1
|
Freda PJ, Ghosh A, Bhandary P, Matsumoto N, Chitre AS, Zhou J, Hall MA, Palmer AA, Obafemi-Ajayi T, Moore JH. PAGER: A novel genotype encoding strategy for modeling deviations from additivity in complex trait association studies. BioData Min 2024; 17:41. [PMID: 39394173 PMCID: PMC11468469 DOI: 10.1186/s13040-024-00393-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/30/2024] [Indexed: 10/13/2024] Open
Abstract
BACKGROUND The additive model of inheritance assumes that heterozygotes (Aa) are exactly intermediate in respect to homozygotes (AA and aa). While this model is commonly used in single-locus genetic association studies, significant deviations from additivity are well-documented and contribute to phenotypic variance across many traits and systems. This assumption can introduce type I and type II errors by overestimating or underestimating the effects of variants that deviate from additivity. Alternative genotype encoding strategies have been explored to account for different inheritance patterns, but they often incur significant computational or methodological costs. To address these challenges, we introduce PAGER (Phenotype Adjusted Genotype Encoding and Ranking), an efficient pre-processing method that encodes each genetic variant based on normalized mean phenotypic differences between diallelic genotype classes (AA, Aa, and aa). This approach more accurately reflects each variant's true inheritance model, improving model precision while minimizing the costs associated with alternative encoding strategies. RESULTS Through extensive benchmarking on SNPs simulated with both binary and continuous phenotypes, we demonstrate that PAGER accurately represents various inheritance patterns (including additive, dominant, recessive, and heterosis), achieves levels of statistical power that meet or exceed other encoding strategies, and attains computation speeds up to 55 times faster than a similar method, EDGE. We also apply PAGER to publicly available real-world data and identify a novel, relevant putative QTL associated with body mass index in rats (Rattus norvegicus) that is not detected with the additive model. CONCLUSIONS Overall, we show that PAGER is an efficient genotype encoding approach that can uncover sources of missing heritability and reveal novel insights in the study of complex traits while incurring minimal costs.
Collapse
Affiliation(s)
- Philip J Freda
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, 700 N. San Vincente Blvd., Pacific Design Center, Suite G540, West Hollywood, CA, 90069, USA
| | - Attri Ghosh
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, 700 N. San Vincente Blvd., Pacific Design Center, Suite G540, West Hollywood, CA, 90069, USA
| | - Priyanka Bhandary
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, 700 N. San Vincente Blvd., Pacific Design Center, Suite G540, West Hollywood, CA, 90069, USA
| | - Nicholas Matsumoto
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, 700 N. San Vincente Blvd., Pacific Design Center, Suite G540, West Hollywood, CA, 90069, USA
| | - Apurva S Chitre
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093-0667, USA
| | - Jiayan Zhou
- Department of Medicine, Stanford University School of Medicine, 291 Campus Dr., Li Ka Shing Building, Stanford, CA, 94305, USA
| | - Molly A Hall
- Department of Genetics and Institute for Biomedical Informatics, University of Pennsylvania, 3700 Hamilton Walk, Richards Building A301, Philadelphia, PA, 19104, USA
| | - Abraham A Palmer
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093-0667, USA
- Institute for Genomic Medicine, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093-0667, USA
| | - Tayo Obafemi-Ajayi
- Cooperative Engineering Program, Missouri State University, 901 S. National Ave, Springfield, MO, 65897, USA
| | - Jason H Moore
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, 700 N. San Vincente Blvd., Pacific Design Center, Suite G540, West Hollywood, CA, 90069, USA.
| |
Collapse
|
2
|
Freda PJ, Ye S, Zhang R, Moore JH, Urbanowicz RJ. Assessing the limitations of relief-based algorithms in detecting higher-order interactions. BioData Min 2024; 17:37. [PMID: 39354639 PMCID: PMC11443793 DOI: 10.1186/s13040-024-00390-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/04/2024] [Indexed: 10/03/2024] Open
Abstract
BACKGROUND Epistasis, the interaction between genetic loci where the effect of one locus is influenced by one or more other loci, plays a crucial role in the genetic architecture of complex traits. However, as the number of loci considered increases, the investigation of epistasis becomes exponentially more complex, making the selection of key features vital for effective downstream analyses. Relief-Based Algorithms (RBAs) are often employed for this purpose due to their reputation as "interaction-sensitive" algorithms and uniquely non-exhaustive approach. However, the limitations of RBAs in detecting interactions, particularly those involving multiple loci, have not been thoroughly defined. This study seeks to address this gap by evaluating the efficiency of RBAs in detecting higher-order epistatic interactions. Motivated by previous findings that suggest some RBAs may rank predictive features involved in higher-order epistasis negatively, we explore the potential of absolute value ranking of RBA feature weights as an alternative approach for capturing complex interactions. In this study, we assess the performance of ReliefF, MultiSURF, and MultiSURFstar on simulated genetic datasets that model various patterns of genotype-phenotype associations, including 2-way to 5-way genetic interactions, and compare their performance to two control methods: a random shuffle and mutual information. RESULTS Our findings indicate that while RBAs effectively identify lower-order (2 to 3-way) interactions, their capability to detect higher-order interactions is significantly limited, primarily by large feature count but also by signal noise. Specifically, we observe that RBAs are successful in detecting fully penetrant 4-way XOR interactions using an absolute value ranking approach, but this is restricted to datasets with only 20 total features. CONCLUSIONS These results highlight the inherent limitations of current RBAs and underscore the need for the development of Relief-based approaches with enhanced detection capabilities for the investigation of epistasis, particularly in datasets with large feature counts and complex higher-order interactions.
Collapse
Affiliation(s)
- Philip J Freda
- Computational Biomedicine, Cedars-Sinai Medical Center, 700 N. San Vicente Blvd., Pacific Design Center, Suite G540, West Hollywood, 90069, CA, USA
| | - Suyu Ye
- Whiting School of Engineering, Johns Hopkins University, 3400 N. Charles St., Baltimore, 21218, MD, USA
| | - Robert Zhang
- University of Pennsylvania, Philadelphia, 19104, PA, USA
| | - Jason H Moore
- Computational Biomedicine, Cedars-Sinai Medical Center, 700 N. San Vicente Blvd., Pacific Design Center, Suite G540, West Hollywood, 90069, CA, USA
| | - Ryan J Urbanowicz
- Computational Biomedicine, Cedars-Sinai Medical Center, 700 N. San Vicente Blvd., Pacific Design Center, Suite G540, West Hollywood, 90069, CA, USA.
| |
Collapse
|
3
|
Brito VN, Canton APM, Seraphim CE, Abreu AP, Macedo DB, Mendonca BB, Kaiser UB, Argente J, Latronico AC. The Congenital and Acquired Mechanisms Implicated in the Etiology of Central Precocious Puberty. Endocr Rev 2023; 44:193-221. [PMID: 35930274 PMCID: PMC9985412 DOI: 10.1210/endrev/bnac020] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Indexed: 01/20/2023]
Abstract
The etiology of central precocious puberty (CPP) is multiple and heterogeneous, including congenital and acquired causes that can be associated with structural or functional brain alterations. All causes of CPP culminate in the premature pulsatile secretion of hypothalamic GnRH and, consequently, in the premature reactivation of hypothalamic-pituitary-gonadal axis. The activation of excitatory factors or suppression of inhibitory factors during childhood represent the 2 major mechanisms of CPP, revealing a delicate balance of these opposing neuronal pathways. Hypothalamic hamartoma (HH) is the most well-known congenital cause of CPP with central nervous system abnormalities. Several mechanisms by which hamartoma causes CPP have been proposed, including an anatomical connection to the anterior hypothalamus, autonomous neuroendocrine activity in GnRH neurons, trophic factors secreted by HH, and mechanical pressure applied to the hypothalamus. The importance of genetic and/or epigenetic factors in the underlying mechanisms of CPP has grown significantly in the last decade, as demonstrated by the evidence of genetic abnormalities in hypothalamic structural lesions (eg, hamartomas, gliomas), syndromic disorders associated with CPP (Temple, Prader-Willi, Silver-Russell, and Rett syndromes), and isolated CPP from monogenic defects (MKRN3 and DLK1 loss-of-function mutations). Genetic and epigenetic discoveries involving the etiology of CPP have had influence on the diagnosis and familial counseling providing bases for potential prevention of premature sexual development and new treatment targets in the future. Global preventive actions inducing healthy lifestyle habits and less exposure to endocrine-disrupting chemicals during the lifespan are desirable because they are potentially associated with CPP.
Collapse
Affiliation(s)
- Vinicius N Brito
- Discipline of Endocrinology & Metabolism, Department of Internal
Medicine, University of Sao Paulo Medical School, University of Sao
Paulo, Sao Paulo 01246 903, Brazil
| | - Ana P M Canton
- Discipline of Endocrinology & Metabolism, Department of Internal
Medicine, University of Sao Paulo Medical School, University of Sao
Paulo, Sao Paulo 01246 903, Brazil
| | - Carlos Eduardo Seraphim
- Discipline of Endocrinology & Metabolism, Department of Internal
Medicine, University of Sao Paulo Medical School, University of Sao
Paulo, Sao Paulo 01246 903, Brazil
| | - Ana Paula Abreu
- Division of Endocrinology, Diabetes and Hypertension, Department of
Medicine, Brigham and Women’s Hospital, Harvard Medical School,
Boston, MA 02115, USA
| | - Delanie B Macedo
- Discipline of Endocrinology & Metabolism, Department of Internal
Medicine, University of Sao Paulo Medical School, University of Sao
Paulo, Sao Paulo 01246 903, Brazil
- Division of Endocrinology, Diabetes and Hypertension, Department of
Medicine, Brigham and Women’s Hospital, Harvard Medical School,
Boston, MA 02115, USA
- Núcleo de Atenção Médica Integrada, Centro de Ciências da Saúde,
Universidade de Fortaleza, Fortaleza 60811 905,
Brazil
| | - Berenice B Mendonca
- Discipline of Endocrinology & Metabolism, Department of Internal
Medicine, University of Sao Paulo Medical School, University of Sao
Paulo, Sao Paulo 01246 903, Brazil
| | - Ursula B Kaiser
- Division of Endocrinology, Diabetes and Hypertension, Department of
Medicine, Brigham and Women’s Hospital, Harvard Medical School,
Boston, MA 02115, USA
| | - Jesús Argente
- Hospital Infantil Universitario Niño Jesús, Department of Endocrinology and
Department of Pediatrics, Universidad Autónoma de Madrid, Spanish PUBERE Registry,
CIBER of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, IMDEA
Institute, Madrid 28009, Spain
| | - Ana Claudia Latronico
- Discipline of Endocrinology & Metabolism, Department of Internal
Medicine, University of Sao Paulo Medical School, University of Sao
Paulo, Sao Paulo 01246 903, Brazil
| |
Collapse
|
4
|
Li J, Yang Z, Yu M. Association study of single nucleotide polymorphism in tryptophan hydroxylase 1 gene with adolescent idiopathic scoliosis: A meta-analysis. Medicine (Baltimore) 2021; 100:e23733. [PMID: 33545939 PMCID: PMC7837909 DOI: 10.1097/md.0000000000023733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 11/16/2020] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Adolescent idiopathic scoliosis is a common spinal deformity among children and adolescents worldwide with its etiology uncertain. Over a decade, a single nucleotide polymorphism rs10488682 in tryptophan hydroxylase 1 (TPH1) gene has been investigated in several association studies. We perform this study to summarize the current evidence of TPH1 rs10488682 polymorphisms and adolescent idiopathic scoliosis (AIS). METHODS Six databases were systematically searched: PubMed, Embase, Cochrane Library, Web of Science, Chinese Biomedical Literature, and Wanfang database. Eligible case-control studies related to TPH1 and AIS were selected. Reference lists of them were reviewed for more available studies. Two authors independently screened and evaluated the literature and extracted data. The odds ratios and 95% confidence intervals were derived in association tests. Subgroup analysis was conducted by ethnicity. Sensitivity analysis was performed to examine the stability of the overall results. RESULTS A total of 1006 cases and 1557 controls in 3 independent studies were included for meta-analysis. Statistical significance was discovered in heterozygote model (AT vs AA: OR = 1.741, 95%Cl = 1.100-2.753, P = .018 < .05, I2 = 0%), recessive model (AA vs AT + TT: OR = 0.640, 95%Cl = 0.414-0.990, P = .045 < .05, I2 = 0%) and over-dominant model (AT vs AA + TT: OR = 1.366, 95%Cl = 1.115-1.673, P = .003 < .05, I2 = 84.7%) in overall populations. Similar associations were also found in the Caucasian population. No significant associations were found in other genotypic comparisons and allelic comparisons. CONCLUSIONS Statistically significant correlations were discovered between the TPH1 rs10488682 polymorphisms and AIS. Heterozygous AT genotype seems to be risky with an over-dominant effect. Ethnicity appears to modify the disease association. REGISTRATION Not applicable.
Collapse
Affiliation(s)
- Junyu Li
- Orthopedic Department, Peking University Third Hospital, 49 North Garden Road
| | - Zexi Yang
- School of Clinical Medicine, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Miao Yu
- Orthopedic Department, Peking University Third Hospital, 49 North Garden Road
| |
Collapse
|
5
|
Kim DW, Yao Z, Graybuck LT, Kim TK, Nguyen TN, Smith KA, Fong O, Yi L, Koulena N, Pierson N, Shah S, Lo L, Pool AH, Oka Y, Pachter L, Cai L, Tasic B, Zeng H, Anderson DJ. Multimodal Analysis of Cell Types in a Hypothalamic Node Controlling Social Behavior. Cell 2020; 179:713-728.e17. [PMID: 31626771 DOI: 10.1016/j.cell.2019.09.020] [Citation(s) in RCA: 157] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 07/28/2019] [Accepted: 09/20/2019] [Indexed: 01/08/2023]
Abstract
The ventrolateral subdivision of the ventromedial hypothalamus (VMHvl) contains ∼4,000 neurons that project to multiple targets and control innate social behaviors including aggression and mounting. However, the number of cell types in VMHvl and their relationship to connectivity and behavioral function are unknown. We performed single-cell RNA sequencing using two independent platforms-SMART-seq (∼4,500 neurons) and 10x (∼78,000 neurons)-and investigated correspondence between transcriptomic identity and axonal projections or behavioral activation, respectively. Canonical correlation analysis (CCA) identified 17 transcriptomic types (T-types), including several sexually dimorphic clusters, the majority of which were validated by seqFISH. Immediate early gene analysis identified T-types exhibiting preferential responses to intruder males versus females but only rare examples of behavior-specific activation. Unexpectedly, many VMHvl T-types comprise a mixed population of neurons with different projection target preferences. Overall our analysis revealed that, surprisingly, few VMHvl T-types exhibit a clear correspondence with behavior-specific activation and connectivity.
Collapse
Affiliation(s)
- Dong-Wook Kim
- Program in Computation and Neural Systems, California Institute of Technology, Pasadena, CA, USA; Division of Biology and Biological Engineering 156-29, California Institute of Technology, Pasadena, CA, USA; Tianqiao and Chrissy Chen Institute for Neuroscience, California Institute of Technology, Pasadena, CA 91125, USA
| | - Zizhen Yao
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | - Tae Kyung Kim
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | | | - Olivia Fong
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Lynn Yi
- Division of Biology and Biological Engineering 156-29, California Institute of Technology, Pasadena, CA, USA
| | - Noushin Koulena
- Division of Biology and Biological Engineering 156-29, California Institute of Technology, Pasadena, CA, USA
| | - Nico Pierson
- Division of Biology and Biological Engineering 156-29, California Institute of Technology, Pasadena, CA, USA
| | - Sheel Shah
- Division of Biology and Biological Engineering 156-29, California Institute of Technology, Pasadena, CA, USA
| | - Liching Lo
- Division of Biology and Biological Engineering 156-29, California Institute of Technology, Pasadena, CA, USA; Howard Hughes Medical Institute; Tianqiao and Chrissy Chen Institute for Neuroscience, California Institute of Technology, Pasadena, CA 91125, USA
| | - Allan-Hermann Pool
- Division of Biology and Biological Engineering 156-29, California Institute of Technology, Pasadena, CA, USA
| | - Yuki Oka
- Division of Biology and Biological Engineering 156-29, California Institute of Technology, Pasadena, CA, USA
| | - Lior Pachter
- Division of Biology and Biological Engineering 156-29, California Institute of Technology, Pasadena, CA, USA
| | - Long Cai
- Division of Biology and Biological Engineering 156-29, California Institute of Technology, Pasadena, CA, USA
| | - Bosiljka Tasic
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - David J Anderson
- Division of Biology and Biological Engineering 156-29, California Institute of Technology, Pasadena, CA, USA; Howard Hughes Medical Institute; Tianqiao and Chrissy Chen Institute for Neuroscience, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
6
|
Granot-Hershkovitz E, Wu P, Karasik D, Peter I, Peloso GM, Levy D, Vasan RS, Adrienne Cupples L, Liu CT, Meigs JB, Siscovick DS, Dupuis J, Friedlander Y, Hochner H. Searching for parent-of-origin effects on cardiometabolic traits in imprinted genomic regions. Eur J Hum Genet 2020; 28:646-655. [PMID: 31896779 PMCID: PMC7170899 DOI: 10.1038/s41431-019-0568-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 12/12/2019] [Accepted: 12/17/2019] [Indexed: 11/08/2022] Open
Abstract
Cardiometabolic traits pose a major global public health burden. Large-scale genome-wide association studies (GWAS) have identified multiple loci accounting for up to 30% of the genetic variance in complex traits such as cardiometabolic traits. However, the contribution of parent-of-origin effects (POEs) to complex traits has been largely ignored in GWAS. Family-based studies enable the assessment of POEs in genetic association analyses. We investigated POEs on a range of complex traits in 3 family-based studies. The discovery phase was carried out in large pedigrees from the Kibbutzim Family Study (n = 901 individuals) and in 872 parent-offspring trios from the Jerusalem Perinatal Study. Focusing on imprinted genomic regions, we examined parent-specific associations with 12 complex traits (i.e., body-size, blood pressure, lipids), mostly cardiometabolic risk traits. Forty five of the 11,967 SNPs initially found to have POE were evaluated for replication (p value < 1 × 10-4) in Framingham Heart Study families (max n = 8000 individuals). Three common variants yielded evidence of POE in the meta-analysis. Two variants, located on chr6 in the HLA region, showed a paternal effect on height (rs1042136: βpaternal = -0.023, p value = 1.5 × 10-8 and rs1431403: βpaternal = -0.011, p value = 5.4 × 10-6). The corresponding maternally-derived effects were statistically nonsignificant. The variant rs9332053, located on chr13 in RCBTB2 gene, demonstrated a maternal effect on hip circumference (βmaternal = -4.24, p value = 9.6 × 10-6; βpaternal = 1.29, p value = 0.23). These findings provide evidence for the utility of incorporating POEs into association studies of cardiometabolic traits, especially anthropometric traits. The study highlights the benefits of using family-based data for deciphering the genetic architecture of complex traits.
Collapse
Affiliation(s)
| | - Peitao Wu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, 02118, USA
| | - David Karasik
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Inga Peter
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gina M Peloso
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, 02118, USA
| | - Daniel Levy
- Boston University's and National Heart, Lung, and Blood Institute's Framingham Heart Study, Framingham, MA, 01702, USA
- The Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Ramachandran S Vasan
- Boston University's and National Heart, Lung, and Blood Institute's Framingham Heart Study, Framingham, MA, 01702, USA
- Sections of Preventive medicine and Epidemiology, and cardiovascular medicine, Departments of Medicine and Epidemiology, Boston University Schools of Medicine and Public health, Boston, MA, 02118, USA
| | - L Adrienne Cupples
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, 02118, USA
- Boston University's and National Heart, Lung, and Blood Institute's Framingham Heart Study, Framingham, MA, 01702, USA
| | - Ching-Ti Liu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, 02118, USA
| | - James B Meigs
- Programs in Metabolism and Medical & Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of General Internal Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - David S Siscovick
- Institute for Urban Health, New York Academy of Medicine, New York, NY, USA
| | - Josée Dupuis
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, 02118, USA
- Boston University's and National Heart, Lung, and Blood Institute's Framingham Heart Study, Framingham, MA, 01702, USA
| | - Yechiel Friedlander
- Braun School of Public Health, The Hebrew University of Jerusalem, 99112102, Jerusalem, Israel
| | - Hagit Hochner
- Braun School of Public Health, The Hebrew University of Jerusalem, 99112102, Jerusalem, Israel.
| |
Collapse
|
7
|
Tam V, Patel N, Turcotte M, Bossé Y, Paré G, Meyre D. Benefits and limitations of genome-wide association studies. Nat Rev Genet 2019; 20:467-484. [PMID: 31068683 DOI: 10.1038/s41576-019-0127-1] [Citation(s) in RCA: 983] [Impact Index Per Article: 196.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Genome-wide association studies (GWAS) involve testing genetic variants across the genomes of many individuals to identify genotype-phenotype associations. GWAS have revolutionized the field of complex disease genetics over the past decade, providing numerous compelling associations for human complex traits and diseases. Despite clear successes in identifying novel disease susceptibility genes and biological pathways and in translating these findings into clinical care, GWAS have not been without controversy. Prominent criticisms include concerns that GWAS will eventually implicate the entire genome in disease predisposition and that most association signals reflect variants and genes with no direct biological relevance to disease. In this Review, we comprehensively assess the benefits and limitations of GWAS in human populations and discuss the relevance of performing more GWAS.
Collapse
Affiliation(s)
- Vivian Tam
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
| | - Nikunj Patel
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
| | - Michelle Turcotte
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
| | - Yohan Bossé
- Institut Universitaire de Cardiologie et de Pneumologie de Québec-Université Laval, Québec City, Québec, Canada.,Department of Molecular Medicine, Laval University, Québec City, Quebec, Canada
| | - Guillaume Paré
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - David Meyre
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada. .,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada. .,Inserm UMRS 954 N-GERE (Nutrition-Genetics-Environmental Risks), University of Lorraine, Faculty of Medicine, Nancy, France.
| |
Collapse
|
8
|
Tam V, Turcotte M, Meyre D. Established and emerging strategies to crack the genetic code of obesity. Obes Rev 2019; 20:212-240. [PMID: 30353704 DOI: 10.1111/obr.12770] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/27/2018] [Accepted: 08/28/2018] [Indexed: 12/11/2022]
Abstract
Tremendous progress has been made in the genetic elucidation of obesity over the past two decades, driven largely by technological, methodological and organizational innovations. Current strategies for identifying obesity-predisposing loci/genes, including cytogenetics, linkage analysis, homozygosity mapping, admixture mapping, candidate gene studies, genome-wide association studies, custom genotyping arrays, whole-exome sequencing and targeted exome sequencing, have achieved differing levels of success, and the identified loci in aggregate explain only a modest fraction of the estimated heritability of obesity. This review outlines the successes and limitations of these approaches and proposes novel strategies, including the use of exceptionally large sample sizes, the study of diverse ethnic groups and deep phenotypes and the application of innovative methods and study designs, to identify the remaining obesity-predisposing genes. The use of both established and emerging strategies has the potential to crack the genetic code of obesity in the not-too-distant future. The resulting knowledge is likely to yield improvements in obesity prediction, prevention and care.
Collapse
Affiliation(s)
- V Tam
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada
| | - M Turcotte
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada
| | - D Meyre
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
9
|
Genetic contribution to waist-to-hip ratio in Mexican children and adolescents based on 12 loci validated in European adults. Int J Obes (Lond) 2018; 43:13-22. [PMID: 29777226 DOI: 10.1038/s41366-018-0055-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 01/10/2018] [Accepted: 02/09/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND/OBJECTIVES The prevalence of abdominal obesity in Mexican children has risen dramatically in the past decade. Genome-wide association studies (GWAS) for waist-to-hip ratio (WHR) performed predominantly in European descent adult populations have identified multiple single-nucleotide polymorphisms (SNPs) with larger effects in women. The contribution of these SNPs to WHR in non-European children is unknown. SUBJECTS/METHODS Mexican children and adolescents (N = 1421, 5-17 years) were recruited in Mexico City. Twelve GWAS SNPs were genotyped using TaqMan Open Array and analyzed individually and as a gene score (GS). RESULTS Mexican boys and girls displayed 2.81 ± 0.29 and 3.10 ± 0.31 WHR standard deviations higher than children and adolescents from the United States. WHR was positively associated with TG (β = 0.733 ± 0.190, P = 1.1 × 10-4) and LDL-C (β = 0.491 ± 0.203, P = 1.6 × 10-2), and negatively associated with HDL-C (β = -0.652 ± 0.195, P = 8.0 × 10-4), independently of body mass index. The effect allele frequency (EAF) of 8 of 12 (67%) SNPs differed significantly (P < 4.17 × 10-3) in Mexican children and European adults, with no evidence of effect allele enrichment in both populations (4 depleted and 4 enriched; binomial test, P = 1). Ten out of 12 SNPs (83.3%) had effects that were directionally consistent with those reported in GWAS (P = 0.04). HOXC13 rs1443512 displayed the best fit when modeled recessively, and was significantly associated with WHR under a recessive mode of inheritance (β = 0.140 ± 0.06, P = 2.3 × 10-2). Significant interactions with sex were also observed for HOXC13 rs1443512 and the GS on WHR (P = 2.2 × 10-2 and 1.2 × 10-2, respectively). HOXC13 rs1443512 (β = 0.022 ± 0.012, P = 4.7 × 10-2) and the GS (β = 0.007 ± 0.003, P = 7.0 × 10-3) were significantly associated with WHR in girls only. CONCLUSIONS This study demonstrates that Mexican children are at high risk for abdominal obesity and detrimental lipid profiles. Our data support a partial transferability of sex-specific European GWAS WHR association signals in children and adolescents from the admixed Mexican population.
Collapse
|
10
|
Liu HY, Alyass A, Abadi A, Peralta-Romero J, Suarez F, Gomez-Zamudio J, Audirac A, Parra EJ, Cruz M, Meyre D. Fine-mapping of 98 obesity loci in Mexican children. Int J Obes (Lond) 2018; 43:23-32. [PMID: 29769702 DOI: 10.1038/s41366-018-0056-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 12/29/2017] [Accepted: 01/31/2018] [Indexed: 11/09/2022]
Abstract
BACKGROUND/OBJECTIVES Mexico has one of the highest prevalence of childhood obesity in the world. Genome-wide association studies (GWAS) for obesity have identified multiple single-nucleotide polymorphisms (SNPs) in populations of European, East Asian, and African descent. The contribution of these loci to obesity in Mexican children is unclear. We assessed the transferability of 98 obesity loci in Mexican children and fine-mapped the association signals. SUBJECTS/METHODS The study included 405 and 390 Mexican children with normal weight and obesity. Participants were genotyped with a genome-wide dense SNP array designed for Latino populations, allowing for the analysis of GWAS index SNPs as well as fine-mapping SNPs, totaling 750 SNPs covering 98 loci. Two genetic risk scores (GRS) were constructed: a "discovery GRS" and a "best-associated GRS", representing the number of effect alleles at the GWAS index SNPs and at the best-associated SNPs after fine-mapping for each subject. RESULTS Seventeen obesity loci were significantly associated with obesity, and five had fine-mapping SNPs significantly better associated with obesity than their corresponding GWAS index SNPs in Mexican children. Six obesity-associated SNPs significantly departed from additive to dominant (N = 5) or recessive (N = 1) models, and a significant interaction was found between rs274609 (TNNI3K) and rs1010553 (ITIH4) on childhood obesity risk. The best-associated GRS was significantly more associated with childhood obesity (OR = 1.21 per additional risk allele [95%CI:1.17-1.25], P = 4.8 × 10-25) than the discovery GRS (OR = 1.05 per additional risk allele [95%CI:1.02-1.08], P = 8.0 × 10-4), and was also associated with waist-to-hip ratio, fasting glucose, fasting insulin and triglyceride levels, the association being mediated by obesity. An overall depletion of obesity risk alleles was observed in Mexican children with normal weight when compared to GWAS discovery populations. CONCLUSIONS Our study indicates a partial transferability of GWAS obesity loci in Mexican children, and supports the pertinence of post-GWAS fine-mapping experiments in the admixed Mexican population.
Collapse
Affiliation(s)
- Hsin Yen Liu
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada
| | - Akram Alyass
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada
| | - Arkan Abadi
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada
| | - Jesus Peralta-Romero
- Medical Research Unit in Biochemistry, Hospital de Especialidades, Centro Médico Nacional Siglo XXI del Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Fernando Suarez
- Medical Research Unit in Biochemistry, Hospital de Especialidades, Centro Médico Nacional Siglo XXI del Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Jaime Gomez-Zamudio
- Medical Research Unit in Biochemistry, Hospital de Especialidades, Centro Médico Nacional Siglo XXI del Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Astride Audirac
- Medical Research Unit in Biochemistry, Hospital de Especialidades, Centro Médico Nacional Siglo XXI del Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Esteban J Parra
- Department of Anthropology, University of Toronto at Mississauga, Mississauga, ON, Canada
| | - Miguel Cruz
- Medical Research Unit in Biochemistry, Hospital de Especialidades, Centro Médico Nacional Siglo XXI del Instituto Mexicano del Seguro Social, Mexico City, Mexico.
| | - David Meyre
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada. .,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
11
|
Li A, Robiou-du-Pont S, Anand SS, Morrison KM, McDonald SD, Atkinson SA, Teo KK, Meyre D. Parental and child genetic contributions to obesity traits in early life based on 83 loci validated in adults: the FAMILY study. Pediatr Obes 2018; 13:133-140. [PMID: 28008729 DOI: 10.1111/ijpo.12205] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 11/16/2016] [Accepted: 11/18/2016] [Indexed: 11/29/2022]
Abstract
BACKGROUND The genetic influence on child obesity has not been fully elucidated. OBJECTIVE This study investigated the parental and child contributions of 83 adult body mass index (BMI)-associated single-nucleotide polymorphisms (SNPs) to obesity-related traits in children from birth to 5 years old. METHODS A total of 1402 individuals were genotyped for 83 SNPs. An unweighted genetic risk score (GRS) was generated by the sum of BMI-increasing alleles. Repeated weight and length/height were measured at birth, 1, 2, 3 and 5 years of age, and age-specific and sex-specific weight and BMI Z-scores were computed. RESULTS The GRS was significantly associated with birthweight Z-score (P = 0.03). It was also associated with weight/BMI Z-score gain between birth and 5 years old (P = 0.02 and 6.77 × 10-3 , respectively). In longitudinal analyses, the GRS was associated with weight and BMI Z-score from birth to 5 years (P = 5.91 × 10-3 and 5.08 × 10-3 , respectively). The maternal effects of rs3736485 in DMXL2 on weight and BMI variation from birth to 5 years were significantly greater compared with the paternal effects by Z test (P = 1.53 × 10-6 and 3.75 × 10-5 , respectively). CONCLUSIONS SNPs contributing to adult BMI exert their effect at birth and in early childhood. Parent-of-origin effects may occur in a limited subset of obesity predisposing SNPs.
Collapse
Affiliation(s)
- A Li
- Department of Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, Ontario, Canada
| | - S Robiou-du-Pont
- Department of Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, Ontario, Canada
| | - S S Anand
- Department of Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, Ontario, Canada.,Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - K M Morrison
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada.,Department of Pediatrics, Hamilton Health Sciences and McMaster University, Hamilton, Ontario, Canada
| | - S D McDonald
- Department of Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, Ontario, Canada.,Department of Obstetrics and Gynecology, McMaster University, Hamilton, Ontario, Canada
| | - S A Atkinson
- Department of Pediatrics, Hamilton Health Sciences and McMaster University, Hamilton, Ontario, Canada
| | - K K Teo
- Department of Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, Ontario, Canada.,Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - D Meyre
- Department of Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, Ontario, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
12
|
Qasim A, Turcotte M, de Souza RJ, Samaan MC, Champredon D, Dushoff J, Speakman JR, Meyre D. On the origin of obesity: identifying the biological, environmental and cultural drivers of genetic risk among human populations. Obes Rev 2018; 19:121-149. [PMID: 29144594 DOI: 10.1111/obr.12625] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/28/2017] [Accepted: 09/08/2017] [Indexed: 12/12/2022]
Abstract
Genetic predisposition to obesity presents a paradox: how do genetic variants with a detrimental impact on human health persist through evolutionary time? Numerous hypotheses, such as the thrifty genotype hypothesis, attempt to explain this phenomenon yet fail to provide a justification for the modern obesity epidemic. In this critical review, we appraise existing theories explaining the evolutionary origins of obesity and explore novel biological and sociocultural agents of evolutionary change to help explain the modern-day distribution of obesity-predisposing variants. Genetic drift, acting as a form of 'blind justice,' may randomly affect allele frequencies across generations while gene pleiotropy and adaptations to diverse environments may explain the rise and subsequent selection of obesity risk alleles. As an adaptive response, epigenetic regulation of gene expression may impact the manifestation of genetic predisposition to obesity. Finally, exposure to malnutrition and disease epidemics in the wake of oppressive social systems, culturally mediated notions of attractiveness and desirability, and diverse mating systems may play a role in shaping the human genome. As an important first step towards the identification of important drivers of obesity gene evolution, this review may inform empirical research focused on testing evolutionary theories by way of population genetics and mathematical modelling.
Collapse
Affiliation(s)
- A Qasim
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada
| | - M Turcotte
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada
| | - R J de Souza
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada
| | - M C Samaan
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada.,Department of Pediatrics, McMaster University, Hamilton, ON, Canada.,Division of Pediatric Endocrinology, McMaster Children's Hospital, Hamilton, ON, Canada
| | - D Champredon
- Department of Biology, McMaster University, Hamilton, ON, Canada.,Agent-Based Modelling Laboratory, York University, Toronto, ON, Canada
| | - J Dushoff
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | - J R Speakman
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, UK.,State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - D Meyre
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
13
|
Yu X, Chen G, Feng R. An efficient study design to test parent-of-origin effects in family trios. Genet Epidemiol 2017; 41:587-598. [PMID: 28726280 DOI: 10.1002/gepi.22060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 05/05/2017] [Accepted: 05/17/2017] [Indexed: 11/06/2022]
Abstract
Increasing evidence has shown that genes may cause prenatal, neonatal, and pediatric diseases depending on their parental origins. Statistical models that incorporate parent-of-origin effects (POEs) can improve the power of detecting disease-associated genes and help explain the missing heritability of diseases. In many studies, children have been sequenced for genome-wide association testing. But it may become unaffordable to sequence their parents and evaluate POEs. Motivated by the reality, we proposed a budget-friendly study design of sequencing children and only genotyping their parents through single nucleotide polymorphism array. We developed a powerful likelihood-based method, which takes into account both sequence reads and linkage disequilibrium to infer the parental origins of children's alleles and estimate their POEs on the outcome. We evaluated the performance of our proposed method and compared it with an existing method using only genotypes, through extensive simulations. Our method showed higher power than the genotype-based method. When either the mean read depth or the pair-end length was reasonably large, our method achieved ideal power. When single parents' genotypes were unavailable or parental genotypes at the testing locus were not typed, both methods lost power compared with when complete data were available; but the power loss from our method was smaller than the genotype-based method. We also extended our method to accommodate mixed genotype, low-, and high-coverage sequence data from children and their parents. At presence of sequence errors, low-coverage parental sequence data may lead to lower power than parental genotype data.
Collapse
Affiliation(s)
- Xiaobo Yu
- Department of Biostatistics and Epidemiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America.,Department of Neurosurgery, School of Medicine, The Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Gao Chen
- Department of Neurosurgery, School of Medicine, The Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Rui Feng
- Department of Biostatistics and Epidemiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
14
|
Spradley FT, Palei AC, Granger JP. Increased risk for the development of preeclampsia in obese pregnancies: weighing in on the mechanisms. Am J Physiol Regul Integr Comp Physiol 2015; 309:R1326-43. [PMID: 26447211 DOI: 10.1152/ajpregu.00178.2015] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 09/28/2015] [Indexed: 11/22/2022]
Abstract
Preeclampsia (PE) is a pregnancy-specific disorder typically presenting as new-onset hypertension and proteinuria. While numerous epidemiological studies have demonstrated that obesity increases the risk of PE, the mechanisms have yet to be fully elucidated. Growing evidence from animal and human studies implicate placental ischemia in the etiology of this maternal syndrome. It is thought that placental ischemia is brought about by dysfunctional cytotrophoblast migration and invasion into the uterus and subsequent lack of spiral arteriole widening and placental perfusion. Placental ischemia/hypoxia stimulates the release of soluble placental factors into the maternal circulation where they cause endothelial dysfunction, particularly in the kidney, to elicit the clinical manifestations of PE. The most recognized of these factors are the anti-angiogenic sFlt-1 and pro-inflammatory TNF-α and AT1-AA, which promote endothelial dysfunction by reducing levels of the provasodilator nitric oxide and stimulating production of the potent vasoconstrictor endothelin-1 and reactive oxygen species. We hypothesize that obesity-related metabolic factors increase the risk for developing PE by impacting various stages in the pathogenesis of PE, namely, 1) cytotrophoblast migration and placental ischemia; 2) release of soluble placental factors into the maternal circulation; and 3) maternal endothelial and vascular dysfunction. This review will summarize the current experimental evidence supporting the concept that obesity and metabolic factors like lipids, insulin, glucose, and leptin affect placental function and increase the risk for developing hypertension in pregnancy by reducing placental perfusion; enhancing placental release of soluble factors; and by increasing the sensitivity of the maternal vasculature to placental ischemia-induced soluble factors.
Collapse
Affiliation(s)
- Frank T Spradley
- Department of Physiology and Biophysics, Cardiovascular-Renal Research Center, Women's Health Research Center, The University of Mississippi Medical Center, Jackson, Mississippi
| | - Ana C Palei
- Department of Physiology and Biophysics, Cardiovascular-Renal Research Center, Women's Health Research Center, The University of Mississippi Medical Center, Jackson, Mississippi
| | - Joey P Granger
- Department of Physiology and Biophysics, Cardiovascular-Renal Research Center, Women's Health Research Center, The University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
15
|
Novel approach identifies SNPs in SLC2A10 and KCNK9 with evidence for parent-of-origin effect on body mass index. PLoS Genet 2014; 10:e1004508. [PMID: 25078964 PMCID: PMC4117451 DOI: 10.1371/journal.pgen.1004508] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 05/14/2014] [Indexed: 01/12/2023] Open
Abstract
The phenotypic effect of some single nucleotide polymorphisms (SNPs) depends on their parental origin. We present a novel approach to detect parent-of-origin effects (POEs) in genome-wide genotype data of unrelated individuals. The method exploits increased phenotypic variance in the heterozygous genotype group relative to the homozygous groups. We applied the method to >56,000 unrelated individuals to search for POEs influencing body mass index (BMI). Six lead SNPs were carried forward for replication in five family-based studies (of ∼4,000 trios). Two SNPs replicated: the paternal rs2471083-C allele (located near the imprinted KCNK9 gene) and the paternal rs3091869-T allele (located near the SLC2A10 gene) increased BMI equally (beta = 0.11 (SD), P<0.0027) compared to the respective maternal alleles. Real-time PCR experiments of lymphoblastoid cell lines from the CEPH families showed that expression of both genes was dependent on parental origin of the SNPs alleles (P<0.01). Our scheme opens new opportunities to exploit GWAS data of unrelated individuals to identify POEs and demonstrates that they play an important role in adult obesity.
Collapse
|
16
|
Li A, Meyre D. Jumping on the Train of Personalized Medicine: A Primer for Non-Geneticist Clinicians: Part 2. Fundamental Concepts in Genetic Epidemiology. ACTA ACUST UNITED AC 2014; 10:101-117. [PMID: 25598767 PMCID: PMC4287874 DOI: 10.2174/1573400510666140319235334] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 02/07/2014] [Accepted: 04/18/2014] [Indexed: 12/12/2022]
Abstract
With the decrease in sequencing costs, personalized genome sequencing will eventually become common in medical practice. We therefore write this series of three reviews to help non-geneticist clinicians to jump into the fast-moving field of personalized medicine. In the first article of this series, we reviewed the fundamental concepts in molecular genetics. In this second article, we cover the key concepts and methods in genetic epidemiology including the classification of genetic disorders, study designs and their implementation, genetic marker selection, genotyping and sequencing technologies, gene identification strategies, data analyses and data interpretation. This review will help the reader critically appraise a genetic association study. In the next article, we will discuss the clinical applications of genetic epidemiology in the personalized medicine area.
Collapse
Affiliation(s)
- Aihua Li
- Department of Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - David Meyre
- Department of Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, ON L8N 3Z5, Canada
| |
Collapse
|
17
|
Magee DA, Spillane C, Berkowicz EW, Sikora KM, MacHugh DE. Imprinted loci in domestic livestock species as epigenomic targets for artificial selection of complex traits. Anim Genet 2014; 45 Suppl 1:25-39. [PMID: 24990393 DOI: 10.1111/age.12168] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2014] [Indexed: 12/30/2022]
Abstract
The phenomenon of genomic imprinting, whereby a subset of mammalian genes display parent-of-origin-specific monoallelic expression, is one of the most active areas of epigenetics research. Over the past two decades, more than 100 imprinted mammalian genes have been identified, while considerable advances have been made in elucidating the molecular mechanisms governing imprinting. These studies have helped to unravel the epigenome--a separate layer of regulatory information contained in eukaryotic chromosomes that influences gene expression and phenotypes without involving changes to the underlying DNA sequence. Although most studies of genomic imprinting in mammals have focussed on mouse models or human biomedical disorders, there is burgeoning interest in the phenotypic effects of imprinted genes in domestic livestock species. In particular, research has focused on imprinted genes influencing foetal growth and development, which are associated with economically important production traits in cattle, sheep and pigs. These findings, when coupled with the data emerging from the various different livestock genome projects, have major implications for the future of animal breeding, health and management. Here, we review current scientific knowledge regarding genomic imprinting in livestock species and evaluate how this information can be used in modern livestock improvement programmes.
Collapse
Affiliation(s)
- D A Magee
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, 4, Ireland
| | | | | | | | | |
Collapse
|
18
|
Persson-Augner D, Lee YW, Tovar S, Dieguez C, Meister B. Delta-like 1 homologue (DLK1) protein in neurons of the arcuate nucleus that control weight homeostasis and effect of fasting on hypothalamic DLK1 mRNA. Neuroendocrinology 2014; 100:209-20. [PMID: 25342302 DOI: 10.1159/000369069] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 10/14/2014] [Indexed: 11/19/2022]
Abstract
Delta-like 1 homologue (DLK1; also called preadipocyte factor 1) is an epidermal growth factor repeat-containing transmembrane protein that is cleaved by tumor necrosis factor-α-converting enzyme to generate a biologically active soluble form. DLK1 is involved in the differentiation of several cell types, including adipocytes. Lack of the dlk1 gene results in adiposity, and polymorphism within the gene encoding DLK1 is associated with human obesity. The dlk1 gene is expressed in restricted areas of the adult brain, with an enrichment of cell bodies expressing DLK1 mRNA in the hypothalamus. Antibodies to DLK1 were used to study the cellular localization and chemical identity of DLK1-immunoreactive neuronal cell bodies in rat hypothalamus. DLK1 immunoreactivity was demonstrated in the cell soma and dendrites of cell bodies in the suprachiasmatic, supraoptic, paraventricular, dorsomedial, arcuate nuclei and in the perifornical/lateral hypothalamic area. In the arcuate nucleus (Arc), DLK1 immunoreactivity was mainly seen in many neurons of the ventromedial and to a lesser extent in its ventrolateral division. Double labeling showed that 93.7% of orexigenic agouti-related peptide (AgRP) and 94.1% of neuropeptide Y (NPY) neurons located in the ventromedial part of the Arc were DLK1 positive, whereas 36.1% of anorexigenic pro-opiomelanocortin and 34.6% of cocaine- and amphetamine-regulated transcript neurons of the Arc contained DLK1 immunoreactivity. DLK1 mRNA was downregulated in the hypothalamus of fasted animals. Presence of DLK1 in the majority of orexigenic Arc NPY/AgRP neurons and regulation of DLK1 mRNA by nutritional challenge suggest that DLK1 has a role in hypothalamic regulation of body weight control. © 2014 S. Karger AG, Basel.
Collapse
|
19
|
Abstract
During critical periods of development early in life, excessive or scarce nutritional environments can disrupt the development of central feeding and metabolic neural circuitry, leading to obesity and metabolic disorders in adulthood. A better understanding of the genetic networks that control the development of feeding and metabolic neural circuits, along with knowledge of how and where dietary signals disrupt this process, can serve as the basis for future therapies aimed at reversing the public health crisis that is now building as a result of the global obesity epidemic. This review of animal and human studies highlights recent insights into the molecular mechanisms that regulate the development of central feeding circuitries, the mechanisms by which gestational and early postnatal nutritional status affects this process, and approaches aimed at counteracting the deleterious effects of early over- and underfeeding.
Collapse
Affiliation(s)
- Daniel A Lee
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125
| | | |
Collapse
|
20
|
Abstract
Parent-of-origin effects occur when the phenotypic effect of an allele depends on whether it is inherited from the mother or the father. Several phenomena can cause parent-of-origin effects, but the best characterized is parent-of-origin-dependent gene expression associated with genomic imprinting. The development of new mapping approaches applied to the growing abundance of genomic data has demonstrated that imprinted genes can be important contributors to complex trait variation. Therefore, to understand the genetic architecture and evolution of complex traits, including complex diseases and traits of agricultural importance, it is crucial to account for these parent-of-origin effects. Here, we discuss patterns of phenotypic variation associated with imprinting, evidence supporting its role in complex trait variation and approaches for identifying its molecular signatures.
Collapse
|
21
|
Meister B, Perez-Manso M, Daraio T. Delta-like 1 homologue is a hypothalamus-enriched protein that is present in orexin-containing neurones of the lateral hypothalamic area. J Neuroendocrinol 2013; 25:617-25. [PMID: 23387476 DOI: 10.1111/jne.12029] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 01/03/2013] [Accepted: 01/30/2013] [Indexed: 01/18/2023]
Abstract
Delta-like 1 homologue (DLK1), also known as preadipocyte factor-1, fetal antigen 1 or pG2, is a transmembrane protein belonging to the epidermal growth factor-like superfamily. The protein becomes soluble and biologically active after cleavage of the tumour necrosis factor-α-converting enzyme. DLK1 is involved in the differentiation of several cell types, including adipocytes. Lack of the dlk1 gene in mice results in adiposity and a polymorphism within the gene encoding DLK1 has been associated with obesity. The dlk1 gene is expressed in restricted areas of the central nervous system with an enrichment of cell bodies expressing DLK1 mRNA in the hypothalamus. Goat and rabbit antisera to DLK1 were used to study the cellular localisation and chemical identity of DLK1-immunoreactive neuronal cell bodies in rat hypothalamus. DLK1 immunoreactivity was demonstrated in the cell bodies of the suprachiasmatic, supraoptic, paraventricular, arcuate nuclei and in the lateral hypothalamus. At the subcellular level, DLK1 immunoreactivity was observed in the cell soma and dendrites, although not in axonal fibres or nerve terminals. Double-labelling of sections from the lateral hypothalamic/perifornical area of colchicine-treated rats (a treatment that increases the content of immunoreactive material in the cell soma) showed that DLK1 was present in the virually all orexin- and dynorphin-containing neurones. By contrast, DLK1 was not demonstrated in any melanin-concentrating hormone or cocaine- and amphetamine-regulated transcript-containing neurones of the lateral hypothalamic/perifornical area. The presence of DLK1 in a population of lateral hypothalamic neurones suggests a functional role for DLK1 in orexin/hypocretin/dynorphin neurones.
Collapse
Affiliation(s)
- B Meister
- Department of Neuroscience, Karolinska Institutet, Stockholm SE-171 77, Sweden.
| | | | | |
Collapse
|
22
|
Ben-Efraim YJ, Wasserman D, Wasserman J, Sokolowski M. Family-based study of HTR2A in suicide attempts: observed gene, gene × environment and parent-of-origin associations. Mol Psychiatry 2013; 18:758-66. [PMID: 22751492 DOI: 10.1038/mp.2012.86] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
While suicidal behavior is frequently accompanied by serotonergic system alterations, specific associations with genetic variation in the serotonin 2A receptor (HTR2A) gene have been inconsistent. Using a family-based study design of 660 offspring who have made a suicide attempt (SA) and both parents, we conducted an association and linkage analysis using single-nucleotide polymorphisms (SNPs) with extensive gene coverage, and included the study of parent-of-origin (POE) and gene-environment interaction (G × E), also using previously unstudied exposures. The main finding was a G × E between the exon 1 SNP rs6313 and exposure to cumulative types of lifetime stressful life events (SLEs), driven by overtransmission of CT and undertransmission of TT, both in relation to other genotypes. Further exploratory analysis revealed a significant POE in this G × E in female subjects, which followed a polar overdominant inheritance pattern. In addition, rs6310 and rs6305 were found to significantly associate with SA in the total sample. A G × E in female subjects (rs7322347 × physical assault in childhood/adolescence) confirmed features of a previously observed association with SA. Other potentially interesting nominally significant findings were observed, but like the G × E of rs7322347 did not pass a false-discovery rate cutoff. Taken together, this study found multiple associations of HTR2A SNPs on SA, with strongest statistical evidence for a G × E involving rs6313, and further suggested the importance of taking into account different inheritance patterns and G × Es with regard to HTR2A.
Collapse
Affiliation(s)
- Y J Ben-Efraim
- The National Centre for Suicide Research and Prevention of Mental Ill-Health, Karolinska Institute, Stockholm, Sweden
| | | | | | | |
Collapse
|
23
|
Abstract
Preadipocyte factor 1 (Pref-1, also called Dlk1/FA1) is a molecular gatekeeper of adipogenesis which acts by maintaining the preadipocyte state and preventing adipocyte differentiation. Pref-1 is made as an epidermal growth factor-like repeat containing transmembrane protein, and is cleaved by TNFα-converting enzyme (TACE) to generate a soluble form, which acts as an autocrine/paracrine factor. Pref-1 upregulates Sox9 expression by activating the ERK/MAPK pathway and the Pref-1 interaction with fibronectin is required for inhibition of adipogenesis. Pref-1 also prevents brown adipocyte differentiation and its thermogenic function. Here, we highlight the recent evidence for the role of Pref-1 in adipogenesis.
Collapse
Affiliation(s)
- Carolyn S. Hudak
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA, USA
| | - Hei Sook Sul
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA, USA
- *Correspondence: Hei Sook Sul, Department of Nutritional Sciences and Toxicology, University of California, 219 Morgan Hall, Berkeley, CA 94720, USA e-mail:
| |
Collapse
|
24
|
Tellam RL, Cockett NE, Vuocolo T, Bidwell CA. Genes contributing to genetic variation of muscling in sheep. Front Genet 2012; 3:164. [PMID: 22952470 PMCID: PMC3429854 DOI: 10.3389/fgene.2012.00164] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 08/10/2012] [Indexed: 12/24/2022] Open
Abstract
Selective breeding programs aiming to increase the productivity and profitability of the sheep meat industry use elite, progeny tested sires. The broad genetic traits of primary interest in the progeny of these sires include skeletal muscle yield, fat content, eating quality, and reproductive efficiency. Natural mutations in sheep that enhance muscling have been identified, while a number of genome scans have identified and confirmed quantitative trait loci (QTL) for skeletal muscle traits. The detailed phenotypic characteristics of sheep carrying these mutations or QTL affecting skeletal muscle show a number of common biological themes, particularly changes in developmental growth trajectories, alterations of whole animal morphology, and a shift toward fast twitch glycolytic fibers. The genetic, developmental, and biochemical mechanisms underpinning the actions of some of these genetic variants are described. This review critically assesses this research area, identifies gaps in knowledge, and highlights mechanistic linkages between genetic polymorphisms and skeletal muscle phenotypic changes. This knowledge may aid the discovery of new causal genetic variants and in some cases lead to the development of biochemical and immunological strategies aimed at enhancing skeletal muscle.
Collapse
Affiliation(s)
- Ross L Tellam
- Division of Animal, Food and Health Sciences, Commonwealth Scientific and Industrial Research Organisation St Lucia, QLD, Australia
| | | | | | | |
Collapse
|
25
|
Lee BY, Shin DH, Cho S, Seo KS, Kim H. Genome-wide analysis of copy number variations reveals that aging processes influence body fat distribution in Korea Associated Resource (KARE) cohorts. Hum Genet 2012; 131:1795-804. [DOI: 10.1007/s00439-012-1203-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 07/11/2012] [Indexed: 12/26/2022]
|
26
|
Abstract
A major weakness of most genome-wide association studies has been their inability to fully explain the heritable component of complex disease. Nearly all such studies consider the two parental alleles to be functionally equivalent. However, the existence of imprinted genes demonstrates that this assumption can be wrong. In this review, we describe a wide variety of different mechanisms that underlie many other parent of origin and trans-generational effects that are known to operate in both humans and model organisms, suggesting that these phenomena are perhaps not uncommon in the genome. We propose that the consideration of alternative models of inheritance will improve our understanding of the heritability and causes of human traits and could have significant impacts on the study of complex disorders.
Collapse
Affiliation(s)
- A Guilmatre
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | |
Collapse
|
27
|
Huang Y, Yang X, Wu Y, Jing W, Cai X, Tang W, Liu L, Liu Y, Grottkau BE, Lin Y. gamma-secretase inhibitor induces adipogenesis of adipose-derived stem cells by regulation of Notch and PPAR-gamma. Cell Prolif 2010; 43:147-56. [PMID: 20447060 DOI: 10.1111/j.1365-2184.2009.00661.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
OBJECTIVE To determine the inhibitory effect and mechanism of Notch signalling on adipogenesis of mouse adipose-derived stem cells (mASCs). MATERIALS AND METHODS Varied concentrations of N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butylester (DAPT) were added to mASCs 3 days before adipogenic induction with insulin-containing differentiation medium. The process of adipogenesis and ability of lipid droplet accumulation were analysed using oil red-O staining. The Notch signalling pathway (Notch-1, -2, -3, -4, Hes-1 and Hey-1) and adipogenesis-related factors (PPAR-gamma, DLK-1/Pref-1 and Acrp) were tested using real-time PCR, Western blot analysis and immunofluorescence staining assays. RESULTS We demonstrated that Notch-2-Hes-1 signalling pathway was inhibited dose-dependently by DAPT in mASCs. In addition, transcription of PPAR-gamma was promoted by DAPT before adipogenic induction, while inhibitor of adipogenesis DLK-1/Pref-1 was further depressed. At early stages of differentiation (2-4 days), adipogenesis in mASCs was advanced and significantly enhanced in 5 and 10 mum DAPT pre-treated cases. On day 4, in differentiated mASCs cases with DAPT pre-treatment, we also found promotion of activation of de-PPAR-gamma and depression of HES-1, DLK-1/Pref-1 mRNA and protein expression. CONCLUSIONS We conclude that blocking Notch signalling with DAPT enhances adipogenesis of differentiated mASCs at an early stage. It may be due to depression of DLK-1/Pref-1 and promotion of de-PPAR-gamma activation, which work through inhibition of Notch-2-Hes-1 pathway by DAPT.
Collapse
Affiliation(s)
- Y Huang
- State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Wang Y, Hudak C, Sul HS. Role of preadipocyte factor 1 in adipocyte differentiation. ACTA ACUST UNITED AC 2010; 5:109-115. [PMID: 20414356 DOI: 10.2217/clp.09.80] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Preadipocyte factor 1 (Pref-1) is an EGF-repeat-containing transmembrane protein that inhibits adipogenesis. The extracellular domain of Pref-1 is cleaved by TNF-α converting enzyme to generate the biologically active soluble form of Pref-1. The role of Pref-1 in adipogenesis has been firmly established by in vitro and in vivo studies. Pref-1 activates ERK/MAPK and upregulates Sox9 expression to inhibit adipocyte differentiation. Sox9 directly binds to the promoter regions of CCAAT/enhancer-binding protein-β and CCAAT/enhancer-binding protein-δ in order to suppress their promoter activities in preventing adipocyte differentiation. Here, we describe the function of Pref-1 in adipocyte differentiation and the recent findings on the mechanisms by which Pref-1 inhibits adipocyte differentiation.
Collapse
Affiliation(s)
- Yuhui Wang
- Department of Nutritional Science & Toxicology, University of California, Berkeley, CA 94720, USA, Tel.: +1 510 642 3978, ,
| | | | | |
Collapse
|
29
|
|
30
|
Fleming-Waddell JN, Olbricht GR, Taxis TM, White JD, Vuocolo T, Craig BA, Tellam RL, Neary MK, Cockett NE, Bidwell CA. Effect of DLK1 and RTL1 but not MEG3 or MEG8 on muscle gene expression in Callipyge lambs. PLoS One 2009; 4:e7399. [PMID: 19816583 PMCID: PMC2756960 DOI: 10.1371/journal.pone.0007399] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Accepted: 09/15/2009] [Indexed: 12/30/2022] Open
Abstract
Callipyge sheep exhibit extreme postnatal muscle hypertrophy in the loin and hindquarters as a result of a single nucleotide polymorphism (SNP) in the imprinted DLK1-DIO3 domain on ovine chromosome 18. The callipyge SNP up-regulates the expression of surrounding transcripts when inherited in cis without altering their allele-specific imprinting status. The callipyge phenotype exhibits polar overdominant inheritance since only paternal heterozygous animals have muscle hypertrophy. Two studies were conducted profiling gene expression in lamb muscles to determine the down-stream effects of over-expression of paternal allele-specific DLK1 and RTL1 as well as maternal allele-specific MEG3, RTL1AS and MEG8, using Affymetrix bovine expression arrays. A total of 375 transcripts were differentially expressed in callipyge muscle and 25 transcripts were subsequently validated by quantitative PCR. The muscle-specific expression patterns of most genes were similar to DLK1 and included genes that are transcriptional repressors or affect feedback mechanisms in beta-adrenergic and growth factor signaling pathways. One gene, phosphodiesterase 7A had an expression pattern similar to RTL1 expression indicating a biological activity for RTL1 in muscle. Only transcripts that localize to the DLK1-DIO3 domain were affected by inheritance of a maternal callipyge allele. Callipyge sheep are a unique model to study over expression of both paternal allele-specific genes and maternal allele-specific non-coding RNA with an accessible and nonlethal phenotype. This study has identified a number of genes that are regulated by DLK1 and RTL1 expression and exert control on postnatal skeletal muscle growth. The genes identified in this model are primary candidates for naturally regulating postnatal muscle growth in all meat animal species, and may serve as targets to ameliorate muscle atrophy conditions including myopathic diseases and age-related sarcopenia.
Collapse
Affiliation(s)
| | - Gayla R. Olbricht
- Department of Statistics, Purdue University, West Lafayette, Indiana, United States of America
| | - Tasia M. Taxis
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, United States of America
- Animal Sciences Division, University of Missouri, Columbia, Missouri, United States of America
| | - Jason D. White
- School of Veterinary Science, The University of Melbourne, Parkville, Victoria, Australia
| | - Tony Vuocolo
- CSIRO Livestock Industries, St. Lucia, Queensland, Australia
| | - Bruce A. Craig
- Department of Statistics, Purdue University, West Lafayette, Indiana, United States of America
| | - Ross L. Tellam
- CSIRO Livestock Industries, St. Lucia, Queensland, Australia
| | - Mike K. Neary
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Noelle E. Cockett
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, Utah, United States of America
| | - Christopher A. Bidwell
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, United States of America
| |
Collapse
|
31
|
Abstract
The last few years have seen major advances in common non-syndromic obesity research, much of it the result of genetic studies. This Review outlines the competing hypotheses about the mechanisms underlying the genetic and physiological basis of obesity, and then examines the recent explosion of genetic association studies that have yielded insights into obesity, both at the candidate gene level and the genome-wide level. With obesity genetics now entering the post-genome-wide association scan era, the obvious question is how to improve the results obtained so far using single nucleotide polymorphism markers and how to move successfully into the other areas of genomic variation that may be associated with common obesity.
Collapse
|
32
|
Abstract
The majority of the genome in animals and plants is transcribed in a developmentally regulated manner to produce large numbers of non-protein-coding RNAs (ncRNAs), whose incidence increases with developmental complexity. There is growing evidence that these transcripts are functional, particularly in the regulation of epigenetic processes, leading to the suggestion that they compose a hitherto hidden layer of genomic programming in humans and other complex organisms. However, to date, very few have been identified in genetic screens. Here I show that this is explicable by an historic emphasis, both phenotypically and technically, on mutations in protein-coding sequences, and by presumptions about the nature of regulatory mutations. Most variations in regulatory sequences produce relatively subtle phenotypic changes, in contrast to mutations in protein-coding sequences that frequently cause catastrophic component failure. Until recently, most mapping projects have focused on protein-coding sequences, and the limited number of identified regulatory mutations have been interpreted as affecting conventional cis-acting promoter and enhancer elements, although these regions are often themselves transcribed. Moreover, ncRNA-directed regulatory circuits underpin most, if not all, complex genetic phenomena in eukaryotes, including RNA interference-related processes such as transcriptional and post-transcriptional gene silencing, position effect variegation, hybrid dysgenesis, chromosome dosage compensation, parental imprinting and allelic exclusion, paramutation, and possibly transvection and transinduction. The next frontier is the identification and functional characterization of the myriad sequence variations that influence quantitative traits, disease susceptibility, and other complex characteristics, which are being shown by genome-wide association studies to lie mostly in noncoding, presumably regulatory, regions. There is every possibility that many of these variations will alter the interactions between regulatory RNAs and their targets, a prospect that should be borne in mind in future functional analyses.
Collapse
Affiliation(s)
- John S Mattick
- Australian Research Council Special Research Centre for Functional and Applied Genomics, Institute for Molecular Bioscience, University of Queensland, St Lucia, Australia.
| |
Collapse
|
33
|
Fleming JL, Huang THM, Toland AE. The role of parental and grandparental epigenetic alterations in familial cancer risk. Cancer Res 2008; 68:9116-21. [PMID: 19010880 DOI: 10.1158/0008-5472.can-08-2184] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Epigenetic alterations of the genome such as DNA promoter methylation and chromatin remodeling play an important role in tumorigenesis. These modifications take place throughout development with subsequent events occurring later in adulthood. Recent studies, however, suggest that some epigenetic alterations that influence cancer risk are inherited through the germline from parent to child and are observed in multiple generations. Epigenetic changes may be inherited as Mendelian, non-Mendelian, or environmentally induced traits. Here, we will discuss Mendelian, non-Mendelian, and environmentally induced patterns of multigenerational epigenetic alterations as well as some possible mechanisms for how these events may be occurring.
Collapse
Affiliation(s)
- Jessica L Fleming
- Human Cancer Genetics Program and the Ohio State Comprehensive Cancer Center, Department of Molecular Virology, Immunology, and Medical Genetics, USA
| | | | | |
Collapse
|