1
|
Kiani S, Naghshi S, Saghafi-Asl M. Effects of chia (Salvia hispanica. L) on anthropometric measures and other cardiometabolic risk factors: A systematic review and dose-response meta-analysis. Complement Ther Med 2024; 86:103086. [PMID: 39299654 DOI: 10.1016/j.ctim.2024.103086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/15/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Findings of available randomized controlled trials (RCTs) on the effects of chia are inconsistent. Although previous meta-analyses summarized available findings in this regard, some limitations may distort their findings. Moreover, none of these meta-analyses examined the dose-response association of chia on cardiometabolic risk factors (CMRFs). Therefore, the present study aimed to evaluate the effect of chia consumption on CMRFs. METHODS Relevant RCTs were included by searching the ISI Web of Science, PubMed, and Scopus databases up to June 2, 2023. Mean differences (MD) and 95 % confidence intervals (CI) were pooled using random-effects model. RESULTS Ten publications were included in this systematic review and the meta-analysis. The results showed a significant reduction in systolic blood pressure (SBP) (MD = -7.87 mmHg; 95 % CI: - 12.92 to - 2.82; I2 = 71.3 %, P heterogeneity = 0.004), diastolic blood pressure (MD = -6.33 mmHg; 95 %CI: - 7.33 to - 5.34, I2 = 0 %, P heterogeneity = 0.42) and high-density lipoprotein cholesterol (HDL-c) (MD = -4.09 mg/dl; 95 %CI: - 6.76 to - 1.43, I2 = 12.4 %, P heterogeneity = 0.33). However, the effects of chia on the other risk factors were not significant. Based on the dose-response analysis, a 10-g/d increase in chia consumption significantly reduced SBP (MD = -2.20 mmHg; 95 %CI: - 3.75 to - 0.66, I2 = 78.9 %, P heterogeneity < 0.001) and HDL-c (MD = -1.10 mg/dl; 95 %CI: - 1.72 to - 0.49, I2 = 0 %, P heterogeneity = 0.52). CONCLUSION Chia consumption might have a beneficial effect on lowering blood pressure. Chia consumption can also lead to a slight reduction in HDL-c levels. As the quality of the included studies was mostly low, the findings should be interpreted with caution. Well-designed trials with larger sample sizes and longer duration of follow-up are needed to provide additional insight into the dose-dependent effects of chia consumption.
Collapse
Affiliation(s)
- Sevil Kiani
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Sina Naghshi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Maryam Saghafi-Asl
- Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran.
| |
Collapse
|
2
|
Fateh HL, Ahmed DH, Najafabadi MS, Moludi J. The impact of chia seeds on diabetes, blood pressure, lipid profile, and obesity indicators: Systematic review and meta-regression analysis of 14 randomized controlled trials. Prostaglandins Other Lipid Mediat 2024; 175:106907. [PMID: 39299649 DOI: 10.1016/j.prostaglandins.2024.106907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/30/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
This comprehensive systematic review and meta-analysis sought to investigate the impact of chia seed supplementation on obesity indicators and metabolic factors. Through a thorough search of relevant studies up to April 2024, 14 clinical trials involving 835 participants were included in the analysis. The findings revealed a notable decrease in triglyceride levels across both higher and lower doses of chia seeds, with weighted mean differences (WMD) of -8.69 mg/dL and -13.11 mg/dL, respectively. Additionally, a statistically significant reduction in LDL-C levels was observed solely in the higher dosage group, showing a WMD of -4.77 mg/dL. Moreover, although the decrease in systolic blood pressure (-2.78 mmHg) compared to the control group was statistically significant, it was only observed with the higher dosage. These results suggest that chia supplementation may offer beneficial effects on dyslipidemia, hypertension, and body weight, potentially mitigating the risk of cardiovascular disease.
Collapse
Affiliation(s)
- Hawal Lateef Fateh
- Nursing Department, Kalar Technical Institute, Garmian Polytechnic University, Kalar, Iraq
| | - Dyari H Ahmed
- Nursing Department, Halabja Technical Institute, Sulaimani Polytechnic University, Sulaimani, Iraq
| | - Maryam Sharifi Najafabadi
- Department of Nutritional Sciences, School of Nutritional Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Islamic Republic of Iran
| | - Jalal Moludi
- Department of Nutritional Sciences, School of Nutritional Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Islamic Republic of Iran.
| |
Collapse
|
3
|
Karimi M, Pirzad S, Shirsalimi N, Ahmadizad S, Hashemi SM, Karami S, Kazemi K, Shahir-Roudi E, Aminzadeh A. Effects of chia seed (Salvia hispanica L.) supplementation on cardiometabolic health in overweight subjects: a systematic review and meta-analysis of RCTs. Nutr Metab (Lond) 2024; 21:74. [PMID: 39285289 PMCID: PMC11406937 DOI: 10.1186/s12986-024-00847-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 08/26/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND Obesity is a significant public health issue associated with various chronic diseases. Research has indicated that chia seeds have the potential to improve cardiometabolic health. However, due to the diversity of research and inconsistencies in study design, further investigation is needed to fully understand their clinical effects on overweight individuals. This review aims to comprehensively analyze the available evidence on the effects of chia seeds on cardiometabolic indices in overweight populations through a meta-analysis. METHODS A comprehensive literature search was performed across PubMed, Web of Science, Scopus, and Embase databases from their inception until 01-03-2024 to identify randomized controlled trials (RCTs) evaluating the effect of chia on cardiometabolic indices in overweight subjects. The search strategy incorporated both Medical Subject Headings (MeSH). Following the screening, ten RCTs were finally included. The data, including subject characteristics, study design, and changes in serum biomarkers, were extracted and analyzed using Stata software version 18. RESULTS The meta-analysis results reveal that chia supplementation no significant changes in lipid profile, including triglycerides (TG) (MD: - 5.80 mg/dL, p = 0.47), total cholesterol (TC) (MD: - 0.29 mg/dL, p = 0.95), high-density lipoprotein (HDL) (MD: 1.53 mg/dL, p = 0.33), and low-density lipoprotein (LDL) (MD: 0.63 mg/dL, p = 0.88). Similarity fasting blood glucose (FBG) (MD: - 0.03 mg/dL, p = 0.98), hemoglobin A1c (HbA1c) (MD: - 0.13%, p = 0.13), and insulin levels (MD: 0.45 µIU/mL, p = 0.78). However, chia seed supplementation was associated with a significant reduction in C-reactive protein (CRP) (MD: - 1.18 mg/L, p < 0.0001), but no significant changes were observed in interleukin-6 (IL-6) (MD: - 0.15, p = 0.70) or tumor necrosis factor-alpha (TNF-α) (MD: 0.03, p = 0.91). There was no significant effect on body mass index (BMI) (MD: 0.1 kg/m2, p = 0.91), but a significant reduction in waist circumference (WC) (MD: - 2.82 cm, p < 0.001) was noted. Additionally, chia seed supplementation resulted in a significant reduction in systolic blood pressure (BP) (MD: - 3.27 mmHg, p = 0.03), though diastolic BP changes were non-significant (MD: - 2.69 mmHg, p = 0.09). The studies showed low to moderate heterogeneity in outcome measures, with I2 < 50%. CONCLUSION Chia seed supplementation does not significantly impact most lipid profile parameters and glycemic markers. However, it shows potential benefits in reducing WC, BP, and CRP. While chia seeds can be a valuable addition to cardiometabolic health management, they should be part of a broader health strategy that includes a balanced diet, exercise, and lifestyle modifications for optimal results.
Collapse
Affiliation(s)
- Mehdi Karimi
- Bogomolets National Medical University (NMU), Kyiv, Ukraine.
- Department of Biological Sciences in Sport, Faculty of Sport Sciences and Health, Shahid Beheshti University, Tehran, Iran.
| | - Samira Pirzad
- Faculty of Medicine, Islamic Azad University, Tehran Medical Sciences Branch (IAUTMU), Tehran, Iran
| | - Niyousha Shirsalimi
- Faculty of Medicine, Hamadan University of Medical Science (UMSHA), Hamadan, Iran
| | - Sajad Ahmadizad
- Department of Biological Sciences in Sport, Faculty of Sport Sciences and Health, Shahid Beheshti University, Tehran, Iran
| | - Seyyed Mohammad Hashemi
- Student Research Committee, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Shaghayegh Karami
- School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Kimia Kazemi
- Department of Food Science and Technology, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
| | - Erfan Shahir-Roudi
- Student Research Committee, School of Public Health, Shahroud University of Medical Sciences (SHMU), Shahroud, Iran
| | - Anita Aminzadeh
- Student Research Committee, School of Public Health, Shahroud University of Medical Sciences (SHMU), Shahroud, Iran
| |
Collapse
|
4
|
Farag MA, Khattab AR, Farghal HH, Ismail WM, Fahmy HA. Gas chromatography/mass spectrometry-based metabolite profiling of chia and quinoa seeds in comparison with wheat and oat. PHYTOCHEMICAL ANALYSIS : PCA 2024. [PMID: 38802070 DOI: 10.1002/pca.3398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024]
Abstract
INTRODUCTION With an increasing interest in healthy and affordable cereal intake, efforts are made toward exploiting underutilized cereals with high nutritional values. OBJECTIVES The current study aims to explore the metabolome diversity in 14 cultivars of chia and quinoa collected from Germany, Austria, and Egypt, compared with wheat and oat as major cereals. MATERIAL AND METHODS The samples were analyzed using gas chromatography-mass spectrometry (GC-MS). Multivariate data analysis (MVA) was employed for sample classification and markers characterization. RESULTS A total of 114 metabolites were quantified (sugars, alcohols, organic and amino acids/nitrogenous compounds, fatty acids/esters), but the inorganic and phenolic acids were only identified. Fatty acids were the major class followed by amino acids in quinoa and chia. Chia and oats were richer in sucrose. Quinoa encompassed higher amino acids. Quinoa and chia were rich in essential amino acids. Higher levels of unsaturated fatty acids especially omega 6 and omega 9 were detected in quinoa versus omega 3 in chia compared with oat and wheat, whereas ω6/ω3 fatty acid ratio of chia was the lowest. To the best of our knowledge, this is the first comprehensive metabolite profiling of these pseudo cereals. CONCLUSION Quinoa and chia, especially red chia, are more nutritionally valuable compared with oat and wheat because of their compositional profile of free amino acids, organic acids, and essential fatty acids, besides their low ω6/ω3 fatty acid ratio. Such results pose them as inexpensive alternative to animal proteins and encourage their inclusion in infant formulas.
Collapse
Affiliation(s)
- Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo, Egypt
| | - Amira R Khattab
- Pharmacognosy Department, College of Pharmacy, Arab Academy for Science, Technology and Maritime Transport, Alexandria, Egypt
| | - Hebatullah H Farghal
- Chemistry Department, School of Sciences and Engineering, The American University in Cairo, New Cairo, Egypt
| | - Walaa M Ismail
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo, Egypt
| | - Heba A Fahmy
- Pharmacognosy Department, Faculty of Pharmacy, Modern University for Technology & Information, Cairo, Egypt
| |
Collapse
|
5
|
Huang M, Xu H, Zhou Q, Xiao J, Su Y, Wang M. The nutritional profile of chia seeds and sprouts: tailoring germination practices for enhancing health benefits-a comprehensive review. Crit Rev Food Sci Nutr 2024:1-23. [PMID: 38622873 DOI: 10.1080/10408398.2024.2337220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Chia seeds have gained significant attention due to their unique composition and potential health benefits, including high dietary fibers, omega-3 fatty acids, proteins, and phenolic compounds. These components contribute to their antioxidant, anti-inflammatory effects, as well as their ability to improve glucose metabolism and dyslipidemia. Germination is recognized as a promising strategy to enhance the nutritional value and bioavailability of chia seeds. Chia seed sprouts have been found to exhibit increased essential amino acid content, elevated levels of dietary fiber and total phenols, and enhanced antioxidant capability. However, there is limited information available concerning the dynamic changes of bioactive compounds during the germination process and the key factors influencing these alterations in biosynthetic pathways. Additionally, the influence of various processing conditions, such as temperature, light exposure, and duration, on the nutritional value of chia seed sprouts requires further investigation. This review aims to provide a comprehensive analysis of the nutritional profile of chia seeds and the dynamic changes that occur during germination. Furthermore, the potential for tailored germination practices to produce chia sprouts with personalized nutrition, targeting specific health needs, is also discussed.
Collapse
Affiliation(s)
- Manting Huang
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Hui Xu
- Shenzhen Key Laboratory of Food Nutrition and Health, Shenzhen University, Shenzhen, China
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
| | - Qian Zhou
- Shenzhen Key Laboratory of Food Nutrition and Health, Shenzhen University, Shenzhen, China
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo, Vigo, Spain
| | - Yuting Su
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Food Nutrition and Health, Shenzhen University, Shenzhen, China
| | - Mingfu Wang
- Shenzhen Key Laboratory of Food Nutrition and Health, Shenzhen University, Shenzhen, China
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
| |
Collapse
|
6
|
Tseng HS, Lin BY, Wang YF, Liao YF. Ochratoxin A detoxification potentials of basil, chan, and chia seeds. Lett Appl Microbiol 2024; 77:ovae018. [PMID: 38414284 DOI: 10.1093/lambio/ovae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/05/2024] [Accepted: 02/26/2024] [Indexed: 02/29/2024]
Abstract
The most toxic of the ochratoxins is ochratoxin A (OTA), which is primarily produced by species of Aspergillus and Penicillium that can be found in maize, wheat, coffee, red wine, and various grains. OTA induces immunotoxicity, nephrotoxicity, hepatotoxicity, teratogenicity, and carcinogenicity in both animals and humans. Thus, there is a need to identify mycotoxin detoxification agents that can effectively decontaminate OTA. Seeds of basil (Ocimum basilicum L.), chan (Hyptis suaveolens L.), and chia (Salvia hispanica L.) are functional foods capable of eliminating harmful substances. Despite this potential, the impact of these seeds on OTA detoxification remains unclear. This study reveals that milled basil, chan, and chia seeds adsorb significant levels of OTA, with chia demonstrating the highest adsorption capacity, followed by chan and basil seeds showing the least efficiency. Furthermore, milled basil, chan, and chia seeds effectively reduced OTA residues in artificial gastric and intestinal fluids, where they achieved up to 93% OTA adsorption in the former. In addition, these milled seeds were able to remove OTAs from canned, drip, and instant coffee. This study is the first to report the OTA elimination potential of basil, chan, and chia seeds.
Collapse
Affiliation(s)
- Hsin-Shun Tseng
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 402202, Taiwan
- Comprehensive Breast Cancer Center, Changhua Christian Hospital, Changhua 500010, Taiwan
| | - Bing-Yi Lin
- Department of Applied Chemistry, Chaoyang University of Technology, Taichung 413310, Taiwan
| | - Yu-Fen Wang
- Cancer Research Center, Department of Research, Changhua Christian Hospital, Changhua 500010, Taiwan
| | - Ya-Fan Liao
- Department of Applied Chemistry, Chaoyang University of Technology, Taichung 413310, Taiwan
- Asia Mycotoxin Analysis Center, Chaoyang University of Technology, Taichung 413310, Taiwan
| |
Collapse
|
7
|
Joshi S, Srivastava R. Tracing the pathways and mechanisms involved in medicinal uses of flaxseed with computational methods and bioinformatics tools. Front Chem 2024; 11:1276052. [PMID: 38283897 PMCID: PMC10811174 DOI: 10.3389/fchem.2023.1276052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 12/12/2023] [Indexed: 01/30/2024] Open
Abstract
Pharmacological drugs targeting specific pathways involved in various diseases have seen recent advancement with newer and more efficient emerging drug targets, but these drugs are limited in terms of their side effects and patient adherence. The potential of plant-based diets in the form of functional foods is increasingly being realized as an option to treat and/or prevent several diseases. In this work, we have selected flaxseed (Linum usitatissimum), also known as linseed, to study its pharmacological efficacy and proposed mechanisms of action for medicinal purposes. The target genes of linseed with Disease Specificity Index (DSI >0.6) are compared to the associated genes of diabetes mellitus, decrease in appetite, addictive behavior, cardiovascular diseases (CVDs), inflammatory bowel diseases (IBDs), and Polycystic Ovary Syndrome (PCOS), and the selected genes are further evaluated using in silico methods. The binding affinity of flaxseed to three common target proteins (CCDC28b, PDCD6IP, and USP34) is assessed by docking and molecular dynamics (MD) simulations. The results show that linseed is safe to use for mutagenic toxicity and other cardiotoxicity measures, but linseed is unsafe for embryotoxicity, hERG toxicity, and cardiac failure. The analysis of the protein-protein interaction (PPI) network, Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways indicates that flaxseed can be used as a medicinal herb for treatment of diabetes mellitus, cardiovascular diseases, IBDs, and PCOS.
Collapse
|
8
|
Tavera-Hernández R, Jiménez-Estrada M, Alvarado-Sansininea JJ, Huerta-Reyes M. Chia ( Salvia hispanica L.), a Pre-Hispanic Food in the Treatment of Diabetes Mellitus: Hypoglycemic, Antioxidant, Anti-Inflammatory, and Inhibitory Properties of α-Glucosidase and α-Amylase, and in the Prevention of Cardiovascular Disease. Molecules 2023; 28:8069. [PMID: 38138560 PMCID: PMC10745661 DOI: 10.3390/molecules28248069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/01/2023] [Accepted: 12/03/2023] [Indexed: 12/24/2023] Open
Abstract
Diabetes mellitus (DM) is considered one of the major health diseases worldwide, one that requires immediate alternatives to allow treatments for DM to be more effective and less costly for patients and also for health-care systems. Recent approaches propose treatments for DM based on that; in addition to focusing on reducing hyperglycemia, they also consider multitargets, as in the case of plants. Among these, we find the plant known as chia to be highlighted, a crop native to Mexico and one cultivated in Mesoamerica from pre-Hispanic times. The present work contributes to the review of the antidiabetic effects of chia for the treatment of DM. The antidiabetic effects of chia are effective in different mechanisms involved in the complex pathogenesis of DM, including hypoglycemic, antioxidant, and anti-inflammatory mechanisms, and the inhibition of the enzymes α-glucosidase and α-amylase, as well as in the prevention of the risk of cardiovascular disease. The tests reviewed included 16 in vivo assays on rodent models, 13 clinical trials, and 4 in vitro tests. Furthermore, chia represents advantages over other natural products due to its availability and its acceptance and, in addition, as a component of the daily diet worldwide, especially due to its omega-3 fatty acids and its high concentration of dietary fiber. Thus, chia in the present work represents a source of antidiabetic agents that would perhaps be useful in novel clinical treatments.
Collapse
Affiliation(s)
- Rosario Tavera-Hernández
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico; (R.T.-H.); (M.J.-E.)
| | - Manuel Jiménez-Estrada
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico; (R.T.-H.); (M.J.-E.)
| | - J. Javier Alvarado-Sansininea
- Herbario FEZA, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Batalla de 5 de mayo S/N, Col. Ejército de Oriente, Ciudad de México 09230, Mexico;
| | - Maira Huerta-Reyes
- Unidad de Investigación Médica en Enfermedades Nefrológicas, Hospital de Especialidades “Dr. Bernardo Sepúlveda Gutiérrez”, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Cuauhtémoc, Ciudad de México 06720, Mexico
| |
Collapse
|
9
|
Kakkar S, Tandon R, Tandon N. The rising status of edible seeds in lifestyle related diseases: A review. Food Chem 2023; 402:134220. [DOI: 10.1016/j.foodchem.2022.134220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 09/05/2022] [Accepted: 09/09/2022] [Indexed: 11/29/2022]
|
10
|
An Exploratory Study of the Safety and Efficacy of a Trigonella foenum-graecum Seed Extract in Early Glucose Dysregulation: A Double-Blind Randomized Placebo-Controlled Trial. Pharmaceutics 2022; 14:pharmaceutics14112453. [PMID: 36432644 PMCID: PMC9698270 DOI: 10.3390/pharmaceutics14112453] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/31/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Background: This was an exploratory study to assess the safety and efficacy of a specialized Trigonella foenum-graceum L. seed extract for supporting healthy blood glucose metabolism in a pre-diabetic cohort. Methods: Fifty-four participants were randomised to receive 500 mg/day of T. foenum-graecum seed extract or matching placebo daily for 12 weeks. Fasting blood glucose (FBG), post-prandial glucose (PPBG), HbA1c, fasting insulin (FI), post-prandial insulin (PPI) and C-peptide were assessed at baseline, week 6 and week 12. Lipid levels, liver enzymes and C-reactive protein (CRP), along with safety markers and tolerability were also assessed at baseline and week 12. Results: By week 12 there was a significant difference in FBG (p < 0.001), PPBG (p = 0.007) and triglycerides (p = 0.030) between treatment groups, with no changes in HbA1c (p = 0.41), FI (p = 0.12), PPI (p = 0.50) or C-peptide (p = 0.80). There was no difference in total cholesterol (p = 0.99), high-density lipoprotein (p = 0.35), low density lipoprotein (p = 0.60) or CRP (p = 0.79). There was no change in safety markers and the treatment was well tolerated. Conclusions: The results of the study indicated that T. foenum-graecum seed extract may influence blood glucose metabolism and larger studies are warranted to evaluate efficacy and potential mechanisms of action.
Collapse
|
11
|
Tanisha, Venkategowda S, Majumdar M. Amelioration of hyperglycemia and hyperlipidemia in a high-fat diet-fed mice by supplementation of a developed optimized polyherbal formulation. 3 Biotech 2022; 12:251. [PMID: 36060893 PMCID: PMC9428098 DOI: 10.1007/s13205-022-03309-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/12/2022] [Indexed: 11/01/2022] Open
Abstract
This study evaluated in vivo anti-diabetic and anti-obesity activity of a polyherbal formulation's methanolic extract containing an optimized ratio of edible seeds (Salvia hispanica, Chenopodium quinoa, Nelumbo nucifera). Diet-induced obese mice model (C57BL/6) was developed by feeding the mice a high-fat diet for 10 weeks resulting in hyperglycemia and obesity. Different doses (125, 250 and 500 mg/kg of body weight) of formulation were administered orally daily for 6 weeks. Fasting blood glucose and body weight were monitored throughout the study. At the end of the study, serum parameters were analyzed and histological examinations were performed. There was a significant reduction in fasting blood glucose levels and body weight in animal groups receiving polyherbal formulation. Lipid profile was improved as revealed by a reduction in serum triglycerides and total cholesterol. Histological study showed an improvement in liver, kidney and pancreatic sections of treated mice. High-performance thin layer chromatography was performed to identify the phytochemicals responsible for the above-mentioned bioactivities. The results revealed the presence of flavonoid (rutin) in seeds of N.nucifera and in the polyherbal formulation. For the first time, this study demonstrated the anti-diabetic and anti-obesity potential of the optimized formulation. The formulation can be used as a potential therapy for management of diabesity.
Collapse
Affiliation(s)
- Tanisha
- Jain (Deemed-to-be University), School of Sciences, #18/3, 9th Main, Jayanagar, 3rd Block, Bangalore, 560011 India
| | - Sunil Venkategowda
- Jain (Deemed-to-be University), School of Sciences, #18/3, 9th Main, Jayanagar, 3rd Block, Bangalore, 560011 India
| | - Mala Majumdar
- Jain (Deemed-to-be University), School of Sciences, #18/3, 9th Main, Jayanagar, 3rd Block, Bangalore, 560011 India
| |
Collapse
|
12
|
Zarei M, Adeli S, Hosseini S, Daneshzad E. The effect of flaxseed intake on appetite reduction: A systematic review of randomized clinical trials. Phytother Res 2022; 36:3792-3804. [PMID: 35916016 DOI: 10.1002/ptr.7570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 05/26/2022] [Accepted: 07/05/2022] [Indexed: 11/11/2022]
Abstract
Appetite control has attracted many scientists' attention recently since it can lead to weight management and the prevention of further metabolic disorders. Many studies have been carried out to assess the effect of flaxseed on satiety perception but the results are controversial. This study aims to review these results comprehensively. PubMed/Medline, Web of Science, Scopus, and Cochrane databases were searched for related papers on June 2021. The searched keywords for appetite were: visual analog scale, appetite, desire to eat, satiation, satiety, hunger, fullness, and for Flaxseed they were: flax, flax*, linseed*, lignin*, Linseed Oil, flaxseed, ground flaxseed, flaxseed oil, and Linum usitatissimum. The 13 included studies were inconsistent in results and some of them found no significant effect of flaxseed on the considered outcomes. However, three studies revealed a significant reduction in hunger perception as well as appetite. Moreover, two studies found a decreasing effect on prospective consumption. Three studies observed a positive significant effect on fullness and satiety. Although there are a limited number of documents related to the effect of flaxseed on appetite perception, or its equivalent terms, the available studies suggest the potential role of flaxseed in decreasing appetite and hunger.
Collapse
Affiliation(s)
- Mahtab Zarei
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Shaghayegh Adeli
- Department of Biochemistry and Diet Therapy, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shabnam Hosseini
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti Medical University, Tehran, Iran
| | - Elnaz Daneshzad
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
13
|
Acute Flaxseed Intake Reduces Postprandial Glycemia in Subjects with Type 2 Diabetes: A Randomized Crossover Clinical Trial. Nutrients 2022; 14:nu14183736. [PMID: 36145115 PMCID: PMC9503020 DOI: 10.3390/nu14183736] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Postprandial glycemic excursions are associated with impairment control of diabetes mellitus. Long-term consumption of flaxseed can lower blood glucose levels; however, its effects on the postprandial glycemic response remain unknown. Therefore, this study aimed to evaluate the acute effects of raw flaxseed consumption on the 2 h postprandial glycemic curve in men with type 2 diabetes mellitus (T2DM). Methods: This was a randomized crossover clinical trial. Nineteen men with T2DM were randomly assigned a standardized breakfast without (control) or with a previous intake of 15 g of ground raw golden flaxseed (flax). Glycemia was measured at fasting and postprandial at 15, 30, 45, 60, 90, and 120 min. Palatability markers (visual appeal, smell, and pleasantness of taste) and taste intensity (sweetness, saltiness, bitterness, sourness, and creaminess) were evaluated. Results: The peak glucose rise and the 2 h AUC glycemic response reduced in the flax group by 17% (p = 0.001) and 24% (p < 0.001), respectively. The glucose peak time, palatability, and taste parameters did not differ between the two groups. Conclusions: Ingestion of 15 g of ground raw golden flaxseed before breakfast decreases the 2 h postprandial glycemic response in men with T2DM.
Collapse
|
14
|
Vega Joubert MB, Ingaramo P, Oliva ME, D'Alessandro ME. Salvia hispanica L. (chia) seed ameliorates liver injury and oxidative stress by modulating NrF2 and NFκB expression in sucrose-rich diet-fed rats. Food Funct 2022; 13:7333-7345. [PMID: 35726830 DOI: 10.1039/d2fo00642a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The aim of this study was to analyze the liver injury and oxidative stress in an experimental model of Metabolic Syndrome (MS) induced by chronic administration of a sucrose-rich diet (SRD) and to evaluate the effects of chia seed as a therapeutic strategy. Male Wistar rats were fed with a reference diet (RD) -6 months- or a SRD -3 months. Then, the latter group was randomly divided into two subgroups. One subgroup continued receiving the SRD for up to 6 months and the other was fed with a SRD where whole chia seed was incorporated as a source of dietary fat for the next 3 months (SRD+CHIA). The results showed that rats fed with a SRD for a long period of time developed dyslipidemia, hyperglycemia, hepatic lipid accumulation, liver injury, hepatic lipid peroxidation and oxidative stress. Hepatic NrF2 expression was significantly decreased. In addition, a significant increase in hepatic NFκB p65 expression and a positive correlation of this with plasma TNFα levels were found. The administration of chia seed for 3 months reversed dyslipidemia, hyperglycemia, lipid accumulation, liver injury, lipid peroxidation and oxidative stress. In the liver tissue, NrF2 expression was normalized and NFκB p65 expression was decreased, the latter was associated with a decrease in plasma TNFα levels. The present study showed new aspects of liver damage, lipid peroxidation and oxidative stress in dyslipidemic insulin resistant rats chronically fed with a sucrose-rich diet. However, we demonstrated new properties and molecular mechanisms associated with the beneficial anti-oxidant effects of chia seed consumption.
Collapse
Affiliation(s)
- Michelle Berenice Vega Joubert
- Laboratorio de Estudio de Enfermedades Metabólicas relacionadas con la Nutrición, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina.
| | - Paola Ingaramo
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Cs. Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
| | - María Eugenia Oliva
- Laboratorio de Estudio de Enfermedades Metabólicas relacionadas con la Nutrición, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina.
| | - María Eugenia D'Alessandro
- Laboratorio de Estudio de Enfermedades Metabólicas relacionadas con la Nutrición, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina.
| |
Collapse
|
15
|
Demir EG, Tarakçı NG, Samancı RA, Cambaz M, Bilici Ş, Tuygan D, Çalık B, Çiftçi AS. The Effect of Teff Seed on Hematological Findings and Anthropometric Measurements. Ethiop J Health Sci 2022; 32:641-650. [PMID: 35813674 PMCID: PMC9214744 DOI: 10.4314/ejhs.v32i3.21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/22/2022] [Indexed: 11/24/2022] Open
Abstract
Background The low incidence of diseases such as celiac, anemia, osteoporosis, and obesity in Ethiopia has aroused interest in the study of teff. The primary objective of this study was to determine the effect of regular consumption of teff seeds on hematological findings and anthropometric measurements in overweight and obese individuals. The secondary objective was to compare these effects of teff seeds with the Mediterranean diet. Methods In our study, planned as a cohort study, 28 participants followed the teff seed-containing diet (n=14) and the Mediterranean diet (n=14) for 3 months. To determine nutritional status, a 72-h recall was taken. Anthropometric measurements and hematological findings were recorded at the beginning and end of the study. Results There was a significant decrease in fasting blood glucose, cholesterol, LDL, and HDL levels in the teff group (p<0.05). The increase in total protein levels in the teff group was significantly higher than in the Mediterranean diet group (p=0.05). With increased intake of carbohydrates (g) in the teff group, fasting blood glucose levels decreased significantly. There was no significant difference between the two groups regarding anthropometric measurements. Conclusion It has been found that the teff seed has no predominance over anthropometric measurements, as compared to the Mediterranean diet, and that it is more effective in improving hematological findings related to obesity. There is a need for more comprehensive studies that also address physical activity, the different types of teff seeds available, and include increased participant numbers.
Collapse
Affiliation(s)
- Eftal Geçgil Demir
- Department of Nutrition and Dietetics Institute of Health Sciences, Istanbul Medipol University, 34810, Istanbul, Turkey
| | - Nadide Gizem Tarakçı
- Department of Nutrition and Dietetics Institute of Health Sciences, Istanbul Medipol University, 34810, Istanbul, Turkey
| | - Ruken Aslınur Samancı
- Department of Nutrition and Dietetics Institute of Health Sciences, Istanbul Medipol University, 34810, Istanbul, Turkey
| | - Merve Cambaz
- Department of Nutrition and Dietetics Faculty of Health Sciences, Istanbul Kent University, 34433, Istanbul, Turkey
| | - Şeymanur Bilici
- Department of Nutrition and Dietetics School of Health Sciences, Istanbul Medipol University, 34083, Istanbul, Turkey
| | - Dilara Tuygan
- Department of Nutrition and Dietetics School of Health Sciences, Istanbul Medipol University, 34083, Istanbul, Turkey
| | - Büşra Çalık
- Department of Nutrition and Dietetics School of Health Sciences, Istanbul Medipol University, 34083, Istanbul, Turkey
| | - Ayşe Sümeyye Çiftçi
- Department of Nutrition and Dietetics School of Health Sciences, Istanbul Medipol University, 34083, Istanbul, Turkey
| |
Collapse
|
16
|
Burgos-Araiza AK, Gaytán-Martínez M, Ramírez-Jiménez AK, de la Luz Reyes-Vega M. Sensory and process optimization of a mango bagasse-based beverage with high fiber content and low glycemic index. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:606-614. [PMID: 35153309 PMCID: PMC8814141 DOI: 10.1007/s13197-021-05048-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 02/15/2021] [Accepted: 02/23/2021] [Indexed: 02/03/2023]
Abstract
This research aimed to develop and optimize a mango bagasse (MB) powdered beverage with high fiber content and low glycemic index, acceptable by their potential consumers. The powdered beverage contained 40 g of mango bagasse (Manguifera indica L., var. Manila), xanthan gum (XG), carboxymethyl cellulose (CMC), and silicon dioxide (SDO). The amount of MB remained constant and, 0.5.%, 1.0%, and 2.0% of CMC, XG and SDO were added according to a factorial design 33. The independent variables evaluated were relative viscosity, sedimentation index, solids (ºBx), and color. Statistical optimization was carried out, looking for low values of viscosity and sedimentation index, obtaining the formulation, 0.5% XG, 0.5% CMC, and 0.5% SDO. A preference test was performed with this formulation using a commercial powdered beverage as a reference, 60 consumers participated. Data showed a preference similar to that of the commercial powered beverage, moreover, the MB beverage had a content of 40.90% of total fiber, from which 15.03% was soluble fiber. The beverage had a low glycemic index (45.99) and its postprandial glycemic curve was stable for 120 min, indicating that the beverage shows potential as a functional food.
Collapse
Affiliation(s)
- Alma Karen Burgos-Araiza
- Posgrado en Diseño e Innovación de Producto, Facultad de Ingeniería, Universidad Autónoma de Querétaro, Cerro de Las Campanas S/N Col. Cerro de Las Campanas, C.P. 76010 Santiago de Querétaro, Mexico
| | - Marcela Gaytán-Martínez
- Posgrado en Ciencia y Tecnología de Los Alimentos, Research and Graduate Studies in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Cerro de Las Campanas S/N Col. Cerro de Las Campanas, C.P. 76010 Santiago de Querétaro, Mexico
| | - Aurea Karina Ramírez-Jiménez
- Tecnologico de Monterrey, School of Engineering and Science, Av. Eugenio Garza Sada 2501 Sur, Monterrey, C.P. 64849 N.L. Mexico
| | - María de la Luz Reyes-Vega
- Universidad Autónoma de Querétaro, Departamento de Investigación y Posgrados, C.P. 76010 Santiago de Querétaro, Mexico
| |
Collapse
|
17
|
Effect of dietary chia supplementation on glucose metabolism and adipose tissue function markers in non-alcoholic fatty liver disease subjects. NUTR HOSP 2022; 39:1280-1288. [PMID: 36250773 DOI: 10.20960/nh.04084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Introduction Background: adipose tissue dysfunction is a key factor for diabetes and non-alcoholic fatty liver disease (NAFLD) development. Chia (Salvia hispanica) is an abundant source of omega-3 fatty acids, antioxidants, and fiber which could improve adipose tissue functionality. Aim: to analyze the effect of an isocaloric chia-supplemented diet on glucose metabolism, adipose tissue inflammation, and endothelial function markers in patients with NAFLD and early stages of diabetes. Methods: in 32 patients with previous NAFLD diagnosis, without known diabetes, the effect of a diet supplemented with ground chia (25 g/day/8 weeks) was evaluated. Visceral (VAF) and liver fat, plasma lipids, fatty acids, and cytokine profiles, oral glucose tolerance test (OGTT), insulinogenic index (IGI30), insulin disposition index (DIO), and endothelial progenitor cells (EPC) were analyzed. Before and after eight weeks of diet supplementation. Results: chia supplementation promoted increases in plasma alpha-linolenic acid (75 %) and fiber consumption (55 %), and a higher number of EPC (+126 %). Basal OGTT showed that nine patients had normal OGTT, 17 pre-diabetes, and six newly diagnosed diabetes. In patients with diabetes, chia favored a healthier adipose tissue (VAF -7 %, NAFLD -100 %, adiponectin +47 %, resistin -30 %, IL-6 -44 %, IL-1β -22 %) and upturn glucose metabolism through the improvement of beta-cell function (IGI30 +50 %, DIO +66 %). Conclusions: dietary supplementation with 25 g/day of ground chia may promote a healthier adipose tissue and improve pancreatic β-cell and endothelial function. Among patients with early metabolic abnormalities, phytochemical properties of chia may retard diabetes progression and advanced stages of liver damage.
Collapse
|
18
|
Oliva ME, Ingaramo P, Vega Joubert MB, Ferreira MDR, D'Alessandro ME. Effects of Salvia hispanica L. (chia) seed on blood coagulation, endothelial dysfunction and liver fibrosis in an experimental model of Metabolic Syndrome. Food Funct 2021; 12:12407-12420. [PMID: 34797360 DOI: 10.1039/d1fo02274a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The aim of this study was to analyze blood coagulation, endothelial dysfunction and liver fibrosis in an experimental model of Metabolic Syndrome (MS) induced by chronic administration of a sucrose-rich diet (SRD) and to evaluate the effects of chia seed as a therapeutic strategy. Male Wistar rats were fed with a reference diet (RD) - 6 months - or a SRD - 3 months. Then, the last group was randomly divided into two subgroups. One subgroup continued receiving the SRD for up to 6 months and the other was fed with a SRD where whole chia seed was incorporated as the source of dietary fat for the next 3 months (SRD + CHIA). Results showed that rats fed a SRD for a long period of time develop dyslipidemia, visceral adiposity, insulin resistance, and a hypercoagulable and hypofibrinolytic basal state. Hepatic VCAM-1 (main adhesion molecules involved in endothelial dysfunction) expression was significantly increased. In addition, the SRD group presented hepatic steatosis, a significant increase in interstitial collagen deposition and hydroxyproline content. Liver TGF-β1 (a key cytokine involved in fibrogenesis) levels increased and a negative correlation with PPARα protein mass levels was found. The administration of chia seed for 3 months reversed dyslipidemia, visceral adiposity and insulin resistance. Platelet count, coagulation parameters and plasma fibrinogen levels were normalized. In the liver tissue, VCAM-1 expression, steatosis, interstitial collagen deposition and the hydroxyproline content decreased. TGF-β1 expression was decreased and this was associated with an increase in the PPARα protein levels. The present study showed new aspects in the progression from liver steatosis to fibrosis in dyslipidemic insulin-resistant rats chronically fed a sucrose-rich diet. Chia seed supplementation could be used as a functional food and a potential dietary strategy to prevent or ameliorate disorders related to atherothrombotic cardiovascular events and NASH.
Collapse
Affiliation(s)
- María Eugenia Oliva
- Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, cc242 (3000) Santa Fe, Argentina.
| | - Paola Ingaramo
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Cs. Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
| | - Michelle Berenice Vega Joubert
- Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, cc242 (3000) Santa Fe, Argentina.
| | - María Del Rosario Ferreira
- Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, cc242 (3000) Santa Fe, Argentina.
| | - María Eugenia D'Alessandro
- Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, cc242 (3000) Santa Fe, Argentina.
| |
Collapse
|
19
|
Rashid N, Ashraf I, Kumar R, Richa R. Enrichment via chia seeds to tackle hidden hunger: A review. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Ifra Ashraf
- College of Agricultural Engineering and Technology Sher‐e‐Kashmir University of Agricultural Sciences and Technology of Kashmir Shalimar Campus Srinagar India
| | - Rohitashw Kumar
- College of Agricultural Engineering and Technology Sher‐e‐Kashmir University of Agricultural Sciences and Technology of Kashmir Shalimar Campus Srinagar India
| | - Rishi Richa
- College of Agricultural Engineering and Technology Sher‐e‐Kashmir University of Agricultural Sciences and Technology of Kashmir Shalimar Campus Srinagar India
| |
Collapse
|
20
|
Gupta P, Geniza M, Naithani S, Phillips JL, Haq E, Jaiswal P. Chia ( Salvia hispanica) Gene Expression Atlas Elucidates Dynamic Spatio-Temporal Changes Associated With Plant Growth and Development. FRONTIERS IN PLANT SCIENCE 2021; 12:667678. [PMID: 34354718 PMCID: PMC8330693 DOI: 10.3389/fpls.2021.667678] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/09/2021] [Indexed: 06/12/2023]
Abstract
Chia (Salvia hispanica L.), now a popular superfood and a pseudocereal, is one of the richest sources of dietary nutrients such as protein, fiber, and polyunsaturated fatty acids (PUFAs). At present, the genomic and genetic information available in the public domain for this crop are scanty, which hinders an understanding of its growth and development and genetic improvement. We report an RNA-sequencing (RNA-Seq)-based comprehensive transcriptome atlas of Chia sampled from 13 tissue types covering vegetative and reproductive growth stages. We used ~355 million high-quality reads of total ~394 million raw reads from transcriptome sequencing to generate de novo reference transcriptome assembly and the tissue-specific transcript assemblies. After the quality assessment of the merged assemblies and implementing redundancy reduction methods, 82,663 reference transcripts were identified. About 65,587 of 82,663 transcripts were translated into 99,307 peptides, and we were successful in assigning InterPro annotations to 45,209 peptides and gene ontology (GO) terms to 32,638 peptides. The assembled transcriptome is estimated to have the complete sequence information for ~86% of the genes found in the Chia genome. Furthermore, the analysis of 53,200 differentially expressed transcripts (DETs) revealed their distinct expression patterns in Chia's vegetative and reproductive tissues; tissue-specific networks and developmental stage-specific networks of transcription factors (TFs); and the regulation of the expression of enzyme-coding genes associated with important metabolic pathways. In addition, we identified 2,411 simple sequence repeats (SSRs) as potential genetic markers from the transcripts. Overall, this study provides a comprehensive transcriptome atlas, and SSRs, contributing to building essential genomic resources to support basic research, genome annotation, functional genomics, and molecular breeding of Chia.
Collapse
Affiliation(s)
- Parul Gupta
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Matthew Geniza
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
- Molecular and Cellular Biology Graduate Program, Oregon State University, Corvallis, OR, United States
| | - Sushma Naithani
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Jeremy L. Phillips
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Ebaad Haq
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Pankaj Jaiswal
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
21
|
Alasalvar C, Chang SK, Bolling B, Oh WY, Shahidi F. Specialty seeds: Nutrients, bioactives, bioavailability, and health benefits: A comprehensive review. Compr Rev Food Sci Food Saf 2021; 20:2382-2427. [PMID: 33719194 DOI: 10.1111/1541-4337.12730] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 01/28/2021] [Accepted: 02/02/2021] [Indexed: 02/06/2023]
Abstract
Seeds play important roles in human nutrition and health since ancient time. The term "specialty" has recently been applied to seeds to describe high-value and/or uncommon food products. Since then, numerous studies have been conducted to identify various classes of bioactive compounds, including polyphenols in specialty seeds. This review discusses nutrients, fat-soluble bioactives, polyphenols/bioactives, antioxidant activity, bioavailability, health benefits, and safety/toxicology of commonly consumed eight specialty seeds, namely, black cumin, chia, hemp, flax, perilla, pumpkin, quinoa, and sesame. Scientific results from the existing literature published over the last decade have been compiled and discussed. These specialty seeds, having numerous fat-soluble bioactives and polyphenols, together with their corresponding antioxidant activities, have increasingly been consumed. Hence, these specialty seeds can be considered as a valuable source of dietary supplements and functional foods due to their health-promoting bioactive components, polyphenols, and corresponding antioxidant activities. The phytochemicals from these specialty seeds demonstrate bioavailability in humans with promising health benefits. Additional long-term and well-design human intervention trials are required to ascertain the health-promoting properties of these specialty seeds.
Collapse
Affiliation(s)
| | - Sui Kiat Chang
- Department of Horticulture, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Bradley Bolling
- Department of Food Science, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Won Young Oh
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland, A1B 3X9, Canada
| | - Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland, A1B 3X9, Canada
| |
Collapse
|
22
|
Alwosais EZM, Al-Ozairi E, Zafar TA, Alkandari S. Chia seed ( Salvia hispanica L.) supplementation to the diet of adults with type 2 diabetes improved systolic blood pressure: A randomized controlled trial. Nutr Health 2021; 27:181-189. [PMID: 33530854 DOI: 10.1177/0260106020981819] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Functional food ingredients, such as dietary fiber, long-chain polyunsaturated fatty acids, and high-quality protein, have been shown to help control blood glucose concentration and lower high blood pressure (BP), as well as improving other cardiovascular disease risk factors. However, little research has assessed the impacts of consuming chia seeds, which are rich in these nutrients, on metabolic and physiological outcomes, and results are conflicting. AIM The study aimed to investigate the possible effects of chia seeds on fasting blood glucose, insulin, glycated hemoglobin, BP, lipid profile, body weight, and the inflammatory marker - high-sensitivity C-reactive protein - in people with type 2 diabetes (T2DM). METHODS Adults with T2DM (n = 42) were randomly assigned equally to the chia seed group, which consumed 40 g/day chia seeds for 12 weeks, or a control group, which did not consume any supplement. Blood samples were collected at baseline and after a 12-week intervention period to assess the study outcomes, such as glycemic control, BP, cardiovascular risk parameters including lipid profile, inflammatory marker, and body weight. RESULTS Adjusted for gender and baseline values, the chia seed group had systolic BP (SBP) significantly reduced compared to control [t (1) = 2.867, p = 0.007, η 2 p = 0.174]. No differences were observed in any other parameter tested in the chia seed or control group. CONCLUSIONS People with T2DM and hypertension, maintaining usual dietary consumption, physical activity pattern, and medications, had significantly reduced SBP compared to the control group when having consumed 40 g/d of chia seeds for 12 weeks.
Collapse
|
23
|
Zurbau A, Smircic Duvnjak L, Magas S, Jovanovski E, Miocic J, Jenkins AL, Jenkins DJA, Josse RG, Leiter LA, Sievenpiper JL, Vuksan V. Co-administration of viscous fiber, Salba-chia and ginseng on glycemic management in type 2 diabetes: a double-blind randomized controlled trial. Eur J Nutr 2021; 60:3071-3083. [PMID: 33486572 DOI: 10.1007/s00394-020-02434-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 10/29/2020] [Indexed: 11/28/2022]
Abstract
PURPOSE Viscous dietary fiber, functional seeds and ginseng roots have individually been proposed for the management of diabetes. We explored whether their co-administration would improve glycemic control in type 2 diabetes beyond conventional therapy. METHODS In a randomized, double-blind, controlled trial conducted at two academic centers (Toronto, Canada and Zagreb, Croatia), individuals with type 2 diabetes were assigned to either an active intervention (10 g viscous fiber, 60 g white chia seeds, 1.5 g American and 0.75 g Korean red ginseng extracts), or energy and fiber-matched control (53 g oat bran, 25 g inulin, 25 g maltodextrose and 2.25 g wheat bran) intervention for 24 weeks, while on conventional standard of care. The prespecified primary endpoint was end difference at week 24 in HbA1c, following an intent-to-treat analysis adjusted for center and baseline. RESULTS Between January 2016 and April 2018, 104 participants (60M:44F; mean ± SEM age 59 ± 0.8 years; BMI 29.0 ± 0.4 kg/m2; HbA1c 7.0 ± 0.6%) managed with antihyperglycemic agent(s) (n = 98) or lifestyle (n = 6), were randomized (n = 52 test; n = 52 control). At week 24, HbA1c levels were 0.27 ± 0.1% lower on test compared to control (p = 0.03). There was a tendency towards an interaction by baseline HbA1c (p = 0.07), in which a greater reduction was seen in participants with baseline HbA1c > 7% vs ≤ 7% (- 0.56 ± 0.2% vs 0.03 ± 0.2%). Diet and body weight remained unchanged. The interventions were well tolerated with no related adverse events and with high retention rate of 84%. CONCLUSIONS Co-administration of selected dietary and herbal therapies was well-tolerated and may provide greater glycemic control as add-on therapy in type 2 diabetes. Registration: Clinicaltrials.gov NCT02553382 (registered on September 17, 2015).
Collapse
Affiliation(s)
- Andreea Zurbau
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Clinical Nutrition and Risk Factor Modification Center, St. Michael's Hospital, Toronto, ON, Canada.,Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Toronto, ON, Canada
| | - Lea Smircic Duvnjak
- Vuk Vrhovac Clinic for Diabetes, Endocrinology and Metabolic Diseases, University Hospital Merkur, Zagreb, Croatia.,School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Sasa Magas
- Vuk Vrhovac Clinic for Diabetes, Endocrinology and Metabolic Diseases, University Hospital Merkur, Zagreb, Croatia
| | - Elena Jovanovski
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Clinical Nutrition and Risk Factor Modification Center, St. Michael's Hospital, Toronto, ON, Canada
| | - Jelena Miocic
- Vuk Vrhovac Clinic for Diabetes, Endocrinology and Metabolic Diseases, University Hospital Merkur, Zagreb, Croatia
| | - Alexandra L Jenkins
- Clinical Nutrition and Risk Factor Modification Center, St. Michael's Hospital, Toronto, ON, Canada
| | - David J A Jenkins
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Clinical Nutrition and Risk Factor Modification Center, St. Michael's Hospital, Toronto, ON, Canada.,Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada.,Division of Endocrinology and Metabolism, St. Michael's Hospital, Toronto, ON, Canada.,Departments of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Robert G Josse
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Clinical Nutrition and Risk Factor Modification Center, St. Michael's Hospital, Toronto, ON, Canada.,Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada.,Division of Endocrinology and Metabolism, St. Michael's Hospital, Toronto, ON, Canada.,Departments of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Lawrence A Leiter
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Clinical Nutrition and Risk Factor Modification Center, St. Michael's Hospital, Toronto, ON, Canada.,Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada.,Division of Endocrinology and Metabolism, St. Michael's Hospital, Toronto, ON, Canada.,Departments of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - John L Sievenpiper
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Clinical Nutrition and Risk Factor Modification Center, St. Michael's Hospital, Toronto, ON, Canada.,Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Toronto, ON, Canada.,Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada.,Division of Endocrinology and Metabolism, St. Michael's Hospital, Toronto, ON, Canada.,Departments of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Vladimir Vuksan
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada. .,Clinical Nutrition and Risk Factor Modification Center, St. Michael's Hospital, Toronto, ON, Canada. .,Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada. .,Division of Endocrinology and Metabolism, St. Michael's Hospital, Toronto, ON, Canada. .,Departments of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
24
|
Structure Analysis and Antioxidant Activity of a Novel Polysaccharide from Katan Seeds. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6349019. [PMID: 33511204 PMCID: PMC7822655 DOI: 10.1155/2021/6349019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/30/2020] [Accepted: 12/26/2020] [Indexed: 11/19/2022]
Abstract
In the present work, a novel water-soluble polysaccharide (LWSP) was purified from Katan seeds. Polysaccharide was structurally characterized by NMR spectroscopic analysis, thin-layer chromatography (TLC), high-performance liquid chromatography (HPLC), Fourier-transform infrared spectroscopy (FTIR) analysis, X-ray diffraction (XRD), and UV absorption. TLC and HPLC showed that LWSP was a polysaccharide consisted mainly of glucose, mannose, xylose, and arabinose. The FTIR spectrum and UV absorption proved polysaccharide characteristic of LWSP. According to XRD, LWSP presented a semicrystalline behavior. The molecular weight was estimated as 64.56 kDa. Results obtained through 13C and 1H nuclear magnetic resonance (NMR) indicated that LWSP is consisted of four monosaccharide residues with α and β anomers. Physicochemical and antioxidant properties of LWSP were also investigated. Results revealed that LWSP exhibited interesting 1,1-diphenyl-2-picrylhydrazyl (DPPH) (IC50 = 4.48 mg/ml) and chelating activity (IC50 = 4.79 mg/ml), and it displayed moderate reductive capacities. Overall, the findings suggested that LWSP is a promising source of natural additives in various industries fields.
Collapse
|
25
|
Protein Digests and Pure Peptides from Chia Seed Prevented Adipogenesis and Inflammation by Inhibiting PPARγ and NF-κB Pathways in 3T3L-1 Adipocytes. Nutrients 2021; 13:nu13010176. [PMID: 33430086 PMCID: PMC7826547 DOI: 10.3390/nu13010176] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/25/2020] [Accepted: 01/05/2021] [Indexed: 12/21/2022] Open
Abstract
The objective was to evaluate the mechanisms of digested total proteins (DTP), albumin, glutelin, and pure peptides from chia seed (Salvia hispanica L.) to prevent adipogenesis and its associated inflammation in 3T3-L1 adipocytes. Preadipocytes (3T3-L1) were treated during differentiation with either DTP or digested albumin or glutelin (1 mg/mL) or pure peptides NSPGPHDVALDQ and RMVLPEYELLYE (100 µM). Differentiated adipocytes also received DTP, digested albumin or glutelin (1 mg/mL), before (prevention) or after (inhibition) induced inflammation by addition of conditioned medium (CM) from inflamed macrophages. All treatments prevented adipogenesis, reducing more than 50% the expression of PPARγ and to a lesser extent lipoprotein lipase (LPL), fatty acid synthase (FAS), sterol regulatory element-binding protein 1 (SREBP1), lipase activity and triglycerides. Inflammation induced by CM was reduced mainly during prevention, while DTP decreased expression of NF-κB (−48.4%), inducible nitric oxide synthase (iNOS) (−46.2%) and COX-2 (−64.5%), p < 0.05. Secretions of nitric oxide, PGE2 and TNFα were reduced by all treatments, p < 0.05. DTP reduced expressions of iNOS (−52.1%) and COX-2 (−66.4%). Furthermore, digested samples and pure peptides prevented adipogenesis by modulating PPARγ and additionally, preventing and even inhibiting inflammation in adipocytes by inhibition of PPARγ and NF-κB expression. These results highlight the effectiveness of digested total proteins and peptides from chia seed against adipogenesis complications in vitro.
Collapse
|
26
|
Schreyer S, Klein C, Pfeffer A, Rasińska J, Stahn L, Knuth K, Abuelnor B, Panzel AEC, Rex A, Koch S, Hemmati-Sadeghi S, Steiner B. Chia seeds as a potential cognitive booster in the APP23 Alzheimer's disease model. Sci Rep 2020; 10:18215. [PMID: 33106576 PMCID: PMC7589531 DOI: 10.1038/s41598-020-75209-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/12/2020] [Indexed: 02/07/2023] Open
Abstract
Glucose hypometabolism potentially contributes to Alzheimer's disease (AD) and might even represent an underlying mechanism. Here, we investigate the relationship of diet-induced metabolic stress and AD as well as the therapeutic potential of chia seeds as a modulator of glucose metabolism in the APP23 mouse model. 4-6 (pre-plaque stage, PRE) and 28-32 (advanced-plaque stage, ADV) weeks old APP23 and wild type mice received pretreatment for 12 weeks with either sucrose-rich (SRD) or control diet, followed by 8 weeks of chia seed supplementation. Although ADV APP23 mice generally showed functioning glucose homeostasis, they were more prone to SRD-induced glucose intolerance. This was accompanied by elevated corticosterone levels and mild insulin insensitivity. Chia seeds improved spatial learning deficits but not impaired cognitive flexibility, potentially mediated by amelioration of glucose tolerance, attenuation of corticosterone levels and reversal of SRD-induced elevation of pro-inflammatory cytokine levels. Since cognitive symptoms and plaque load were not aggravated by SRD-induced metabolic stress, despite enhanced neuroinflammation in the PRE group, we conclude that impairments of glucose metabolism do not represent an underlying mechanism of AD in this mouse model. Nevertheless, chia seeds might provide therapeutic potential in AD as shown by the amelioration of cognitive symptoms.
Collapse
Affiliation(s)
- Stefanie Schreyer
- Department of Neurology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany.
| | - Charlotte Klein
- Department of Neurology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Anna Pfeffer
- Department of Neurology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Justyna Rasińska
- Department of Neurology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Laura Stahn
- Department of Neurology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Karlotta Knuth
- Department of Neurology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Basim Abuelnor
- Department of Neurology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Alina Elisabeth Catharina Panzel
- Department of Neurology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - André Rex
- Department of Experimental Neurology and Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Stefan Koch
- Department of Experimental Neurology and Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
- NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Shabnam Hemmati-Sadeghi
- Department of Neurology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Barbara Steiner
- Department of Neurology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| |
Collapse
|
27
|
Câmara AKFI, Paglarini CDS, Vidal VAS, Dos Santos M, Pollonio MAR. Meat products as prebiotic food carrier. ADVANCES IN FOOD AND NUTRITION RESEARCH 2020; 94:223-265. [PMID: 32892834 DOI: 10.1016/bs.afnr.2020.06.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | | | - Mirian Dos Santos
- School of Food Engineering, State University of Campinas, Campinas, Brazil
| | | |
Collapse
|
28
|
Medina-Urrutia A, Lopez-Uribe AR, El Hafidi M, González-Salazar MDC, Posadas-Sánchez R, Jorge-Galarza E, Del Valle-Mondragón L, Juárez-Rojas JG. Chia (Salvia hispanica)-supplemented diet ameliorates non-alcoholic fatty liver disease and its metabolic abnormalities in humans. Lipids Health Dis 2020; 19:96. [PMID: 32430018 PMCID: PMC7236935 DOI: 10.1186/s12944-020-01283-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 05/12/2020] [Indexed: 02/06/2023] Open
Abstract
Background Non-alcoholic fatty liver disease (NAFLD) is a public health problem lacking an approved pharmacological treatment. Omega-3 fatty acids have shown to reverse NAFLD. Chia is a seed rich in α-linolenic acid (ALA), antioxidants, and fiber; therefore, it could be useful to treat NAFLD. Methods In a single arm experimental design study, the effect of 25 g/day of milled chia was assessed in 25 patients with NAFLD. After two weeks of dietary stabilization (basal condition) and eight weeks of a chia-supplemented isocaloric diet, liver:spleen attenuation index and visceral abdominal fat (VAF) were measured by computed tomography. Lipids, lipoproteins, free fatty acids (FFA), and ALA plasma concentrations were also determined. Results Dietary chia supplementation induced an increase in plasma ALA concentration (75%) and dietary fiber (55%) consumption. After chia supplementation, VAF (9%), body weight (1.4%), total cholesterol (2.5%), non-high density lipoprotein cholesterol (3.2%), and circulating FFA (8%) decreased. Furthermore, NAFLD regressed in 52% of the treated patients (P < 0.05 for all). Conclusions The results of the present study show that 25 g/day of milled chia ameliorates NAFLD. Chia is an accessible vegetal source of omega-3 fatty acids, antioxidants, and fiber, which could have the potential to prevent metabolic abnormalities in NAFLD patients. Considering that there is no pharmacological treatment approved for NAFLD, the findings of the present study suggest that a chia-supplemented diet could be an innovative alternative to control this disease. Retrospectively registered https://clinicaltrials.gov/show/NCT03942822
Collapse
Affiliation(s)
- Aida Medina-Urrutia
- Departamento de Endocrinología, Juan Badiano 1, Col. Sección XVI, Tlalpan, Mexico City, Mexico
| | - Angel R Lopez-Uribe
- Departamento de Endocrinología, Juan Badiano 1, Col. Sección XVI, Tlalpan, Mexico City, Mexico
| | - Mohamed El Hafidi
- Departamento de Biomedicina Cardiovascular, Juan Badiano 1, Col. Sección XVI, Tlalpan, Mexico City, Mexico
| | | | | | - Esteban Jorge-Galarza
- Departamento de Endocrinología, Juan Badiano 1, Col. Sección XVI, Tlalpan, Mexico City, Mexico
| | | | - Juan G Juárez-Rojas
- Departamento de Endocrinología, Juan Badiano 1, Col. Sección XVI, Tlalpan, Mexico City, Mexico.
| |
Collapse
|
29
|
Deligiannidou GE, Philippou E, Vidakovic M, Berghe WV, Heraclides A, Grdovic N, Mihailovic M, Kontogiorgis C. Natural Products Derived from the Mediterranean Diet with Antidiabetic Activity: from Insulin Mimetic Hypoglycemic to Nutriepigenetic Modulator Compounds. Curr Pharm Des 2020; 25:1760-1782. [PMID: 31298162 DOI: 10.2174/1381612825666190705191000] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 06/24/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND The Mediterranean diet is a healthy eating pattern that protects against the development of Type 2 diabetes mellitus (T2DM), a metabolic disease characterized by elevated blood sugar levels due to pancreatic beta-cell functional impairment and insulin resistance in various tissues. Inspired by the ancient communities, this diet emphasizes eating primarily plant-based foods, including vegetables, legumes, fruits, cereals, and nuts. Importantly, virgin olive oil is used as the principal source of fat. Red meat is consumed in low amounts while wine and fish are consumed moderately. OBJECTIVE Here, we review the most beneficial components of the Mediterranean Diet and tentative mechanisms of action for prevention and/or management of T2DM, based on research conducted within the last decade. METHODS The references over the last five years have been reviewed and they have been selected properly according to inclusion/ exclusion criteria. RESULTS Several bioactive diet components were evaluated to prevent inflammation and cytokine-induced oxidative damage, reduce glucose concentration, carbohydrate absorption and increase insulin sensitivity and related gene expression. CONCLUSION The adherence to a healthy lifestyle, including diet, exercise and habits remains the best approach for the prevention of diabetes as well as frequent check-ups and education. Though diabetes has a strong genetic component, in recent years many reports strongly point to the critical role of lifestyle specific epigenetic modifications in the development of T2DM. It remains to be established how different components of the Mediterranean Diet interact and influence the epigenetic landscape to prevent or treat the disease.
Collapse
Affiliation(s)
- Georgia-Eirini Deligiannidou
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, Alexandroupolis, 68100, Greece
| | - Elena Philippou
- Department of Life and Health Sciences, University of Nicosia, Makedonitissis, Nicosia 2417, Cyprus.,Diabetes and Nutritional Sciences Division, King's College London, London, United Kingdom
| | - Melita Vidakovic
- Department of Molecular Biology, Institute for Biological Research, University of Belgrade, Bulevar despota Stefana 142, 11000 Belgrade, Serbia
| | - Wim V Berghe
- Epigenetic Signaling Lab (PPES), Department of Biomedical Sciences, University of Antwerp (UA), Wilrijk, Belgium
| | - Alexandros Heraclides
- Department of Primary Care and Population Health, University of Nicosia Medical School, Ayiou Nikolaou Street, Egkomi, Cyprus
| | - Nevena Grdovic
- Department of Molecular Biology, Institute for Biological Research, University of Belgrade, Bulevar despota Stefana 142, 11000 Belgrade, Serbia
| | - Mirjana Mihailovic
- Department of Molecular Biology, Institute for Biological Research, University of Belgrade, Bulevar despota Stefana 142, 11000 Belgrade, Serbia
| | - Christos Kontogiorgis
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, Alexandroupolis, 68100, Greece
| |
Collapse
|
30
|
Jermnak U, Yurayart C, Poapolathep A, Poapolathep S, Imsilp K, Tanhan P, Limsivilai O. Evaluation of Aflatoxin Concentrations and Occurrence of Potentially Toxigenic Fungi in Imported Chia Seeds Consumed in Thailand. J Food Prot 2020; 83:497-502. [PMID: 32068855 DOI: 10.4315/0362-028x.jfp-19-316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 11/24/2019] [Indexed: 11/11/2022]
Abstract
ABSTRACT This study was conducted to investigate possible contamination by aflatoxins (AFs) and aflatoxigenic fungi in imported chia seeds consumed in Thailand. A survey was performed on 100 samples of imported chia seeds collected from supermarkets and health food stores in Bangkok from May 2017 to February 2018. Ten mold species belonging to Aspergillus and Penicillium were isolated, and Aspergillus flavus was the most prevalent aflatoxigenic fungi. Chia seed samples were cleaned with an immunoaffinity column and analyzed for AFs by high-performance liquid chromatography with fluorescence detection using precolumn derivatization. AFs were detected in 40% of total samples at concentrations of 0.4 to 10.99 ng/g. Among the positive samples, three were contaminated with total AFs at concentrations higher than the European Union regulatory limit (4 ng/g). The most commonly found AF found in chia seeds was AFB1. HIGHLIGHTS
Collapse
Affiliation(s)
- Usuma Jermnak
- Department of Pharmacology, Kasetsart University, Bangkok 10900, Thailand
| | - Chompoonek Yurayart
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| | - Amnart Poapolathep
- Department of Pharmacology, Kasetsart University, Bangkok 10900, Thailand
| | | | - Kanjana Imsilp
- Department of Pharmacology, Kasetsart University, Bangkok 10900, Thailand
| | - Phanwimol Tanhan
- Department of Pharmacology, Kasetsart University, Bangkok 10900, Thailand
| | - Orawan Limsivilai
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|
31
|
Enes BN, Moreira LPD, Silva BP, Grancieri M, Lúcio HG, Venâncio VP, Mertens-Talcott SU, Rosa COB, Martino HSD. Chia seed (Salvia hispanica L.) effects and their molecular mechanisms on unbalanced diet experimental studies: A systematic review. J Food Sci 2020; 85:226-239. [PMID: 31972052 DOI: 10.1111/1750-3841.15003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 10/05/2019] [Accepted: 11/22/2019] [Indexed: 01/06/2023]
Abstract
The aim of this review was to compile evidence and understand chia seed effects on unbalanced diet animal studies and the molecular mechanisms on metabolic biomarker modulation. A systematic review was conducted in electronic databases, following PRISMA recommendations. Risk of bias and quality was assessed using SYRCLE toll and ARRIVE guidelines. Seventeen articles were included. Throughout the studies, chia's main effects are associated with AMPK modulation: improvement of glucose and insulin tolerance, lipogenesis, antioxidant activity, and inflammation. Details about randomization and allocation concealment were insufficient, as well as information about blind protocols. Sample size, chia dose, and number of animals evaluated for each parameter were found to be lacking information among the studies. Based on experimental study data, chia has bioactive potential, and its daily consumption may reduce the risk of chronic disease development, mainly due to the antioxidant, anti-inflammatory, hypoglycemic, and hypolipidemic effects of the seed. PRACTICAL APPLICATION: The consumption of chia seeds may improve lipid profile, insulin and glucose tolerance, and reduce risk of cardiovascular disease. Whole seed or its oil presents positive effect, but the effects of chia oil can act faster than the seed.
Collapse
Affiliation(s)
- Bárbara N Enes
- Dept. of Nutrition and Health, Federal Univ. of Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Luiza P D Moreira
- Dept. of Nutrition and Health, Federal Univ. of Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Bárbara P Silva
- Dept. of Nutrition and Health, Federal Univ. of Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Mariana Grancieri
- Dept. of Nutrition and Health, Federal Univ. of Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Haira G Lúcio
- Dept. of Nutrition and Health, Federal Univ. of Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Vinícius P Venâncio
- Dept. of Nutrition and Food Science, Texas A&M Univ., College Station, TX, 77843, USA
| | | | - Carla O B Rosa
- Dept. of Nutrition and Health, Federal Univ. of Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Hércia S D Martino
- Dept. of Nutrition and Health, Federal Univ. of Viçosa, Viçosa, MG, 36570-900, Brazil
| |
Collapse
|
32
|
Knez Hrnčič M, Ivanovski M, Cör D, Knez Ž. Chia Seeds ( Salvia hispanica L.): An Overview-Phytochemical Profile, Isolation Methods, and Application. Molecules 2019; 25:E11. [PMID: 31861466 PMCID: PMC6994964 DOI: 10.3390/molecules25010011] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/11/2019] [Accepted: 12/16/2019] [Indexed: 11/16/2022] Open
Abstract
Chia (Salvia hispanica L.) is a small seed that comes from an annual herbaceous plant, Salvia hispanica L. In recent years, usage of Chia seeds has tremendously grown due to their high nutritional and medicinal values. Chia was cultivated by Mesopotamian cultures, but then disappeared for centuries until the middle of the 20th century, when it was rediscovered. Chia seeds contain healthy ω-3 fatty acids, polyunsaturated fatty acids, dietary fiber, proteins, vitamins, and some minerals. Besides this, the seeds are an excellent source of polyphenols and antioxidants, such as caffeic acid, rosmarinic acid, myricetin, quercetin, and others. Today, chia has been analyzed in different areas of research. Researches around the world have been investigating the benefits of chia seeds in the medicinal, pharmaceutical, and food industry. Chia oil is today one of the most valuable oils on the market. Different extraction methods have been used to produce the oil. In the present study, an extensive overview of the chemical composition, nutritional properties, and antioxidant and antimicrobial activities, along with extraction methods used to produce chia oil, will be discussed.
Collapse
Affiliation(s)
- Maša Knez Hrnčič
- Faculty of Chemistry and Chemical Engineering, University of Maribor, SI-2000 Maribor, Slovenia; (M.I.); (D.C.)
| | - Maja Ivanovski
- Faculty of Chemistry and Chemical Engineering, University of Maribor, SI-2000 Maribor, Slovenia; (M.I.); (D.C.)
| | - Darija Cör
- Faculty of Chemistry and Chemical Engineering, University of Maribor, SI-2000 Maribor, Slovenia; (M.I.); (D.C.)
| | - Željko Knez
- Faculty of Chemistry and Chemical Engineering, University of Maribor, SI-2000 Maribor, Slovenia; (M.I.); (D.C.)
- Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia
| |
Collapse
|
33
|
Melo D, Machado TB, Oliveira MBPP. Chia seeds: an ancient grain trending in modern human diets. Food Funct 2019; 10:3068-3089. [PMID: 31086922 DOI: 10.1039/c9fo00239a] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Currently, in order to ensure adequate intake of nutrients to complement the normal diet, the consumption of seeds such as Salvia hispanica L. (commonly known as chia seeds) is increasing. For this reason, investigations concerning the composition and potential health effects of chia seeds are being carried out. Moreover, the recent approval of chia seeds as a Novel Food by the European Parliament allows its consumption and incorporation in a wide range of foods; thus, they have become widely available. Concerning their nutritional aspects, chia seeds are an excellent source of fat (20% to 34%), particularly polyunsaturated fatty acids such as α-linolenic (60%) and linoleic (20%) acids. Moreover, high levels of protein (16% to 26%), mainly prolamins, and dietary fibre contents (23% to 41%) have been reported. Vitamins (mostly B complex) and minerals (calcium, phosphorus, and potassium, among others) have also been described in appreciable amounts. Additionally, due to the absence of gluten, these seeds are appropriate for coeliac patients. Regarding other bioactive compounds, chia seeds are also a source of antioxidants, such as chlorogenic and caffeic acids, quercetin and kaempferol. Due to their described composition, chia seeds have been related to different medicinal effects, particularly anti-inflammatory and antidiabetic activities and positive effects on cardiovascular disease and hypertension. The aim of this paper is to perform a systematic review of chia seeds to provide an update of the knowledge about their morphology, nutritional and chemical composition, possible human health benefits and role as a functional food.
Collapse
Affiliation(s)
- Diana Melo
- LAQV-REQUIMTE, Dep. Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal.
| | | | | |
Collapse
|
34
|
Oh YJ, Kim HJ, Kim TS, Yeo IH, Ji GE. Effects of Lactobacillus plantarum PMO 08 Alone and Combined with Chia Seeds on Metabolic Syndrome and Parameters Related to Gut Health in High-Fat Diet-Induced Obese Mice. J Med Food 2019; 22:1199-1207. [PMID: 31747330 DOI: 10.1089/jmf.2018.4349] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
This study researched the effects of Lactobacillus plantarum PMO 08 alone and combined with chia seeds on metabolic syndrome and parameters related to microbiota modulation and intestinal barrier integrity in obese mice fed high-fat diets (HFDs; 45% kcal fat). Male C57BL/6J mice were acclimated for a period of 2 weeks and then randomly separated into five groups depending on whether they received a normal diet (ND group), an HFD (HFD group), an HFD with L. plantarum (PMO group), an HFD with L. plantarum combined with chia seeds (PMOChia group), or an HFD with chia seeds (Chia group). Serum lipid profiles and related markers (cholesterol metabolism-related gene expression) were measured. Intestinal barrier integrity was assessed by measuring occludin mRNA expression of tight junction proteins. Mucosal bacteria were checked with quantitative reverse transcript polymerase chain reaction (qRT-PCR). After 16 weeks of feeding, the PMO group showed significantly lower serum total cholesterol, low-density lipoprotein cholesterol levels, atherogenic index, and cardiac risk factors compared to the HFD group. Moreover, the hepatic mRNA expression of SREBP2 (sterol regulatory element binding protein 2), a protein related to cholesterol metabolism, was significantly downregulated in the PMO group. We also found a positive synergistic effect in the PMOChia group, as manifested by the hepatic mRNA expression of hepatic CYP7A1 (cholesterol 7α-hydroxylase), strengthening of the gut barrier function, and the promotion of more L. plantarum in the colonic mucosa than in either the HFD or PMO group. In conclusion, our results indicate that PMO 08 may protect against metabolic syndrome by exerting effects on the regulation of lipid metabolism. Although the effects of chia seeds alone remain uncertain based on this experiment, its combination with PMO 08 was demonstrated to improve multiple beneficial effects of PMO 08 in obese mice fed HFD, which is a promising possibility for future research.
Collapse
Affiliation(s)
- Young Joo Oh
- Pulmuone Co., Ltd., Seoul, Korea.,Department of Food and Nutrition, Seoul National University, Seoul, Korea
| | - Hee Jung Kim
- Department of Food and Nutrition, Seoul National University, Seoul, Korea
| | | | | | - Guen Eog Ji
- Department of Food and Nutrition, Seoul National University, Seoul, Korea
| |
Collapse
|
35
|
Teoh SL, Lai NM, Vanichkulpitak P, Vuksan V, Ho H, Chaiyakunapruk N. Clinical evidence on dietary supplementation with chia seed (Salvia hispanica L.): a systematic review and meta-analysis. Nutr Rev 2019; 76:219-242. [PMID: 29452425 DOI: 10.1093/nutrit/nux071] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Context Chia seed is a popular dietary supplement, taken mainly for its high content of alpha-linolenic acid, vegetable protein, and dietary fiber, yet information about its clinical effects is lacking. Objective This review aims to summarize the clinical evidence regarding the use of chia seed for a wide variety of health conditions. Data Sources A number of databases, including PubMed and Embase, were searched systematically. Study Selection Randomized controlled trials that assessed the clinical effects of chia seed consumption in human participants were included. The quality of trials was assessed using the Cochrane Risk of Bias Tool. Data Extraction Data on study design, blinding status, characteristics of participants, chia seed intervention, comparator, clinical assessment, duration of intake, interval of assessment, and study funding status were extracted. Meta-analysis was performed. Results Twelve trials were included. Participants included healthy persons, athletes, diabetic patients, and individuals with metabolic syndrome. Pooling of results showed no significant differences except for the following findings of subgroup analysis at higher doses of chia seed: (1) lower postprandial blood glucose level (mean difference [MD] of -33.95 incremental area under the curve [iAUC] [mmol/L × 2 h] [95%CI, -61.85, -6.05] and -51.60 iAUC [mmol/L × 2 h] [95%CI, -79.64, -23.56] at medium doses and high doses, respectively); (2) lower high-density lipoprotein in serum (MD of -0.10 mmol/L [95%CI, -0.20, -0.01]); and (3) lower diastolic blood pressure (MD of -7.14 mmHg [95%CI, -11.08, -3.19]). The quality of all evidence assessed using the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) approach was low or very low. All trials employed only surrogate markers as outcomes. Conclusions Future trials with improved methodological quality, well-described clinical events, and validated surrogate markers as outcomes are needed to support the potential health benefits of chia seed consumption. Systematic Review Registration PROSPERO registration no. CRD42015029990.
Collapse
Affiliation(s)
- Siew Li Teoh
- School of Pharmacy, Monash University Malaysia, Selangor, Malaysia
| | - Nai Ming Lai
- School of Pharmacy, Monash University Malaysia, Selangor, Malaysia
- School of Medicine, Taylor's University, Selangor, Malaysia
| | | | - Vladimir Vuksan
- Department of Nutritional Sciences, University of Toronto, Toronto, Canada, and the Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, Canada
- Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada; the Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; and the Division of Endocrinology & Metabolism, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Hoang Ho
- Department of Nutritional Sciences, University of Toronto, Toronto, Canada, and the Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, Canada
| | - Nathorn Chaiyakunapruk
- School of Pharmacy, Monash University Malaysia, Selangor, Malaysia
- Center of Pharmaceutical Outcomes Research, Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand; the School of Pharmacy, University of Wisconsin, Madison, Wisconsin, USA; and the Asian Centre for Evidence Synthesis in Population, Implementation and Clinical Outcomes, Health and Well-being Cluster, Global Asia Platform in the 21st Century (GA21) Platform, Monash University Malaysia, Selangor, Malaysia
| |
Collapse
|
36
|
Adriano LS, Dionísio AP, Abreu FAPD, Carioca AAF, Zocolo GJ, Wurlitzer NJ, Pinto CDO, de Oliveira AC, Sampaio HADC. Yacon syrup reduces postprandial glycemic response to breakfast: A randomized, crossover, double-blind clinical trial. Food Res Int 2019; 126:108682. [PMID: 31732062 DOI: 10.1016/j.foodres.2019.108682] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 09/10/2019] [Accepted: 09/13/2019] [Indexed: 12/20/2022]
Abstract
Yacon is a root rich in fructooligosaccharides (FOS), which act as prebiotics. Numerous studies have shown promising results in the technological aspects of producing yacon syrup. However, uncertainties exist concerning whether yacon syrup can modulate postprandial glucose and lipid profiles. In order to assess the effect of yacon syrup on postprandial glucose, insulin and triglyceride (TG) responses, a randomized, crossover, double-blind clinical intervention with 40 women (20 normal weight and 20 grade I obese) was performed. Participants underwent two-arms of intervention with at least a one-week wash-out period between visits. On each intervention day, after 12 h of fasting, an aliquot of blood was collected. For intervention A, volunteers consumed breakfast +40 g of placebo, whereas for intervention B, participants consumed breakfast +40 g of yacon syrup (14 g of FOS). Blood samples were drawn at 15, 30, 45, 60, 90, and 120 min. Glucose and insulin concentrations were lowered after yacon syrup intake as compared to placebo at following times: 30 min for glucose and 15, 30 and 45 min for insulin. In conclusion, yacon syrup has a postprandial decreasing effect glucose and insulin concentrations in adult women. This effect was not evident for triglyceride concentration. Clinical trial registry: RBR-33wf46. Available in: http://www.ensaiosclinicos.gov.br/rg/RBR-33wf46/.
Collapse
Affiliation(s)
- Lia Silveira Adriano
- Department of Nutrition, State University of Ceara, 60714-903 Fortaleza, CE, Brazil; Department of Nutrition, University of Fortaleza, 60811-905 Fortaleza, CE, Brazil
| | - Ana Paula Dionísio
- Embrapa Agroindústria Tropical, Dra Sara Mesquita Street, 2270, 60511-110 Fortaleza, CE, Brazil.
| | | | | | - Guilherme Julião Zocolo
- Embrapa Agroindústria Tropical, Dra Sara Mesquita Street, 2270, 60511-110 Fortaleza, CE, Brazil
| | - Nedio Jair Wurlitzer
- Embrapa Agroindústria Tropical, Dra Sara Mesquita Street, 2270, 60511-110 Fortaleza, CE, Brazil
| | | | | | | |
Collapse
|
37
|
Grancieri M, Martino HSD, Gonzalez de Mejia E. Chia (
Salvia hispanica
L.) Seed Total Protein and Protein Fractions Digests Reduce Biomarkers of Inflammation and Atherosclerosis in Macrophages In Vitro. Mol Nutr Food Res 2019; 63:e1900021. [DOI: 10.1002/mnfr.201900021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 06/15/2019] [Indexed: 01/24/2023]
Affiliation(s)
- Mariana Grancieri
- Departamento de Nutrição e Saúde Universidade Federal de Viçosa Viçosa MG 36570‐000 Brazil
- Department of Food Science & Human Nutrition University of Illinois at Urbana‐Champaign IL 61801 USA
| | | | - Elvira Gonzalez de Mejia
- Department of Food Science & Human Nutrition University of Illinois at Urbana‐Champaign IL 61801 USA
| |
Collapse
|
38
|
Turck D, Castenmiller J, de Henauw S, Hirsch-Ernst KI, Kearney J, Maciuk A, Mangelsdorf I, McArdle HJ, Naska A, Pelaez C, Pentieva K, Siani A, Thies F, Tsabouri S, Vinceti M, Cubadda F, Engel KH, Frenzel T, Heinonen M, Marchelli R, Neuhäuser-Berthold M, Pöting A, Poulsen M, Sanz Y, Schlatter JR, van Loveren H, Gelbmann W, Matijević L, Romero P, Knutsen HK. Safety of chia seeds ( Salvia hispanica L.) as a novel food for extended uses pursuant to Regulation (EU) 2015/2283. EFSA J 2019; 17:e05657. [PMID: 32626283 PMCID: PMC7009096 DOI: 10.2903/j.efsa.2019.5657] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Following a request from the European Commission, the EFSA Panel on Nutrition, Novel foods and Food Allergens (NDA) was asked to deliver an opinion on overall safety assessment for chia seeds (Salvia hispanica L.) as a novel food (NF) pursuant to Regulation (EU) 2015/2283 in the light of the increasing dietary intake from the growing number of authorised uses in recent years. The safety assessment of this NF is based on data supplied in seven applications, previous safety assessments of chia seeds and information retrieved from an extensive literature search done by EFSA. Since none of the applications addressed the possible formation of process contaminants, the present assessment is limited to those proposed extended uses which do not raise safety concerns regarding the formation of such contaminants. These include the use of whole and ground chia seeds added to chocolate, fruit spreads, fruit desserts, mixed fruit with coconut milk in twin pot, fruit‐preparations to underlay a dairy product, fruit‐preparations to be mixed with dairy products, confectionary (excluding chewing gums), dairy products and analogues, edible ices, fruit and vegetables products, non‐alcoholic beverages and compotes from fruit and/or vegetables and/or with cereals. In addition, this assessment also concerns uses of chia seeds without specific restrictions and precautions regarding their use levels in other foods which usually do not include heat treatment during processing and cooking. Apart from allergenicity, the Panel did not identify any hazard which causes safety concerns. Lacking the basis and need to establish safe maximum intake levels for chia seeds, no exposure assessment was conducted. The Panel concludes that chia seeds are safe under the assessed conditions of use.
Collapse
|
39
|
Grancieri M, Martino HSD, Gonzalez de Mejia E. Chia Seed (Salvia hispanica L.) as a Source of Proteins and Bioactive Peptides with Health Benefits: A Review. Compr Rev Food Sci Food Saf 2019; 18:480-499. [PMID: 33336944 DOI: 10.1111/1541-4337.12423] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/23/2018] [Accepted: 12/26/2018] [Indexed: 12/12/2022]
Abstract
The consumption of chia seed (Salvia hispanica L.) has increased in recent years due its high content of omega-3 fatty acids and dietary fiber. This seed also has a high concentration of proteins and essential amino acids, becoming a promising source of bioactive peptides. The objective of this review was to identify the composition and the beneficial effects of chia seeds (S. hispanica L.), their proteins, peptides, and their potential impact on human health. The UniProt database was used to identify the chia proteins and their amino acid sequences. The BIOPEP database was used to analyze the peptides's bioactive potential. A total of 20 proteins were cataloged in chia seed, 12 of those were involved in the regular metabolic processes of the plant cells. However, eight proteins were specifically related to production and storage of plant lipids, thus explaining the high concentration of lipids in chia seeds (around 30%), especially omega-3 fatty acids (around 20%). The analyses of amino acid sequences showed peptides with bioactive potential, including dipeptidyl peptidase-IV inhibitors, angiotensin-converting enzyme inhibitors, and antioxidant capacity. These results correlated with the main health benefits of whole chia seed in humans such as antioxidant capacity, and hypotensive, hypoglycemic, and anticholesterolemic effects. Such relation can be associated with chia protein and peptide compositions and therefore needs further investigation in vitro and in vivo.
Collapse
Affiliation(s)
- Mariana Grancieri
- Dept. de Nutrição e Saúde, Univ. Federal de Viçosa, Viçosa, MG, Brazil.,Dept. of Food Science & Human Nutrition, Univ. of Illinois at Urbana-Champaign, IL, U.S.A
| | | | | |
Collapse
|
40
|
Sharifi-Rad M, Ozcelik B, Altın G, Daşkaya-Dikmen C, Martorell M, Ramírez-Alarcón K, Alarcón-Zapata P, Morais-Braga MFB, Carneiro JN, Alves Borges Leal AL, Coutinho HDM, Gyawali R, Tahergorabi R, Ibrahim SA, Sahrifi-Rad R, Sharopov F, Salehi B, del Mar Contreras M, Segura-Carretero A, Sen S, Acharya K, Sharifi-Rad J. Salvia spp. plants-from farm to food applications and phytopharmacotherapy. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.08.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
41
|
Zettel V, Hitzmann B. Applications of chia (Salvia hispanica L.) in food products. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.07.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
42
|
Skotnicka M, Ocieczek A, Małgorzewicz S. Satiety value of groats in healthy women as affected by selected physicochemical parameters. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2018. [DOI: 10.1080/10942912.2018.1485028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Magdalena Skotnicka
- Department of Food Commodity Science, Medical University of Gdansk, Gdańsk, Poland
| | - Aneta Ocieczek
- Department of Commodity Science and Quality Management, Gdynia Maritime University, Gdańsk, Poland
| | - Sylwia Małgorzewicz
- Department of Clinical Nutrition, Medical University of Gdansk, Gdańsk, Poland
| |
Collapse
|
43
|
Kerdiles O, Layé S, Calon F. Omega-3 polyunsaturated fatty acids and brain health: Preclinical evidence for the prevention of neurodegenerative diseases. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2017.09.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
44
|
Ayaz A, Akyol A, Inan-Eroglu E, Kabasakal Cetin A, Samur G, Akbiyik F. Chia seed ( Salvia Hispanica L.) added yogurt reduces short-term food intake and increases satiety: randomised controlled trial. Nutr Res Pract 2017; 11:412-418. [PMID: 28989578 PMCID: PMC5621364 DOI: 10.4162/nrp.2017.11.5.412] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/31/2017] [Accepted: 08/02/2017] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND/OBJECTIVES Several studies have reported that consumption of Salvia Hispanica L.,commonly known as chia seed, may exert beneficial effects on health outcomes. The main purpose of this study was to examine the influence of chia seed consumption as a mid-morning snack on short-term satiety. SUBJECTS/METHODS Subjects (n = 24) were tested using a randomized, cross-over design consisting of three mid-morning snacks. Yogurt with no chia seed, yogurt with 7 g chia seed, and yogurt with 14 g chia seed were given to subjects on different test days. After subjects were asked to report visual analog scale (VAS) scores on sensory outcomes, ad libitum lunch was served, and energy intake of individuals was measured. RESULTS VAS scores indicated that participants reported significantly lower scores for hunger (P = 0.033), prospective food consumption (P = 0.031), amounts of food that could be consumed (P = 0.017), desire for sugary foods (P = 0.015), and higher scores for satiety (P = 0.031) on the test days with 7 g and 14 g chia seed. Energy intake of individuals during ad libitum lunch was significantly lower when they consumed yogurt with 7 g or 14 g chia seed (P = 0.037). CONCLUSIONS The study demonstrated that chia seed consumption as a mid-morning snack may induce short-term satiety in healthy individuals.
Collapse
Affiliation(s)
- Aylin Ayaz
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, Sihhiye, Ankara 06100, Turkey
| | - Asli Akyol
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, Sihhiye, Ankara 06100, Turkey
| | - Elif Inan-Eroglu
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, Sihhiye, Ankara 06100, Turkey
| | - Arzu Kabasakal Cetin
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, Sihhiye, Ankara 06100, Turkey
| | - Gulhan Samur
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, Sihhiye, Ankara 06100, Turkey
| | - Filiz Akbiyik
- Department of Medical Biochemistry, Faculty of Medicine, Hacettepe University, Sihhiye, Ankara 06100, Turkey
| |
Collapse
|