1
|
Song M, Xu M, Zhang Q, Fan T, Xu J, Hang C, Cheng C, Ou X, Gong C, Lu Q. PPM1G promotes autophagy and progression of pancreatic cancer via upregulating HMGB1. Cell Signal 2024; 123:111342. [PMID: 39121976 DOI: 10.1016/j.cellsig.2024.111342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/24/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Pancreatic cancer remains one of the most aggressive and lethal malignancies worldwide, with a dismal 5-year relative survival rates of only 12%. Therefore, it is urgent to discover the key molecular markers to improve the therapeutic outcomes in pancreatic cancer. Herein, we first demonstrated that PPM1G is upregulated in pancreatic cancer and that PPM1G depletion decreases pancreatic cancer cell growth in vitro and in vivo. High PPM1G expression was linked to short overall survival of pancreatic cancer patients, which was further validated in the TCGA database. Moreover, by detecting Beclin 1, LC3-II, and SQSTM1/p62 expressions and observing autolysosome under transmission electron microscope, we discovered that PPM1G is a novel positive regulator of macroautophagy/autophagy. Furthermore, by using immunoprecipitation-mass spectrometry (IP-MS) analysis and following systemic molecular biology experiment, we demonstrated PPM1G promotes the autophagy and proliferation of pancreatic cancer by directly upregulating HMGB1. Additionally, patients with both high PPM1G and high HMGB1 exhibited poorer prognosis in our cohort. This study preliminarily investigated the possibility of PPM1G as a potential therapeutic target and prognostic biomarker in pancreatic cancer patients.
Collapse
Affiliation(s)
- Mingyang Song
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China; Department of Gastroenterology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Min Xu
- Department of Human Anatomy, School of Medicine, Southeast University, Nanjing 210009, China
| | - Qi Zhang
- Department of Gastroenterology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Tingyu Fan
- Department of Gastroenterology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Jiajia Xu
- Department of Clinical Pathology, Zhongda Hospital, Southeast University, Nanjing 210009, China
| | - Cheng Hang
- Department of Gastroenterology, Taicang Affiliated Hospital of Soochow University, The First People's Hospital of Taicang, Jiangsu 215400, China
| | - Cuie Cheng
- Department of Gastroenterology, Affiliated Changshu Hospital of Nantong University, Suzhou 215500, China
| | - Xilong Ou
- Department of Gastroenterology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China.
| | - Chen Gong
- Department of Gastroenterology, Taicang Affiliated Hospital of Soochow University, The First People's Hospital of Taicang, Jiangsu 215400, China.
| | - Qin Lu
- Department of Gastroenterology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China.
| |
Collapse
|
2
|
Shaikh R, Larson NJ, Kam J, Hanjaya-Putra D, Zartman J, Umulis DM, Li L, Reeves GT. Optimal performance objectives in the highly conserved bone morphogenetic protein signaling pathway. NPJ Syst Biol Appl 2024; 10:103. [PMID: 39277657 PMCID: PMC11401948 DOI: 10.1038/s41540-024-00430-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 08/21/2024] [Indexed: 09/17/2024] Open
Abstract
Throughout development, complex networks of cell signaling pathways drive cellular decision-making across different tissues and contexts. The transforming growth factor β (TGF-β) pathways, including the BMP/Smad pathway, play crucial roles in determining cellular responses. However, as the Smad pathway is used reiteratively throughout the life cycle of all animals, its systems-level behavior varies from one context to another, despite the pathway connectivity remaining nearly constant. For instance, some cellular systems require a rapid response, while others require high noise filtering. In this paper, we examine how the BMP-Smad pathway balances trade-offs among three such systems-level behaviors, or "Performance Objectives (POs)": response speed, noise amplification, and the sensitivity of pathway output to receptor input. Using a Smad pathway model fit to human cell data, we show that varying non-conserved parameters (NCPs) such as protein concentrations, the Smad pathway can be tuned to emphasize any of the three POs and that the concentration of nuclear phosphatase has the greatest effect on tuning the POs. However, due to competition among the POs, the pathway cannot simultaneously optimize all three, but at best must balance trade-offs among the POs. We applied the multi-objective optimization concept of the Pareto Front, a widely used concept in economics to identify optimal trade-offs among various requirements. We show that the BMP pathway efficiently balances competing POs across species and is largely Pareto optimal. Our findings reveal that varying the concentration of NCPs allows the Smad signaling pathway to generate a diverse range of POs. This insight identifies how signaling pathways can be optimally tuned for each context.
Collapse
Affiliation(s)
- Razeen Shaikh
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas, TX, USA
| | - Nissa J Larson
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Jayden Kam
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas, TX, USA
| | - Donny Hanjaya-Putra
- Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, USA
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, USA
| | - Jeremiah Zartman
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, USA
- Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, USA
| | - David M Umulis
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA.
| | - Linlin Li
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA.
| | - Gregory T Reeves
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas, TX, USA.
- Faculty of Genetics and Genomics, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
3
|
Lun J, Zhang Y, Yu M, Zhai W, Zhu L, Liu H, Guo J, Zhang G, Qiu W, Fang J. Circular RNA circHIPK2 inhibits colon cancer cells through miR-373-3p/RGMA axis. Cancer Lett 2024; 593:216957. [PMID: 38762192 DOI: 10.1016/j.canlet.2024.216957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/20/2024]
Abstract
Circular RNAs (circRNAs) have been implicated in cancer development. However, their regulation, function, and underlying mechanisms of action remain unclear. We found that circHIPK2 was downregulated in colon cancer, and low expression levels of circHIPK2 were associated with high tumor grade and poor patient survival. The expression of circHIPK2 was observed to be regulated by the transcription factor HOXD10, which was downregulated in colon cancer. Consequently, low circHIPK2 expression promoted colon cancer cell proliferation, migration, and invasion in vitro and tumor growth and metastasis in vivo. Mechanistically, circHIPK2 sponges miR-373-3p to upregulate the expression of the tumor suppressor RGMA, leading to the activation of BMP/Smad signaling and, ultimately, the inhibition of colon cancer cells, indicating that circHIPK2 inhibits colon cancer cells through the miR-373-3p/RGMA/BMP pathway. These findings revealed a previously unknown regulation, function, and underlying mechanism of circHIPK2 in cancer cells. Hence, circHIPK2 may have a prognostic value and serve as a potential target for colon cancer treatment.
Collapse
Affiliation(s)
- Jie Lun
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao Cancer Institute, Qingdao University, Qingdao, 266071, China; School of Pharmacy, Qingdao University, Qingdao, 266071, China
| | - Yuying Zhang
- School of Public Health, Qingdao University, Qingdao, 266071, China
| | - Mengchao Yu
- Central Laboratories, Qingdao Municipal Hospital, Qingdao, 266071, China
| | - Wenxin Zhai
- Department of Medical Oncology, Changzheng Hospital, Naval Medical University, 64 Hetian Road, Shanghai, 200072, China
| | - Lei Zhu
- Medical College, Qingdao Binhai University, Qingdao, 266071, China
| | - Huizi Liu
- Department of Rehabilitation Medicine, General Hospital of Central Theater Command, Wuhan, 430070, China
| | - Jing Guo
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao Cancer Institute, Qingdao University, Qingdao, 266071, China
| | - Gang Zhang
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao Cancer Institute, Qingdao University, Qingdao, 266071, China
| | - Wensheng Qiu
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao Cancer Institute, Qingdao University, Qingdao, 266071, China.
| | - Jing Fang
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao Cancer Institute, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
4
|
Shaikh R, Larson NJ, Hanjaya-Putra D, Zartman J, Umulis DM, Li L, Reeves GT. Optimal Performance Objectives in the Highly Conserved Bone Morphogenetic Protein Signaling Pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.01.578451. [PMID: 38370840 PMCID: PMC10871226 DOI: 10.1101/2024.02.01.578451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Throughout development, complex networks of cell signaling pathways drive cellular decision-making across different tissues and contexts. The transforming growth factor β (TGF-β) pathways, including the BMP/Smad pathway, play crucial roles in these cellular responses. However, as the Smad pathway is used reiteratively throughout the life cycle of all animals, its systems-level behavior varies from one context to another, despite the pathway connectivity remaining nearly constant. For instance, some cellular systems require a rapid response, while others require high noise filtering. In this paper, we examine how the BMP- Smad pathway balances trade-offs among three such systems-level behaviors, or "Performance Objectives (POs)": response speed, noise amplification, and the sensitivity of pathway output to receptor input. Using a Smad pathway model fit to human cell data, we show that varying non-conserved parameters (NCPs) such as protein concentrations, the Smad pathway can be tuned to emphasize any of the three POs and that the concentration of nuclear phosphatase has the greatest effect on tuning the POs. However, due to competition among the POs, the pathway cannot simultaneously optimize all three, but at best must balance trade-offs among the POs. We applied the multi-objective optimization concept of the Pareto Front, a widely used concept in economics to identify optimal trade-offs among various requirements. We show that the BMP pathway efficiently balances competing POs across species and is largely Pareto optimal. Our findings reveal that varying the concentration of NCPs allows the Smad signaling pathway to generate a diverse range of POs. This insight identifies how signaling pathways can be optimally tuned for each context.
Collapse
|
5
|
Liu Q, Zhao RM, Wang DY, Li P, Qu YF, Ji X. Genome-wide characterization of the TGF-β gene family and their expression in different tissues during tail regeneration in the Schlegel's Japanese gecko Gekko japonicus. Int J Biol Macromol 2024; 255:128127. [PMID: 37984573 DOI: 10.1016/j.ijbiomac.2023.128127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 10/19/2023] [Accepted: 11/08/2023] [Indexed: 11/22/2023]
Abstract
The transforming growth factor-β (TGF-β) gene family is unique to animals and is involved in various important processes including tissue regeneration. Here, we identified 52 TGF-β family genes based on genome sequences of the gecko (Gekko japonicus), compared TGF-β genes between G. japonicus and other four reptilian species, and evaluated the expression of 14 randomly selected genes in muscle, kidney, liver, heart, and brain during tail regeneration to investigate whether their expression was tissue-dependent. We detected 23 conserved domains, 13 in the TGF-β ligand subfamily, and 10 in the receptor subfamily. The pattern of higher genetic variation in the ligand subfamily than in the receptor subfamily in vertebrates might result from the precise localization of agonists and antagonists in the cell surface and intracellular compartment. TGF-β genes were unevenly distributed across 15 chromosomes in G. japonicus, presumably resulting from gene losses and gains during evolution. Genes in the TGF-β receptor subfamily (ACVR2A, ACVR2B, ACVR1, BMPR1A, ACVRL1, BMPR2 and TGFBR1) played a vital role in the TGF-β signal pathway. The expression of all 14 randomly selected TGF-β genes was tissue-specific. Our study supports the speculation that some TGF-β family genes are involved in the early stages of tail regeneration.
Collapse
Affiliation(s)
- Qian Liu
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Ru-Meng Zhao
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Dan-Yan Wang
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Peng Li
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Yan-Fu Qu
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| | - Xiang Ji
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
6
|
Patel RH, Truong VB, Sabry R, Acosta JE, McCahill K, Favetta LA. SMAD signaling pathway is disrupted by BPA via the AMH receptor in bovine granulosa cells†. Biol Reprod 2023; 109:994-1008. [PMID: 37724935 DOI: 10.1093/biolre/ioad125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/18/2023] [Accepted: 09/13/2023] [Indexed: 09/21/2023] Open
Abstract
Significant events that determine oocyte competence occur during follicular growth and oocyte maturation. The anti-Mullerian hormone, a positive predictor of fertility, has been shown to be affected by exposure to endocrine disrupting compounds, such as bisphenol A and S. However, the interaction between bisphenols and SMAD proteins, mediators of the anti-Mullerian hormone pathway, has not yet been elucidated. AMH receptor (AMHRII) and downstream SMAD expression was investigated in bovine granulosa cells treated with bisphenol A, bisphenol S, and then competitively with the anti-Mullerian hormone. Here, we show that 24-h bisphenol A exposure in granulosa cells significantly increased SMAD1, SMAD4, and SMAD5 mRNA expression. No significant changes were observed in AMHRII or SMADs protein expression after 24-h treatment. Following 12-h treatments with bisphenol A (alone or with the anti-Mullerian hormone), a significant increase in SMAD1 and SMAD4 mRNA expression was observed, while a significant decrease in SMAD1 and phosphorylated SMAD1 was detected at the protein level. To establish a functional link between bisphenols and the anti-Mullerian hormone signaling pathway, antisense oligonucleotides were utilized to suppress AMHRII expression with or without bisphenol exposure. Initially, transfection conditions were optimized and validated with a 70% knockdown achieved. Our findings show that bisphenol S exerts its effects independently of the anti-Mullerian hormone receptor, while bisphenol A may act directly through the anti-Mullerian hormone signaling pathway providing a potential mechanism by which bisphenols may exert their actions to disrupt follicular development and decrease oocyte competence.
Collapse
Affiliation(s)
- Rushi H Patel
- Reproductive Health and Biotechnology Lab, Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Vivien B Truong
- Reproductive Health and Biotechnology Lab, Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Reem Sabry
- Reproductive Health and Biotechnology Lab, Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Julianna E Acosta
- Reproductive Health and Biotechnology Lab, Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Kiera McCahill
- Reproductive Health and Biotechnology Lab, Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Laura A Favetta
- Reproductive Health and Biotechnology Lab, Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
7
|
Zhou W, Yan K, Xi Q. BMP signaling in cancer stemness and differentiation. CELL REGENERATION (LONDON, ENGLAND) 2023; 12:37. [PMID: 38049682 PMCID: PMC10695912 DOI: 10.1186/s13619-023-00181-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 11/06/2023] [Indexed: 12/06/2023]
Abstract
The BMP (Bone morphogenetic protein) signaling pathway plays a central role in metazoan biology, intricately shaping embryonic development, maintaining tissue homeostasis, and influencing disease progression. In the context of cancer, BMP signaling exhibits context-dependent dynamics, spanning from tumor suppression to promotion. Cancer stem cells (CSCs), a modest subset of neoplastic cells with stem-like attributes, exert substantial influence by steering tumor growth, orchestrating therapy resistance, and contributing to relapse. A comprehensive grasp of the intricate interplay between CSCs and their microenvironment is pivotal for effective therapeutic strategies. Among the web of signaling pathways orchestrating cellular dynamics within CSCs, BMP signaling emerges as a vital conductor, overseeing CSC self-renewal, differentiation dynamics, and the intricate symphony within the tumor microenvironment. Moreover, BMP signaling's influence in cancer extends beyond CSCs, intricately regulating cellular migration, invasion, and metastasis. This multifaceted role underscores the imperative of comprehending BMP signaling's contributions to cancer, serving as the foundation for crafting precise therapies to navigate multifaceted challenges posed not only by CSCs but also by various dimensions of cancer progression. This article succinctly encapsulates the diverse roles of the BMP signaling pathway across different cancers, spanning glioblastoma multiforme (GBM), diffuse intrinsic pontine glioma (DIPG), colorectal cancer, acute myeloid leukemia (AML), lung cancer, prostate cancer, and osteosarcoma. It underscores the necessity of unraveling underlying mechanisms and molecular interactions. By delving into the intricate tapestry of BMP signaling's engagement in cancers, researchers pave the way for meticulously tailored therapies, adroitly leveraging its dualistic aspects-whether as a suppressor or promoter-to effectively counter the relentless march of tumor progression.
Collapse
Affiliation(s)
- Wei Zhou
- State Key Laboratory of Molecular Oncology, MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Kun Yan
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Qiaoran Xi
- State Key Laboratory of Molecular Oncology, MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Joint Graduate Program of Peking-Tsinghua-NIBS, Tsinghua University, Beijing, China.
| |
Collapse
|
8
|
Yang X, Guo J, Li W, Li C, Zhu X, Liu Y, Wu X. PPM1H is down-regulated by ATF6 and dephosphorylates p-RPS6KB1 to inhibit progression of hepatocellular carcinoma. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:164-179. [PMID: 37456776 PMCID: PMC10345229 DOI: 10.1016/j.omtn.2023.06.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 06/15/2023] [Indexed: 07/18/2023]
Abstract
We have shown previously that polymorphism of activating transcription factor 6 (ATF6) is associated with susceptibility to hepatocellular carcinoma (HCC). Therefore, genes down-regulated by ATF6 might play a tumor-suppressing role. In the present study, we identified that expression of protein phosphatase magnesium- or manganous-dependent 1H (PPM1H) mRNA and protein can be inhibited by ATF6 in hepatoma cells and mice with liver Atf6 knockdown. Tumor tissues from 134 HCC patients were analyzed by immunohistochemistry, and PPM1H exhibited higher expression levels in adjacent para-cancer tissues than in HCC tissues. Therefore, patients with higher expression of PPM1H had a better prognosis. PPM1H inhibited proliferation, migration, and invasion of hepatoma cells. In addition, PPM1H inhibited induced HCC nodule formation as well as tumor xenograft growth in diethylnitrosamine/CCl4-induced HCC mouse model and nude mouse tumorigenicity assay, respectively. A 3D model of PPM1H was obtained by homology multi-template modeling, and ribosomal protein S6 kinase B1 (RPS6KB1) in the bone morphogenetic protein (BMP)/transforming growth factor β (TGF-β) pathway was screened out as the potential substrate of PPM1H by Rosetta. PPM1H could directly dephosphorylate p-RPS6KB1. To conclude, we discovered RPS6KB1 as a new PPM1H dephosphorylation substrate. PPM1H exhibited a suppressive effect on HCC progression by dephosphorylating p-RPS6KB1.
Collapse
Affiliation(s)
- Xiaoshuang Yang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing 100005, P.R. China
- School of Basic Medicine, Peking Union Medical College, Beijing 100005, P.R. China
| | - Jianting Guo
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing 100005, P.R. China
- School of Basic Medicine, Peking Union Medical College, Beijing 100005, P.R. China
| | - Wei Li
- Department of Interventional Radiology, Affiliated Hospital of Qingdao University, Shandong 266003, P.R. China
| | - Chunrui Li
- Beijing Cloud Computing Key Technique and Application Key Laboratory, Beijing Computing Center, Beijing 100094, P.R. China
| | - Xilin Zhu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing 100005, P.R. China
- School of Basic Medicine, Peking Union Medical College, Beijing 100005, P.R. China
| | - Ying Liu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing 100005, P.R. China
- School of Basic Medicine, Peking Union Medical College, Beijing 100005, P.R. China
| | - Xiaopan Wu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing 100005, P.R. China
- School of Basic Medicine, Peking Union Medical College, Beijing 100005, P.R. China
| |
Collapse
|
9
|
Wei PL, Huang CY, Chang TC, Lin JC, Lee CC, Prince GMSH, Makondi PT, Chui AWY, Chang YJ. PCTAIRE Protein Kinase 1 (PCTK1) Suppresses Proliferation, Stemness, and Chemoresistance in Colorectal Cancer through the BMPR1B-Smad1/5/8 Signaling Pathway. Int J Mol Sci 2023; 24:10008. [PMID: 37373155 DOI: 10.3390/ijms241210008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/02/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer and a leading cause of cancer-related mortality worldwide. Even with advances in therapy, CRC mortality remains high. Therefore, there is an urgent need to develop effective therapeutics for CRC. PCTAIRE protein kinase 1 (PCTK1) is an atypical member of the cyclin-dependent kinase (CDK) family, and the function of PCTK1 in CRC is poorly understood. In this study, we found that patients with elevated PCTK1 levels had a better overall survival rate in CRC based on the TCGA dataset. Functional analysis also showed that PCTK1 suppressed cancer stemness and cell proliferation by using PCTK1 knockdown (PCTK1-KD) or knockout (PCTK1-KO) and PCTK1 overexpression (PCTK1-over) CRC cell lines. Furthermore, overexpression of PCTK1 decreased xenograft tumor growth and knockout of PCTK1 significantly increased in vivo tumor growth. Moreover, knockout of PCTK1 was observed to increase the resistance of CRC cells to both irinotecan (CPT-11) alone and in combination with 5-fluorouracil (5-FU). Additionally, the fold change of the anti-apoptotic molecules (Bcl-2 and Bcl-xL) and the proapoptotic molecules (Bax, c-PARP, p53, and c-caspase3) was reflected in the chemoresistance of PCTK1-KO CRC cells. PCTK1 signaling in the regulation of cancer progression and chemoresponse was analyzed using RNA sequencing and gene set enrichment analysis (GSEA). Furthermore, PCTK1 and Bone Morphogenetic Protein Receptor Type 1B (BMPR1B) in CRC tumors were negatively correlated in CRC patients from the Timer2.0 and cBioPortal database. We also found that BMPR1B was negatively correlated with PCTK1 in CRC cells, and BMPR1B expression was upregulated in PCTK1-KO cells and xenograft tumor tissues. Finally, BMPR1B-KD partially reversed cell proliferation, cancer stemness, and chemoresistance in PCTK1-KO cells. Moreover, the nuclear translocation of Smad1/5/8, a downstream molecule of BMPR1B, was increased in PCTK1-KO cells. Pharmacological inhibition of Smad1/5/8 also suppressed the malignant progression of CRC. Taken together, our results indicated that PCTK1 suppresses proliferation and cancer stemness and increases the chemoresponse of CRC through the BMPR1B-Smad1/5/8 signaling pathway.
Collapse
Affiliation(s)
- Po-Li Wei
- Division of Colorectal Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
- Department of Surgery, College of Medicine, School of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Cancer Research Center and Translational Laboratory, Department of Medical Research, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei 11031, Taiwan
| | - Chien-Yu Huang
- School of Medicine, National Tsing Hua University, Hsinchu 30013, Taiwan
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 30013, Taiwan
- Department of Pathology, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
| | - Tung-Cheng Chang
- Department of Surgery, College of Medicine, School of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Division of Colon and Rectal, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, Taipei 11031, Taiwan
| | - Jang-Chun Lin
- Department of Radiotherapy and Oncology, Shuang Ho Hospital, Taipei Medical University, Taipei 11031, Taiwan
| | - Cheng-Chin Lee
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - G M Shazzad Hossain Prince
- Department of Surgery, College of Medicine, School of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | | | | | - Yu-Jia Chang
- Cancer Research Center and Translational Laboratory, Department of Medical Research, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
- Department of Pathology, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
- Graduate Institute of Clinical Medicines, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
10
|
Li Q, Qiao Y, Wang F, Zhao J, Wu L, Ge H, Xu S. Prenatal triclosan exposure impairs mammalian lung branching morphogenesis through activating Bmp4 signaling. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 256:114896. [PMID: 37054474 DOI: 10.1016/j.ecoenv.2023.114896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 04/07/2023] [Accepted: 04/09/2023] [Indexed: 06/19/2023]
Abstract
Triclosan (TCS) is a commonly used antibacterial agent present in personal care and household products. Recently, there have been increasing concerns about the association between children's health and TCS exposure during gestation, but the toxicological effects of TCS exposure on embryonic lung development remain undetermined. In this study, through using an ex vivo lung explant culture system, we found that prenatal exposure to TCS resulted in impaired lung branching morphogenesis and altered proximal-distal airway patterning. These TCS-induced dysplasias are accompanied by significantly reduced proliferation and increased apoptosis within the developing lung, as a consequence of activated Bmp4 signaling. Inhibition of Bmp4 signaling by Noggin partially rescues the lung branching morphogenesis and cellular defects in TCS-exposed lung explants. In addition, we provided in vivo evidence that administration of TCS during gestation leads to compromised branching formation and enlarged airspace in the lung of offspring. Thus, this study provides novel toxicological information on TCS and indicated a strong/possible association between TCS exposure during pregnancy and lung dysplasia in offspring.
Collapse
Affiliation(s)
- Qiuling Li
- Institute of Department of Health Sciences and Technology, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China.
| | - Yulong Qiao
- Institute of Department of Health Sciences and Technology, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Feifei Wang
- Institute of Department of Health Sciences and Technology, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Jian Zhao
- Institute of Department of Health Sciences and Technology, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Lijun Wu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Honghua Ge
- Institute of Department of Health Sciences and Technology, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Shengmin Xu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China.
| |
Collapse
|
11
|
Xu H, Zhang H, Tan L, Yang Y, Wang H, Zhao Q, Lu J. FAM87A as a Competing Endogenous RNA of miR-424-5p Suppresses Glioma Progression by Regulating PPM1H. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:7952922. [PMID: 34712356 PMCID: PMC8546405 DOI: 10.1155/2021/7952922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/11/2021] [Indexed: 01/07/2023]
Abstract
Far less has been unveiled about the functions of lncRNAs on cancers yet. Here, we reported that lncRNA FAM87A, as a ceRNA of miR-424-5p, played a vital role in glioma development. qRT-PCR result indicated that FAM87A was abnormally downregulated in glioma tissue and cells. Survival analysis suggested that the FAM87A expression was negatively correlated with the survival rate. Effects of FAM87A on human glioma cell lines were also analyzed by MTT, Edu, and transwell assays. FAM87A hastened proliferation and migration of glioma cells. MiR-424-5p, predicted target of FAM87A, was fostered in glioma, which was examined by qRT-PCR. A negative correlation was indicated between FAM87A and miR-424-5p. Results of bioinformatics, dual luciferase, and RIP assays unveiled that FAM87A and miR-424-5p act upon each other. In addition, miR-424-5p targeted 3'-UTR of PPM1H. Also, effects of miR-424-5p/FAM87A on glioma cells were identified via the cell function experiments. FAM87A suppressed PPM1H by binding to miR-424-5p competitively, thereby restraining cell proliferation, migration, and invasion. Collectively, these findings illuminated a new mechanism for glioma progression. Therefore, FAM87A may act as a feasible target for glioma treatment.
Collapse
Affiliation(s)
- Hua Xu
- Radiotherapy Center, Xi'an International Medical Center Hospital, Xi'an, Shaanxi Province, China 710100
| | - Haiping Zhang
- Department of Geriatric Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China 710100
| | - Lina Tan
- Radiotherapy Center, Xi'an International Medical Center Hospital, Xi'an, Shaanxi Province, China 710100
| | - Yang Yang
- Radiotherapy Center, Xi'an International Medical Center Hospital, Xi'an, Shaanxi Province, China 710100
| | - Haiyun Wang
- Radiotherapy Center, Xi'an International Medical Center Hospital, Xi'an, Shaanxi Province, China 710100
| | - Qin Zhao
- Radiotherapy Center, Xi'an International Medical Center Hospital, Xi'an, Shaanxi Province, China 710100
| | - Jun Lu
- Radiotherapy Center, Xi'an International Medical Center Hospital, Xi'an, Shaanxi Province, China 710100
| |
Collapse
|
12
|
Metal dependent protein phosphatase PPM family in cardiac health and diseases. Cell Signal 2021; 85:110061. [PMID: 34091011 PMCID: PMC9107372 DOI: 10.1016/j.cellsig.2021.110061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 12/20/2022]
Abstract
Protein phosphorylation and dephosphorylation is central to signal transduction in nearly every aspect of cellular function, including cardiovascular regulation and diseases. While protein kinases are often regarded as the molecular drivers in cellular signaling with high specificity and tight regulation, dephosphorylation mediated by protein phosphatases is also gaining increasing appreciation as an important part of the signal transduction network essential for the robustness, specificity and homeostasis of cell signaling. Metal dependent protein phosphatases (PPM, also known as protein phosphatases type 2C, PP2C) belong to a highly conserved family of protein phosphatases with unique biochemical and molecular features. Accumulating evidence also indicates important and specific functions of individual PPM isoform in signaling and cellular processes, including proliferation, senescence, apoptosis and metabolism. At the physiological level, abnormal PPM expression and activity have been implicated in major human diseases, including cancer, neurological and cardiovascular disorders. Finally, inhibitors for some of the PPM members have been developed as a potential therapeutic strategy for human diseases. In this review, we will focus on the background information about the biochemical and molecular features of major PPM family members, with emphasis on their demonstrated or potential roles in cardiac pathophysiology. The current challenge and potential directions for future investigations will also be highlighted.
Collapse
|
13
|
Falfushynska H, Horyn O, Osypenko I, Rzymski P, Wejnerowski Ł, Dziuba MK, Sokolova IM. Multibiomarker-based assessment of toxicity of central European strains of filamentous cyanobacteria Aphanizomenon gracile and Raphidiopsis raciborskii to zebrafish Danio rerio. WATER RESEARCH 2021; 194:116923. [PMID: 33631698 DOI: 10.1016/j.watres.2021.116923] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
The global increase in cyanobacterial blooms poses environmental and health threats. Selected cyanobacterial strains reveal toxicities despite a lack of synthesis of known toxic metabolites, and the mechanisms of these toxicities are not well understood. Here we investigated the toxicity of non-cylindrospermopsin and non-microcystin producing Aphanizomenon gracile and Raphidiopsis raciborskii of Central European origin to zebrafish exposed for 14 days to their extracts. Toxicological screening revealed the presence of anabaenopeptins and a lack of anatoxin-a, ß-methylamino-L-alanine or saxitoxins in examined extracts. The responses were compared to 20 μg L-1 of common cyanobacterial toxins cylindrospermopsin (CYN) and microcystin-LR (MC-LR). The expression of the marker genes involved in apoptosis (caspase 3a and 3b, Bcl-2, BAX, p53, MAPK, Nrf2), DNA damage detection and repair (GADD45, RAD51, JUN, XPC), detoxification (CYP1A, CYP26, EPHX1), lipid metabolism (PPARa, FABP1, PLA2), phosphorylation/dephosphorylation (PPP6C, PPM1) and cytoskeleton (actin, tubulin) were examined using targeted transcriptomics. Cellular stress and toxicity biomarkers (oxidative injury, antioxidant enzymes, thiol pool status, and lactate dehydrogenase activity) were measured in the liver, and acetylcholinesterase activity was determined as an index of neurotoxicity in the brain. The extracts of three cyanobacterial strains that produce no known cyanotoxins caused marked toxicity in D. rerio, and the biomarker profiles indicate different toxic mechanisms between the bioactive compounds extracted from these strains and the purified cyanotoxins. All studied cyanobacterial extracts and purified cyanotoxins induced oxidative stress and neurotoxicity, downregulated Nrf2 and CYP26B1, disrupted phosphorylation/dephosphorylation processes and actin/tubulin cytoskeleton and upregulated apoptotic activity in the liver. The tested strains and purified toxins displayed distinctively different effects on lipid metabolism. Unlike CYN and MC-LR, the Central European strain of A. gracile and R. raciborskii did not reveal a genotoxic potential. These findings help to further understand the ecotoxicological consequences of toxic cyanobacterial blooms in freshwater ecosystems.
Collapse
Affiliation(s)
- Halina Falfushynska
- Department of Orthopedagogy and Physical Therapy, Ternopil V. Hnatiuk National Pedagogical University, Ternopil, Ukraine; Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany
| | - Oksana Horyn
- Department of Orthopedagogy and Physical Therapy, Ternopil V. Hnatiuk National Pedagogical University, Ternopil, Ukraine
| | - Inna Osypenko
- Department of Orthopedagogy and Physical Therapy, Ternopil V. Hnatiuk National Pedagogical University, Ternopil, Ukraine
| | - Piotr Rzymski
- Department of Environmental Medicine, Poznan University of Medical Sciences, Poznan, Poland; Integrated Science Association (ISA), Universal Scientific Education and Research Network (USERN), Poznań, Poland
| | - Łukasz Wejnerowski
- Department of Hydrobiology, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Marcin K Dziuba
- Department of Hydrobiology, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Inna M Sokolova
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany; Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, Rostock, Germany.
| |
Collapse
|
14
|
Jiang M, Wang H, Chen H, Han Y. SMARCD3 is a potential prognostic marker and therapeutic target in CAFs. Aging (Albany NY) 2020; 12:20835-20861. [PMID: 33125346 PMCID: PMC7655158 DOI: 10.18632/aging.104102] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 09/05/2020] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Screening for novel prognostic biomarkers and potential therapeutic targets from colorectal cancer microenvironment. RESULTS 372 genes were overexpressed in colorectal cancer microenvironment, five of which that had the most prognostic powers were enriched in Epithelial-Mesenchymal Transition and cell cycle pathways. For the first time, we showed that SMARCD3 was mainly expressed in CAFs and could be a novel prognostic marker and potential therapeutic target. Function analyses indicated that MSARCD3 might promote CAFs activation and colorectal cancer metastasis through SMARCD3-WNT5A/TGF-β-MAPK14-SMARCD3 positive feedback loop. Signaling map of SMARCD3 was constructed and several potential drugs that could regulate SMARCD3 were also presented. CONCLUSIONS SMARCD3 is a novel prognostic biomarker and potential therapeutic target of colorectal cancer, which may promote cancer metastasis through activation of CAFs. METHODS Colorectal cancer microenvironment related genes were screened based on immune and stromal scores. Function enrichment analyses were performed to show the underlying mechanistic insights of these tumor microenvironment related genes. Kaplan-Meier survival analysis was used for evaluating the prognostic power. Gene-Pathway interaction network analysis and cellular heterogeneity analysis of tumor microenvironment were also performed. Gene set enrichment analysis was performed for signal gene pathway analysis. Protein data from The Cancer Genome Atlas were used for validation.
Collapse
Affiliation(s)
- Ming Jiang
- Department of General Surgery, People’s Hospital of Quzhou, Quzhou, Zhejiang, China
| | - Huiju Wang
- Clinical Research Institute, Zhejiang Provincial People’s Hospital, Zhejiang, China. People’s Hospital of Hangzhou Medical College, Zhejiang, China. Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang, China
| | - Hong Chen
- Department of Stomatology, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Yong Han
- Clinical Research Institute, Zhejiang Provincial People’s Hospital, Zhejiang, China. People’s Hospital of Hangzhou Medical College, Zhejiang, China. Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang, China
| |
Collapse
|
15
|
Pareja F, Lee JY, Brown DN, Piscuoglio S, Gularte-Mérida R, Selenica P, Da Cruz Paula A, Arunachalam S, Kumar R, Geyer FC, Silveira C, da Silva EM, Li A, Marchiò C, Ng CKY, Mariani O, Fuhrmann L, Wen HY, Norton L, Vincent-Salomon A, Brogi E, Reis-Filho JS, Weigelt B. The Genomic Landscape of Mucinous Breast Cancer. J Natl Cancer Inst 2020; 111:737-741. [PMID: 30649385 DOI: 10.1093/jnci/djy216] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/18/2018] [Accepted: 11/19/2018] [Indexed: 12/13/2022] Open
Abstract
Mucinous carcinoma of the breast (MCB) is a rare histologic form of estrogen receptor (ER)-positive/HER2-negative breast cancer (BC) characterized by tumor cells floating in lakes of mucin. We assessed the genomic landscape of 32 MCBs by whole-exome sequencing and/or RNA-sequencing. GATA3 (23.8%), KMT2C (19.0%), and MAP3K1 (14.3%) were the most frequently mutated genes in pure MCBs. In addition, two recurrent but not pathognomonic fusion genes, OAZ1-CSNK1G2 and RFC4-LPP, were detected in 3/31 (9.7%) and 2/31 (6.5%) samples, respectively. Compared with ER-positive/HER2-negative common forms of BC, MCBs displayed lower PIK3CA and TP53 mutation rates and fewer concurrent 1q gains and 16q losses. Clonal decomposition analysis of the mucinous and ductal components independently microdissected from five mixed MCBs revealed that they are clonally related and evolve following clonal selection or parallel evolution. Our findings indicate that MCB represents a genetically distinct ER-positive/HER2-negative form of BC.
Collapse
Affiliation(s)
- Fresia Pareja
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ju Youn Lee
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - David N Brown
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Salvatore Piscuoglio
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY.,Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | | | - Pier Selenica
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | - Sasi Arunachalam
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Rahul Kumar
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Felipe C Geyer
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Catarina Silveira
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY.,GenoMed SA, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Edaise M da Silva
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Anqi Li
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Caterina Marchiò
- Department of Medical Sciences, FPO-Canndiolo Cancer Institute, University of Turin, Turin, Italy
| | - Charlotte K Y Ng
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY.,Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | - Odette Mariani
- Départment de Médecine Diagnostique et Théranostique, Institute Curie, Paris, France
| | - Laetitia Fuhrmann
- Départment de Médecine Diagnostique et Théranostique, Institute Curie, Paris, France
| | - Hannah Y Wen
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Larry Norton
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Anne Vincent-Salomon
- Départment de Médecine Diagnostique et Théranostique, Institute Curie, Paris, France
| | - Edi Brogi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jorge S Reis-Filho
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Britta Weigelt
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
16
|
Metal-dependent Ser/Thr protein phosphatase PPM family: Evolution, structures, diseases and inhibitors. Pharmacol Ther 2020; 215:107622. [PMID: 32650009 DOI: 10.1016/j.pharmthera.2020.107622] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/29/2020] [Indexed: 02/06/2023]
Abstract
Protein phosphatases and kinases control multiple cellular events including proliferation, differentiation, and stress responses through regulating reversible protein phosphorylation, the most important post-translational modification. Members of metal-dependent protein phosphatase (PPM) family, also known as PP2C phosphatases, are Ser/Thr phosphatases that bind manganese/magnesium ions (Mn2+/Mg2+) in their active center and function as single subunit enzymes. In mammals, there are 20 isoforms of PPM phosphatases: PPM1A, PPM1B, PPM1D, PPM1E, PPM1F, PPM1G, PPM1H, PPM1J, PPM1K, PPM1L, PPM1M, PPM1N, ILKAP, PDP1, PDP2, PHLPP1, PHLPP2, PP2D1, PPTC7, and TAB1, whereas there are only 8 in yeast. Phylogenetic analysis of the DNA sequences of vertebrate PPM isoforms revealed that they can be divided into 12 different classes: PPM1A/PPM1B/PPM1N, PPM1D, PPM1E/PPM1F, PPM1G, PPM1H/PPM1J/PPM1M, PPM1K, PPM1L, ILKAP, PDP1/PDP2, PP2D1/PHLPP1/PHLPP2, TAB1, and PPTC7. PPM-family members have a conserved catalytic core region, which contains the metal-chelating residues. The different isoforms also have isoform specific regions within their catalytic core domain and terminal domains, and these regions may be involved in substrate recognition and/or functional regulation of the phosphatases. The twenty mammalian PPM phosphatases are involved in regulating diverse cellular functions, such as cell cycle control, cell differentiation, immune responses, and cell metabolism. Mutation, overexpression, or deletion of the PPM phosphatase gene results in abnormal cellular responses, which lead to various human diseases. This review focuses on the structures and biological functions of the PPM-phosphatase family and their associated diseases. The development of specific inhibitors against the PPM phosphatase family as a therapeutic strategy will also be discussed.
Collapse
|
17
|
Osawa J, Akizuki K, Kashimura A, Ueta S, Nakatani M, Inui Y, Shigeri Y, Ishida A, Kameshita I, Sueyoshi N. Dual phosphorylation of protein phosphatase PPM1H promotes dephosphorylation of Smad1 in cellulo. Biochem Biophys Res Commun 2020; 530:513-519. [PMID: 32600616 DOI: 10.1016/j.bbrc.2020.05.082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 05/13/2020] [Indexed: 01/08/2023]
Abstract
Protein phosphatase PPM1H is known to participate in various biological or pathophysiological mechanisms. However, little is known about the molecular mechanisms of its regulation. In this study, we investigated the protein kinases that directly phosphorylate PPM1H, identifying them as cAMP-dependent protein kinase (PKA) and Ca2+/calmodulin-dependent protein kinase I (CaMKI). In vitro and in silico analyses showed that the phosphorylation sites of PPM1H by PKA and CaMKI were Ser-123 and Ser-210, respectively. The phosphorylation state of PPM1H in cells exhibited the kinase activator- and inhibitor-dependent changes. In mouse neuroblastoma Neuro2a cells, phosphorylation of Ser-210 was much higher in the phospho-mimetic mutant (S123D) than in the non-phosphorylatable mutant (S123A) when they were treated with ionomycin. This suggests that a hierarchical phosphorylation, with initial phosphorylation of Ser-123 promoting subsequent phosphorylation of Ser-210, occurs in these neuron-like cells. Moreover, in cell-based assay a PPM1H(S123A/S210A) double mutant barely dephosphorylated Smad1, a transcription factor known as an endogenous substrate of PPM1H. These results suggest that cAMP and Ca2+/calmodulin regulate dephosphorylation of Smad1 through the dual phosphorylation of PPM1H at Ser-123 and Ser-210.
Collapse
Affiliation(s)
- Jin Osawa
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Kagawa, 761-0795, Japan
| | - Kazutoshi Akizuki
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Kagawa, 761-0795, Japan; Laboratory of Molecular Brain Science, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima, 739-8521, Japan
| | - Akari Kashimura
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Kagawa, 761-0795, Japan
| | - Saki Ueta
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Kagawa, 761-0795, Japan
| | - Misato Nakatani
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Kagawa, 761-0795, Japan
| | - Yuiko Inui
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Kagawa, 761-0795, Japan
| | - Yasushi Shigeri
- Department of Chemistry, Wakayama Medical University, 580 Mikazura, Wakayama, 641-0011, Japan
| | - Atsuhiko Ishida
- Laboratory of Molecular Brain Science, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima, 739-8521, Japan.
| | - Isamu Kameshita
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Kagawa, 761-0795, Japan
| | - Noriyuki Sueyoshi
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Kagawa, 761-0795, Japan.
| |
Collapse
|
18
|
Low tumour PPM1H indicates poor prognosis in colorectal cancer via activation of cancer-associated fibroblasts. Br J Cancer 2019; 120:987-995. [PMID: 30988394 PMCID: PMC6734651 DOI: 10.1038/s41416-019-0450-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 03/15/2019] [Accepted: 03/18/2019] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Vimentin (VIM) is considered a prognostic marker in colorectal cancer (CRC). Our aim is to identify genes that fulfil a "X-low implies VIM-high" Boolean relationship and to evaluate their prognostic value and potential mechanism. METHODS Potential biomarkers related to VIM expression were searched using a bioinformatics approach across gene-expression arrays. Based on subgroup analysis of 2 CRC cohorts, the selected gene was tested for its association with patient's survival outcomes. The regulatory link between the selected gene and VIM was further examined with in vitro models. RESULTS PPM1H was identified as the top candidate in our search. Patients with PPM1H-low tumours have a lower 5-year disease-free survival rate than patients with PPM1H-high tumours in 2 independent cohorts. In multivariate Cox analysis, patients with PPM1H-low tumours were independently associated with relapse in both the discovery cohort (hazard ratio [HR], 1.362; 95% confidence interval [CI], 1.015-1.826; P = 0.039) and the validation cohort (HR for DFS, 4.052; 95% CI, 2.634-6.234; P < 0.001). PPM1H knockdown in CRC cells and growth in the corresponding conditional medium increased VIM expression and colon fibroblast proliferation, indicating a transformation of cancer-association fibroblasts (CAFs). Conversely, educated CAFs also facilitated the growth of CRC cells with low PPM1H expression. CONCLUSIONS Lack of tumour PPM1H expression identifies a patient subgroup with a high relapse risk, and CRC cells with low expression of PPM1H activate CAFs and inversely get promoted by CAFs.
Collapse
|
19
|
Wang W, Shen T, Dong B, Creighton CJ, Meng Y, Zhou W, Shi Q, Zhou H, Zhang Y, Moore DD, Yang F. MAPK4 overexpression promotes tumor progression via noncanonical activation of AKT/mTOR signaling. J Clin Invest 2019; 129:1015-1029. [PMID: 30688659 DOI: 10.1172/jci97712] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 11/30/2018] [Indexed: 12/21/2022] Open
Abstract
MAPK4 is an atypical MAPK. Currently, little is known about its physiological function and involvement in diseases, including cancer. A comprehensive analysis of 8887 gene expression profiles in The Cancer Genome Atlas (TCGA) revealed that MAPK4 overexpression correlates with decreased overall survival, with particularly marked survival effects in patients with lung adenocarcinoma, bladder cancer, low-grade glioma, and thyroid carcinoma. Interestingly, human tumor MAPK4 overexpression also correlated with phosphorylation of AKT, 4E-BP1, and p70S6K, independent of the loss of PTEN or mutation of PIK3CA. This led us to examine whether MAPK4 activates the key metabolic, prosurvival, and proliferative kinase AKT and mTORC1 signaling, independent of the canonical PI3K pathway. We found that MAPK4 activated AKT via a novel, concerted mechanism independent of PI3K. Mechanistically, MAPK4 directly bound and activated AKT by phosphorylation of the activation loop at threonine 308. It also activated mTORC2 to phosphorylate AKT at serine 473 for full activation. MAPK4 overexpression induced oncogenic outcomes, including transforming prostate epithelial cells into anchorage-independent growth, and MAPK4 knockdown inhibited cancer cell proliferation, anchorage-independent growth, and xenograft growth. We concluded that MAPK4 can promote cancer by activating the AKT/mTOR signaling pathway and that targeting MAPK4 may provide a novel therapeutic approach for cancer.
Collapse
Affiliation(s)
- Wei Wang
- Department of Molecular and Cellular Biology
| | - Tao Shen
- Department of Molecular and Cellular Biology
| | | | - Chad J Creighton
- Department of Medicine, and.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | | | - Wolong Zhou
- Department of Molecular and Cellular Biology
| | - Qing Shi
- Department of Molecular and Cellular Biology
| | - Hao Zhou
- Department of Molecular and Cellular Biology
| | | | | | - Feng Yang
- Department of Molecular and Cellular Biology
| |
Collapse
|
20
|
Ghodke-Puranik Y, Imgruet M, Dorschner JM, Shrestha P, McCoy K, Kelly JA, Marion M, Guthridge JM, Langefeld CD, Harley JB, James JA, Sivils KL, Niewold TB. Novel genetic associations with interferon in systemic lupus erythematosus identified by replication and fine-mapping of trait-stratified genome-wide screen. Cytokine 2019; 132:154631. [PMID: 30685201 DOI: 10.1016/j.cyto.2018.12.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/20/2018] [Accepted: 12/24/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND/PURPOSE High serum interferon alpha (IFN-α) is an important heritable phenotype in systemic lupus erythematosus (SLE) which is involved in primary disease pathogenesis. High vs. low levels of IFN-α are associated with disease severity and account for some of the biological heterogeneity between SLE patients. The aim of the study was to replicate and fine-map previously detected genetic associations with serum IFN-α in SLE. METHODS We previously undertook a case-case genome-wide association study of SLE patients stratified by ancestry and extremes of phenotype in serum IFN-α. Single nucleotide polymorphisms (SNPs) in seven loci identified in this screen were selected for follow up in a large independent cohort of 1370 SLE patients (703 European-ancestry, 432 African ancestry, and 235 Amerindian ancestry). Each ancestral background was analyzed separately, and ancestry-informative markers were used to control for ancestry and admixture. RESULTS We find a rare haplotype spanning the promoter region of EFNA5 that is strongly associated with serum IFN-α in both African-American and European-American SLE patients (OR = 3.0, p = 3.7 × 10-6). We also find SNPs in the PPM1H, PTPRM, and NRGN regions associated with IFN-α levels in European-American, Amerindian, and African-American SLE patients respectively. Many of these associations are within regulatory regions of the gene, suggesting an impact on transcription. CONCLUSION This study demonstrates the power of molecular sub-phenotypes to reveal genetic factors involved in complex autoimmune disease. The distinct associations observed in different ancestral backgrounds emphasize the heterogeneity of molecular pathogenesis in SLE.
Collapse
Affiliation(s)
- Yogita Ghodke-Puranik
- Colton Center for Autoimmunity, New York University School of Medicine, New York, NY, USA
| | - Molly Imgruet
- Division of Rheumatology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Kaci McCoy
- Division of Rheumatology, Mayo Clinic, Rochester, MN, USA
| | - Jennifer A Kelly
- Arthritis & Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Miranda Marion
- Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Joel M Guthridge
- Arthritis & Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Carl D Langefeld
- Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - John B Harley
- Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine and Cincinnati VA Medical Center, Cincinnati, OH, USA
| | - Judith A James
- Arthritis & Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Kathy L Sivils
- Arthritis & Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Timothy B Niewold
- Colton Center for Autoimmunity, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
21
|
Narla G, Sangodkar J, Ryder CB. The impact of phosphatases on proliferative and survival signaling in cancer. Cell Mol Life Sci 2018; 75:2695-2718. [PMID: 29725697 PMCID: PMC6023766 DOI: 10.1007/s00018-018-2826-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 03/24/2018] [Accepted: 04/23/2018] [Indexed: 02/06/2023]
Abstract
The dynamic and stringent coordination of kinase and phosphatase activity controls a myriad of physiologic processes. Aberrations that disrupt the balance of this interplay represent the basis of numerous diseases. For a variety of reasons, early work in this area portrayed kinases as the dominant actors in these signaling events with phosphatases playing a secondary role. In oncology, these efforts led to breakthroughs that have dramatically altered the course of certain diseases and directed vast resources toward the development of additional kinase-targeted therapies. Yet, more recent scientific efforts have demonstrated a prominent and sometimes driving role for phosphatases across numerous malignancies. This maturation of the phosphatase field has brought with it the promise of further therapeutic advances in the field of oncology. In this review, we discuss the role of phosphatases in the regulation of cellular proliferation and survival signaling using the examples of the MAPK and PI3K/AKT pathways, c-Myc and the apoptosis machinery. Emphasis is placed on instances where these signaling networks are perturbed by dysregulation of specific phosphatases to favor growth and persistence of human cancer.
Collapse
Affiliation(s)
| | - Jaya Sangodkar
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | |
Collapse
|
22
|
Li Q, Jiao J, Li H, Wan H, Zheng C, Cai J, Bao S. Histone arginine methylation by Prmt5 is required for lung branching morphogenesis through repression of BMP signaling. J Cell Sci 2018; 131:jcs.217406. [PMID: 29950483 DOI: 10.1242/jcs.217406] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 06/19/2018] [Indexed: 12/17/2022] Open
Abstract
Branching morphogenesis is essential for the successful development of a functional lung to accomplish its gas exchange function. Although many studies have highlighted requirements for the bone morphogenetic protein (BMP) signaling pathway during branching morphogenesis, little is known about how BMP signaling is regulated. Here, we report that the protein arginine methyltransferase 5 (Prmt5) and symmetric dimethylation at histone H4 arginine 3 (H4R3sme2) directly associate with chromatin of Bmp4 to suppress its transcription. Inactivation of Prmt5 in the lung epithelium results in halted branching morphogenesis, altered epithelial cell differentiation and neonatal lethality. These defects are accompanied by increased apoptosis and reduced proliferation of lung epithelium, as a consequence of elevated canonical BMP-Smad1/5/9 signaling. Inhibition of BMP signaling by Noggin rescues the lung branching defects of Prmt5 mutant in vitro Taken together, our results identify a novel mechanism through which Prmt5-mediated histone arginine methylation represses canonical BMP signaling to regulate lung branching morphogenesis.
Collapse
Affiliation(s)
- Qiuling Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Jie Jiao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China.,School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Huijun Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China.,School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Huajing Wan
- Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, West China Institute of Women and Children's Health, and Department of Pediatrics, Huaxi Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China
| | - Caihong Zheng
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Jun Cai
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Shilai Bao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China .,School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
23
|
Lee W, Ko KR, Kim HK, Lim S, Kim S. Dehydrodiconiferyl alcohol promotes BMP-2-induced osteoblastogenesis through its agonistic effects on estrogen receptor. Biochem Biophys Res Commun 2017; 495:2242-2248. [PMID: 29253565 DOI: 10.1016/j.bbrc.2017.12.079] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 12/14/2017] [Indexed: 12/11/2022]
Abstract
Estrogen deficiency results in an imbalance between the levels of bone-resorping osteoclasts and bone-forming osteoblasts, eventually leading to overall bone loss. Dehydrodiconiferyl alcohol (DHCA), a lignan compound originally isolated from Cucurbita moschata, has been shown to bind to estrogen receptor, and indeed exhibits various activities of estrogen, such as anti-inflammatory and anti-oxidative stress effects. In this study, we tested whether synthetic DHCA could affect the BMP-2-induced osteoblastogenesis in vitro. In MC3T3-E1 cells, DHCA promoted BMP-2-induced differentiation of osteoblasts. Consistently, the expression of three osteoblastogenic genes known to be induced by BMP-2, ALP, osteocalcin and OPG, was up-regulated by DHCA treatment. DHCA was also shown to activate the production of RUNX2 by activating Smad1/5/9 and AMPK. Data from transient transfection assays suggested that DHCA might activate the estrogen receptor signaling pathway. Effects of DHCA on BMP-2-induced osteoblastogenesis were reduced when cells were treated with a specific siRNA to ERα or ERβ. Taken together, our results suggest that DHCA may be developed as an efficient therapeutic for osteoporosis by regulating osteoblastogenesis through its estrogenic effects.
Collapse
Affiliation(s)
- Wonwoo Lee
- Department of Biological Sciences, Seoul National University, Seoul 151-742, South Korea; ViroMed Co., Ltd., Seoul 151-747, South Korea
| | - Kyeong Ryang Ko
- Department of Biological Sciences, Seoul National University, Seoul 151-742, South Korea; ViroMed Co., Ltd., Seoul 151-747, South Korea
| | - Hyun-Keun Kim
- Department of Biological Sciences, Seoul National University, Seoul 151-742, South Korea
| | - Seonung Lim
- Department of Biological Sciences, Seoul National University, Seoul 151-742, South Korea
| | - Sunyoung Kim
- Department of Biological Sciences, Seoul National University, Seoul 151-742, South Korea; ViroMed Co., Ltd., Seoul 151-747, South Korea.
| |
Collapse
|
24
|
Bontha SV, Maluf DG, Archer KJ, Dumur CI, Dozmorov M, King A, Akalin E, Mueller TF, Gallon L, Mas VR. Effects of DNA Methylation on Progression to Interstitial Fibrosis and Tubular Atrophy in Renal Allograft Biopsies: A Multi-Omics Approach. Am J Transplant 2017; 17:3060-3075. [PMID: 28556588 PMCID: PMC5734859 DOI: 10.1111/ajt.14372] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 05/01/2017] [Accepted: 05/20/2017] [Indexed: 01/25/2023]
Abstract
Progressive fibrosis of the interstitium is the dominant final pathway in renal destruction in native and transplanted kidneys. Over time, the continuum of molecular events following immunological and nonimmunological insults lead to interstitial fibrosis and tubular atrophy and culminate in kidney failure. We hypothesize that these insults trigger changes in DNA methylation (DNAm) patterns, which in turn could exacerbate injury and slow down the regeneration processes, leading to fibrosis development and graft dysfunction. Herein, we analyzed biopsy samples from kidney allografts collected 24 months posttransplantation and used an integrative multi-omics approach to understand the underlying molecular mechanisms. The role of DNAm and microRNAs on the graft gene expression was evaluated. Enrichment analyses of differentially methylated CpG sites were performed using GenomeRunner. CpGs were strongly enriched in regions that were variably methylated among tissues, implying high tissue specificity in their regulatory impact. Corresponding to this methylation pattern, gene expression data were related to immune response (activated state) and nephrogenesis (inhibited state). Preimplantation biopsies showed similar DNAm patterns to normal allograft biopsies at 2 years posttransplantation. Our findings demonstrate for the first time a relationship among epigenetic modifications and development of interstitial fibrosis, graft function, and inter-individual variation on long-term outcomes.
Collapse
Affiliation(s)
- Sai Vineela Bontha
- Translational Genomics Transplant Laboratory, Transplant Division, University of Virginia, Department of Surgery, PO Box 800625. 409 Lane Rd, Charlottesville, VA, 22908- 0625, USA
| | - Daniel G. Maluf
- Translational Genomics Transplant Laboratory, Transplant Division, University of Virginia, Department of Surgery, PO Box 800625. 409 Lane Rd, Charlottesville, VA, 22908- 0625, USA
| | - Kellie J. Archer
- Division of Biostatistics, The Ohio State University, 1841 Neil Avenue, 240 Cunz Hall, Columbus, OH 43210
| | - Catherine I. Dumur
- Department of Pathology, Virginia Commonwealth University, PO Box 980662, 1101 E. Marshall Street, Richmond, VA 23298-0662
| | - Mikhail Dozmorov
- Department of Biostatistics, Virginia Commonwealth University, One Capitol Square, room 730, 830 East Main Street, Richmond, Virginia 23298
| | - Anne King
- Division of Nephrology, Internal Medicine. Virginia commonwealth University, VA, 1101 E. Marshall Street, Richmond, VA 23298-0662
| | - Enver Akalin
- Departments of Clinical Medicine and Surgery, Albert Einstein College of Medicine Montefiore Medical Center, 11 E 210th St, Bronx, NY 10467
| | - Thomas F. Mueller
- Division of Nephorology, Internal Medicine, University Hospital Zurich, Ramistrasse 100, Zurich-8091
| | - Lorenzo Gallon
- Department of Medicine-Nephrology, Northwestern University676 N St Clair St # 100, Chicago, IL 60611
| | - Valeria R. Mas
- Translational Genomics Transplant Laboratory, Transplant Division, University of Virginia, Department of Surgery, PO Box 800625. 409 Lane Rd, Charlottesville, VA, 22908- 0625, USA
| |
Collapse
|
25
|
Meeusen B, Janssens V. Tumor suppressive protein phosphatases in human cancer: Emerging targets for therapeutic intervention and tumor stratification. Int J Biochem Cell Biol 2017; 96:98-134. [PMID: 29031806 DOI: 10.1016/j.biocel.2017.10.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 10/04/2017] [Accepted: 10/05/2017] [Indexed: 02/06/2023]
Abstract
Aberrant protein phosphorylation is one of the hallmarks of cancer cells, and in many cases a prerequisite to sustain tumor development and progression. Like protein kinases, protein phosphatases are key regulators of cell signaling. However, their contribution to aberrant signaling in cancer cells is overall less well appreciated, and therefore, their clinical potential remains largely unexploited. In this review, we provide an overview of tumor suppressive protein phosphatases in human cancer. Along their mechanisms of inactivation in defined cancer contexts, we give an overview of their functional roles in diverse signaling pathways that contribute to their tumor suppressive abilities. Finally, we discuss their emerging roles as predictive or prognostic markers, their potential as synthetic lethality targets, and the current feasibility of their reactivation with pharmacologic compounds as promising new cancer therapies. We conclude that their inclusion in clinical practice has obvious potential to significantly improve therapeutic outcome in various ways, and should now definitely be pushed forward.
Collapse
Affiliation(s)
- Bob Meeusen
- Laboratory of Protein Phosphorylation & Proteomics, Dept. of Cellular & Molecular Medicine, Faculty of Medicine, KU Leuven & Leuven Cancer Institute (LKI), KU Leuven, Belgium
| | - Veerle Janssens
- Laboratory of Protein Phosphorylation & Proteomics, Dept. of Cellular & Molecular Medicine, Faculty of Medicine, KU Leuven & Leuven Cancer Institute (LKI), KU Leuven, Belgium.
| |
Collapse
|
26
|
Zhu H, Qin H, Li DM, Liu J, Zhao Q. Effect of PPM1H on malignant phenotype of human pancreatic cancer cells. Oncol Rep 2016; 36:2926-2934. [DOI: 10.3892/or.2016.5065] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 08/17/2016] [Indexed: 11/05/2022] Open
|
27
|
Abstract
Transforming growth factor β (TGF-β) and related growth factors are secreted pleiotropic factors that play critical roles in embryogenesis and adult tissue homeostasis by regulating cell proliferation, differentiation, death, and migration. The TGF-β family members signal via heteromeric complexes of type I and type II receptors, which activate members of the Smad family of signal transducers. The main attribute of the TGF-β signaling pathway is context-dependence. Depending on the concentration and type of ligand, target tissue, and developmental stage, TGF-β family members transmit distinct signals. Deregulation of TGF-β signaling contributes to developmental defects and human diseases. More than a decade of studies have revealed the framework by which TGF-βs encode a context-dependent signal, which includes various positive and negative modifiers of the principal elements of the signaling pathway, the receptors, and the Smad proteins. In this review, we first introduce some basic components of the TGF-β signaling pathways and their actions, and then discuss posttranslational modifications and modulatory partners that modify the outcome of the signaling and contribute to its context-dependence, including small noncoding RNAs.
Collapse
Affiliation(s)
- Akiko Hata
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California 94143
| | - Ye-Guang Chen
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
28
|
Abstract
Phosphorylation of Smad1/5/8 at the C-terminal SXS motif by BMP type I receptors is one of the most critical events in BMP signaling. Conversely, protein phosphatases that dephosphorylate phospho-Smad1/5/8 can consequently prevent or terminate BMP signaling. PPM1H is an undercharacterized phosphatase in the PPM family. We recently demonstrated that PPM1H can dephosphorylate Smad1 in the cytoplasm and block BMP signaling responses in cellular assays. Here we describe in vitro method showing that PPM1H is a bona fide phosphatase for Smad1/5/8. PPM1H is produced as GST fusion protein in E. coli, and purified against glutathione sepharose beads. Bacterially purified recombinant PPM1H possesses phosphatase activity toward artificial substrate para-nitrophenyl phosphate (pNPP). Recombinant PPM1H also dephosphorylates immuno-purified phosphorylated Smad1 in test tubes. These direct in vitro phosphatase assays provide convincing evidence demonstrating the role of PPM1H as a specific phosphatase for P-Smad1.
Collapse
Affiliation(s)
- Tao Shen
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, One Baylor Plaza, R711, Houston, TX, 77030, USA
| | - Lan Qin
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, One Baylor Plaza, R711, Houston, TX, 77030, USA
| | - Xia Lin
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, One Baylor Plaza, R711, Houston, TX, 77030, USA.
| |
Collapse
|
29
|
Hong J, Sung J, Lee D, Reddy R H, Kim YJ. Selective Dephosphorylation by SCP1 and PP2A in Phosphorylated Residues of SMAD2. B KOREAN CHEM SOC 2014. [DOI: 10.5012/bkcs.2014.35.11.3385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
30
|
Zhao Y, Xiao M, Sun B, Zhang Z, Shen T, Duan X, Yu PB, Feng XH, Lin X. C-terminal domain (CTD) small phosphatase-like 2 modulates the canonical bone morphogenetic protein (BMP) signaling and mesenchymal differentiation via Smad dephosphorylation. J Biol Chem 2014; 289:26441-26450. [PMID: 25100727 PMCID: PMC4176200 DOI: 10.1074/jbc.m114.568964] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 08/05/2014] [Indexed: 01/10/2023] Open
Abstract
The bone morphogenetic protein (BMP) signaling pathway regulates a wide range of cellular responses in metazoans. A key step in the canonical BMP signaling is the phosphorylation and activation of transcription factors Smad1, Smad5, and Smad8 (collectively Smad1/5/8) by the type I BMP receptors. We previously identified PPM1A as a phosphatase toward dephosphorylation of all receptor-regulated Smads (R-Smads), including Smad1/5/8. Here we report another nuclear phosphatase named SCP4/CTDSPL2, belonging to the FCP/SCP family, as a novel Smad phosphatase in the nucleus. SCP4 physically interacts with and specifically dephosphorylates Smad1/5/8, and as a result attenuates BMP-induced transcriptional responses. Knockdown of SCP4 in multipotent mesenchymal C2C12 cells leads to increased expression of BMP target genes and consequently promotes BMP-induced osteogenic differentiation. Collectively, our results demonstrate that SCP4, as a Smad phosphatase, plays a critical role in BMP-induced signaling and cellular functions.
Collapse
Affiliation(s)
- Yulan Zhao
- Life Sciences Institute, and Innovation Center for Cell Biology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Mu Xiao
- Life Sciences Institute, and Innovation Center for Cell Biology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Baoguo Sun
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030; Department of Molecular Physiology and Biophysics, and Baylor College of Medicine, Houston, Texas 77030
| | - Zhengmao Zhang
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030
| | - Tao Shen
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030; Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas 77030, and
| | - Xueyan Duan
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Paul Borchyung Yu
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts 02114
| | - Xin-Hua Feng
- Life Sciences Institute, and Innovation Center for Cell Biology, Zhejiang University, Hangzhou, Zhejiang 310058, China,; Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030; Department of Molecular Physiology and Biophysics, and Baylor College of Medicine, Houston, Texas 77030; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030,.
| | - Xia Lin
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030.
| |
Collapse
|