1
|
Szelenyi ER, Fisenne D, Knox JE, Harris JA, Gornet JA, Palaniswamy R, Kim Y, Venkataraju KU, Osten P. Distributed X chromosome inactivation in brain circuitry is associated with X-linked disease penetrance of behavior. Cell Rep 2024; 43:114068. [PMID: 38614085 PMCID: PMC11107803 DOI: 10.1016/j.celrep.2024.114068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 02/05/2024] [Accepted: 03/21/2024] [Indexed: 04/15/2024] Open
Abstract
The precise anatomical degree of brain X chromosome inactivation (XCI) that is sufficient to alter X-linked disorders in females is unclear. Here, we quantify whole-brain XCI at single-cell resolution to discover a prevalent activation ratio of maternal to paternal X at 60:40 across all divisions of the adult brain. This modest, non-random XCI influences X-linked disease penetrance: maternal transmission of the fragile X mental retardation 1 (Fmr1)-knockout (KO) allele confers 55% of total brain cells with mutant X-active, which is sufficient for behavioral penetrance, while 40% produced from paternal transmission is tolerated. Local XCI mosaicism within affected maternal Fmr1-KO mice further specifies sensorimotor versus social anxiety phenotypes depending on which distinct brain circuitry is most affected, with only a 50%-55% mutant X-active threshold determining penetrance. Thus, our results define a model of X-linked disease penetrance in females whereby distributed XCI among single cells populating brain circuitries can regulate the behavioral penetrance of an X-linked mutation.
Collapse
Affiliation(s)
- Eric R Szelenyi
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Program in Neuroscience, Stony Brook University, Neurobiology and Behavior, Stony Brook, NY 11794, USA.
| | - Danielle Fisenne
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Hofstra University, Hempstead, NY 11549, USA; Certerra, Inc., Farmingdale, NY 11735, USA
| | - Joseph E Knox
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Julie A Harris
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - James A Gornet
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Columbia University, New York, NY 10027, USA
| | | | - Yongsoo Kim
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; College of Medicine, Penn State University, Hershey, PA 17033, USA
| | | | - Pavel Osten
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| |
Collapse
|
2
|
X Chromosome inactivation: a modifier of factor VIII and IX plasma levels and bleeding phenotype in Haemophilia carriers. Eur J Hum Genet 2020; 29:241-249. [PMID: 33082527 DOI: 10.1038/s41431-020-00742-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 09/16/2020] [Accepted: 09/30/2020] [Indexed: 02/01/2023] Open
Abstract
Haemophilia A and B are X-linked hemorrhagic disorders caused by gene variants in the F8 and F9 genes. Due to recessive inheritance, males are affected, while female carriers are usually asymptomatic with a wide range of factor VIII (FVIII) or IX (FIX) levels. Bleeding tendency in female carriers is extremely variable and may be associated with low clotting factor levels. This could be explained by F8 or F9 genetic variations, numerical or structural X chromosomal anomalies, or epigenetic variations such as irregular X chromosome inactivation (XCI). The aim of the study was to determine whether low FVIII or FIX coagulant activity in haemophilia carriers could be related to XCI and bleeding symptoms. HUMARA assay was performed on 73 symptomatic carriers with low clotting activity ≤50 IU/dL. Bleeding Assessment Tool (BAT) from the International Society on Thrombosis and Haemostasis (ISTH) was used to describe symptoms in the cohort of carriers. In 97% of haemophilia carriers, a specific gene variant in heterozygous state was found, which alone could not justify their low FVIII or FIX levels (≤50 IU/dL). A statistical association between XCI pattern and FVIII and FIX levels was observed. Moreover, female carriers with low coagulant activity (≤20 IU/dL) and high degree of XCI ( ≥ 80:20) had a higher ISTH-BAT score than the carriers with the opposite conditions (>20 IU/dL and <80:20). In our cohort of haemophilia carriers, XCI was significantly skewed, which may contribute to the low expression of clotting factor levels and bleeding symptoms.
Collapse
|
3
|
Ye Y, Wang J, Quan X, Xu K, Fu H, Gu W, Mao J. Case report: a Chinese girl with dent disease 1 and turner syndrome due to a hemizygous CLCN5 gene mutation and Isochromosome (Xq). BMC Nephrol 2020; 21:171. [PMID: 32393202 PMCID: PMC7216489 DOI: 10.1186/s12882-020-01827-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 04/22/2020] [Indexed: 01/15/2023] Open
Abstract
Background Female Dent disease 1 patients with low-molecular-weight proteinuria (LMWP) due to CLCN5 gene mutation were rarely reported, and these cases that the people were also with Turner syndrome (TS) were even hardly documented before. Case presentation Here we report a 3-year and 11-month old Chinese girl with short stature who had a karyotype of 46,X,i(X)(q10) and a de novo pathogenic variant in the CLCN5 gene on the short arm of X chromosome. Laboratory examinations showed that the patient had LMWP, hypercalciuria, hypophosphatemia, delayed bone age, and genital dysplasia. Conclusion The combination of i(X)(q10) and CLCN5 mutation causes the deletion of the wild-type CLCN5 allele that results in Dent-1 and TS. To the best of our knowledge, this is the first case that a female CLCN5 mutation hemizygote is diagnosed with Dent-1 and Turner syndrome due to isochromosome X. Also, our case has indicated that the prevalence of the situation may be largely underestimated because of the mild signs of females with Dent-1.
Collapse
Affiliation(s)
- Yuhong Ye
- Department of Nephrology, The Children's Hospital of Zhejiang University School of Medicine, #57 Zhugan Lane, Hangzhou, 310003, China
| | - Jingjing Wang
- Department of Nephrology, The Children's Hospital of Zhejiang University School of Medicine, #57 Zhugan Lane, Hangzhou, 310003, China
| | - Xiaofang Quan
- Chigene (Beijing) Translational Medical Research Center Co. Ltd., E2 Biomedical Park, #88 Kechuang Sixth Ave, Yizhuang, Beijing, China
| | - Ke Xu
- Chigene (Beijing) Translational Medical Research Center Co. Ltd., E2 Biomedical Park, #88 Kechuang Sixth Ave, Yizhuang, Beijing, China
| | - Haidong Fu
- Department of Nephrology, The Children's Hospital of Zhejiang University School of Medicine, #57 Zhugan Lane, Hangzhou, 310003, China
| | - Weiyue Gu
- Chigene (Beijing) Translational Medical Research Center Co. Ltd., E2 Biomedical Park, #88 Kechuang Sixth Ave, Yizhuang, Beijing, China.
| | - Jianhua Mao
- Department of Nephrology, The Children's Hospital of Zhejiang University School of Medicine, #57 Zhugan Lane, Hangzhou, 310003, China.
| |
Collapse
|
4
|
Bajic VP, Essack M, Zivkovic L, Stewart A, Zafirovic S, Bajic VB, Gojobori T, Isenovic E, Spremo-Potparevic B. The X Files: "The Mystery of X Chromosome Instability in Alzheimer's Disease". Front Genet 2020; 10:1368. [PMID: 32047510 PMCID: PMC6997486 DOI: 10.3389/fgene.2019.01368] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 12/13/2019] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that affects millions of individuals worldwide and can occur relatively early or later in life. It is well known that genetic components, such as the amyloid precursor protein gene on chromosome 21, are fundamental in early-onset AD (EOAD). To date, however, only the apolipoprotein E4 (ApoE4) gene has been proved to be a genetic risk factor for late-onset AD (LOAD). In recent years, despite the hypothesis that many additional unidentified genes are likely to play a role in AD development, it is surprising that additional gene polymorphisms associated with LOAD have failed to come to light. In this review, we examine the role of X chromosome epigenetics and, based upon GWAS studies, the PCDHX11 gene. Furthermore, we explore other genetic risk factors of AD that involve X-chromosome epigenetics.
Collapse
Affiliation(s)
- Vladan P Bajic
- Laboratory for Radiobiology and Molecular Genetics, Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Magbubah Essack
- Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Lada Zivkovic
- Department of Physiology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Alan Stewart
- School of Medicine, University of St Andrews, St Andrews, United Kingdom
| | - Sonja Zafirovic
- Laboratory for Radiobiology and Molecular Genetics, Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Vladimir B Bajic
- Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Takashi Gojobori
- Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.,Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Esma Isenovic
- Laboratory for Radiobiology and Molecular Genetics, Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | | |
Collapse
|
5
|
Schurz H, Salie M, Tromp G, Hoal EG, Kinnear CJ, Möller M. The X chromosome and sex-specific effects in infectious disease susceptibility. Hum Genomics 2019; 13:2. [PMID: 30621780 PMCID: PMC6325731 DOI: 10.1186/s40246-018-0185-z] [Citation(s) in RCA: 239] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 11/30/2018] [Indexed: 12/18/2022] Open
Abstract
The X chromosome and X-linked variants have largely been ignored in genome-wide and candidate association studies of infectious diseases due to the complexity of statistical analysis of the X chromosome. This exclusion is significant, since the X chromosome contains a high density of immune-related genes and regulatory elements that are extensively involved in both the innate and adaptive immune responses. Many diseases present with a clear sex bias, and apart from the influence of sex hormones and socioeconomic and behavioural factors, the X chromosome, X-linked genes and X chromosome inactivation mechanisms contribute to this difference. Females are functional mosaics for X-linked genes due to X chromosome inactivation and this, combined with other X chromosome inactivation mechanisms such as genes that escape silencing and skewed inactivation, could contribute to an immunological advantage for females in many infections. In this review, we discuss the involvement of the X chromosome and X inactivation in immunity and address its role in sexual dimorphism of infectious diseases using tuberculosis susceptibility as an example, in which male sex bias is clear, yet not fully explored.
Collapse
Affiliation(s)
- Haiko Schurz
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- South African Tuberculosis Bioinformatics Initiative (SATBBI), Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Muneeb Salie
- Department of Genetics, St. Jude Children’s Research Hospital, Memphis, TN 38105 USA
| | - Gerard Tromp
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- South African Tuberculosis Bioinformatics Initiative (SATBBI), Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Eileen G. Hoal
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Craig J. Kinnear
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Marlo Möller
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
6
|
Wang P, Zhang Y, Wang BQ, Li JL, Wang YX, Pan D, Wu XB, Fung WK, Zhou JY. A statistical measure for the skewness of X chromosome inactivation based on case-control design. BMC Bioinformatics 2019; 20:11. [PMID: 30616589 PMCID: PMC6323862 DOI: 10.1186/s12859-018-2587-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 12/18/2018] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Skewed X chromosome inactivation (XCI), which is a non-random process, is frequently observed in both healthy and affected females. Furthermore, skewed XCI has been reported to be related to many X-linked diseases. However, no statistical method is available in the literature to measure the degree of the skewness of XCI for case-control design. Therefore, it is necessary to develop methods for such a task. RESULTS In this article, we first proposed a statistical measure for the degree of XCI skewing by using a case-control design, which is a ratio of two logistic regression coefficients after a simple reparameterization. Based on the point estimate of the ratio, we further developed three types of confidence intervals (the likelihood ratio, Fieller's and delta methods) to evaluate its variation. Simulation results demonstrated that the likelihood ratio method and the Fieller's method have more accurate coverage probability and more balanced tail errors than the delta method. We also applied these proposed methods to analyze the Graves' disease data for their practical use and found that rs3827440 probably undergoes a skewed XCI pattern with 68.7% of cells in heterozygous females having the risk allele T active, while the other 31.3% of cells keeping the normal allele C active. CONCLUSIONS For practical application, we suggest using the Fieller's method in large samples due to the non-iterative computation procedure and using the LR method otherwise for its robustness despite its slightly heavy computational burden.
Collapse
Affiliation(s)
- Peng Wang
- State Key Laboratory of Organ Failure Research, Ministry of Education, and Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Biostatistics, School of Public Health, Southern Medical University, No. 1023, South Shatai Road, Baiyun District, Guangzhou, 510515 China
| | - Yu Zhang
- State Key Laboratory of Organ Failure Research, Ministry of Education, and Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Biostatistics, School of Public Health, Southern Medical University, No. 1023, South Shatai Road, Baiyun District, Guangzhou, 510515 China
| | - Bei-Qi Wang
- State Key Laboratory of Organ Failure Research, Ministry of Education, and Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Biostatistics, School of Public Health, Southern Medical University, No. 1023, South Shatai Road, Baiyun District, Guangzhou, 510515 China
| | - Jian-Long Li
- State Key Laboratory of Organ Failure Research, Ministry of Education, and Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Biostatistics, School of Public Health, Southern Medical University, No. 1023, South Shatai Road, Baiyun District, Guangzhou, 510515 China
| | - Yi-Xin Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dongdong Pan
- Yunnan Key Laboratory of Statistical Modeling and Data Analysis, Yunnan University, Kunming, China
| | - Xian-Bo Wu
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Wing Kam Fung
- Department of Statistics and Actuarial Science, University of Hong Kong, Hong Kong, China
| | - Ji-Yuan Zhou
- State Key Laboratory of Organ Failure Research, Ministry of Education, and Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Biostatistics, School of Public Health, Southern Medical University, No. 1023, South Shatai Road, Baiyun District, Guangzhou, 510515 China
| |
Collapse
|
7
|
Abstract
Fundamental differences exist between males and females, encompassing anatomy, physiology, behaviour, and genetics. Such differences undoubtedly play a part in the well documented, yet poorly understood, disparity in disease susceptibility between the sexes. Although traditionally attributed to gonadal sex hormone effects, recent work has begun to shed more light on the contribution of genetics - and in particular the sex chromosomes - to these sexual dimorphisms. Here, we explore the accumulating evidence for a significant genetic component to mammalian sexual dimorphism through the paradigm of sex chromosome evolution. The differences between the extant X and Y chromosomes, at both a sequence and regulatory level, arose across 166 million years. A functional result of these differences is cell autonomous sexual dimorphism. By understanding the process that changed a pair of homologous ancestral autosomes into the extant mammalian X and Y, we believe it easier to consider the mechanisms that may contribute to hormone-independent male-female differences. We highlight key roles for genes with homologues present on both sex chromosomes, where the X-linked copy escapes X chromosome inactivation. Finally, we summarise current experimental paradigms and suggest areas for developments to further increase our understanding of cell autonomous sexual dimorphism in the context of health and disease.
Collapse
Affiliation(s)
- Daniel M Snell
- Sex Chromosome Biology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - James M A Turner
- Sex Chromosome Biology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
8
|
A powerful parent-of-origin effects test for qualitative traits on X chromosome in general pedigrees. BMC Bioinformatics 2018; 19:8. [PMID: 29304743 PMCID: PMC5756386 DOI: 10.1186/s12859-017-2001-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 12/18/2017] [Indexed: 11/10/2022] Open
Abstract
Background Genomic imprinting is one of the well-known epigenetic factors causing the association between traits and genes, and has generally been examined by detecting parent-of-origin effects of alleles. A lot of methods have been proposed to test for parent-of-origin effects on autosomes based on nuclear families and general pedigrees. Although these parent-of-origin effects tests on autosomes have been available for more than 15 years, there has been no statistical test developed to test for parent-of-origin effects on X chromosome, until the parental-asymmetry test on X chromosome (XPAT) and its extensions were recently proposed. However, these methods on X chromosome are only applicable to nuclear families and thus are not suitable for general pedigrees. Results In this article, we propose the pedigree parental-asymmetry test on X chromosome (XPPAT) statistic to test for parent-of-origin effects in the presence of association, which can accommodate general pedigrees. When there are missing genotypes in some pedigrees, we further develop the Monte Carlo pedigree parental-asymmetry test on X chromosome (XMCPPAT) to test for parent-of-origin effects, by inferring the missing genotypes given the observed genotypes based on a Monte Carlo estimation. An extensive simulation study has been carried out to investigate the type I error rates and the powers of the proposed tests. Our simulation results show that the proposed methods control the size well under the null hypothesis of no parent-of-origin effects. Moreover, XMCPPAT substantially outperforms the existing tests and has a much higher power than XPPAT which only uses complete nuclear families (with both parents) from pedigrees. We also apply the proposed methods to analyze rheumatoid arthritis data for their practical use. Conclusions The proposed XPPAT and XMCPPAT test statistics are valid and powerful in detecting parent-of-origin effects on X chromosome for qualitative traits based on general pedigrees and thus are recommended. Electronic supplementary material The online version of this article (10.1186/s12859-017-2001-5) contains supplementary material, which is available to authorized users.
Collapse
|
9
|
Marciano BE, Zerbe CS, Falcone EL, Ding L, DeRavin SS, Daub J, Kreuzburg S, Yockey L, Hunsberger S, Foruraghi L, Barnhart LA, Matharu K, Anderson V, Darnell DN, Frein C, Fink DL, Lau KP, Long Priel DA, Gallin JI, Malech HL, Uzel G, Freeman AF, Kuhns DB, Rosenzweig SD, Holland SM. X-linked carriers of chronic granulomatous disease: Illness, lyonization, and stability. J Allergy Clin Immunol 2018; 141:365-371. [DOI: 10.1016/j.jaci.2017.04.035] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 04/12/2017] [Accepted: 04/18/2017] [Indexed: 12/18/2022]
|
10
|
Wang J, Talluri R, Shete S. Selection of X-chromosome Inactivation Model. Cancer Inform 2017; 16:1176935117747272. [PMID: 29308008 PMCID: PMC5751921 DOI: 10.1177/1176935117747272] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 11/18/2017] [Indexed: 11/15/2022] Open
Abstract
To address the complexity of the X-chromosome inactivation (XCI) process, we previously developed a unified approach for the association test for X-chromosomal single-nucleotide polymorphisms (SNPs) and the disease of interest, accounting for different biological possibilities of XCI: random, skewed, and escaping XCI. In the original study, we focused on the SNP-disease association test but did not provide knowledge regarding the underlying XCI models. One can use the highest likelihood ratio (LLR) to select XCI models (max-LLR approach). However, that approach does not formally compare the LLRs corresponding to different XCI models to assess whether the models are distinguishable. Therefore, we propose an LLR comparison procedure (comp-LLR approach), inspired by the Cox test, to formally compare the LLRs of different XCI models to select the most likely XCI model that describes the underlying XCI process. We conduct simulation studies to investigate the max-LLR and comp-LLR approaches. The simulation results show that compared with the max-LLR, the comp-LLR approach has higher probability of identifying the correct underlying XCI model for the scenarios when the underlying XCI process is random XCI, escaping XCI, or skewed XCI to the deleterious allele. We applied both approaches to a head and neck cancer genetic study to investigate the underlying XCI processes for the X-chromosomal genetic variants.
Collapse
Affiliation(s)
- Jian Wang
- Department of Biostatistics–Unit 1411, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rajesh Talluri
- Department of Data Science, The University of Mississippi Medical Center, Jackson, MS, USA
| | - Sanjay Shete
- Department of Biostatistics–Unit 1411, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
11
|
Have humans lost control: The elusive X-controlling element. Semin Cell Dev Biol 2016; 56:71-77. [DOI: 10.1016/j.semcdb.2016.01.044] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 01/22/2016] [Accepted: 01/28/2016] [Indexed: 02/01/2023]
|
12
|
Evers C, Mitter D, Strobl-Wildemann G, Haug U, Hackmann K, Maas B, Janssen JWG, Jauch A, Hinderhofer K, Moog U. Duplication Xp11.22-p14 in females: does X-inactivation help in assessing their significance? Am J Med Genet A 2016; 167A:553-62. [PMID: 25691408 DOI: 10.1002/ajmg.a.36897] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 10/31/2014] [Indexed: 11/08/2022]
Abstract
In females, large duplications in Xp often lead to preferential inactivation of the aberrant X chromosome and a normal phenotype. Recently, a recurrent ∼4.5 Mb microduplication of Xp11.22-p11.23 was found in females with developmental delay/intellectual disability and other neurodevelopmental disorders (speech development disorder, epilepsy or EEG anomalies, autism spectrum disorder, or behavioral disorder). Unexpectedly, most of them showed preferential inactivation of the normal X chromosome. We describe five female patients carrying de novo Xp duplications encompassing p11.23. Patient 1 carried the recurrent microduplication Xp11.22-p11.23, her phenotype and X-chromosome inactivation (XI) pattern was consistent with previous reports. The other four patients had novel Xp duplications. Two were monozygotic twins with a similar phenotype to Patient 1 and unfavorable XI skewing carrying an overlapping ∼5 Mb duplication of Xp11.23-p11.3. Patient 4 showed a duplication of ∼5.5 Mb comparable to the twins but had a more severe phenotype and unskewed XI. Patient 5 had a ∼8.5 Mb duplication Xp11.23-p11.4 and presented with mild ID, epilepsy, behavioral problems, and inconsistent results of XI analysis. A comparison of phenotype, size and location of the duplications and XI patterns in Patients 1-5 and previously reported females with overlapping duplications provides further evidence that microduplications encompassing Xp11.23 are associated with ID and other neurodevelopmental disorders in females. To further assess the implication of XI for female carriers, we recommend systematic analysis of XI pattern in any female with X imbalances that are known or suspected to be pathogenic.
Collapse
Affiliation(s)
- Christina Evers
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Vacca M, Della Ragione F, Scalabrì F, D'Esposito M. X inactivation and reactivation in X-linked diseases. Semin Cell Dev Biol 2016; 56:78-87. [PMID: 26994527 DOI: 10.1016/j.semcdb.2016.03.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 03/10/2016] [Accepted: 03/11/2016] [Indexed: 12/22/2022]
Abstract
X chromosome inactivation (XCI) is the phenomenon by which mammals compensate for dosage of X-linked genes in females (XX) versus males (XY). XCI patterns can be random or show extreme skewing, and can modify the mode of inheritance of X-driven phenotypes, which contributes to the variability of human pathologies. Recent findings have shown reversibility of the XCI process, which has opened new avenues in the approaches used for the treatment of X-linked diseases.
Collapse
Affiliation(s)
- Marcella Vacca
- Institute of Genetics and Biophysics "A. Buzzati Traverso", CNR, via Pietro Castellino, 111, 80131, Naples, Italy.
| | - Floriana Della Ragione
- Institute of Genetics and Biophysics "A. Buzzati Traverso", CNR, via Pietro Castellino, 111, 80131, Naples, Italy; IRCCS Neuromed, Pozzilli, Isernia, Italy
| | | | - Maurizio D'Esposito
- Institute of Genetics and Biophysics "A. Buzzati Traverso", CNR, via Pietro Castellino, 111, 80131, Naples, Italy; IRCCS Neuromed, Pozzilli, Isernia, Italy
| |
Collapse
|
14
|
Vousooghi N, Shirazi MSS, Goodarzi A, Abharian PH, Zarrindast MR. X Chromosome Inactivation in Opioid Addicted Women. Basic Clin Neurosci 2015; 6:179-84. [PMID: 26904175 PMCID: PMC4656991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2022] Open
Abstract
INTRODUCTION X chromosome inactivation (XCI) is a process during which one of the two X chromosomes in female human is silenced leading to equal gene expression with males who have only one X chromosome. Here we have investigated XCI ratio in females with opioid addiction to see whether XCI skewness in women could be a risk factor for opioid addiction. METHODS 30 adult females meeting DSM IV criteria for opioid addiction and 30 control females with no known history of addiction were included in the study. Digested and undigested DNA samples which were extracted from blood were analyzed after amplification of the polymorphic androgen receptor (AR) gene located on the X chromosome. XCI skewness was studied in 3 ranges: 50:50-64:36 (random inactivation), 65:35-80:20 (moderately skewed) and >80:20 (highly skewed). RESULTS XCI from informative females in control group was 63% (N=19) random, 27% (N=8) moderately skewed and 10% (N=3) highly skewed. Addicted women showed 57%, 23% and 20%, respectively. The distribution and frequency of XCI status in women with opioid addiction was not significantly different from control group (P=0.55). DISCUSSION Our data did not approve our hypothesis of increased XCI skewness among women with opioid addiction or unbalanced (non-random) expression of genes associated with X chromosome in female opioid addicted subjects.
Collapse
Affiliation(s)
- Nasim Vousooghi
- Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Iranian National Center for Addiction Studies (INCAS), Iranian Institute for Reduction of High-Risk Behaviors, Tehran University of Medical Sciences, Tehran, Iran
| | - Mitra-Sadat Sadat Shirazi
- Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Iranian National Center for Addiction Studies (INCAS), Iranian Institute for Reduction of High-Risk Behaviors, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Goodarzi
- Iranian National Center for Addiction Studies (INCAS), Iranian Institute for Reduction of High-Risk Behaviors, Tehran University of Medical Sciences, Tehran, Iran
| | - Peyman Hassani Abharian
- Iranian National Center for Addiction Studies (INCAS), Iranian Institute for Reduction of High-Risk Behaviors, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad-Reza Zarrindast
- Iranian National Center for Addiction Studies (INCAS), Iranian Institute for Reduction of High-Risk Behaviors, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Cognitive Neuroscience, Institute for Cognitive Science Studies, Tehran, Iran.,Genomics Center, School of Advanced Sciences, Tehran Medical Branch, Islamic Azad University, Tehran, Iran.,School of Cognitive Sciences, Institute for Studies in Theoretical Physics and Mathematics, Tehran, Iran.,Corresponding Author: Mohammad Reza Zarrindast, PhD, Address: Iranian National Center for Addiction Studies (INCAS), Iranian Institute for Reduction of High-Risk Behaviors, Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran. Tel.: +98 (21) 88991118 Fax: +98 (21) 88991117 E-mail:
| |
Collapse
|
15
|
Sex disparities in melanoma outcomes: The role of biology. Arch Biochem Biophys 2014; 563:42-50. [DOI: 10.1016/j.abb.2014.06.018] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 06/16/2014] [Accepted: 06/18/2014] [Indexed: 02/06/2023]
|
16
|
Wang J, Yu R, Shete S. X-chromosome genetic association test accounting for X-inactivation, skewed X-inactivation, and escape from X-inactivation. Genet Epidemiol 2014; 38:483-93. [PMID: 25043884 PMCID: PMC4127090 DOI: 10.1002/gepi.21814] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 04/06/2014] [Accepted: 04/17/2014] [Indexed: 11/07/2022]
Abstract
X-chromosome inactivation (XCI) is the process in which one of the two copies of the X-chromosome in females is randomly inactivated to achieve the dosage compensation of X-linked genes between males and females. That is, 50% of the cells have one allele inactive and the other 50% of the cells have the other allele inactive. However, studies have shown that skewed or nonrandom XCI is a biological plausibility wherein more than 75% of cells have the same allele inactive. Also, some of the X-chromosome genes escape XCI, i.e., both alleles are active in all cells. Current statistical tests for X-chromosome association studies can either account for random XCI (e.g., Clayton's approach) or escape from XCI (e.g., PLINK software). Because the true XCI process is unknown and differs across different regions on the X-chromosome, we proposed a unified approach of maximizing likelihood ratio over all biological possibilities: random XCI, skewed XCI, and escape from XCI. A permutation-based procedure was developed to assess the significance of the approach. We conducted simulation studies to compare the performance of the proposed approach with Clayton's approach and PLINK regression. The results showed that the proposed approach has higher powers in the scenarios where XCI is skewed while losing some power in scenarios where XCI is random or XCI is escaped, with well-controlled type I errors. We also applied the approach to the X-chromosomal genetic association study of head and neck cancer.
Collapse
Affiliation(s)
- Jian Wang
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, U.S.A
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, U.S.A
| | - Robert Yu
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, U.S.A
| | - Sanjay Shete
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, U.S.A
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, U.S.A
| |
Collapse
|
17
|
Tarín JJ, García-Pérez MA, Hermenegildo C, Cano A. Changes in sex ratio from fertilization to birth in assisted-reproductive-treatment cycles. Reprod Biol Endocrinol 2014; 12:56. [PMID: 24957129 PMCID: PMC4079184 DOI: 10.1186/1477-7827-12-56] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 06/10/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In Western gender-neutral countries, the sex ratio at birth is estimated to be approximately 1.06. This ratio is lower than the estimated sex ratio at fertilization which ranges from 1.07 to 1.70 depending on the figures of sex ratio at birth and differential embryo/fetal mortality rates taken into account to perform these estimations. Likewise, little is known about the sex ratio at implantation in natural and assisted-reproduction-treatment (ART) cycles. In this bioessay, we aim to estimate the sex ratio at fertilization and implantation using data from embryos generated by standard in-vitro fertilization (IVF) or intracytoplasmic sperm injection (ICSI) in preimplantation genetic diagnosis cycles. Thereafter, we compare sex ratios at implantation and birth in cleavage- and blastocyst-stage-transfer cycles to propose molecular mechanisms accounting for differences in post-implantation male and female mortality and thereby variations in sex ratios at birth in ART cycles. METHODS A literature review based on publications up to December 2013 identified by PubMed database searches. RESULTS Sex ratio at both fertilization and implantation is estimated to be between 1.29 and 1.50 in IVF cycles and 1.07 in ICSI cycles. Compared with the estimated sex ratio at implantation, sex ratio at birth is lower in IVF cycles (1.03 after cleavage-stage transfer and 1.25 after blastocyst-stage transfer) but similar and close to unity in ICSI cycles (0.95 after cleavage-stage transfer and 1.04 after blastocyst-stage transfer). CONCLUSIONS In-vitro-culture-induced precocious X-chromosome inactivation together with ICSI-induced decrease in number of trophectoderm cells in female blastocysts may account for preferential female mortality at early post-implantation stages and thereby variations in sex ratios at birth in ART cycles.
Collapse
Affiliation(s)
- Juan J Tarín
- Department of Functional Biology and Physical Anthropology, Faculty of Biological Sciences, University of Valencia, Burjassot, Valencia 46100, Spain
| | - Miguel A García-Pérez
- Department of Genetics, Faculty of Biological Sciences, University of Valencia, Burjassot, Valencia 46100; and Research Unit-INCLIVA, Hospital Clínico de Valencia, Valencia 46010, Spain
| | - Carlos Hermenegildo
- Department of Physiology, Faculty of Medicine, University of Valencia, Valencia 46010; and Research Unit-INCLIVA, Hospital Clínico de Valencia, Valencia 46010, Spain
| | - Antonio Cano
- Department of Pediatrics, Obstetrics and Gynecology, Faculty of Medicine, University of Valencia, Valencia 46010; and Service of Obstetrics and Gynecology, University Hospital Dr. Peset, Valencia 46017, Spain
| |
Collapse
|