1
|
Shahriari S, Ghildyal R. The actin-binding protein palladin associates with the respiratory syncytial virus matrix protein. J Virol 2024; 98:e0143524. [PMID: 39360826 PMCID: PMC11494977 DOI: 10.1128/jvi.01435-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 09/09/2024] [Indexed: 10/23/2024] Open
Abstract
The respiratory syncytial virus (RSV) matrix (M) protein plays an important role in infection as it can interact with viral components as well as the host cell actin microfilaments. The M-actin interaction may play a role in facilitating the transportation of virion components to the apical surface, where RSV is released. We show that M protein's association with actin is facilitated by palladin, an actin-binding protein. Cells were infected with RSV or transfected to express full-length M as a green fluorescent protein (GFP)-tagged protein, followed by removal of nuclear and cytosolic proteins to enrich for cytoskeleton and its associated proteins. M protein was present in inclusion bodies tethered to microfilaments in infected cells. In transfected cells, GFP-M was presented close to microfilaments, without association, suggesting the possible involvement of an additional protein in this interaction. As palladin can bind to proteins that also bind actin, we investigated its interaction with M. Cells were co-transfected to express GFP-M and palladin as an mCherry fluorescent-tagged protein, followed by cytoskeleton enrichment. M and palladin were observed to colocalize towards microfilaments, suggesting that palladin is involved in the M-actin interaction. In co-immunoprecipitation studies, M was found to associate with two isoforms of palladin, of 140 and 37 kDa. Interestingly, siRNA downregulation of palladin resulted in reduced titer of released RSV, while cell associated RSV titer increased, suggesting a role for palladin in virus release. Together, our data show that the M-actin interaction mediated by palladin is important for RSV budding and release.IMPORTANCERespiratory syncytial virus is responsible for severe lower respiratory tract infections in young children under 5 years old, the elderly, and the immunosuppressed. The interaction of the respiratory syncytial virus matrix protein with the host actin cytoskeleton is important in infection but has not been investigated in depth. In this study, we show that the respiratory syncytial virus matrix protein associates with actin microfilaments and the actin-binding protein palladin, suggesting a role for palladin in respiratory syncytial virus release. This study provides new insight into the role of the actin cytoskeleton in respiratory syncytial virus infection, a key host-RSV interaction in assembly. Understanding the mechanism by which the RSV M protein and actin interact will ultimately provide a basis for the development of therapeutics targeted at RSV infections.
Collapse
Affiliation(s)
- Shadi Shahriari
- Biomedical Research Cluster, Faculty of Science and Technology, University of Canberra, Canberra, Australia
| | - Reena Ghildyal
- Biomedical Research Cluster, Faculty of Science and Technology, University of Canberra, Canberra, Australia
| |
Collapse
|
2
|
Haga Y, Ray R, Ray RB. Silmitasertib in Combination With Cabozantinib Impairs Liver Cancer Cell Cycle Progression, Induces Apoptosis, and Delays Tumor Growth in a Preclinical Model. Mol Carcinog 2024. [PMID: 39377735 DOI: 10.1002/mc.23827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 10/09/2024]
Abstract
The rising incidence of hepatocellular carcinoma (HCC) is a global problem. Several approved treatments, including immune therapy and multi-tyrosine kinase inhibitors, are used for treatment, although the results are not optimum. There is an unmet need to develop highly effective chemotherapies for HCC. Targeting multiple pathways to attack cancer cells is beneficial. Cabozantinib is an orally available bioactive multikinase inhibitor and has a modest effect on HCC treatment. Silmitasertib is an orally bioavailable, potent CK2 inhibitor with a direct role in DNA damage repair and is in clinical trials for other cancers. In this study, we planned to repurpose these existing drugs on HCC treatment. We observed a stronger antiproliferative effect of these two combined drugs on HCC cells generated from different etiologies as compared to the single treatment. Global RNA-seq analyses revealed a decrease in the expression of G2/M cell cycle transition genes in HCC cells following combination treatment, suggesting G2 phase cell arrest. We observed G2/M cell cycle phase arrest in HCC cells upon combination treatment compared to the single-treated or vehicle-treated control cells. The downregulation of CCNA2 and CDC25C following combination therapy further supported the observation. Subsequent analyses demonstrated that combination treatment inhibited 70 kDa ribosomal protein S6 kinase (p70S6K) phosphorylation, and increased Bim expression. Apoptosis of HCC cells were accompanied by increased poly (ADP-ribose) polymerase cleavage and caspase-9 activation. Next, we observed that a combination therapy significantly delayed the progression of HCC xenograft growth as compared to vehicle control. Together, our results suggested combining cabozantinib and silmitasertib would be a promising treatment option for HCC.
Collapse
Affiliation(s)
- Yuki Haga
- Department of Internal Medicine, Saint Louis University, St. Louis, Missouri, USA
| | - Ranjit Ray
- Department of Internal Medicine, Saint Louis University, St. Louis, Missouri, USA
- Department of Molecular Microbiology & Immunology, Saint Louis University, St. Louis, Missouri, USA
| | - Ratna B Ray
- Department of Molecular Microbiology & Immunology, Saint Louis University, St. Louis, Missouri, USA
- Department of Pathology, Saint Louis University, St. Louis, Missouri, USA
| |
Collapse
|
3
|
Yun HM, Kim SH, Kwon YJ, Park KR. Effect of Spicatoside a on Anti-Osteosarcoma MG63 Cells through Reactive Oxygen Species Generation and the Inhibition of the PI3K-AKT-mTOR Pathway. Antioxidants (Basel) 2024; 13:1162. [PMID: 39456416 PMCID: PMC11505237 DOI: 10.3390/antiox13101162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Osteosarcoma is a primary malignant tumor found in the bones of children and adolescents. Unfortunately, many patients do not respond well to treatment and succumb to the illness. Therefore, it is necessary to discover novel bioactive compounds to overcome therapeutic limitations. Liriope platyphylla Wang et Tang is a well-known herb used in oriental medicine. Studies have shown that metabolic diseases can be clinically treated using the roots of L. platyphylla. Recent studies have demonstrated the anticarcinoma potential of root extracts; however, the exact mechanism remains unclear. The aim of this study was to examine the anti-osteosarcoma activity of a single compound extracted from the dried roots of L. platyphylla. We purified Spicatoside A (SpiA) from the dried roots of L. platyphylla. SpiA significantly inhibited the proliferation of human osteosarcoma MG63 cells in a dose- and time-dependent manner. SpiA also regulated the expression of various downstream proteins that mediate apoptosis (PARP, Bcl-2, and Bax), cell growth (cyclin D1, Cdk4, and Cdk6), angiogenesis (VEGF), and metastasis (MMP13). The Proteome Profiler Human Phospho-Kinase Array Kit showed that the AKT signaling protein was a target of SpiA in osteosarcoma cells. We also found that SpiA suppressed the constitutive activation of the PI3K-AKT-mTOR-p70S6K1 signaling pathway. We further validated the effects of SpiA on the AKT signaling pathway. SpiA induced autophagosome formation and suppressed necroptosis (a form of programmed cell death). SpiA increased the generation of reactive oxygen species (ROS) and led to the loss of mitochondrial membrane potential. N-acetylcysteine (NAC)-induced inhibition of ROS generation reduced SpiA-induced AKT inhibition, apoptotic cell death, and anti-metastatic effects by suppressing cell migration and invasion. Overall, these results highlight the anti-osteosarcoma effect of SpiA by inhibiting the AKT signaling pathway through ROS generation, suggesting that SpiA may be a promising compound for the treatment of human osteosarcoma.
Collapse
Affiliation(s)
- Hyung-Mun Yun
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Soo Hyun Kim
- National Development Institute for Korean Medicine, Gyeongsan 38540, Republic of Korea; (S.H.K.); (Y.-J.K.)
| | - Yoon-Ju Kwon
- National Development Institute for Korean Medicine, Gyeongsan 38540, Republic of Korea; (S.H.K.); (Y.-J.K.)
| | - Kyung-Ran Park
- Korea Basic Science Institute (KBSI), Gwangju 61751, Republic of Korea
| |
Collapse
|
4
|
Ibrahim MM, Azmi MN, Alhawarri MB, Kamal NNSNM, AbuMahmoud H. Synthesis, characterization and bioactivity of new pyridine-2(H)-one, nicotinonitrile, and furo[2,3-b]pyridine derivatives. Mol Divers 2024:10.1007/s11030-024-10934-5. [PMID: 39009909 DOI: 10.1007/s11030-024-10934-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 07/09/2024] [Indexed: 07/17/2024]
Abstract
Pyridone heterocycles, such as furo[2,3-b]pyridines, have emerged as prominent scaffolds in medicinal chemistry due to their versatile pharmacological properties, including significant anticancer activity. In this study, we successfully synthesized new pyridine-2(H)-one, nicotinonitrile, and furo[2,3-b]pyridine derivatives from chalcones bearing 4-(benzyloxy)phenyl and dichlorothiophenyl subunits to explore their therapeutic potential against breast cancer. By employing a synthetic strategy involving Claisen-Schmidt condensation followed by sequential cyclizations and functional modifications, we synthesized and characterized four compounds (MI-S0, MI-S1, MI-S2, and MI-S3) using various spectroscopic methods, including FT-IR, 1H-NMR, 13C-NMR, DEPT, H,H- and C,H-COSY, and HRMS. The in vitro cytotoxic activity of these compounds was evaluated against two breast cancer cell lines, MCF-7 and MDA-MB-231, and compared with a noncancerous breast cell line, MCF-10A. All compounds exhibited potent cytotoxic activities with minimal selectivity toward normal cells. Molecular docking studies targeting the serine/threonine kinase AKT1, estrogen receptor alpha (ERα), and human epidermal growth factor receptor 2 (HER2) revealed strong binding affinities, suggesting a mechanism involving the disruption of key cellular signaling pathways. These findings underscore the potential of furo[2,3-b]pyridine derivatives as promising candidates for further development into anticancer agents, laying the groundwork for future investigations into their selective therapeutic efficacy and molecular mechanisms of action.
Collapse
Affiliation(s)
- Mohammad M Ibrahim
- Department of Chemistry, Faculty of Science, Al Al-Bayt University, P.O. BOX 130040, Al-Mafraq, 25113, Jordan.
| | - Mohamad Nurul Azmi
- School of Chemical Sciences, Universiti Sains Malaysia, 11800, Minden, Pulau Pinang, Malaysia
| | - Maram B Alhawarri
- Department of Pharmacy, Faculty of Pharmacy, Jadara University, P.O.Box 733, Irbid, 21110, Jordan
| | - Nik Nur Syazni Nik Mohamed Kamal
- Department of Toxicology, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200, Kepala Batas, Penang, Malaysia
| | - Hasan AbuMahmoud
- Department of Chemistry, Faculty of Science, Al Al-Bayt University, P.O. BOX 130040, Al-Mafraq, 25113, Jordan
| |
Collapse
|
5
|
Wang Y, Li J, Nakahata S, Iha H. Complex Role of Regulatory T Cells (Tregs) in the Tumor Microenvironment: Their Molecular Mechanisms and Bidirectional Effects on Cancer Progression. Int J Mol Sci 2024; 25:7346. [PMID: 39000453 PMCID: PMC11242872 DOI: 10.3390/ijms25137346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024] Open
Abstract
Regulatory T cells (Tregs) possess unique immunosuppressive activity among CD4-positive T cells. Tregs are ubiquitously present in mammals and function to calm excessive immune responses, thereby suppressing allergies or autoimmune diseases. On the other hand, due to their immunosuppressive function, Tregs are thought to promote cancer progression. The tumor microenvironment (TME) is a multicellular system composed of many cell types, including tumor cells, infiltrating immune cells, and cancer-associated fibroblasts (CAFs). Within this environment, Tregs are recruited by chemokines and metabolic factors and impede effective anti-tumor responses. However, in some cases, their presence can also improve patient's survival rates. Their functional consequences may vary across tumor types, locations, and stages. An in-depth understanding of the precise roles and mechanisms of actions of Treg is crucial for developing effective treatments, emphasizing the need for further investigation and validation. This review aims to provide a comprehensive overview of the complex and multifaceted roles of Tregs within the TME, elucidating cellular communications, signaling pathways, and their impacts on tumor progression and highlighting their potential anti-tumor mechanisms through interactions with functional molecules.
Collapse
Affiliation(s)
- Yu Wang
- Department of Microbiology, Oita University Faculty of Medicine, Yufu 879-5593, Japan;
| | - Jiazhou Li
- Division of Biological Information Technology, Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima 890-8544, Japan;
- Division of HTLV-1/ATL Carcinogenesis and Therapeutics, Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima 890-8544, Japan;
| | - Shingo Nakahata
- Division of HTLV-1/ATL Carcinogenesis and Therapeutics, Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima 890-8544, Japan;
| | - Hidekatsu Iha
- Department of Microbiology, Oita University Faculty of Medicine, Yufu 879-5593, Japan;
- Division of Pathophysiology, The Research Center for GLOBAL and LOCAL Infectious Diseases (RCGLID), Oita University, Yufu 879-5593, Japan
| |
Collapse
|
6
|
Morimoto A, Takasugi N, Pan Y, Kubota S, Dohmae N, Abiko Y, Uchida K, Kumagai Y, Uehara T. Methyl vinyl ketone and its analogs covalently modify PI3K and alter physiological functions by inhibiting PI3K signaling. J Biol Chem 2024; 300:105679. [PMID: 38272219 PMCID: PMC10881440 DOI: 10.1016/j.jbc.2024.105679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/12/2024] [Accepted: 01/13/2024] [Indexed: 01/27/2024] Open
Abstract
Reactive carbonyl species (RCS), which are abundant in the environment and are produced in vivo under stress, covalently bind to nucleophilic residues such as Cys in proteins. Disruption of protein function by RCS exposure is predicted to play a role in the development of various diseases such as cancer and metabolic disorders, but most studies on RCS have been limited to simple cytotoxicity validation, leaving their target proteins and resulting physiological changes unknown. In this study, we focused on methyl vinyl ketone (MVK), which is one of the main RCS found in cigarette smoke and exhaust gas. We found that MVK suppressed PI3K-Akt signaling, which regulates processes involved in cellular homeostasis, including cell proliferation, autophagy, and glucose metabolism. Interestingly, MVK inhibits the interaction between the epidermal growth factor receptor and PI3K. Cys656 in the SH2 domain of the PI3K p85 subunit, which is the covalently binding site of MVK, is important for this interaction. Suppression of PI3K-Akt signaling by MVK reversed epidermal growth factor-induced negative regulation of autophagy and attenuated glucose uptake. Furthermore, we analyzed the effects of the 23 RCS compounds with structures similar to MVK and showed that their analogs also suppressed PI3K-Akt signaling in a manner that correlated with their similarities to MVK. Our study demonstrates the mechanism of MVK and its analogs in suppressing PI3K-Akt signaling and modulating physiological functions, providing a model for future studies analyzing environmental reactive species.
Collapse
Affiliation(s)
- Atsushi Morimoto
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Nobumasa Takasugi
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Yuexuan Pan
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Sho Kubota
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit, Technology Platform Division, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Yumi Abiko
- Graduate School of Biomedical Science, Nagasaki University, Nagasaki, Japan
| | - Koji Uchida
- Laboratory of Food Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yoshito Kumagai
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Takashi Uehara
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan.
| |
Collapse
|
7
|
Rakoczy K, Kaczor J, Sołtyk A, Szymańska N, Stecko J, Sleziak J, Kulbacka J, Baczyńska D. Application of Luteolin in Neoplasms and Nonneoplastic Diseases. Int J Mol Sci 2023; 24:15995. [PMID: 37958980 PMCID: PMC10650338 DOI: 10.3390/ijms242115995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/31/2023] [Accepted: 11/04/2023] [Indexed: 11/15/2023] Open
Abstract
Researchers are amazed at the multitude of biological effects of 3',4',5,7-tetrahydroxyflavone, more commonly known as luteolin, as it simultaneously has antioxidant and pro-oxidant, as well as antimicrobial, anti-inflammatory, and cancer-preventive, properties. The anticancer properties of luteolin constitute a mosaic of pathways due to which this flavonoid influences cancer cells. Not only is it able to induce apoptosis and inhibit cancer cell proliferation, but it also suppresses angiogenesis and metastasis. Moreover, luteolin succeeds in cancer cell sensitization to therapeutically induced cytotoxicity. Nevertheless, apart from its promising role in chemoprevention, luteolin exhibits numerous potential utilizations in patients with conditions other than neoplasms, which include inflammatory skin diseases, diabetes mellitus, and COVID-19. This review aims to present the multidimensionality of the luteolin's impact on both neoplastic and nonneoplastic diseases. When it comes to neoplasms, we intend to describe the complexity of the molecular mechanisms that underlay luteolin's anticancer effectiveness, as well as to prove the usefulness of integrating this flavonoid in cancer therapy via the analysis of recent research on breast, colon, and lung cancer. Regarding nonneoplastic diseases, this review aims to emphasize the importance of researching the potential of luteolin in areas such as diabetology, virology, and dermatology as it summarizes the most important discoveries in those fields regarding its application.
Collapse
Affiliation(s)
- Katarzyna Rakoczy
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (K.R.); (J.K.); (A.S.); (N.S.); (J.S.); (J.S.)
| | - Justyna Kaczor
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (K.R.); (J.K.); (A.S.); (N.S.); (J.S.); (J.S.)
| | - Adam Sołtyk
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (K.R.); (J.K.); (A.S.); (N.S.); (J.S.); (J.S.)
| | - Natalia Szymańska
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (K.R.); (J.K.); (A.S.); (N.S.); (J.S.); (J.S.)
| | - Jakub Stecko
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (K.R.); (J.K.); (A.S.); (N.S.); (J.S.); (J.S.)
| | - Jakub Sleziak
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (K.R.); (J.K.); (A.S.); (N.S.); (J.S.); (J.S.)
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland
- Department of Immunology, State Research Institute Centre for Innovative Medicine, Santariškių 5, 08410 Vilnius, Lithuania
| | - Dagmara Baczyńska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland
| |
Collapse
|
8
|
Ciarambino T, Crispino P, Guarisco G, Giordano M. Gender Differences in Insulin Resistance: New Knowledge and Perspectives. Curr Issues Mol Biol 2023; 45:7845-7861. [PMID: 37886939 PMCID: PMC10605445 DOI: 10.3390/cimb45100496] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 10/28/2023] Open
Abstract
Insulin resistance is the main mechanism in a whole series of pathological conditions, which are not only of metabolic interest but also of a systemic type. This phenomenon means that the body's cells become less sensitive to the hormone insulin, leading to higher levels of insulin in the blood. Insulin resistance is a phenomenon that can be found in both men and women and in particular, in the latter, it is found mainly after menopause. Premenopause, hormonal fluctuations during the menstrual cycle, and the presence of estrogen can affect insulin sensitivity. Androgens, such as testosterone, are typically higher in men and can contribute to insulin resistance. In both sexes, different human body types affect the distribution and location of body fat, also influencing the development of diabetes and cardiovascular disease. Insulin resistance is also associated with some neurological and neurogenerative disorders, polycystic ovary syndrome, atherosclerosis, and some of the main neoplastic pathologies. A healthy lifestyle, including regular physical activity, a balanced diet, and self-maintenance, can help to prevent the onset of insulin resistance, regardless of gender, although the different habits between men and women greatly affect the implementation of preventative guidelines that help in fighting the manifestations of this metabolic disorder. This review may help to shed light on gender differences in metabolic diseases by placing a necessary focus on personalized medical management and by inspiring differentiated therapeutic approaches.
Collapse
Affiliation(s)
- Tiziana Ciarambino
- Internal Medicine Department, Hospital of Marcianise, 81100 Caserta, Italy
| | - Pietro Crispino
- Internal Medicine Department, Hospital of Latina, 04100 Latina, Italy;
| | - Gloria Guarisco
- Diabetology, University Sapienza of Rome, Hospital of Latina, 04100 Latina, Italy;
| | - Mauro Giordano
- Internal Medicine Department, University of Campania, L. Vanvitelli, 81100 Naples, Italy;
| |
Collapse
|
9
|
Xie S, Zhu J, Li J, Zhan F, Yao H, Xu J, Xu S. Small-Molecule Hydrophobic Tagging: A Promising Strategy of Druglike Technology for Targeted Protein Degradation. J Med Chem 2023; 66:10917-10933. [PMID: 37535706 DOI: 10.1021/acs.jmedchem.3c00736] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Targeted protein degradation (TPD) technologies have catalyzed a paradigm shift in therapeutic strategies and offer innovative avenues for drug design. Hydrophobic tags (HyTs) are bifunctional TPD molecules consisting of a ″lipophilic small-molecule tags″ group and a small-molecule ligand for the target protein. Despite the vast potential of HyTs, they have received relatively limited attention as a promising frontier. Leveraging their lower molecular weight and reduced numbers of hydrogen bond donors/acceptors (HBDs/HBAs) in comparison with proteolysis-targeting chimeras (PROTACs), HyTs present a compelling approach for enhancing druglike properties. In this Perspective, we explore the diverse range of HyT structures and their corresponding degradation mechanisms, thereby illuminating their broad applicability in targeting a diverse array of proteins, including previously elusive targets. Moreover, we scrutinize the challenges and opportunities entailed in developing this technology as a viable and fruitful strategy for drug discovery.
Collapse
Affiliation(s)
- Shaowen Xie
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| | - Jingjie Zhu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| | - Junda Li
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| | - Feiyan Zhan
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| | - Hong Yao
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| | - Jinyi Xu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| | - Shengtao Xu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
- Department of Hepatobiliary Surgery, The First People's Hospital of Kunshan, Suzhou 215300, China
| |
Collapse
|
10
|
Bang J, Jun M, Lee S, Moon H, Ro SW. Targeting EGFR/PI3K/AKT/mTOR Signaling in Hepatocellular Carcinoma. Pharmaceutics 2023; 15:2130. [PMID: 37631344 PMCID: PMC10458925 DOI: 10.3390/pharmaceutics15082130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Hepatocellular carcinoma (HCC) poses a significant global health concern, with its incidence steadily increasing. The development of HCC is a multifaceted, multi-step process involving alterations in various signaling cascades. In recent years, significant progress has been made in understanding the molecular signaling pathways that play central roles in hepatocarcinogenesis. In particular, the EGFR/PI3K/AKT/mTOR signaling pathway in HCC has garnered renewed attention from both basic and clinical researchers. Preclinical studies in vitro and in vivo have shown the effectiveness of targeting the key components of this signaling pathway in human HCC cells. Thus, targeting these signaling pathways with small molecule inhibitors holds promise as a potential therapeutic option for patients with HCC. In this review, we explore recent advancements in understanding the role of the EGFR/PI3K/AKT/mTOR signaling pathway in HCC and assess the effectiveness of targeting this signaling cascade as a potential strategy for HCC therapy based on preclinical studies.
Collapse
Affiliation(s)
| | | | | | | | - Simon Weonsang Ro
- Department of Genetics and Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si 17104, Republic of Korea; (J.B.); (M.J.); (S.L.); (H.M.)
| |
Collapse
|
11
|
Chiou JT, Hsu CC, Hong YC, Lee YC, Chang LS. Cytarabine-induced destabilization of MCL1 mRNA and protein triggers apoptosis in leukemia cells. Biochem Pharmacol 2023; 211:115494. [PMID: 36924905 DOI: 10.1016/j.bcp.2023.115494] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/11/2023] [Accepted: 03/03/2023] [Indexed: 03/17/2023]
Abstract
Although cytarabine (Ara-C) is the mainstay of treatment for acute myeloid leukemia (AML), its cytotoxic mechanisms for inducing apoptosis are poorly understood. Therefore, we investigated the Ara-C-induced cell death pathway in human AML U937 cells. Ara-C-induced downregulation of MCL1 is associated with the induction of mitochondrial depolarization and apoptosis. Ara-C triggered NOX4-mediated ROS production, which in turn activated p38 MAPK but inactivated AKT. Ara-C-induced DNA damage modulates p38 MAPK activation without affecting AKT inactivation in U937 cells. Inactivated AKT promotes GSK3β-dependent CREB phosphorylation, which in turn increases NOXA transcription, thereby triggering the degradation of MCL1 protein. Activated p38 MAPK induces HuR downregulation, leading to accelerated MCL1 mRNA turnover. A similar pathway also explains the Ara-C-induced THP-1 cell death. Collectively, our data confirm that Ara-C-triggered apoptosis in the AML cell lines U937 and THP-1 is mediated through the destabilization of MCL1 mRNA and protein. Furthermore, Ara-C acts synergistically with the BCL2 inhibitor ABT-199 to induce cell death in ABT-199-resistant and parental U937 cells by inhibiting MCL1 expression.
Collapse
Affiliation(s)
- Jing-Ting Chiou
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Chia-Chi Hsu
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Ying-Chung Hong
- Division of Hematology/Oncology, Department of Medicine, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
| | - Yuan-Chin Lee
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Long-Sen Chang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan; Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
12
|
Zhang N, Lv F, Qiu F, Han D, Xu Y, Liang W. Pathogenic fungi neutralize plant-derived ROS via Srpk1 deacetylation. EMBO J 2023; 42:e112634. [PMID: 36891678 PMCID: PMC10152141 DOI: 10.15252/embj.2022112634] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 02/06/2023] [Accepted: 02/20/2023] [Indexed: 03/10/2023] Open
Abstract
In response to infection, plants can induce the production of reactive oxygen species (ROS) to restrict pathogen invasion. In turn, adapted pathogens have evolved a counteracting mechanism of enzymatic ROS detoxification, but how it is activated remains elusive. Here, we show that in the tomato vascular wilt pathogen Fusarium oxysporum f. sp. lycopersici (Fol) this process is initiated by deacetylation of the FolSrpk1 kinase. Upon ROS exposure, Fol decreases FolSrpk1 acetylation on the K304 residue by altering the expression of the acetylation-controlling enzymes. Deacetylated FolSrpk1 disassociates from the cytoplasmic FolAha1 protein, thus enabling its nuclear translocation. Increased accumulation of FolSrpk1 in the nucleus allows for hyperphosphorylation of its phosphorylation target FolSr1 that subsequently enhances transcription of different types of antioxidant enzymes. Secretion of these enzymes removes plant-produced H2 O2 , and enables successful Fol invasion. Deacetylation of FolSrpk1 homologs has a similar function in Botrytis cinerea and likely other fungal pathogens. These findings reveal a conserved mechanism for initiation of ROS detoxification upon plant fungal infection.
Collapse
Affiliation(s)
- Ning Zhang
- College of Plant Health and Medicine, Engineering Research Center for Precision Pest Management for Fruits and Vegetables of Qingdao, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, China
| | - Fangjiao Lv
- College of Plant Health and Medicine, Engineering Research Center for Precision Pest Management for Fruits and Vegetables of Qingdao, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, China
| | - Fahui Qiu
- College of Plant Health and Medicine, Engineering Research Center for Precision Pest Management for Fruits and Vegetables of Qingdao, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, China
| | - Dehai Han
- College of Plant Health and Medicine, Engineering Research Center for Precision Pest Management for Fruits and Vegetables of Qingdao, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, China
| | - Yang Xu
- College of Plant Health and Medicine, Engineering Research Center for Precision Pest Management for Fruits and Vegetables of Qingdao, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, China
| | - Wenxing Liang
- College of Plant Health and Medicine, Engineering Research Center for Precision Pest Management for Fruits and Vegetables of Qingdao, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
13
|
The noncatalytic regions of the tyrosine kinase Tnk1 are important for activity and substrate specificity. J Biol Chem 2022; 298:102664. [PMID: 36334623 DOI: 10.1016/j.jbc.2022.102664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 11/29/2022] Open
Abstract
Human Tnk1 (thirty-eight negative kinase 1) is a member of the Ack family of nonreceptor tyrosine kinases. Tnk1 contains a sterile alpha motif, a tyrosine kinase catalytic domain, an SH3 (Src homology 3) domain, and a large C-terminal region that contains a ubiquitin association domain. However, specific physiological roles for Tnk1 have not been characterized in depth. Here, we expressed and purified Tnk1 from Sf9 insect cells and established an in vitro assay system using a peptide substrate derived from the Wiskott-Aldrich Syndrome Protein (WASP). By Tnk1 expression in mammalian cells, we found that the N-terminal SAM domain is important for self-association and kinase activity. We also studied a fusion protein, originally discovered in a Hodgkin's Lymphoma cell line, that contains an unrelated sequence from the C17ORF61 gene fused to the C-terminus of Tnk1. Cells expressing the fusion protein showed increased tyrosine phosphorylation of cellular substrates relative to cells expressing WT Tnk1. A truncated Tnk1 construct (residues 1-465) also showed enhanced phosphorylation, indicating that the C17ORF61 sequence was dispensable for the effect. Additionally, in vitro kinase assays with the WASP peptide substrate showed no increase in intrinsic Tnk1 activity in C-terminally truncated constructs, suggesting that the truncations did not simply remove an autoinhibitory element. Fluorescence microscopy experiments demonstrated that the C-terminus of Tnk1 plays an important role in the subcellular localization of the kinase. Taken together, our data suggest that the noncatalytic regions of Tnk1 play important roles in governing activity and substrate phosphorylation.
Collapse
|
14
|
Suryawan A, Rudar M, Naberhuis JK, Fiorotto ML, Davis TA. Preterm birth alters the feeding-induced activation of Akt signaling in the muscle of neonatal piglets. Pediatr Res 2022:10.1038/s41390-022-02382-4. [PMID: 36402914 DOI: 10.1038/s41390-022-02382-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 10/04/2022] [Accepted: 10/27/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND Postnatal lean mass accretion is commonly reduced in preterm infants. This study investigated mechanisms involved in the blunted feeding-induced activation of Akt in the skeletal muscle of preterm pigs that contributes to lower protein synthesis rates. METHODS On day 3 following cesarean section, preterm and term piglets were fasted or fed an enteral meal. Activation of Akt signaling pathways in skeletal muscle was determined. RESULTS Akt1 and Akt2, but not Akt3, phosphorylation were lower in the skeletal muscle of preterm than in term pigs (P < 0.05). Activation of Akt-positive regulators, PDK1 and mTORC2, but not FAK, were lower in preterm than in term (P < 0.05). The formation of Akt complexes with GAPDH and Hsp90 and the abundance of Ubl4A were lower in preterm than in term (P < 0.05). The abundance of Akt inhibitors, PHLPP and SHIP2, but not PTEN and IP6K1, were higher in preterm than in term pigs (P < 0.05). PP2A activation was inhibited by feeding in term but not in preterm pigs (P < 0.05). CONCLUSIONS Our results suggest that preterm birth impairs regulatory components involved in Akt activation, thereby limiting the anabolic response to feeding. This anabolic resistance likely contributes to the reduced lean accretion following preterm birth. IMPACT The Akt-mTORC1 pathway plays an important role in the regulation of skeletal muscle protein synthesis in neonates. This is the first evidence to demonstrate that, following preterm birth, the postprandial activation of positive regulators of Akt in the skeletal muscle is reduced, whereas the activation of negative regulators of Akt is enhanced. This anabolic resistance of Akt signaling in response to feeding likely contributes to the reduced accretion of lean mass in premature infants. These results may provide potential novel molecular targets for intervention to enhance lean growth in preterm neonates.
Collapse
Affiliation(s)
- Agus Suryawan
- United States Department of Agriculture/Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Marko Rudar
- Department of Animal Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Jane K Naberhuis
- United States Department of Agriculture/Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Marta L Fiorotto
- United States Department of Agriculture/Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Teresa A Davis
- United States Department of Agriculture/Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
15
|
Xu F, Zhang X, Chen Z, He S, Guo J, Yu L, Wang Y, Hou C, Ai-Furas H, Zheng Z, Smaill JB, Patterson AV, Zhang ZM, Chen L, Ren X, Ding K. Discovery of Isoform-Selective Akt3 Degraders Overcoming Osimertinib-Induced Resistance in Non-Small Cell Lung Cancer Cells. J Med Chem 2022; 65:14032-14048. [PMID: 36173763 DOI: 10.1021/acs.jmedchem.2c01246] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
EGFR inhibitor therapies have brought significant benefit to NSCLC patients. However, all patients gradually progress to acquired resistance via diverse mechanisms. Akt3 overexpression but not Akt1/2 is one of the found molecular events that mediate osimertinib (1) resistance in NSCLC patients. Here, we report 12l as the first bona fide isoform-selective Akt3 degrader which potently induced proteasomal degradation of the target both in vitro and in vivo, whereas its effects on Akt1/2 were minimal. Using 12l as a tool, non-canonical function of Akt3 was validated to contribute greatly to survival of 1-resistant H1975OR NSCLC cells. Degrader 12l potently suppressed the growth of H1975OR as well as several NSCLC cell lines with low nanomolar IC50 values and demonstrated promising in vivo antitumor efficacy in nude mice bearing H1975OR or PC9 NSCLC xenograft models. Selective degradation of Akt3 may be considered as a novel strategy for human cancer therapy.
Collapse
Affiliation(s)
- Fang Xu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of PR China, College of Pharmacy, Jinan University, Guangzhou 510632, China.,The First Affiliated Hospital (Huaqiao Hospital), Jinan University, Guangzhou 510632, China
| | - Xin Zhang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of PR China, College of Pharmacy, Jinan University, Guangzhou 510632, China.,The First Affiliated Hospital (Huaqiao Hospital), Jinan University, Guangzhou 510632, China
| | - Zhipeng Chen
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Sheng He
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of PR China, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Jing Guo
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of PR China, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Lei Yu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of PR China, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Yongjin Wang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of PR China, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Caiyun Hou
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of PR China, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Hawaa Ai-Furas
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of PR China, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Zongyao Zheng
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jeff B Smaill
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Adam V Patterson
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Zhi-Min Zhang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of PR China, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Liang Chen
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Xiaomei Ren
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 210530, China
| | - Ke Ding
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of PR China, College of Pharmacy, Jinan University, Guangzhou 510632, China.,The First Affiliated Hospital (Huaqiao Hospital), Jinan University, Guangzhou 510632, China.,State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 210530, China
| |
Collapse
|
16
|
Asare O, Ayala Y, Hafeez BB, Ramirez-Correa GA, Cho YY, Kim DJ. Ultraviolet Radiation Exposure and its Impacts on Cutaneous Phosphorylation Signaling in Carcinogenesis: Focusing on Protein Tyrosine Phosphatases †. Photochem Photobiol 2022; 99:344-355. [PMID: 36029171 DOI: 10.1111/php.13703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/23/2022] [Indexed: 01/14/2023]
Abstract
Sunlight exposure is a significant risk factor for UV-induced deteriorating transformations of epidermal homeostasis leading to skin carcinogenesis. The ability of UVB radiation to cause melanoma, as well as basal and squamous cell carcinomas, makes UVB the most harmful among the three known UV ranges. UVB-induced DNA mutations and dysregulation of signaling pathways contribute to skin cancer formation. Among various signaling pathways modulated by UVB, tyrosine phosphorylation signaling which is mediated by the action of protein tyrosine kinases (PTKs) on specific tyrosine residues is highly implicated in photocarcinogenesis. Following UVB irradiation, PTKs get activated and their downstream signaling pathways contribute to photocarcinogenesis by promoting the survival of damaged keratinocytes and increasing cell proliferation. While UVB activates oncogenic signaling pathways, it can also activate tumor suppressive signaling pathways as initial protective mechanisms to maintain epidermal homeostasis. Tyrosine dephosphorylation is one of the protective mechanisms and is mediated by the action of protein tyrosine phosphatases (PTPs). PTP can counteract UVB-mediated PTK activation and downregulate oncogenic signaling pathways. However, PTPs have not been studied extensively in photocarcinogenesis with previous studies regarding their inactivation induced by UVB. This current review will summarize the recent progress in the protective function of PTPs in epidermal photocarcinogenesis.
Collapse
Affiliation(s)
- Obed Asare
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX
| | - Yasmin Ayala
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX
| | - Bilal Bin Hafeez
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX.,South Texas Center for Excellence in Cancer Research, University of Texas Rio Grande Valley, Edinburg, TX
| | - Genaro A Ramirez-Correa
- Department of Molecular Science, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX
| | - Yong-Yeon Cho
- College of Pharmacy, The Catholic University of Korea, Bucheon-si, Korea
| | - Dae Joon Kim
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX.,South Texas Center for Excellence in Cancer Research, University of Texas Rio Grande Valley, Edinburg, TX.,Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX
| |
Collapse
|
17
|
Seo SH, Shin JH, Ham DW, Shin EH. PTEN/AKT signaling pathway related to hTERT downregulation and telomere shortening induced in Toxoplasma GRA16-expressing colorectal cancer cells. Biomed Pharmacother 2022; 153:113366. [PMID: 35810694 DOI: 10.1016/j.biopha.2022.113366] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 11/30/2022] Open
Abstract
This study investigated whether the molecular mechanism of granule protein 16 (GRA16), a dense granule protein of Toxoplasma gondii (T. gondii) that induces cancer cell apoptosis, results in telomere shortening in cancer cells. The molecular mechanism of GRA16 responsible for regulating telomerase reverse transcriptase (hTERT) activity and telomere shortening was investigated using GRA16-transferred HCT116 human colorectal cancer cells (GRA16-stable cells). GRA16 directly decreased hTERT expression by downregulating the expression and phosphorylation of hTERT transcriptional factors accompanied by decreased expression of shelterin complex molecules. Moreover, GRA16 resulted in cancer cell death through reduction of telomerase activity which leads to telomere shortening (decreased relative ratio of telomeric repeat-amplified sequence to that of a single-copy gene) (T/S ratio)), and at the same time gamma-H2A histone family member X (γ-H2A.X) stained nucleus was increased in the cells. The molecular mechanism between GRA16 and hTERT inactivation was revealed using inhibitors for phosphatase and tensin homolog (PTEN) and protein phosphatase 2A (PP2A) as well as siRNAs against PTEN and PP2A. hTERT dephosphorylation was induced effectively by the signaling pathway of HAUSP/PTEN/p-AKT(S473) but not by PP2A-B55/p-AKT(T308). Inhibition of the PTEN signaling pathway increased mRNA expressions in hTERT transcriptional factors, cell cycle activating factors, and apoptosis-inhibiting factors. When HCT116 cells were infected with T. gondii, the number of γ-H2A.X-stained nuclei also increased and p-hTERT/hTERT decreased as in GRA16-stable cells. Altogether, our results emphasize that GRA16 is a novel promising telomerase inhibitor that causes telomere shortening through telomerase inactivation by inducing the activation of the tumor suppressor PTEN.
Collapse
Affiliation(s)
- Seung-Hwan Seo
- Department of Tropical Medicine and Parasitology, Seoul National University College of Medicine, and Institute of Endemic Diseases, Seoul 03080, Republic of Korea
| | - Ji-Hun Shin
- Department of Tropical Medicine and Parasitology, Seoul National University College of Medicine, and Institute of Endemic Diseases, Seoul 03080, Republic of Korea
| | - Do-Won Ham
- Department of Tropical Medicine and Parasitology, Seoul National University College of Medicine, and Institute of Endemic Diseases, Seoul 03080, Republic of Korea
| | - Eun-Hee Shin
- Department of Tropical Medicine and Parasitology, Seoul National University College of Medicine, and Institute of Endemic Diseases, Seoul 03080, Republic of Korea; Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea.
| |
Collapse
|
18
|
Lezcano V, Morelli S, González-Pardo V. Molecular and cellular outcomes of quercetin actions on healthy and tumor osteoblasts. Biochimie 2022; 199:46-59. [PMID: 35447220 DOI: 10.1016/j.biochi.2022.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/11/2022] [Accepted: 04/11/2022] [Indexed: 11/26/2022]
Abstract
There is a global trend in the use of natural bioactive compounds to complement conventional therapies in bone diseases. In this work, we studied the effects of the phytoestrogen quercetin (QUE) in healthy and tumor osteoblasts. We found that QUE (1 μM, 48 h) significantly increased the cell number and the viability of healthy human osteoblasts (hFOB cells) determined by a trypan blue and a MTS assay, respectively, among other concentrations tested. In addition, wound healing and cellular adhesion assays also demonstrated that 1 μM of QUE significantly stimulated both parameters in osteoblasts. Moreover, osteoblast differentiation was also triggered by QUE in an osteogenic medium by measuring alkaline phosphatase activity, calcium deposition, and collagen levels. Herein, a concentration of 0.01 μM of QUE showed an increment in these differentiation markers and an activation of AKT/GSK3β/β-catenin pathway, determined by a Western blot analysis. In addition, immunocytochemistry and subcellular fraction studies indicated an increase of β-catenin localization in the plasma membrane after QUE treatment. Otherwise, QUE (20-100 μM) decreased the cell number and the viability in tumor osteoblasts (ROS 17/2.8 cells) after 48 h. Furthermore, QUE (100 μM) decreased AKT(Ser473) and the pro-apoptotic protein BAD(Ser136) phosphorylation. In addition, the ERK1/2 phosphorylation increased leading to osteosarcoma cell death since pre-treatment with the MEK inhibitor PD98059 had reverted QUE effect. Altogether, these results indicate that to stimulate the osteoblastogenesis low concentrations of QUE are required; however, these concentrations are not effective in inhibiting the growth of tumor osteoblasts, for which higher concentrations are required.
Collapse
Affiliation(s)
- Virginia Lezcano
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), 8000, Bahía Blanca, Buenos Aires, Argentina; Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Argentina, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 8000, Bahía Blanca, Buenos Aires, Argentina.
| | - Susana Morelli
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), 8000, Bahía Blanca, Buenos Aires, Argentina; Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Argentina, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 8000, Bahía Blanca, Buenos Aires, Argentina
| | - Verónica González-Pardo
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), 8000, Bahía Blanca, Buenos Aires, Argentina; Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Argentina, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 8000, Bahía Blanca, Buenos Aires, Argentina
| |
Collapse
|
19
|
Villa-González M, Martín-López G, Pérez-Álvarez MJ. Dysregulation of mTOR Signaling after Brain Ischemia. Int J Mol Sci 2022; 23:ijms23052814. [PMID: 35269956 PMCID: PMC8911477 DOI: 10.3390/ijms23052814] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 02/04/2023] Open
Abstract
In this review, we provide recent data on the role of mTOR kinase in the brain under physiological conditions and after damage, with a particular focus on cerebral ischemia. We cover the upstream and downstream pathways that regulate the activation state of mTOR complexes. Furthermore, we summarize recent advances in our understanding of mTORC1 and mTORC2 status in ischemia–hypoxia at tissue and cellular levels and analyze the existing evidence related to two types of neural cells, namely glia and neurons. Finally, we discuss the potential use of mTORC1 and mTORC2 as therapeutic targets after stroke.
Collapse
Affiliation(s)
- Mario Villa-González
- Departamento de Biología (Fisiología Animal), Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (M.V.-G.); (G.M.-L.)
- Centro de Biología Molecular “Severo Ochoa” (CBMSO), Universidad Autónoma de Madrid/CSIC, 28049 Madrid, Spain
| | - Gerardo Martín-López
- Departamento de Biología (Fisiología Animal), Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (M.V.-G.); (G.M.-L.)
| | - María José Pérez-Álvarez
- Departamento de Biología (Fisiología Animal), Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (M.V.-G.); (G.M.-L.)
- Centro de Biología Molecular “Severo Ochoa” (CBMSO), Universidad Autónoma de Madrid/CSIC, 28049 Madrid, Spain
- Correspondence: ; Tel.: +34-91-497-2819
| |
Collapse
|
20
|
Blaudez F, Ivanovski S, Fournier B, Vaquette C. The utilisation of resolvins in medicine and tissue engineering. Acta Biomater 2022; 140:116-135. [PMID: 34875358 DOI: 10.1016/j.actbio.2021.11.047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 12/19/2022]
Abstract
Recent advances in the field of regenerative medicine and biomaterial science have highlighted the importance of controlling immune cell phenotypes at the biomaterial interface. These studies have clearly indicated that a rapid resolution of the inflammatory process, mediated by a switch in the macrophage population towards a reparative phenotype, is essential for tissue regeneration to occur. While various biomaterial surfaces have been developed in order to impart immunomodulatory properties to the resulting constructs, an alternative strategy involving the use of reparative biological cues, known as resolvins, is emerging in regenerative medicine. This review reports on the mechanisms via which resolvins participate in the resolution of inflammation and describes their current utilisation in pre-clinical and clinical settings, along with their effectiveness when combined with biomaterial constructs in tissue engineering applications. STATEMENT OF SIGNIFICANCE: The resolution of the inflammatory process is necessary for achieving tissue healing and regeneration. Resolvins are lipid mediators and play a key role in the resolution of the inflammatory response and can be used in as biological cues to promote tissue regeneration. This review describes the various biological inflammatory mechanisms and pathways involving resolvins and how their action results in a pro-healing response. The use of these molecules in the clinical setting is then summarised for various applications along with their limitations. Lastly, the review focuses on the emergence resolvins in tissue engineering products including the use of a more stable form which holds greater prospect for regenerative purposes.
Collapse
Affiliation(s)
- Fanny Blaudez
- School of Dentistry and Oral Health, Griffith University, Parklands Dr, Southport QLD 4222, Australia; The University of Queensland, School of Dentistry, 288 Herston Rd, Herston QLD 4006, Australia
| | - Saso Ivanovski
- The University of Queensland, School of Dentistry, 288 Herston Rd, Herston QLD 4006, Australia
| | - Benjamin Fournier
- The University of Queensland, School of Dentistry, 288 Herston Rd, Herston QLD 4006, Australia; Université de Paris, Dental Faculty Garanciere, Oral Biology Department, Centre of Reference for Oral Rare Diseases, 5 rue Garanciere, Paris, 75006, France; Centre de Recherche des Cordeliers, Université de Paris, Sorbonne Université, INSERM UMRS 1138, Molecular Oral Pathophysiology, 15-21 rue de l'école de médecine, 75006 Paris, France
| | - Cedryck Vaquette
- The University of Queensland, School of Dentistry, 288 Herston Rd, Herston QLD 4006, Australia.
| |
Collapse
|
21
|
Sun EJ, Wankell M, Palamuthusingam P, McFarlane C, Hebbard L. Targeting the PI3K/Akt/mTOR Pathway in Hepatocellular Carcinoma. Biomedicines 2021; 9:biomedicines9111639. [PMID: 34829868 PMCID: PMC8615614 DOI: 10.3390/biomedicines9111639] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/05/2021] [Accepted: 11/05/2021] [Indexed: 12/24/2022] Open
Abstract
Despite advances in the treatment of cancers through surgical procedures and new pharmaceuticals, the treatment of hepatocellular carcinoma (HCC) remains challenging as reflected by low survival rates. The PI3K/Akt/mTOR pathway is an important signaling mechanism that regulates the cell cycle, proliferation, apoptosis, and metabolism. Importantly, deregulation of the PI3K/Akt/mTOR pathway leading to activation is common in HCC and is hence the subject of intense investigation and the focus of current therapeutics. In this review article, we consider the role of this pathway in the pathogenesis of HCC, focusing on its downstream effectors such as glycogen synthase kinase-3 (GSK-3), cAMP-response element-binding protein (CREB), forkhead box O protein (FOXO), murine double minute 2 (MDM2), p53, and nuclear factor-κB (NF-κB), and the cellular processes of lipogenesis and autophagy. In addition, we provide an update on the current ongoing clinical development of agents targeting this pathway for HCC treatments.
Collapse
Affiliation(s)
- Eun Jin Sun
- Centre for Molecular Therapeutics, Department of Molecular and Cell Biology, Australian Institute of Tropical Medicine and Health, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia; (E.J.S.); (M.W.); (C.M.)
- College of Medicine and Dentistry, James Cook University, Townsville, QLD 4811, Australia
| | - Miriam Wankell
- Centre for Molecular Therapeutics, Department of Molecular and Cell Biology, Australian Institute of Tropical Medicine and Health, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia; (E.J.S.); (M.W.); (C.M.)
| | - Pranavan Palamuthusingam
- Institute of Surgery, The Townsville University Hospital, Townsville, QLD 4811, Australia;
- Mater Hospital, Townsville, QLD 4811, Australia
| | - Craig McFarlane
- Centre for Molecular Therapeutics, Department of Molecular and Cell Biology, Australian Institute of Tropical Medicine and Health, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia; (E.J.S.); (M.W.); (C.M.)
| | - Lionel Hebbard
- Centre for Molecular Therapeutics, Department of Molecular and Cell Biology, Australian Institute of Tropical Medicine and Health, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia; (E.J.S.); (M.W.); (C.M.)
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, NSW 2145, Australia
- Correspondence:
| |
Collapse
|
22
|
Insulin Signal Transduction Perturbations in Insulin Resistance. Int J Mol Sci 2021; 22:ijms22168590. [PMID: 34445300 PMCID: PMC8395322 DOI: 10.3390/ijms22168590] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/23/2021] [Accepted: 07/28/2021] [Indexed: 12/11/2022] Open
Abstract
Type 2 diabetes mellitus is a widespread medical condition, characterized by high blood glucose and inadequate insulin action, which leads to insulin resistance. Insulin resistance in insulin-responsive tissues precedes the onset of pancreatic β-cell dysfunction. Multiple molecular and pathophysiological mechanisms are involved in insulin resistance. Insulin resistance is a consequence of a complex combination of metabolic disorders, lipotoxicity, glucotoxicity, and inflammation. There is ample evidence linking different mechanistic approaches as the cause of insulin resistance, but no central mechanism is yet described as an underlying reason behind this condition. This review combines and interlinks the defects in the insulin signal transduction pathway of the insulin resistance state with special emphasis on the AGE-RAGE-NF-κB axis. Here, we describe important factors that play a crucial role in the pathogenesis of insulin resistance to provide directionality for the events. The interplay of inflammation and oxidative stress that leads to β-cell decline through the IAPP-RAGE induced β-cell toxicity is also addressed. Overall, by generating a comprehensive overview of the plethora of mechanisms involved in insulin resistance, we focus on the establishment of unifying mechanisms to provide new insights for the future interventions of type 2 diabetes mellitus.
Collapse
|
23
|
Świderska E, Strycharz J, Wróblewski A, Czarny P, Szemraj J, Drzewoski J, Śliwińska A. Chronic and Intermittent Hyperglycemia Modulates Expression of Key Molecules of PI3K/AKT Pathway in Differentiating Human Visceral Adipocytes. Int J Mol Sci 2021; 22:ijms22147712. [PMID: 34299331 PMCID: PMC8304829 DOI: 10.3390/ijms22147712] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 11/17/2022] Open
Abstract
Background: Due to its prominence in the regulation of metabolism and inflammation, adipose tissue is a major target to investigate alterations in insulin action. This hormone activates PI3K/AKT pathway which is essential for glucose homeostasis, cell differentiation, and proliferation in insulin-sensitive tissues, like adipose tissue. The aim of this work was to evaluate the impact of chronic and intermittent high glucose on the expression of biomolecules of insulin signaling pathway during the differentiation and maturation of human visceral preadipocytes. Methods: Human visceral preadipocytes (HPA-V) cells were treated with high glucose (30 mM)during the proliferation and/or differentiation and/or maturation stage. The level of mRNA (by Real-Time PCR) and protein (by Elisa tests) expression of IRS1, PI3K, PTEN, AKT2, and GLUT4 was examined after each culture stage. Furthermore, we investigated whether miR-29a-3p, miR-143-3p, miR-152-3p, miR-186-5p, miR-370-3p, and miR-374b-5p may affect the expression of biomolecules of the insulin signaling pathway. Results: Both chronic and intermittent hyperglycemia affects insulin signaling in visceral pre/adipocytes by upregulation of analyzed PI3K/AKT pathway molecules. Both mRNA and protein expression level is more dependent on stage-specific events than the length of the period of high glucose exposure. What is more, miRs expression changes seem to be involved in PI3K/AKT expression regulation in response to hyperglycemic stimulation.
Collapse
Affiliation(s)
- Ewa Świderska
- Department of Medical Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (J.S.); (A.W.); (P.C.); (J.S.)
- Correspondence: ; Tel.: +48-693-843-960
| | - Justyna Strycharz
- Department of Medical Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (J.S.); (A.W.); (P.C.); (J.S.)
| | - Adam Wróblewski
- Department of Medical Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (J.S.); (A.W.); (P.C.); (J.S.)
| | - Piotr Czarny
- Department of Medical Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (J.S.); (A.W.); (P.C.); (J.S.)
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (J.S.); (A.W.); (P.C.); (J.S.)
| | - Józef Drzewoski
- Central Hospital of Medical University, 92-213 Lodz, Poland;
| | - Agnieszka Śliwińska
- Department of Nucleic Acids Biochemistry, Medical University of Lodz, 92-213 Lodz, Poland;
| |
Collapse
|
24
|
Geletu M, Adan H, Niit M, Arulanandam R, Carefoot E, Hoskin V, Sina D, Elliott B, Gunning P, Raptis L. Modulation of Akt vs Stat3 activity by the focal adhesion kinase in non-neoplastic mouse fibroblasts. Exp Cell Res 2021; 411:112731. [PMID: 34270980 DOI: 10.1016/j.yexcr.2021.112731] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Adhesion of cells to each other and to the extracellular matrix (ECM) are both required for cellular functions. Cell-to-cell adhesion is mediated by cadherins, and their engagement triggers the activation of Stat3, which offers a potent survival signal. Adhesion to the ECM on the other hand, activates FAK which attracts and activates Src, as well as receptor tyrosine kinases (RTKs), the PI3k/Akt and Ras/Erk pathways. However, the effect of cell density upon FAK and Akt activity has not been examined. We now demonstrate that, interestingly, despite being potent Stat3 activators, Src and RTKs are unable to activate Stat3 in sparsely growing (i.e., without cadherin engagement), non-neoplastic cells attached to the ECM. In contrast, cell aggregation (i.e., cadherin engagement in the absence of adhesion to a solid substratum) was found to activate both Stat3 and Akt. Pharmacologic or genetic reduction of FAK activity abolished Akt activity at low densities, indicating that FAK is an important activator of Akt in this setting. Notably, FAK knockout increased cellular sensitivity to the Stat3 inhibitor CPA7, while FAK reintroduction restored resistance to this drug. These findings suggest a complementary role of integrin/FAK/Akt and cadherin/Stat3-mediated pro-survival pathways, which may be of significance during neoplastic transformation and metastasis.
Collapse
Affiliation(s)
- Mulu Geletu
- Department of Biomedical and Molecular Sciences and Department of Pathology and Molecular Mdicine, Queen's University, Kingston, ON, K7L 3N6, Canada.
| | - Hanad Adan
- Department of Biomedical and Molecular Sciences and Department of Pathology and Molecular Mdicine, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Maximillian Niit
- Department of Biomedical and Molecular Sciences and Department of Pathology and Molecular Mdicine, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Rozanne Arulanandam
- Department of Biomedical and Molecular Sciences and Department of Pathology and Molecular Mdicine, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Esther Carefoot
- Department of Biomedical and Molecular Sciences and Department of Pathology and Molecular Mdicine, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Victoria Hoskin
- Department of Biomedical and Molecular Sciences and Department of Pathology and Molecular Mdicine, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Diana Sina
- Department of Biomedical and Molecular Sciences and Department of Pathology and Molecular Mdicine, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Bruce Elliott
- Department of Biomedical and Molecular Sciences and Department of Pathology and Molecular Mdicine, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Patrick Gunning
- Department of Biomedical and Molecular Sciences and Department of Pathology and Molecular Mdicine, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Leda Raptis
- Department of Biomedical and Molecular Sciences and Department of Pathology and Molecular Mdicine, Queen's University, Kingston, ON, K7L 3N6, Canada
| |
Collapse
|
25
|
Kacířová M, Železná B, Blažková M, Holubová M, Popelová A, Kuneš J, Šedivá B, Maletínská L. Aging and high-fat diet feeding lead to peripheral insulin resistance and sex-dependent changes in brain of mouse model of tau pathology THY-Tau22. J Neuroinflammation 2021; 18:141. [PMID: 34158075 PMCID: PMC8218481 DOI: 10.1186/s12974-021-02190-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/01/2021] [Indexed: 12/03/2022] Open
Abstract
Background Obesity leads to low-grade inflammation in the adipose tissue and liver and neuroinflammation in the brain. Obesity-induced insulin resistance (IR) and neuroinflammation seem to intensify neurodegeneration including Alzheimer’s disease. In this study, the impact of high-fat (HF) diet-induced obesity on potential neuroinflammation and peripheral IR was tested separately in males and females of THY-Tau22 mice, a model of tau pathology expressing mutated human tau protein. Methods Three-, 7-, and 11-month-old THY-Tau22 and wild-type males and females were tested for mobility, anxiety-like behavior, and short-term spatial memory in open-field and Y-maze tests. Plasma insulin, free fatty acid, cholesterol, and leptin were evaluated with commercial assays. Liver was stained with hematoxylin and eosin for histology. Brain sections were 3′,3′-diaminobenzidine (DAB) and/or fluorescently detected for ionized calcium-binding adapter molecule 1 (Iba1), glial fibrillary acidic protein (GFAP), and tau phosphorylated at T231 (pTau (T231)), and analyzed. Insulin signaling cascade, pTau, extracellular signal-regulated kinase 1/2 (ERK1/2), and protein phosphatase 2A (PP2A) were quantified by western blotting of hippocampi of 11-month-old mice. Data are mean ± SEM and were subjected to Mann-Whitney t test within age and sex and mixed-effects analysis and Bonferroni’s post hoc test for age comparison. Results Increased age most potently decreased mobility and increased anxiety in all mice. THY-Tau22 males showed impaired short-term spatial memory. HF diet increased body, fat, and liver weights and peripheral IR. HF diet-fed THY-Tau22 males showed massive Iba1+ microgliosis and GFAP+ astrocytosis in the hippocampus and amygdala. Activated astrocytes colocalized with pTau (T231) in THY-Tau22, although no significant difference in hippocampal tau phosphorylation was observed between 11-month-old HF and standard diet-fed THY-Tau22 mice. Eleven-month-old THY-Tau22 females, but not males, on both diets showed decreased synaptic and postsynaptic plasticity. Conclusions Significant sex differences in neurodegenerative signs were found in THY-Tau22. Impaired short-term spatial memory was observed in 11-month-old THY-tau22 males but not females, which corresponded to increased neuroinflammation colocalized with pTau(T231) in the hippocampi and amygdalae of THY-Tau22 males. A robust decrease in synaptic and postsynaptic plasticity was observed in 11-month-old females but not males. HF diet caused peripheral but not central IR in mice of both sexes. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02190-3.
Collapse
Affiliation(s)
- Miroslava Kacířová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 542/2, 160 00, Prague 6, Czech Republic
| | - Blanka Železná
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 542/2, 160 00, Prague 6, Czech Republic
| | - Michaela Blažková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 542/2, 160 00, Prague 6, Czech Republic
| | - Martina Holubová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 542/2, 160 00, Prague 6, Czech Republic
| | - Andrea Popelová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 542/2, 160 00, Prague 6, Czech Republic
| | - Jaroslav Kuneš
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 542/2, 160 00, Prague 6, Czech Republic.,Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic
| | - Blanka Šedivá
- Department of Mathematics, University of West Bohemia, Univerzitní 2732/8, 301 00, Pilsen, Czech Republic
| | - Lenka Maletínská
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 542/2, 160 00, Prague 6, Czech Republic.
| |
Collapse
|
26
|
Kim J, Park JH, Park SK, Hoe HS. Sorafenib Modulates the LPS- and Aβ-Induced Neuroinflammatory Response in Cells, Wild-Type Mice, and 5xFAD Mice. Front Immunol 2021; 12:684344. [PMID: 34122447 PMCID: PMC8190398 DOI: 10.3389/fimmu.2021.684344] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/12/2021] [Indexed: 01/19/2023] Open
Abstract
Sorafenib is FDA-approved for the treatment of primary kidney or liver cancer, but its ability to inhibit many types of kinases suggests it may have potential for treating other diseases. Here, the effects of sorafenib on neuroinflammatory responses in vitro and in vivo and the underlying mechanisms were assessed. Sorafenib reduced the induction of mRNA levels of the proinflammatory cytokines COX-2 and IL-1β by LPS in BV2 microglial cells, but in primary astrocytes, only COX-2 mRNA levels were altered by sorafenib. Interestingly, sorafenib altered the LPS-mediated neuroinflammatory response in BV2 microglial cells by modulating AKT/P38-linked STAT3/NF-kB signaling pathways. In LPS-stimulated wild-type mice, sorafenib administration suppressed microglial/astroglial kinetics and morphological changes and COX-2 mRNA levels by decreasing AKT phosphorylation in the brain. In 5xFAD mice (an Alzheimer’s disease model), sorafenib treatment daily for 3 days significantly reduced astrogliosis but not microgliosis. Thus, sorafenib may have therapeutic potential for suppressing neuroinflammatory responses in the brain.
Collapse
Affiliation(s)
- Jieun Kim
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Daegu, South Korea
| | - Jin-Hee Park
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Daegu, South Korea
| | - Seon Kyeong Park
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Daegu, South Korea
| | - Hyang-Sook Hoe
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Daegu, South Korea.,Department of Brain & Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu, South Korea
| |
Collapse
|
27
|
Geletu M, Adan H, Niit M, Arulanandam R, Carefoot E, Hoskin V, Sina D, Elliott B, Gunning P, Raptis L. Modulation of Akt vs Stat3 activity by the focal adhesion kinase in non-neoplastic mouse fibroblasts. Exp Cell Res 2021; 404:112601. [PMID: 33957118 DOI: 10.1016/j.yexcr.2021.112601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 04/02/2021] [Accepted: 04/07/2021] [Indexed: 12/28/2022]
Abstract
Adhesion of cells to each other and to the extracellular matrix (ECM) are both required for cellular functions. Cell-to-cell adhesion is mediated by cadherins and their engagement triggers the activation of Stat3, which offers a potent survival signal. Adhesion to the ECM on the other hand, activates FAK which attracts and activates Src, as well as receptor tyrosine kinases (RTKs), the PI3k/Akt and Ras/Erk pathways. However, the effect of cell density upon FAK and Akt activity has not been examined. We now demonstrate that, interestingly, despite being potent Stat3 activators, Src and RTKs are unable to activate Stat3 in sparsely growing (i.e., without cadherin engagement), non-neoplastic cells attached to the ECM. In contrast, cell aggregation (i.e., cadherin engagement in the absence of adhesion to a solid substratum) was found to activate both Stat3 and Akt. Pharmacologic or genetic reduction of FAK activity abolished Akt activity at low densities, indicating that FAK is an important activator of Akt in this setting. Notably, FAK knockout increased cellular sensitivity to the Stat3 inhibitor CPA7, while FAK reintroduction restored resistance to this drug. These findings suggest a complementary role of integrin/FAK/Akt and cadherin/Stat3-mediated pro-survival pathways, which may be of significance during neoplastic transformation and metastasis.
Collapse
Affiliation(s)
- Mulu Geletu
- Department of Biomedical and Molecular Sciences and Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, K7L 3N6, Canada; Department of Chemical and Physical Sciences, University of Toronto, Mississauga, Ontario, L5L 1C6, Canada.
| | - Hanad Adan
- Department of Biomedical and Molecular Sciences and Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Maximillian Niit
- Department of Biomedical and Molecular Sciences and Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Rozanne Arulanandam
- Department of Biomedical and Molecular Sciences and Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, K7L 3N6, Canada; Department of Pathology and Molecular Medicine, Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario, K1H 8L6, Canada
| | - Esther Carefoot
- Department of Biomedical and Molecular Sciences and Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Victoria Hoskin
- Department of Biomedical and Molecular Sciences and Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Diana Sina
- Department of Chemical and Physical Sciences (CPS), University of Toronto Mississauga, 3359 Mississauga Rd, Mississauga, ON, L5L 1C6, Canada
| | - Bruce Elliott
- Department of Biomedical and Molecular Sciences and Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Patrick Gunning
- Department of Chemical and Physical Sciences, University of Toronto, Mississauga, Ontario, L5L 1C6, Canada
| | - Leda Raptis
- Department of Biomedical and Molecular Sciences and Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| |
Collapse
|
28
|
Humphries B, Wang Z, Yang C. MicroRNA Regulation of Breast Cancer Stemness. Int J Mol Sci 2021; 22:3756. [PMID: 33916548 PMCID: PMC8038508 DOI: 10.3390/ijms22073756] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 12/22/2022] Open
Abstract
Recent advances in our understanding of breast cancer have demonstrated that cancer stem-like cells (CSCs, also known as tumor-initiating cell (TICs)) are central for progression and recurrence. CSCs are a small subpopulation of cells present in breast tumors that contribute to growth, metastasis, therapy resistance, and recurrence, leading to poor clinical outcome. Data have shown that cancer cells can gain characteristics of CSCs, or stemness, through alterations in key signaling pathways. The dysregulation of miRNA expression and signaling have been well-documented in cancer, and recent studies have shown that miRNAs are associated with breast cancer initiation, progression, and recurrence through regulating CSC characteristics. More specifically, miRNAs directly target central signaling nodes within pathways that can drive the formation, maintenance, and even inhibition of the CSC population. This review aims to summarize these research findings specifically in the context of breast cancer. This review also discusses miRNAs as biomarkers and promising clinical therapeutics, and presents a comprehensive summary of currently validated targets involved in CSC-specific signaling pathways in breast cancer.
Collapse
Affiliation(s)
- Brock Humphries
- Center for Molecular Imaging, Department of Radiology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA
| | - Zhishan Wang
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, Case Western Reserve University School of Medicine, 2500 MetroHealth Drive, Cleveland, OH 44109, USA;
| | - Chengfeng Yang
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, Case Western Reserve University School of Medicine, 2500 MetroHealth Drive, Cleveland, OH 44109, USA;
| |
Collapse
|
29
|
Tang J, Zhang C, Huang Y, Wang L, Xu Z, Zhang D, Zhang Y, Peng W, Feng Y, Sun Y. CircRNA circ_0124554 blocked the ubiquitination of AKT promoting the skip lymphovascular invasion on hepatic metastasis in colorectal cancer. Cell Death Dis 2021; 12:270. [PMID: 33723214 PMCID: PMC7960696 DOI: 10.1038/s41419-021-03565-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 01/29/2021] [Accepted: 02/02/2021] [Indexed: 12/12/2022]
Abstract
Colorectal cancer (CRC) is the fourth most common cancer in men and the third most common cancer in women worldwide. The incidence and mortality of CRC was increasing rapidly in China. Lymph node-negative colorectal cancer patients with synchronous liver metastasis (LNLM1) was defined as "skip" lymph vascular invasion on hepatic metastasis, who presenting poor prognosis. We aiming to investigate the potential mechanism for the "skip" lymph vascular invasion on hepatic metastasis in colorectal cancer. The microarray was applied for screening the transcription landscape of circRNA in lymph node negative CRC patients with synchronous liver metastasis (LNLM1) or without liver metastasis (LNLM0). We identified the aberrant increased circRNA circ_0124554 (also entitled as circ-LNLM) in tumor tissues of LNLM1 patients comparing with either the tumor tissues of LNLM0 or adjacent tissues of LNLM1. Circ-LNLM1 expression was highly correlated with liver metastasis and vascular invasion. Ectopic expression of cytoplasmic located circ-LNLM could promote invasion of CRC cells and induced the liver metastasis in animal models through the direct binding with AKT. The phosphorylation of AKT (T308/S473) was activated due to the blocked ubiquitination site of Lys in 0-52aa peptide of circ-LNLM. Endogenous plasma expression of circ-LNLM induced poor prognosis of LNLM1 and could distinguish LNLM1 patients from LNLM0. In conclusion, the circ-LNLM blocked the ubiquitination of AKT could promote the early metastasis especially for the lymph node-negative colorectal cancer patients with synchronous liver metastasis. The circ-LNLM might be prognosis and diagnosis biomarker for LNLM1 patients.
Collapse
Affiliation(s)
- Junwei Tang
- Colorectal Surgery Division, Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Chuan Zhang
- Colorectal Surgery Division, Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Yuanjian Huang
- Colorectal Surgery Division, Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Lu Wang
- Colorectal Surgery Division, Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Ziwei Xu
- Colorectal Surgery Division, Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Dongsheng Zhang
- Colorectal Surgery Division, Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Yue Zhang
- Colorectal Surgery Division, Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Wen Peng
- Colorectal Surgery Division, Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Yifei Feng
- Colorectal Surgery Division, Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China.
| | - Yueming Sun
- Colorectal Surgery Division, Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China.
| |
Collapse
|
30
|
Kimura T, Saito H, Kawasaki M, Takeichi M. CAMSAP3 is required for mTORC1-dependent ependymal cell growth and lateral ventricle shaping in mouse brains. Development 2021; 148:dev.195073. [PMID: 33462112 DOI: 10.1242/dev.195073] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 01/06/2021] [Indexed: 01/02/2023]
Abstract
Microtubules (MTs) regulate numerous cellular processes, but their roles in brain morphogenesis are not well known. Here, we show that CAMSAP3, a non-centrosomal microtubule regulator, is important for shaping the lateral ventricles. In differentiating ependymal cells, CAMSAP3 became concentrated at the apical domains, serving to generate MT networks at these sites. Camsap3-mutated mice showed abnormally narrow lateral ventricles, in which excessive stenosis or fusion was induced, leading to a decrease of neural stem cells at the ventricular and subventricular zones. This defect was ascribed at least in part to a failure of neocortical ependymal cells to broaden their apical domain, a process necessary for expanding the ventricular cavities. mTORC1 was required for ependymal cell growth but its activity was downregulated in mutant cells. Lysosomes, which mediate mTORC1 activation, tended to be reduced at the apical regions of the mutant cells, along with disorganized apical MT networks at the corresponding sites. These findings suggest that CAMSAP3 supports mTORC1 signaling required for ependymal cell growth via MT network regulation, and, in turn, shaping of the lateral ventricles.
Collapse
Affiliation(s)
- Toshiya Kimura
- Laboratory for Cell Adhesion and Tissue Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Hiroko Saito
- Laboratory for Cell Adhesion and Tissue Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Miwa Kawasaki
- Laboratory for Cell Adhesion and Tissue Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Masatoshi Takeichi
- Laboratory for Cell Adhesion and Tissue Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| |
Collapse
|
31
|
Lee YJ, Kim J. Resveratrol Activates Natural Killer Cells through Akt- and mTORC2-Mediated c-Myb Upregulation. Int J Mol Sci 2020; 21:ijms21249575. [PMID: 33339133 PMCID: PMC7765583 DOI: 10.3390/ijms21249575] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 12/17/2022] Open
Abstract
Natural killer (NK) cells are suitable targets for cancer immunotherapy owing to their potent cytotoxic activity. To maximize the therapeutic efficacy of cancer immunotherapy, adjuvants need to be identified. Resveratrol is a well-studied polyphenol with various potential health benefits, including antitumor effects. We previously found that resveratrol is an NK cell booster, suggesting that it can serve as an adjuvant for cancer immunotherapy. However, the molecular mechanism underlying the activation of NK cells by resveratrol remains unclear. The present study aimed to determine this mechanism. To this end, we investigated relevant pathways in NK cells using Western blot, real-time polymerase chain reaction, pathway inhibitor, protein/DNA array, and cytotoxicity analyses. We confirmed the synergistic effects of resveratrol and interleukin (IL)-2 on enhancing the cytolytic activity of NK cells. Resveratrol activated Akt by regulating Mammalian Target of Rapamycin (mTOR) Complex 2 (mTORC2) via phosphatase and tensin homolog (PTEN) and ribosomal protein S6 kinase beta-1 (S6K1). Moreover, resveratrol-mediated NK cell activation was more dependent on the mTOR pathway than the Akt pathway. Importantly, resveratrol increased the expression of c-Myb, a downstream transcription factor of Akt and mTORC2. Moreover, c-Myb was essential for resveratrol-induced NK cell activation in combination with IL-2. Our results demonstrate that resveratrol activates NK cells through Akt- and mTORC2-mediated c-Myb upregulation.
Collapse
Affiliation(s)
- Yoo-Jin Lee
- Department of Microbiology and Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 08758, Korea;
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 08758, Korea
| | - Jongsun Kim
- Department of Microbiology and Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 08758, Korea;
- Correspondence: ; Tel.: +82-2-2228-1814
| |
Collapse
|
32
|
Torin2 overcomes sorafenib resistance via suppressing mTORC2-AKT-BAD pathway in hepatocellular carcinoma cells. Hepatobiliary Pancreat Dis Int 2020; 19:547-554. [PMID: 33051131 DOI: 10.1016/j.hbpd.2020.09.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/20/2020] [Indexed: 02/05/2023]
Abstract
BACKGROUND Sorafenib is an oral multi-kinase inhibitor that was approved by the US Food and Drug Administration for the treatment of patients with advanced hepatocellular carcinoma (HCC). However, resistance to sorafenib is an urgent problem to be resolved to improve the therapeutic efficacy of sorafenib. As the activation of AKT/mTOR played a pivotal role in sorafenib resistance, we evaluated the effect of a dual mTOR complex 1/2 inhibitor Torin2 on overcoming the sorafenib resistance in HCC cells. METHODS The sorafenib-resistant Huh7 and Hep3B cell lines were established from their parental cell lines. The synergistic effect of sorafenib and Torin2 on these cells was measured by cell viability assay and quantified using the Chou-Talalay method. Apoptosis induced by the combination of sorafenib and Torin2 and the alteration in the specific signaling pathways of interest were detected by Western blotting. RESULTS Sorafenib treatment inversely inhibited AKT in parental but activated AKT in sorafenib-resistant Huh7 and Hep3B HCC cells, which underscores the significance of AKT activation. Torin2 and sorafenib synergistically suppressed the viability of sorafenib-resistant cells via apoptosis induction. Torin2 successfully suppressed the sorafenib-activated mTORC2-AKT axis, leading to the dephosphorylation of Ser136 in BAD protein, and increased the expression of total BAD, which contributed to the apoptosis in sorafenib-resistant HCC cells. CONCLUSIONS In this study, Torin2 and sorafenib showed synergistic cytostatic capacity in sorafenib-resistant HCC cells, via the suppression of mTORC2-AKT-BAD pathway. Our results suggest a novel strategy of drug combination for overcoming sorafenib resistance in HCC.
Collapse
|
33
|
Ras assemblies and signaling at the membrane. Curr Opin Struct Biol 2020; 62:140-148. [DOI: 10.1016/j.sbi.2020.01.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/16/2020] [Indexed: 02/07/2023]
|
34
|
Lee Y, Lee CE, Oh S, Kim H, Lee J, Kim SB, Kim HS. Pharmacogenomic Analysis Reveals CCNA2 as a Predictive Biomarker of Sensitivity to Polo-Like Kinase I Inhibitor in Gastric Cancer. Cancers (Basel) 2020; 12:cancers12061418. [PMID: 32486290 PMCID: PMC7352331 DOI: 10.3390/cancers12061418] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 05/28/2020] [Indexed: 12/24/2022] Open
Abstract
Despite recent innovations and advances in early diagnosis, the prognosis of advanced gastric cancer remains poor due to a limited number of available therapeutics. Here, we employed pharmacogenomic analysis of 37 gastric cancer cell lines and 1345 small-molecule pharmacological compounds to investigate biomarkers predictive of cytotoxicity among gastric cancer cells to the tested drugs. We discovered that expression of CCNA2, encoding cyclin A2, was commonly associated with responses to polo-like kinase 1 (PLK1) inhibitors (BI-2536 and volasertib). We also found that elevated CCNA2 expression is required to confer sensitivity to PLK1 inhibitors through increased mitotic catastrophe and apoptosis. Further, we demonstrated that CCNA2 expression is elevated in KRAS mutant gastric cancer cell lines and primary tumors, resulting in an increased sensitivity to PLK1 inhibitors. Our study suggests that CCNA2 is a novel biomarker predictive of sensitivity to PLK1 inhibitors for the treatment of advanced gastric cancer, particularly cases carrying KRAS mutation.
Collapse
Affiliation(s)
- Yunji Lee
- Severance Biomedical Research Institute, Yonsei University College of Medicine, Seoul 03722, Korea; (Y.L.); (S.O.); (H.K.); (J.L.)
- Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Chae Eun Lee
- Department of Medicine, Yonsei University College of Medicine, Seoul 03722, Korea;
| | - Sejin Oh
- Severance Biomedical Research Institute, Yonsei University College of Medicine, Seoul 03722, Korea; (Y.L.); (S.O.); (H.K.); (J.L.)
- Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Hakhyun Kim
- Severance Biomedical Research Institute, Yonsei University College of Medicine, Seoul 03722, Korea; (Y.L.); (S.O.); (H.K.); (J.L.)
- Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jooyoung Lee
- Severance Biomedical Research Institute, Yonsei University College of Medicine, Seoul 03722, Korea; (Y.L.); (S.O.); (H.K.); (J.L.)
| | - Sang Bum Kim
- Severance Biomedical Research Institute, Yonsei University College of Medicine, Seoul 03722, Korea; (Y.L.); (S.O.); (H.K.); (J.L.)
- Correspondence: (S.B.K.); (H.S.K.)
| | - Hyun Seok Kim
- Severance Biomedical Research Institute, Yonsei University College of Medicine, Seoul 03722, Korea; (Y.L.); (S.O.); (H.K.); (J.L.)
- Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
- Correspondence: (S.B.K.); (H.S.K.)
| |
Collapse
|
35
|
Ma F, Wang X, Chung SSW, Sicinski P, Shang E, Wolgemuth DJ. Cyclin A2 is essential for mouse gonocyte maturation. Cell Cycle 2020; 19:1654-1664. [PMID: 32420805 DOI: 10.1080/15384101.2020.1762314] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
In mammals, male gonocytes are derived from primordial germ cells during embryogenesis, enter a period of mitotic proliferation, and then become quiescent until birth. After birth, the gonocytes proliferate and migrate from the center of testicular cord toward the basement membrane to form the pool of spermatogonial stem cells (SSCs) and establish the SSC niche architecture. However, the molecular mechanisms underlying gonocyte proliferation, migration and differentiation are largely unknown. Cyclin A2 is a key component of the cell cycle and required for cell proliferation. Here, we show that cyclin A2 is required in mouse male gonocyte development and the establishment of spermatogenesis in the neonatal testis. Loss of cyclin A2 function in embryonic gonocytes by targeted gene disruption affected the regulation of the male gonocytes to SSC transition, resulting in the disruption of SSC pool formation, imbalance between SSC self-renewal and differentiation, and severely abnormal spermatogenesis in the adult testis.
Collapse
Affiliation(s)
- Fanhua Ma
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction, College of Animal Science, Huazhong Agricultural University , Wuhan, Hubei, China.,Department of Genetics & Development, Columbia University Medical Center , New York, NY, USA
| | - Xiangyuan Wang
- Department of Genetics & Development, Columbia University Medical Center , New York, NY, USA
| | - Sanny S W Chung
- Department of Genetics & Development, Columbia University Medical Center , New York, NY, USA
| | - Piotr Sicinski
- Department of Cancer Biology, Dana-Farber Cancer Institute , Boston, MA, USA
| | - Enyuan Shang
- Department of Biological Sciences, Bronx Community College, City University of New York , New York, NY, USA
| | - Debra J Wolgemuth
- Department of Genetics & Development, Columbia University Medical Center , New York, NY, USA.,Institute of Human Nutrition, Columbia University Medical Center , New York, NY, USA
| |
Collapse
|
36
|
Martínez-García GG, Mariño G. Autophagy role in environmental pollutants exposure. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 172:257-291. [PMID: 32620245 DOI: 10.1016/bs.pmbts.2020.02.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
During the last decades, the potential harmfulness derived from the exposure to environmental pollutants has been largely demonstrated, with associated damages ranging from geno- and cyto-toxicity to tissue malfunction and alterations in organism physiology. Autophagy is an evolutionarily-conserved cellular mechanism essential for cellular homeostasis, which contributes to protect cells from a wide variety of intracellular and extracellular stressors. Due to its pivotal importance, its correct functioning is directly linked to cell, tissue and organismal fitness. Environmental pollutants, particularly industrial compounds, are able to impact autophagic flux, either by increasing it as a protective response, by blocking it, or by switching its protective role toward a pro-cell death mechanism. Thus, the understanding of the effects of chemicals exposure on autophagy has become highly relevant, offering new potential approaches for risk assessment, protection and preventive measures to counteract the detrimental effects of environmental pollutants on human health.
Collapse
Affiliation(s)
- Gemma G Martínez-García
- Laboratorio "Autofagia y Metabolismo", Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain; Departamento de Biología Funcional, Universidad de Oviedo, Oviedo, Spain
| | - Guillermo Mariño
- Laboratorio "Autofagia y Metabolismo", Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain; Departamento de Biología Funcional, Universidad de Oviedo, Oviedo, Spain.
| |
Collapse
|
37
|
Luo J, Long Y, Ren G, Zhang Y, Chen J, Huang R, Yang L. Punicalagin Reversed the Hepatic Injury of Tetrachloromethane by Antioxidation and Enhancement of Autophagy. J Med Food 2019; 22:1271-1279. [PMID: 31718395 PMCID: PMC6918856 DOI: 10.1089/jmf.2019.4411] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Hepatic injury is significant in the pathogenesis and development of many types of liver diseases. Punicalagin (PU) is a bioactive antioxidant polyphenol found in pomegranates. To explore its protective effect against carbon tetrachloride (CCl4)-induced liver injury and the mechanism, Institute of Cancer Research (ICR) mice and L02 cells were used to observe the changes of serum biochemical indicators, histopathological liver structure, cell viability, antioxidative indices, and autophagy-related proteins were assessed. In ICR mice, PU ameliorated the CCl4-induced increase of the serum aspartate aminotransferase, alanine aminotransferase, the activity of liver lactate dehydrogenase, and the damage of histopathological structure, and exhibited a hepatoprotective effect against CCl4. PU attenuated oxidative stress by decreasing the liver malondialdehyde level and increasing the activities of liver superoxide dismutase, glutathione peroxidase, and the expression of the liver nuclear factor E2-related factor (Nrf2) protein. Furthermore, according to the vivo and vitro experiments, PU might activate autophagy through the mediation of the Akt/FOXO3a and P62/Nrf2 signaling pathway. Taken together, these results suggest that PU may protect against CCl4-induced liver injury through the upregulation of antioxidative activities and autophagy.
Collapse
Affiliation(s)
- Jingfang Luo
- Department of Nutrition and Food Hygiene, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Yi Long
- Children's Medical Center, Hunan Provincial People's Hospital, Changsha, Hunan, China
| | - Guofeng Ren
- Department of Nutrition and Food Hygiene, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Yahui Zhang
- Department of Nutrition and Food Hygiene, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Jihua Chen
- Department of Nutrition and Food Hygiene, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Ruixue Huang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Lina Yang
- Department of Nutrition and Food Hygiene, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| |
Collapse
|
38
|
Modulation of GSK - 3β/β - catenin cascade by commensal bifidobateria plays an important role for the inhibition of metaflammation-related biomarkers in response to LPS or non-physiological concentrations of fructose: An in vitro study. PHARMANUTRITION 2019. [DOI: 10.1016/j.phanu.2019.100145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
39
|
Baruah TJ, Kma L. Vicenin-2 acts as a radiosensitizer of the non-small cell lung cancer by lowering Akt expression. Biofactors 2019; 45:200-210. [PMID: 30496626 DOI: 10.1002/biof.1472] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 09/28/2018] [Accepted: 10/04/2018] [Indexed: 12/27/2022]
Abstract
Non-small cell lung cancer (NSCLC) has a very high rate of incidence and is resistant to chemo- and radiotherapy. Vicenin-2 (VCN-2) is a flavonoid obtained from Ocimum sanctum L. and it has been reported to have radioprotective, anticancer, and radiosensitizing properties. We have conducted this study to check the effect of VCN-2 on the cell viability and the effect on PTEN (Phosphatase and tensin homolog), PI3KCA (Phosphatidylinositol 4, 5-biphosphate 3-kinase catalytic subunit alpha isoform/PI3K 110α subunit), and Akt1 when VCN-2 was used alone and in combination with radiation in the NSCLC cell line NCI-H23 (H23). We have also checked the effect of VCN-2 on various pro- and anti-apoptotic genes and the ultra-morphological changes that occurred in the cells when VCN-2 is used alone and in combination with radiation. VCN-2 was able to lower cancer cell survival and phosphorylated Akt while promoting the expression of pro-apoptotic genes and down-regulating anti-apoptotic genes. We also observed the apoptosis-associated ultra-morphological changes in the VCN-2-treated cells. Our study have demonstrated that VCN-2 can be a potential chemotherapeutic and radiosensitizing agent in NSCLC. © 2018 BioFactors, 45(2):200-210, 2019.
Collapse
Affiliation(s)
- Taranga Jyoti Baruah
- Cancer and Radiation Countermeasures Unit, Department of Biochemistry, North-Eastern Hill University, Shillong, India
| | - Lakhon Kma
- Cancer and Radiation Countermeasures Unit, Department of Biochemistry, North-Eastern Hill University, Shillong, India
| |
Collapse
|
40
|
Long F, Jiang H, Yi H, Su L, Sun J. Particulate matter 2.5 induced bronchial epithelial cell injury via activation of 5′‐adenosine monophosphate‐activated protein kinase‐mediated autophagy. J Cell Biochem 2018; 120:3294-3305. [PMID: 30203496 DOI: 10.1002/jcb.27597] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 08/07/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Fei Long
- Department of Respiratory Medicine Shandong Provincial Hospital Affiliated to Shandong University Jinan China
| | - Hong Jiang
- Department of Respiratory Medicine Yiyuan County People’s Hospital Yiyuan Shandong Province China
| | - Hongli Yi
- Department of Respiratory Medicine Shandong Provincial Hospital Affiliated to Shandong University Jinan China
| | - Lili Su
- Department of Respiratory Medicine Shandong Provincial Hospital Affiliated to Shandong University Jinan China
| | - Jian Sun
- Department of Respiratory Medicine Shandong Provincial Hospital Affiliated to Shandong University Jinan China
| |
Collapse
|
41
|
Zhang L, Kim SB, Luitel K, Shay JW. Cholesterol Depletion by TASIN-1 Induces Apoptotic Cell Death through the ER Stress/ROS/JNK Signaling in Colon Cancer Cells. Mol Cancer Ther 2018; 17:943-951. [PMID: 29467273 DOI: 10.1158/1535-7163.mct-17-0887] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/14/2017] [Accepted: 01/23/2018] [Indexed: 11/16/2022]
Abstract
Truncated APC selective inhibitor-1 (TASIN-1) is a recently identified small molecule that selectively kills colorectal cancer cells that express truncated adenomatous polyposis coli (APC) by reducing cellular cholesterol levels. However, the downstream mechanism responsible for its cytotoxicity is not well understood. In this study, we show that TASIN-1 leads to apoptotic cell death via inducing ER stress-dependent JNK activation in human truncated APC colon cancer cells, accompanied by production of reactive oxygen species (ROS). In addition, TASIN-1 inhibits AKT activity through a cholesterol-dependent manner. Human colon tumor xenografts in immunodeficient mice also show the same TASIN-1 induced molecular mechanisms of tumor cell death as observed in vitro Taken together, cholesterol depletion by TASIN-1 treatment induces apoptotic cell death through activating ER stress/ROS/JNK axis and inhibiting AKT pro-survival signaling in colon cancer cells with truncated APC both in vitro and in vivoMol Cancer Ther; 17(5); 943-51. ©2018 AACR.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Sang Bum Kim
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas.
| | - Krishna Luitel
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jerry W Shay
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas.
| |
Collapse
|
42
|
De Araújo RF, Pessoa JB, Cruz LJ, Chan AB, De Castro Miguel E, Cavalcante RS, Brito GAC, Silva HFO, Gasparotto LHS, Guedes PMM, Araújo AA. Apoptosis in human liver carcinoma caused by gold nanoparticles in combination with carvedilol is mediated via modulation of MAPK/Akt/mTOR pathway and EGFR/FAAD proteins. Int J Oncol 2017; 52:189-200. [PMID: 29115423 DOI: 10.3892/ijo.2017.4179] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 09/21/2017] [Indexed: 11/06/2022] Open
Abstract
In cancers, apoptosis signaling pathways and cell survival and growth pathways responsible for resistance to conventional treatments, such as Pi3K/Akt/mTOR and mitogen-activated protein kinase (MAPK) become dysregulated. Recently, alternative treatments to promote tumor cell death have become important. The present study reports on the antitumor and cytoprotective action of gold nanoparticles (GNPs) and carvedilol in combination and in isolated application. Apoptosis was analyzed by FITC/propidium iodide staining flow cytometry; caspase-3, caspase-8, Bcl-2 and MAPK/ERK activity by immunofluorescence microscopy; gene expression of proteins related to cell death as Akt, mTOR, EGFR, MDR1, survivin, FADD and Apaf, by the real-time PCR; and western blot analysis for MAPK/ERK, Akt and mTOR. Oxidative stress evaluation was performed by reduced glutathione (GSH) and malondialdehyde (MDA) levels. Intracellular GNPs targets were identified by transmission electron microscopy. After exposure to a combination of GNPs (6.25 µg/ml) and carvedilol (3 µM), death as promoted by apoptosis was detected using flow cytometry, for expression of pro-apoptotic proteins FADD, caspase-3, caspase-8 and sub-regulation of anti-apoptotic MAPK/ERK, Akt, mTOR, EGFR and MDR1 resistance. Non-tumor cell cytoprotection with GSH elevation and MDA reduction levels was detected. GNPs were identified within the cell near to the nucleus when combined with carvedilol. The combination of GNP and carvedilol promoted downregulation of anti-apoptotic and drug resistance genes, over-regulation of pro-apoptotic proteins in tumor cells, as well as cytoprotection of non-tumor cells with reduction of apoptosis and oxidative stress.
Collapse
Affiliation(s)
- Raimundo F De Araújo
- Department of Morphology, Federal University of Rio Grande do Norte, Natal 59072-970, RN, Brazil
| | - Jonas B Pessoa
- Post Graduation Programme in Structural and Functional Biology, Federal University of Rio Grande do Norte, Natal 59072-970, RN, Brazil
| | - Luis J Cruz
- Translational Nanobiomaterials and Imaging, Department of Radiology, Leiden University Medical Center, 2333 CL Leiden, The Netherlands
| | - Alan B Chan
- Percuros B.V., 2333 CL Leiden, The Netherlands
| | | | - Rômulo S Cavalcante
- Post Graduation Programme in Health Science, Federal University of Rio Grande do Norte, Natal 59072-970, RN, Brazil
| | - Gerly Anne C Brito
- Department of Morphology/Postgraduate Program in Morphology/UFC, Fortaleza, CE, Brazil
| | - Heloiza Fernada O Silva
- Group of Biological Chemistry and Chemometrics, Institute of Chemistry, Federal University of Rio Grande do Norte, Natal 59072-970, RN, Brazil
| | - Luiz H S Gasparotto
- Group of Biological Chemistry and Chemometrics, Institute of Chemistry, Federal University of Rio Grande do Norte, Natal 59072-970, RN, Brazil
| | - Paulo M M Guedes
- Department of Parasitology and Microbiology and Post Graduation Program in Parasitary Biology, Federal University of Rio Grande do Norte, Natal 59072-970, RN, Brazil
| | - Aurigena A Araújo
- Department of Biophysics and Pharmacology, Post Graduation Programme in Public Health, Post Graduation Programme in Pharmaceutical Science, Federal University of Rio Grande do Norte, Natal 59072-970, RN, Brazil
| |
Collapse
|
43
|
Aksamitiene E, Baker AL, Roy S, Hota S, Zhang LH, Rodin J, Hobelmann K, Hoek JB, Pribitkin EA. Biochemical Effects of Exercise on a Fasciocutaneous Flap in a Rat Model. JAMA FACIAL PLAST SU 2017; 19:303-310. [PMID: 28278315 DOI: 10.1001/jamafacial.2016.2162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Importance An overwhelming amount of data suggest that cardiovascular exercise has a positive effect on the mind and body, although the precise mechanism is not always clear. Objective To assess the clinical and biochemical effects of voluntary cardiovascular exercise on pedicled flaps in a rodent model. Design, Setting, and Participants Eighteen adult Sprague-Dawley male rats were randomized into a resting animal group (RAG) (n=9) and an exercise animal group (EAG) (n=9) for 14 days (July 23, 2013, through July 30, 2013). A pedicled transposition flap was performed on the ventral surface of the rat, and biopsy specimens were taken from the proximal, middle, and distal portions on postoperative days 0, 2, 5, and 9. Flap survival was analyzed planimetrically, and biopsy specimens were analyzed by hematoxylin-eosin-stained microscopy and immunoblotting. The housing, exercise, surgery, and analysis of the rats were conducted at a single basic science research laboratory at the tertiary care center campus of Thomas Jefferson University in Philadelphia, Pennsylvania. Exposures The rats were caged for 14 days or housed in a cage connected to an exercise wheel and pedometer. Main Outcomes and Measures Study measures were gross and micrographic necrosis and expression of proteins within cell survival and apoptosis pathways. Results A total of 18 rats were studied, 9 in the RAG and 9 in the EAG. the mean (SEM) amount of necrosis in flaps was 41.3% (3%) in the RAG rats and 10.5% (3.5%) in the EAG rats (P < .001). Immunoblotting revealed increased Caspase-9 activity resulting in poly-(adenosine diphosphate-ribose) polymerase 1 cleavage in the RAG vs the EAG, as well as lower phosphorylated protein kinase B (also known as Akt), signal transducer and activator of transcription 3, and total B-cell leukemia/lymphoma 2 protein levels. Throughout the postoperative period, the cumulative vascular endothelial growth factor A levels of the EAG flaps were significantly higher than those of the RAG flaps (2.30 vs 1.25 fold induction [FI], P = .002), with differences of 2.76 vs 1.54 FI in the proximal segment, 2.40 vs 1.20 FI in the middle segment, and 1.90 vs 0.79 FI in the distal segment. A similar response was noted when comparing phosphorylated Akt, with cumulative mean (SEM) p-Akt expression levels of 0.62 (0.04) for RAG and 1.98 (0.09) for EAG (P = .002 between the 2 groups). Conclusions and Relevance Voluntary preoperative exercise improves survival in pedicled fasciocutaneous flaps; the EAG rats had less necrosis, decreased apoptotic markers, and increased amounts of vascular endothelial growth factor A and prosurvival proteins. These results have implications to increase flap survival in other mammal populations, such as humans. Level of Evidence 3.
Collapse
Affiliation(s)
- Edita Aksamitiene
- Department of Otolaryngology-Head and Neck Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Adam L Baker
- Department of Otolaryngology-Head and Neck Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Sudeep Roy
- Department of Otolaryngology-Head and Neck Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Salini Hota
- Department of Otolaryngology-Head and Neck Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Li-Hui Zhang
- Department of Otolaryngology-Head and Neck Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Julianna Rodin
- Department of Otolaryngology-Head and Neck Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Kealan Hobelmann
- Department of Otolaryngology-Head and Neck Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Jan B Hoek
- Department of Pathology, Anatomy, and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Edmund A Pribitkin
- Department of Otolaryngology-Head and Neck Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
44
|
Tavares C, Coelho MJ, Melo M, da Rocha AG, Pestana A, Batista R, Salgado C, Eloy C, Ferreira L, Rios E, Sobrinho-Simões M, Soares P. pmTOR is a marker of aggressiveness in papillary thyroid carcinomas. Surgery 2016; 160:1582-1590. [PMID: 27574774 DOI: 10.1016/j.surg.2016.06.050] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 06/17/2016] [Accepted: 06/23/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND Activation of the mTOR pathway has been observed in thyroid cancer, but the biologic consequences regarding tumor behavior and patient prognosis remain poorly explored. METHODS We aimed to evaluate the associations of the mTOR pathway with clinicopathologic and molecular features and prognosis through the immunocharacterization of pmTOR and pS6 expression (as readouts of the pathway) in a series of 191 papillary thyroid carcinomas. RESULTS pmTOR expression was associated with distant metastases (P = .05) and persistence of disease (P = .05). Cases with greater expression of pmTOR were submitted to more 131I treatments (r[102] = 0.2; P = .02) and a greater cumulative dose of radioactive iodine (r[100] = 0.3; P = .01). Positive pmTOR expression showed to be an independent risk factor for distant metastases (odds ratio = 18.2; 95% confidence interval 2.1-157.9; P = .01). In contrast, pS6 expression was associated with absence of extrathyroid extension (P = .001), well-defined tumor margins (P = .05), and wild-type BRAF status (P = .01). There was no correlation between the expression of pmTOR and pS6 expression (r[140] = 0.1; P = .3). CONCLUSION pmTOR expression is an indicator of aggressive, metastatic papillary thyroid carcinoma, being possibly implicated in refractoriness to therapy, while pS6 expression is associated with less aggressive pathologic features. Further studies are needed to understand better the biologic consequences of activation of the mTOR pathway in the behavior of thyroid cancer, namely the contribution of other pmTOR downstream effectors.
Collapse
Affiliation(s)
- Catarina Tavares
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (i3S), University of Porto, Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), University of Porto, Porto, Portugal; Medical Faculty, University of Porto, Porto, Portugal
| | - Maria João Coelho
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (i3S), University of Porto, Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), University of Porto, Porto, Portugal; Institute of Biomedical Sciences of Abel Salazar of the University of Porto (ICBAS), Porto, Portugal
| | - Miguel Melo
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (i3S), University of Porto, Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), University of Porto, Porto, Portugal; Department of Endocrinology, Diabetes, and Metabolism, University and Hospital Center of Coimbra, Coimbra, Portugal; Medical Faculty, University of Coimbra, Coimbra, Portugal
| | - Adriana Gaspar da Rocha
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (i3S), University of Porto, Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), University of Porto, Porto, Portugal; University and Hospital Center of Coimbra, Coimbra, Portugal
| | - Ana Pestana
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (i3S), University of Porto, Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), University of Porto, Porto, Portugal; Medical Faculty, University of Porto, Porto, Portugal
| | - Rui Batista
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (i3S), University of Porto, Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), University of Porto, Porto, Portugal; Medical Faculty, University of Porto, Porto, Portugal
| | - Catarina Salgado
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (i3S), University of Porto, Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), University of Porto, Porto, Portugal
| | - Catarina Eloy
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (i3S), University of Porto, Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), University of Porto, Porto, Portugal
| | - Luciana Ferreira
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (i3S), University of Porto, Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), University of Porto, Porto, Portugal; Medical Faculty, University of Porto, Porto, Portugal
| | - Elisabete Rios
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (i3S), University of Porto, Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), University of Porto, Porto, Portugal; Medical Faculty, University of Porto, Porto, Portugal; Department of Pathology and Oncology, Medical Faculty of the University of Porto, Porto, Portugal; Department of Pathology, Hospital de S.João, Porto, Portugal
| | - Manuel Sobrinho-Simões
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (i3S), University of Porto, Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), University of Porto, Porto, Portugal; Medical Faculty, University of Porto, Porto, Portugal; Department of Pathology and Oncology, Medical Faculty of the University of Porto, Porto, Portugal; Department of Pathology, Hospital de S.João, Porto, Portugal
| | - Paula Soares
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (i3S), University of Porto, Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), University of Porto, Porto, Portugal; Medical Faculty, University of Porto, Porto, Portugal; Department of Pathology and Oncology, Medical Faculty of the University of Porto, Porto, Portugal.
| |
Collapse
|
45
|
Kim Y, Cha S, Seo T. Activation of the phosphatidylinositol 3-kinase/Akt pathway by viral interferon regulatory factor 2 of Kaposi's sarcoma-associated herpesvirus. Biochem Biophys Res Commun 2016; 470:650-656. [DOI: 10.1016/j.bbrc.2016.01.087] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 01/14/2016] [Indexed: 12/22/2022]
|
46
|
Lohberger B, Leithner A, Stuendl N, Kaltenegger H, Kullich W, Steinecker-Frohnwieser B. Diacerein retards cell growth of chondrosarcoma cells at the G2/M cell cycle checkpoint via cyclin B1/CDK1 and CDK2 downregulation. BMC Cancer 2015; 15:891. [PMID: 26555773 PMCID: PMC4641423 DOI: 10.1186/s12885-015-1915-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 11/06/2015] [Indexed: 01/23/2023] Open
Abstract
Background Chondrosarcoma is characterized for its lack of response to conventional cytotoxic chemotherapy, propensity for developing lung metastases, and low rates of survival. Research within the field of development and expansion of new treatment options for unresectable or metastatic diseases is of particular priority. Diacerein, a symptomatic slow acting drug in osteoarthritis (SYSADOA), implicates a therapeutic benefit for the treatment of chondrosarcoma by an antitumor activity. Methods After treatment with diacerein the growth behaviour of the cells was analyzed with the xCELLigence system and MTS assay. Cell cycle was examined using flow cytometric analysis, RT-PCR, and western blot analysis of specific checkpoint regulators. The status for phosophorylation of mitogen-activated protein kinases (MAPKs) was analyzed with a proteome profiler assay. In addition, the possible impact of diacerein on apoptosis was investigated using cleaved caspase 3 and Annexin V/PI flow cytometric analysis. Results Diacerein decreased the cell viability and the cell proliferation in two different chondrosarcoma cell lines in a dose dependent manner. Flow cytometric analysis showed a classical G2/M arrest. mRNA and protein analysis revealed that diacerein induced a down-regulation of the cyclin B1-CDK1 complex and a reduction in CDK2 expression. Furthermore, diacerein treatment increased the phosphorylation of p38α and p38β MAPKs, and Akt1, Akt2, and Akt 3 in SW-1353, whereas in Cal-78 the opposite effect has been demonstrated. These observations accordingly to our cell cycle flow cytometric analysis and protein expression data may explain the G2/M phase arrest. In addition, no apoptotic induction after diacerein treatment, neither in the Cal-78 nor in the SW-1353 cell line was observed. Conclusions Our results demonstrate for the first time that the SYSADOA diacerein decreased the viability of human chondrosarcoma cells and induces G2/M cell cycle arrest by CDK1/cyclin B1 down-regulation.
Collapse
Affiliation(s)
- Birgit Lohberger
- Department of Orthopedic Surgery, Medical University Graz, Auenbruggerplatz 5, A-8036, Graz, Austria.
| | - Andreas Leithner
- Department of Orthopedic Surgery, Medical University Graz, Auenbruggerplatz 5, A-8036, Graz, Austria.
| | - Nicole Stuendl
- Department of Orthopedic Surgery, Medical University Graz, Auenbruggerplatz 5, A-8036, Graz, Austria.
| | - Heike Kaltenegger
- Department of Orthopedic Surgery, Medical University Graz, Auenbruggerplatz 5, A-8036, Graz, Austria.
| | - Werner Kullich
- Ludwig Boltzmann Institute for Rehabilitation of Internal Diseases, Ludwig Boltzmann Cluster for Rheumatology, Balneology and Rehabilitation, Saalfelden, Austria.
| | - Bibiane Steinecker-Frohnwieser
- Ludwig Boltzmann Institute for Rehabilitation of Internal Diseases, Ludwig Boltzmann Cluster for Rheumatology, Balneology and Rehabilitation, Saalfelden, Austria.
| |
Collapse
|
47
|
Abstract
Akt regulates critical cellular processes including cell survival and proliferation, glucose metabolism, cell migration, cancer progression and metastasis through phosphorylation of a variety of downstream targets. The Akt pathway is one of the most prevalently hyperactivated signaling pathways in human cancer, thus, research deciphering molecular mechanisms which underlie the aberrant Akt activation has received enormous attention. The PI3K-dependent Akt serine/threonine phosphorylation by PDK1 and mTORC2 has long been thought to be the primary mechanism accounting for Akt activation. However, this regulation alone does not sufficiently explain how Akt hyperactivation can occur in tumors with normal levels of PI3K/PTEN activity. Mounting evidence demonstrates that aberrant Akt activation can be attributed to other posttranslational modifications, which include tyrosine phosphorylation, O-GlcNAcylation, as well as lysine modifications: ubiquitination, SUMOylation and acetylation. Among them, K63-linked ubiquitination has been shown to be a critical step for Akt signal activation by facilitating its membrane recruitment. Deficiency of E3 ligases responsible for growth factor-induced Akt activation leads to tumor suppression. Therefore, a comprehensive understanding of posttranslational modifications in Akt regulation will offer novel strategies for cancer therapy.
Collapse
|