1
|
Jiraanont P, Zafarullah M, Sulaiman N, Espinal GM, Randol JL, Durbin-Johnson B, Schneider A, Hagerman RJ, Hagerman PJ, Tassone F. FMR1 Protein Expression Correlates with Intelligence Quotient in Both Peripheral Blood Mononuclear Cells and Fibroblasts from Individuals with an FMR1 Mutation. J Mol Diagn 2024; 26:498-509. [PMID: 38522837 DOI: 10.1016/j.jmoldx.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 02/15/2024] [Accepted: 02/23/2024] [Indexed: 03/26/2024] Open
Abstract
Fragile X syndrome (FXS) is the most common heritable form of intellectual disability and is caused by CGG repeat expansions exceeding 200 (full mutation). Such expansions lead to hypermethylation and transcriptional silencing of the fragile X messenger ribonucleoprotein 1 (FMR1) gene. As a consequence, little or no FMR1 protein (FMRP) is produced; absence of the protein, which normally is responsible for neuronal development and maintenance, causes the syndrome. Previous studies have demonstrated the causal relationship between FMRP levels and cognitive abilities in peripheral blood mononuclear cells (PBMCs) and dermal fibroblast cell lines of patients with FXS. However, it is arguable whether PBMCs or fibroblasts would be the preferred surrogate for measuring molecular markers, particularly FMRP, to represent the cognitive impairment, a core symptom of FXS. To address this concern, CGG repeats, methylation status, FMR1 mRNA, and FMRP levels were measured in both PBMCs and fibroblasts derived from 66 individuals. The findings indicated a strong association between FMR1 mRNA expression levels and CGG repeat numbers in PBMCs of premutation males after correcting for methylation status. Moreover, FMRP expression levels from both PBMCs and fibroblasts of male participants with a hypermethylated full mutation and with mosaicism demonstrated significant association between the intelligence quotient levels and FMRP levels, suggesting that PBMCs may be preferable for FXS clinical studies, because of their greater accessibility.
Collapse
Affiliation(s)
- Poonnada Jiraanont
- Division of Molecular and Cellular Medicine, Faculty of Medicine, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
| | - Marwa Zafarullah
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Davis, California
| | - Noor Sulaiman
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Davis, California
| | - Glenda M Espinal
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Davis, California
| | - Jamie L Randol
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Davis, California
| | - Blythe Durbin-Johnson
- Division of Biostatistics, University of California, Davis, School of Medicine, Davis, California
| | - Andrea Schneider
- Department of Pediatrics, University of California, Davis, School of Medicine, Davis, California; UC Davis MIND Institute, University of California, Davis, Sacramento, California
| | - Randi J Hagerman
- Department of Pediatrics, University of California, Davis, School of Medicine, Davis, California; UC Davis MIND Institute, University of California, Davis, Sacramento, California
| | - Paul J Hagerman
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Davis, California; UC Davis MIND Institute, University of California, Davis, Sacramento, California
| | - Flora Tassone
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Davis, California; UC Davis MIND Institute, University of California, Davis, Sacramento, California.
| |
Collapse
|
2
|
Fang M, Deibler SK, Krishnamurthy PM, Wang F, Rodriguez P, Banday S, Virbasius CM, Sena-Esteves M, Watts JK, Green MR. EZH2 inhibition reactivates epigenetically silenced FMR1 and normalizes molecular and electrophysiological abnormalities in fragile X syndrome neurons. Front Neurosci 2024; 18:1348478. [PMID: 38449737 PMCID: PMC10915284 DOI: 10.3389/fnins.2024.1348478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 02/09/2024] [Indexed: 03/08/2024] Open
Abstract
Fragile X Syndrome (FXS) is a neurological disorder caused by epigenetic silencing of the FMR1 gene. Reactivation of FMR1 is a potential therapeutic approach for FXS that would correct the root cause of the disease. Here, using a candidate-based shRNA screen, we identify nine epigenetic repressors that promote silencing of FMR1 in FXS cells (called FMR1 Silencing Factors, or FMR1- SFs). Inhibition of FMR1-SFs with shRNAs or small molecules reactivates FMR1 in cultured undifferentiated induced pluripotent stem cells, neural progenitor cells (NPCs) and post-mitotic neurons derived from FXS patients. One of the FMR1-SFs is the histone methyltransferase EZH2, for which an FDA-approved small molecule inhibitor, EPZ6438 (also known as tazemetostat), is available. We show that EPZ6438 substantially corrects the characteristic molecular and electrophysiological abnormalities of cultured FXS neurons. Unfortunately, EZH2 inhibitors do not efficiently cross the blood-brain barrier, limiting their therapeutic use for FXS. Recently, antisense oligonucleotide (ASO)-based approaches have been developed as effective treatment options for certain central nervous system disorders. We therefore derived efficacious ASOs targeting EZH2 and demonstrate that they reactivate FMR1 expression and correct molecular and electrophysiological abnormalities in cultured FXS neurons, and reactivate FMR1 expression in human FXS NPCs engrafted within the brains of mice. Collectively, our results establish EZH2 inhibition in general, and EZH2 ASOs in particular, as a therapeutic approach for FXS.
Collapse
Affiliation(s)
- Minggang Fang
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Sara K. Deibler
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | | | - Feng Wang
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Paola Rodriguez
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Shahid Banday
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Ching-Man Virbasius
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Miguel Sena-Esteves
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Jonathan K. Watts
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Michael R. Green
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| |
Collapse
|
3
|
Qazi S, Raza K. In silico approach to understand epigenetics of POTEE in ovarian cancer. J Integr Bioinform 2021; 18:jib-2021-0028. [PMID: 34788504 PMCID: PMC8709732 DOI: 10.1515/jib-2021-0028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/04/2021] [Indexed: 12/20/2022] Open
Abstract
Ovarian cancer is the third leading cause of cancer-related deaths in India. Epigenetics mechanisms seemingly plays an important role in ovarian cancer. This paper highlights the crucial epigenetic changes that occur in POTEE that get hypomethylated in ovarian cancer. We utilized the POTEE paralog mRNA sequence to identify major motifs and also performed its enrichment analysis. We identified 6 motifs of varying lengths, out of which only three motifs, including CTTCCAGCAGATGTGGATCA, GGAACTGCC, and CGCCACATGCAGGC were most likely to be present in the nucleotide sequence of POTEE. By enrichment and occurrences identification analyses, we rectified the best match motif as CTTCCAGCAGATGT. Since there is no experimentally verified structure of POTEE paralog, thus, we predicted the POTEE structure using an automated workflow for template-based modeling using the power of a deep neural network. Additionally, to validate our predicted model we used AlphaFold predicted POTEE structure and observed that the residual stretch starting from 237-958 had a very high confidence per residue. Furthermore, POTEE predicted model stability was evaluated using replica exchange molecular dynamic simulation for 50 ns. Our network-based epigenetic analysis discerns only 10 highly significant, direct, and physical associators of POTEE. Our finding aims to provide new insights about the POTEE paralog.
Collapse
Affiliation(s)
- Sahar Qazi
- Department of Computer Science, Jamia Millia Islamia, New Delhi 110025, India
| | - Khalid Raza
- Department of Computer Science, Jamia Millia Islamia, New Delhi 110025, India
| |
Collapse
|
4
|
Nobile V, Pucci C, Chiurazzi P, Neri G, Tabolacci E. DNA Methylation, Mechanisms of FMR1 Inactivation and Therapeutic Perspectives for Fragile X Syndrome. Biomolecules 2021; 11:biom11020296. [PMID: 33669384 PMCID: PMC7920310 DOI: 10.3390/biom11020296] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/04/2021] [Accepted: 02/06/2021] [Indexed: 12/13/2022] Open
Abstract
Among the inherited causes of intellectual disability and autism, Fragile X syndrome (FXS) is the most frequent form, for which there is currently no cure. In most FXS patients, the FMR1 gene is epigenetically inactivated following the expansion over 200 triplets of a CGG repeat (FM: full mutation). FMR1 encodes the Fragile X Mental Retardation Protein (FMRP), which binds several mRNAs, mainly in the brain. When the FM becomes methylated at 10-12 weeks of gestation, the FMR1 gene is transcriptionally silent. The molecular mechanisms involved in the epigenetic silencing are not fully elucidated. Among FXS families, there is a rare occurrence of males carrying a FM, which remains active because it is not methylated, thus ensuring enough FMRPs to allow for an intellectual development within normal range. Which mechanisms are responsible for sparing these individuals from being affected by FXS? In order to answer this critical question, which may have possible implications for FXS therapy, several potential epigenetic mechanisms have been described. Here, we focus on current knowledge about the role of DNA methylation and other epigenetic modifications in FMR1 gene silencing.
Collapse
Affiliation(s)
- Veronica Nobile
- Sezione di Medicina Genomica, Dipartimento Scienze della Vita e Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (V.N.); (C.P.); (P.C.); (G.N.)
| | - Cecilia Pucci
- Sezione di Medicina Genomica, Dipartimento Scienze della Vita e Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (V.N.); (C.P.); (P.C.); (G.N.)
| | - Pietro Chiurazzi
- Sezione di Medicina Genomica, Dipartimento Scienze della Vita e Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (V.N.); (C.P.); (P.C.); (G.N.)
- Fondazione Policlinico Universitario A. Gemelli IRCCS, UOC Genetica Medica, 00168 Rome, Italy
| | - Giovanni Neri
- Sezione di Medicina Genomica, Dipartimento Scienze della Vita e Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (V.N.); (C.P.); (P.C.); (G.N.)
- Greenwood Genetic Center, JC Self Research Institute, Greenwood, SC 29646, USA
| | - Elisabetta Tabolacci
- Sezione di Medicina Genomica, Dipartimento Scienze della Vita e Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (V.N.); (C.P.); (P.C.); (G.N.)
- Correspondence: ; Tel.: +39-06-30154606
| |
Collapse
|
5
|
Jarmolowicz AI, Baker EK, Bartlett E, Francis D, Ling L, Gamage D, Delatycki MB, Godler DE. Fragile X syndrome full mutation in cognitively normal male identified as part of an Australian reproductive carrier screening program. Am J Med Genet A 2021; 185:1498-1503. [PMID: 33544979 DOI: 10.1002/ajmg.a.62106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 01/04/2021] [Accepted: 01/12/2021] [Indexed: 11/08/2022]
Abstract
Fragile X syndrome (FXS) is caused by CGG expansions of ≥200 repeats (full mutation: FM). Typically, FM causes abnormal methylation of the FMR1 promoter and silencing of FMR1, leading to reduction of FMRP, a protein essential for normal neurodevelopment. However, if unmethylated, these alleles cause over-expression of FMR1 mRNA which has been associated with Fragile X Tremor and Ataxia Syndrome (FXTAS), a late onset disorder. This report details the molecular and clinical profile of an asymptomatic male (29 years) identified as a result of cascade testing who was found to have a rare unmethylated FM (UFM) allele, as well as premutation (PM: 55-199 CGG) size alleles in multiple tissues. Full-scale IQ was within the normal range and minimal features of autism were observed. Southern blot analysis identified FM smears in blood (220-380 CGG) and saliva (212-378 CGG). A PM of 159 CGG was identified in blood and saliva. FMR1 promoter methylation analysis showed all alleles to be unmethylated. FMR1 mRNA levels were greater than fivefold of median levels in typically developing controls and males with FXS mosaic for PM and FM alleles. Issues raised during genetic counseling related to risk for FXTAS associated with UFM and elevated FMR1 mRNA levels, as well as, reproductive options, with implications for future practice.
Collapse
Affiliation(s)
- Anna I Jarmolowicz
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Emma K Baker
- Diagnosis and Development, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia.,Faculty of Medicine, Dentistry and Health Sciences, Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia.,School of Psychology and Public Health, La Trobe University, Bundoora, Victoria, Australia
| | - Essra Bartlett
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - David Francis
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Ling Ling
- Diagnosis and Development, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Dinusha Gamage
- Diagnosis and Development, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Martin B Delatycki
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia.,Faculty of Medicine, Dentistry and Health Sciences, Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| | - David E Godler
- Diagnosis and Development, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia.,Faculty of Medicine, Dentistry and Health Sciences, Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
6
|
Gropman AL. Epigenetics and pervasive developmental disorders. EPIGENETICS IN PSYCHIATRY 2021:519-552. [DOI: 10.1016/b978-0-12-823577-5.00011-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
7
|
Lalonde E, Rentas S, Lin F, Dulik MC, Skraban CM, Spinner NB. Genomic Diagnosis for Pediatric Disorders: Revolution and Evolution. Front Pediatr 2020; 8:373. [PMID: 32733828 PMCID: PMC7360789 DOI: 10.3389/fped.2020.00373] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 06/02/2020] [Indexed: 12/14/2022] Open
Abstract
Powerful, recent advances in technologies to analyze the genome have had a profound impact on the practice of medical genetics, both in the laboratory and in the clinic. Increasing utilization of genome-wide testing such as chromosomal microarray analysis and exome sequencing have lead a shift toward a "genotype-first" approach. Numerous techniques are now available to diagnose a particular syndrome or phenotype, and while traditional techniques remain efficient tools in certain situations, higher-throughput technologies have become the de facto laboratory tool for diagnosis of most conditions. However, selecting the right assay or technology is challenging, and the wrong choice may lead to prolonged time to diagnosis, or even a missed diagnosis. In this review, we will discuss current core technologies for the diagnosis of classic genetic disorders to shed light on the benefits and disadvantages of these strategies, including diagnostic efficiency, variant interpretation, and secondary findings. Finally, we review upcoming technologies posed to impart further changes in the field of genetic diagnostics as we move toward "genome-first" practice.
Collapse
Affiliation(s)
- Emilie Lalonde
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, School of Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, United States
| | - Stefan Rentas
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, School of Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, United States
| | - Fumin Lin
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, School of Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, United States
| | - Matthew C. Dulik
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, School of Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, United States
| | - Cara M. Skraban
- Division of Human Genetics, Department of Pediatrics, School of Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, United States
| | - Nancy B. Spinner
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, School of Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
8
|
Poeta L, Drongitis D, Verrillo L, Miano MG. DNA Hypermethylation and Unstable Repeat Diseases: A Paradigm of Transcriptional Silencing to Decipher the Basis of Pathogenic Mechanisms. Genes (Basel) 2020; 11:E684. [PMID: 32580525 PMCID: PMC7348995 DOI: 10.3390/genes11060684] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 12/12/2022] Open
Abstract
Unstable repeat disorders comprise a variable group of incurable human neurological and neuromuscular diseases caused by an increase in the copy number of tandem repeats located in various regions of their resident genes. It has become clear that dense DNA methylation in hyperexpanded non-coding repeats induces transcriptional silencing and, subsequently, insufficient protein synthesis. However, the ramifications of this paradigm reveal a far more profound role in disease pathogenesis. This review will summarize the significant progress made in a subset of non-coding repeat diseases demonstrating the role of dense landscapes of 5-methylcytosine (5mC) as a common disease modifier. However, the emerging findings suggest context-dependent models of 5mC-mediated silencing with distinct effects of excessive DNA methylation. An in-depth understanding of the molecular mechanisms underlying this peculiar group of human diseases constitutes a prerequisite that could help to discover novel pathogenic repeat loci, as well as to determine potential therapeutic targets. In this regard, we report on a brief description of advanced strategies in DNA methylation profiling for the identification of unstable Guanine-Cytosine (GC)-rich regions and on promising examples of molecular targeted therapies for Fragile X disease (FXS) and Friedrich ataxia (FRDA) that could pave the way for the application of this technique in other hypermethylated expansion disorders.
Collapse
Affiliation(s)
- Loredana Poeta
- Institute of Genetics and Biophysics “Adriano Buzzati-Traverso”, CNR, 80131 Naples, Italy; (L.P.); (D.D.); (L.V.)
| | - Denise Drongitis
- Institute of Genetics and Biophysics “Adriano Buzzati-Traverso”, CNR, 80131 Naples, Italy; (L.P.); (D.D.); (L.V.)
| | - Lucia Verrillo
- Institute of Genetics and Biophysics “Adriano Buzzati-Traverso”, CNR, 80131 Naples, Italy; (L.P.); (D.D.); (L.V.)
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
| | - Maria Giuseppina Miano
- Institute of Genetics and Biophysics “Adriano Buzzati-Traverso”, CNR, 80131 Naples, Italy; (L.P.); (D.D.); (L.V.)
| |
Collapse
|
9
|
Kumari D, Sciascia N, Usdin K. Small Molecules Targeting H3K9 Methylation Prevent Silencing of Reactivated FMR1 Alleles in Fragile X Syndrome Patient Derived Cells. Genes (Basel) 2020; 11:genes11040356. [PMID: 32230785 PMCID: PMC7230530 DOI: 10.3390/genes11040356] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/19/2020] [Accepted: 03/25/2020] [Indexed: 12/23/2022] Open
Abstract
In fragile X syndrome (FXS), expansion of a CGG repeat tract in the 5′-untranslated region of the FMR1 gene to >200 repeats causes transcriptional silencing by inducing heterochromatin formation. Understanding the mechanism of FMR1 silencing is important as gene reactivation is a potential treatment approach for FXS. To date, only the DNA demethylating drug 5-azadeoxycytidine (AZA) has proved effective at gene reactivation; however, this drug is toxic. The repressive H3K9 methylation mark is enriched on the FMR1 gene in FXS patient cells and is thus a potential druggable target. However, its contribution to the silencing process is unclear. Here, we studied the effect of small molecule inhibitors of H3K9 methylation on FMR1 expression in FXS patient cells. Chaetocin showed a small effect on FMR1 gene reactivation and a synergistic effect on FMR1 mRNA levels when used in combination with AZA. Additionally, chaetocin, BIX01294 and 3-Deazaneplanocin A (DZNep) were able to significantly delay the re-silencing of AZA-reactivated FMR1 alleles. These data are consistent with the idea that H3K9 methylation precedes DNA methylation and that removal of DNA methylation is necessary to see the optimal effect of histone methyl-transferase (HMT) inhibitors on FMR1 gene expression. Nonetheless, our data also show that drugs targeting repressive H3K9 methylation marks are able to produce sustained reactivation of the FMR1 gene after a single dose of AZA.
Collapse
Affiliation(s)
- Daman Kumari
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, 8 Center Drive, Bethesda, MD 20892, USA; (N.S.); (K.U.)
- Correspondence: ; Tel.: +01 301-594-5260
| | - Nicholas Sciascia
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, 8 Center Drive, Bethesda, MD 20892, USA; (N.S.); (K.U.)
- Laboratory of Genome Integrity, National Cancer Institute, Bethesda, MD 20892, USA
| | - Karen Usdin
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, 8 Center Drive, Bethesda, MD 20892, USA; (N.S.); (K.U.)
| |
Collapse
|
10
|
DNA Methylation in the Diagnosis of Monogenic Diseases. Genes (Basel) 2020; 11:genes11040355. [PMID: 32224912 PMCID: PMC7231024 DOI: 10.3390/genes11040355] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/13/2020] [Accepted: 03/24/2020] [Indexed: 02/08/2023] Open
Abstract
DNA methylation in the human genome is largely programmed and shaped by transcription factor binding and interaction between DNA methyltransferases and histone marks during gamete and embryo development. Normal methylation profiles can be modified at single or multiple loci, more frequently as consequences of genetic variants acting in cis or in trans, or in some cases stochastically or through interaction with environmental factors. For many developmental disorders, specific methylation patterns or signatures can be detected in blood DNA. The recent use of high-throughput assays investigating the whole genome has largely increased the number of diseases for which DNA methylation analysis provides information for their diagnosis. Here, we review the methylation abnormalities that have been associated with mono/oligogenic diseases, their relationship with genotype and phenotype and relevance for diagnosis, as well as the limitations in their use and interpretation of results.
Collapse
|
11
|
Graef JD, Wu H, Ng C, Sun C, Villegas V, Qadir D, Jesseman K, Warren ST, Jaenisch R, Cacace A, Wallace O. Partial FMRP expression is sufficient to normalize neuronal hyperactivity in Fragile X neurons. Eur J Neurosci 2020; 51:2143-2157. [PMID: 31880363 PMCID: PMC7318714 DOI: 10.1111/ejn.14660] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 12/04/2019] [Accepted: 12/11/2019] [Indexed: 12/12/2022]
Abstract
Fragile X syndrome (FXS) is the most common genetic form of intellectual disability caused by a CGG repeat expansion in the 5′‐UTR of the Fragile X mental retardation gene FMR1, triggering epigenetic silencing and the subsequent absence of the protein, FMRP. Reactivation of FMR1 represents an attractive therapeutic strategy targeting the genetic root cause of FXS. However, largely missing in the FXS field is an understanding of how much FMR1 reactivation is required to rescue FMRP‐dependent mutant phenotypes. Here, we utilize FXS patient‐derived excitatory neurons to model FXS in vitro and confirm that the absence of FMRP leads to neuronal hyperactivity. We further determined the levels of FMRP and the percentage of FMRP‐positive cells necessary to correct this phenotype utilizing a mixed and mosaic neuronal culture system and a combination of CRISPR, antisense and expression technologies to titrate FMRP in FXS and WT neurons. Our data demonstrate that restoration of greater than 5% of overall FMRP expression levels or greater than 20% FMRP‐expressing neurons in a mosaic pattern is sufficient to normalize a FMRP‐dependent, hyperactive phenotype in FXS iPSC‐derived neurons.
Collapse
Affiliation(s)
| | - Hao Wu
- Fulcrum Therapeutics, Cambridge, MA, USA
| | - Carrie Ng
- Fulcrum Therapeutics, Cambridge, MA, USA
| | | | | | | | | | - Stephen T Warren
- Departments of Human Genetics, Biochemistry, and Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Rudolf Jaenisch
- Department of Biology, MIT, 9 Cambridge Center, Whitehead Institute, Cambridge, MA, USA
| | | | | |
Collapse
|
12
|
Nobile V, Palumbo F, Lanni S, Ghisio V, Vitali A, Castagnola M, Marzano V, Maulucci G, De Angelis C, De Spirito M, Pacini L, D'Andrea L, Ragno R, Stazi G, Valente S, Mai A, Chiurazzi P, Genuardi M, Neri G, Tabolacci E. Altered mitochondrial function in cells carrying a premutation or unmethylated full mutation of the FMR1 gene. Hum Genet 2020; 139:227-245. [PMID: 31919630 DOI: 10.1007/s00439-019-02104-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 12/21/2019] [Indexed: 12/22/2022]
Abstract
Fragile X-related disorders are due to a dynamic mutation of the CGG repeat at the 5' UTR of the FMR1 gene, coding for the RNA-binding protein FMRP. As the CGG sequence expands from premutation (PM, 56-200 CGGs) to full mutation (> 200 CGGs), FMRP synthesis decreases until it is practically abolished in fragile X syndrome (FXS) patients, mainly due to FMR1 methylation. Cells from rare individuals with no intellectual disability and carriers of an unmethylated full mutation (UFM) produce slightly elevated levels of FMR1-mRNA and relatively low levels of FMRP, like in PM carriers. With the aim of clarifying how UFM cells differ from CTRL and FXS cells, a comparative proteomic approach was undertaken, from which emerged an overexpression of SOD2 in UFM cells, also confirmed in PM but not in FXS. The SOD2-mRNA bound to FMRP in UFM more than in the other cell types. The high SOD2 levels in UFM and PM cells correlated with lower levels of superoxide and reactive oxygen species (ROS), and with morphological anomalies and depolarization of the mitochondrial membrane detected through confocal microscopy. The same effect was observed in CTRL and FXS after treatment with MC2791, causing SOD2 overexpression. These mitochondrial phenotypes reverted after knock-down with siRNA against SOD2-mRNA and FMR1-mRNA in UFM and PM. Overall, these data suggest that in PM and UFM carriers, which have high levels of FMR1 transcription and may develop FXTAS, SOD2 overexpression helps to maintain low levels of both superoxide and ROS with signs of mitochondrial degradation.
Collapse
Affiliation(s)
- Veronica Nobile
- Istituto di Medicina Genomica, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo F. Vito 1, 00168, Roma, Italy
| | - Federica Palumbo
- Istituto di Medicina Genomica, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo F. Vito 1, 00168, Roma, Italy
| | - Stella Lanni
- Program of Genetics and Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, ON, Canada
| | - Valentina Ghisio
- UOC Genetica Medica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Alberto Vitali
- Institute of Chemistry of Molecular Recognition, CNR, Roma, Italy
- Istituto di Biochimica e Chimica Clinica, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Massimo Castagnola
- Istituto di Biochimica e Chimica Clinica, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Valeria Marzano
- Istituto di Biochimica e Chimica Clinica, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
- Human Microbiome Unit, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Giuseppe Maulucci
- Istituto di Fisica, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Claudio De Angelis
- Istituto di Fisica, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Marco De Spirito
- Istituto di Fisica, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Laura Pacini
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
- UniCamillus, Saint Camillus International University of Health and Medical Sciences, Rome, Italy
| | - Laura D'Andrea
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Rino Ragno
- Department of Chemistry and Technologies of Drugs, Sapienza University, Rome, Italy
| | - Giulia Stazi
- Department of Chemistry and Technologies of Drugs, Sapienza University, Rome, Italy
| | - Sergio Valente
- Department of Chemistry and Technologies of Drugs, Sapienza University, Rome, Italy
| | - Antonello Mai
- Department of Chemistry and Technologies of Drugs, Sapienza University, Rome, Italy
| | - Pietro Chiurazzi
- Istituto di Medicina Genomica, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo F. Vito 1, 00168, Roma, Italy
- UOC Genetica Medica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Maurizio Genuardi
- Istituto di Medicina Genomica, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo F. Vito 1, 00168, Roma, Italy
- UOC Genetica Medica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Giovanni Neri
- Istituto di Medicina Genomica, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo F. Vito 1, 00168, Roma, Italy
- Self Research Institute, Greenwood Genetic Center, Greenwood, SC, USA
| | - Elisabetta Tabolacci
- Istituto di Medicina Genomica, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo F. Vito 1, 00168, Roma, Italy.
| |
Collapse
|
13
|
Methylated premutation of the FMR1 gene in three sisters: correlating CGG expansion and epigenetic inactivation. Eur J Hum Genet 2019; 28:567-575. [PMID: 31804632 DOI: 10.1038/s41431-019-0554-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 11/07/2019] [Accepted: 11/17/2019] [Indexed: 11/08/2022] Open
Abstract
Fragile X syndrome (FXS) is a very frequent cause of inherited intellectual disability (ID) and autism. Most FXS patients have an expansion over 200 repeats of (CGG)n sequence ("full mutation" (FM)) located in the 5'UTR of the FMR1 gene, resulting in local DNA methylation (methylated "full mutation" (MFM)) and epigenetic silencing. The absence of the FMRP protein is responsible for the clinical phenotype of FXS. FM arises from a smaller maternal allele with 56-200 CGG repeats ("premutation" (PM)) during maternal meiosis. Carriers of PM alleles, which are typically unmethylated, can manifest other clinical features (primary ovarian insufficiency (POI) or FXS-associated tremor-ataxia syndrome (FXTAS)), known as fragile X-related disorders. In FXS families, rare males who have inherited an unmethylated "full mutation" (UFM) have been described. These individuals produce enough FMRP to allow normal intellectual functioning. Here we report the rare case of three sisters with a completely methylated PM of around 140 CGGs and detail their neuropsychological function. X inactivation analysis confirmed that the three sisters have a random inactivation of the X chromosome, suggesting that the PM allele is always methylated also when residing on the active X. We propose that in exceptional cases, just as the FM may be unmethylated, also a PM allele may be fully methylated. To our knowledge, females with a methylated PM allele and a mild impairment have reported only once. The study of these atypical individuals demonstrates that the size of the CGG expansion is not as tightly coupled to methylation as previously thought.
Collapse
|
14
|
|
15
|
Monitoring for Epigenetic Modifications at the FMR1 Locus. Methods Mol Biol 2019. [PMID: 30900173 DOI: 10.1007/978-1-4939-9080-1_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The vast majority of fragile X affected patients do not transcribe FMR1 due to a CGG repeat expansion in the 5'-untranslated region of the FMR1 gene. When the CGGs considerably expand, it elicits abnormal DNA methylation and histone modifications, which are responsible for FMR1 transcriptional silencing. In this chapter, we describe in detail two commonly used protocols for monitoring the epigenetic state of the FMR1 gene that bypass the difficulty in directly analyzing the CGGs. One protocol is for accurately measuring DNA methylation levels and the other is for profiling histone modifications.
Collapse
|
16
|
Abu Diab M, Eiges R. The Contribution of Pluripotent Stem Cell (PSC)-Based Models to the Study of Fragile X Syndrome (FXS). Brain Sci 2019; 9:brainsci9020042. [PMID: 30769941 PMCID: PMC6406836 DOI: 10.3390/brainsci9020042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 02/11/2019] [Accepted: 02/13/2019] [Indexed: 02/06/2023] Open
Abstract
Fragile X syndrome (FXS) is the most common heritable form of cognitive impairment. It results from a deficiency in the fragile X mental retardation protein (FMRP) due to a CGG repeat expansion in the 5′-UTR of the X-linked FMR1 gene. When CGGs expand beyond 200 copies, they lead to epigenetic gene silencing of the gene. In addition, the greater the allele size, the more likely it will become unstable and exhibit mosaicism for expansion size between and within tissues in affected individuals. The timing and mechanisms of FMR1 epigenetic gene silencing and repeat instability are far from being understood given the lack of appropriate cellular and animal models that can fully recapitulate the molecular features characteristic of the disease pathogenesis in humans. This review summarizes the data collected to date from mutant human embryonic stem cells, induced pluripotent stem cells, and hybrid fusions, and discusses their contribution to the investigation of FXS, their key limitations, and future prospects.
Collapse
Affiliation(s)
- Manar Abu Diab
- Stem Cell Research Laboratory, Medical Genetics Institute, Shaare Zedek Medical Center, Jerusalem 91031, Israel.
- School of Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, Israel.
| | - Rachel Eiges
- Stem Cell Research Laboratory, Medical Genetics Institute, Shaare Zedek Medical Center, Jerusalem 91031, Israel.
- School of Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, Israel.
| |
Collapse
|
17
|
Kumari D, Gazy I, Usdin K. Pharmacological Reactivation of the Silenced FMR1 Gene as a Targeted Therapeutic Approach for Fragile X Syndrome. Brain Sci 2019; 9:brainsci9020039. [PMID: 30759772 PMCID: PMC6406686 DOI: 10.3390/brainsci9020039] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 02/07/2019] [Accepted: 02/08/2019] [Indexed: 12/22/2022] Open
Abstract
More than ~200 CGG repeats in the 5′ untranslated region of the FMR1 gene results in transcriptional silencing and the absence of the FMR1 encoded protein, FMRP. FMRP is an RNA-binding protein that regulates the transport and translation of a variety of brain mRNAs in an activity-dependent manner. The loss of FMRP causes dysregulation of many neuronal pathways and results in an intellectual disability disorder, fragile X syndrome (FXS). Currently, there is no effective treatment for FXS. In this review, we discuss reactivation of the FMR1 gene as a potential approach for FXS treatment with an emphasis on the use of small molecules to inhibit the pathways important for gene silencing.
Collapse
Affiliation(s)
- Daman Kumari
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Inbal Gazy
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Karen Usdin
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
18
|
Doerfler W, Weber S, Naumann A. Inheritable epigenetic response towards foreign DNA entry by mammalian host cells: a guardian of genomic stability. Epigenetics 2018; 13:1141-1153. [PMID: 30458693 DOI: 10.1080/15592294.2018.1549463] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Apart from its well-documented role in long-term promoter silencing, the genome-wide distribution patterns of ~ 28 million methylated or unmethylated CpG dinucleotides, e. g. in the human genome, is in search of genetic functions. We have set out to study changes in the cellular CpG methylation profile upon introducing foreign DNA into mammalian cells. As stress factors served the genomic integration of foreign (viral or bacterial plasmid) DNA, virus infections or the immortalization of cells with Epstein Barr Virus (EBV). In all instances investigated, alterations in cellular CpG methylation and transcription profiles were observed to different degrees. In the case of adenovirus DNA integration in adenovirus type 12 (Ad12)-transformed hamster cells, the extensive changes in cellular CpG methylation persisted even after the complete loss of all transgenomic Ad12 DNA. Hence, stress-induced alterations in CpG methylation can be inherited independent of the continued presence of the transgenome. Upon virus infections, changes in cellular CpG methylation appear early after infection. In EBV immortalized as compared to control cells, CpG hypermethylation in the far-upstream region of the human FMR1 promoter decreased four-fold. We conclude that in the wake of cellular stress due to foreign DNA entry, preexisting CpG methylation patterns were altered, possibly at specific CpG dinucleotides. Frequently, transcription patterns were also affected. As a working concept, we view CpG methylation profiles in mammalian genomes as a guarding sensor for genomic stability under epigenetic control. As a caveat towards manipulations of cells with foreign DNA, such cells can no longer be considered identical to their un-manipulated counterparts.
Collapse
Affiliation(s)
- Walter Doerfler
- a Institute for Virology , Friedrich-Alexander University Erlangen-Nürnberg , Erlangen , Germany.,b Institute of Genetics , Cologne University , Cologne , Germany
| | - Stefanie Weber
- a Institute for Virology , Friedrich-Alexander University Erlangen-Nürnberg , Erlangen , Germany
| | - Anja Naumann
- a Institute for Virology , Friedrich-Alexander University Erlangen-Nürnberg , Erlangen , Germany
| |
Collapse
|
19
|
Jiraanont P, Kumar M, Tang HT, Espinal G, Hagerman PJ, Hagerman RJ, Chutabhakdikul N, Tassone F. Size and methylation mosaicism in males with Fragile X syndrome. Expert Rev Mol Diagn 2018; 17:1023-1032. [PMID: 28929824 DOI: 10.1080/14737159.2017.1377612] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Size and methylation mosaicism are a common phenomenon in Fragile X syndrome (FXS). Here, the authors report a study on twelve fragile X males with atypical mosaicism, seven of whom presented with autism spectrum disorder. METHODS A combination of Southern Blot and PCR analysis was used for CGG allele sizing and methylation. FMR1 mRNA and FMRP expression were measured by qRT-PCR and by Homogeneous Time Resolved Fluorescence methodology, respectively. RESULTS DNA analysis showed atypical size- or methylation-mosaicism with both, full mutation and smaller (normal to premutation) alleles, as well as a combination of methylated and unmethylated alleles. Four individuals carried a deletion of the CGG repeat and portions of the flanking regions. The extent of methylation among the participants was reflected in the lower FMR1 mRNA and FMRP expression levels detected in these subjects. CONCLUSION Decreased gene expression is likely the main contributor to the cognitive impairment observed in these subjects; although the presence of a normal allele did not appear to compensate for the presence of the full mutation, it correlated with better cognitive function in some but not all of the reported cases emphasizing the complexity of the molecular and clinical profile in FXS.
Collapse
Affiliation(s)
- Poonnada Jiraanont
- a Department of Biochemistry and Molecular Medicine , University of California, School of Medicine , Davis , CA , USA.,b Research Center for Neuroscience, Institute of Molecular Biosciences , Mahidol University , Nakornpathom , Thailand
| | - Madhur Kumar
- a Department of Biochemistry and Molecular Medicine , University of California, School of Medicine , Davis , CA , USA
| | - Hiu-Tung Tang
- a Department of Biochemistry and Molecular Medicine , University of California, School of Medicine , Davis , CA , USA
| | - Glenda Espinal
- a Department of Biochemistry and Molecular Medicine , University of California, School of Medicine , Davis , CA , USA
| | - Paul J Hagerman
- a Department of Biochemistry and Molecular Medicine , University of California, School of Medicine , Davis , CA , USA.,c M.I.N.D. Institute , University of California Davis Medical Center , Sacramento , CA , USA
| | - Randi J Hagerman
- c M.I.N.D. Institute , University of California Davis Medical Center , Sacramento , CA , USA.,d Department of Pediatrics , University of California, Davis Medical Center , Sacramento , CA , USA
| | - Nuanchan Chutabhakdikul
- b Research Center for Neuroscience, Institute of Molecular Biosciences , Mahidol University , Nakornpathom , Thailand
| | - Flora Tassone
- a Department of Biochemistry and Molecular Medicine , University of California, School of Medicine , Davis , CA , USA.,c M.I.N.D. Institute , University of California Davis Medical Center , Sacramento , CA , USA
| |
Collapse
|
20
|
Dahlhaus R. Of Men and Mice: Modeling the Fragile X Syndrome. Front Mol Neurosci 2018; 11:41. [PMID: 29599705 PMCID: PMC5862809 DOI: 10.3389/fnmol.2018.00041] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 01/31/2018] [Indexed: 12/26/2022] Open
Abstract
The Fragile X Syndrome (FXS) is one of the most common forms of inherited intellectual disability in all human societies. Caused by the transcriptional silencing of a single gene, the fragile x mental retardation gene FMR1, FXS is characterized by a variety of symptoms, which range from mental disabilities to autism and epilepsy. More than 20 years ago, a first animal model was described, the Fmr1 knock-out mouse. Several other models have been developed since then, including conditional knock-out mice, knock-out rats, a zebrafish and a drosophila model. Using these model systems, various targets for potential pharmaceutical treatments have been identified and many treatments have been shown to be efficient in preclinical studies. However, all attempts to turn these findings into a therapy for patients have failed thus far. In this review, I will discuss underlying difficulties and address potential alternatives for our future research.
Collapse
Affiliation(s)
- Regina Dahlhaus
- Institute for Biochemistry, Emil-Fischer Centre, University of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
21
|
Esanov R, Andrade NS, Bennison S, Wahlestedt C, Zeier Z. The FMR1 promoter is selectively hydroxymethylated in primary neurons of fragile X syndrome patients. Hum Mol Genet 2018; 25:4870-4880. [PMID: 28173181 DOI: 10.1093/hmg/ddw311] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 08/17/2016] [Accepted: 09/02/2016] [Indexed: 12/13/2022] Open
Abstract
Fragile X syndrome (FXS) results from a repeat expansion mutation near the FMR1 gene promoter and is the most common form of heritable intellectual disability and autism. Full mutations larger than 200 CGG repeats trigger FMR1 heterochromatinization and loss of gene expression, which is primarily responsible for the pathological features of FXS . In contrast, smaller pre-mutations of 55–200 CGG are associated with FMR1 overexpression and Fragile X-associated tremor/ataxia syndrome (FXTAS), a late-onset neurodegenerative condition. While the role of 5-methylcytosine (5mC) in FMR1 gene silencing has been studied extensively, the role of 5-hydroxymethylation (5hmC), a newly discovered epigenetic mark produced through active DNA demethylation, has not been previously investigated in FXS neurons. Here, we used two complementary epigenetic assays, 5hmC sensitive restriction digest and ten-eleven translocation-assisted bisulfite pyrosequencing, to quantify FMR1 5mC and 5hmC levels. We observed increased levels of 5hmC at the FMR1 promoter in FXS patient brains with full-mutations relative to pre-mutation carriers and unaffected controls. In addition, we found that 5hmC enrichment at the FMR1 locus in FXS cells is specific to neurons by utilizing a nuclei sorting technique to separate neuronal and glial DNA fractions from post-mortem brain tissues. This FMR1 5hmC enrichment was not present in cellular models of FXS including fibroblasts, lymphocytes and reprogrammed neurons, indicating they do not fully recapitulate this epigenetic feature of disease. Future studies could investigate the potential to leverage this epigenetic pathway to restore FMR1 expression and discern whether levels of 5hmC correlate with phenotypic severity.
Collapse
Affiliation(s)
- Rustam Esanov
- Department of Psychiatry & Behavioral Sciences, Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Nadja S Andrade
- Department of Psychiatry & Behavioral Sciences, Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Sarah Bennison
- Department of Psychiatry & Behavioral Sciences, Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Claes Wahlestedt
- Department of Psychiatry & Behavioral Sciences, Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Zane Zeier
- Department of Psychiatry & Behavioral Sciences, Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
22
|
Mor-Shaked H, Eiges R. Reevaluation of FMR1 Hypermethylation Timing in Fragile X Syndrome. Front Mol Neurosci 2018; 11:31. [PMID: 29467618 PMCID: PMC5808132 DOI: 10.3389/fnmol.2018.00031] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/24/2018] [Indexed: 12/27/2022] Open
Abstract
Fragile X syndrome (FXS) is one of the most common heritable forms of cognitive impairment. It results from a fragile X mental retardation protein (FMRP) protein deficiency caused by a CGG repeat expansion in the 5'-UTR of the X-linked FMR1 gene. Whereas in most individuals the number of CGGs is steady and ranges between 5 and 44 units, in patients it becomes extensively unstable and expands to a length exceeding 200 repeats (full mutation). Interestingly, this disease is exclusively transmitted by mothers who carry a premutation allele (55-200 CGG repeats). When the CGGs reach the FM range, they trigger the spread of abnormal DNA methylation, which coincides with a switch from active to repressive histone modifications. This results in epigenetic gene silencing of FMR1 presumably by a multi-stage, developmentally regulated process. The timing of FMR1 hypermethylation and transcription silencing is still hotly debated. There is evidence that hypermethylation varies considerably between and within the tissues of patients as well as during fetal development, thus supporting the view that FMR1 silencing is a post-zygotic event that is developmentally structured. On the other hand, it may be established in the female germ line and transmitted to the fetus as an integral part of the mutation. This short review summarizes the data collected to date concerning the timing of FMR1 epigenetic gene silencing and reassess the evidence in favor of the theory that gene inactivation takes place by a developmentally regulated process around the 10th week of gestation.
Collapse
Affiliation(s)
- Hagar Mor-Shaked
- Stem Cell Research Laboratory, Medical Genetics Institute, Shaare Zedek Medical Center, Jerusalem, Israel.,Hebrew University Medical School, Jerusalem, Israel
| | - Rachel Eiges
- Stem Cell Research Laboratory, Medical Genetics Institute, Shaare Zedek Medical Center, Jerusalem, Israel.,Hebrew University Medical School, Jerusalem, Israel
| |
Collapse
|
23
|
Hayward BE, Kumari D, Usdin K. Recent advances in assays for the fragile X-related disorders. Hum Genet 2017; 136:1313-1327. [PMID: 28866801 DOI: 10.1007/s00439-017-1840-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 08/24/2017] [Indexed: 12/17/2022]
Abstract
The fragile X-related disorders are a group of three clinical conditions resulting from the instability of a CGG-repeat tract at the 5' end of the FMR1 transcript. Fragile X-associated tremor/ataxia syndrome (FXTAS) and fragile X-associated primary ovarian insufficiency (FXPOI) are disorders seen in carriers of FMR1 alleles with 55-200 repeats. Female carriers of these premutation (PM) alleles are also at risk of having a child who has an FMR1 allele with >200 repeats. Most of these full mutation (FM) alleles are epigenetically silenced resulting in a deficit of the FMR1 gene product, FMRP. This results in fragile X Syndrome (FXS), the most common heritable cause of intellectual disability and autism. The diagnosis and study of these disorders is challenging, in part because the detection of alleles with large repeat numbers has, until recently, been either time-consuming or unreliable. This problem is compounded by the mosaicism for repeat length and/or DNA methylation that is frequently seen in PM and FM carriers. Furthermore, since AGG interruptions in the repeat tract affect the risk that a FM allele will be maternally transmitted, the ability to accurately detect these interruptions in female PM carriers is an additional challenge that must be met. This review will discuss some of the pros and cons of some recently described assays for these disorders, including those that detect FMRP levels directly, as well as emerging technologies that promise to improve the diagnosis of these conditions and to be useful in both basic and translational research settings.
Collapse
Affiliation(s)
- Bruce E Hayward
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, Building 8, Room 2A19, National Institutes of Health, 8 Center Drive MSC 0830, Bethesda, MD, 20892, USA
| | - Daman Kumari
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, Building 8, Room 2A19, National Institutes of Health, 8 Center Drive MSC 0830, Bethesda, MD, 20892, USA
| | - Karen Usdin
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, Building 8, Room 2A19, National Institutes of Health, 8 Center Drive MSC 0830, Bethesda, MD, 20892, USA.
| |
Collapse
|
24
|
Study of the Genetic Etiology of Primary Ovarian Insufficiency: FMR1 Gene. Genes (Basel) 2016; 7:genes7120123. [PMID: 27983607 PMCID: PMC5192499 DOI: 10.3390/genes7120123] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 11/29/2016] [Accepted: 11/30/2016] [Indexed: 01/28/2023] Open
Abstract
Menopause is a period of women’s life characterized by the cessation of menses in a definitive way. The mean age for menopause is approximately 51 years. Primary ovarian insufficiency (POI) refers to ovarian dysfunction defined as irregular menses and elevated gonadotrophin levels before or at the age of 40 years. The etiology of POI is unknown but several genes have been reported as being of significance. The fragile X mental retardation 1 gene (FMR1) is one of the most important genes associated with POI. The FMR1 gene contains a highly polymorphic CGG repeat in the 5′ untranslated region of exon 1. Four allelic forms have been defined with respect to CGG repeat length and instability during transmission. Normal (5–44 CGG) alleles are usually transmitted from parent to offspring in a stable manner. The full mutation form consists of over 200 repeats, which induces hypermethylation of the FMR1 gene promoter and the subsequent silencing of the gene, associated with Fragile X Syndrome (FXS). Finally, FMR1 intermediate (45–54 CGG) and premutation (55–200 CGG) alleles have been principally associated with two phenotypes, fragile X tremor ataxia syndrome (FXTAS) and fragile X primary ovarian insufficiency (FXPOI).
Collapse
|
25
|
CGG Repeat-Induced FMR1 Silencing Depends on the Expansion Size in Human iPSCs and Neurons Carrying Unmethylated Full Mutations. Stem Cell Reports 2016; 7:1059-1071. [PMID: 27840045 PMCID: PMC5161530 DOI: 10.1016/j.stemcr.2016.10.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 10/11/2016] [Accepted: 10/13/2016] [Indexed: 12/16/2022] Open
Abstract
In fragile X syndrome (FXS), CGG repeat expansion greater than 200 triplets is believed to trigger FMR1 gene silencing and disease etiology. However, FXS siblings have been identified with more than 200 CGGs, termed unmethylated full mutation (UFM) carriers, without gene silencing and disease symptoms. Here, we show that hypomethylation of the FMR1 promoter is maintained in induced pluripotent stem cells (iPSCs) derived from two UFM individuals. However, a subset of iPSC clones with large CGG expansions carries silenced FMR1. Furthermore, we demonstrate de novo silencing upon expansion of the CGG repeat size. FMR1 does not undergo silencing during neuronal differentiation of UFM iPSCs, and expression of large unmethylated CGG repeats has phenotypic consequences resulting in neurodegenerative features. Our data suggest that UFM individuals do not lack the cell-intrinsic ability to silence FMR1 and that inter-individual variability in the CGG repeat size required for silencing exists in the FXS population. Unmethylated full mutation (UFM) iPSCs and neurons maintain active FMR1 UFM iPSCs have the capacity to silence FMR1 CGG repeat size required for silencing in UFM is higher than 200 described for FXS UFM iPSCs derived neurons show signs of neurodegeneration
Collapse
|
26
|
Zhou Y, Kumari D, Sciascia N, Usdin K. CGG-repeat dynamics and FMR1 gene silencing in fragile X syndrome stem cells and stem cell-derived neurons. Mol Autism 2016; 7:42. [PMID: 27713816 PMCID: PMC5053128 DOI: 10.1186/s13229-016-0105-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 09/26/2016] [Indexed: 01/19/2023] Open
Abstract
Background Fragile X syndrome (FXS), a common cause of intellectual disability and autism, results from the expansion of a CGG-repeat tract in the 5′ untranslated region of the FMR1 gene to >200 repeats. Such expanded alleles, known as full mutation (FM) alleles, are epigenetically silenced in differentiated cells thus resulting in the loss of FMRP, a protein important for learning and memory. The timing of repeat expansion and FMR1 gene silencing is controversial. Methods We monitored the repeat size and methylation status of FMR1 alleles with expanded CGG repeats in patient-derived induced pluripotent stem cells (iPSCs) and embryonic stem cells (ESCs) that were grown for extended period of time either as stem cells or differentiated into neurons. We used a PCR assay optimized for the amplification of large CGG repeats for sizing, and a quantitative methylation-specific PCR for the analysis of FMR1 promoter methylation. The FMR1 mRNA levels were analyzed by qRT-PCR. FMRP levels were determined by western blotting and immunofluorescence. Chromatin immunoprecipitation was used to study the association of repressive histone marks with the FMR1 gene in FXS ESCs. Results We show here that while FMR1 gene silencing can be seen in FXS embryonic stem cells (ESCs), some silenced alleles contract and when the repeat number drops below ~400, DNA methylation erodes, even when the repeat number remains >200. The resultant active alleles do not show the large step-wise expansions seen in stem cells from other repeat expansion diseases. Furthermore, there may be selection against large active alleles and these alleles do not expand further or become silenced on neuronal differentiation. Conclusions Our data support the hypotheses that (i) large expansions occur prezygotically or in the very early embryo, (ii) large unmethylated alleles may be deleterious in stem cells, (iii) methylation can occur on alleles with >400 repeats very early in embryogenesis, and (iv) expansion and contraction may occur by different mechanisms. Our data also suggest that the threshold for stable methylation of FM alleles may be higher than previously thought. A higher threshold might explain why some carriers of FM alleles escape methylation. It may also provide a simple explanation for why silencing has not been observed in mouse models with >200 repeats. Electronic supplementary material The online version of this article (doi:10.1186/s13229-016-0105-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yifan Zhou
- Section on Gene Structure and Disease, Laboratory of Molecular and Cellular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD USA
| | - Daman Kumari
- Section on Gene Structure and Disease, Laboratory of Molecular and Cellular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD USA
| | - Nicholas Sciascia
- Section on Gene Structure and Disease, Laboratory of Molecular and Cellular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD USA ; Present Address: Laboratory of Genome Integrity, National Cancer Institute, Bethesda, MD USA
| | - Karen Usdin
- Section on Gene Structure and Disease, Laboratory of Molecular and Cellular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD USA
| |
Collapse
|
27
|
Mor-Shaked H, Eiges R. Modeling Fragile X Syndrome Using Human Pluripotent Stem Cells. Genes (Basel) 2016; 7:genes7100077. [PMID: 27690107 PMCID: PMC5083916 DOI: 10.3390/genes7100077] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/02/2016] [Accepted: 09/12/2016] [Indexed: 02/06/2023] Open
Abstract
Fragile X syndrome (FXS) is the most common heritable form of cognitive impairment. It results from a loss-of-function mutation by a CGG repeat expansion at the 5′ untranslated region of the X-linked fragile X mental retardation 1 (FMR1) gene. Expansion of the CGG repeats beyond 200 copies results in protein deficiency by leading to aberrant methylation of the FMR1 promoter and the switch from active to repressive histone modifications. Additionally, the CGGs become increasingly unstable, resulting in high degree of variation in expansion size between and within tissues of affected individuals. It is still unclear how the FMR1 protein (FMRP) deficiency leads to disease pathology in neurons. Nor do we know the mechanisms by which the CGG expansion results in aberrant DNA methylation, or becomes unstable in somatic cells of patients, at least in part due to the lack of appropriate animal or cellular models. This review summarizes the current contribution of pluripotent stem cells, mutant human embryonic stem cells, and patient-derived induced pluripotent stem cells to disease modeling of FXS for basic and applied research, including the development of new therapeutic approaches.
Collapse
Affiliation(s)
- Hagar Mor-Shaked
- Stem Cell Research Laboratory, Medical Genetics Institute, Shaare Zedek Medical Center Affiliated with the Hebrew University School of Medicine, Jerusalem 91031, Israel.
| | - Rachel Eiges
- Stem Cell Research Laboratory, Medical Genetics Institute, Shaare Zedek Medical Center Affiliated with the Hebrew University School of Medicine, Jerusalem 91031, Israel.
| |
Collapse
|
28
|
Tabolacci E, Palumbo F, Nobile V, Neri G. Transcriptional Reactivation of the FMR1 Gene. A Possible Approach to the Treatment of the Fragile X Syndrome. Genes (Basel) 2016; 7:genes7080049. [PMID: 27548224 PMCID: PMC4999837 DOI: 10.3390/genes7080049] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 07/29/2016] [Accepted: 08/09/2016] [Indexed: 12/15/2022] Open
Abstract
Fragile X syndrome (FXS) is the most common cause of inherited intellectual disability, caused by CGG expansion over 200 repeats (full mutation, FM) at the 5′ untranslated region (UTR) of the fragile X mental retardation 1 (FMR1) gene and subsequent DNA methylation of the promoter region, accompanied by additional epigenetic histone modifications that result in a block of transcription and absence of the fragile X mental retardation protein (FMRP). The lack of FMRP, involved in multiple aspects of mRNA metabolism in the brain, is thought to be the direct cause of the FXS phenotype. Restoration of FMR1 transcription and FMRP production can be obtained in vitro by treating FXS lymphoblastoid cell lines with the demethylating agent 5-azadeoxycytidine, demonstrating that DNA methylation is key to FMR1 inactivation. This concept is strengthened by the existence of rare male carriers of a FM, who are unable to methylate the FMR1 promoter. These individuals produce limited amounts of FMRP and are of normal intelligence. Their inability to methylate the FMR1 promoter, whose cause is not yet fully elucidated, rescues them from manifesting the FXS. These observations demonstrate that a therapeutic approach to FXS based on the pharmacological reactivation of the FMR1 gene is conceptually tenable and worthy of being further pursued.
Collapse
Affiliation(s)
- Elisabetta Tabolacci
- Institute of Genomic Medicine, School of Medicine, Catholic University, Largo Francesco Vito 1, Rome 00168, Italy.
| | - Federica Palumbo
- Institute of Genomic Medicine, School of Medicine, Catholic University, Largo Francesco Vito 1, Rome 00168, Italy.
| | - Veronica Nobile
- Institute of Genomic Medicine, School of Medicine, Catholic University, Largo Francesco Vito 1, Rome 00168, Italy.
| | - Giovanni Neri
- Institute of Genomic Medicine, School of Medicine, Catholic University, Largo Francesco Vito 1, Rome 00168, Italy.
| |
Collapse
|
29
|
Tabolacci E, Mancano G, Lanni S, Palumbo F, Goracci M, Ferrè F, Helmer-Citterich M, Neri G. Genome-wide methylation analysis demonstrates that 5-aza-2-deoxycytidine treatment does not cause random DNA demethylation in fragile X syndrome cells. Epigenetics Chromatin 2016; 9:12. [PMID: 27014370 PMCID: PMC4806452 DOI: 10.1186/s13072-016-0060-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 03/08/2016] [Indexed: 11/30/2022] Open
Abstract
Background Fragile X syndrome (FXS) is caused by CGG expansion over 200 repeats at the 5′ UTR of the FMR1 gene and subsequent DNA methylation of both the expanded sequence and the CpGs of the promoter region. This epigenetic change causes transcriptional silencing of the gene. We have previously demonstrated that 5-aza-2-deoxycytidine (5-azadC) treatment of FXS lymphoblastoid cell lines reactivates the FMR1 gene, concomitant with CpG sites demethylation, increased acetylation of histones H3 and H4 and methylation of lysine 4 on histone 3. Results In order to check the specificity of the 5-azadC-induced DNA demethylation, now we performed bisulphite sequencing of the entire methylation boundary upstream the FMR1 promoter region, which is preserved in control wild-type cells. We did not observe any modification of the methylation boundary after treatment. Furthermore, methylation analysis by MS-MLPA of PWS/AS and BWS/SRS loci demonstrated that 5-azadC treatment has no demethylating effect on these regions. Genome-wide methylation analysis through Infinium 450K (Illumina) showed no significant enrichment of specific GO terms in differentially methylated regions after 5-azadC treatment. We also observed that reactivation of FMR1 transcription lasts up to a month after a 7-day treatment and that maximum levels of transcription are reached at 10–15 days after last administration of 5-azadC. Conclusions Taken together, these data demonstrate that the demethylating effect of 5-azadC on genomic DNA is not random, but rather restricted to specific regions, if not exclusively to the FMR1 promoter. Moreover, we showed that 5-azadC has a long-lasting reactivating effect on the mutant FMR1 gene. Electronic supplementary material The online version of this article (doi:10.1186/s13072-016-0060-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elisabetta Tabolacci
- Istituto di Medicina Genomica, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy
| | - Giorgia Mancano
- Istituto di Medicina Genomica, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy
| | - Stella Lanni
- Istituto di Medicina Genomica, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy
| | - Federica Palumbo
- Istituto di Medicina Genomica, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy
| | - Martina Goracci
- Istituto di Medicina Genomica, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy
| | - Fabrizio Ferrè
- Department of Biology, Centre for Molecular Bioinformatics (CBM), University of Rome Tor Vergata, Rome, Italy
| | - Manuela Helmer-Citterich
- Department of Biology, Centre for Molecular Bioinformatics (CBM), University of Rome Tor Vergata, Rome, Italy
| | - Giovanni Neri
- Istituto di Medicina Genomica, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy
| |
Collapse
|
30
|
Brasa S, Mueller A, Jacquemont S, Hahne F, Rozenberg I, Peters T, He Y, McCormack C, Gasparini F, Chibout SD, Grenet O, Moggs J, Gomez-Mancilla B, Terranova R. Reciprocal changes in DNA methylation and hydroxymethylation and a broad repressive epigenetic switch characterize FMR1 transcriptional silencing in fragile X syndrome. Clin Epigenetics 2016; 8:15. [PMID: 26855684 PMCID: PMC4743126 DOI: 10.1186/s13148-016-0181-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 01/24/2016] [Indexed: 01/22/2023] Open
Abstract
Background Fragile X syndrome (FXS) is the most common form of inherited intellectual disability, resulting from the loss of function of the fragile X mental retardation 1 (FMR1) gene. The molecular pathways associated with FMR1 epigenetic silencing are still elusive, and their characterization may enhance the discovery of novel therapeutic targets as well as the development of novel clinical biomarkers for disease status. Results We have deployed customized epigenomic profiling assays to comprehensively map the FMR1 locus chromatin landscape in peripheral mononuclear blood cells (PBMCs) from eight FXS patients and in fibroblast cell lines derived from three FXS patient. Deoxyribonucleic acid (DNA) methylation (5-methylcytosine (5mC)) and hydroxymethylation (5-hydroxymethylcytosine (5hmC)) profiling using methylated DNA immunoprecipitation (MeDIP) combined with a custom FMR1 microarray identifies novel regions of DNA (hydroxy)methylation changes within the FMR1 gene body as well as in proximal flanking regions. At the region surrounding the FMR1 transcriptional start sites, increased levels of 5mC were associated to reciprocal changes in 5hmC, representing a novel molecular feature of FXS disease. Locus-specific validation of FMR1 5mC and 5hmC changes highlighted inter-individual differences that may account for the expected DNA methylation mosaicism observed at the FMR1 locus in FXS patients. Chromatin immunoprecipitation (ChIP) profiling of FMR1 histone modifications, together with 5mC/5hmC and gene expression analyses, support a functional relationship between 5hmC levels and FMR1 transcriptional activation and reveal cell-type specific differences in FMR1 epigenetic regulation. Furthermore, whilst 5mC FMR1 levels positively correlated with FXS disease severity (clinical scores of aberrant behavior), our data reveal for the first time an inverse correlation between 5hmC FMR1 levels and FXS disease severity. Conclusions We identify novel, cell-type specific, regions of FMR1 epigenetic changes in FXS patient cells, providing new insights into the molecular mechanisms of FXS. We propose that the combined measurement of 5mC and 5hmC at selected regions of the FMR1 locus may significantly enhance FXS clinical diagnostics and patient stratification. Electronic supplementary material The online version of this article (doi:10.1186/s13148-016-0181-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sarah Brasa
- Preclinical Safety, Translational Medicine, Novartis Institutes for Biomedical Research, Novartis Pharma AG, CH-4057 Basel, Switzerland
| | - Arne Mueller
- Preclinical Safety, Translational Medicine, Novartis Institutes for Biomedical Research, Novartis Pharma AG, CH-4057 Basel, Switzerland
| | - Sébastien Jacquemont
- Service de Génétique Médicale, Centre Hospitalier Universitaire Vaudois, CH-1011 Lausanne, Switzerland
| | - Florian Hahne
- Preclinical Safety, Translational Medicine, Novartis Institutes for Biomedical Research, Novartis Pharma AG, CH-4057 Basel, Switzerland
| | - Izabela Rozenberg
- Neuroscience Translational Medicine, Novartis Institutes for Biomedical Research, Novartis Pharma AG, CH-4056 Basel, Switzerland
| | - Thomas Peters
- BioMarker Development, Novartis Institutes for Biomedical Research, Novartis Pharma AG, Cambridge, MA USA
| | - Yunsheng He
- BioMarker Development, Novartis Institutes for Biomedical Research, Novartis Pharma AG, Cambridge, MA USA
| | - Christine McCormack
- Clinical Diagnostics, Novartis Institutes for Biomedical Research, Novartis Pharma AG, Cambridge, MA USA
| | - Fabrizio Gasparini
- Neuroscience, Novartis Institutes for Biomedical Research, Novartis Pharma AG, CH-4057 Basel, Switzerland
| | - Salah-Dine Chibout
- Preclinical Safety, Translational Medicine, Novartis Institutes for Biomedical Research, Novartis Pharma AG, CH-4057 Basel, Switzerland
| | - Olivier Grenet
- Preclinical Safety, Translational Medicine, Novartis Institutes for Biomedical Research, Novartis Pharma AG, CH-4057 Basel, Switzerland
| | - Jonathan Moggs
- Preclinical Safety, Translational Medicine, Novartis Institutes for Biomedical Research, Novartis Pharma AG, CH-4057 Basel, Switzerland
| | - Baltazar Gomez-Mancilla
- Neuroscience Translational Medicine, Novartis Institutes for Biomedical Research, Novartis Pharma AG, CH-4056 Basel, Switzerland
| | - Rémi Terranova
- Preclinical Safety, Translational Medicine, Novartis Institutes for Biomedical Research, Novartis Pharma AG, CH-4057 Basel, Switzerland
| |
Collapse
|
31
|
Nageshwaran S, Festenstein R. Epigenetics and Triplet-Repeat Neurological Diseases. Front Neurol 2015; 6:262. [PMID: 26733936 PMCID: PMC4685448 DOI: 10.3389/fneur.2015.00262] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 11/30/2015] [Indexed: 01/15/2023] Open
Abstract
The term "junk DNA" has been reconsidered following the delineation of the functional significance of repetitive DNA regions. Typically associated with centromeres and telomeres, DNA repeats are found in nearly all organisms throughout their genomes. Repetitive regions are frequently heterochromatinized resulting in silencing of intrinsic and nearby genes. However, this is not a uniform rule, with several genes known to require such an environment to permit transcription. Repetitive regions frequently exist as dinucleotide, trinucleotide, and tetranucleotide repeats. The association between repetitive regions and disease was emphasized following the discovery of abnormal trinucleotide repeats underlying spinal and bulbar muscular atrophy (Kennedy's disease) and fragile X syndrome of mental retardation (FRAXA) in 1991. In this review, we provide a brief overview of epigenetic mechanisms and then focus on several diseases caused by DNA triplet-repeat expansions, which exhibit diverse epigenetic effects. It is clear that the emerging field of epigenetics is already generating novel potential therapeutic avenues for this group of largely incurable diseases.
Collapse
Affiliation(s)
- Sathiji Nageshwaran
- Division of Brain Sciences and MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus , London , UK
| | - Richard Festenstein
- Division of Brain Sciences and MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus , London , UK
| |
Collapse
|
32
|
Bhattacharyya A, Zhao X. Human pluripotent stem cell models of Fragile X syndrome. Mol Cell Neurosci 2015; 73:43-51. [PMID: 26640241 DOI: 10.1016/j.mcn.2015.11.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 11/03/2015] [Accepted: 11/25/2015] [Indexed: 01/18/2023] Open
Abstract
Fragile X syndrome (FXS) is the most common inherited cause of intellectual disability and autism. The causal mutation in FXS is a trinucleotide CGG repeat expansion in the FMR1 gene that leads to human specific epigenetic silencing and loss of Fragile X Mental Retardation Protein (FMRP) expression. Human pluripotent stem cells (PSCs), including human embryonic stem cells (ESCs) and particularly induced PSCs (iPSCs), offer a model system to reveal cellular and molecular events underlying human neuronal development and function in FXS. Human FXS PSCs have been established and have provided insight into the epigenetic silencing of the FMR1 gene as well as aspects of neuronal development.
Collapse
Affiliation(s)
- Anita Bhattacharyya
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, United States.
| | - Xinyu Zhao
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, United States.
| |
Collapse
|
33
|
Reversion of FMR1 Methylation and Silencing by Editing the Triplet Repeats in Fragile X iPSC-Derived Neurons. Cell Rep 2015; 13:234-41. [PMID: 26440889 DOI: 10.1016/j.celrep.2015.08.084] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 07/30/2015] [Accepted: 08/31/2015] [Indexed: 12/26/2022] Open
Abstract
Fragile X syndrome (FXS) is the most common form of inherited intellectual disability, resulting from a CGG repeat expansion in the fragile X mental retardation 1 (FMR1) gene. Here, we report a strategy for CGG repeat correction using CRISPR/Cas9 for targeted deletion in both embryonic stem cells and induced pluripotent stem cells derived from FXS patients. Following gene correction in FXS induced pluripotent stem cells, FMR1 expression was restored and sustained in neural precursor cells and mature neurons. Strikingly, after removal of the CGG repeats, the upstream CpG island of the FMR1 promoter showed extensive demethylation, an open chromatin state, and transcription initiation. These results suggest a silencing maintenance mechanism for the FMR1 promoter that is dependent on the existence of the CGG repeat expansion. Our strategy for deletion of trinucleotide repeats provides further insights into the molecular mechanisms of FXS and future therapies of trinucleotide repeat disorders.
Collapse
|
34
|
Defining the role of the CGGBP1 protein in FMR1 gene expression. Eur J Hum Genet 2015; 24:697-703. [PMID: 26306647 DOI: 10.1038/ejhg.2015.182] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 06/13/2015] [Accepted: 07/21/2015] [Indexed: 02/06/2023] Open
Abstract
Fragile X syndrome is the most common heritable form of intellectual disability and is caused by the expansion over 200 repeats and subsequent methylation of the CGG triplets at the 5' UTR of the FMR1 gene, leading to its silencing. The epigenetic and molecular mechanisms responsible for FMR1 gene silencing are not fully clarified. To identify structure-specific proteins that could recruit components of the silencing machinery we investigated the role of CGGBP1 in FMR1 gene transcription. CGGBP1 is a highly conserved protein that binds specifically to unmethylated CGG tracts. Its role on FMR1 transcription is yet to be defined. Sequencing analysis and expression studies through quantitative PCR of CGGBP1 were performed in cell lines with different allele expansions: wild type, premutation, methylated full mutation and unmethylated full mutation, demonstrating no differences between them. ChIP assays clearly demonstrated that CGGBP1 binds to unmethylated CGG triplets of the FMR1 gene, but not to methylated CGGs. We also observed that CGGBP1 binding to the FMR1 locus was restored after pharmacological demethylation, with 5-azadC, of alleles, carriers of methylated full mutation, suggesting a possible role for CGGBP1 in FMR1 expression. CGGBP1 silencing with shRNAs (reaching ~98% of CGGBP1-mRNA depletion) did not affect FMR1 transcription and CGG expansion stability in expanded alleles. Although the strong binding to the CGG tract could suggest a relevant role of CGGBP1 on FMR1 gene expression, our results demonstrate that CGGBP1 has no direct effect on FMR1 transcription and CGG repeat stability.
Collapse
|
35
|
Usdin K, Kumari D. Repeat-mediated epigenetic dysregulation of the FMR1 gene in the fragile X-related disorders. Front Genet 2015; 6:192. [PMID: 26089834 PMCID: PMC4452891 DOI: 10.3389/fgene.2015.00192] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 05/13/2015] [Indexed: 12/13/2022] Open
Abstract
The fragile X-related disorders are members of the Repeat Expansion Diseases, a group of genetic conditions resulting from an expansion in the size of a tandem repeat tract at a specific genetic locus. The repeat responsible for disease pathology in the fragile X-related disorders is CGG/CCG and the repeat tract is located in the 5′ UTR of the FMR1 gene, whose protein product FMRP, is important for the proper translation of dendritic mRNAs in response to synaptic activation. There are two different pathological FMR1 allele classes that are distinguished only by the number of repeats. Premutation alleles have 55–200 repeats and confer risk of fragile X-associated tremor/ataxia syndrome and fragile X-associated primary ovarian insufficiency. Full mutation alleles on the other hand have >200 repeats and result in fragile X syndrome, a disorder that affects learning and behavior. Different symptoms are seen in carriers of premutation and full mutation alleles because the repeat number has paradoxical effects on gene expression: Epigenetic changes increase transcription from premutation alleles and decrease transcription from full mutation alleles. This review will cover what is currently known about the mechanisms responsible for these changes in FMR1 expression and how they may relate to other Repeat Expansion Diseases that also show repeat-mediated changes in gene expression.
Collapse
Affiliation(s)
- Karen Usdin
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health , Bethesda, MD, USA
| | - Daman Kumari
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health , Bethesda, MD, USA
| |
Collapse
|
36
|
Yudkin DV, Lemskaya NA, Grischenko IV, Dolskiy AA. Chromatin changes caused by expansion of CGG repeats in fmr1 gene. Mol Biol 2015. [DOI: 10.1134/s0026893315010197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
37
|
Avitzour M, Mor-Shaked H, Yanovsky-Dagan S, Aharoni S, Altarescu G, Renbaum P, Eldar-Geva T, Schonberger O, Levy-Lahad E, Epsztejn-Litman S, Eiges R. FMR1 epigenetic silencing commonly occurs in undifferentiated fragile X-affected embryonic stem cells. Stem Cell Reports 2014; 3:699-706. [PMID: 25418717 PMCID: PMC4235235 DOI: 10.1016/j.stemcr.2014.09.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 08/28/2014] [Accepted: 09/01/2014] [Indexed: 12/14/2022] Open
Abstract
Fragile X syndrome (FXS) is the most common heritable form of cognitive impairment. It results from epigenetic silencing of the X-linked FMR1 gene by a CGG expansion in its 5′-untranslated region. Taking advantage of a large set of FXS-affected human embryonic stem cell (HESC) lines and isogenic subclones derived from them, we show that FMR1 hypermethylation commonly occurs in the undifferentiated state (six of nine lines, ranging from 24% to 65%). In addition, we demonstrate that hypermethylation is tightly linked with FMR1 transcriptional inactivation in undifferentiated cells, coincides with loss of H3K4me2 and gain of H3K9me3, and is unrelated to CTCF binding. Taken together, these results demonstrate that FMR1 epigenetic gene silencing takes place in FXS HESCs and clearly highlights the importance of examining multiple cell lines when investigating FXS and most likely other epigenetically regulated diseases. FMR1 epigenetic gene silencing commonly occurs in the undifferentiated FXS cells FXS HESCs are heterogeneous for repeat size and methylation levels This study underscores the importance of multiple HESC lines in disease modeling
Collapse
Affiliation(s)
- Michal Avitzour
- Stem Cell Research Laboratory, Medical Genetics Institute, Shaare Zedek Medical Center affiliated with the Hebrew University School of Medicine, Jerusalem 91031, Israel
| | - Hagar Mor-Shaked
- Stem Cell Research Laboratory, Medical Genetics Institute, Shaare Zedek Medical Center affiliated with the Hebrew University School of Medicine, Jerusalem 91031, Israel
| | - Shira Yanovsky-Dagan
- Stem Cell Research Laboratory, Medical Genetics Institute, Shaare Zedek Medical Center affiliated with the Hebrew University School of Medicine, Jerusalem 91031, Israel
| | - Shira Aharoni
- Stem Cell Research Laboratory, Medical Genetics Institute, Shaare Zedek Medical Center affiliated with the Hebrew University School of Medicine, Jerusalem 91031, Israel
| | - Gheona Altarescu
- Zohar PGD Lab, Medical Genetics Institute, Shaare Zedek Medical Center affiliated with the Hebrew University School of Medicine, Jerusalem 91031, Israel
| | - Paul Renbaum
- Zohar PGD Lab, Medical Genetics Institute, Shaare Zedek Medical Center affiliated with the Hebrew University School of Medicine, Jerusalem 91031, Israel
| | - Talia Eldar-Geva
- IVF Unit, Department of Obstetrics and Gynecology, Shaare Zedek Medical Center affiliated with the Hebrew University School of Medicine, Jerusalem 91031, Israel
| | - Oshrat Schonberger
- IVF Unit, Department of Obstetrics and Gynecology, Shaare Zedek Medical Center affiliated with the Hebrew University School of Medicine, Jerusalem 91031, Israel
| | - Ephrat Levy-Lahad
- Zohar PGD Lab, Medical Genetics Institute, Shaare Zedek Medical Center affiliated with the Hebrew University School of Medicine, Jerusalem 91031, Israel
| | - Silvina Epsztejn-Litman
- Stem Cell Research Laboratory, Medical Genetics Institute, Shaare Zedek Medical Center affiliated with the Hebrew University School of Medicine, Jerusalem 91031, Israel
| | - Rachel Eiges
- Stem Cell Research Laboratory, Medical Genetics Institute, Shaare Zedek Medical Center affiliated with the Hebrew University School of Medicine, Jerusalem 91031, Israel.
| |
Collapse
|
38
|
Pretto D, Yrigollen CM, Tang HT, Williamson J, Espinal G, Iwahashi CK, Durbin-Johnson B, Hagerman RJ, Hagerman PJ, Tassone F. Clinical and molecular implications of mosaicism in FMR1 full mutations. Front Genet 2014; 5:318. [PMID: 25278957 PMCID: PMC4166380 DOI: 10.3389/fgene.2014.00318] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 08/25/2014] [Indexed: 12/27/2022] Open
Abstract
Expansions of more than 200 CGG repeats (full mutation) in the FMR1 gene give rise to fragile X syndrome (FXS) through a process that generally involves hypermethylation of the FMR1 promoter region and gene silencing, resulting in absence of expression of the encoded protein, FMRP. However, mosaicism with alleles differing in size and extent of methylation often exist within or between tissues of individuals with FXS. In the current work, CGG-repeat lengths and methylation status were assessed for eighteen individuals with FXS, including 13 mosaics, for which peripheral blood cells (PBMCs) and primary fibroblast cells were available. Our results show that for both PBMCs and fibroblasts, FMR1 mRNA and FMRP expression are directly correlated with the percent of methylation of the FMR1 allele. In addition, Full Scale IQ scores were inversely correlated with the percent methylation and positively correlated with higher FMRP expression. These latter results point toward a positive impact on cognition for full mutation mosaics with lower methylation compared to individuals with fully methylated, full mutation alleles. However, we did not observe a significant reduction in the number of seizures, nor in the severity of hyperactivity or autism spectrum disorder, among individuals with mosaic genotypes in the presentation of FXS. These observations suggest that low, but non-zero expression of FMRP may be sufficient to positively impact cognitive function in individuals with FXS, with methylation mosaicism (lowered methylation fraction) contributing to a more positive clinical outcome.
Collapse
Affiliation(s)
- Dalyir Pretto
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California at Davis Davis, CA, USA
| | - Carolyn M Yrigollen
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California at Davis Davis, CA, USA
| | - Hiu-Tung Tang
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California at Davis Davis, CA, USA
| | - John Williamson
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California at Davis Davis, CA, USA
| | - Glenda Espinal
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California at Davis Davis, CA, USA
| | - Chris K Iwahashi
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California at Davis Davis, CA, USA
| | - Blythe Durbin-Johnson
- Department of Public Health Sciences, School of Medicine, University of California at Davis Davis, CA, USA
| | - Randi J Hagerman
- Department of Pediatrics, School of Medicine, University of California at Davis Davis, CA, USA ; MIND Institute, UC Davis Medical Center Sacramento, CA, USA
| | - Paul J Hagerman
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California at Davis Davis, CA, USA ; Department of Pediatrics, School of Medicine, University of California at Davis Davis, CA, USA
| | - Flora Tassone
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California at Davis Davis, CA, USA ; Department of Pediatrics, School of Medicine, University of California at Davis Davis, CA, USA
| |
Collapse
|
39
|
Don't miss patients with atypical FMR1 mutations: dysmorphism and clinical features in a boy with a partially methylated FMR1 full mutation. Eur J Pediatr 2014; 173:1257-61. [PMID: 25027833 DOI: 10.1007/s00431-014-2375-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 06/27/2014] [Accepted: 06/27/2014] [Indexed: 10/25/2022]
Abstract
UNLABELLED Fragile X syndrome characterized by intellectual disability (ID), facial dysmorphism, and postpubertal macroorchidism is the most common monogenic cause of ID. It is typically induced by an expansion of a CGG repeat in the fragile X mental retardation 1 (FMR1) gene on Xq27 to more than 200 repeats. Only rarely patients have atypical mutations in the FMR1 gene such as point mutations, deletions, or unmethylated/partially methylated full mutations. Most of these patients show a minor phenotype or even appear clinically healthy. Here, we report the dysmorphism and clinical features of a 17-year-old boy with a partially methylated full mutation of approximately 250 repeats. Diagnosis was made subsequently to the evaluation of a FMR1 premutation as the cause for maternal premature ovarian failure. Dysmorphic evaluation revealed no strikingly long face, no prominent forehead/frontal bossing, no prominent mandible, no macroorchidism, and a head circumference in the lower normal range. Acquisition of a driving license for mopeds and unaccompanied rides by public transport in his home province indicate rather mild ID (IQ = 58). CONCLUSION This adolescent demonstrates that apart from only minor ID, patients with a partially methylated FMR1 full mutation present less to absent pathognomonic facial dysmorphism, thus emphasizing the impact of family history for a straightforward clinical diagnosis.
Collapse
|
40
|
Kumari D, Usdin K. Polycomb group complexes are recruited to reactivated FMR1 alleles in Fragile X syndrome in response to FMR1 transcription. Hum Mol Genet 2014; 23:6575-83. [PMID: 25055869 DOI: 10.1093/hmg/ddu378] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The FMR1 gene is subject to repeat mediated-gene silencing when the CGG-repeat tract in the 5' UTR exceeds 200 repeat units. This results in Fragile X syndrome, the most common heritable cause of intellectual disability and a major cause of autism spectrum disorders. The mechanism of gene silencing is not fully understood, and efforts to reverse this gene silencing have had limited success. Here, we show that the level of trimethylation of histone H3 on lysine 27, a hallmark of the activity of EZH2, a component of repressive Polycomb Group (PcG) complexes like PRC2, is increased on reactivation of the silenced allele by either the DNA demethylating agent 5-azadeoxycytidine or the SIRT1 inhibitor splitomicin. The level of H3K27me3 increases and decreases in parallel with the FMR1 mRNA level. Furthermore, reducing the levels of the FMR1 mRNA reduces the accumulation of H3K27me3. This suggests a model for FMR1 gene silencing in which the FMR1 mRNA generated from the reactivated allele acts in cis to repress its own transcription via the recruitment of PcG complexes to the FMR1 locus.
Collapse
Affiliation(s)
- Daman Kumari
- Section on Gene Structure and Disease, Laboratory of Cell and molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Karen Usdin
- Section on Gene Structure and Disease, Laboratory of Cell and molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
41
|
Usdin K, Hayward BE, Kumari D, Lokanga RA, Sciascia N, Zhao XN. Repeat-mediated genetic and epigenetic changes at the FMR1 locus in the Fragile X-related disorders. Front Genet 2014; 5:226. [PMID: 25101111 PMCID: PMC4101883 DOI: 10.3389/fgene.2014.00226] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 06/29/2014] [Indexed: 01/01/2023] Open
Abstract
The Fragile X-related disorders are a group of genetic conditions that include the neurodegenerative disorder, Fragile X-associated tremor/ataxia syndrome (FXTAS), the fertility disorder, Fragile X-associated primary ovarian insufficiency (FXPOI) and the intellectual disability, Fragile X syndrome (FXS). The pathology in all these diseases is related to the number of CGG/CCG-repeats in the 5′ UTR of the Fragile X mental retardation 1 (FMR1) gene. The repeats are prone to continuous expansion and the increase in repeat number has paradoxical effects on gene expression increasing transcription on mid-sized alleles and decreasing it on longer ones. In some cases the repeats can simultaneously both increase FMR1 mRNA production and decrease the levels of the FMR1 gene product, Fragile X mental retardation 1 protein (FMRP). Since FXTAS and FXPOI result from the deleterious consequences of the expression of elevated levels of FMR1 mRNA and FXS is caused by an FMRP deficiency, the clinical picture is turning out to be more complex than once appreciated. Added complications result from the fact that increasing repeat numbers make the alleles somatically unstable. Thus many individuals have a complex mixture of different sized alleles in different cells. Furthermore, it has become apparent that the eponymous fragile site, once thought to be no more than a useful diagnostic criterion, may have clinical consequences for females who inherit chromosomes that express this site. This review will cover what is currently known about the mechanisms responsible for repeat instability, for the repeat-mediated epigenetic changes that affect expression of the FMR1 gene, and for chromosome fragility. It will also touch on what current and future options are for ameliorating some of these effects.
Collapse
Affiliation(s)
- Karen Usdin
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda MD, USA
| | - Bruce E Hayward
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda MD, USA
| | - Daman Kumari
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda MD, USA
| | - Rachel A Lokanga
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda MD, USA
| | - Nicholas Sciascia
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda MD, USA
| | - Xiao-Nan Zhao
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda MD, USA
| |
Collapse
|
42
|
Naumann A, Kraus C, Hoogeveen A, Ramirez CM, Doerfler W. Stable DNA methylation boundaries and expanded trinucleotide repeats: role of DNA insertions. J Mol Biol 2014; 426:2554-66. [PMID: 24816393 DOI: 10.1016/j.jmb.2014.04.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 04/28/2014] [Accepted: 04/28/2014] [Indexed: 11/15/2022]
Abstract
The human genome segment upstream of the FMR1 (fragile X mental retardation 1) gene (Xq27.3) contains several genetic signals, among them is a DNA methylation boundary that is located 65-70 CpGs upstream of the CGG repeat. In fragile X syndrome (FXS), the boundary is lost, and the promoter is inactivated by methylation spreading. Here we document boundary stability in spite of critical expansions of the CGG trinucleotide repeat in male or female premutation carriers and in high functioning males (HFMs). HFMs carry a full CGG repeat expansion but exhibit an unmethylated promoter and lack the FXS phenotype. The boundary is also stable in Turner (45, X) females. A CTCF-binding site is located slightly upstream of the methylation boundary and carries a unique G-to-A polymorphism (single nucleotide polymorphism), which occurs 3.6 times more frequently in genomes with CGG expansions. The increased frequency of this single nucleotide polymorphism might have functional significance. In CGG expansions, the CTCF region does not harbor additional mutations. In FXS individuals and often in cells transgenomic for EBV (Epstein Barr Virus) DNA or for the telomerase gene, the large number of normally methylated CpGs in the far-upstream region of the boundary is decreased about 4-fold. A methylation boundary is also present in the human genome segment upstream of the HTT (huntingtin) promoter (4p16.3) and is stable both in normal and Huntington disease chromosomes. Hence, the vicinity of an expanded repeat does not per se compromise methylation boundaries. Methylation boundaries exert an important function as promoter safeguards.
Collapse
Affiliation(s)
- Anja Naumann
- Institute for Clinical and Molecular Virology, Erlangen University Medical School, D-91054 Erlangen, Germany
| | - Cornelia Kraus
- Institute for Human Genetics, Erlangen University Medical School, D-91054 Erlangen, Germany
| | - André Hoogeveen
- Department of Clinical Genetics, Erasmus University Medical School, 3000 DR Rotterdam, The Netherlands
| | - Christina M Ramirez
- Department of Biostatistics and Statistics, University of California, Los Angeles, CA 90095, USA
| | - Walter Doerfler
- Institute for Clinical and Molecular Virology, Erlangen University Medical School, D-91054 Erlangen, Germany; Institute of Genetics, University of Cologne, D-50674 Cologne, Germany.
| |
Collapse
|
43
|
Fragile X syndrome: a preclinical review on metabotropic glutamate receptor 5 (mGluR5) antagonists and drug development. Psychopharmacology (Berl) 2014; 231:1217-26. [PMID: 24232444 DOI: 10.1007/s00213-013-3330-3] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 10/14/2013] [Indexed: 10/26/2022]
Abstract
RATIONALE Fragile X syndrome (FXS) is considered the leading inherited cause of intellectual disability and autism. In FXS, the fragile X mental retardation 1 (FMR1) gene is silenced and the fragile X mental retardation protein (FMRP) is not expressed, resulting in the characteristic features of the syndrome. Despite recent advances in understanding the pathophysiology of FXS, there is still no cure for this condition; current treatment is symptomatic. Preclinical research is essential in the development of potential therapeutic agents. OBJECTIVES This review provides an overview of the preclinical evidence supporting metabotropic glutamate receptor 5 (mGluR5) antagonists as therapeutic agents for FXS. RESULTS According to the mGluR theory of FXS, the absence of FMRP leads to enhanced glutamatergic signaling via mGluR5, which leads to increased protein synthesis and defects in synaptic plasticity including enhanced long-term depression. As such, efforts to develop agents that target the underlying pathophysiology of FXS have focused on mGluR5 modulation. Animal models, particularly the Fmr1 knockout mouse model, have become invaluable in exploring therapeutic approaches on an electrophysiological, behavioral, biochemical, and neuroanatomical level. Two direct approaches are currently being investigated for FXS treatment: reactivating the FMR1 gene and compensating for the lack of FMRP. The latter approach has yielded promising results, with mGluR5 antagonists showing efficacy in clinical trials. CONCLUSIONS Targeting mGluR5 is a valid approach for the development of therapeutic agents that target the underlying pathophysiology of FXS. Several compounds are currently in development, with encouraging results.
Collapse
|
44
|
Abstract
The fragile X syndrome (FXS), the most common cause of heritable intellectual disability, is caused by expansion of a CGG repeat located at the 5' UTR of the FMR1 gene and subsequent epigenetic modifications of its promoter. Epigenetic modifications include both methylation of the cytosines of the CpG island in the promoter region and of the expanded CGG triplet, and posttranslational histone changes. The combination of these changes, one structural (expansion) and one epigenetic (methylation and histone modifications), results in transcriptional silencing, even though the coding region of the FMR1 gene remains intact. Here we describe the molecular methods used to study both DNA methylation and histone epigenetic modifications, namely, bisulfite sequencing and quantification of immunoprecipitated DNA after Chromatin Immunoprecipitation (ChIP).
Collapse
|
45
|
Gropman AL. Epigenetics and Pervasive Developmental Disorders. EPIGENETICS IN PSYCHIATRY 2014:395-424. [DOI: 10.1016/b978-0-12-417114-5.00019-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
46
|
Sethna F, Moon C, Wang H. From FMRP function to potential therapies for fragile X syndrome. Neurochem Res 2013; 39:1016-31. [PMID: 24346713 DOI: 10.1007/s11064-013-1229-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 12/03/2013] [Accepted: 12/12/2013] [Indexed: 12/12/2022]
Abstract
Fragile X syndrome (FXS) is caused by mutations in the fragile X mental retardation 1 (FMR1) gene. Most FXS cases occur due to the expansion of the CGG trinucleotide repeats in the 5' un-translated region of FMR1, which leads to hypermethylation and in turn silences the expression of FMRP (fragile X mental retardation protein). Numerous studies have demonstrated that FMRP interacts with both coding and non-coding RNAs and represses protein synthesis at dendritic and synaptic locations. In the absence of FMRP, the basal protein translation is enhanced and not responsive to neuronal stimulation. The altered protein translation may contribute to functional abnormalities in certain aspects of synaptic plasticity and intracellular signaling triggered by Gq-coupled receptors. This review focuses on the current understanding of FMRP function and potential therapeutic strategies that are mainly based on the manipulation of FMRP targets and knowledge gained from FXS pathophysiology.
Collapse
Affiliation(s)
- Ferzin Sethna
- Genetics Program, Michigan State University, East Lansing, MI, 48824, USA
| | | | | |
Collapse
|
47
|
Evans-Galea MV, Hannan AJ, Carrodus N, Delatycki MB, Saffery R. Epigenetic modifications in trinucleotide repeat diseases. Trends Mol Med 2013; 19:655-63. [DOI: 10.1016/j.molmed.2013.07.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Revised: 07/12/2013] [Accepted: 07/22/2013] [Indexed: 12/18/2022]
|
48
|
Tabolacci E, Chiurazzi P. Epigenetics, fragile X syndrome and transcriptional therapy. Am J Med Genet A 2013; 161A:2797-808. [PMID: 24123753 DOI: 10.1002/ajmg.a.36264] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 09/06/2013] [Indexed: 12/13/2022]
Abstract
Epigenetics refers to the study of heritable changes in gene expression that occur without a change in DNA sequence. Epigenetic mechanisms therefore include all transcriptional controls that determine how genes are expressed during development and differentiation, but also in individual cells responding to environmental stimuli. The purpose of this review is to examine the basic principles of epigenetic mechanisms and their contribution to human disorders with a particular focus on fragile X syndrome (FXS), the most common monogenic form of developmental cognitive impairment. FXS represents a prototype of the so-called repeat expansion disorders due to "dynamic" mutations, namely the expansion (known as "full mutation") of a CGG repeat in the 5'UTR of the FMR1 gene. This genetic anomaly is accompanied by epigenetic modifications (mainly DNA methylation and histone deacetylation), resulting in the inactivation of the FMR1 gene. The presence of an intact FMR1 coding sequence allowed pharmacological reactivation of gene transcription, particularly through the use of the DNA demethylating agent 5'-aza-2'-deoxycytydine and/or inhibitors of histone deacetylases. These treatments suggested that DNA methylation is dominant over histone acetylation in silencing the FMR1 gene. The importance of DNA methylation in repressing FMR1 transcription is confirmed by the existence of rare unaffected males carrying unmethylated full mutations. Finally, we address the potential use of epigenetic approaches to targeted treatment of other genetic conditions.
Collapse
|
49
|
Brendel C, Mielke B, Hillebrand M, Gärtner J, Huppke P. Methotrexate treatment of FraX fibroblasts results in FMR1 transcription but not in detectable FMR1 protein levels. J Neurodev Disord 2013; 5:23. [PMID: 24020679 PMCID: PMC3846751 DOI: 10.1186/1866-1955-5-23] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 08/21/2013] [Indexed: 11/23/2022] Open
Abstract
Background Fragile X syndrome is caused by the loss of FMRP expression due to methylation of the FMR1 promoter. Treatment of fragile X syndrome patients’ lymphoblastoid cells with 5-azadeoxycytidine results in demethylation of the promoter and reactivation of the gene. The aim of the study was to analyze if methotrexate, an agent which also reduces DNA methylation but with less toxicity than 5-azadeoxycytidine, has therapeutic potential in fragile X syndrome. Methods Fibroblasts of fragile X syndrome patients were treated with methotrexate in concentrations ranging from 1 to 4 μg/ml for up to 14 days. FMR1 and FMRP expression were analyzed by quantitative PCR and western blotting. Results FMR1 mRNA was detected and levels correlated positively with methotrexate concentrations and time of treatment, but western blotting did not show detectable FMRP levels. Conclusions We show that it is possible to reactivate FMR1 transcription in fibroblasts of fragile X syndrome patients by treatment with methotrexate. However, we were not able to show FMRP expression, possibly due to the reduced translation efficacy caused by the triplet repeat extension. Unless FMR1 reactivation is more effective in vivo our results indicate that methotrexate has no role in the treatment of fragile X syndrome.
Collapse
Affiliation(s)
- Cornelia Brendel
- Department of Pediatrics and Pediatric Neurology, Georg August University, Robert-Koch-Strasse 40, 37075 Göttingen, Germany
| | - Benjamin Mielke
- Department of Anesthetics, Georg August University, Robert-Koch-Strasse 40, 37075 Göttingen, Germany
| | - Merle Hillebrand
- Department of Pediatrics and Pediatric Neurology, Georg August University, Robert-Koch-Strasse 40, 37075 Göttingen, Germany
| | - Jutta Gärtner
- Department of Pediatrics and Pediatric Neurology, Georg August University, Robert-Koch-Strasse 40, 37075 Göttingen, Germany
| | - Peter Huppke
- Department of Pediatrics and Pediatric Neurology, Georg August University, Robert-Koch-Strasse 40, 37075 Göttingen, Germany.,Department of Pediatrics and Pediatric Neurology, University Medical Center Göttingen, Georg August University, Robert-Koch-Strasse 40, 37075 Göttingen, Germany
| |
Collapse
|
50
|
Lanni S, Goracci M, Borrelli L, Mancano G, Chiurazzi P, Moscato U, Ferrè F, Helmer-Citterich M, Tabolacci E, Neri G. Role of CTCF protein in regulating FMR1 locus transcription. PLoS Genet 2013; 9:e1003601. [PMID: 23874213 PMCID: PMC3715420 DOI: 10.1371/journal.pgen.1003601] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 05/13/2013] [Indexed: 01/07/2023] Open
Abstract
Fragile X syndrome (FXS), the leading cause of inherited intellectual disability, is caused by epigenetic silencing of the FMR1 gene, through expansion and methylation of a CGG triplet repeat (methylated full mutation). An antisense transcript (FMR1-AS1), starting from both promoter and intron 2 of the FMR1 gene, was demonstrated in transcriptionally active alleles, but not in silent FXS alleles. Moreover, a DNA methylation boundary, which is lost in FXS, was recently identified upstream of the FMR1 gene. Several nuclear proteins bind to this region, like the insulator protein CTCF. Here we demonstrate for the first time that rare unmethylated full mutation (UFM) alleles present the same boundary described in wild type (WT) alleles and that CTCF binds to this region, as well as to the FMR1 gene promoter, exon 1 and intron 2 binding sites. Contrariwise, DNA methylation prevents CTCF binding to FXS alleles. Drug-induced CpGs demethylation does not restore this binding. CTCF knock-down experiments clearly established that CTCF does not act as insulator at the active FMR1 locus, despite the presence of a CGG expansion. CTCF depletion induces heterochromatinic histone configuration of the FMR1 locus and results in reduction of FMR1 transcription, which however is not accompanied by spreading of DNA methylation towards the FMR1 promoter. CTCF depletion is also associated with FMR1-AS1 mRNA reduction. Antisense RNA, like sense transcript, is upregulated in UFM and absent in FXS cells and its splicing is correlated to that of the FMR1-mRNA. We conclude that CTCF has a complex role in regulating FMR1 expression, probably through the organization of chromatin loops between sense/antisense transcriptional regulatory regions, as suggested by bioinformatics analysis.
Collapse
Affiliation(s)
- Stella Lanni
- Istituto di Genetica Medica, Università Cattolica del S. Cuore, Rome, Italy
| | - Martina Goracci
- Istituto di Genetica Medica, Università Cattolica del S. Cuore, Rome, Italy
| | - Loredana Borrelli
- Istituto di Genetica Medica, Università Cattolica del S. Cuore, Rome, Italy
| | - Giorgia Mancano
- Istituto di Genetica Medica, Università Cattolica del S. Cuore, Rome, Italy
| | - Pietro Chiurazzi
- Istituto di Genetica Medica, Università Cattolica del S. Cuore, Rome, Italy
| | - Umberto Moscato
- Istituto di Igiene, Università Cattolica del S. Cuore, Rome, Italy
| | - Fabrizio Ferrè
- Dipartimento di Biologia, Università di Roma “Tor Vergata”, Rome, Italy
| | | | | | - Giovanni Neri
- Istituto di Genetica Medica, Università Cattolica del S. Cuore, Rome, Italy
| |
Collapse
|