1
|
Kim D, Kim M, Kim J, Baek K, Park H, Park S, Kang BM, Kim S, Kim MJ, Mostafa MN, Maharjan S, Shin HE, Lee MH, Il Kim J, Park MS, Kim YS, Choi EK, Lee Y, Kwon HJ. A mouse xenograft long-term replication yields a SARS-CoV-2 Delta mutant with increased lethality. J Med Virol 2024; 96:e29459. [PMID: 38345153 DOI: 10.1002/jmv.29459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/26/2023] [Accepted: 01/16/2024] [Indexed: 02/15/2024]
Abstract
We recently established a long-term SARS-CoV-2 infection model using lung-cancer xenograft mice and identified mutations that arose in the SARS-CoV-2 genome during long-term propagation. Here, we applied our model to the SARS-CoV-2 Delta variant, which has increased transmissibility and immune escape compared with ancestral SARS-CoV-2. We observed limited mutations in SARS-CoV-2 Delta during long-term propagation, including two predominant mutations: R682W in the spike protein and L330W in the nucleocapsid protein. We analyzed two representative isolates, Delta-10 and Delta-12, with both predominant mutations and some additional mutations. Delta-10 and Delta-12 showed lower replication capacity compared with SARS-CoV-2 Delta in cultured cells; however, Delta-12 was more lethal in K18-hACE2 mice compared with SARS-CoV-2 Delta and Delta-10. Mice infected with Delta-12 had higher viral titers, more severe histopathology in the lungs, higher chemokine expression, increased astrocyte and microglia activation, and extensive neutrophil infiltration in the brain. Brain tissue hemorrhage and mild vacuolation were also observed, suggesting that the high lethality of Delta-12 was associated with lung and brain pathology. Our long-term infection model can provide mutant viruses derived from SARS-CoV-2 Delta and knowledge about the possible contributions of emergent mutations to the properties of new variants.
Collapse
Affiliation(s)
- Dongbum Kim
- Institute of Medical Science, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Minyoung Kim
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Jinsoo Kim
- Institute of Medical Science, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Kyeongbin Baek
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Heedo Park
- Department of Microbiology, Vaccine Innovation Center College of Medicine, Institute for Viral Diseases, Korea University, Seoul, Republic of Korea
| | - Sangkyu Park
- Department of Biochemistry, College of Natural Sciences, Chungbuk National University, Cheongju, Republic of Korea
| | - Bo Min Kang
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Suyeon Kim
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Mo-Jong Kim
- Ilsong Institute of Life Science, Hallym University, Seoul, Republic of Korea
| | - Mohd Najib Mostafa
- Ilsong Institute of Life Science, Hallym University, Seoul, Republic of Korea
- Department of Biomedical Gerontology, Graduate School of Hallym University, Chuncheon, Republic of Korea
| | - Sony Maharjan
- Institute of Medical Science, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Ha-Eun Shin
- Department of Biochemistry, College of Natural Sciences, Chungbuk National University, Cheongju, Republic of Korea
| | - Myeong-Heon Lee
- Department of Biochemistry, College of Natural Sciences, Chungbuk National University, Cheongju, Republic of Korea
| | - Jin Il Kim
- Department of Microbiology, Vaccine Innovation Center College of Medicine, Institute for Viral Diseases, Korea University, Seoul, Republic of Korea
| | - Man-Seong Park
- Department of Microbiology, Vaccine Innovation Center College of Medicine, Institute for Viral Diseases, Korea University, Seoul, Republic of Korea
| | - Yong-Sun Kim
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Republic of Korea
- Ilsong Institute of Life Science, Hallym University, Seoul, Republic of Korea
| | - Eun-Kyoung Choi
- Ilsong Institute of Life Science, Hallym University, Seoul, Republic of Korea
- Department of Biomedical Gerontology, Graduate School of Hallym University, Chuncheon, Republic of Korea
| | - Younghee Lee
- Department of Biochemistry, College of Natural Sciences, Chungbuk National University, Cheongju, Republic of Korea
| | - Hyung-Joo Kwon
- Institute of Medical Science, College of Medicine, Hallym University, Chuncheon, Republic of Korea
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| |
Collapse
|
2
|
Cianfarini C, Hassler L, Wysocki J, Hassan A, Nicolaescu V, Elli D, Gula H, Ibrahim AM, Randall G, Henkin J, Batlle D. Soluble Angiotensin-Converting Enzyme 2 Protein Improves Survival and Lowers Viral Titers in Lethal Mouse Model of Severe Acute Respiratory Syndrome Coronavirus Type 2 Infection with the Delta Variant. Cells 2024; 13:203. [PMID: 38334597 PMCID: PMC10854654 DOI: 10.3390/cells13030203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/19/2024] [Accepted: 01/20/2024] [Indexed: 02/10/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) utilizes angiotensin-converting enzyme 2 (ACE2) as its main receptor for cell entry. We bioengineered a soluble ACE2 protein termed ACE2 618-DDC-ABD that has increased binding to SARS-CoV-2 and prolonged duration of action. Here, we investigated the protective effect of this protein when administered intranasally to k18-hACE2 mice infected with the aggressive SARS-CoV-2 Delta variant. k18-hACE2 mice were infected with the SARS-CoV-2 Delta variant by inoculation of a lethal dose (2 × 104 PFU). ACE2 618-DDC-ABD (10 mg/kg) or PBS was administered intranasally six hours prior and 24 and 48 h post-viral inoculation. All animals in the PBS control group succumbed to the disease on day seven post-infection (0% survival), whereas, in contrast, there was only one casualty in the group that received ACE2 618-DDC-ABD (90% survival). Mice in the ACE2 618-DDC-ABD group had minimal disease as assessed using a clinical score and stable weight, and both brain and lung viral titers were markedly reduced. These findings demonstrate the efficacy of a bioengineered soluble ACE2 decoy with an extended duration of action in protecting against the aggressive Delta SARS-CoV-2 variant. Together with previous work, these findings underline the universal protective potential against current and future emerging SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Cosimo Cianfarini
- Division of Nephrology/Hypertension, Department of Medicine, Feinberg School of Medicine, Northwestern University, 710 North Fairbanks Court, Chicago, IL 60611, USA
- Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Luise Hassler
- Division of Nephrology/Hypertension, Department of Medicine, Feinberg School of Medicine, Northwestern University, 710 North Fairbanks Court, Chicago, IL 60611, USA
| | - Jan Wysocki
- Division of Nephrology/Hypertension, Department of Medicine, Feinberg School of Medicine, Northwestern University, 710 North Fairbanks Court, Chicago, IL 60611, USA
| | - Abdelsabour Hassan
- Division of Nephrology/Hypertension, Department of Medicine, Feinberg School of Medicine, Northwestern University, 710 North Fairbanks Court, Chicago, IL 60611, USA
| | - Vlad Nicolaescu
- Howard Taylor Ricketts Laboratory, Department of Microbiology, The University of Chicago, Lemont, IL 60637, USA
| | - Derek Elli
- Howard Taylor Ricketts Laboratory, Department of Microbiology, The University of Chicago, Lemont, IL 60637, USA
| | - Haley Gula
- Howard Taylor Ricketts Laboratory, Department of Microbiology, The University of Chicago, Lemont, IL 60637, USA
| | - Amany M. Ibrahim
- Howard Taylor Ricketts Laboratory, Department of Microbiology, The University of Chicago, Lemont, IL 60637, USA
| | - Glenn Randall
- Howard Taylor Ricketts Laboratory, Department of Microbiology, The University of Chicago, Lemont, IL 60637, USA
| | - Jack Henkin
- Center for Developmental Therapeutics, Northwestern University, Evanston, IL 60208, USA
| | - Daniel Batlle
- Division of Nephrology/Hypertension, Department of Medicine, Feinberg School of Medicine, Northwestern University, 710 North Fairbanks Court, Chicago, IL 60611, USA
| |
Collapse
|
3
|
Naderi Beni R, Elyasi-Ebli P, Gharaghani S, Seyedarabi A. In silico studies of anti-oxidative and hot temperament-based phytochemicals as natural inhibitors of SARS-CoV-2 Mpro. PLoS One 2023; 18:e0295014. [PMID: 38033024 PMCID: PMC10688677 DOI: 10.1371/journal.pone.0295014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 11/13/2023] [Indexed: 12/02/2023] Open
Abstract
Main protease (Mpro) of SARS-CoV-2 is considered one of the key targets due to its role in viral replication. The use of traditional phytochemicals is an important part of complementary/alternative medicine, which also accompany the concept of temperament, where it has been shown that hot medicines cure cold and cold medicines cure hot, with cold and hot pattern being associated with oxidative and anti-oxidative properties in medicine, respectively. Molecular docking in this study has demonstrated that a number of anti-oxidative and hot temperament-based phytochemicals have high binding affinities to SARS-CoV-2 Mpro, both in the monomeric and dimeric deposited states of the protein. The highest ranking phytochemicals identified in this study included savinin, betulinic acid and curcumin. Complexes of savinin, betulinic acid, curcumin as well as Nirmatrelvir (the only approved inhibitor, used for comparison) bound to SARS-CoV-2 Mpro were further subjected to molecular dynamics simulations. Subsequently, RMSD, RMSF, Rg, number of hydrogen bonds, binding free energies and residue contributions (using MM-PBSA) and buried surface area (BSA), were analysed. The computational results suggested high binding affinities of savinin, betulinic acid and curcumin to both the monomeric and dimeric deposited states of Mpro, while highlighting the lower binding energy of betulinic acid in comparison with savinin and curcumin and even Nirmatrelvir, leading to a greater stability of the betulinic acid-SARS-CoV-2 Mpro complex. Overall, based on the increasing mutation rate in the spike protein and the fact that the SARS-CoV-2 Mpro remains highly conserved, this study provides an insight into the use of phytochemicals against COVID-19 and other coronavirus diseases.
Collapse
Affiliation(s)
- Ramin Naderi Beni
- Department of Biochemistry, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Parisa Elyasi-Ebli
- Laboratory of Bioinformatics and Drug Design, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Sajjad Gharaghani
- Laboratory of Bioinformatics and Drug Design, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Arefeh Seyedarabi
- Department of Biochemistry, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| |
Collapse
|
4
|
Panja A, Roy J, Mazumder A, Choudhury SM. Divergent mutations of Delta and Omicron variants: key players behind differential viral attributes across the COVID-19 waves. Virusdisease 2023:1-14. [PMID: 37363365 PMCID: PMC10171727 DOI: 10.1007/s13337-023-00823-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/17/2023] [Indexed: 06/28/2023] Open
Abstract
The third SARS-CoV-2 pandemic wave causing Omicron variant has comparatively higher replication rate and transmissibility than the second wave-causing Delta variant. The exact mechanism behind the differential properties of Delta and Omicron in respect to infectivity and virulence is not properly understood yet. This study reports the analysis of different mutations within the receptor binding domain (RBD) of spike glycoprotein and non-structural protein (nsp) of Delta and Omicron strains. We have used computational studies to evaluate the properties of Delta and Omicron variants in this work. Q498R, Q493R and S375F mutations of RBD showed better docking scores for Omicron compared to Delta variant of SARS-CoV-2, whereas nsp3_L1266I with PARP15 (7OUX), nsp3_L1266I with PARP15 (7OUX), and nsp6_G107 with ISG15 (1Z2M) showed significantly higher docking score. The findings of the present study might be helpful to reveal the probable cause of relatively milder form of COVID-19 disease manifested by Omicron in comparison to Delta variant of SARS-CoV-2 virus. Supplementary Information The online version contains supplementary material available at 10.1007/s13337-023-00823-0.
Collapse
Affiliation(s)
- Amrita Panja
- Biochemistry, Molecular Endocrinology, and Reproductive Physiology Laboratory, Department of Human Physiology, Vidyasagar University, Paschim Medinipore, Midnapore, West Bengal 721102 India
| | - Jayita Roy
- National Institute of Biomedical Genomics (NIBMG), Nadia, Kalyani, West Bengal 741251 India
| | - Anup Mazumder
- National Institute of Biomedical Genomics (NIBMG), Nadia, Kalyani, West Bengal 741251 India
| | - Sujata Maiti Choudhury
- Biochemistry, Molecular Endocrinology, and Reproductive Physiology Laboratory, Department of Human Physiology, Vidyasagar University, Paschim Medinipore, Midnapore, West Bengal 721102 India
| |
Collapse
|
5
|
López-Andreo MJ, Vicente-Romero MR, Bernal E, Navarro-González I, Salazar-Martínez F, Cánovas-Cánovas V, Gil-Ortuño C, Riquelme-Rocamora MG, Solano F, Ibáñez-López FJ, Tomás C, Candel-Pérez C, Pérez-Parra S, Flores-Flores C. Whole Sequencing and Detailed Analysis of SARS-CoV-2 Genomes in Southeast Spain: Identification of Recurrent Mutations in the 20E (EU1) Variant with Some Clinical Implications. Diseases 2023; 11:diseases11020054. [PMID: 37092436 PMCID: PMC10123601 DOI: 10.3390/diseases11020054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/25/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
During the COVID-19 pandemic caused by SARS-CoV-2, new waves have been associated with new variants and have the potential to escape vaccinations. Therefore, it is useful to conduct retrospective genomic surveillance research. Herein, we present a detailed analysis of 88 SARS-CoV-2 genomes belonging to samples taken from COVID-19 patients from October 2020 to April 2021 at the “Reina Sofía” Hospital (Murcia, Spain) focused to variant appeared later. The results at the mentioned stage show the turning point since the 20E (EU1) variant was still prevalent (71.6%), but Alpha was bursting to 14.8%. Concern mutations have been found in 5 genomes classified as 20E (EU1), which were not characteristic of this still little evolved variant. Most of those mutations are found in the spike protein, namely Δ69–70, E484K, Q675H and P681H. However, a relevant deletion in ORF1a at positions 3675–3677 was also identified. These mutations have been reported in many later SARS-CoV-2 lineages, including Omicron. Taken together, our data suggest that preferential emergence mutations could already be present in the early converging evolution. Aside from this, the molecular information has been contrasted with clinical data. Statistical analyses suggest that the correlation between age and severity criteria is significantly higher in the viral samples with more accumulated changes.
Collapse
Affiliation(s)
- María José López-Andreo
- Servicio de Biología Molecular, Área Científica y Técnica de Investigación (ACTI), Universidad de Murcia, 30100 Murcia, Spain
| | | | - Enrique Bernal
- Laboratorio de Microbiología del Hospital General Universitario Reina Sofía de Murcia, 30003 Murcia, Spain
- Correspondence: (E.B.); (F.S.)
| | - Inmaculada Navarro-González
- Servicio de Biología Molecular, Área Científica y Técnica de Investigación (ACTI), Universidad de Murcia, 30100 Murcia, Spain
| | - Francisco Salazar-Martínez
- Servicio de Biología Molecular, Área Científica y Técnica de Investigación (ACTI), Universidad de Murcia, 30100 Murcia, Spain
| | - Vanesa Cánovas-Cánovas
- Servicio de Biología Molecular, Área Científica y Técnica de Investigación (ACTI), Universidad de Murcia, 30100 Murcia, Spain
| | - Cristina Gil-Ortuño
- Servicio de Biología Molecular, Área Científica y Técnica de Investigación (ACTI), Universidad de Murcia, 30100 Murcia, Spain
| | - María Gema Riquelme-Rocamora
- Servicio de Biología Molecular, Área Científica y Técnica de Investigación (ACTI), Universidad de Murcia, 30100 Murcia, Spain
| | - Francisco Solano
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Universidad de Murcia, 30100 Murcia, Spain
- Correspondence: (E.B.); (F.S.)
| | - Francisco Javier Ibáñez-López
- Sección de Apoyo Estadístico, Servicio de Investigación Biosanitaria, Área Científica y Técnica de Investigación (ACTI), Universidad de Murcia, 30100 Murcia, Spain
| | - Cristina Tomás
- Laboratorio de Microbiología del Hospital General Universitario Reina Sofía de Murcia, 30003 Murcia, Spain
| | - Carmen Candel-Pérez
- Laboratorio de Microbiología del Hospital General Universitario Reina Sofía de Murcia, 30003 Murcia, Spain
| | | | - César Flores-Flores
- Servicio de Biología Molecular, Área Científica y Técnica de Investigación (ACTI), Universidad de Murcia, 30100 Murcia, Spain
| |
Collapse
|
6
|
Delta (B1.617.2) variant of SARS-CoV-2 induces severe neurotropic patterns in K18-hACE2 mice. Sci Rep 2023; 13:3303. [PMID: 36849513 PMCID: PMC9970970 DOI: 10.1038/s41598-023-29909-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 02/13/2023] [Indexed: 03/01/2023] Open
Abstract
A highly contagious virus, severe acute respiratory syndrome coronavirus 2, caused the coronavirus disease 19 (COVID-19) pandemic (SARS-CoV-2). SARS-CoV-2 genetic variants have been reported to circulate throughout the COVID-19 pandemic. COVID-19 symptoms include respiratory symptoms, fever, muscle pain, and breathing difficulty. In addition, up to 30% of COVID-19 patients experience neurological complications such as headaches, nausea, stroke, and anosmia. However, the neurotropism of SARS-CoV-2 infection remains largely unknown. This study investigated the neurotropic patterns between the B1.617.2 (Delta) and Hu-1 variants (Wuhan, early strain) in K18-hACE2 mice. Despite both the variants inducing similar pathogenic patterns in various organs, B1.617.2-infected K18-hACE2 mice demonstrated a higher range of disease phenotypes such as weight loss, lethality, and conjunctivitis when compared to those in Hu-1-infected mice. In addition, histopathological analysis revealed that B1.617.2 infects the brain of K18-hACE2 mice more rapidly and effectively than Hu-1. Finally, we discovered that, in B1.617.2-infected mice, the early activation of various signature genes involved innate cytokines and that the necrosis-related response was most pronounced than that in Hu-1-infected mice. The present findings indicate the neuroinvasive properties of SARS-CoV-2 variants in K18-hACE2 mice and link them to fatal neuro-dissemination during the disease onset.
Collapse
|
7
|
Zhang B, Zhang Z, Koeken VA, Kumar S, Aillaud M, Tsay HC, Liu Z, Kraft AR, Soon CF, Odak I, Bošnjak B, Vlot A, Swertz MA, Ohler U, Geffers R, Illig T, Huehn J, Saliba AE, Sander LE, Förster R, Xu CJ, Cornberg M, Schulte LN, Li Y. Altered and allele-specific open chromatin landscape reveals epigenetic and genetic regulators of innate immunity in COVID-19. CELL GENOMICS 2023; 3:100232. [PMID: 36474914 PMCID: PMC9715265 DOI: 10.1016/j.xgen.2022.100232] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/21/2022] [Accepted: 11/17/2022] [Indexed: 12/05/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection causes severe COVID-19 in some patients and mild COVID-19 in others. Dysfunctional innate immune responses have been identified to contribute to COVID-19 severity, but the key regulators are still unknown. Here, we present an integrative single-cell multi-omics analysis of peripheral blood mononuclear cells from hospitalized and convalescent COVID-19 patients. In classical monocytes, we identified genes that were potentially regulated by differential chromatin accessibility. Then, sub-clustering and motif-enrichment analyses revealed disease condition-specific regulation by transcription factors and their targets, including an interaction between C/EBPs and a long-noncoding RNA LUCAT1, which we validated through loss-of-function experiments. Finally, we investigated genetic risk variants that exhibit allele-specific open chromatin (ASoC) in COVID-19 patients and identified a SNP rs6800484-C, which is associated with lower expression of CCR2 and may contribute to higher viral loads and higher risk of COVID-19 hospitalization. Altogether, our study highlights the diverse genetic and epigenetic regulators that contribute to COVID-19.
Collapse
Affiliation(s)
- Bowen Zhang
- Department of Computational Biology for Individualised Infection Medicine, Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
- TWINCORE, a joint venture between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
- Beijing Normal University, College of Life Sciences, Beijing, China
| | - Zhenhua Zhang
- Department of Computational Biology for Individualised Infection Medicine, Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
- TWINCORE, a joint venture between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
- Genomics Coordination Center, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
| | - Valerie A.C.M. Koeken
- Department of Computational Biology for Individualised Infection Medicine, Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
- TWINCORE, a joint venture between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Saumya Kumar
- Department of Computational Biology for Individualised Infection Medicine, Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
- TWINCORE, a joint venture between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Michelle Aillaud
- Institute for Lung Research, Philipps University, Marburg, Germany
| | - Hsin-Chieh Tsay
- Department of Computational Biology for Individualised Infection Medicine, Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
- TWINCORE, a joint venture between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Zhaoli Liu
- Department of Computational Biology for Individualised Infection Medicine, Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
- TWINCORE, a joint venture between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Anke R.M. Kraft
- Department of Computational Biology for Individualised Infection Medicine, Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
- TWINCORE, a joint venture between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
- German Centre for Infection Research (Deutsches Zentrum für Infektionsforschung [DZIF]), Partner Site Hannover-Braunschweig, Hannover, Germany
- Cluster of Excellence Resolving Infection Susceptibility (RESIST; EXC 2155), Hannover Medical School, Hannover, Germany
| | - Chai Fen Soon
- TWINCORE, a joint venture between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Ivan Odak
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Berislav Bošnjak
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Anna Vlot
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Deutsche COVID-19 OMICS Initiative (DeCOI)
- Department of Computational Biology for Individualised Infection Medicine, Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
- TWINCORE, a joint venture between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
- Beijing Normal University, College of Life Sciences, Beijing, China
- Genomics Coordination Center, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
- Institute for Lung Research, Philipps University, Marburg, Germany
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
- German Centre for Infection Research (Deutsches Zentrum für Infektionsforschung [DZIF]), Partner Site Hannover-Braunschweig, Hannover, Germany
- Cluster of Excellence Resolving Infection Susceptibility (RESIST; EXC 2155), Hannover Medical School, Hannover, Germany
- Institute of Immunology, Hannover Medical School, Hannover, Germany
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Genome Analytics, Helmholtz-Center for Infection Research (HZI), Braunschweig, Germany
- German Center for Lung Research (DZL), Giessen, Germany
- Hannover Unified Biobank, Hannover Medical School, Hannover, Germany
- Department of Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Centre for Infection Research (HZI), Wurzburg, Germany
- Charité–Universitätsmedizin Berlin, Department of Infectious Diseases and Respiratory Medicine, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Morris A. Swertz
- Genomics Coordination Center, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
| | - Uwe Ohler
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Robert Geffers
- Genome Analytics, Helmholtz-Center for Infection Research (HZI), Braunschweig, Germany
| | - Thomas Illig
- German Center for Lung Research (DZL), Giessen, Germany
- Hannover Unified Biobank, Hannover Medical School, Hannover, Germany
| | - Jochen Huehn
- Cluster of Excellence Resolving Infection Susceptibility (RESIST; EXC 2155), Hannover Medical School, Hannover, Germany
- Department of Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Antoine-Emmanuel Saliba
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Centre for Infection Research (HZI), Wurzburg, Germany
| | - Leif Erik Sander
- German Center for Lung Research (DZL), Giessen, Germany
- Charité–Universitätsmedizin Berlin, Department of Infectious Diseases and Respiratory Medicine, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Reinhold Förster
- German Centre for Infection Research (Deutsches Zentrum für Infektionsforschung [DZIF]), Partner Site Hannover-Braunschweig, Hannover, Germany
- Cluster of Excellence Resolving Infection Susceptibility (RESIST; EXC 2155), Hannover Medical School, Hannover, Germany
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Cheng-Jian Xu
- Department of Computational Biology for Individualised Infection Medicine, Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
- TWINCORE, a joint venture between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Markus Cornberg
- Department of Computational Biology for Individualised Infection Medicine, Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
- TWINCORE, a joint venture between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
- German Centre for Infection Research (Deutsches Zentrum für Infektionsforschung [DZIF]), Partner Site Hannover-Braunschweig, Hannover, Germany
- Cluster of Excellence Resolving Infection Susceptibility (RESIST; EXC 2155), Hannover Medical School, Hannover, Germany
| | - Leon N. Schulte
- Institute for Lung Research, Philipps University, Marburg, Germany
- German Center for Lung Research (DZL), Giessen, Germany
| | - Yang Li
- Department of Computational Biology for Individualised Infection Medicine, Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
- TWINCORE, a joint venture between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
- Cluster of Excellence Resolving Infection Susceptibility (RESIST; EXC 2155), Hannover Medical School, Hannover, Germany
| |
Collapse
|
8
|
Duchen D, Vergara C, Thio CL, Kundu P, Chatterjee N, Thomas DL, Wojcik GL, Duggal P. Pathogen exposure misclassification can bias association signals in GWAS of infectious diseases when using population-based common control subjects. Am J Hum Genet 2023; 110:336-348. [PMID: 36649706 PMCID: PMC9943744 DOI: 10.1016/j.ajhg.2022.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 12/20/2022] [Indexed: 01/18/2023] Open
Abstract
Genome-wide association studies (GWASs) have been performed to identify host genetic factors for a range of phenotypes, including for infectious diseases. The use of population-based common control subjects from biobanks and extensive consortia is a valuable resource to increase sample sizes in the identification of associated loci with minimal additional expense. Non-differential misclassification of the outcome has been reported when the control subjects are not well characterized, which often attenuates the true effect size. However, for infectious diseases the comparison of affected subjects to population-based common control subjects regardless of pathogen exposure can also result in selection bias. Through simulated comparisons of pathogen-exposed cases and population-based common control subjects, we demonstrate that not accounting for pathogen exposure can result in biased effect estimates and spurious genome-wide significant signals. Further, the observed association can be distorted depending upon strength of the association between a locus and pathogen exposure and the prevalence of pathogen exposure. We also used a real data example from the hepatitis C virus (HCV) genetic consortium comparing HCV spontaneous clearance to persistent infection with both well-characterized control subjects and population-based common control subjects from the UK Biobank. We find biased effect estimates for known HCV clearance-associated loci and potentially spurious HCV clearance associations. These findings suggest that the choice of control subjects is especially important for infectious diseases or outcomes that are conditional upon environmental exposures.
Collapse
Affiliation(s)
- Dylan Duchen
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Candelaria Vergara
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Chloe L Thio
- Division of Infectious Diseases, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Prosenjit Kundu
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Nilanjan Chatterjee
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - David L Thomas
- Division of Infectious Diseases, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Genevieve L Wojcik
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Priya Duggal
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| |
Collapse
|
9
|
Ai L, Li Y, Zhou L, Yao W, Zhang H, Hu Z, Han J, Wang W, Wu J, Xu P, Wang R, Li Z, Li Z, Wei C, Liang J, Chen H, Yang Z, Guo M, Huang Z, Wang X, Zhang Z, Xiang W, Sun D, Xu L, Huang M, Lv B, Peng P, Zhang S, Ji X, Luo H, Chen N, Chen J, Lan K, Hu Y. Lyophilized mRNA-lipid nanoparticle vaccines with long-term stability and high antigenicity against SARS-CoV-2. Cell Discov 2023; 9:9. [PMID: 36683074 PMCID: PMC9868121 DOI: 10.1038/s41421-022-00517-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/28/2022] [Indexed: 01/24/2023] Open
Abstract
Advanced mRNA vaccines play vital roles against SARS-CoV-2. However, most current mRNA delivery platforms need to be stored at -20 °C or -70 °C due to their poor stability, which severely restricts their availability. Herein, we develop a lyophilization technique to prepare SARS-CoV-2 mRNA-lipid nanoparticle vaccines with long-term thermostability. The physiochemical properties and bioactivities of lyophilized vaccines showed no change at 25 °C over 6 months, and the lyophilized SARS-CoV-2 mRNA vaccines could elicit potent humoral and cellular immunity whether in mice, rabbits, or rhesus macaques. Furthermore, in the human trial, administration of lyophilized Omicron mRNA vaccine as a booster shot also engendered strong immunity without severe adverse events, where the titers of neutralizing antibodies against Omicron BA.1/BA.2/BA.4 were increased by at least 253-fold after a booster shot following two doses of the commercial inactivated vaccine, CoronaVac. This lyophilization platform overcomes the instability of mRNA vaccines without affecting their bioactivity and significantly improves their accessibility, particularly in remote regions.
Collapse
Affiliation(s)
- Liangxia Ai
- Shenzhen Rhegen Biotechnology Co. Ltd., Shenzhen, Guangdong China
| | - Yafei Li
- Shenzhen Rhegen Biotechnology Co. Ltd., Shenzhen, Guangdong China
| | - Li Zhou
- grid.49470.3e0000 0001 2331 6153State Key Laboratory of Virology, College of Life Sciences, ABSL-3 Laboratory/Institute for Vaccine Research, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei China
| | - Wenrong Yao
- Jiangsu Rec-biotechnology Co. Ltd., Taizhou, Jiangsu China
| | - Hao Zhang
- Shenzhen Rhegen Biotechnology Co. Ltd., Shenzhen, Guangdong China
| | - Zhaoyu Hu
- Shenzhen Rhegen Biotechnology Co. Ltd., Shenzhen, Guangdong China
| | - Jinyu Han
- Shenzhen Rhegen Biotechnology Co. Ltd., Shenzhen, Guangdong China
| | - Weijie Wang
- Shenzhen Rhegen Biotechnology Co. Ltd., Shenzhen, Guangdong China
| | - Junmiao Wu
- Shenzhen Rhegen Biotechnology Co. Ltd., Shenzhen, Guangdong China
| | - Pan Xu
- Shenzhen Rhegen Biotechnology Co. Ltd., Shenzhen, Guangdong China
| | - Ruiyue Wang
- Shenzhen Rhegen Biotechnology Co. Ltd., Shenzhen, Guangdong China
| | - Zhangyi Li
- Shenzhen Rhegen Biotechnology Co. Ltd., Shenzhen, Guangdong China
| | - Zhouwang Li
- Shenzhen Rhegen Biotechnology Co. Ltd., Shenzhen, Guangdong China
| | - Chengliang Wei
- Shenzhen Rhegen Biotechnology Co. Ltd., Shenzhen, Guangdong China
| | - Jianqun Liang
- Shenzhen Rhegen Biotechnology Co. Ltd., Shenzhen, Guangdong China
| | - Haobo Chen
- Shenzhen Rhegen Biotechnology Co. Ltd., Shenzhen, Guangdong China
| | - Zhimiao Yang
- Shenzhen Rhegen Biotechnology Co. Ltd., Shenzhen, Guangdong China
| | - Ming Guo
- grid.49470.3e0000 0001 2331 6153State Key Laboratory of Virology, College of Life Sciences, ABSL-3 Laboratory/Institute for Vaccine Research, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei China
| | - Zhixiang Huang
- grid.49470.3e0000 0001 2331 6153State Key Laboratory of Virology, College of Life Sciences, ABSL-3 Laboratory/Institute for Vaccine Research, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei China
| | - Xin Wang
- grid.49470.3e0000 0001 2331 6153State Key Laboratory of Virology, College of Life Sciences, ABSL-3 Laboratory/Institute for Vaccine Research, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei China
| | - Zhen Zhang
- grid.49470.3e0000 0001 2331 6153State Key Laboratory of Virology, College of Life Sciences, ABSL-3 Laboratory/Institute for Vaccine Research, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei China
| | - Wenjie Xiang
- grid.49470.3e0000 0001 2331 6153State Key Laboratory of Virology, College of Life Sciences, ABSL-3 Laboratory/Institute for Vaccine Research, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei China
| | - Dazheng Sun
- Shenzhen Rhegen Biotechnology Co. Ltd., Shenzhen, Guangdong China
| | - Lianqiang Xu
- Shenzhen Rhegen Biotechnology Co. Ltd., Shenzhen, Guangdong China
| | - Meiyan Huang
- Shenzhen Rhegen Biotechnology Co. Ltd., Shenzhen, Guangdong China
| | - Bin Lv
- Shenzhen Rhegen Biotechnology Co. Ltd., Shenzhen, Guangdong China
| | - Peiqi Peng
- Shenzhen Rhegen Biotechnology Co. Ltd., Shenzhen, Guangdong China
| | - Shangfeng Zhang
- Shenzhen Rhegen Biotechnology Co. Ltd., Shenzhen, Guangdong China
| | - Xuhao Ji
- Shenzhen Rhegen Biotechnology Co. Ltd., Shenzhen, Guangdong China
| | - Huiyi Luo
- Shenzhen Rhegen Biotechnology Co. Ltd., Shenzhen, Guangdong China
| | - Nanping Chen
- Shenzhen Rhegen Biotechnology Co. Ltd., Shenzhen, Guangdong China
| | - Jianping Chen
- Jiangsu Rec-biotechnology Co. Ltd., Taizhou, Jiangsu China ,Wuhan Recogen Biotechnology Co. Ltd., Wuhan, Hubei China
| | - Ke Lan
- grid.49470.3e0000 0001 2331 6153State Key Laboratory of Virology, College of Life Sciences, ABSL-3 Laboratory/Institute for Vaccine Research, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei China
| | - Yong Hu
- Shenzhen Rhegen Biotechnology Co. Ltd., Shenzhen, Guangdong China ,Wuhan Recogen Biotechnology Co. Ltd., Wuhan, Hubei China
| |
Collapse
|
10
|
Sanchez T, Mavragani A, Zhang A, Shi Z. A Spatiotemporal Solution to Control COVID-19 Transmission at the Community Scale for Returning to Normalcy: COVID-19 Symptom Onset Risk Spatiotemporal Analysis. JMIR Public Health Surveill 2023; 9:e36538. [PMID: 36508488 PMCID: PMC9829029 DOI: 10.2196/36538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/27/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Following the recent COVID-19 pandemic, returning to normalcy has become the primary goal of global cities. The key for returning to normalcy is to avoid affecting social and economic activities while supporting precise epidemic control. Estimation models for the spatiotemporal spread of the epidemic at the refined scale of cities that support precise epidemic control are limited. For most of 2021, Hong Kong has remained at the top of the "global normalcy index" because of its effective responses. The urban-community-scale spatiotemporal onset risk prediction model of COVID-19 symptom has been used to assist in the precise epidemic control of Hong Kong. OBJECTIVE Based on the spatiotemporal prediction models of COVID-19 symptom onset risk, the aim of this study was to develop a spatiotemporal solution to assist in precise prevention and control for returning to normalcy. METHODS Over the years 2020 and 2021, a spatiotemporal solution was proposed and applied to support the epidemic control in Hong Kong. An enhanced urban-community-scale geographic model was proposed to predict the risk of COVID-19 symptom onset by quantifying the impact of the transmission of SARS-CoV-2 variants, vaccination, and the imported case risk. The generated prediction results could be then applied to establish the onset risk predictions over the following days, the identification of high-onset-risk communities, the effectiveness analysis of response measures implemented, and the effectiveness simulation of upcoming response measures. The applications could be integrated into a web-based platform to assist the antiepidemic work. RESULTS Daily predicted onset risk in 291 tertiary planning units (TPUs) of Hong Kong from January 18, 2020, to April 22, 2021, was obtained from the enhanced prediction model. The prediction accuracy in the following 7 days was over 80%. The prediction results were used to effectively assist the epidemic control of Hong Kong in the following application examples: identified communities within high-onset-risk always only accounted for 2%-25% in multiple epidemiological scenarios; effective COVID-19 response measures, such as prohibiting public gatherings of more than 4 people were found to reduce the onset risk by 16%-46%; through the effect simulation of the new compulsory testing measure, the onset risk was found to be reduced by more than 80% in 42 (14.43%) TPUs and by more than 60% in 96 (32.99%) TPUs. CONCLUSIONS In summary, this solution can support sustainable and targeted pandemic responses for returning to normalcy. Faced with the situation that may coexist with SARS-CoV-2, this study can not only assist global cities in responding to the future epidemics effectively but also help to restore social and economic activities and people's normal lives.
Collapse
Affiliation(s)
| | | | - Anshu Zhang
- Otto Poon Charitable Foundation Smart Cities Research Institute and Department of Land Surveying and Geo-Informatics, The Hong Kong Polytechnic University, Hong Kong, China (Hong Kong)
| | - Zhicheng Shi
- Research Institute for Smart Cities, School of Architecture and Urban Planning, Shenzhen University, Shenzhen, China
| |
Collapse
|
11
|
Chrysostomou AC, Vrancken B, Haralambous C, Alexandrou M, Aristokleous A, Christodoulou C, Gregoriou I, Ioannides M, Kalakouta O, Karagiannis C, Koumbaris G, Loizides C, Mendris M, Papastergiou P, Patsalis PC, Pieridou D, Richter J, Schmitt M, Shammas C, Stylianou DC, Themistokleous G, Lemey P, Kostrikis LG. Genomic Epidemiology of the SARS-CoV-2 Epidemic in Cyprus from November 2020 to October 2021: The Passage of Waves of Alpha and Delta Variants of Concern. Viruses 2022; 15:108. [PMID: 36680148 PMCID: PMC9862594 DOI: 10.3390/v15010108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in December 2019 resulted in the coronavirus disease 2019 (COVID-19) pandemic, which has had devastating repercussions for public health. Over the course of this pandemic, the virus has continuously been evolving, resulting in new, more infectious variants that have frequently led to surges of new SARS-CoV-2 infections. In the present study, we performed detailed genetic, phylogenetic, phylodynamic and phylogeographic analyses to examine the SARS-CoV-2 epidemic in Cyprus using 2352 SARS-CoV-2 sequences from infected individuals in Cyprus during November 2020 to October 2021. During this period, a total of 61 different lineages and sublineages were identified, with most falling into three groups: B.1.258 & sublineages, Alpha (B.1.1.7 & Q. sublineages), and Delta (B.1.617.2 & AY. sublineages), each encompassing a set of S gene mutations that primarily confer increased transmissibility as well as immune evasion. Specifically, these lineages were coupled with surges of new infections in Cyprus, resulting in the following: the second wave of SARS-CoV-2 infections in Cyprus, comprising B.1.258 & sublineages, during late autumn 2020/beginning of winter 2021; the third wave, comprising Alpha (B.1.1.7 & Q. sublineages), during spring 2021; and the fourth wave, comprising Delta (B.1.617.2 & AY. sublineages) during summer 2021. Additionally, it was identified that these lineages were primarily imported from and exported to the UK, Greece, and Sweden; many other migration links were also identified, including Switzerland, Denmark, Russia, and Germany. Taken together, the results of this study indicate that the SARS-CoV-2 epidemic in Cyprus was characterized by successive introduction of new lineages from a plethora of countries, resulting in the generation of waves of infection. Overall, this study highlights the importance of investigating the spatiotemporal evolution of the SARS-CoV-2 epidemic in the context of Cyprus, as well as the impact of protective measures placed to mitigate transmission of the virus, providing necessary information to safeguard public health.
Collapse
Affiliation(s)
| | - Bram Vrancken
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, 3000 Leuven, Belgium
- Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, 1050 Bruxelles, Belgium
| | - Christos Haralambous
- Unit for Surveillance and Control of Communicable Diseases, Ministry of Health, Nicosia 1148, Cyprus
| | - Maria Alexandrou
- Microbiology Department, Larnaca General Hospital, Larnaca 6301, Cyprus
| | - Antonia Aristokleous
- Department of Biological Sciences, University of Cyprus, Aglantzia, Nicosia 2109, Cyprus
| | - Christina Christodoulou
- Department of Molecular Virology, Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus
| | - Ioanna Gregoriou
- Unit for Surveillance and Control of Communicable Diseases, Ministry of Health, Nicosia 1148, Cyprus
| | | | - Olga Kalakouta
- Unit for Surveillance and Control of Communicable Diseases, Ministry of Health, Nicosia 1148, Cyprus
| | | | | | | | - Michail Mendris
- Microbiology Department, Limassol General Hospital, Limassol 4131, Cyprus
| | | | - Philippos C. Patsalis
- NIPD Genetics, Nicosia 2409, Cyprus
- Medical School, University of Nicosia, Nicosia 2417, Cyprus
| | - Despo Pieridou
- Microbiology Department, Nicosia General Hospital, Nicosia 2029, Cyprus
| | - Jan Richter
- Department of Molecular Virology, Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus
| | - Markus Schmitt
- Eurofins Genomics Sequencing Europe, 85560 Ebersberg, Germany
| | - Christos Shammas
- S.C.I.N.A Bioanalysis Sciomedical Centre Ltd., Limassol 4040, Cyprus
| | - Dora C. Stylianou
- Department of Biological Sciences, University of Cyprus, Aglantzia, Nicosia 2109, Cyprus
| | | | | | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, 3000 Leuven, Belgium
| | - Leondios G. Kostrikis
- Department of Biological Sciences, University of Cyprus, Aglantzia, Nicosia 2109, Cyprus
- Cyprus Academy of Sciences, Letters, and Arts, 60-68 Phaneromenis Street, Nicosia 1011, Cyprus
| |
Collapse
|
12
|
Valenzuela-Fernández A, Cabrera-Rodriguez R, Ciuffreda L, Perez-Yanes S, Estevez-Herrera J, González-Montelongo R, Alcoba-Florez J, Trujillo-González R, García-Martínez de Artola D, Gil-Campesino H, Díez-Gil O, Lorenzo-Salazar JM, Flores C, Garcia-Luis J. Nanomaterials to combat SARS-CoV-2: Strategies to prevent, diagnose and treat COVID-19. Front Bioeng Biotechnol 2022; 10:1052436. [PMID: 36507266 PMCID: PMC9732709 DOI: 10.3389/fbioe.2022.1052436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/09/2022] [Indexed: 11/26/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and the associated coronavirus disease 2019 (COVID-19), which severely affect the respiratory system and several organs and tissues, and may lead to death, have shown how science can respond when challenged by a global emergency, offering as a response a myriad of rapid technological developments. Development of vaccines at lightning speed is one of them. SARS-CoV-2 outbreaks have stressed healthcare systems, questioning patients care by using standard non-adapted therapies and diagnostic tools. In this scenario, nanotechnology has offered new tools, techniques and opportunities for prevention, for rapid, accurate and sensitive diagnosis and treatment of COVID-19. In this review, we focus on the nanotechnological applications and nano-based materials (i.e., personal protective equipment) to combat SARS-CoV-2 transmission, infection, organ damage and for the development of new tools for virosurveillance, diagnose and immune protection by mRNA and other nano-based vaccines. All the nano-based developed tools have allowed a historical, unprecedented, real time epidemiological surveillance and diagnosis of SARS-CoV-2 infection, at community and international levels. The nano-based technology has help to predict and detect how this Sarbecovirus is mutating and the severity of the associated COVID-19 disease, thereby assisting the administration and public health services to make decisions and measures for preparedness against the emerging variants of SARS-CoV-2 and severe or lethal COVID-19.
Collapse
Affiliation(s)
- Agustín Valenzuela-Fernández
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Romina Cabrera-Rodriguez
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Laura Ciuffreda
- Research Unit, Hospital Universitario N. S. de Candelaria, Santa Cruz de Tenerife, Spain
| | - Silvia Perez-Yanes
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Judith Estevez-Herrera
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | | | - Julia Alcoba-Florez
- Servicio de Microbiología, Hospital Universitario N. S. de Candelaria, Santa Cruz de Tenerife, Spain
| | - Rodrigo Trujillo-González
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
- Departamento de Análisis Matemático, Facultad de Ciencias, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | | | - Helena Gil-Campesino
- Servicio de Microbiología, Hospital Universitario N. S. de Candelaria, Santa Cruz de Tenerife, Spain
| | - Oscar Díez-Gil
- Servicio de Microbiología, Hospital Universitario N. S. de Candelaria, Santa Cruz de Tenerife, Spain
| | - José M. Lorenzo-Salazar
- Genomics Division, Instituto Tecnológico y de Energías Renovables, Santa Cruz de Tenerife, Spain
| | - Carlos Flores
- Research Unit, Hospital Universitario N. S. de Candelaria, Santa Cruz de Tenerife, Spain
- Genomics Division, Instituto Tecnológico y de Energías Renovables, Santa Cruz de Tenerife, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Faculty of Health Sciences, University of Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
| | - Jonay Garcia-Luis
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| |
Collapse
|
13
|
Local monitoring of SARS-CoV-2 variants in two large California counties in 2021. Sci Rep 2022; 12:17046. [PMID: 36221029 PMCID: PMC9553084 DOI: 10.1038/s41598-022-21481-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 09/27/2022] [Indexed: 12/30/2022] Open
Abstract
Coronavirus Disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), continues to persist due to mutations resulting in newer, more infectious variants of concern. We aimed to leverage an ongoing private SARS-CoV-2 testing laboratory's infrastructure to monitor SARS-CoV-2 variants in two large California counties. Study enrollment was offered to adults aged 18 years or older in Los Angeles County and Riverside County who recently tested positive for SARS-CoV-2 with a polymerase chain reaction (PCR) assay. A cycle threshold value less than or equal to 30 cycles was considered a positive test for sequencing purposes. Within 5 days of study enrollment, clinician-monitored, self-collected oral fluid and anterior nares swab specimens were obtained from participants. Specimens were transported and stored at 8 °C or cooler. Samples underwent ribonucleic acid extraction, library preparation, and sequencing. SARS-CoV-2 lineages were identified using sequencing data. Participant and genomic data were analyzed using statistical tools and visualized with toolkits. The study was approved by Advarra Institutional Review Board (Pro00053729). From May 27, 2021 to September 9, 2021, 503 individuals were enrolled and underwent specimen collection. Of the 503 participants, 238 (47.3%) participants were women, 329 (63.6%) participants were vaccinated, and 221 (43.9%) participants were of Hispanic or Spanish origin. Of the cohort, 496 (98.6%) participants had symptoms at the time of collection. Among the 503 samples, 443 (88.1%) nasal specimens and 353 (70.2%) oral specimens yielded positive sequencing results. Over our study period, the prevalence of the Alpha variant of SARS-CoV-2 decreased (initially 23.1% [95% confidence interval (95% CI): 0-0.49%] to 0% [95% CI 0.0-0.0%]) as the prevalence of the Delta variant of SARS-CoV-2 increased (initially 33.3% [95% CI 0.0-100.0%] to 100.0% [95% CI 100.0-100.0%]). A strain that carried mutations of both Delta and Mu was identified. We found that outpatient SARS-CoV-2 variant surveillance could be conducted in a timely and accurate manner. The prevalence of different variants changed over time. A higher proportion of nasal specimens yielded results versus oral specimens. Timely and regional outpatient SARS-CoV-2 variant surveillance could be used for public health efforts to identify changes in SARS-CoV-2 strain epidemiology.
Collapse
|
14
|
Oloye FF, Xie Y, Asadi M, Cantin J, Challis JK, Brinkmann M, McPhedran KN, Kristian K, Keller M, Sadowski M, Jones PD, Landgraff C, Mangat C, Fuzzen M, Servos MR, Giesy JP. Rapid transition between SARS-CoV-2 variants of concern Delta and Omicron detected by monitoring municipal wastewater from three Canadian cities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 841:156741. [PMID: 35716745 PMCID: PMC9212401 DOI: 10.1016/j.scitotenv.2022.156741] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 05/21/2023]
Abstract
Monitoring the communal incidence of COVID-19 is important for both government and residents of an area to make informed decisions. However, continuous reliance on one means of monitoring might not be accurate because of biases introduced by government policies or behaviours of residents. Wastewater surveillance was employed to monitor concentrations of SARS-CoV-2 RNA in raw influent wastewater from wastewater treatment plants serving three Canadian Prairie cities with different population sizes. Data obtained from wastewater are not directly influenced by government regulations or behaviours of individuals. The means of three weekly samples collected using 24 h composite auto-samplers were determined. Viral loads were determined by RT-qPCR, and whole-genome sequencing was used to charaterize variants of concern (VOC). The dominant VOCs in the three cities were the same but with different proportions of sub-lineages. Sub-lineages of Delta were AY.12, AY.25, AY.27 and AY.93 in 2021, while the major sub-lineage of Omicron was BA.1 in January 2022, and BA.2 subsequently became a trace-level sub-variant then the predominant VOC. When each VOC was first detected varied among cities; However, Saskatoon, with the largest population, was always the first to present new VOCs. Viral loads varied among cities, but there was no direct correlation with population size, possibly because of differences in flow regimes. Population is one of the factors that affects trends in onset and development of local outbreaks during the pandemic. This might be due to demography or the fact that larger populations had greater potential for inter- and intra-country migration. Hence, wastewater surveillance data from larger cities can typically be used to indicate what to expect in smaller communities.
Collapse
Affiliation(s)
- Femi F Oloye
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada.
| | - Yuwei Xie
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada.
| | - Mohsen Asadi
- Department of Civil, Geological and Environmental Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| | - Jenna Cantin
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Jonathan K Challis
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta, Canada
| | - Markus Brinkmann
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada; School of Environment and Sustainability, University of Saskatchewan, Saskatoon, SK, Canada; Global Institute for Water Security, University of Saskatchewan, Saskatoon, SK, Canada
| | - Kerry N McPhedran
- Department of Civil, Geological and Environmental Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| | - Kevin Kristian
- Wastewater Treatment Plant, Public Work Department, City of Prince Albert, Prince Albert, SK, Canada
| | - Mark Keller
- Wastewater Treatment Plant, City Operations, City of North Battleford, North Battleford, SK, Canada
| | - Mike Sadowski
- Wastewater Treatment Plant, Saskatoon Water Department, City of Saskatoon, Saskatoon, SK, Canada
| | - Paul D Jones
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada; Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta, Canada
| | - Chrystal Landgraff
- Division of Enteric Diseases, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Chand Mangat
- Wastewater Surveillance Unit, National Microbiology Laboratory Winnipeg, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Meghan Fuzzen
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Mark R Servos
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - John P Giesy
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada; Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK, Canada; Department of Environmental Sciences, Baylor University, Waco, TX, USA; Department of Zoology and Center for Integrative Toxicology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
15
|
Pezzotti G, Ohgitani E, Fujita Y, Imamura H, Shin-Ya M, Adachi T, Yamamoto T, Kanamura N, Marin E, Zhu W, Nishimura I, Mazda O. Raman Fingerprints of the SARS-CoV-2 Delta Variant and Mechanisms of Its Instantaneous Inactivation by Silicon Nitride Bioceramics. ACS Infect Dis 2022; 8:1563-1581. [PMID: 35819780 PMCID: PMC9305655 DOI: 10.1021/acsinfecdis.2c00200] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Indexed: 02/06/2023]
Abstract
Raman spectroscopy uncovered molecular scale markers of the viral structure of the SARS-CoV-2 Delta variant and related viral inactivation mechanisms at the biological interface with silicon nitride (Si3N4) bioceramics. A comparison of Raman spectra collected on the TY11-927 variant (lineage B.1.617.2; simply referred to as the Delta variant henceforth) with those of the JPN/TY/WK-521 variant (lineage B.1.617.1; referred to as the Kappa variant or simply as the Japanese isolate henceforth) revealed the occurrence of key mutations of the spike receptor together with profound structural differences in the molecular structure/symmetry of sulfur-containing amino acid and altered hydrophobic interactions of the tyrosine residue. Additionally, different vibrational fractions of RNA purines and pyrimidines and dissimilar protein secondary structures were also recorded. Despite mutations, hydrolytic reactions at the surface of silicon nitride (Si3N4) bioceramics induced instantaneous inactivation of the Delta variant at the same rate as that of the Kappa variant. Contact between virions and micrometric Si3N4 particles yielded post-translational deimination of arginine spike residues, methionine sulfoxidation, tyrosine nitration, and oxidation of RNA purines to form formamidopyrimidines. Si3N4 bioceramics proved to be a safe and effective inorganic compound for instantaneous environmental sanitation.
Collapse
Affiliation(s)
- Giuseppe Pezzotti
- Ceramic Physics Laboratory, Kyoto
Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585,
Japan
- Department of Immunology, Graduate School of Medical
Science, Kyoto Prefectural University of Medicine, Kamigyo-ku,
465 Kajii-cho, Kyoto 602-8566, Japan
- Department of Orthopedic Surgery, Tokyo
Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku-ku, 160-0023 Tokyo,
Japan
- Center for Advanced Medical Engineering and
Informatics, Osaka University, 2-2 Yamadaoka, Suita, Osaka
565-0854, Japan
- Institute of Biomaterials and Bioengineering,
Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai,
Chiyoda-ku, Tokyo 101-0062, Japan
- Department of Dental Medicine, Graduate School of Medical
Science, Kyoto Prefectural University of Medicine, Kamigyo-ku,
Kyoto 602-8566, Japan
- Biomedical Research Center, Kyoto Institute
of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585,
Japan
| | - Eriko Ohgitani
- Department of Immunology, Graduate School of Medical
Science, Kyoto Prefectural University of Medicine, Kamigyo-ku,
465 Kajii-cho, Kyoto 602-8566, Japan
| | - Yuki Fujita
- Ceramic Physics Laboratory, Kyoto
Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585,
Japan
| | - Hayata Imamura
- Ceramic Physics Laboratory, Kyoto
Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585,
Japan
| | - Masaharu Shin-Ya
- Department of Immunology, Graduate School of Medical
Science, Kyoto Prefectural University of Medicine, Kamigyo-ku,
465 Kajii-cho, Kyoto 602-8566, Japan
| | - Tetsuya Adachi
- Department of Dental Medicine, Graduate School of Medical
Science, Kyoto Prefectural University of Medicine, Kamigyo-ku,
Kyoto 602-8566, Japan
| | - Toshiro Yamamoto
- Department of Dental Medicine, Graduate School of Medical
Science, Kyoto Prefectural University of Medicine, Kamigyo-ku,
Kyoto 602-8566, Japan
| | - Narisato Kanamura
- Department of Dental Medicine, Graduate School of Medical
Science, Kyoto Prefectural University of Medicine, Kamigyo-ku,
Kyoto 602-8566, Japan
| | - Elia Marin
- Ceramic Physics Laboratory, Kyoto
Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585,
Japan
- Department of Dental Medicine, Graduate School of Medical
Science, Kyoto Prefectural University of Medicine, Kamigyo-ku,
Kyoto 602-8566, Japan
| | - Wenliang Zhu
- Ceramic Physics Laboratory, Kyoto
Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585,
Japan
| | - Ichiro Nishimura
- Division of Advanced Prosthodontics, The Jane and
Jerry Weintraub Center for Reconstructive Biotechnology, UCLA School of
Dentistry, Los Angeles, California 90095, United
States
| | - Osam Mazda
- Department of Immunology, Graduate School of Medical
Science, Kyoto Prefectural University of Medicine, Kamigyo-ku,
465 Kajii-cho, Kyoto 602-8566, Japan
| |
Collapse
|
16
|
Yang K, Schuder DN, Ngor AK, Chaput JC. REVEALR-Based Genotyping of SARS-CoV-2 Variants of Concern in Clinical Samples. J Am Chem Soc 2022; 144:11685-11692. [PMID: 35729726 PMCID: PMC9236216 DOI: 10.1021/jacs.2c03420] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Indexed: 11/29/2022]
Abstract
The SARS-CoV-2 virus has evolved into new strains that increase viral transmissibility and reduce vaccine protection. The rapid circulation of these more harmful strains across the globe has created a pressing need for alternative public health screening tools. REVEALR (RNA-encoded viral nucleic acid analytic reporter), a rapid and highly sensitive DNAzyme-based detection system, functions with perfect accuracy against patient-derived clinical samples. Here, we design REVEALR into a novel genotyping assay that detects single-base mismatches corresponding to each of the major SARS-CoV-2 strains found in the United States. Of 34 sequence-verified patient samples collected in early, mid, and late 2021 at the UCI Medical Center in Orange, California, REVEALR identified the correct variant [Wuhan-Hu-1, alpha (B.1.1.7), gamma (P.1), epsilon (B.1.427/9), delta (B.1.617.2), and omicron (B.1.1.529)] with 100% accuracy. The assay, which is programmable and amenable to multiplexing, offers an important new approach to personalized diagnostics.
Collapse
Affiliation(s)
- Kefan Yang
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA 92697-3958, United States
| | - Daniel N. Schuder
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3958, United States
| | - Arlene K. Ngor
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697-3958, United States
| | - John C. Chaput
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697-3958, United States
- Department of Chemistry, University of California, Irvine, CA 92697-3958, United States
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3958, United States
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA 92697-3958, United States
| |
Collapse
|
17
|
Liu X, Mostafavi H, Ng WH, Freitas JR, King NJC, Zaid A, Taylor A, Mahalingam S. The Delta SARS-CoV-2 Variant of Concern Induces Distinct Pathogenic Patterns of Respiratory Disease in K18-hACE2 Transgenic Mice Compared to the Ancestral Strain from Wuhan. mBio 2022; 13:e0068322. [PMID: 35420469 PMCID: PMC9239116 DOI: 10.1128/mbio.00683-22] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 03/15/2022] [Indexed: 01/08/2023] Open
Abstract
Compared to the original ancestral strain of SARS-CoV-2, the Delta variant of concern has shown increased transmissibility and resistance toward COVID-19 vaccines and therapies. However, the pathogenesis of the disease associated with Delta is still not clear. In this study, using K18-hACE2 transgenic mice, we assessed the pathogenicity of the Delta variant by characterizing the immune response following infection. We found that Delta induced the same clinical disease manifestations as the ancestral SARS-CoV-2, but with significant dissemination to multiple tissues, such as brain, intestine, and kidney. Histopathological analysis showed that tissue pathology and cell infiltration in the lungs of Delta-infected mice were the same as in mice infected with the ancestral SARS-CoV-2. Delta infection caused perivascular inflammation in the brain and intestinal wall thinning in K18-hACE2 transgenic mice. Increased cell infiltration in the kidney was observed in both ancestral strain- and Delta-infected mice, with no clear visible tissue damage identified in either group. Interestingly, compared with mice infected with the ancestral strain, the numbers of CD45+ cells, T cells, B cells, inflammatory monocytes, and dendritic cells were all significantly lower in the lungs of the Delta-infected mice, although there was no significant difference in the levels of proinflammatory cytokines between the two groups. Our results showed distinct immune response patterns in the lungs of K18-hACE2 mice infected with either the ancestral SARS-CoV-2 or Delta variant of concern, which may help to guide therapeutic interventions for emerging SARS-CoV-2 variants. IMPORTANCE SARS-CoV-2 variants, with the threat of increased transmissibility, infectivity, and immune escape, continue to emerge as the COVID-19 pandemic progresses. Detailing the pathogenesis of disease caused by SARS-CoV-2 variants, such as Delta, is essential to better understand the clinical threat caused by emerging variants and associated disease. This study, using the K18-hACE2 mouse model of severe COVID-19, provides essential observation and analysis on the pathogenicity and immune response of Delta infection. These observations shed light on the changing disease profile associated with emerging SARS-CoV-2 variants and have potential to guide COVID-19 treatment strategies.
Collapse
Affiliation(s)
- Xiang Liu
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
- Global Virus Network (GVN) Centre of Excellence in Arboviruses, Griffith University, Gold Coast, Queensland, Australia
- School of Medical Sciences, Griffith University, Gold Coast, Queensland, Australia
| | - Helen Mostafavi
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
- Global Virus Network (GVN) Centre of Excellence in Arboviruses, Griffith University, Gold Coast, Queensland, Australia
- School of Medical Sciences, Griffith University, Gold Coast, Queensland, Australia
| | - Wern Hann Ng
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
- Global Virus Network (GVN) Centre of Excellence in Arboviruses, Griffith University, Gold Coast, Queensland, Australia
- School of Medical Sciences, Griffith University, Gold Coast, Queensland, Australia
| | - Joseph R. Freitas
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
- Global Virus Network (GVN) Centre of Excellence in Arboviruses, Griffith University, Gold Coast, Queensland, Australia
- School of Medical Sciences, Griffith University, Gold Coast, Queensland, Australia
| | - Nicholas J. C. King
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
- The Discipline of Pathology and Bosch Institute, School of Medical Sciences, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Ali Zaid
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
- Global Virus Network (GVN) Centre of Excellence in Arboviruses, Griffith University, Gold Coast, Queensland, Australia
- School of Medical Sciences, Griffith University, Gold Coast, Queensland, Australia
| | - Adam Taylor
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
- Global Virus Network (GVN) Centre of Excellence in Arboviruses, Griffith University, Gold Coast, Queensland, Australia
- School of Medical Sciences, Griffith University, Gold Coast, Queensland, Australia
| | - Suresh Mahalingam
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
- Global Virus Network (GVN) Centre of Excellence in Arboviruses, Griffith University, Gold Coast, Queensland, Australia
- School of Medical Sciences, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
18
|
Dubé C, Paris-Robidas S, Andreani G, Gutzeit C, D'Aoust MA, Ward BJ, Trépanier S. Broad neutralization against SARS-CoV-2 variants induced by ancestral and B.1.351 AS03-Adjuvanted recombinant Plant-Derived Virus-Like particle vaccines. Vaccine 2022; 40:4017-4025. [PMID: 35654621 PMCID: PMC9135691 DOI: 10.1016/j.vaccine.2022.05.046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 01/08/2023]
Abstract
Since 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection resulting in the coronavirus disease 2019 (COVID-19) has afflicted hundreds of millions of people in a worldwide pandemic. Several safe and effective COVID-19 vaccines are now available. However, the rapid emergence of variants and risk of viral escape from vaccine-induced immunity emphasize the need to develop broadly protective vaccines. A recombinant plant-derived virus-like particle vaccine for the ancestral COVID-19 (CoVLP) recently authorized by Canadian Health Authorities and a modified CoVLP.B1351 targeting the B.1.351 variant (both formulated with the adjuvant AS03) were assessed in homologous and heterologous prime-boost regimen in mice. Both strategies induced strong and broadly cross-reactive neutralizing antibody (NAb) responses against several Variants of Concern (VOCs), including B.1.351/Beta, B.1.1.7/Alpha, P.1/Gamma, B.1.617.2/Delta and B.1.1.529/Omicron strains. The neutralizing antibody (NAb) response was robust with both primary vaccination strategies and tended to be higher for almost all VOCs following the heterologous prime-boost regimen.
Collapse
Affiliation(s)
- Charlotte Dubé
- Medicago Inc., 1020 route de l'Église office 600, Québec, QC G1V 3V9, Canada
| | - Sarah Paris-Robidas
- Medicago Inc., 1020 route de l'Église office 600, Québec, QC G1V 3V9, Canada
| | - Guadalupe Andreani
- Medicago Inc., 1020 route de l'Église office 600, Québec, QC G1V 3V9, Canada
| | - Cindy Gutzeit
- GlaxoSmithKline Biologicals, Rue de l'Institut 89, 1330 Rixensart, Belgium
| | - Marc-André D'Aoust
- Medicago Inc., 1020 route de l'Église office 600, Québec, QC G1V 3V9, Canada
| | - Brian J Ward
- Medicago Inc., 1020 route de l'Église office 600, Québec, QC G1V 3V9, Canada; Research Institute of the McGill University Health Centre, 1001 Decarie St, Montreal, QC H4A 3J1, Canada
| | - Sonia Trépanier
- Medicago Inc., 1020 route de l'Église office 600, Québec, QC G1V 3V9, Canada.
| |
Collapse
|
19
|
Souza PFN, Mesquita FP, Amaral JL, Landim PGC, Lima KRP, Costa MB, Farias IR, Belém MO, Pinto YO, Moreira HHT, Magalhaes ICL, Castelo-Branco DSCM, Montenegro RC, de Andrade CR. The spike glycoprotein of SARS-CoV-2: A review of how mutations of spike glycoproteins have driven the emergence of variants with high transmissibility and immune escape. Int J Biol Macromol 2022; 208:105-125. [PMID: 35300999 PMCID: PMC8920968 DOI: 10.1016/j.ijbiomac.2022.03.058] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 12/23/2022]
Abstract
Late in 2019, SARS-CoV-2 (severe acute respiratory syndrome coronavirus-2) emerged, causing an unknown type of pneumonia today called coronaviruses disease 2019 (COVID-19). COVID-19 is still an ongoing global outbreak that has claimed and threatened many lives worldwide. Along with the fastest vaccine developed in history to fight SARS-CoV-2 came a critical problem, SARS-CoV-2. These new variants are a result of the accumulation of mutations in the sequence and structure of spike (S) glycoprotein, which is by far the most critical protein for SARS-CoV-2 to recognize cells and escape the immune system, in addition to playing a role in SARS-CoV-2 infection, pathogenicity, transmission, and evolution. In this review, we discuss mutation of S protein and how these mutations have led to new variants that are usually more transmissible and can thus mitigate the immunity produced by vaccination. Here, analysis of S protein sequences and structures from variants point out the mutations among them, how they emerge, and the behavior of S protein from each variant. This review brings details in an understandable way about how the variants of SARS-CoV-2 are a result of mutations in S protein, making them more transmissible and even more aggressive than their relatives.
Collapse
Affiliation(s)
- Pedro F N Souza
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Brazil; Drug research and Development Center, Department of Medicine, Federal University of Ceará, Brazil.
| | - Felipe P Mesquita
- Drug research and Development Center, Department of Medicine, Federal University of Ceará, Brazil
| | - Jackson L Amaral
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Brazil
| | - Patrícia G C Landim
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Brazil
| | - Karollyny R P Lima
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Brazil
| | - Marília B Costa
- Drug research and Development Center, Department of Medicine, Federal University of Ceará, Brazil
| | - Izabelle R Farias
- Drug research and Development Center, Department of Medicine, Federal University of Ceará, Brazil
| | - Mônica O Belém
- Laboratory of Translational Research, Christus University Center, Fortaleza, Ceará 60192, Brazil
| | - Yago O Pinto
- Medical Education Institution-Idomed, Canindé, Ceará, Brazil
| | | | | | - Débora S C M Castelo-Branco
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Group of Applied Medical Microbiology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Raquel C Montenegro
- Drug research and Development Center, Department of Medicine, Federal University of Ceará, Brazil
| | - Claudia R de Andrade
- Laboratory of Translational Research, Christus University Center, Fortaleza, Ceará 60192, Brazil
| |
Collapse
|
20
|
Fayad N, Habib WA, El-Shesheny R, Kandeil A, Mourad Y, Mokhbat J, Kayali G, Goldstein J, Abdallah J. Lebanese SARS-CoV-2 genomics: 24 months of the pandemic. Virus Res 2022; 317:198824. [PMID: 35605880 PMCID: PMC9121641 DOI: 10.1016/j.virusres.2022.198824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/16/2022] [Accepted: 05/18/2022] [Indexed: 11/30/2022]
Abstract
The COVID-19 pandemic continues to pose a global health concern, despite the ongoing vaccination campaigns, due to the emergence and rapid spread of new variants of the causative agent SARS-CoV-2. These variants are identified and tracked via the marker mutations they carry, and the classification system put in place following tremendous sequencing efforts. In this study, the genomes of 1,230 Lebanese SARS-CoV-2 strains collected throughout 2 years of the outbreak in Lebanon were analyzed, 115 of which sequenced within this project. Strains were classified into seven GISAID clades, the major one being GRY, and 36 Pango lineages, with three variants of concern identified: alpha, delta and omicron. A time course distribution of GISAID clades allowed the visualization of change throughout the two years of the Lebanese outbreak, in conjunction with major events and measures in the country. Subsequent phylogenetic analysis showed the clustering of strains belonging to the same clades. In addition, a mutational survey showed the presence of mutations in the structural, non-structural and accessory proteins. Twenty five (25) mutations were labeled as major, i.e. present in more than 30% of the strains, such as the common Spike_D614G and NSP3_T183I. Whereas 635 were labeled as uncommon, i.e. found in very few of the analyzed strains as well as GISAID records, such as NSP2_I349V. Distribution of these mutations differed between 2020, and the first and the second half of 2021. In summary, this study highlights key genomic aspects of the Lebanese SARS-CoV-2 strains collected in 2020, the first year of the outbreak in Lebanon, versus those collected in 2021, the second year of COVID-19 in Lebanon.
Collapse
Affiliation(s)
- Nancy Fayad
- Multi-Omics Laboratory, School of Pharmacy, Lebanese American University, P.O. Box 36, Byblos 1401, Lebanon
| | - Walid Abi Habib
- Multi-Omics Laboratory, School of Pharmacy, Lebanese American University, P.O. Box 36, Byblos 1401, Lebanon
| | - Rabeh El-Shesheny
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt
| | - Ahmed Kandeil
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt; Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, United States of America
| | | | - Jacques Mokhbat
- School of Medicine, Lebanese American University, P.O. Box 36, Byblos, Lebanon
| | | | - Jimi Goldstein
- Human Link, Dubai, United Arab Emirates; School of Engineering and Technology, University of Hertfordshire, Hatfield, Hertfordshire AL10 9AB, UK.
| | - Jad Abdallah
- Multi-Omics Laboratory, School of Pharmacy, Lebanese American University, P.O. Box 36, Byblos 1401, Lebanon.
| |
Collapse
|
21
|
Pierros V, Kontopodis E, Stravopodis DJ, Tsangaris GT. Unique peptide signatures of SARS-CοV-2 virus against human proteome reveal variants’ immune escape and infectiveness. Heliyon 2022; 8:e09222. [PMID: 35399374 PMCID: PMC8979629 DOI: 10.1016/j.heliyon.2022.e09222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/19/2021] [Accepted: 03/21/2022] [Indexed: 10/29/2022] Open
|
22
|
Biswas B, Chattopadhyay S, Hazra S, Hansda AK, Goswami R. COVID-19 pandemic: the delta variant, T-cell responses, and the efficacy of developing vaccines. Inflamm Res 2022; 71:377-396. [PMID: 35292834 PMCID: PMC8923340 DOI: 10.1007/s00011-022-01555-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 02/07/2022] [Accepted: 02/16/2022] [Indexed: 12/15/2022] Open
Abstract
Background The mayhem COVID-19 that was ushered by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) was declared pandemic by the World Health Organization in March 2020. Since its initial outbreak in late 2019, the virus has affected hundreds of million adults in the world and killing millions in the process. After the approval of newly developed vaccines, severe challenges remain to manufacture and administer them to the adult population globally in quick time. However, we have witnessed several mutations of the virus leading to ‘waves’ of viral spread and mortality. WHO has categorized these mutations as variants of concern (VOCs) and variants of interest (VOIs). The mortality due to COVID-19 has also been associated with various comorbidities and improper immune response. This has created further complications in understanding the nature of the SARS-CoV2–host interaction that has fuelled doubts in the efficacy of the approved vaccines. Whether there is requirement of booster dose and whether the impending wave could affect the children are some of the hotly debated topics. Materials and Methods A systematic literature review of PubMed, Medline, Scopus, Google Scholar was utilized to understand the nature of Delta variant and how it alters our T-cell responses and cytokine production and neutralizes vaccine-generated antibodies.
Conclusion In this review, we discuss the variants of SARS-CoV2 with specific focus on the Delta variant. We also specifically review the T-cell response against the virus and bring a narrative of various factors that may hold the key to fight against this marauding virus.
Collapse
Affiliation(s)
- Biswajit Biswas
- School of Bioscience, IIT Kharagpur, Kharagpur, 721302, West Bengal, India
| | | | - Sayantee Hazra
- School of Bioscience, IIT Kharagpur, Kharagpur, 721302, West Bengal, India
| | | | - Ritobrata Goswami
- School of Bioscience, IIT Kharagpur, Kharagpur, 721302, West Bengal, India.
| |
Collapse
|
23
|
Alexandridi M, Mazej J, Palermo E, Hiscott J. The Coronavirus Pandemic – 2022: Viruses, Variants & Vaccines. Cytokine Growth Factor Rev 2022; 63:1-9. [PMID: 35216872 PMCID: PMC8839804 DOI: 10.1016/j.cytogfr.2022.02.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Since the beginning of the COVID-19 pandemic in 2019–2020, Cytokine & Growth Factor Reviews has published several Special Issues focused on the biology, pathogenesis and therapeutic options in the treatment of COVID-19 infection, including articles on the involvement of the chemokine system in the cytokine storm in COVID-19, intervention in the early stages of COVID-19 pneumonia, the therapeutic value of corticosteroid treatment, early clinical intervention with type 1 interferons, progress in vaccine development, and organ specific complications of COVID-19. By 2022, multiple highly efficacious vaccines are available and are being administered in countries around the world, therapeutic options have been clinically evaluated and approved, and SARS-CoV-2 has arguably become the most thoroughly studied virus in history. But, with progress has also come unanticipated problems – misinformation, anti-vaxxers, opposition to protective masks, and politically motivated interference disguised as knowledge. With this issue of CGFR, we continue to document the global coronavirus pandemic and provide an update on the emergence of viral variants, the global effort to administer vaccines and the impediments to progress posed by misinformation and anti-vaccine sentiment.
Collapse
|
24
|
Hu Z, Huang X, Zhang J, Fu S, Ding D, Tao Z. Differences in Clinical Characteristics Between Delta Variant and Wild-Type SARS-CoV-2 Infected Patients. Front Med (Lausanne) 2022; 8:792135. [PMID: 35047533 PMCID: PMC8761722 DOI: 10.3389/fmed.2021.792135] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 11/17/2021] [Indexed: 01/08/2023] Open
Abstract
Background: As delta variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) prevailed in the current coronavirus disease 2019 (COVID-19) pandemic, its clinical characteristics with the difference from those of wild-type strains have been little studied. Methods: We reported one cohort of 341 wild-type patients with COVID-19 admitted at Wuhan, China in 2020 and the other cohort of 336 delta variant patients with COVID-19 admitted at Yangzhou, China in 2021, with comparisons of their demographic information, medical history, clinical manifestation, and hematological data. Furthermore, within the delta variant cohort, patients with none, partial, and full vaccination were also compared to assess vaccine effectiveness. Findings: For a total of 677 patients with COVID-19 included in this study, their median age was 53.0 years [interquartile range (IQR): 38.0–66.0] and 46.8% were men. No difference was found in age, gender, and percentage of patients with the leading comorbidity between wild-type and delta variant cohorts, but delta variant cohort showed a lessened time interval between disease onset to hospitalization, a reduced portion of patients with smoking history, and a lowered frequency of clinical symptoms. For hematological parameters, most values demonstrated significant differences between wild-type and delta variant cohorts, while full vaccination rather than partial vaccination alleviated the disease condition. This reflected the viremic effect of delta variant when vaccination succeeds or fails to protect. Interpretation: Delta variant of SARS-CoV-2 may cause severe disease profiles, but timely diagnosis and full vaccination could protect patients with COVID-19 from worsened disease progression.
Collapse
Affiliation(s)
- Zhenkui Hu
- Department of Critical Care Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xing Huang
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jianguo Zhang
- Department of Critical Care Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, China.,Department of Emergency Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Shixiang Fu
- Department of Hepatology, The Third People's Hospital of Yangzhou City, Yangzhou, China
| | - Daoyin Ding
- Department of Critical Care Medicine, The First People's Hospital of Jiangxia District, Wuhan, China
| | - Zhimin Tao
- Department of Emergency Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, China.,Jiangsu Province Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
25
|
Halvatsiotis P, Vassiliu S, Koulouvaris P, Chatzantonaki K, Asonitis K, Charvalos E, Siatelis A, Houhoula D. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Mutational Pattern in the Fourth Pandemic Phase in Greece. Curr Issues Mol Biol 2022; 44:329-335. [PMID: 35723403 PMCID: PMC8929059 DOI: 10.3390/cimb44010024] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/03/2022] [Accepted: 01/05/2022] [Indexed: 01/08/2023] Open
Abstract
The aim of this study is to investigate the circulating variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from Athens and from rural areas in Greece during July and August 2021. We also present a rapid review of literature regarding significant SARS-CoV-2 mutations and their impact on public health. A total of 2500 nasopharyngeal swab specimens were collected from suspected COVID-19 cases (definition by WHO 2021b). Viral nucleic acid extraction was implemented using an automatic extractor and the RNA recovered underwent qRT-PCR in order to characterize the specimens as positive or negative for SARS-CoV-2. The positive specimens were then used to identify specific Spike gene mutations and characterize the emerging SARS-CoV-2 variants. For this step, various kits were utilized. From the 2500 clinical specimens, 220 were tested positive for SARS-CoV-2 indicating a prevalence of 8.8% among suspected cases. The RT-PCR Ct (Cycle threshold) Value ranged from 19 to 25 which corresponds to medium to high copy numbers of the virus in the positive samples. From the 220 positive specimens 148 (67.3%) were from Athens and 72 (32.7%) from Greek rural areas. As far as the Spike mutations investigated: N501Y appeared in all the samples, D614G mutation appeared in 212 (96.4%) samples with a prevalence of 87.2% in Athens and 98.6% in the countryside, E484K had a prevalence of 10.8% and 12.5% in Athens and the rural areas, respectively. K417N was found in 18 (12.2%) samples from Athens and four (5.6%) from the countryside, P681H was present in 51 (34.5%) Athenian specimens and 14 (19.4%) specimens from rural areas, HV69-70 was carried in 32.4% and 19.4% of the samples from Athens and the countryside, respectively. P681R had a prevalence of 87.2% in Athens and 98.6% in rural areas, and none of the specimens carried the L452R mutation. 62 (28.2%) samples carried the N501Y, P681H, D614G and HV69-70 mutations simultaneously and the corresponding variant was characterized as the Alpha (UK) variant (B 1.1.7). Only six (2.7%) samples from the center of Athens had the N501Y, E484K, K417N and D614G mutations simultaneously and the virus responsible was characterized as the Beta (South African) variant (B 1.351). Our study explored the SARS-CoV-2 variants using RT-PCR in a representative cohort of samples collected from Greece in July and August 2021. The prevalent mutations identified were N501Y (100%), D614G (96.4%), P681R (90.1%) and the variants identified were the Delta (90.1%), Alpha (28.2%) and Beta (2.7%).
Collapse
Affiliation(s)
- Panagiotis Halvatsiotis
- 2nd Propaedeutic Department of Internal Medicine, School of Medicine, National and Kapodistrian University of Athens, “ATTIKON” University Hospital, 12461 Chaidari, Greece
| | - Sofia Vassiliu
- School of Medicine, National and Kapodistrian University of Athens, 11527 Goudi, Greece;
| | - Panagiotis Koulouvaris
- 1st Department of Orthopaedics, School of Medicine, National and Kapodistrian University of Athens, “ATTIKON” University Hospital, 12461 Chaidari, Greece;
| | | | - Konstantinos Asonitis
- Division of Hematology and Central Hematology Laboratory, Lausanne, Department of Hematology University Hospital (CHUV) and University of Lausanne (UNIL), 1011 Lausanne, Switzerland;
| | | | - Argyris Siatelis
- 3rd Department of Urologist, School of Medicine, National and Kapodistrian University of Athens, “ATTIKON” University Hospital, 12461 Chaidari, Greece;
| | - Dimitra Houhoula
- Department of Food Science and Technology, University of West Attica, Agiou Spyridonos 28, 12243 Aigaleo, Greece;
| |
Collapse
|
26
|
Santi T, Sungono V, Kamarga L, Samakto BD, Hidayat F, Hidayat FK, Satolom M, Permana A, Yusuf I, Suriapranata IM, Jo J. Heterologous prime-boost with the mRNA-1273 vaccine among CoronaVac-vaccinated healthcare workers in Indonesia. Clin Exp Vaccine Res 2022; 11:209-216. [PMID: 35799870 PMCID: PMC9200645 DOI: 10.7774/cevr.2022.11.2.209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 04/29/2022] [Indexed: 01/19/2023] Open
Abstract
Purpose This study was performed to investigate humoral immune response and adverse events upon the heterologous prime-boost with a single dose of the mRNA-1273 vaccine among fully CoronaVac-vaccinated, infection-naïve healthcare workers in Indonesia. Materials and Methods One hundred twenty-five eligible healthcare workers were recruited from one hospital for this prospective cohort study. Blood collection was conducted twice, i.e., on 7 days before and 28 days after the booster vaccination. The titer of anti-SARS-CoV-2 receptor-binding domain (RBD) antibodies was quantified accordingly. The post-vaccination adverse event was recorded for both CoronaVac and mRNA-1273 vaccinations. Any breakthrough infection was monitored during the follow-up period. Wilcoxon matched-pairs signed rank test was used to test differences between groups. Results A significant increase was observed in the titer of anti-SARS-CoV-2 RBD antibodies upon receiving the mRNA-1273 booster (geometric mean titers of 65.57 and 47,445 U/mL in pre- and post-booster, respectively), supporting the argument to use heterologous prime-boost vaccination to improve the protection against COVID-19 in a high-risk population. The mRNA-1273 vaccine, however, caused a higher frequency of adverse events than the CoronaVac vaccine. Nonetheless, the adverse events were considered minor medical events and temporary as all subjects were not hospitalized and fully recovered. Of note, no breakthrough infection was observed during the follow-up to 12 weeks post-booster. Conclusion The heterologous prime-boost vaccination of healthcare workers with a single dose of the mRNA-1273 vaccine generated a significant elevation in humoral immune response towards RBD of SARS-CoV-2 and was associated with a higher frequency, but minor and transient, adverse events.
Collapse
Affiliation(s)
| | - Veli Sungono
- Faculty of Medicine, Universitas Pelita Harapan, Tangerang, Indonesia
| | - Lina Kamarga
- Siloam Hospitals Lippo Cikarang, Bekasi, Indonesia
| | | | | | | | - Magy Satolom
- Siloam Hospitals Lippo Cikarang, Bekasi, Indonesia
| | | | - Irawan Yusuf
- Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
- Mochtar Riady Institute for Nanotechnology, Tangerang, Indonesia
| | - Ivet Marita Suriapranata
- Faculty of Medicine, Universitas Pelita Harapan, Tangerang, Indonesia
- Mochtar Riady Institute for Nanotechnology, Tangerang, Indonesia
| | - Juandy Jo
- Mochtar Riady Institute for Nanotechnology, Tangerang, Indonesia
- Department of Biology, Faculty of Science and Technology, Universitas Pelita Harapan, Tangerang, Indonesia
| |
Collapse
|
27
|
Perez-Gomez R. The Development of SARS-CoV-2 Variants: The Gene Makes the Disease. J Dev Biol 2021; 9:58. [PMID: 34940505 PMCID: PMC8705434 DOI: 10.3390/jdb9040058] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/22/2021] [Accepted: 11/30/2021] [Indexed: 12/15/2022] Open
Abstract
A novel coronavirus (SARS-CoV-2) emerged towards the end of 2019 that caused a severe respiratory disease in humans called COVID-19. It led to a pandemic with a high rate of morbidity and mortality that is ongoing and threatening humankind. Most of the mutations occurring in SARS-CoV-2 are synonymous or deleterious, but a few of them produce improved viral functions. The first known mutation associated with higher transmissibility, D614G, was detected in early 2020. Since then, the virus has evolved; new mutations have occurred, and many variants have been described. Depending on the genes affected and the location of the mutations, they could provide altered infectivity, transmissibility, or immune escape. To date, mutations that cause variations in the SARS-CoV-2 spike protein have been among the most studied because of the protein's role in the initial virus-cell contact and because it is the most variable region in the virus genome. Some concerning mutations associated with an impact on viral fitness have been described in the Spike protein, such as D614G, N501Y, E484K, K417N/T, L452R, and P681R, among others. To understand the impact of the infectivity and antigenicity of the virus, the mutation landscape of SARS-CoV-2 has been under constant global scrutiny. The virus variants are defined according to their origin, their genetic profile (some characteristic mutations prevalent in the lineage), and the severity of the disease they produce, which determines the level of concern. If they increase fitness, new variants can outcompete others in the population. The Alpha variant was more transmissible than previous versions and quickly spread globally. The Beta and Gamma variants accumulated mutations that partially escape the immune defenses and affect the effectiveness of vaccines. Nowadays, the Delta variant, identified around March 2021, has spread and displaced the other variants, becoming the most concerning of all lineages that have emerged. The Delta variant has a particular genetic profile, bearing unique mutations, such as T478K in the spike protein and M203R in the nucleocapsid. This review summarizes the current knowledge of the different mutations that have appeared in SARS-CoV-2, mainly on the spike protein. It analyzes their impact on the protein function and, subsequently, on the level of concern of different variants and their importance in the ongoing pandemic.
Collapse
Affiliation(s)
- Raquel Perez-Gomez
- Translational Genomics Group, Institut Universitari de Biotecnologia y Biomedicina BIOTECMED, Universitat de Valencia, 46100 Valencia, Spain
| |
Collapse
|
28
|
Hoang VT, Colson P, Levasseur A, Delerce J, Lagier JC, Parola P, Million M, Fournier PE, Raoult D, Gautret P. Clinical outcomes in patients infected with different SARS-CoV-2 variants at one hospital during three phases of the COVID-19 epidemic in Marseille, France. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2021; 95:105092. [PMID: 34571275 PMCID: PMC8462069 DOI: 10.1016/j.meegid.2021.105092] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/21/2021] [Accepted: 09/21/2021] [Indexed: 02/07/2023]
Abstract
OBJECTIVES To compare the demographics, clinical characteristics and severity of patients infected with nine different SARS-CoV-2 variants, during three phases of the COVID-19 epidemic in Marseille. METHODS A single centre retrospective cohort study was conducted in 1760 patients infected with SARS-CoV-2 of Nextstrain clades 20A, 20B, and 20C (first phase, February-May 2020), Pangolin lineages B.1.177 (we named Marseille-2) and B.1.160 (Marseille-4) variants (second phase, June-December 2020), and B.1.1.7 (alpha), B.1.351 (beta), P.1 (gamma) and A.27 (Marseille-501) variants (third phase, January 2021-today). Outcomes were the occurrence of clinical failures, including hospitalisation, transfer to the intensive-care unit, and death. RESULTS During each phase, no major differences were observed with regards to age and gender distribution, the prevalence of chronic diseases, and clinical symptoms between variants circulating in a given phase. The B.1.177 and B.1.160 variants were associated with more severe outcomes. Infections occurring during the second phase were associated with a higher rate of death as compared to infections during the first and third phases. Patients in the second phase were more likely to be hospitalised than those in the third phase. Patients infected during the third phase were more frequently obese than others. CONCLUSION A large cohort study is recommended to evaluate the transmissibility and to better characterise the clinical severity of emerging variants.
Collapse
Affiliation(s)
- Van-Thuan Hoang
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France; IHU-Méditerranée Infection, Marseille, France; Thai Binh University of Medicine and Pharmacy, Thai Binh, Viet Nam
| | - Philippe Colson
- IHU-Méditerranée Infection, Marseille, France; Aix Marseille Univ, IRD, AP-HM, MEPHI, Marseille, France
| | - Anthony Levasseur
- IHU-Méditerranée Infection, Marseille, France; Aix Marseille Univ, IRD, AP-HM, MEPHI, Marseille, France
| | | | - Jean-Christophe Lagier
- IHU-Méditerranée Infection, Marseille, France; Aix Marseille Univ, IRD, AP-HM, MEPHI, Marseille, France
| | - Philippe Parola
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France; IHU-Méditerranée Infection, Marseille, France
| | - Matthieu Million
- IHU-Méditerranée Infection, Marseille, France; Aix Marseille Univ, IRD, AP-HM, MEPHI, Marseille, France
| | - Pierre-Edouard Fournier
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France; IHU-Méditerranée Infection, Marseille, France
| | - Didier Raoult
- IHU-Méditerranée Infection, Marseille, France; Aix Marseille Univ, IRD, AP-HM, MEPHI, Marseille, France
| | - Philippe Gautret
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France; IHU-Méditerranée Infection, Marseille, France.
| |
Collapse
|