metabolism disorders induced by Pb.
Collapse
Affiliation(s)
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland;
| |
Collapse
|
17
|
Hu J, Dong H, Li Y, Gu J, Yang L, Si C, Zhang Y, Li T, Li D, Liu C. Hsp90α forms condensate engaging client proteins with RG motif repeats. Chem Sci 2024; 15:10508-10518. [PMID: 38994413 PMCID: PMC11234873 DOI: 10.1039/d4sc00267a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/28/2024] [Indexed: 07/13/2024] Open
Abstract
Hsp90α, a pivotal canonical chaperone, is renowned for its broad interaction with numerous protein clients to maintain protein homeostasis, chromatin remodeling, and cell growth. Recent studies indicate its role in modifying various components of membraneless organelles (MLOs) such as stress granules and processing bodies, suggesting its participation in the regulation of protein condensates. In this study, we found that Hsp90α possesses an inherent ability to form dynamic condensates in vitro. Utilizing LC-MS/MS, we further pinpointed proteins in cell lysates that preferentially integrate into Hsp90α condensates. Significantly, we observed a prevalence of RG motif repeats in client proteins of Hsp90α condensates, many of which are linked to various MLOs. Moreover, each of the three domains of Hsp90α was found to undergo phase separation, with numerous solvent-exposed negatively charged residues on these domains being crucial for driving Hsp90α condensation through multivalent weak electrostatic interactions. Additionally, various clients like TDP-43 and hnRNPA1, along with poly-GR and PR dipeptide repeats, exhibit varied impacts on the dynamic behavior of Hsp90α condensates. Our study spotlights various client proteins associated with Hsp90α condensates, illustrating its intricate adaptive nature in interacting with diverse clients and its functional adaptability across multiple MLOs.
Collapse
Affiliation(s)
- Jiaojiao Hu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 201210 China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 China
| | - Hui Dong
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 201210 China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 China
| | - Yichen Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University Shanghai 200240 China
| | - Jinge Gu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 201210 China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 China
| | - Liang Yang
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center Beijing 100191 China
- Key Laboratory for Neuroscience, Ministry of Education, National Health Commission of China, Peking University Beijing 100191 China
| | - Chenfang Si
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 201210 China
| | - Yaoyang Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 201210 China
| | - Tingting Li
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center Beijing 100191 China
- Key Laboratory for Neuroscience, Ministry of Education, National Health Commission of China, Peking University Beijing 100191 China
| | - Dan Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University Shanghai 200240 China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University Shanghai 200240 China
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 201210 China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 China
| |
Collapse
|
18
|
Chang X, Qu F, Li C, Zhang J, Zhang Y, Xie Y, Fan Z, Bian J, Wang J, Li Z, Xu X. Development and therapeutic potential of GSPT1 molecular glue degraders: A medicinal chemistry perspective. Med Res Rev 2024; 44:1727-1767. [PMID: 38314926 DOI: 10.1002/med.22024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/18/2023] [Accepted: 01/21/2024] [Indexed: 02/07/2024]
Abstract
Unprecedented therapeutic targeting of previously undruggable proteins has now been achieved by molecular-glue-mediated proximity-induced degradation. As a small GTPase, G1 to S phase transition 1 (GSPT1) interacts with eRF1, the translation termination factor, to facilitate the process of translation termination. Studied demonstrated that GSPT1 plays a vital role in the acute myeloid leukemia (AML) and MYC-driven lung cancer. Thus, molecular glue (MG) degraders targeting GSPT1 is a novel and promising approach for treating AML and MYC-driven cancers. In this Perspective, we briefly summarize the structural and functional aspects of GSPT1, highlighting the latest advances and challenges in MG degraders, as well as some representative patents. The structure-activity relationships, mechanism of action and pharmacokinetic features of MG degraders are emphasized to provide a comprehensive compendium on the rational design of GSPT1 MG degraders. We hope to provide an updated overview, and design guide for strategies targeting GSPT1 for the treatment of cancer.
Collapse
Affiliation(s)
- Xiujin Chang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Fangui Qu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Chunxiao Li
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jingtian Zhang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yanqing Zhang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yuanyuan Xie
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Zhongpeng Fan
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jinlei Bian
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jubo Wang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Zhiyu Li
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xi Xu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
19
|
Zhao Y, Lin M, Zhai F, Chen J, Jin X. Exploring the Role of Ubiquitin-Proteasome System in the Pathogenesis of Parkinson's Disease. Pharmaceuticals (Basel) 2024; 17:782. [PMID: 38931449 PMCID: PMC11207014 DOI: 10.3390/ph17060782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/23/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
Parkinson's disease (PD) is a prevalent neurodegenerative disorder among the elderly population. The pathogenesis of PD encompasses genetic alterations, environmental factors, and age-related neurodegenerative processes. Numerous studies have demonstrated that aberrant functioning of the ubiquitin-proteasome system (UPS) plays a crucial role in the initiation and progression of PD. Notably, E3 ubiquitin ligases serve as pivotal components determining substrate specificity within UPS and are intimately associated with the regulation of various proteins implicated in PD pathology. This review comprehensively summarizes the mechanisms by which E3 ubiquitin ligases and deubiquitinating enzymes modulate PD-associated proteins and signaling pathways, while exploring the intricate relationship between UPS dysfunctions and PD etiology. Furthermore, this article discusses recent research advancements regarding inhibitors targeting PD-related E3 ubiquitin ligases.
Collapse
Affiliation(s)
- Yiting Zhao
- Department of Chemoradiotherapy, The Affiliated People’s Hospital of Ningbo University, Ningbo 315040, China; (Y.Z.); (M.L.)
- Department of Ultrasound Medicine, The Affiliated People’s Hospital of Ningbo University, Ningbo 315040, China
- Zhejiang Key Laboratory of Pathophysiology, Department of Biochemistry and Molecular Biology, Health Science Center of Ningbo University, Ningbo 315211, China;
| | - Man Lin
- Department of Chemoradiotherapy, The Affiliated People’s Hospital of Ningbo University, Ningbo 315040, China; (Y.Z.); (M.L.)
- Zhejiang Key Laboratory of Pathophysiology, Department of Biochemistry and Molecular Biology, Health Science Center of Ningbo University, Ningbo 315211, China;
| | - Fengguang Zhai
- Zhejiang Key Laboratory of Pathophysiology, Department of Biochemistry and Molecular Biology, Health Science Center of Ningbo University, Ningbo 315211, China;
| | - Jun Chen
- Department of Chemoradiotherapy, The Affiliated People’s Hospital of Ningbo University, Ningbo 315040, China; (Y.Z.); (M.L.)
- Zhejiang Key Laboratory of Pathophysiology, Department of Biochemistry and Molecular Biology, Health Science Center of Ningbo University, Ningbo 315211, China;
| | - Xiaofeng Jin
- Department of Chemoradiotherapy, The Affiliated People’s Hospital of Ningbo University, Ningbo 315040, China; (Y.Z.); (M.L.)
- Zhejiang Key Laboratory of Pathophysiology, Department of Biochemistry and Molecular Biology, Health Science Center of Ningbo University, Ningbo 315211, China;
| |
Collapse
|
20
|
Zhao P, Yuan Q, Liang C, Ma Y, Zhu X, Hao X, Li X, Shi J, Fu Q, Fan H, Wang D. GPX4 degradation contributes to fluoride-induced neuronal ferroptosis and cognitive impairment via mtROS-chaperone-mediated autophagy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172069. [PMID: 38582117 DOI: 10.1016/j.scitotenv.2024.172069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/12/2024] [Accepted: 03/27/2024] [Indexed: 04/08/2024]
Abstract
Ferroptosis is a newly recognized type of programmed cell death that is implicated in the pathophysiological process of neurological disorders. Our previous studies have revealed that exposure to high concentrations of fluoride for long periods of time induces hippocampal neural injury and cognitive deficits. However, whether ferroptosis is involved in fluoride-induced neuronal death and the underlying mechanism remain unknown. In this study, the results indicated that exposure to high fluoride triggered ferroptosis in SH-SY5Y cells and in the hippocampus of mice. Fluoride exposure accelerated the lysosomal degradation of GPX4 and led to neuronal ferroptosis, while GPX4 overexpression protected SH-SY5Y cells against fluoride-induced neurotoxicity. Intriguingly, the enhanced chaperone-mediated autophagy (CMA) induced by fluoride stimulation was responsible for GPX4 degradation because the inhibition of CMA activity by LAMP2A knockdown effectively prevented fluoride-induced GPX4 loss. Furthermore, mitochondrial ROS (mtROS) accumulation caused by fluoride contributed to CMA activation-mediated GPX4 degradation and subsequent neuronal ferroptosis. Notably, the ferroptosis-specific inhibitor ferrostatin-1 (Fer-1) or the ROS scavenger N-acetyl-L-cysteine (NAC) alleviated fluoride-evoked hippocampal neuronal death and synaptic injury as well as cognitive deficits in mice. The present studies indicates that ferroptosis is a novel mechanism of fluoride-induced neurotoxicity and that chronic fluoride exposure facilitates GPX4 degradation via mtROS chaperone-mediated autophagy, leading to neuronal ferroptosis and cognitive impairment.
Collapse
Affiliation(s)
- Pu Zhao
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Quan Yuan
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China; Henan Province Rongkang Hospital, Luoyang, China
| | - Chen Liang
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Yilu Ma
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Xiaoying Zhu
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Xueqin Hao
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Xinyu Li
- The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, China
| | - Jian Shi
- The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, China
| | - Qizhi Fu
- The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, China
| | - Hua Fan
- The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, China.
| | - Dongmei Wang
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China.
| |
Collapse
|
21
|
Jia Q, Li J, Guo X, Li Y, Wu Y, Peng Y, Fang Z, Zhang X. Neuroprotective effects of chaperone-mediated autophagy in neurodegenerative diseases. Neural Regen Res 2024; 19:1291-1298. [PMID: 37905878 PMCID: PMC11467915 DOI: 10.4103/1673-5374.385848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/30/2023] [Accepted: 07/17/2023] [Indexed: 11/02/2023] Open
Abstract
ABSTRACT Chaperone-mediated autophagy is one of three types of autophagy and is characterized by the selective degradation of proteins. Chaperone-mediated autophagy contributes to energy balance and helps maintain cellular homeostasis, while providing nutrients and support for cell survival. Chaperone-mediated autophagy activity can be detected in almost all cells, including neurons. Owing to the extreme sensitivity of neurons to their environmental changes, maintaining neuronal homeostasis is critical for neuronal growth and survival. Chaperone-mediated autophagy dysfunction is closely related to central nervous system diseases. It has been shown that neuronal damage and cell death are accompanied by chaperone-mediated autophagy dysfunction. Under certain conditions, regulation of chaperone-mediated autophagy activity attenuates neurotoxicity. In this paper, we review the changes in chaperone-mediated autophagy in neurodegenerative diseases, brain injury, glioma, and autoimmune diseases. We also summarize the most recent research progress on chaperone-mediated autophagy regulation and discuss the potential of chaperone-mediated autophagy as a therapeutic target for central nervous system diseases.
Collapse
Affiliation(s)
- Qi Jia
- Department of Anesthesiology and Perioperative Medicine and Department of Intensive Care Unit, Xijing Hospital, The Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Jin Li
- Department of Anesthesiology and Perioperative Medicine and Department of Intensive Care Unit, Xijing Hospital, The Fourth Military Medical University, Xi’an, Shaanxi Province, China
- Department of Critical Care Medicine, Air Force Medical Center, Beijing, China
| | - Xiaofeng Guo
- Department of Anesthesiology and Perioperative Medicine and Department of Intensive Care Unit, Xijing Hospital, The Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Yi Li
- Department of Anesthesiology and Perioperative Medicine and Department of Intensive Care Unit, Xijing Hospital, The Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - You Wu
- Department of Anesthesiology and Perioperative Medicine and Department of Intensive Care Unit, Xijing Hospital, The Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Yuliang Peng
- Department of Anesthesiology and Perioperative Medicine and Department of Intensive Care Unit, Xijing Hospital, The Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Zongping Fang
- Department of Anesthesiology and Perioperative Medicine and Department of Intensive Care Unit, Xijing Hospital, The Fourth Military Medical University, Xi’an, Shaanxi Province, China
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xijing Zhang
- Department of Anesthesiology and Perioperative Medicine and Department of Intensive Care Unit, Xijing Hospital, The Fourth Military Medical University, Xi’an, Shaanxi Province, China
| |
Collapse
|
22
|
Teixeira ABDS, Ramalho MCC, de Souza I, de Andrade IAM, Osawa IYA, Guedes CB, de Oliveira BS, de Souza CHD, da Silva TL, Moreno NC, Latancia MT, Rocha CRR. The role of chaperone-mediated autophagy in drug resistance. Genet Mol Biol 2024; 47:e20230317. [PMID: 38829285 PMCID: PMC11145944 DOI: 10.1590/1678-4685-gmb-2023-0317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 04/19/2024] [Indexed: 06/05/2024] Open
Abstract
In the search for alternatives to overcome the challenge imposed by drug resistance development in cancer treatment, the modulation of autophagy has emerged as a promising alternative that has achieved good results in clinical trials. Nevertheless, most of these studies have overlooked a novel and selective type of autophagy: chaperone-mediated autophagy (CMA). Following its discovery, research into CMA's contribution to tumor progression has accelerated rapidly. Therefore, we now understand that stress conditions are the primary signal responsible for modulating CMA in cancer cells. In turn, the degradation of proteins by CMA can offer important advantages for tumorigenesis, since tumor suppressor proteins are CMA targets. Such mutual interaction between the tumor microenvironment and CMA also plays a crucial part in establishing therapy resistance, making this discussion the focus of the present review. Thus, we highlight how suppression of LAMP2A can enhance the sensitivity of cancer cells to several drugs, just as downregulation of CMA activity can lead to resistance in certain cases. Given this panorama, it is important to identify selective modulators of CMA to enhance the therapeutic response.
Collapse
Affiliation(s)
- Ana Beatriz da Silva Teixeira
- Universidade Federal de São Paulo (UNIFESP), Departamento de
Oncologia Clínica e Experimental, São Paulo, SP, Brazil
| | - Maria Carolina Clares Ramalho
- Universidade Federal de São Paulo (UNIFESP), Departamento de
Oncologia Clínica e Experimental, São Paulo, SP, Brazil
| | - Izadora de Souza
- Universidade Federal de São Paulo (UNIFESP), Departamento de
Oncologia Clínica e Experimental, São Paulo, SP, Brazil
| | | | - Isabeli Yumi Araújo Osawa
- Universidade Federal de São Paulo (UNIFESP), Departamento de
Oncologia Clínica e Experimental, São Paulo, SP, Brazil
| | - Camila Banca Guedes
- Universidade Federal de São Paulo (UNIFESP), Departamento de
Oncologia Clínica e Experimental, São Paulo, SP, Brazil
| | - Beatriz Silva de Oliveira
- Universidade Federal de São Paulo (UNIFESP), Departamento de
Oncologia Clínica e Experimental, São Paulo, SP, Brazil
| | | | - Tainá Lins da Silva
- Universidade Federal de São Paulo (UNIFESP), Departamento de
Oncologia Clínica e Experimental, São Paulo, SP, Brazil
| | - Natália Cestari Moreno
- National Institutes of Health, National Institute of Child Health
and Human Development, Laboratory of Genomic Integrity, Bethesda, MD, USA
| | - Marcela Teatin Latancia
- National Institutes of Health, National Institute of Child Health
and Human Development, Laboratory of Genomic Integrity, Bethesda, MD, USA
| | - Clarissa Ribeiro Reily Rocha
- Universidade Federal de São Paulo (UNIFESP), Departamento de
Oncologia Clínica e Experimental, São Paulo, SP, Brazil
| |
Collapse
|
23
|
Hang K, Wang Y, Bai J, Wang Z, Wu W, Zhu W, Liu S, Pan Z, Chen J, Chen W. Chaperone-mediated autophagy protects the bone formation from excessive inflammation through PI3K/AKT/GSK3β/β-catenin pathway. FASEB J 2024; 38:e23646. [PMID: 38795328 DOI: 10.1096/fj.202302425r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/06/2024] [Accepted: 04/22/2024] [Indexed: 05/27/2024]
Abstract
Multiple regulatory mechanisms are in place to ensure the normal processes of bone metabolism, encompassing both bone formation and absorption. This study has identified chaperone-mediated autophagy (CMA) as a critical regulator that safeguards bone formation from the detrimental effects of excessive inflammation. By silencing LAMP2A or HSCA8, we observed a hindrance in the osteoblast differentiation of human bone marrow mesenchymal stem cells (hBMSCs) in vitro. To further elucidate the role of LAMP2A, we generated LAMP2A gene knockdown and overexpression of mouse BMSCs (mBMSCs) using adenovirus. Our results showed that LAMP2A knockdown led to a decrease in osteogenic-specific proteins, while LAMP2A overexpression favored the osteogenesis of mBMSCs. Notably, active-β-catenin levels were upregulated by LAMP2A overexpression. Furthermore, we found that LAMP2A overexpression effectively protected the osteogenesis of mBMSCs from TNF-α, through the PI3K/AKT/GSK3β/β-catenin pathway. Additionally, LAMP2A overexpression significantly inhibited osteoclast hyperactivity induced by TNF-α. Finally, in a murine bone defect model, we demonstrated that controlled release of LAMP2A overexpression adenovirus by alginate sodium capsule efficiently protected bone healing from inflammation, as confirmed by imaging and histological analyses. Collectively, our findings suggest that enhancing CMA has the potential to safeguard bone formation while mitigating hyperactivity in bone absorption.
Collapse
Affiliation(s)
- Kai Hang
- Department of Orthopaedics, the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Zhejiang, Hangzhou, China
| | - YiBo Wang
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - JinWu Bai
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| | - ZhongXiang Wang
- Department of Orthopedic Surgery of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - WeiLiang Wu
- Department of Orthopaedics, the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Zhejiang, Hangzhou, China
| | - WeiWei Zhu
- Department of Orthopaedics, the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Zhejiang, Hangzhou, China
| | - ShuangAi Liu
- Department of Pediatric Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - ZhiJun Pan
- Department of Orthopedic Surgery of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - JianSong Chen
- Department of Orthopaedics, the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Zhejiang, Hangzhou, China
| | - WenHao Chen
- Department of Orthopaedics, the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Zhejiang, Hangzhou, China
| |
Collapse
|
24
|
Roca E, Colloca G, Lombardo F, Bellieni A, Cucinella A, Madonia G, Martinelli L, Damiani ME, Zampieri I, Santo A. The importance of integrated therapies on cancer: Silibinin, an old and new molecule. Oncotarget 2024; 15:345-353. [PMID: 38781107 PMCID: PMC11115268 DOI: 10.18632/oncotarget.28587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024] Open
Abstract
In the landscape of cancer treatments, the efficacy of coadjuvant molecules remains a focus of attention for clinical research with the aim of reducing toxicity and achieving better outcomes. Most of the pathogenetic processes causing tumour development, neoplastic progression, ageing, and increased toxicity involve inflammation. Inflammatory mechanisms can progress through a variety of molecular patterns. As is well known, the ageing process is determined by pathological pathways very similar and often parallel to those that cause cancer development. Among these complex mechanisms, inflammation is currently much studied and is often referred to in the geriatric field as 'inflammaging'. In this context, treatments active in the management of inflammatory mechanisms could play a role as adjuvants to standard therapies. Among these emerging molecules, Silibinin has demonstrated its anti-inflammatory properties in different neoplastic types, also in combination with chemotherapeutic agents. Moreover, this molecule could represent a breakthrough in the management of age-related processes. Thus, Silibinin could be a valuable adjuvant to reduce drug-related toxicity and increase therapeutic potential. For this reason, the main aim of this review is to collect and analyse data presented in the literature on the use of Silibinin, to better understand the mechanisms of the functioning of this molecule and its possible therapeutic role.
Collapse
Affiliation(s)
- Elisa Roca
- Oncologia Toracica - Lung Unit, Ospedale P. Pederzoli - Via Monte Baldo, Peschiera del Garda (VR), Italy
| | - Giuseppe Colloca
- Dipartimento di Scienze dell’invecchiamento, Neurologiche, Ortopediche e della testa-collo, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Rome, Italy
| | - Fiorella Lombardo
- Oncologia Toracica - Lung Unit, Ospedale P. Pederzoli - Via Monte Baldo, Peschiera del Garda (VR), Italy
| | - Andrea Bellieni
- Dipartimento di Scienze dell’invecchiamento, Neurologiche, Ortopediche e della testa-collo, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Rome, Italy
| | - Alessandra Cucinella
- Oncologia Toracica - Lung Unit, Ospedale P. Pederzoli - Via Monte Baldo, Peschiera del Garda (VR), Italy
| | - Giorgio Madonia
- Oncologia Toracica - Lung Unit, Ospedale P. Pederzoli - Via Monte Baldo, Peschiera del Garda (VR), Italy
| | - Licia Martinelli
- Oncologia Toracica - Lung Unit, Ospedale P. Pederzoli - Via Monte Baldo, Peschiera del Garda (VR), Italy
| | - Maria Elisa Damiani
- Oncologia Toracica - Lung Unit, Ospedale P. Pederzoli - Via Monte Baldo, Peschiera del Garda (VR), Italy
| | - Ilaria Zampieri
- Oncologia Toracica - Lung Unit, Ospedale P. Pederzoli - Via Monte Baldo, Peschiera del Garda (VR), Italy
| | - Antonio Santo
- Oncologia Toracica - Lung Unit, Ospedale P. Pederzoli - Via Monte Baldo, Peschiera del Garda (VR), Italy
| |
Collapse
|
25
|
Yu L, Pang X, Yang L, Jin K, Guo W, Wei Y, Pang C. Sensitivity of substrate translocation in chaperone-mediated autophagy to Alzheimer's disease progression. Aging (Albany NY) 2024; 16:9072-9105. [PMID: 38787367 PMCID: PMC11164475 DOI: 10.18632/aging.205856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 04/15/2024] [Indexed: 05/25/2024]
Abstract
Alzheimer's disease (AD) is a progressive brain disorder marked by abnormal protein accumulation and resulting proteotoxicity. This study examines Chaperone-Mediated Autophagy (CMA), particularly substrate translocation into lysosomes, in AD. The study observes: (1) Increased substrate translocation activity into lysosomes, vital for CMA, aligns with AD progression, highlighted by gene upregulation and more efficient substrate delivery. (2) This CMA phase strongly correlates with AD's clinical symptoms; more proteotoxicity links to worse dementia, underscoring the need for active degradation. (3) Proteins like GFAP and LAMP2A, when upregulated, almost certainly indicate AD risk, marking this process as a significant AD biomarker. Based on these observations, this study proposes the following hypothesis: As AD progresses, the aggregation of pathogenic proteins increases, the process of substrate entry into lysosomes via CMA becomes active. The genes associated with this process exhibit heightened sensitivity to AD. This conclusion stems from an analysis of over 10,000 genes and 363 patients using two AI methodologies. These methodologies were instrumental in identifying genes highly sensitive to AD and in mapping the molecular networks that respond to the disease, thereby highlighting the significance of this critical phase of CMA.
Collapse
Affiliation(s)
- Lei Yu
- College of Computer Science, Sichuan Normal University, Chengdu 610101, China
| | - Xinping Pang
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Lin Yang
- College of Computer Science, Sichuan Normal University, Chengdu 610101, China
| | - Kunpei Jin
- College of Computer Science, Sichuan Normal University, Chengdu 610101, China
| | - Wenbo Guo
- College of Computer Science, Sichuan Normal University, Chengdu 610101, China
| | - Yanyu Wei
- National Key Laboratory of Science and Technology on Vacuum Electronics, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Chaoyang Pang
- College of Computer Science, Sichuan Normal University, Chengdu 610101, China
| |
Collapse
|
26
|
Ortega MA, Fraile-Martinez O, de Leon-Oliva D, Boaru DL, Lopez-Gonzalez L, García-Montero C, Alvarez-Mon MA, Guijarro LG, Torres-Carranza D, Saez MA, Diaz-Pedrero R, Albillos A, Alvarez-Mon M. Autophagy in Its (Proper) Context: Molecular Basis, Biological Relevance, Pharmacological Modulation, and Lifestyle Medicine. Int J Biol Sci 2024; 20:2532-2554. [PMID: 38725847 PMCID: PMC11077378 DOI: 10.7150/ijbs.95122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/04/2024] [Indexed: 05/12/2024] Open
Abstract
Autophagy plays a critical role in maintaining cellular homeostasis and responding to various stress conditions by the degradation of intracellular components. In this narrative review, we provide a comprehensive overview of autophagy's cellular and molecular basis, biological significance, pharmacological modulation, and its relevance in lifestyle medicine. We delve into the intricate molecular mechanisms that govern autophagy, including macroautophagy, microautophagy and chaperone-mediated autophagy. Moreover, we highlight the biological significance of autophagy in aging, immunity, metabolism, apoptosis, tissue differentiation and systemic diseases, such as neurodegenerative or cardiovascular diseases and cancer. We also discuss the latest advancements in pharmacological modulation of autophagy and their potential implications in clinical settings. Finally, we explore the intimate connection between lifestyle factors and autophagy, emphasizing how nutrition, exercise, sleep patterns and environmental factors can significantly impact the autophagic process. The integration of lifestyle medicine into autophagy research opens new avenues for promoting health and longevity through personalized interventions.
Collapse
Affiliation(s)
- Miguel A Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Diego de Leon-Oliva
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Diego Liviu Boaru
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Laura Lopez-Gonzalez
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Miguel Angel Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Luis G Guijarro
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Unit of Biochemistry and Molecular Biology, Department of System Biology (CIBEREHD), University of Alcalá, 28801 Alcala de Henares, Spain
| | - Diego Torres-Carranza
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Miguel A Saez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Pathological Anatomy Service, Central University Hospital of Defence-UAH Madrid, 28801 Alcala de Henares, Spain
| | - Raul Diaz-Pedrero
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Department of General and Digestive Surgery, Príncipe de Asturias Universitary Hospital, 28805 Alcala de Henares, Spain
| | - Agustin Albillos
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Melchor Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Immune System Diseases-Rheumatology, Oncology Service an Internal Medicine (CIBEREHD), Príncipe de Asturias University Hospital, 28806 Alcala de Henares, Spain
| |
Collapse
|
27
|
Horváth L, Biri-Kovács B, Baranyai Z, Stipsicz B, Méhes E, Jezsó B, Krátký M, Vinšová J, Bősze S. New Salicylanilide Derivatives and Their Peptide Conjugates as Anticancer Compounds: Synthesis, Characterization, and In Vitro Effect on Glioblastoma. ACS OMEGA 2024; 9:16927-16948. [PMID: 38645331 PMCID: PMC11024950 DOI: 10.1021/acsomega.3c05727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/28/2023] [Accepted: 01/03/2024] [Indexed: 04/23/2024]
Abstract
Pharmacologically active salicylanilides (2-hydroxy-N-phenylbenzamides) have been a promising area of interest in medicinal chemistry-related research for quite some time. This group of compounds has shown a wide spectrum of biological activities, including but not limited to anticancer effects. In this study, substituted salicylanilides were chosen to evaluate the in vitro activity on U87 human glioblastoma (GBM) cells. The parent salicylanilide, salicylanilide 5-chloropyrazinoates, a 4-aminosalicylic acid derivative, and the new salicylanilide 4-formylbenzoates were chemically and in vitro characterized. To enhance the internalization of the compounds, they were conjugated to delivery peptides with the formation of oxime bonds. Oligotuftsins ([TKPKG]n, n = 1-4), the ligands of neuropilin receptors, were used as GBM-targeting carrier peptides. The in vitro cellular uptake, intracellular localization, and penetration ability on tissue-mimicking models of the fluorescent peptide derivatives were determined. The compounds and their peptide conjugates significantly decreased the viability of U87 glioma cells. Salicylanilide compound-induced GBM cell death was associated with activation of autophagy, as characterized by immunodetection of autophagy-related processing of light chain 3 protein.
Collapse
Affiliation(s)
- Lilla Horváth
- ELKH-ELTE
Research Group of Peptide Chemistry, Eötvös Loránd
Research Network, Eötvös Loránd
University, Budapest 1117, Hungary
| | - Beáta Biri-Kovács
- ELKH-ELTE
Research Group of Peptide Chemistry, Eötvös Loránd
Research Network, Eötvös Loránd
University, Budapest 1117, Hungary
| | - Zsuzsa Baranyai
- ELKH-ELTE
Research Group of Peptide Chemistry, Eötvös Loránd
Research Network, Eötvös Loránd
University, Budapest 1117, Hungary
| | - Bence Stipsicz
- ELKH-ELTE
Research Group of Peptide Chemistry, Eötvös Loránd
Research Network, Eötvös Loránd
University, Budapest 1117, Hungary
- Institute
of Biology, Doctoral School of Biology, Eötvös Loránd University, Budapest 1117, Hungary
| | - Előd Méhes
- Institute
of Physics, Department of Biological Physics, Eötvös Loránd University, Budapest 1117, Hungary
| | - Bálint Jezsó
- Research
Centre for Natural Sciences, Institute of
Enzymology, Budapest 1053, Hungary
- ELTE-MTA
“Momentum” Motor Enzymology Research Group, Department
of Biochemistry, Eötvös Loránd
University, Budapest 1117, Hungary
| | - Martin Krátký
- Department
of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec
Králové, Charles University, 500 03 Hradec Králové, Czech Republic
| | - Jarmila Vinšová
- Department
of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec
Králové, Charles University, 500 03 Hradec Králové, Czech Republic
| | - Szilvia Bősze
- ELKH-ELTE
Research Group of Peptide Chemistry, Eötvös Loránd
Research Network, Eötvös Loránd
University, Budapest 1117, Hungary
| |
Collapse
|
28
|
Zhu Z, Ren W, Li S, Gao L, Zhi K. Functional significance of O-linked N-acetylglucosamine protein modification in regulating autophagy. Pharmacol Res 2024; 202:107120. [PMID: 38417774 DOI: 10.1016/j.phrs.2024.107120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/16/2024] [Accepted: 02/24/2024] [Indexed: 03/01/2024]
Abstract
Autophagy is a core molecular pathway that preserves cellular and organismal homeostasis. Being susceptible to nutrient availability and stress, eukaryotic cells recycle or degrade internal components via membrane transport pathways to provide sustainable biological molecules and energy sources. The dysregulation of this highly conserved physiological process has been strongly linked to human disease. Post-translational modification, a mechanism that regulates protein function, plays a crucial role in autophagy regulation. O-linked N-acetylglucosamine protein modification (O-GlcNAcylation), a monosaccharide post-translational modification of intracellular proteins, is essential in nutritional and stress regulatory mechanisms. O-GlcNAcylation has emerged as an essential regulatory mechanism of autophagy. It regulates autophagy throughout its lifetime by targeting the core components of the autophagy regulatory network. This review provides an overview of the O-GlcNAcylation of autophagy-associated proteins and their regulation and function in the autophagy pathway. Therefore, this article may contribute to further understanding of the role of O-GlcNAc-regulated autophagy and provide new perspectives for the treatment of human diseases.
Collapse
Affiliation(s)
- Zhuang Zhu
- Department of Oral and Maxillofacial Reconstruction, the Affiliated Hospital of Qingdao University, Qingdao 266555, China; School of Stomatology, Qingdao University, Qingdao 266003, China; Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, Qingdao 266555, China.
| | - Wenhao Ren
- Department of Oral and Maxillofacial Reconstruction, the Affiliated Hospital of Qingdao University, Qingdao 266555, China; Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, Qingdao 266555, China.
| | - Shaoming Li
- Department of Oral and Maxillofacial Reconstruction, the Affiliated Hospital of Qingdao University, Qingdao 266555, China; School of Stomatology, Qingdao University, Qingdao 266003, China; Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, Qingdao 266555, China.
| | - Ling Gao
- Department of Oral and Maxillofacial Reconstruction, the Affiliated Hospital of Qingdao University, Qingdao 266555, China; School of Stomatology, Qingdao University, Qingdao 266003, China; Key Lab of Oral Clinical Medicine, the Affiliated Hospital of Qingdao University, Qingdao 266003, China; Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, Qingdao 266555, China.
| | - Keqian Zhi
- Department of Oral and Maxillofacial Reconstruction, the Affiliated Hospital of Qingdao University, Qingdao 266555, China; School of Stomatology, Qingdao University, Qingdao 266003, China; Key Lab of Oral Clinical Medicine, the Affiliated Hospital of Qingdao University, Qingdao 266003, China; Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, Qingdao 266555, China.
| |
Collapse
|
29
|
Stanzione R, Pietrangelo D, Cotugno M, Forte M, Rubattu S. Role of autophagy in ischemic stroke: insights from animal models and preliminary evidence in the human disease. Front Cell Dev Biol 2024; 12:1360014. [PMID: 38590779 PMCID: PMC10999556 DOI: 10.3389/fcell.2024.1360014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/13/2024] [Indexed: 04/10/2024] Open
Abstract
Stroke represents a main cause of death and permanent disability worldwide. The molecular mechanisms underlying cerebral injury in response to the ischemic insults are not completely understood. In this article, we summarize recent evidence regarding the role of autophagy in the pathogenesis of ischemic stroke by reviewing data obtained in murine models of either transient or permanent middle cerebral artery occlusion, and in the stroke-prone spontaneously hypertensive rat. Few preliminary observational studies investigating the role of autophagy in subjects at high cerebrovascular risk and in cohorts of stroke patients were also reviewed. Autophagy plays a dual role in neuronal and vascular cells by exerting both protective and detrimental effects depending on its level, duration of stress and type of cells involved. Protective autophagy exerts adaptive mechanisms which reduce neuronal loss and promote survival. On the other hand, excessive activation of autophagy leads to neuronal cell death and increases brain injury. In conclusion, the evidence reviewed suggests that a proper manipulation of autophagy may represent an interesting strategy to either prevent or reduce brain ischemic injury.
Collapse
Affiliation(s)
| | - Donatella Pietrangelo
- Clinical and Molecular Medicine Department, School of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | | | | | - Speranza Rubattu
- IRCCS Neuromed, Pozzilli, Italy
- Clinical and Molecular Medicine Department, School of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
30
|
McGrath MK, Abolhassani A, Guy L, Elshazly AM, Barrett JT, Mivechi NF, Gewirtz DA, Schoenlein PV. Autophagy and senescence facilitate the development of antiestrogen resistance in ER positive breast cancer. Front Endocrinol (Lausanne) 2024; 15:1298423. [PMID: 38567308 PMCID: PMC10986181 DOI: 10.3389/fendo.2024.1298423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 02/26/2024] [Indexed: 04/04/2024] Open
Abstract
Estrogen receptor positive (ER+) breast cancer is the most common breast cancer diagnosed annually in the US with endocrine-based therapy as standard-of-care for this breast cancer subtype. Endocrine therapy includes treatment with antiestrogens, such as selective estrogen receptor modulators (SERMs), selective estrogen receptor downregulators (SERDs), and aromatase inhibitors (AIs). Despite the appreciable remission achievable with these treatments, a substantial cohort of women will experience primary tumor recurrence, subsequent metastasis, and eventual death due to their disease. In these cases, the breast cancer cells have become resistant to endocrine therapy, with endocrine resistance identified as the major obstacle to the medical oncologist and patient. To combat the development of endocrine resistance, the treatment options for ER+, HER2 negative breast cancer now include CDK4/6 inhibitors used as adjuvants to antiestrogen treatment. In addition to the dysregulated activity of CDK4/6, a plethora of genetic and biochemical mechanisms have been identified that contribute to endocrine resistance. These mechanisms, which have been identified by lab-based studies utilizing appropriate cell and animal models of breast cancer, and by clinical studies in which gene expression profiles identify candidate endocrine resistance genes, are the subject of this review. In addition, we will discuss molecular targeting strategies now utilized in conjunction with endocrine therapy to combat the development of resistance or target resistant breast cancer cells. Of approaches currently being explored to improve endocrine treatment efficacy and patient outcome, two adaptive cell survival mechanisms, autophagy, and "reversible" senescence, are considered molecular targets. Autophagy and/or senescence induction have been identified in response to most antiestrogen treatments currently being used for the treatment of ER+ breast cancer and are often induced in response to CDK4/6 inhibitors. Unfortunately, effective strategies to target these cell survival pathways have not yet been successfully developed. Thus, there is an urgent need for the continued interrogation of autophagy and "reversible" senescence in clinically relevant breast cancer models with the long-term goal of identifying new molecular targets for improved treatment of ER+ breast cancer.
Collapse
Affiliation(s)
- Michael K. McGrath
- Georgia Cancer Center, Augusta University, Augusta, GA, United States
- Department of Cellular Biology & Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Ali Abolhassani
- Georgia Cancer Center, Augusta University, Augusta, GA, United States
- Department of Cellular Biology & Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Luke Guy
- Georgia Cancer Center, Augusta University, Augusta, GA, United States
- Department of Cellular Biology & Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Ahmed M. Elshazly
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA, United States
- Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - John T. Barrett
- Georgia Cancer Center, Augusta University, Augusta, GA, United States
- Department of Radiation Oncology, Georgia Cancer Center, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Nahid F. Mivechi
- Georgia Cancer Center, Augusta University, Augusta, GA, United States
- Department of Radiation Oncology, Georgia Cancer Center, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - David A. Gewirtz
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA, United States
- Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Patricia V. Schoenlein
- Georgia Cancer Center, Augusta University, Augusta, GA, United States
- Department of Cellular Biology & Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States
| |
Collapse
|
31
|
Ke PY. Molecular Mechanism of Autophagosome-Lysosome Fusion in Mammalian Cells. Cells 2024; 13:500. [PMID: 38534345 DOI: 10.3390/cells13060500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024] Open
Abstract
In eukaryotes, targeting intracellular components for lysosomal degradation by autophagy represents a catabolic process that evolutionarily regulates cellular homeostasis. The successful completion of autophagy initiates the engulfment of cytoplasmic materials within double-membrane autophagosomes and subsequent delivery to autolysosomes for degradation by acidic proteases. The formation of autolysosomes relies on the precise fusion of autophagosomes with lysosomes. In recent decades, numerous studies have provided insights into the molecular regulation of autophagosome-lysosome fusion. In this review, an overview of the molecules that function in the fusion of autophagosomes with lysosomes is provided. Moreover, the molecular mechanism underlying how these functional molecules regulate autophagosome-lysosome fusion is summarized.
Collapse
Affiliation(s)
- Po-Yuan Ke
- Department of Biochemistry & Molecular Biology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| |
Collapse
|
32
|
Zhao H, Fu X, Zhang Y, Chen C, Wang H. The Role of Pyroptosis and Autophagy in the Nervous System. Mol Neurobiol 2024; 61:1271-1281. [PMID: 37697221 PMCID: PMC10896877 DOI: 10.1007/s12035-023-03614-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/23/2023] [Indexed: 09/13/2023]
Abstract
Autophagy is a conservative self-degradation system, which includes the two major processes of enveloping abnormal proteins, organelles and other macromolecules, and transferring them into lysosomes for the subsequent degradation. It holds the stability of the intracellular environment under stress. So far, three types of autophagy have been found: microautophagy, chaperone-mediated autophagy and macroautophagy. Many diseases have the pathological process of autophagy dysfunction, such as nervous system diseases. Pyroptosis is one kind of programmed cell death mediated by gasdermin (GSDM). In this process of pyroptosis, the activated caspase-3, caspase-4/5/11, or caspase-1 cleaves GSDM into the N-terminal pore-forming domain (PFD). The oligomer of PFD combines with the cell membrane to form membrane holes, thus leading to pyroptosis. Pyroptosis plays a key role in multiple tissues and organs. Many studies have revealed that autophagy and pyroptosis participate in the nervous system, but the mechanisms need to be fully clarified. Here, we focused on the recent articles on the role and mechanism of pyroptosis and autophagy in the pathological processes of the nervous system.
Collapse
Affiliation(s)
- Huijie Zhao
- Institute of Chronic Disease Risks Assessment, Henan University, Jinming Avenue, Kaifeng, 475004, China
| | - Xiaodi Fu
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Yanting Zhang
- School of Clinical Medicine, Henan University, Kaifeng, 475004, Henan, China
| | - Chaoran Chen
- Institute of Nursing and Health, School of Nursing and Health, Henan University, Jinming Avenue, Kaifeng, 475004, China
| | - Honggang Wang
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, Henan, China.
| |
Collapse
|
33
|
Dawar S, Benitez MC, Lim Y, Dite TA, Yousef JM, Thio N, Garciaz S, Jackson TD, Milne JV, Dagley LF, Phillips WA, Kumar S, Clemons NJ. Caspase-2 protects against ferroptotic cell death. Cell Death Dis 2024; 15:182. [PMID: 38429264 PMCID: PMC10907636 DOI: 10.1038/s41419-024-06560-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/05/2024] [Accepted: 02/13/2024] [Indexed: 03/03/2024]
Abstract
Caspase-2, one of the most evolutionarily conserved members of the caspase family, is an important regulator of the cellular response to oxidative stress. Given that ferroptosis is suppressed by antioxidant defense pathways, such as that involving selenoenzyme glutathione peroxidase 4 (GPX4), we hypothesized that caspase-2 may play a role in regulating ferroptosis. This study provides the first demonstration of an important and unprecedented function of caspase-2 in protecting cancer cells from undergoing ferroptotic cell death. Specifically, we show that depletion of caspase-2 leads to the downregulation of stress response genes including SESN2, HMOX1, SLC7A11, and sensitizes mutant-p53 cancer cells to cell death induced by various ferroptosis-inducing compounds. Importantly, the canonical catalytic activity of caspase-2 is not required for its role and suggests that caspase-2 regulates ferroptosis via non-proteolytic interaction with other proteins. Using an unbiased BioID proteomics screen, we identified novel caspase-2 interacting proteins (including heat shock proteins and co-chaperones) that regulate cellular responses to stress. Finally, we demonstrate that caspase-2 limits chaperone-mediated autophagic degradation of GPX4 to promote the survival of mutant-p53 cancer cells. In conclusion, we document a novel role for caspase-2 as a negative regulator of ferroptosis in cells with mutant p53. Our results provide evidence for a novel function of caspase-2 in cell death regulation and open potential new avenues to exploit ferroptosis in cancer therapy.
Collapse
Affiliation(s)
- Swati Dawar
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia.
| | - Mariana C Benitez
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Yoon Lim
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, 5001, Australia
| | - Toby A Dite
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Jumana M Yousef
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Niko Thio
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
| | - Sylvain Garciaz
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
| | - Thomas D Jackson
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Julia V Milne
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Laura F Dagley
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Wayne A Phillips
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia
- Department of Surgery (St Vincent's Hospital), The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Sharad Kumar
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, 5001, Australia
- Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, 5000, Australia
| | - Nicholas J Clemons
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
34
|
Yan J, Liu D, Wang J, You W, Yang W, Yan S, He W. Rewiring chaperone-mediated autophagy in cancer by a prion-like chemical inducer of proximity to counteract adaptive immune resistance. Drug Resist Updat 2024; 73:101037. [PMID: 38171078 DOI: 10.1016/j.drup.2023.101037] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024]
Abstract
Chaperone-mediated autophagy (CMA), a proteolytic system contributing to the degradation of intracellular proteins in lysosomes, is upregulated in tumors for pro-tumorigenic and pro-survival purposes. In this study, bioinformatics analysis revealed the co-occurrence of upregulated CMA and PD-L1 accumulation in metastatic melanoma with adaptive immune resistance (AIR) to anti-PD1 treatment, suggesting the potential therapeutic effects of rewiring CMA for PD-L1 degradation. Furthermore, this co-occurrence is attributed to IFN-γ-mediated compensatory up-regulation of PD-L1 and CMA, accompanied by enhanced macropinocytosis. Drawing inspiration from the cellular uptake of prions via macropinocytosis, a prion-like chemical inducer of proximity called SAP was engineered using self-assembly of the designed chiral peptide PHA. By exploiting sensitized macropinocytosis, SAP clandestinely infiltrates tumor cells and subsequently disintegrates into PHA, which reprograms CMA by inducing PD-L1 close to HSPA8. SAP degrades PD-L1 in a CMA-dependent manner and effectively restores the anti-tumor immune response in both allografting and Hu-PDX melanoma mouse models with AIR while upholding a high safety profile. Collectively, the reported SAP not only presents an immune reactivation strategy with clinical translational potential for overcoming AIR in cutaneous melanomas but serves as a reproducible example of precision-medicine-guided drug development that fully leverages specific cellular indications in pathological states.
Collapse
Affiliation(s)
- Jin Yan
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China; National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, PR China.
| | - Dan Liu
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Jingmei Wang
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, PR China; Institute for Stem Cell & Regenerative Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, PR China
| | - Weiming You
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, PR China
| | - Wenguang Yang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Siqi Yan
- Institute for Stem Cell & Regenerative Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, PR China
| | - Wangxiao He
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China; Institute for Stem Cell & Regenerative Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, PR China.
| |
Collapse
|
35
|
Gu R, Bai L, Yan F, Zhang S, Zhang X, Deng R, Zeng X, Sun B, Hu X, Li Y, Bai J. Thioredoxin-1 decreases alpha-synuclein induced by MPTP through promoting autophagy-lysosome pathway. Cell Death Discov 2024; 10:93. [PMID: 38388451 PMCID: PMC10884002 DOI: 10.1038/s41420-024-01848-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/28/2024] [Accepted: 02/02/2024] [Indexed: 02/24/2024] Open
Abstract
Parkinson's disease (PD) is characterized by the formation of Lewy body in dopaminergic neurons in the substantia nigra pars compacta (SNpc). Alpha-synuclein (α-syn) is a major component of Lewy body. Autophagy eliminates damaged organelles and abnormal aggregated proteins. Thioredoxin-1 (Trx-1) is a redox regulating protein and plays roles in protecting dopaminergic neurons against neurotoxicity induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). However, the relationship between Trx-1 and α-syn in PD is still unknown. In the present study, the movement disorder and dopaminergic neurotoxicity in MPTP-treated mice were improved by Trx-1 overexpression and were aggravated by Trx-1 knockdown in the SNpc in mice. The expression of α-syn was increased in the SNpc of MPTP-treated mice, which was inhibited by Trx-1 overexpression and was exacerbated in Trx-1 knockdown mice. Autophagosomes was increased under electron microscope after MPTP treatment, which were recovered in Trx-1 overexpressing mice and were further increased in Trx-1 knockdown in the SNpc in mice. The expressions of phosphatase and tensin homolog deleted on chromosome ten (PTEN)-induced putative kinase 1 (PINK1), Parkin, LC3 II and p62 were increased by MPTP, which were blocked in Trx-1 overexpressing mice and were further increased in Trx-1 knockdown mice. Cathepsin D was decreased by MPTP, which was restored in Trx-1 overexpressing mice and was further decreased in Trx-1 knockdown mice. The mRFP-GFP-LC3 green fluorescent dots were increased by 1-methyl-4-phenylpyridinium (MPP+) and further increased in Trx-1 siRNA transfected PC12 cells, while mRFP-GFP-LC3 red fluorescent dots were increased in Trx-1 overexpressing cells. These results indicate that Trx-1 may eliminate α-syn in PD mice through potentiating autophagy-lysosome pathway.
Collapse
Affiliation(s)
- Rou Gu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Laboratory of Molecular Neurobiology, Medical School, Kunming University of Science and Technology, Kunming, China
| | - Liping Bai
- Laboratory of Molecular Neurobiology, Medical School, Kunming University of Science and Technology, Kunming, China
| | - Fang Yan
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Laboratory of Molecular Neurobiology, Medical School, Kunming University of Science and Technology, Kunming, China
| | - Se Zhang
- Laboratory of Molecular Neurobiology, Medical School, Kunming University of Science and Technology, Kunming, China
| | - Xianwen Zhang
- Laboratory of Molecular Neurobiology, Medical School, Kunming University of Science and Technology, Kunming, China
| | - Ruhua Deng
- Laboratory of Molecular Neurobiology, Medical School, Kunming University of Science and Technology, Kunming, China
| | - Xiansi Zeng
- Laboratory of Molecular Neurobiology, Medical School, Kunming University of Science and Technology, Kunming, China
| | - Bo Sun
- Laboratory of Molecular Neurobiology, Medical School, Kunming University of Science and Technology, Kunming, China
| | - Xiaomei Hu
- Laboratory of Molecular Neurobiology, Medical School, Kunming University of Science and Technology, Kunming, China
| | - Ye Li
- Laboratory of Molecular Neurobiology, Medical School, Kunming University of Science and Technology, Kunming, China
| | - Jie Bai
- Laboratory of Molecular Neurobiology, Medical School, Kunming University of Science and Technology, Kunming, China.
| |
Collapse
|
36
|
Zhang QY, Zhong MT, Gi M, Chen YK, Lai MQ, Liu JY, Liu YM, Wang Q, Xie XL. Inulin alleviates perfluorooctanoic acid-induced intestinal injury in mice by modulating the PI3K/AKT/mTOR signaling pathway. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123090. [PMID: 38072026 DOI: 10.1016/j.envpol.2023.123090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 01/26/2024]
Abstract
Perfluorooctanoic acid (PFOA) is a widely used industrial compound that has been found to induce intestinal toxicity. However, the underlying mechanisms have not been fully clarified and effective interventions are rarely developed. Inulin, a prebiotic, has been used as a supplement in human daily life as well as in gastrointestinal diseases and metabolic disorders. In this study, male mice were exposed to PFOA with or without inulin supplementation to investigate the enterotoxicity and potential intervention effects of inulin. Mice were administered PFOA at 1 mg/kg/day, PFOA with inulin at 5 g/kg/day, or Milli-Q water for 12 weeks. Histopathological analysis showed that PFOA caused colon shortening, goblet cell reduction, and inflammatory cell infiltration. The expression of the tight junction proteins ZO-1, occludin and claudin5 significantly decreased, indicating impaired barrier function. According to the RNA-sequencing analysis, PFOA exposure resulted in 917 differentially expressed genes, involving 39 significant pathways, such as TNF signaling and cell cycle pathways. In addition, the protein expression of TNF-α, IRG-47, cyclinB1, and cyclinB2 increased, while Gadd45γ, Lzip, and Jam2 decreased, suggesting the involvement of the TNF signaling pathway, cell cycle, and cell adhesion molecules in PFOA-associated intestinal injury. Inulin intervention alleviated PFOA-induced enterotoxicity by activating the PI3K/AKT/mTOR signaling pathway and increasing the protein expression of Wnt1, β-catenin, PI3K, Akt3, and p62, while suppressing MAP LC3β, TNF-α, and CyclinE expression. These findings suggested that PFOA-induced intestinal injury, including inflammation and tight junction disruption, was mitigated by inulin through modifying the PI3K/AKT/mTOR signaling pathways. Our study provides valuable insights into the enterotoxic effects of PFOA and highlights the potential therapeutic role of inulin.
Collapse
Affiliation(s)
- Qin-Yao Zhang
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), No. 1838 North Guangzhou Road, 510515, Guangzhou, China
| | - Mei-Ting Zhong
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), No. 1838 North Guangzhou Road, 510515, Guangzhou, China
| | - Min Gi
- Department of Environmental Risk Assessment, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Yu-Kui Chen
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), No. 1838 North Guangzhou Road, 510515, Guangzhou, China
| | - Ming-Quan Lai
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), No. 1838 North Guangzhou Road, 510515, Guangzhou, China
| | - Jing-Yi Liu
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), No. 1838 North Guangzhou Road, 510515, Guangzhou, China; The 2019 Class, 8-Year Program, The First Clinical Medical School, Southern Medical University, No. 1838 North Guangzhou Road, 510515, Guangzhou, China
| | - Yi-Ming Liu
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), No. 1838 North Guangzhou Road, 510515, Guangzhou, China; The 2019 Class, 8-Year Program, The First Clinical Medical School, Southern Medical University, No. 1838 North Guangzhou Road, 510515, Guangzhou, China
| | - Qi Wang
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, No. 1838 North Guangzhou Road, 510515, Guangzhou, China
| | - Xiao-Li Xie
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), No. 1838 North Guangzhou Road, 510515, Guangzhou, China.
| |
Collapse
|
37
|
Liu L, Luo C, Zheng D, Wang X, Wang R, Ding W, Shen Z, Xue P, Yu S, Liu Y, Zhao X. TRPML1 contributes to antimony-induced nephrotoxicity by initiating ferroptosis via chaperone-mediated autophagy. Food Chem Toxicol 2024; 184:114378. [PMID: 38097005 DOI: 10.1016/j.fct.2023.114378] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/29/2023] [Accepted: 12/11/2023] [Indexed: 12/17/2023]
Abstract
Evidence suggests that ferroptosis participates in kidney injury. However, the role of ferroptosis in antimony (Sb) induced nephrotoxicity and the mechanism are unknown. Here, we demonstrated that Sb induced injury in renal tubular epithelial cells (RTECs) and ferroptosis. Inhibition of ferroptosis reduced RTECs injury. Besides, elimination of reactive oxygen species (ROS) alleviated ferroptosis and RTECs injury. Moreover, exposure to Sb not only increased the co-localization of glutathione peroxidase 4 (GPX4) and LAMP1, but also decreased the levels of MEF2D and LRRK2, while increased the levels of HSC70, HSP90, and LAMP2a. These findings suggest that Sb activates chaperone-mediated autophagy (CMA), enhances lysosomal transport and subsequent degradation of GPX4, ultimately leads to ferroptosis. Additionally, up-regulation of lysosomal cationic channel, TRPML1, mitigated RTECs injury and ferroptosis. Mechanistically, up-regulation of TRPML1 mitigated the changes in CMA-associated proteins induced by Sb, diminished the binding of HSC70, HSP90, and TRPML1 with LAMP2a. Furthermore, NAC restored the decreased TRPML1 level caused by Sb. In summary, deficiency of TRPML1, secondary to increased ROS induced by Sb, facilitates the CMA-dependent degradation of GPX4, thereby leading to ferroptosis and RTECs injury. These findings provide insights into the mechanism underlying Sb-induced nephrotoxicity and propose TRPML1 as a promising therapeutic target.
Collapse
Affiliation(s)
- Lei Liu
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, 226001, China; Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, 226019, China
| | - Chao Luo
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, 226019, China
| | - Dongnan Zheng
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, 226019, China
| | - Xuehai Wang
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, 226019, China
| | - Rui Wang
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, 226019, China
| | - Wenjie Ding
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, 226019, China
| | - Zhaoping Shen
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, 226019, China
| | - Peng Xue
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, 226019, China
| | - Shali Yu
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, 226019, China
| | - Yifei Liu
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, 226001, China.
| | - Xinyuan Zhao
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, 226019, China.
| |
Collapse
|
38
|
Otzen DE. Antibodies and α-synuclein: What to target against Parkinson's Disease? BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2024; 1872:140943. [PMID: 37783321 DOI: 10.1016/j.bbapap.2023.140943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 10/04/2023]
Abstract
Parkinson's Disease (PD) is strongly linked to the aggregation of the protein α-synuclein (α-syn), an intrinsically disordered protein. However, strategies to combat PD by targeting the aggregation of α-syn are challenged by the multiple types of aggregates formed both in vivo and in vitro, the potential influence of chemical modifications and the as yet unresolved question of which aggregate types (oligomeric or fibrillar) are most cytotoxic. Here I briefly review the social history of α-syn, the many efforts to raise antibodies against α-syn and the disappointing results of clinical trials based on such antibodies. Ultimately a thorough understanding of the molecular and mechanistic properties of mAbs towards aggregated species of α-syn is an essential prerequisite for any clinical trial, but this is missing in most cases. I highlight new microfluidic techniques which may address this need and call for a more concerted effort to standardize antibody studies as the basis to allow us to link molecular insights to clinical efficacy.
Collapse
Affiliation(s)
- Daniel E Otzen
- Interdisciplinary Nanoscience Centre (iNANO), Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 14, DK - 8000, Aarhus, Denmark.
| |
Collapse
|
39
|
Marzoog BA. Autophagy Behavior in Endothelial Cell Regeneration. Curr Aging Sci 2024; 17:58-67. [PMID: 37861048 DOI: 10.2174/0118746098260689231002044435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/16/2023] [Accepted: 08/25/2023] [Indexed: 10/21/2023]
Abstract
Autophagy plays a crucial role in maintaining endothelial cell homeostasis through the turnover of intracellular components during stress conditions in a lysosomal-dependent manner. The regeneration strategy involves several aspects, including autophagy. Autophagy is a catabolic degenerative lysosomal-dependent degradation of intracellular components. Autophagy modifies cellular and subcellular endothelial cell functions, including mitochondria stress, lysosomal stress, and endoplasmic reticulum unfolded protein response. Activation of common signaling pathways of autophagy and regeneration and enhancement of intracellular endothelial cell metabolism serve as the bases for the induction of endothelial regeneration. Endothelial progenitor cells include induced pluripotent stem cells (iPSC), embryonic stem cells, and somatic cells, such as fibroblasts. Future strategies of endothelial cell regeneration involve the induction of autophagy to minimize the metabolic degeneration of the endothelial cells and optimize the regeneration outcomes.
Collapse
Affiliation(s)
- Basheer Abdullah Marzoog
- World-Class Research Center «Digital Biodesign and Personalized Healthcare», I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119991, Russia
| |
Collapse
|
40
|
Marzoog BA. Autophagy as an Anti-senescent in Aging Neurocytes. Curr Mol Med 2024; 24:182-190. [PMID: 36683318 DOI: 10.2174/1566524023666230120102718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 01/24/2023]
Abstract
Neuron homeostasis is crucial for the organism, and its maintenance is multifactorial, including autophagy. The turnover of aberrant intracellular components is a fundamental pathogenetic mechanism for cell aging. Autophagy is involved in the acceleration of the neurocyte aging process and the modification of cell longevity. Neurocyte aging is a process of loss of cell identity through cellular and subcellular changes that include molecular loss of epigenetics, transcriptomic, proteomic, and autophagy dysfunction. Autophagy dysfunction is the hallmark of neurocyte aging. Cell aging is the credential feature of neurodegenerative diseases. Pathophysiologically, aged neurocytes are characterized by dysregulated autophagy and subsequently neurocyte metabolic stress, resulting in accelerated neurocyte aging. In particular, chaperone- mediated autophagy perturbation results in upregulated expression of aging and apoptosis genes. Aged neurocytes are also characterized by the down-regulation of autophagy-related genes, such as ATG5-ATG12, LC3-II / LC3-I ratio, Beclin-1, and p62. Slowing aging through autophagy targeting is sufficient to improve prognosis in neurodegenerative diseases. Three primary anti-senescent molecules are involved in the aging process: mTOR, AMPK, and Sirtuins. Autophagy therapeutic effects can be applied to reverse and slow aging. This article discusses current advances in the role of autophagy in neurocyte homeostasis, aging, and potential therapeutic strategies to reduce aging and increase cell longevity.
Collapse
Affiliation(s)
- Basheer Abdullah Marzoog
- National Research Mordovia State University, Bolshevitskaya Street, 68, Saransk, 430005, Rep. Mordovia, Russia
| |
Collapse
|
41
|
Adelipour M, Naghashpour M, Roshanazadeh MR, Chenaneh H, Mohammadi A, Pourangi P, Miri SR, Zahedi A, Haghighatnezhad M, Golabi S. Evaluation of Beclin1 and mTOR genes and p62 protein expression in breast tumor tissues of Iranian patients. MOLECULAR BIOLOGY RESEARCH COMMUNICATIONS 2024; 13:11-19. [PMID: 38164366 PMCID: PMC10644314 DOI: 10.22099/mbrc.2023.47597.1837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Autophagy is a cellular process that plays a major role in the fate of tumor cells. Understanding the role of autophagy in cancer therapy is a major challenge, particularly for breast cancer as the sole top cause of mortality among women. In this study, we evaluated the gene expression of mTOR and Beclin1 and the levels of p62 protein, in breast tumors and compared them to a control condition. To explore the role of autophagy in breast cancer, we acquired tumor biopsies from 41 new cases of breast cancer patients. We extracted total RNA from each biopsy and used real-time PCR to quantify Beclin1 and mTOR-specific RNA expression. In addition, we evaluated the expression of the p62 protein in paraffin-embedded tumor tissue using the immunohistochemistry technique. The data revealed an upregulation of Beclin1 and a downregulation of mTOR in tumor tissues compared to the control condition. The correlation between p62 expression and Beclin1/mTOR showed a negative and positive correlation, respectively, confirming autophagy activation in the tumor tissues. However, there was no correlation between autophagy markers and tumor size, grade and stage. The findings revealed that autophagy activation was found in breast tumor tissues, suggesting that autophagy can be a target for breast cancer therapy.
Collapse
Affiliation(s)
- Maryam Adelipour
- Department of Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahshid Naghashpour
- Department of Nutrition, School of Medicine, Abadan University of Medical Science, Abadan, Iran
| | - Mohammad Reza Roshanazadeh
- Department of Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hadi Chenaneh
- Department of Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Asma Mohammadi
- Department of Biochemistry, School of Medicine, Abadan University of Medical Science, Abadan, Iran
| | - Pegah Pourangi
- Department of Biochemistry, School of Medicine, Abadan University of Medical Science, Abadan, Iran
| | - Seyed Rouhollah Miri
- Department of surgical oncology, Cancer institute, Tehran University of Medical Science
| | | | - Mahmood Haghighatnezhad
- Department of Biochemistry, School of Medicine, Abadan University of Medical Science, Abadan, Iran
| | - Sahar Golabi
- Department of Physiology, School of Medicine, Abadan University of Medical Science, Abadan, Iran
| |
Collapse
|
42
|
Gómez-Martín A, Fuentes JM, Jordán J, Galindo MF, Fernández-García JL. Comparative Genetic Analysis of the Promoters of the ATG16L1 and ATG5 Genes Associated with Sporadic Parkinson's Disease. Genes (Basel) 2023; 14:2171. [PMID: 38136993 PMCID: PMC10743014 DOI: 10.3390/genes14122171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/25/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
Sporadic Parkinson's disease, characterised by a decline in dopamine, usually manifests in people over 65 years of age. Although 10% of cases have a genetic (familial) basis, most PD is sporadic. Genome sequencing studies have associated several genetic variants with sporadic PD. Our aim was to analyse the promoter region of the ATG16L1 and ATG5 genes in sporadic PD patients and ethnically matched controls. Genotypes were obtained by using the Sanger method with primers designed by us. The number of haplotypes was estimated with DnaSP software, phylogeny was reconstructed in Network, and genetic divergence was explored with Fst. Seven and two haplotypes were obtained for ATG16L1 and ATG5, respectively. However, only ATG16L1 showed a significant contribution to PD and a significant excess of accumulated mutations that could influence sporadic PD disease. Of a total of seven haplotypes found, only four were unique to patients sharing the T allele (rs77820970). Recent studies using MAPT genes support the notion that the architecture of haplotypes is worthy of being considered genetically risky, as shown in our study, confirming that large-scale assessment in different populations could be relevant to understanding the role of population-specific heterogeneity. Finally, our data suggest that the architecture of certain haplotypes and ethnicity determine the risk of PD, linking haplotype variation and neurodegenerative processes.
Collapse
Affiliation(s)
- Ana Gómez-Martín
- Nursing Department, Faculty of Nursing and Occupational Therapy, University of Extremadura, Avda de la Universidad s/n, 10003 Cáceres, Spain
- Instituto de Investigación Biosanitaria de Extremadura (INUBE), 10003 Cáceres, Spain;
| | - José M. Fuentes
- Instituto de Investigación Biosanitaria de Extremadura (INUBE), 10003 Cáceres, Spain;
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupa-cional, Universidad de Extremadura, 10003 Cáceres, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativa, Instituto de Salus Carlos III (CIBER-CIBERNED-ISCIII), 28029 Madrid, Spain
| | - Joaquín Jordán
- Pharmacology, Medical Sciences Department, Albacete School of Medicine, University of Castilla-La Mancha, 02008 Albacete, Spain;
| | - María F. Galindo
- Pharmaceutical Technologic, Medical Sciences Department, Albacete School of Pharmacy, University of Castilla-La Mancha, 02008 Albacete, Spain;
| | - José Luis Fernández-García
- Animal Production and Food Science Department, Faculty of Veterinary Sciences, University of Extremadura, Avda. de la Universidad, s/n, 10003 Caceres, Spain
| |
Collapse
|
43
|
Knupp J, Pletan ML, Arvan P, Tsai B. Autophagy of the ER: the secretome finds the lysosome. FEBS J 2023; 290:5656-5673. [PMID: 37920925 PMCID: PMC11044768 DOI: 10.1111/febs.16986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/20/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023]
Abstract
Lysosomal degradation of the endoplasmic reticulum (ER) and its components through the autophagy pathway has emerged as a major regulator of ER proteostasis. Commonly referred to as ER-phagy and ER-to-lysosome-associated degradation (ERLAD), how the ER is targeted to the lysosome has been recently clarified by a growing number of studies. Here, we summarize the discoveries of the molecular components required for lysosomal degradation of the ER and their proposed mechanisms of action. Additionally, we discuss how cells employ these machineries to create the different routes of ER-lysosome-associated degradation. Further, we review the role of ER-phagy in viral infection pathways, as well as the implication of ER-phagy in human disease. In sum, we provide a comprehensive overview of the current field of ER-phagy.
Collapse
Affiliation(s)
- Jeffrey Knupp
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Madison L Pletan
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Peter Arvan
- Division of Metabolism, Endocrinology & Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Billy Tsai
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
44
|
Boya P, Kaarniranta K, Handa JT, Sinha D. Lysosomes in retinal health and disease. Trends Neurosci 2023; 46:1067-1082. [PMID: 37848361 PMCID: PMC10842632 DOI: 10.1016/j.tins.2023.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/06/2023] [Accepted: 09/24/2023] [Indexed: 10/19/2023]
Abstract
Lysosomes play crucial roles in various cellular processes - including endocytosis, phagocytosis, and autophagy - which are vital for maintaining retinal health. Moreover, these organelles serve as environmental sensors and act as central hubs for multiple signaling pathways. Through communication with other cellular components, such as mitochondria, lysosomes orchestrate the cytoprotective response essential for preserving cellular homeostasis. This coordination is particularly critical in the retina, given its high metabolic rate and susceptibility to photo-oxidative stress. Consequently, impaired lysosomal function and dysregulated communication between lysosomes and other organelles contribute significantly to the pathobiology of major retinal degenerative diseases. This review explores the pivotal role of lysosomes in retinal cells and their involvement in retinal degenerative diseases.
Collapse
Affiliation(s)
- Patricia Boya
- Department of Neuroscience, University of Fribourg, Fribourg, Switzerland
| | - Kai Kaarniranta
- Department of Ophthalmology, University of Eastern Finland, Kuopio, Finland; Department of Ophthalmology, Kuopio University Hospital, Kuopio, Finland; Department of Molecular Genetics, University of Lodz, Lodz, Poland
| | - James T Handa
- The Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Debasish Sinha
- The Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
45
|
Bopape M, Tiloke C, Ntsapi C. Moringa oleifera and Autophagy: Evidence from In Vitro Studies on Chaperone-Mediated Autophagy in HepG 2 Cancer Cells. Nutr Cancer 2023; 75:1822-1847. [PMID: 37850743 DOI: 10.1080/01635581.2023.2270215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 10/19/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most prevalent primary liver cancer in Sub-Saharan African countries, including South Africa (SA). Given the limitations in current HCC therapeutics, there is an increasing need for alternative adjuvant therapeutic options. As such, several cell survival mechanisms, such as autophagy, have been identified as potential adjuvant therapeutic targets in HCC treatment. Of the three most established autophagic pathways, the upregulation of chaperone-mediated autophagy (CMA) has been extensively described in various cancer cells, including HCC cells. CMA promotes tumor growth and chemotherapeutic drug resistance, thus contributing to HCC tumorigenesis. Therefore, the modulation of CMA serves as a promising adjuvant target for current HCC therapeutic strategies. Phytochemical extracts found in the medicinal plant, Moringa oleifera (MO), have been shown to induce apoptosis in numerous cancer cells, including HCC. MO leaves have the greatest abundance of phytochemicals displaying anticancer potential. However, the potential interaction between the pro-apoptotic effects of MO aqueous leaf extract and the survival-promoting role of CMA in an in vitro model of HCC remains unclear. This review aims to summarize the latest findings on the role of CMA, and MO in the progression of HCC.
Collapse
Affiliation(s)
- Matlola Bopape
- Department of Basic Medical Sciences, University of the Free State, Bloemfontein, South Africa
| | - Charlette Tiloke
- Department of Basic Medical Sciences, University of the Free State, Bloemfontein, South Africa
| | - Claudia Ntsapi
- Department of Basic Medical Sciences, University of the Free State, Bloemfontein, South Africa
| |
Collapse
|
46
|
Amirian R, Azadi Badrbani M, Izadi Z, Samadian H, Bahrami G, Sarvari S, Abdolmaleki S, Nabavi SM, Derakhshankhah H, Jaymand M. Targeted protein modification as a paradigm shift in drug discovery. Eur J Med Chem 2023; 260:115765. [PMID: 37659194 DOI: 10.1016/j.ejmech.2023.115765] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/24/2023] [Accepted: 08/24/2023] [Indexed: 09/04/2023]
Abstract
Targeted Protein Modification (TPM) is an umbrella term encompassing numerous tools and approaches that use bifunctional agents to induce a desired modification over the POI. The most well-known TPM mechanism is PROTAC-directed protein ubiquitination. PROTAC-based targeted degradation offers several advantages over conventional small-molecule inhibitors, has shifted the drug discovery paradigm, and is acquiring increasing interest as over ten PROTACs have entered clinical trials in the past few years. Targeting the protein of interest for proteasomal degradation by PROTACS was the pioneer of various toolboxes for selective protein degradation. Nowadays, the ever-increasing number of tools and strategies for modulating and modifying the POI has expanded far beyond protein degradation, which phosphorylation and de-phosphorylation of the protein of interest, targeted acetylation, and selective modification of protein O-GlcNAcylation are among them. These novel strategies have opened new avenues for achieving more precise outcomes while remaining feasible and minimizing side effects. This field, however, is still in its infancy and has a long way to precede widespread use and translation into clinical practice. Herein, we investigate the pros and cons of these novel strategies by exploring the latest advancements in this field. Ultimately, we briefly discuss the emerging potential applications of these innovations in cancer therapy, neurodegeneration, viral infections, and autoimmune and inflammatory diseases.
Collapse
Affiliation(s)
- Roshanak Amirian
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran; Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Mehdi Azadi Badrbani
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran; Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Zhila Izadi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Hadi Samadian
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Gholamreza Bahrami
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Sajad Sarvari
- Department of Pharmaceutical Science, School of Pharmacy, West Virginia University, Morgantown, WV, USA.
| | - Sara Abdolmaleki
- Department of Chemistry, Faculty of Science, University of Kurdistan, Sanandaj, Iran.
| | - Seyed Mohammad Nabavi
- Department of Science and Technology, University of Sannio, 82100, Benevento, Italy.
| | - Hossein Derakhshankhah
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Mehdi Jaymand
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
47
|
Afiat BC, Zhao D, Wong VHY, Perera ND, Turner BJ, Nguyen CTO, Bui BV. Age-related deficits in retinal autophagy following intraocular pressure elevation in autophagy reporter mouse model. Neurobiol Aging 2023; 131:74-87. [PMID: 37586253 DOI: 10.1016/j.neurobiolaging.2023.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 08/18/2023]
Abstract
This study quantified age-related changes to retinal autophagy using the CAG-RFP-EGFP-LC3 autophagy reporter mice and considered how aging impacts autophagic responses to acute intraocular pressure (IOP) stress. IOP was elevated to 50 mm Hg for 30 minutes in 3-month-old and 12-month-old CAG-RFP-EGFP-LC3 (n = 7 per age group) and Thy1-YFPh transgenic mice (n = 3 per age group). Compared with younger eyes, older eyes showed diminished basal autophagy in the outer retina, while the inner retina was unaffected. Autophagic flux (red:yellow puncta ratio) was elevated in the inner plexiform layer. Three days following IOP elevation, older eyes showed poorer functional recovery, most notably in ganglion cell responses compared to younger eyes (12 months old: -33.4 ± 5.3% vs. 3 months mice: -13.4 ± 4.5%). This paralleled a reduced capacity to upregulate autophagic puncta volume in the inner retina in older eyes, a response that was seen in younger eyes. Age-related decline in basal and stress-induced autophagy in the retina is associated with greater retinal ganglion cells' susceptibility to IOP elevation.
Collapse
Affiliation(s)
- Brianna C Afiat
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Da Zhao
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Vickie H Y Wong
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Nirma D Perera
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Bradley J Turner
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Christine T O Nguyen
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Bang V Bui
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
48
|
Xiang H, Zhou M, Li Y, Zhou L, Wang R. Drug discovery by targeting the protein-protein interactions involved in autophagy. Acta Pharm Sin B 2023; 13:4373-4390. [PMID: 37969735 PMCID: PMC10638514 DOI: 10.1016/j.apsb.2023.07.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/31/2023] [Accepted: 07/10/2023] [Indexed: 11/17/2023] Open
Abstract
Autophagy is a cellular process in which proteins and organelles are engulfed in autophagosomal vesicles and transported to the lysosome/vacuole for degradation. Protein-protein interactions (PPIs) play a crucial role at many stages of autophagy, which present formidable but attainable targets for autophagy regulation. Moreover, selective regulation of PPIs tends to have a lower risk in causing undesired off-target effects in the context of a complicated biological network. Thus, small-molecule regulators, including peptides and peptidomimetics, targeting the critical PPIs involved in autophagy provide a new opportunity for innovative drug discovery. This article provides general background knowledge of the critical PPIs involved in autophagy and reviews a range of successful attempts on discovering regulators targeting those PPIs. Successful strategies and existing limitations in this field are also discussed.
Collapse
Affiliation(s)
- Honggang Xiang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Mi Zhou
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yan Li
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Lu Zhou
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Renxiao Wang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| |
Collapse
|
49
|
Sklifasovskaya AP, Blagonravov M, Ryabinina A, Goryachev V, Syatkin S, Chibisov S, Akhmetova K, Prokofiev D, Agostinelli E. The role of heat shock proteins in the pathogenesis of heart failure (Review). Int J Mol Med 2023; 52:106. [PMID: 37772383 PMCID: PMC10558216 DOI: 10.3892/ijmm.2023.5309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/11/2023] [Indexed: 09/30/2023] Open
Abstract
The influence of heat shock proteins (HSPs) on protein quality control systems in cardiomyocytes is currently under investigation. The effect of HSPs on the regulated cell death of cardiomyocytes (CMCs) is of great importance, since they play a major role in the implementation of compensatory and adaptive mechanisms in the event of cardiac damage. HSPs mediate a number of mechanisms that activate the apoptotic cascade, playing both pro‑ and anti‑apoptotic roles depending on their location in the cell. Another type of cell death, autophagy, can in some cases lead to cell death, while in other situations it acts as a cell survival mechanism. The present review considered the characteristics of the expression of HSPs of different molecular weights in CMCs in myocardial damage caused by heart failure, as well as their role in the realization of certain types of regulated cell death.
Collapse
Affiliation(s)
| | | | - Anna Ryabinina
- Institute of Medicine, RUDN University, 117198 Moscow, Russia, Italy
| | | | - Sergey Syatkin
- Institute of Medicine, RUDN University, 117198 Moscow, Russia, Italy
| | - Sergey Chibisov
- Institute of Medicine, RUDN University, 117198 Moscow, Russia, Italy
| | - Karina Akhmetova
- Institute of Medicine, RUDN University, 117198 Moscow, Russia, Italy
| | - Daniil Prokofiev
- Institute of Medicine, RUDN University, 117198 Moscow, Russia, Italy
| | - Enzo Agostinelli
- Department of Sensory Organs, Faculty of Medicine and Dentistry, Sapienza University of Rome, University Hospital Policlinico Umberto I, I-00161 Rome, Italy
- International Polyamines Foundation, ETS-ONLUS, I-00159 Rome, Italy
| |
Collapse
|
50
|
Choi YJ, Yun SH, Yu J, Mun Y, Lee W, Park CJ, Han BW, Lee BH. Chaperone-mediated autophagy dysregulation during aging impairs hepatic fatty acid oxidation via accumulation of NCoR1. Mol Metab 2023; 76:101784. [PMID: 37524243 PMCID: PMC10448198 DOI: 10.1016/j.molmet.2023.101784] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/21/2023] [Accepted: 07/27/2023] [Indexed: 08/02/2023] Open
Abstract
OBJECTIVE Alterations in lipid metabolism are associated with aging and age-related diseases. Chaperone-mediated autophagy (CMA) is a lysosome-dependent process involved in specific protein degradation. Heat shock cognate 71 kDa protein (Hsc70) recognizes cytosolic proteins with KFERQ motif and allows them to enter the lysosome via lysosome-associated membrane glycoprotein 2 isoform A (LAMP2A). CMA deficiency is associated with dysregulated lipid metabolism in the liver. In this study, we examined the effect of CMA on lipid metabolism in the aged liver. METHODS 12-week-old and 88-week-old mice were employed to assess the effect of aging on hepatic CMA activity. We generated CMA-deficient mouse primary hepatocytes using siRNA for Lamp2a and liver-specific LAMP2A knockdown mice via adeno-associated viruses expressing short hairpin RNAs to investigate the influence of CMA on lipid metabolism. RESULTS We noted aging-induced progression toward fatty liver and a decrease in LAMP2A levels in total protein and lysosomes. The expression of genes associated with fatty acid oxidation was markedly downregulated in the aged liver, as verified in CMA-deficient mouse primary hepatocytes. In addition, the aged liver accumulated nuclear receptor corepressor 1 (NCoR1), a negative regulator of peroxisome proliferator-activated receptor α (PPARα). We found that Hsc70 binds to NCoR1 via the KFERQ motif. Lamp2a siRNA treatment accumulated NCoR1 and decreased the fatty acid oxidation rate. Pharmacological activation of CMA by AR7 treatment increased LAMP2A expression, leading to NCoR1 degradation. A liver-specific LAMP2A knockdown via adeno-associated viruses expressing short hairpin RNAs caused NCoR1 accumulation, inactivated PPARα, downregulated the expression of fatty acid oxidation-related genes and significantly increased liver triglyceride levels. CONCLUSIONS Our results elucidated a novel PPARα regulatory mechanism involving CMA-mediated NCoR1 degradation during aging. These findings demonstrate that CMA dysregulation is crucial for the progression of aging-related fatty liver diseases.
Collapse
Affiliation(s)
- You-Jin Choi
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Sung Ho Yun
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jihyeon Yu
- Division of Life Science, Korea Polar Research Institute, Incheon 21990, Republic of Korea
| | - Yewon Mun
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Wonseok Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Cheon Jun Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Byung Woo Han
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Byung-Hoon Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|