1
|
Tancreda G, Ravera S, Panfoli I. Exploring the Therapeutic Potential: Bioactive Molecules and Dietary Interventions in Multiple Sclerosis Management. Curr Issues Mol Biol 2024; 46:5595-5613. [PMID: 38921006 PMCID: PMC11202103 DOI: 10.3390/cimb46060335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/27/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic autoimmune demyelinating disease of the central nervous system, the etiology of which is still unclear. Its hallmarks are inflammation and axonal damage. As a disease primarily impacting younger individuals, the social cost of MS is high. It has been proposed that environmental factors, smoking, and dietary habits acting on a genetic susceptibility play a role in MS. Recent studies indicate that diet can significantly influence the onset and progression of MS. This review delves into the impact of natural bioactive molecules on MS development and explores the dietary interventions that hold promise in managing the disease. Dietary patterns, including ketogenic and Mediterranean diets, are discussed. Theories about the potential mechanistic associations beneath the noted effects are also proposed. Several dietary components and patterns demonstrated the potential for a significant impact on MS. However, extensive prospective clinical trials are necessary to fully understand the role of natural bioactive molecules as disease modifiers in MS.
Collapse
Affiliation(s)
- Gabriele Tancreda
- Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy
| | - Silvia Ravera
- Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy
| | - Isabella Panfoli
- Department of Pharmacy (DIFAR), University of Genoa, 16132 Genoa, Italy
| |
Collapse
|
2
|
Morelli AM, Scholkmann F. Should the standard model of cellular energy metabolism be reconsidered? Possible coupling between the pentose phosphate pathway, glycolysis and extra-mitochondrial oxidative phosphorylation. Biochimie 2024; 221:99-109. [PMID: 38307246 DOI: 10.1016/j.biochi.2024.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 01/17/2024] [Accepted: 01/30/2024] [Indexed: 02/04/2024]
Abstract
The process of cellular respiration occurs for energy production through catabolic reactions, generally with glucose as the first process step. In the present work, we introduce a novel concept for understanding this process, based on our conclusion that glucose metabolism is coupled to the pentose phosphate pathway (PPP) and extra-mitochondrial oxidative phosphorylation in a closed-loop process. According to the current standard model of glycolysis, glucose is first converted to glucose 6-phosphate (glucose 6-P) and then to fructose 6-phosphate, glyceraldehyde 3-phosphate and pyruvate, which then enters the Krebs cycle in the mitochondria. However, it is more likely that the pyruvate will be converted to lactate. In the PPP, glucose 6-P is branched off from glycolysis and used to produce NADPH and ribulose 5-phosphate (ribulose 5-P). Ribulose 5-P can be converted to fructose 6-P and glyceraldehyde 3-P. In our view, a circular process can take place in which the ribulose 5-P produced by the PPP enters the glycolysis pathway and is then retrogradely converted to glucose 6-P. This process is repeated several times until the complete degradation of glucose 6-P. The role of mitochondria in this process is to degrade lipids by beta-oxidation and produce acetyl-CoA; the function of producing ATP appears to be only secondary. This proposed new concept of cellular bioenergetics allows the resolution of some previously unresolved controversies related to cellular respiration and provides a deeper understanding of metabolic processes in the cell, including new insights into the Warburg effect.
Collapse
Affiliation(s)
| | - Felix Scholkmann
- Neurophotonics and Biosignal Processing Research Group, Biomedical Optics Research Laboratory, Department of Neonatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
3
|
Liu Y, Zhou Y, Yue H, Dou H, Rang X, Wang X, Xu C, Fu J. Identification of potential key genes and immune infiltration in Multiple sclerosis. Mult Scler Relat Disord 2022; 60:103748. [DOI: 10.1016/j.msard.2022.103748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 02/06/2022] [Accepted: 03/18/2022] [Indexed: 10/18/2022]
|
4
|
Hnilicová P, Štrbák O, Kolisek M, Kurča E, Zeleňák K, Sivák Š, Kantorová E. Current Methods of Magnetic Resonance for Noninvasive Assessment of Molecular Aspects of Pathoetiology in Multiple Sclerosis. Int J Mol Sci 2020; 21:E6117. [PMID: 32854318 PMCID: PMC7504207 DOI: 10.3390/ijms21176117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/13/2020] [Accepted: 08/21/2020] [Indexed: 12/29/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease with expanding axonal and neuronal degeneration in the central nervous system leading to motoric dysfunctions, psychical disability, and cognitive impairment during MS progression. The exact cascade of pathological processes (inflammation, demyelination, excitotoxicity, diffuse neuro-axonal degeneration, oxidative and metabolic stress, etc.) causing MS onset is still not fully understood, although several accompanying biomarkers are particularly suitable for the detection of early subclinical changes. Magnetic resonance (MR) methods are generally considered to be the most sensitive diagnostic tools. Their advantages include their noninvasive nature and their ability to image tissue in vivo. In particular, MR spectroscopy (proton 1H and phosphorus 31P MRS) is a powerful analytical tool for the detection and analysis of biomedically relevant metabolites, amino acids, and bioelements, and thus for providing information about neuro-axonal degradation, demyelination, reactive gliosis, mitochondrial and neurotransmitter failure, cellular energetic and membrane alternation, and the imbalance of magnesium homeostasis in specific tissues. Furthermore, the MR relaxometry-based detection of accumulated biogenic iron in the brain tissue is useful in disease evaluation. The early description and understanding of the developing pathological process might be critical for establishing clinically effective MS-modifying therapies.
Collapse
Affiliation(s)
- Petra Hnilicová
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia; (O.Š.); (M.K.)
| | - Oliver Štrbák
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia; (O.Š.); (M.K.)
| | - Martin Kolisek
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia; (O.Š.); (M.K.)
| | - Egon Kurča
- Clinic of Neurology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia; (E.K.); (Š.S.); (E.K.)
| | - Kamil Zeleňák
- Clinic of Radiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia;
| | - Štefan Sivák
- Clinic of Neurology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia; (E.K.); (Š.S.); (E.K.)
| | - Ema Kantorová
- Clinic of Neurology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia; (E.K.); (Š.S.); (E.K.)
| |
Collapse
|
5
|
Iacobaeus E, Arrambide G, Amato MP, Derfuss T, Vukusic S, Hemmer B, Tintore M, Brundin L. Aggressive multiple sclerosis (1): Towards a definition of the phenotype. Mult Scler 2020; 26:1352458520925369. [PMID: 32530385 PMCID: PMC7412876 DOI: 10.1177/1352458520925369] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 04/06/2020] [Accepted: 04/16/2020] [Indexed: 02/06/2023]
Abstract
While the major phenotypes of multiple sclerosis (MS) and relapsing-remitting, primary and secondary progressive MS have been well characterized, a subgroup of patients with an active, aggressive disease course and rapid disability accumulation remains difficult to define and there is no consensus about their management and treatment. The current lack of an accepted definition and treatment guidelines for aggressive MS triggered a 2018 focused workshop of the European Committee for Treatment and Research in Multiple Sclerosis (ECTRIMS) on aggressive MS. The aim of the workshop was to discuss approaches on how to describe and define the disease phenotype and its treatments. Unfortunately, it was not possible to come to consensus on a definition because of unavailable data correlating severe disease with imaging and molecular biomarkers. However, the workshop highlighted the need for future research needed to define this disease subtype while also focusing on its treatment and management. Here, we review previous attempts to define aggressive MS and present characteristics that might, with additional research, eventually help characterize it. A companion paper summarizes data regarding treatment and management.
Collapse
Affiliation(s)
- Ellen Iacobaeus
- Department of Clinical Neuroscience, Division of Neurology, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
| | - Georgina Arrambide
- Servei de Neurologia-Neuroimmunologia. Centre d’Esclerosi Múltiple de Catalunya, (Cemcat), Vall d’Hebron Institut de Recerca, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Maria Pia Amato
- Department NeuroFarBa, University of Florence, Florence, Italy/IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Tobias Derfuss
- Departments of Neurology and Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Sandra Vukusic
- Service de neurologie, Sclérose en plaques, Pathologies de la myéline et neuro-inflammation, and Centre de Référence des Maladies Inflammatoires Rares du Cerveau et de la Moelle, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Lyon/Bron, France; Centre des Neurosciences de Lyon, Observatoire Français de la Sclérose en Plaques, INSERM 1028 et CNRS UMR5292, Lyon, France; Université Claude Bernard Lyon 1, Faculté de médecine Lyon Est, Lyon, France
| | - Bernhard Hemmer
- Department of Neurology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Mar Tintore
- Servei de Neurologia-Neuroimmunologia. Centre d’Esclerosi Múltiple de Catalunya, (Cemcat), Vall d’Hebron Institut de Recerca, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Lou Brundin
- Department of Clinical Neuroscience, Division of Neurology, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
6
|
Orefice N, Carotenuto A, Mangone G, Bues B, Rehm R, Cerillo I, Saccà F, Calignano A, Orefice G. Assessment of neuroactive steroids in cerebrospinal fluid comparing acute relapse and stable disease in relapsing-remitting multiple sclerosis. J Steroid Biochem Mol Biol 2016; 159:1-7. [PMID: 26892094 DOI: 10.1016/j.jsbmb.2016.02.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 02/09/2016] [Accepted: 02/11/2016] [Indexed: 11/30/2022]
Abstract
Previous studies have reported an involvement of neuroactive steroids as neuroprotective and anti-inflammatory agents in neurological disorders such as multiple sclerosis (MS); an analysis of their profile during a specific clinical phase of MS is largely unknown. The pregnenolone (PREG), dehydroepiandrosterone (DHEA), and allopregnanolone (ALLO) profile was evaluated in cerebrospinal fluid (CSF) in relapsing-remitting multiple sclerosis (RR-MS) patients as well as those in patients affected by non-inflammatory neurological (control group I) and without neurological disorders (control group II). An increase of PREG and DHEA values was shown in CSF of male and female RR-MS patients compared to those observed in both control groups. The ALLO values were significantly lower in female RR-MS patients than those found in male RR-MS patients and in female without neurological disorder. During the clinical relapse, we observed female RR-MS patients showing significantly increased PREG values compared to female RR-MS patients in stable phase, while their ALLO values showed a significant decrease compared to male RR-MS patients of the same group. Male RR-MS patients with gadolinium-enhanced lesions showed PREG and DHEA values higher than those found in female RR-MS patients with gadolinium-enhanced lesions. Similary, male RR-MS patients with gadolinium-enhanced lesions showed PREG and DHEA values higher than male without gadolinium-enhanced lesions. Female RR-MS patients with gadolinium-enhanced lesions showed DHEA values higher than those found in female RR-MS patients with gadolinium-enhanced lesions. Male and female RR-MS patients with gadolinium-enhanced lesions showed ALLO values higher than those found in respective gender groups without gadolinium-enhanced lesions. ALLO values were lower in male than in female RR-MS patients without gadolinium-enhanced lesions. Considering the pharmacological properties of neuroactive steroids and the observation that neurological disorders influence their concentrations, these endogenous compounds may have an important role as prognostic factors of the disease and used as markers of MS activity such as relapses.
Collapse
Affiliation(s)
- Ns Orefice
- Department of Pharmacy, "Federico II" University, Naples, Italy.
| | - A Carotenuto
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, "Federico II" University, Naples, Italy.
| | - G Mangone
- Clinical Investigation Center for Neurosciences, Pitié-Salpêtrière Hospital, Paris, France.
| | - B Bues
- University Medical Center, Göttingen, Germany.
| | - R Rehm
- University Medical Center, Göttingen, Germany.
| | - I Cerillo
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, "Federico II" University, Naples, Italy.
| | - F Saccà
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, "Federico II" University, Naples, Italy.
| | - A Calignano
- Department of Pharmacy, "Federico II" University, Naples, Italy.
| | - G Orefice
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, "Federico II" University, Naples, Italy.
| |
Collapse
|
7
|
Stincone A, Prigione A, Cramer T, Wamelink MMC, Campbell K, Cheung E, Olin-Sandoval V, Grüning NM, Krüger A, Tauqeer Alam M, Keller MA, Breitenbach M, Brindle KM, Rabinowitz JD, Ralser M. The return of metabolism: biochemistry and physiology of the pentose phosphate pathway. Biol Rev Camb Philos Soc 2014; 90:927-63. [PMID: 25243985 PMCID: PMC4470864 DOI: 10.1111/brv.12140] [Citation(s) in RCA: 908] [Impact Index Per Article: 82.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 07/07/2014] [Accepted: 07/16/2014] [Indexed: 12/13/2022]
Abstract
The pentose phosphate pathway (PPP) is a fundamental component of cellular metabolism. The PPP is important to maintain carbon homoeostasis, to provide precursors for nucleotide and amino acid biosynthesis, to provide reducing molecules for anabolism, and to defeat oxidative stress. The PPP shares reactions with the Entner–Doudoroff pathway and Calvin cycle and divides into an oxidative and non-oxidative branch. The oxidative branch is highly active in most eukaryotes and converts glucose 6-phosphate into carbon dioxide, ribulose 5-phosphate and NADPH. The latter function is critical to maintain redox balance under stress situations, when cells proliferate rapidly, in ageing, and for the ‘Warburg effect’ of cancer cells. The non-oxidative branch instead is virtually ubiquitous, and metabolizes the glycolytic intermediates fructose 6-phosphate and glyceraldehyde 3-phosphate as well as sedoheptulose sugars, yielding ribose 5-phosphate for the synthesis of nucleic acids and sugar phosphate precursors for the synthesis of amino acids. Whereas the oxidative PPP is considered unidirectional, the non-oxidative branch can supply glycolysis with intermediates derived from ribose 5-phosphate and vice versa, depending on the biochemical demand. These functions require dynamic regulation of the PPP pathway that is achieved through hierarchical interactions between transcriptome, proteome and metabolome. Consequently, the biochemistry and regulation of this pathway, while still unresolved in many cases, are archetypal for the dynamics of the metabolic network of the cell. In this comprehensive article we review seminal work that led to the discovery and description of the pathway that date back now for 80 years, and address recent results about genetic and metabolic mechanisms that regulate its activity. These biochemical principles are discussed in the context of PPP deficiencies causing metabolic disease and the role of this pathway in biotechnology, bacterial and parasite infections, neurons, stem cell potency and cancer metabolism.
Collapse
Affiliation(s)
- Anna Stincone
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K.,Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K
| | - Alessandro Prigione
- Max Delbrueck Centre for Molecular Medicine, Robert-Rössle-Str. 10, 13092 Berlin, Germany
| | - Thorsten Cramer
- Department of Gastroenterology and Hepatology, Molekulares Krebsforschungszentrum (MKFZ), Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Mirjam M C Wamelink
- Metabolic Unit, Department of Clinical Chemistry, VU University Medical Centre Amsterdam, De Boelelaaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Kate Campbell
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K.,Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K
| | - Eric Cheung
- Cancer Research UK, Beatson Institute, Switchback Road, Glasgow G61 1BD, U.K
| | - Viridiana Olin-Sandoval
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K.,Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K
| | - Nana-Maria Grüning
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K.,Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K
| | - Antje Krüger
- Max Planck Institute for Molecular Genetics, Ihnestr 73, 14195 Berlin, Germany
| | - Mohammad Tauqeer Alam
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K.,Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K
| | - Markus A Keller
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K.,Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K
| | - Michael Breitenbach
- Department of Cell Biology, University of Salzburg, Hellbrunnerstrasse 34, A-5020 Salzburg, Austria
| | - Kevin M Brindle
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K.,Cancer Research UK Cambridge Research Institute (CRI), Li Ka Shing Centre, University of Cambridge, Robinson Way, Cambridge CB2 0RE, U.K
| | - Joshua D Rabinowitz
- Department of Chemistry, Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, 08544 NJ, U.S.A
| | - Markus Ralser
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K.,Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K.,Division of Physiology and Metabolism, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7, U.K
| |
Collapse
|
8
|
van Rensburg SJ, Kotze MJ, van Toorn R. The conundrum of iron in multiple sclerosis--time for an individualised approach. Metab Brain Dis 2012; 27:239-53. [PMID: 22422107 PMCID: PMC3402663 DOI: 10.1007/s11011-012-9290-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 02/23/2012] [Indexed: 11/21/2022]
Abstract
Although the involvement of immune mechanisms in multiple sclerosis (MS) is undisputed, some argue that there is insufficient evidence to support the hypothesis that MS is an autoimmune disease, and that the difference between immune- and autoimmune disease mechanisms has yet to be clearly delineated. Uncertainties surrounding MS disease pathogenesis and the modest efficacy of currently used disease modifying treatments (DMTs) in the prevention of disability, warrant the need to explore other possibilities. It is evident from the literature that people diagnosed with MS differ widely in symptoms and clinical outcome--some patients have a benign disease course over many years without requiring any DMTs. Attempting to include all patients into a single entity is an oversimplification and may obscure important observations with therapeutic consequences. In this review we advocate an individualised approach named Pathology Supported Genetic Testing (PSGT), in which genetic tests are combined with biochemical measurements in order to identify subgroups of patients requiring different treatments. Iron dysregulation in MS is used as an example of how this approach may benefit patients. The theory that iron deposition in the brain contributes to MS pathogenesis has caused uncertainty among patients as to whether they should avoid iron. However, the fact that a subgroup of people diagnosed with MS show clinical improvement when they are on iron supplementation emphasises the importance of individualised therapy, based on genetic and biochemical determinations.
Collapse
Affiliation(s)
- Susan J van Rensburg
- Division of Chemical Pathology, National Health Laboratory Service and University of Stellenbosch, Tygerberg Hospital, PO Box 19113, 7505 Tygerberg, South Africa.
| | | | | |
Collapse
|
9
|
Marcolongo P, Senesi S, Giunti R, Csala M, Fulceri R, Bánhegyi G, Benedetti A. Expression of hexose-6-phosphate dehydrogenase in rat tissues. J Steroid Biochem Mol Biol 2011; 126:57-64. [PMID: 21620971 DOI: 10.1016/j.jsbmb.2011.05.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2011] [Revised: 05/06/2011] [Accepted: 05/11/2011] [Indexed: 12/17/2022]
Abstract
Hexose-6-phosphate dehydrogenase (H6PD) is the main NADPH generating enzyme in the lumen of the endoplasmic reticulum. H6PD is regarded as an ancillary enzyme in prereceptorial glucocorticoid activation and probably acts as a nutrient sensor and as a prosurvival factor. H6PD expression was determined in a variety of rat and human tissues by detecting mRNA and protein levels, and by measuring its dehydrogenase and lactonase activities. It was found that H6PD was present in all investigated tissues; both expression and activity remained within an order of magnitude. Correlation was found between the dehydrogenase activity and protein or mRNA levels. The results confirmed the supposed housekeeping feature of the enzyme.
Collapse
Affiliation(s)
- Paola Marcolongo
- Dipartimento di Fisiopatologia, Medicina Sperimentale e Sanità Pubblica, Università di Siena, Viale Aldo Moro, Italy
| | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disease, where T-cells attack the myelin sheath in the central nervous system (CNS), characterized by relapsing-remitting episodes, or gradually increasing severity of symptoms and disability that accumulate over time. While current MS therapies have been proven in clinical trials to provide significant benefits, they cater only to subsets of patients. Moreover, there is an acute need to identify the most effective and safe treatment appropriate for each patient prospectively, since early intervention has been proven to prevent accumulation of irreversible dysfunction. In this review we discuss the current state-of-the-art in pharmacogenetic research as applied to the common marketed and in-development MS treatments, with respect to both efficacy and safety aspects. We conclude by discussing the relevance of pharmacogenetics and other biomarkers to the prediction, prevention and personalization of MS medications in the horizon.
Collapse
Affiliation(s)
- Iris Grossman
- IsraGene, Haifa, Israel ; Cabernet Pharmaceuticals, R. David Thomas Center, One Science Drive, BOX 90344, Durham, NC 27708 USA
| | | |
Collapse
|