1
|
Skopelitou D, Srivastava A, Miao B, Kumar A, Dymerska D, Paramasivam N, Schlesner M, Lubinski J, Hemminki K, Försti A, Reddy Bandapalli O. Whole exome sequencing identifies novel germline variants of SLC15A4 gene as potentially cancer predisposing in familial colorectal cancer. Mol Genet Genomics 2022; 297:965-979. [PMID: 35562597 PMCID: PMC9250485 DOI: 10.1007/s00438-022-01896-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 04/02/2022] [Indexed: 11/25/2022]
Abstract
About 15% of colorectal cancer (CRC) patients have first-degree relatives affected by the same malignancy. However, for most families the cause of familial aggregation of CRC is unknown. To identify novel high-to-moderate-penetrance germline variants underlying CRC susceptibility, we performed whole exome sequencing (WES) on four CRC cases and two unaffected members of a Polish family without any mutation in known CRC predisposition genes. After WES, we used our in-house developed Familial Cancer Variant Prioritization Pipeline and identified two novel variants in the solute carrier family 15 member 4 (SLC15A4) gene. The heterozygous missense variant, p. Y444C, was predicted to affect the phylogenetically conserved PTR2/POT domain and to have a deleterious effect on the function of the encoded peptide/histidine transporter. The other variant was located in the upstream region of the same gene (GRCh37.p13, 12_129308531_C_T; 43 bp upstream of transcription start site, ENST00000266771.5) and it was annotated to affect the promoter region of SLC15A4 as well as binding sites of 17 different transcription factors. Our findings of two distinct variants in the same gene may indicate a synergistic up-regulation of SLC15A4 as the underlying genetic cause and implicate this gene for the first time in genetic inheritance of familial CRC.
Collapse
Affiliation(s)
- Diamanto Skopelitou
- Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Aayushi Srivastava
- Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Beiping Miao
- Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Abhishek Kumar
- Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104 India
| | - Dagmara Dymerska
- Department of Genetics and Pathology, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Nagarajan Paramasivam
- Computational Oncology, Molecular Diagnostics Program, National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Matthias Schlesner
- Bioinformatics and Omics Data Analytics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jan Lubinski
- Department of Genetics and Pathology, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Kari Hemminki
- Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University in Prague, 30605 Pilsen, Czech Republic
| | - Asta Försti
- Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Obul Reddy Bandapalli
- Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
2
|
Lee HH, Moon Y, Shin JS, Lee JH, Kim TW, Jang C, Park C, Lee J, Kim Y, Kim Y, Werz O, Park BY, Lee JY, Lee KT. A novel mPGES-1 inhibitor alleviates inflammatory responses by downregulating PGE2 in experimental models. Prostaglandins Other Lipid Mediat 2019; 144:106347. [DOI: 10.1016/j.prostaglandins.2019.106347] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 06/12/2019] [Accepted: 06/19/2019] [Indexed: 02/07/2023]
|
3
|
Maseda D, Ricciotti E, Crofford LJ. Prostaglandin regulation of T cell biology. Pharmacol Res 2019; 149:104456. [PMID: 31553935 DOI: 10.1016/j.phrs.2019.104456] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/06/2019] [Accepted: 09/13/2019] [Indexed: 12/26/2022]
Abstract
Prostaglandins (PG) are pleiotropic bioactive lipids involved in the control of many physiological processes, including key roles in regulating inflammation. This links PG to the modulation of the quality and magnitude of immune responses. T cells, as a core part of the immune system, respond readily to inflammatory cues from their environment, and express a diverse array of PG receptors that contribute to their function and phenotype. Here we put in context our knowledge about how PG affect T cell biology, and review advances that bring light into how specific T cell functions that have been newly discovered are modulated through PG. We will also comment on drugs that target PG metabolism and sensing, their effect on T cell function during disease, and we will finally discuss how we can design new approaches that modulate PG in order to maximize desired therapeutic T cell effects.
Collapse
Affiliation(s)
- Damian Maseda
- Department of Microbiology, University of Pennsylvania School of Medicine, 8-138 Smillow Center for Translational Research, Philadelphia, PA, USA.
| | - Emanuela Ricciotti
- Department of Systems Pharmacology and Translational Therapeutics, Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - Leslie J Crofford
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
4
|
Ailem M, Role F, Nadif M, Demenais F. Unsupervised text mining for assessing and augmenting GWAS results. J Biomed Inform 2016; 60:252-9. [PMID: 26911523 DOI: 10.1016/j.jbi.2016.02.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 12/21/2015] [Accepted: 02/14/2016] [Indexed: 12/31/2022]
Abstract
Text mining can assist in the analysis and interpretation of large-scale biomedical data, helping biologists to quickly and cheaply gain confirmation of hypothesized relationships between biological entities. We set this question in the context of genome-wide association studies (GWAS), an actively emerging field that contributed to identify many genes associated with multifactorial diseases. These studies allow to identify groups of genes associated with the same phenotype, but provide no information about the relationships between these genes. Therefore, our objective is to leverage unsupervised text mining techniques using text-based cosine similarity comparisons and clustering applied to candidate and random gene vectors, in order to augment the GWAS results. We propose a generic framework which we used to characterize the relationships between 10 genes reported associated with asthma by a previous GWAS. The results of this experiment showed that the similarities between these 10 genes were significantly stronger than would be expected by chance (one-sided p-value<0.01). The clustering of observed and randomly selected gene also allowed to generate hypotheses about potential functional relationships between these genes and thus contributed to the discovery of new candidate genes for asthma.
Collapse
Affiliation(s)
- Melissa Ailem
- LIPADE, Université Paris Descartes, Sorbonne Paris Cité, Paris F-75006, France
| | - François Role
- LIPADE, Université Paris Descartes, Sorbonne Paris Cité, Paris F-75006, France
| | - Mohamed Nadif
- LIPADE, Université Paris Descartes, Sorbonne Paris Cité, Paris F-75006, France
| | - Florence Demenais
- INSERM, Genetic Variation and Human Diseases Unit, UMR-946, Paris F-75010, France; Institut Universitaire d'Hématologie, Université Paris Diderot, Sorbonne Paris Cité, Paris F-75010, France
| |
Collapse
|
5
|
Lee MW, Ryu S, Kim DS, Sung KW, Koo HH, Yoo KH. Strategies to improve the immunosuppressive properties of human mesenchymal stem cells. Stem Cell Res Ther 2015; 6:179. [PMID: 26445096 PMCID: PMC4596374 DOI: 10.1186/s13287-015-0178-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are of particular interest for the treatment of immune-related diseases because of their immunosuppressive capacities. However, few clinical trials of MSCs have yielded satisfactory results. A number of clinical trials using MSCs are currently in progress worldwide. Unfortunately, protocols and methods, including optimized culture conditions for the harvest of MSCs, have not been standardized. In this regard, complications in the ex vivo expansion of MSCs and MSC heterogeneity have been implicated in the failure of clinical trials. In this review, potential strategies to obtain MSCs with improved immunosuppressive properties and the potential roles of specific immunomodulatory genes, which are differentially upregulated in certain culture conditions, will be discussed.
Collapse
Affiliation(s)
- Myoung Woo Lee
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Irwon-Dong, Gangnam-Gu, Seoul, 135-710, Korea
| | - Somi Ryu
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Irwon-Dong, Gangnam-Gu, Seoul, 135-710, Korea
| | - Dae Seong Kim
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Irwon-Dong, Gangnam-Gu, Seoul, 135-710, Korea
| | - Ki Woong Sung
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Irwon-Dong, Gangnam-Gu, Seoul, 135-710, Korea
| | - Hong Hoe Koo
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Irwon-Dong, Gangnam-Gu, Seoul, 135-710, Korea. .,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, 50 Irwon-Dong, Gangnam-Gu, Seoul, 135-710, Korea.
| | - Keon Hee Yoo
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Irwon-Dong, Gangnam-Gu, Seoul, 135-710, Korea. .,Department of Medical Device Management and Research, SAIHST, Sungkyunkwan University, 50 Irwon-Dong, Gangnam-Gu, Seoul, 135-710, Korea.
| |
Collapse
|
6
|
Gene expression profile of compressed primary human cementoblasts before and after IL-1β stimulation. Clin Oral Investig 2014; 18:1925-39. [DOI: 10.1007/s00784-013-1167-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 12/10/2013] [Indexed: 01/22/2023]
|
7
|
Feigenson KA, Kusnecov AW, Silverstein SM. Inflammation and the two-hit hypothesis of schizophrenia. Neurosci Biobehav Rev 2014; 38:72-93. [PMID: 24247023 PMCID: PMC3896922 DOI: 10.1016/j.neubiorev.2013.11.006] [Citation(s) in RCA: 192] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 10/26/2013] [Accepted: 11/07/2013] [Indexed: 12/12/2022]
Abstract
The high societal and individual cost of schizophrenia necessitates finding better, more effective treatment, diagnosis, and prevention strategies. One of the obstacles in this endeavor is the diverse set of etiologies that comprises schizophrenia. A substantial body of evidence has grown over the last few decades to suggest that schizophrenia is a heterogeneous syndrome with overlapping symptoms and etiologies. At the same time, an increasing number of clinical, epidemiological, and experimental studies have shown links between schizophrenia and inflammatory conditions. In this review, we analyze the literature on inflammation and schizophrenia, with a particular focus on comorbidity, biomarkers, and environmental insults. We then identify several mechanisms by which inflammation could influence the development of schizophrenia via the two-hit hypothesis. Lastly, we note the relevance of these findings to clinical applications in the diagnosis, prevention, and treatment of schizophrenia.
Collapse
Affiliation(s)
- Keith A Feigenson
- Robert Wood Johnson Medical School at Rutgers, The State University of New Jersey, 675 Hoes Lane, Piscataway, NJ 08854, USA.
| | - Alex W Kusnecov
- Department of Psychology, Behavioral and Systems Neuroscience Program and Joint Graduate Program in Toxicology, Rutgers University, 52 Frelinghuysen Road, Piscataway, NJ 08854-8020, USA.
| | - Steven M Silverstein
- Robert Wood Johnson Medical School at Rutgers, The State University of New Jersey, 675 Hoes Lane, Piscataway, NJ 08854, USA; University Behavioral Health Care at Rutgers, The State University of New Jersey, 671 Hoes Lane, Piscataway, NJ 08855, USA.
| |
Collapse
|
8
|
Sheng PF, Jiang Y, Zhang ZW, Zhang JL, Li S, Zhang ZQ, Xu SW. The effect of Se-deficient diet on gene expression of inflammatory cytokines in chicken brain. Biometals 2013; 27:33-43. [PMID: 24318354 DOI: 10.1007/s10534-013-9682-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Accepted: 10/20/2013] [Indexed: 01/24/2023]
Abstract
Selenium (Se) plays an important role in the brain development, function, and degeneration, nutritional encephalomalacia is closely related with dietary Se in avian. However, there is little evidence on the relationship between inflammation and encephalomalacia in avian and the mechanism which Se regulates the inflammatory response in brain tissues remains to be unclear. The present paper describes the effects of Se-deficient granulated diet on one transcription factor-nuclear factor kappaB and four pro-inflammatory cytokines-tumor necrosis factor, cyclooxygenase2, inducible nitric oxide synthase and Prostaglandin E synthase mRNA expression in the chicken brain tissues associated encephalomalacia. One hundred male chickens (1 day old; Weiwei Co. Ltd., Harbin, China) were divided into two groups (50 chickens per group). The expression levels in the brain tissues (cerebral gray matter, cerebral white matter, marrowbrain, cerebellum, thalamus and brain stem) were determined by real-time PCR on days 15, 25, 35, 45, and 55, respectively. The results showed the productions of pro-inflammatory mediators were increased following Se-deficiency. These data indicate the correlations between nutritional encephalomalacia and inflammatory response and the activity of inflammatory response in chicken brain may be induced by Se-deficiency.
Collapse
Affiliation(s)
- Peng-Fei Sheng
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
9
|
Moura RA, Canhão H, Polido-Pereira J, Rodrigues AM, Navalho M, Mourão AF, Resende C, Campanilho-Marques R, Madruga Dias J, da Silva JAP, Graca L, Fonseca JE. BAFF and TACI gene expression are increased in patients with untreated very early rheumatoid arthritis. J Rheumatol 2013; 40:1293-302. [PMID: 23772083 DOI: 10.3899/jrheum.121110] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE B cells play important roles in rheumatoid arthritis (RA). Given the beneficial effect of B cell depletion therapy in RA as well as the observed alterations in B cell subpopulations in this disease, we evaluated whether changes in the expression of genes related to B cell survival and activation were already present in patients with untreated very early RA (VERA; < 6 weeks of disease duration). METHODS The expression of a group of B cell-related activation and survival genes was quantified in peripheral blood mononuclear cells from patients with VERA by real-time PCR and compared with untreated early RA (< 1 year), established treated RA, and other untreated early arthritis conditions. Serum B cell-activating factor belonging to the tumor necrosis factor family (BAFF) was quantified by ELISA. RESULTS BAFF gene expression and serum levels were highest in patients with VERA. The expression of BAFF receptor (BAFF-R) increased with disease progression, while transmembrane activator and calcium modulator and cyclophilin ligand interactor (TACI) was elevated since the first weeks of RA onset. Paired box 5 gene expression was also increased at all RA stages. Chemokine (C-X-C motif) receptor 5 was elevated only in established RA. No differences were observed in B cell maturation antigen, activation-induced cytidine deaminase, B lymphocyte-induced maturation protein, and B cell lymphoma 2 expression. CONCLUSION Disturbances in the expression of B cell-related activation and survival genes, particularly BAFF and TACI, occur from the onset of RA and precede changes in BAFF-R. These alterations can lead to the development of autoreactive B cells from the first weeks of RA onset.
Collapse
Affiliation(s)
- Rita A Moura
- Rheumatology Research Unit, and the Cellular Immunology Unit, Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Chatzikyriakidou A, Voulgari PV, Lambropoulos A, Drosos AA. Genetics in rheumatoid arthritis beyond HLA genes: what meta-analyses have shown? Semin Arthritis Rheum 2013; 43:29-38. [PMID: 23768941 DOI: 10.1016/j.semarthrit.2012.12.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 11/28/2012] [Accepted: 12/06/2012] [Indexed: 01/15/2023]
Abstract
OBJECTIVE Rheumatoid arthritis (RA) is a complex disorder with many genetic and environmental factors to account for disease susceptibility. Individual genetic association studies usually suffer from small sample size leading to biased results of polymorphisms association with RA liability. Therefore, meta-analyses seem to resolve this limitation, up to a point, increasing the power of statistical analyses. In this review, we summarize the current knowledge of non-HLA genetic factors contributing to RA predisposition based on meta-analyses. METHODS Using the key words: rheumatoid arthritis, meta-analysis, and polymorphism, we searched the PubMed database for the associated articles. Up to the middle of November 2012, seventy-nine articles fulfilled the criteria and highlighted the current findings on the genetic factors contributing to RA susceptibility. RESULTS The association with RA was confirmed for 32 gene polymorphisms, being population specific in some cases. However, meta-analyses did not confirm an association in case of 16 gene variants, previously studied in individual studies for their association with RA. CONCLUSIONS The use of bioinformatics tools and functional studies of the summarized implicated genes in RA pathogenesis could shed light on the molecular pathways related to the disorder, helping to the development of new drug targets for a better treatment of RA.
Collapse
Affiliation(s)
- Anthoula Chatzikyriakidou
- Laboratory of General Biology and Genetics, Medical School, Aristotle University of Thessaloniki, Greece
| | | | | | | |
Collapse
|
11
|
Hierarchical modeling identifies novel lung cancer susceptibility variants in inflammation pathways among 10,140 cases and 11,012 controls. Hum Genet 2013; 132:579-89. [PMID: 23370545 DOI: 10.1007/s00439-013-1270-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 01/14/2013] [Indexed: 10/27/2022]
Abstract
Recent evidence suggests that inflammation plays a pivotal role in the development of lung cancer. In this study, we used a two-stage approach to investigate associations between genetic variants in inflammation pathways and lung cancer risk based on genome-wide association study (GWAS) data. A total of 7,650 sequence variants from 720 genes relevant to inflammation pathways were identified using keyword and pathway searches from Gene Cards and Gene Ontology databases. In Stage 1, six GWAS datasets from the International Lung Cancer Consortium were pooled (4,441 cases and 5,094 controls of European ancestry), and a hierarchical modeling (HM) approach was used to incorporate prior information for each of the variants into the analysis. The prior matrix was constructed using (1) role of genes in the inflammation and immune pathways; (2) physical properties of the variants including the location of the variants, their conservation scores and amino acid coding; (3) LD with other functional variants and (4) measures of heterogeneity across the studies. HM affected the priority ranking of variants particularly among those having low prior weights, imprecise estimates and/or heterogeneity across studies. In Stage 2, we used an independent NCI lung cancer GWAS study (5,699 cases and 5,818 controls) for in silico replication. We identified one novel variant at the level corrected for multiple comparisons (rs2741354 in EPHX2 at 8p21.1 with p value = 7.4 × 10(-6)), and confirmed the associations between TERT (rs2736100) and the HLA region and lung cancer risk. HM allows for prior knowledge such as from bioinformatic sources to be incorporated into the analysis systematically, and it represents a complementary analytical approach to the conventional GWAS analysis.
Collapse
|