1
|
Mammadova D, Kraus C, Leis T, Popp B, Zweier C, Reis A, Trollmann R. Intrafamilial neurological phenotypic variability due to either biallelic or monoallelic pathogenic variants in CACNA1A. Front Neurol 2024; 15:1458109. [PMID: 39416668 PMCID: PMC11479977 DOI: 10.3389/fneur.2024.1458109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/09/2024] [Indexed: 10/19/2024] Open
Abstract
Pathogenic heterozygous variants in CACNA1A are associated with familial hemiplegic migraine, episodic ataxia type 2 and spinocerebellar ataxia type 6, and more recently, neurodevelopmental disorders. We describe a severe, early-onset phenotype including severe muscular hypotonia, early-onset epileptic seizures, apnoea, optic atrophy and dysphagia in three siblings carrying compound heterozygous frameshift variants in CACNA1A. Two male patients died at the age of 5 or 14 months of suspected SIDS or severe developmental epileptic encephalopathy (DEE) with refractory seizures and apnoea. A male child (index patient) developed severe early-onset DEE including seizures and ictal apnoea at the age of 4 weeks. Another male child developed generalized epilepsy and mild intellectual impairment in late infancy, and his mother and his maternal uncle were identified as carriers of a known CACNA1A pathogenic variant [c.2602delG heterozygous, p. (Ala868Profs*24)] with a diagnosis of episodic ataxia type 2. This maternal pathogenic variant c.2602delG was detected in the index patient and child 2. Trio-Exome sequencing identified an additional heterozygous pathogenic variant in the CACNA1A gene, c.5476delC, p.(His1826Thrfs*30) in the index patient and child 2, which was inherited from the asymptomatic father. In conclusion, the novel compound heterozygosity for two frameshift pathogenic variants, maternally [c.2602delG, p.(Ala868Profs*24)] and paternally [c.5476delC, p.(His1826Thrfs*3)] is associated with a severe phenotype of early-onset DEE. This observation highlights the necessity of additional analyses to clarify unusual phenotypes even if a pathogenic variant has already been identified, and expands the clinical spectrum of CACNA1A-related disorders.
Collapse
Affiliation(s)
- Dilbar Mammadova
- Department of Pediatrics, Pediatric Neurology, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Cornelia Kraus
- Institute of Human Genetics, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Thomas Leis
- Department of Pediatrics, Pediatric Neurology, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Bernt Popp
- Institute of Human Genetics, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
- Center of Functional Genomics, Berlin Institute of Health at Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Christiane Zweier
- Institute of Human Genetics, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
- Department of Human Genetics, Inselspital, University of Bern, Bern, Switzerland
| | - Andre Reis
- Institute of Human Genetics, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
- Centre for Rare Disorders Erlangen, University Hospital Erlangen, Erlangen, Germany
| | - Regina Trollmann
- Department of Pediatrics, Pediatric Neurology, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
- Centre for Rare Disorders Erlangen, University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
2
|
Powers A, Angelos PA, Bond A, Farina E, Fredericks C, Gandhi J, Greenwald M, Hernandez-Busot G, Hosein G, Kelley M, Mourgues C, Palmer W, Rodriguez-Sanchez J, Seabury R, Toribio S, Vin R, Weleff J, Woods S, Benrimoh D. A computational account of the development and evolution of psychotic symptoms. Biol Psychiatry 2024:S0006-3223(24)01584-1. [PMID: 39260466 DOI: 10.1016/j.biopsych.2024.08.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 09/13/2024]
Abstract
The mechanisms of psychotic symptoms like hallucinations and delusions are often investigated in fully-formed illness, well after symptoms emerge. These investigations have yielded key insights, but are not well-positioned to reveal the dynamic forces underlying symptom formation itself. Understanding symptom development over time would allow us to identify steps in the pathophysiological process leading to psychosis, shifting the focus of psychiatric intervention from symptom alleviation to prevention. We propose a model for understanding the emergence of psychotic symptoms within the context of an adaptive, developing neural system. We will make the case for a pathophysiological process that begins with cortical hyperexcitability and bottom-up noise transmission, which engenders inappropriate belief formation via aberrant prediction error signaling. We will argue that this bottom-up noise drives learning about the (im)precision of new incoming sensory information because of diminished signal-to-noise ratio, causing a compensatory relative over-reliance on prior beliefs. This over-reliance on priors predisposes to hallucinations and covaries with hallucination severity. An over-reliance on priors may also lead to increased conviction in the beliefs generated by bottom-up noise and drive movement toward conversion to psychosis. We will identify predictions of our model at each stage, examine evidence to support or refute those predictions, and propose experiments that could falsify or help select between alternative elements of the overall model. Nesting computational abnormalities within longitudinal development allows us to account for hidden dynamics among the mechanisms driving symptom formation and to view established symptomatology as a point of equilibrium among competing biological forces.
Collapse
Affiliation(s)
- Albert Powers
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, CT, USA.
| | - P A Angelos
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, CT, USA
| | - Alexandria Bond
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, CT, USA
| | - Emily Farina
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, CT, USA
| | - Carolyn Fredericks
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, CT, USA
| | - Jay Gandhi
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, CT, USA
| | - Maximillian Greenwald
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, CT, USA
| | | | - Gabriel Hosein
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, CT, USA
| | - Megan Kelley
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, CT, USA
| | - Catalina Mourgues
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, CT, USA
| | - William Palmer
- Yale University Department of Psychology, New Haven, CT, USA
| | | | - Rashina Seabury
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, CT, USA
| | - Silmilly Toribio
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, CT, USA
| | - Raina Vin
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, CT, USA
| | - Jeremy Weleff
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, CT, USA
| | - Scott Woods
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, CT, USA
| | - David Benrimoh
- Department of Psychiatry, McGill University, Montreal, Canada
| |
Collapse
|
3
|
Lanjewar AL, Levitt P, Eagleson KL. Developmental and molecular contributions to contextual fear memory emergence in mice. Neuropsychopharmacology 2024; 49:1392-1401. [PMID: 38438594 PMCID: PMC11251045 DOI: 10.1038/s41386-024-01835-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/02/2024] [Accepted: 02/15/2024] [Indexed: 03/06/2024]
Abstract
Cognitive impairment is a common phenotype of neurodevelopmental disorders, but how these deficits arise remains elusive. Determining the onset of discrete cognitive capabilities facilitates studies in probing mechanisms underlying their emergence. The present study analyzed the emergence of contextual fear memory persistence (7-day memory retention) and remote memory (30-day memory retention). There was a rapid transition from postnatal day (P) 20 to P21, in which memory persistence emerged in C57Bl/6 J male and female mice. Remote memory was present at P23, but expression was not robust compared to pubertal and adult mice. Previous studies reported that following deletion of the MET receptor tyrosine kinase (MET), there are fear memory deficits in adult mice and the timing of critical period plasticity is altered in the developing visual cortex, positioning MET as a regulator for onset of contextual fear memory. Sustaining Met past the normal window of peak cortical expression or deleting Met, however, did not alter the timing of emergence of persistence or remote memory capabilities during development. Fear memory in young adults, however, was disrupted. Remarkably, compared to homecage controls, the number of FOS-expressing infragranular neurons in medial prefrontal cortex (mPFC) did not increase from contextual memory formation recall of fear conditioning at P35 but exhibited enhanced activation at P90 in male and female mice. Additionally, MET-expressing neurons were preferentially recruited at P90 compared to P35 during fear memory expression. The studies demonstrate a developmental profile of contextual fear memory capabilities. Further, developmental disruption of Met leads to a delayed functional deficit that arises in young adulthood, correlated with an increase of mPFC neuron activation during fear memory recall.
Collapse
Affiliation(s)
- Alexandra L Lanjewar
- Program in Developmental Neuroscience and Neurogenetics, Children's Hospital Los Angeles, The Saban Research Institute, Los Angeles, CA, USA.
- Department of Pediatrics, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA.
| | - Pat Levitt
- Program in Developmental Neuroscience and Neurogenetics, Children's Hospital Los Angeles, The Saban Research Institute, Los Angeles, CA, USA
- Department of Pediatrics, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| | - Kathie L Eagleson
- Program in Developmental Neuroscience and Neurogenetics, Children's Hospital Los Angeles, The Saban Research Institute, Los Angeles, CA, USA
- Department of Pediatrics, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
4
|
Sriretnakumar V, Harripaul R, Kennedy JL, So J. When rare meets common: Treatable genetic diseases are enriched in the general psychiatric population. Am J Med Genet A 2024; 194:e63609. [PMID: 38532509 DOI: 10.1002/ajmg.a.63609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/06/2024] [Accepted: 03/13/2024] [Indexed: 03/28/2024]
Abstract
Mental illnesses are one of the biggest contributors to the global disease burden. Despite the increased recognition, diagnosis and ongoing research of mental health disorders, the etiology and underlying molecular mechanisms of these disorders are yet to be fully elucidated. Moreover, despite many treatment options available, a large subset of the psychiatric patient population is nonresponsive to standard medications and therapies. There has not been a comprehensive study to date examining the burden and impact of treatable genetic disorders (TGDs) that can present with neuropsychiatric features in psychiatric patient populations. In this study, we test the hypothesis that TGDs that present with psychiatric symptoms are more prevalent within psychiatric patient populations compared to the general population by performing targeted next-generation sequencing of 129 genes associated with 108 TGDs in a cohort of 2301 psychiatric patients. In total, 48 putative affected and 180 putative carriers for TGDs were identified, with known or likely pathogenic variants in 79 genes. Despite screening for only 108 genetic disorders, this study showed a two-fold (2.09%) enrichment for genetic disorders within the psychiatric population relative to the estimated 1% cumulative prevalence of all single gene disorders globally. This strongly suggests that the prevalence of these, and most likely all, genetic diseases is greatly underestimated in psychiatric populations. Increasing awareness and ensuring accurate diagnosis of TGDs will open new avenues to targeted treatment for a subset of psychiatric patients.
Collapse
Affiliation(s)
- Venuja Sriretnakumar
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Ricardo Harripaul
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
| | - James L Kennedy
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada
- Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Joyce So
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Department of Psychiatry, University of Toronto, Toronto, Canada
- Department of Medicine, University of Toronto, Toronto, Canada
- Division of Medical Genetics, Departments of Medicine and Pediatrics, University of California, San Francisco, California, USA
| |
Collapse
|
5
|
Singh G, Gill G, Singh S, Roshan NS, Lalendran A, Gunturu S. A Complex Presentation: Psychosis in a Patient Diagnosed With Lennox-Gastaut Syndrome. Cureus 2024; 16:e65010. [PMID: 39161505 PMCID: PMC11333143 DOI: 10.7759/cureus.65010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2024] [Indexed: 08/21/2024] Open
Abstract
Lennox-Gastaut syndrome (LGS) is a form of severe childhood epilepsy, with most children experiencing seizures before reaching the age of eight. Typically, patients have multiple types of seizures, making an accurate diagnosis challenging. While it can be secondary to other causes, often, it is idiopathic. Over time, children develop cognitive impairment, leading to intellectual disability. The mainstay of treatment and management is seizure control. However, management remains challenging due to the complexity of the syndrome, as it is associated with multiple seizure types, intellectual deterioration, and other psychiatric comorbidities. We present the case of a 19-year-old male diagnosed with LGS and treated with various available therapies, who demonstrated multiple breakthrough seizures, significant neurocognitive disabilities, and behavior challenges. Additionally, the patient displayed psychotic features of auditory hallucinations, aggression, and attempts at self-mutilation, a rare clinical presentation in LGS.
Collapse
Affiliation(s)
- Gurraj Singh
- Psychiatry, Bergen New Bridge Medical Center, Paramus, USA
| | - Gurtej Gill
- Psychiatry, BronxCare Health System, New York, USA
| | - Satwant Singh
- Psychiatry and Behavioral Sciences, Interfaith Medical Center, Brooklyn, USA
| | | | - Akshita Lalendran
- Psychiatry and Behavioral Sciences, BronxMedcare Hospital, New York, USA
| | | |
Collapse
|
6
|
Privitera F, Pagano S, Meossi C, Battini R, Bartolini E, Montanaro D, Santorelli FM. Non-Specific Epileptic Activity, EEG, and Brain Imaging in Loss of Function Variants in SATB1: A New Case Report and Review of the Literature. Genes (Basel) 2024; 15:548. [PMID: 38790177 PMCID: PMC11120869 DOI: 10.3390/genes15050548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
SATB1 (MIM #602075) is a relatively new gene reported only in recent years in association with neurodevelopmental disorders characterized by variable facial dysmorphisms, global developmental delay, poor or absent speech, altered electroencephalogram (EEG), and brain abnormalities on imaging. To date about thirty variants in forty-four patients/children have been described, with a heterogeneous spectrum of clinical manifestations. In the present study, we describe a new patient affected by mild intellectual disability, speech disorder, and non-specific abnormalities on EEG and neuroimaging. Family studies identified a new de novo frameshift variant c.1818delG (p.(Gln606Hisfs*101)) in SATB1. To better define genotype-phenotype associations in the different types of reported SATB1 variants, we reviewed clinical data from our patient and from the literature and compared manifestations (epileptic activity, EEG abnormalities and abnormal brain imaging) due to missense variants versus those attributable to loss-of-function/premature termination variants. Our analyses showed that the latter variants are associated with less severe, non-specific clinical features when compared with the more severe phenotypes due to missense variants. These findings provide new insights into SATB1-related disorders.
Collapse
Affiliation(s)
- Flavia Privitera
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Via dei Giacinti 2, 56128 Pisa, Italy; (F.P.); (S.P.); (C.M.); (R.B.); (E.B.)
- Molecular Medicine, IRCCS Fondazione Stella Maris, Via dei Giacinti 2, 56128 Pisa, Italy
| | - Stefano Pagano
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Via dei Giacinti 2, 56128 Pisa, Italy; (F.P.); (S.P.); (C.M.); (R.B.); (E.B.)
- Molecular Medicine, IRCCS Fondazione Stella Maris, Via dei Giacinti 2, 56128 Pisa, Italy
- Medical Genetics, Residency Program, Federico II University, Via S. Pansini 5, 80131 Naples, Italy
| | - Camilla Meossi
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Via dei Giacinti 2, 56128 Pisa, Italy; (F.P.); (S.P.); (C.M.); (R.B.); (E.B.)
- Molecular Medicine, IRCCS Fondazione Stella Maris, Via dei Giacinti 2, 56128 Pisa, Italy
| | - Roberta Battini
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Via dei Giacinti 2, 56128 Pisa, Italy; (F.P.); (S.P.); (C.M.); (R.B.); (E.B.)
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Emanuele Bartolini
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Via dei Giacinti 2, 56128 Pisa, Italy; (F.P.); (S.P.); (C.M.); (R.B.); (E.B.)
- Tuscany PhD Program in Neurosciences, 50139 Florence, Italy
| | - Domenico Montanaro
- U.O.S. Dipartimentale e Servizio Autonomo di Risonanza Magnetica, IRCCS Stella Maris Foundation, 56128 Pisa, Italy;
| | - Filippo Maria Santorelli
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Via dei Giacinti 2, 56128 Pisa, Italy; (F.P.); (S.P.); (C.M.); (R.B.); (E.B.)
- Molecular Medicine, IRCCS Fondazione Stella Maris, Via dei Giacinti 2, 56128 Pisa, Italy
| |
Collapse
|
7
|
Powers A, Angelos P, Bond A, Farina E, Fredericks C, Gandhi J, Greenwald M, Hernandez-Busot G, Hosein G, Kelley M, Mourgues C, Palmer W, Rodriguez-Sanchez J, Seabury R, Toribio S, Vin R, Weleff J, Benrimoh D. A computational account of the development and evolution of psychotic symptoms. ARXIV 2024:arXiv:2404.10954v1. [PMID: 38699166 PMCID: PMC11065053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
The mechanisms of psychotic symptoms like hallucinations and delusions are often investigated in fully-formed illness, well after symptoms emerge. These investigations have yielded key insights, but are not well-positioned to reveal the dynamic forces underlying symptom formation itself. Understanding symptom development over time would allow us to identify steps in the pathophysiological process leading to psychosis, shifting the focus of psychiatric intervention from symptom alleviation to prevention. We propose a model for understanding the emergence of psychotic symptoms within the context of an adaptive, developing neural system. We will make the case for a pathophysiological process that begins with cortical hyperexcitability and bottom-up noise transmission, which engenders inappropriate belief formation via aberrant prediction error signaling. We will argue that this bottom-up noise drives learning about the (im)precision of new incoming sensory information because of diminished signal-to-noise ratio, causing an adaptive relative over-reliance on prior beliefs. This over-reliance on priors predisposes to hallucinations and covaries with hallucination severity. An over-reliance on priors may also lead to increased conviction in the beliefs generated by bottom-up noise and drive movement toward conversion to psychosis. We will identify predictions of our model at each stage, examine evidence to support or refute those predictions, and propose experiments that could falsify or help select between alternative elements of the overall model. Nesting computational abnormalities within longitudinal development allows us to account for hidden dynamics among the mechanisms driving symptom formation and to view established symptomatology as a point of equilibrium among competing biological forces.
Collapse
Affiliation(s)
- Albert Powers
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, CT, USA
| | - Philip Angelos
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, CT, USA
| | - Alexandria Bond
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, CT, USA
| | - Emily Farina
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, CT, USA
| | - Carolyn Fredericks
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, CT, USA
| | - Jay Gandhi
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, CT, USA
| | - Maximillian Greenwald
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, CT, USA
| | | | - Gabriel Hosein
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, CT, USA
| | - Megan Kelley
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, CT, USA
| | - Catalina Mourgues
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, CT, USA
| | - William Palmer
- Yale University Department of Psychology, New Haven, CT USA
| | | | - Rashina Seabury
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, CT, USA
| | - Silmilly Toribio
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, CT, USA
| | - Raina Vin
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, CT, USA
| | - Jeremy Weleff
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, CT, USA
| | - David Benrimoh
- Department of Psychiatry, McGill University, Montreal, Canada
| |
Collapse
|
8
|
Mao Y, Lin X, Wu Y, Lu J, Shen J, Zhong S, Jin X, Ma J. Additive interaction between birth asphyxia and febrile seizures on autism spectrum disorder: a population-based study. Mol Autism 2024; 15:17. [PMID: 38600595 PMCID: PMC11007945 DOI: 10.1186/s13229-024-00596-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 03/21/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND Autism Spectrum Disorder (ASD) is a pervasive neurodevelopmental disorder that can significantly impact an individual's ability to socially integrate and adapt. It's crucial to identify key factors associated with ASD. Recent studies link both birth asphyxia (BA) and febrile seizures (FS) separately to higher ASD prevalence. However, investigations into the interplay of BA and FS and its relationship with ASD are yet to be conducted. The present study mainly focuses on exploring the interactive effect between BA and FS in the context of ASD. METHODS Utilizing a multi-stage stratified cluster sampling, we initially recruited 84,934 Shanghai children aged 3-12 years old from June 2014 to June 2015, ultimately including 74,251 post-exclusion criteria. A logistic regression model was conducted to estimate the interaction effect after controlling for pertinent covariates. The attributable proportion (AP), the relative excess risk due to interaction (RERI), the synergy index (SI), and multiplicative-scale interaction were computed to determine the interaction effect. RESULTS Among a total of 74,251 children, 192 (0.26%) were diagnosed with ASD. The adjusted odds ratio for ASD in children with BA alone was 3.82 (95% confidence interval [CI] 2.42-6.02), for FS alone 3.06 (95%CI 1.48-6.31), and for comorbid BA and FS 21.18 (95%CI 9.10-49.30), versus children without BA or FS. The additive interaction between BA and FS showed statistical significance (P < 0.001), whereas the multiplicative interaction was statistically insignificant (P > 0.05). LIMITATIONS This study can only demonstrate the relationship between the interaction of BA and FS with ASD but cannot prove causation. Animal brain experimentation is necessary to unravel its neural mechanisms. A larger sample size, ongoing monitoring, and detailed FS classification are needed for confirming BA-FS interaction in ASD. CONCLUSION In this extensive cross-sectional study, both BA and FS were significantly linked to ASD. The coexistence of these factors was associated with an additive increase in ASD prevalence, surpassing the cumulative risk of each individual factor.
Collapse
Affiliation(s)
- Yi Mao
- Department of Developmental and Behavioral Pediatrics, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xindi Lin
- Department of Developmental and Behavioral Pediatrics, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yuhan Wu
- Department of Developmental and Behavioral Pediatrics, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jiayi Lu
- Department of Developmental and Behavioral Pediatrics, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jiayao Shen
- Department of Nephrology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Shaogen Zhong
- Department of Developmental and Behavioral Pediatrics, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xingming Jin
- Department of Developmental and Behavioral Pediatrics, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jun Ma
- Department of Developmental and Behavioral Pediatrics, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| |
Collapse
|
9
|
Walkley SU, Molholm S, Jordan B, Marion RW, Wasserstein M. Using team-based precision medicine to advance understanding of rare genetic brain disorders. J Neurodev Disord 2024; 16:10. [PMID: 38491427 PMCID: PMC10941544 DOI: 10.1186/s11689-024-09518-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 02/07/2024] [Indexed: 03/18/2024] Open
Abstract
We describe a multidisciplinary teamwork approach known as "Operation IDD Gene Team" developed by the Rose F. Kennedy Intellectual and Developmental Disabilities Research Center (RFK IDDRC) at the Albert Einstein College of Medicine. This initiative brings families affected by rare genetic diseases that cause intellectual and developmental disability together with physicians, basic scientists, and their trainees. At team meetings, family members share their child's medical and personal history, physicians describe the broader clinical consequences of the condition, and scientists provide accessible tutorials focused on the fundamental biology of relevant genes. When appropriate, possible treatment approaches are also discussed. The outcomes of team meetings have been overwhelmingly positive, with families not only expressing deep gratitude, but also becoming empowered to establish foundations dedicated to their child's specific condition. Physicians, and in particular the scientists and their trainees, have gained a deeper understanding of challenges faced by affected families, broadening their perspective on how their research can extend beyond the laboratory. Remarkably, research by the scientists following the Gene Team meetings have often included focus on the actual gene variants exhibited by the participating children. As these investigations progress and newly created foundations expand their efforts, national as well as international collaborations are forged. These developments emphasize the importance of rare diseases as windows into previously unexplored molecular and cellular processes, which can offer fresh insights into both normal function as well as more common diseases. Elucidating the mechanisms of and treatments for rare and ultra-rare diseases thus has benefits for all involved-families, physicians, and scientists and their trainees, as well as the broader medical community. While the RFK IDDRC's Operation IDD Gene Team program has focused on intellectual disabilities affecting children, we believe it has the potential to be applied to rare genetic diseases impacting individuals of any age and encompassing a wide variety of developmental disorders affecting multiple organ systems.
Collapse
Affiliation(s)
- Steven U Walkley
- Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
- Department of Neuroscience, Albert Einstein College of Medicine, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| | - Sophie Molholm
- Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Department of Neuroscience, Albert Einstein College of Medicine, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Department of Pediatrics, Albert Einstein College of Medicine, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Bryen Jordan
- Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Department of Neuroscience, Albert Einstein College of Medicine, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Robert W Marion
- Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Department of Pediatrics, Albert Einstein College of Medicine, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Melissa Wasserstein
- Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Department of Pediatrics, Albert Einstein College of Medicine, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| |
Collapse
|
10
|
Zhuang H, Liang Z, Ma G, Qureshi A, Ran X, Feng C, Liu X, Yan X, Shen L. Autism spectrum disorder: pathogenesis, biomarker, and intervention therapy. MedComm (Beijing) 2024; 5:e497. [PMID: 38434761 PMCID: PMC10908366 DOI: 10.1002/mco2.497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/27/2024] [Accepted: 01/30/2024] [Indexed: 03/05/2024] Open
Abstract
Autism spectrum disorder (ASD) has become a common neurodevelopmental disorder. The heterogeneity of ASD poses great challenges for its research and clinical translation. On the basis of reviewing the heterogeneity of ASD, this review systematically summarized the current status and progress of pathogenesis, diagnostic markers, and interventions for ASD. We provided an overview of the ASD molecular mechanisms identified by multi-omics studies and convergent mechanism in different genetic backgrounds. The comorbidities, mechanisms associated with important physiological and metabolic abnormalities (i.e., inflammation, immunity, oxidative stress, and mitochondrial dysfunction), and gut microbial disorder in ASD were reviewed. The non-targeted omics and targeting studies of diagnostic markers for ASD were also reviewed. Moreover, we summarized the progress and methods of behavioral and educational interventions, intervention methods related to technological devices, and research on medical interventions and potential drug targets. This review highlighted the application of high-throughput omics methods in ASD research and emphasized the importance of seeking homogeneity from heterogeneity and exploring the convergence of disease mechanisms, biomarkers, and intervention approaches, and proposes that taking into account individuality and commonality may be the key to achieve accurate diagnosis and treatment of ASD.
Collapse
Affiliation(s)
- Hongbin Zhuang
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Zhiyuan Liang
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Guanwei Ma
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Ayesha Qureshi
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Xiaoqian Ran
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Chengyun Feng
- Maternal and Child Health Hospital of BaoanShenzhenP. R. China
| | - Xukun Liu
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Xi Yan
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Liming Shen
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
- Shenzhen‐Hong Kong Institute of Brain Science‐Shenzhen Fundamental Research InstitutionsShenzhenP. R. China
| |
Collapse
|
11
|
Lanjewar AL, Levitt P, Eagleson KL. Developmental and molecular contributions to contextual fear memory emergence in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.02.03.527024. [PMID: 36778231 PMCID: PMC9915741 DOI: 10.1101/2023.02.03.527024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Cognitive impairment is a common phenotype of neurodevelopmental disorders, but how these deficits arise remains elusive. Determining the onset of discrete cognitive capabilities facilitates studies in probing mechanisms underlying their emergence. The present study analyzed the emergence of contextual fear memory persistence (7-day memory retention) and remote memory (30-day memory retention). There was a rapid transition from postnatal day (P) 20 to P21, in which memory persistence emerged in C57Bl/6J male and female mice. Remote memory was present at P23, but expression was not robust compared to pubertal and adult mice. Previous studies reported that following deletion of the MET receptor tyrosine kinase (MET), there are fear memory deficits in adult mice and the timing of critical period plasticity is altered in the developing visual cortex, positioning MET as a regulator for onset of contextual fear memory. Sustaining Met past the normal window of peak cortical expression or deleting Met, however, did not alter the timing of emergence of persistence or remote memory capabilities during development. Fear memory in young adults, however, was disrupted. Remarkably, compared to homecage controls, the number of FOS-expressing infragranular neurons in medial prefrontal cortex (mPFC) did not increase from contextual memory formation recall of fear conditioning at P35 but exhibited enhanced activation at P90 in male and female mice. Additionally, MET-expressing neurons were preferentially recruited at P90 compared to P35 during fear memory expression. The studies demonstrate a developmental profile of contextual fear memory capabilities. Further, developmental disruption of Met leads to a delayed functional deficit that arises in young adulthood, correlated with an increase of mPFC neuron activation during fear memory recall.
Collapse
Affiliation(s)
- Alexandra L. Lanjewar
- Program in Developmental Neuroscience and Neurogenetics, Children’s Hospital Los Angeles, The Saban Research Institute, Los Angeles, CA, United States
- Department of Pediatrics, Keck School of Medicine of University of Southern California, Los Angeles, CA, United States
| | - Pat Levitt
- Program in Developmental Neuroscience and Neurogenetics, Children’s Hospital Los Angeles, The Saban Research Institute, Los Angeles, CA, United States
- Department of Pediatrics, Keck School of Medicine of University of Southern California, Los Angeles, CA, United States
| | - Kathie L. Eagleson
- Program in Developmental Neuroscience and Neurogenetics, Children’s Hospital Los Angeles, The Saban Research Institute, Los Angeles, CA, United States
- Department of Pediatrics, Keck School of Medicine of University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
12
|
Peall KJ, Owen MJ, Hall J. Rare genetic brain disorders with overlapping neurological and psychiatric phenotypes. Nat Rev Neurol 2024; 20:7-21. [PMID: 38001363 DOI: 10.1038/s41582-023-00896-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2023] [Indexed: 11/26/2023]
Abstract
Understanding rare genetic brain disorders with overlapping neurological and psychiatric phenotypes is of increasing importance given the potential for developing disease models that could help to understand more common, polygenic disorders. However, the traditional clinical boundaries between neurology and psychiatry result in frequent segregation of these disorders into distinct silos, limiting cross-specialty understanding that could facilitate clinical and biological advances. In this Review, we highlight multiple genetic brain disorders in which neurological and psychiatric phenotypes are observed, but for which in-depth, cross-spectrum clinical phenotyping is rarely undertaken. We describe the combined phenotypes observed in association with genetic variants linked to epilepsy, dystonia, autism spectrum disorder and schizophrenia. We also consider common underlying mechanisms that centre on synaptic plasticity, including changes to synaptic and neuronal structure, calcium handling and the balance of excitatory and inhibitory neuronal activity. Further investigation is needed to better define and replicate these phenotypes in larger cohorts, which would help to gain greater understanding of the pathophysiological mechanisms and identify common therapeutic targets.
Collapse
Affiliation(s)
- Kathryn J Peall
- Neuroscience and Mental Health Innovation Institute, Cardiff University, Cardiff, UK.
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK.
| | - Michael J Owen
- Neuroscience and Mental Health Innovation Institute, Cardiff University, Cardiff, UK
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
- Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Jeremy Hall
- Neuroscience and Mental Health Innovation Institute, Cardiff University, Cardiff, UK
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| |
Collapse
|
13
|
Fox PM, Malepati S, Manaster L, Rossignol E, Noebels JL. Developing a pathway to clinical trials for CACNA1A-related epilepsies: A patient organization perspective. THERAPEUTIC ADVANCES IN RARE DISEASE 2024; 5:26330040241245725. [PMID: 38681799 PMCID: PMC11047245 DOI: 10.1177/26330040241245725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 03/15/2024] [Indexed: 05/01/2024]
Abstract
CACNA1A-related disorders are rare neurodevelopmental disorders linked to variants in the CACNA1A gene. This gene encodes the α1 subunit of the P/Q-type calcium channel Cav2.1, which is globally expressed in the brain and crucial for fast synaptic neurotransmission. The broad spectrum of CACNA1A-related neurological disorders includes developmental and epileptic encephalopathies, familial hemiplegic migraine type 1, episodic ataxia type 2, spinocerebellar ataxia type 6, together with unclassified presentations with developmental delay, ataxia, intellectual disability, autism spectrum disorder, and language impairment. The severity of each disorder is also highly variable. The spectrum of CACNA1A-related seizures is broad across both loss-of-function and gain-of-function variants and includes absence seizures, focal seizures with altered consciousness, generalized tonic-clonic seizures, tonic seizures, status epilepticus, and infantile spasms. Furthermore, over half of CACNA1A-related epilepsies are refractory to current therapies. To date, almost 1700 CACNA1A variants have been reported in ClinVar, with over 400 listed as Pathogenic or Likely Pathogenic, but with limited-to-no clinical or functional data. Robust genotype-phenotype studies and impacts of variants on protein structure and function have also yet to be established. As a result, there are few definitive treatment options for CACNA1A-related epilepsies. The CACNA1A Foundation has set out to change the landscape of available and effective treatments and improve the quality of life for those living with CACNA1A-related disorders, including epilepsy. Established in March 2020, the Foundation has built a robust preclinical toolbox that includes patient-derived induced pluripotent stem cells and novel disease models, launched clinical trial readiness initiatives, and organized a global CACNA1A Research Network. This Research Network is currently composed of over 60 scientists and clinicians committed to collaborating to accelerate the path to CACNA1A-specific treatments and one day, a cure.
Collapse
Affiliation(s)
- Pangkong M. Fox
- CACNA1A Foundation, Inc., 31 Pt Road, Norwalk, CT 06854, USA
| | | | | | - Elsa Rossignol
- CACNA1A Foundation, Inc., Norwalk, CT, USA
- CHU Sainte-Justine Research Center, Departments of Neurosciences and Pediatrics, University of Montreal, Montreal, QC, Canada
| | - Jeffrey L. Noebels
- CACNA1A Foundation, Inc., Norwalk, CT, USA
- Blue Bird Circle Developmental Neurogenetics Laboratory, Department of Neurology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| |
Collapse
|
14
|
Sandoval-Talamantes AK, Tenorio-Castaño JA, Santos-Simarro F, Adán C, Fernández-Elvira M, García-Fernández L, Muñoz Y, Lapunzina P, Nevado J. NGS Custom Panel Implementation in Patients with Non-Syndromic Autism Spectrum Disorders in the Clinical Routine of a Tertiary Hospital. Genes (Basel) 2023; 14:2091. [PMID: 38003033 PMCID: PMC10671584 DOI: 10.3390/genes14112091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Autism spectrum disorder (ASD) is a set of neurodevelopmental disorders characterized by deficiencies in communication, social interaction, and repetitive and restrictive behaviors. The discovery of genetic involvement in the etiology of ASD has made this condition a strong candidate for genome-based diagnostic tests. Next-generation sequencing (NGS) is useful for the detection of variants in the sequence of different genes in ASD patients. Herein, we present the implementation of a personalized NGS panel for autism (AutismSeq) for patients with essential ASD over a prospective period of four years in the clinical routine of a tertiary hospital. The cohort is composed of 48 individuals, older than 3 years, who met the DSM-5 (The Diagnostic and Statistical Manual of Mental Disorders) diagnostic criteria for ASD. The NGS customized panel (AutismSeq) turned out to be a tool with good diagnostic efficacy in routine clinical care, where we detected 12 "pathogenic" (including pathogenic, likely pathogenic, and VUS (variant of uncertain significance) possibly pathogenic variations) in 11 individuals, and 11 VUS in 10 individuals, which had previously been negative for chromosomal microarray analysis and other previous genetic studies, such as karyotype, fragile-X, or MLPA/FISH (Multiplex Ligation dependent Probe Amplification/Fluorescence in situ hybridization) analysis. Our results demonstrate the high genetic and clinical heterogeneity of individuals with ASD and the current difficulty of molecular diagnosis. Our study also shows that an NGS-customized panel might be useful for diagnosing patients with essential/primary autism and that it is cost-effective for most genetic laboratories.
Collapse
Affiliation(s)
- Ana Karen Sandoval-Talamantes
- INGEMM (Institute of Medical and Molecular Genetics), La Paz University Hospital, IdiPAZ, 28046 Madrid, Spain; (A.K.S.-T.); (J.A.T.-C.); (F.S.-S.); (C.A.); (M.F.-E.); (L.G.-F.); (Y.M.); (P.L.)
| | - Jair Antonio Tenorio-Castaño
- INGEMM (Institute of Medical and Molecular Genetics), La Paz University Hospital, IdiPAZ, 28046 Madrid, Spain; (A.K.S.-T.); (J.A.T.-C.); (F.S.-S.); (C.A.); (M.F.-E.); (L.G.-F.); (Y.M.); (P.L.)
- ITHACA, European Research Network, La Paz University Hospital, 28046 Madrid, Spain
- CIBERER (Network for Biomedical Research on Rare Diseases), Carlos III Health Institute (ISCIII), 28046 Madrid, Spain
| | - Fernando Santos-Simarro
- INGEMM (Institute of Medical and Molecular Genetics), La Paz University Hospital, IdiPAZ, 28046 Madrid, Spain; (A.K.S.-T.); (J.A.T.-C.); (F.S.-S.); (C.A.); (M.F.-E.); (L.G.-F.); (Y.M.); (P.L.)
- ITHACA, European Research Network, La Paz University Hospital, 28046 Madrid, Spain
- CIBERER (Network for Biomedical Research on Rare Diseases), Carlos III Health Institute (ISCIII), 28046 Madrid, Spain
| | - Carmen Adán
- INGEMM (Institute of Medical and Molecular Genetics), La Paz University Hospital, IdiPAZ, 28046 Madrid, Spain; (A.K.S.-T.); (J.A.T.-C.); (F.S.-S.); (C.A.); (M.F.-E.); (L.G.-F.); (Y.M.); (P.L.)
| | - María Fernández-Elvira
- INGEMM (Institute of Medical and Molecular Genetics), La Paz University Hospital, IdiPAZ, 28046 Madrid, Spain; (A.K.S.-T.); (J.A.T.-C.); (F.S.-S.); (C.A.); (M.F.-E.); (L.G.-F.); (Y.M.); (P.L.)
| | - Laura García-Fernández
- INGEMM (Institute of Medical and Molecular Genetics), La Paz University Hospital, IdiPAZ, 28046 Madrid, Spain; (A.K.S.-T.); (J.A.T.-C.); (F.S.-S.); (C.A.); (M.F.-E.); (L.G.-F.); (Y.M.); (P.L.)
| | - Yolanda Muñoz
- INGEMM (Institute of Medical and Molecular Genetics), La Paz University Hospital, IdiPAZ, 28046 Madrid, Spain; (A.K.S.-T.); (J.A.T.-C.); (F.S.-S.); (C.A.); (M.F.-E.); (L.G.-F.); (Y.M.); (P.L.)
| | - Pablo Lapunzina
- INGEMM (Institute of Medical and Molecular Genetics), La Paz University Hospital, IdiPAZ, 28046 Madrid, Spain; (A.K.S.-T.); (J.A.T.-C.); (F.S.-S.); (C.A.); (M.F.-E.); (L.G.-F.); (Y.M.); (P.L.)
- ITHACA, European Research Network, La Paz University Hospital, 28046 Madrid, Spain
- CIBERER (Network for Biomedical Research on Rare Diseases), Carlos III Health Institute (ISCIII), 28046 Madrid, Spain
| | - Julián Nevado
- INGEMM (Institute of Medical and Molecular Genetics), La Paz University Hospital, IdiPAZ, 28046 Madrid, Spain; (A.K.S.-T.); (J.A.T.-C.); (F.S.-S.); (C.A.); (M.F.-E.); (L.G.-F.); (Y.M.); (P.L.)
- ITHACA, European Research Network, La Paz University Hospital, 28046 Madrid, Spain
- CIBERER (Network for Biomedical Research on Rare Diseases), Carlos III Health Institute (ISCIII), 28046 Madrid, Spain
| |
Collapse
|
15
|
Lauerer RJ, Lerche H. Voltage-gated calcium channels in genetic epilepsies. J Neurochem 2023. [PMID: 37822150 DOI: 10.1111/jnc.15983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/17/2023] [Accepted: 09/25/2023] [Indexed: 10/13/2023]
Abstract
Voltage-gated calcium channels (VGCC) are abundant in the central nervous system and serve a broad spectrum of functions, either directly in cellular excitability or indirectly to regulate Ca2+ homeostasis. Ca2+ ions act as one of the main connections in excitation-transcription coupling, muscle contraction and excitation-exocytosis coupling, including synaptic transmission. In recent years, many genes encoding VGCCs main α or additional auxiliary subunits have been associated with epilepsy. This review sums up the current state of knowledge on disease mechanisms and provides guidance on disease-specific therapies where applicable.
Collapse
Affiliation(s)
- Robert J Lauerer
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University and University Hospital Tuebingen, Tuebingen, Germany
| | - Holger Lerche
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University and University Hospital Tuebingen, Tuebingen, Germany
| |
Collapse
|
16
|
Olszewska DA, Shetty A, Rajalingam R, Rodriguez-Antiguedad J, Hamed M, Huang J, Breza M, Rasheed A, Bahr N, Madoev H, Westenberger A, Trinh J, Lohmann K, Klein C, Marras C, Waln O. Genotype-phenotype relations for episodic ataxia genes: MDSGene systematic review. Eur J Neurol 2023; 30:3377-3393. [PMID: 37422902 DOI: 10.1111/ene.15969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/28/2023] [Accepted: 07/04/2023] [Indexed: 07/11/2023]
Abstract
BACKGROUND Most episodic ataxias (EA) are autosomal dominantly inherited and characterized by recurrent attacks of ataxia and other paroxysmal and non-paroxysmal features. EA is often caused by pathogenic variants in the CACNA1A, KCNA1, PDHA1, and SLC1A3 genes, listed as paroxysmal movement disorders (PxMD) by the MDS Task Force on the Nomenclature of Genetic Movement Disorders. Little is known about the genotype-phenotype correlation of the different genetic EA forms. METHODS We performed a systematic review of the literature to identify individuals affected by an episodic movement disorder harboring pathogenic variants in one of the four genes. We applied the standardized MDSGene literature search and data extraction protocol to summarize the clinical and genetic features. All data are available via the MDSGene protocol and platform on the MDSGene website (https://www.mdsgene.org/). RESULTS Information on 717 patients (CACNA1A: 491, KCNA1: 125, PDHA1: 90, and SLC1A3: 11) carrying 287 different pathogenic variants from 229 papers was identified and summarized. We show the profound phenotypic variability and overlap leading to the absence of frank genotype-phenotype correlation aside from a few key 'red flags'. CONCLUSION Given this overlap, a broad approach to genetic testing using a panel or whole exome or genome approach is most practical in most circumstances.
Collapse
Affiliation(s)
- Diana Angelika Olszewska
- Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Division of Neurology, University of Toronto, Toronto, Ontario, Canada
| | - Aakash Shetty
- Department of Neurology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Rajasumi Rajalingam
- Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Division of Neurology, University of Toronto, Toronto, Ontario, Canada
| | - Jon Rodriguez-Antiguedad
- Movement Disorders Unit and Institut d'Investigacions Biomediques-Sant Pau, Hospital Sant Pau, Barcelona, Spain
| | - Moath Hamed
- Department of Neurosciences, NYP Brooklyn Methodist Hospital, Brooklyn, New York, USA
| | - Jana Huang
- Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Division of Neurology, University of Toronto, Toronto, Ontario, Canada
| | | | - Ashar Rasheed
- Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Division of Neurology, University of Toronto, Toronto, Ontario, Canada
| | - Natascha Bahr
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Harutyan Madoev
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Ana Westenberger
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Joanne Trinh
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Katja Lohmann
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Connie Marras
- Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Division of Neurology, University of Toronto, Toronto, Ontario, Canada
| | - Olga Waln
- Houston Methodist Neurological Institute, Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
17
|
Kessi M, Chen B, Pang N, Yang L, Peng J, He F, Yin F. The genotype-phenotype correlations of the CACNA1A-related neurodevelopmental disorders: a small case series and literature reviews. Front Mol Neurosci 2023; 16:1222321. [PMID: 37555011 PMCID: PMC10406136 DOI: 10.3389/fnmol.2023.1222321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 07/10/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND Genotype-phenotype correlations of the CACNA1A-related neurodevelopmental disorders such as global developmental delay (GDD)/intellectual disability (ID), epileptic encephalopathy (EE), and autism spectrum disorder (ASD) are unknown. We aimed to summarize genotype-phenotype correlations and potential treatment for CACNA1A-related neurodevelopmental disorders. METHODS Six children diagnosed with CACNA1A-related neurodevelopmental disorders at Xiangya Hospital, Central South University from April 2018 to July 2021 were enrolled. The PubMed database was systematically searched for all reported patients with CACNA1A-related neurodevelopmental disorders until February 2023. Thereafter, we divided patients into several groups for comparison. RESULTS Six patients were recruited from our hospital. Three cases presented with epilepsy, five with GDD/ID, five with ataxia, and two with ASD. The variants included p.G701R, p.R279C, p.D1644N, p.Y62C, p.L1422Sfs*8, and p. R1664Q [two gain-of-function (GOF) and four loss-of-function (LOF) variants]. About 187 individuals with GDD/ID harboring 123 variants were found (case series plus data from literature). Of those 123 variants, p.A713T and p.R1664* were recurrent, 37 were LOF, and 7 were GOF. GOF variants were linked with severe-profound GDD/ID while LOF variants were associated with mild-moderate GDD/ID (p = 0.001). The p.A713T variant correlated with severe-profound GDD/ID (p = 0.003). A total of 130 epileptic patients harboring 83 variants were identified. The epileptic manifestations included status epilepticus (n = 64), provoked seizures (n = 49), focal seizures (n = 37), EE (n = 29), absence seizures (n = 26), and myoclonic seizures (n = 10). About 49 (42.20%) patients had controlled seizures while 67 (57.80%) individuals remained with refractory seizures. Status epilepticus correlated with variants located on S4, S5, and S6 (p = 0.000). Among the 83 epilepsy-related variants, 23 were recurrent, 32 were LOF, and 11 were GOF. Status epilepticus was linked with GOF variants (p = 0.000). LOF variants were associated with absence seizures (p = 0.000). Six patients died at an early age (3 months to ≤5 years). We found 18 children with ASD. Thirteen variants including recurrent ones were identified in those 18 cases. GOF changes were more linked to ASD. CONCLUSION The p.A713T variant is linked with severe-profound GDD/ID. More than half of CACNA1A-related epilepsy is refractory. The most common epileptic manifestation is status epilepticus, which correlates with variants located on S4, S5, and S6.
Collapse
Affiliation(s)
- Miriam Kessi
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Pediatrics, Changsha, China
- Clinical Research Center for Children’s Neurodevelopmental Disabilities of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Baiyu Chen
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Pediatrics, Changsha, China
- Clinical Research Center for Children’s Neurodevelopmental Disabilities of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Nan Pang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Pediatrics, Changsha, China
- Clinical Research Center for Children’s Neurodevelopmental Disabilities of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Lifen Yang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Pediatrics, Changsha, China
- Clinical Research Center for Children’s Neurodevelopmental Disabilities of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Jing Peng
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Pediatrics, Changsha, China
- Clinical Research Center for Children’s Neurodevelopmental Disabilities of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Fang He
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Pediatrics, Changsha, China
- Clinical Research Center for Children’s Neurodevelopmental Disabilities of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Fei Yin
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Pediatrics, Changsha, China
- Clinical Research Center for Children’s Neurodevelopmental Disabilities of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
18
|
Gao H, Hamp T, Ede J, Schraiber JG, McRae J, Singer-Berk M, Yang Y, Dietrich ASD, Fiziev PP, Kuderna LFK, Sundaram L, Wu Y, Adhikari A, Field Y, Chen C, Batzoglou S, Aguet F, Lemire G, Reimers R, Balick D, Janiak MC, Kuhlwilm M, Orkin JD, Manu S, Valenzuela A, Bergman J, Rousselle M, Silva FE, Agueda L, Blanc J, Gut M, de Vries D, Goodhead I, Harris RA, Raveendran M, Jensen A, Chuma IS, Horvath JE, Hvilsom C, Juan D, Frandsen P, de Melo FR, Bertuol F, Byrne H, Sampaio I, Farias I, do Amaral JV, Messias M, da Silva MNF, Trivedi M, Rossi R, Hrbek T, Andriaholinirina N, Rabarivola CJ, Zaramody A, Jolly CJ, Phillips-Conroy J, Wilkerson G, Abee C, Simmons JH, Fernandez-Duque E, Kanthaswamy S, Shiferaw F, Wu D, Zhou L, Shao Y, Zhang G, Keyyu JD, Knauf S, Le MD, Lizano E, Merker S, Navarro A, Bataillon T, Nadler T, Khor CC, Lee J, Tan P, Lim WK, Kitchener AC, Zinner D, Gut I, Melin A, Guschanski K, Schierup MH, Beck RMD, Umapathy G, Roos C, Boubli JP, Lek M, Sunyaev S, O'Donnell-Luria A, Rehm HL, Xu J, Rogers J, Marques-Bonet T, Farh KKH. The landscape of tolerated genetic variation in humans and primates. Science 2023; 380:eabn8153. [PMID: 37262156 DOI: 10.1126/science.abn8197] [Citation(s) in RCA: 52] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/22/2023] [Indexed: 06/03/2023]
Abstract
Personalized genome sequencing has revealed millions of genetic differences between individuals, but our understanding of their clinical relevance remains largely incomplete. To systematically decipher the effects of human genetic variants, we obtained whole-genome sequencing data for 809 individuals from 233 primate species and identified 4.3 million common protein-altering variants with orthologs in humans. We show that these variants can be inferred to have nondeleterious effects in humans based on their presence at high allele frequencies in other primate populations. We use this resource to classify 6% of all possible human protein-altering variants as likely benign and impute the pathogenicity of the remaining 94% of variants with deep learning, achieving state-of-the-art accuracy for diagnosing pathogenic variants in patients with genetic diseases.
Collapse
Affiliation(s)
- Hong Gao
- Illumina Artificial Intelligence Laboratory, Illumina Inc., Foster City, CA, 94404, USA
| | - Tobias Hamp
- Illumina Artificial Intelligence Laboratory, Illumina Inc., Foster City, CA, 94404, USA
| | - Jeffrey Ede
- Illumina Artificial Intelligence Laboratory, Illumina Inc., Foster City, CA, 94404, USA
| | - Joshua G Schraiber
- Illumina Artificial Intelligence Laboratory, Illumina Inc., Foster City, CA, 94404, USA
| | - Jeremy McRae
- Illumina Artificial Intelligence Laboratory, Illumina Inc., Foster City, CA, 94404, USA
| | - Moriel Singer-Berk
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Boston, MA, 02142, USA
| | - Yanshen Yang
- Illumina Artificial Intelligence Laboratory, Illumina Inc., Foster City, CA, 94404, USA
| | | | - Petko P Fiziev
- Illumina Artificial Intelligence Laboratory, Illumina Inc., Foster City, CA, 94404, USA
| | - Lukas F K Kuderna
- Illumina Artificial Intelligence Laboratory, Illumina Inc., Foster City, CA, 94404, USA
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Laksshman Sundaram
- Illumina Artificial Intelligence Laboratory, Illumina Inc., Foster City, CA, 94404, USA
| | - Yibing Wu
- Illumina Artificial Intelligence Laboratory, Illumina Inc., Foster City, CA, 94404, USA
| | - Aashish Adhikari
- Illumina Artificial Intelligence Laboratory, Illumina Inc., Foster City, CA, 94404, USA
| | - Yair Field
- Illumina Artificial Intelligence Laboratory, Illumina Inc., Foster City, CA, 94404, USA
| | - Chen Chen
- Illumina Artificial Intelligence Laboratory, Illumina Inc., Foster City, CA, 94404, USA
| | - Serafim Batzoglou
- Illumina Artificial Intelligence Laboratory, Illumina Inc., Foster City, CA, 94404, USA
| | - Francois Aguet
- Illumina Artificial Intelligence Laboratory, Illumina Inc., Foster City, CA, 94404, USA
| | - Gabrielle Lemire
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Boston, MA, 02142, USA
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Rebecca Reimers
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115, USA
| | - Daniel Balick
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115, USA
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Mareike C Janiak
- School of Science, Engineering & Environment, University of Salford, Salford M5 4WT, UK
| | - Martin Kuhlwilm
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Dr. Aiguader 88, 08003 Barcelona, Spain
- Department of Evolutionary Anthropology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
- Human Evolution and Archaeological Sciences (HEAS), University of Vienna, 1030 Vienna, Austria
| | - Joseph D Orkin
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Dr. Aiguader 88, 08003 Barcelona, Spain
- Département d'anthropologie, Université de Montréal, 3150 Jean-Brillant, Montréal, QC H3T 1N8, Canada
| | - Shivakumara Manu
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Laboratory for the Conservation of Endangered Species, CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500007, India
| | - Alejandro Valenzuela
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Juraj Bergman
- Bioinformatics Research Centre, Aarhus University, Aarhus 8000, Denmark
- Section for Ecoinformatics & Biodiversity, Department of Biology, Aarhus University, 8000 Aarhus, Denmark
| | | | - Felipe Ennes Silva
- Research Group on Primate Biology and Conservation, Mamirauá Institute for Sustainable Development, Estrada da Bexiga 2584, Tefé, Amazonas, CEP 69553-225, Brazil
- Evolutionary Biology and Ecology (EBE), Département de Biologie des Organismes, Université libre de Bruxelles (ULB), Av. Franklin D. Roosevelt 50, CP 160/12, B-1050 Brussels, Belgium
| | - Lidia Agueda
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028 Barcelona, Spain
| | - Julie Blanc
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028 Barcelona, Spain
| | - Marta Gut
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028 Barcelona, Spain
| | - Dorien de Vries
- School of Science, Engineering & Environment, University of Salford, Salford M5 4WT, UK
| | - Ian Goodhead
- School of Science, Engineering & Environment, University of Salford, Salford M5 4WT, UK
| | - R Alan Harris
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Muthuswamy Raveendran
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Axel Jensen
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, SE-75236 Uppsala, Sweden
| | | | - Julie E Horvath
- North Carolina Museum of Natural Sciences, Raleigh, NC 27601, USA
- Department of Biological and Biomedical Sciences, North Carolina Central University, Durham, NC 27707, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27708, USA
- Renaissance Computing Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | - David Juan
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Dr. Aiguader 88, 08003 Barcelona, Spain
| | | | | | - Fabrício Bertuol
- Universidade Federal do Amazonas, Departamento de Genética, Laboratório de Evolução e Genética Animal (LEGAL), Manaus, Amazonas, 69080-900, Brazil
| | - Hazel Byrne
- Department of Anthropology, University of Utah, Salt Lake City, UT 84102, USA
| | - Iracilda Sampaio
- Universidade Federal do Para, Guamá, Belém - PA, 66075-110, Brazil
| | - Izeni Farias
- Universidade Federal do Amazonas, Departamento de Genética, Laboratório de Evolução e Genética Animal (LEGAL), Manaus, Amazonas, 69080-900, Brazil
| | - João Valsecchi do Amaral
- Research Group on Terrestrial Vertebrate Ecology, Mamirauá Institute for Sustainable Development, Tefé, Amazonas, 69553-225, Brazil
- Rede de Pesquisa para Estudos sobre Diversidade, Conservação e Uso da Fauna na Amazônia - RedeFauna, Manaus, Amazonas, 69080-900, Brazil
- Comunidad de Manejo de Fauna Silvestre en la Amazonía y en Latinoamérica - ComFauna, Iquitos, Loreto, 16001, Peru
| | - Mariluce Messias
- Universidade Federal de Rondonia, Porto Velho, Rondônia, 78900-000, Brazil
- PPGREN - Programa de Pós-Graduação "Conservação e Uso dos Recursos Naturais and BIONORTE - Programa de Pós-Graduação em Biodiversidade e Biotecnologia da Rede BIONORTE, Universidade Federal de Rondonia, Porto Velho, Rondônia, 78900-000, Brazil
| | - Maria N F da Silva
- Instituto Nacional de Pesquisas da Amazonia, Petrópolis, Manaus - AM, 69067-375, Brazil
| | - Mihir Trivedi
- Laboratory for the Conservation of Endangered Species, CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500007, India
| | - Rogerio Rossi
- Universidade Federal do Mato Grosso, Boa Esperança, Cuiabá - MT, 78060-900, Brazil
| | - Tomas Hrbek
- Universidade Federal do Amazonas, Departamento de Genética, Laboratório de Evolução e Genética Animal (LEGAL), Manaus, Amazonas, 69080-900, Brazil
- Department of Biology, Trinity University, San Antonio, TX 78212, USA
| | - Nicole Andriaholinirina
- Life Sciences and Environment, Technology and Environment of Mahajanga, University of Mahajanga, Mahajanga, 401, Madagascar
| | - Clément J Rabarivola
- Life Sciences and Environment, Technology and Environment of Mahajanga, University of Mahajanga, Mahajanga, 401, Madagascar
| | - Alphonse Zaramody
- Life Sciences and Environment, Technology and Environment of Mahajanga, University of Mahajanga, Mahajanga, 401, Madagascar
| | | | | | - Gregory Wilkerson
- Keeling Center for Comparative Medicine and Research, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Christian Abee
- Keeling Center for Comparative Medicine and Research, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Joe H Simmons
- Keeling Center for Comparative Medicine and Research, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Eduardo Fernandez-Duque
- Yale University, New Haven, CT 06520, USA
- Universidad Nacional de Formosa, Argentina Fundacion ECO, Formosa, Argentina
| | | | - Fekadu Shiferaw
- Guinea Worm Eradication Program, The Carter Center Ethiopia, PoB 16316, Addis Ababa 1000, Ethiopia
| | - Dongdong Wu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Long Zhou
- Center for Evolutionary & Organismal Biology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yong Shao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Guojie Zhang
- Center for Evolutionary & Organismal Biology, Zhejiang University School of Medicine, Hangzhou 310058, China
- Villum Center for Biodiversity Genomics, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou 311121, China
- Women's Hospital, School of Medicine, Zhejiang University, 1 Xueshi Road, Shangcheng District, Hangzhou 310006, China
| | - Julius D Keyyu
- Tanzania Wildlife Research Institute (TAWIRI), Head Office, P.O. Box 661, Arusha, Tanzania
| | - Sascha Knauf
- Institute of International Animal Health/One Health, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald - Insei Riems, Germany
| | - Minh D Le
- Department of Environmental Ecology, Faculty of Environmental Sciences, University of Science and Central Institute for Natural Resources and Environmental Studies, Vietnam National University, Hanoi 100000, Vietnam
| | - Esther Lizano
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Dr. Aiguader 88, 08003 Barcelona, Spain
- Catalan Institution of Research and Advanced Studies (ICREA), Passeig de Lluís Companys, 23, 08010 Barcelona, Spain
| | - Stefan Merker
- Department of Zoology, State Museum of Natural History Stuttgart, 70191 Stuttgart, Germany
| | - Arcadi Navarro
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Dr. Aiguader 88, 08003 Barcelona, Spain
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, c/ Columnes s/n, 08193 Cerdanyola del Vallès, Barcelona, Spain
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Av. Doctor Aiguader, N88, 08003 Barcelona, Spain
- BarcelonaBeta Brain Research Center, Pasqual Maragall Foundation, C. Wellington 30, 08005 Barcelona, Spain
| | - Thomas Bataillon
- Bioinformatics Research Centre, Aarhus University, Aarhus 8000, Denmark
| | - Tilo Nadler
- Cuc Phuong Commune, Nho Quan District, Ninh Binh Province 430000, Vietnam
| | - Chiea Chuen Khor
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore 138672, Republic of Singapore
| | - Jessica Lee
- Mandai Nature, 80 Mandai Lake Road, Singapore 729826, Republic of Singapore
| | - Patrick Tan
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore 138672, Republic of Singapore
- SingHealth Duke-NUS Institute of Precision Medicine (PRISM), Singapore 168582, Republic of Singapore
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore 168582, Republic of Singapore
| | - Weng Khong Lim
- SingHealth Duke-NUS Institute of Precision Medicine (PRISM), Singapore 168582, Republic of Singapore
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore 168582, Republic of Singapore
- SingHealth Duke-NUS Genomic Medicine Centre, Singapore 168582, Republic of Singapore
| | - Andrew C Kitchener
- Department of Natural Sciences, National Museums Scotland, Chambers Street, Edinburgh EH1 1JF, UK
- School of Geosciences, University of Edinburgh, Drummond Street, Edinburgh EH8 9XP, UK
| | - Dietmar Zinner
- Cognitive Ethology Laboratory, Germany Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany
- Department of Primate Cognition, Georg-August-Universität Göttingen, 37077 Göttingen, Germany
- Leibniz Science Campus Primate Cognition, 37077 Göttingen, Germany
| | - Ivo Gut
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028 Barcelona, Spain
- Universitat Pompeu Fabra, Pg. Luís Companys 23, 08010 Barcelona, Spain
| | - Amanda Melin
- Department of Anthropology & Archaeology, University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4, Canada
- Department of Medical Genetics, 3330 Hospital Drive NW, HMRB 202, Calgary, AB T2N 4N1, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4, Canada
| | - Katerina Guschanski
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, SE-75236 Uppsala, Sweden
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH8 9XP, UK
| | | | - Robin M D Beck
- School of Science, Engineering & Environment, University of Salford, Salford M5 4WT, UK
| | - Govindhaswamy Umapathy
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Laboratory for the Conservation of Endangered Species, CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500007, India
| | - Christian Roos
- Gene Bank of Primates and Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany
| | - Jean P Boubli
- School of Science, Engineering & Environment, University of Salford, Salford M5 4WT, UK
| | - Monkol Lek
- Department of Genetics, Yale School of Medicine, New Haven, CT 06520, USA
| | - Shamil Sunyaev
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115, USA
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Anne O'Donnell-Luria
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Boston, MA, 02142, USA
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Heidi L Rehm
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Boston, MA, 02142, USA
- Department of Genetics, Yale School of Medicine, New Haven, CT 06520, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jinbo Xu
- Illumina Artificial Intelligence Laboratory, Illumina Inc., Foster City, CA, 94404, USA
- Toyota Technological Institute at Chicago, Chicago, IL 60637, USA
| | - Jeffrey Rogers
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Tomas Marques-Bonet
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Dr. Aiguader 88, 08003 Barcelona, Spain
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028 Barcelona, Spain
- Catalan Institution of Research and Advanced Studies (ICREA), Passeig de Lluís Companys, 23, 08010 Barcelona, Spain
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, c/ Columnes s/n, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Kyle Kai-How Farh
- Illumina Artificial Intelligence Laboratory, Illumina Inc., Foster City, CA, 94404, USA
| |
Collapse
|
19
|
Kramer AA, Bennett DF, Barañano KW, Bannister RA. A neurodevelopmental disorder caused by a dysfunctional CACNA1A allele. eNeurologicalSci 2023; 31:100456. [PMID: 36938367 PMCID: PMC10020665 DOI: 10.1016/j.ensci.2023.100456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/05/2022] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
P/Q-type Ca2+ flux into nerve terminals via CaV2.1 channels is essential for neurotransmitter release at neuromuscular junctions and nearly all central synapses. Mutations in CACNA1A, the gene encoding CaV2.1, cause a spectrum of pediatric neurological disorders. We have identified a patient harboring an autosomal-dominant de novo frameshift-causing nucleotide duplication in CACNA1A (c.5018dupG). The duplicated guanine precipitated 43 residues of altered amino acid sequence beginning with a glutamine to serine substitution in CaV2.1 at position 1674 ending with a premature stop codon (CaV2.1 p.Gln1674Serfs*43). The patient presented with episodic downbeat vertical nystagmus, hypotonia, ataxia, developmental delay and febrile seizures. In patch-clamp experiments, no Ba2+ current was observed in tsA-201 cells expressing CaV2.1 p.Gln1674Serfs*43 with β4 and α2δ-1 auxiliary subunits. The ablation of divalent flux in response to depolarization was likely attributable to the inability of CaV2.1 p.Gln1674Serfs*43 to form a complete channel pore. Our results suggest that the pathology resulting from this frameshift-inducing nucleotide duplication is a consequence of an effective haploinsufficiency.
Collapse
Affiliation(s)
- Audra A. Kramer
- Department of Pathology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 North Greene Street, Baltimore, MD 21201, USA
- Corresponding authors at: National Institutes of Health, Center for Scientific Review, Division of Neuroscience, Development and Aging, 6701 Rockledge Drive, Bethesda, MD 20892, USA.
| | - Daniel F. Bennett
- Department of Pathology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 North Greene Street, Baltimore, MD 21201, USA
| | - Kristin W. Barañano
- Department of Neurology, Johns Hopkins University School of Medicine, 200 North Wolfe Street, Suite 2158, Baltimore, MD 21287, USA
| | - Roger A. Bannister
- Department of Pathology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 North Greene Street, Baltimore, MD 21201, USA
- Corresponding authors at: National Institutes of Health, Center for Scientific Review, Division of Neuroscience, Development and Aging, 6701 Rockledge Drive, Bethesda, MD 20892, USA.
| |
Collapse
|
20
|
Riant F, Burglen L, Corpechot M, Robert J, Durr A, Solé G, Petit F, Freihuber C, De Marco O, Sarret C, Castelnovo G, Devillard F, Afenjar A, Héron B, Lasserve ET. Characterization of novel CACNA1A splice variants by RNA-sequencing in patients with episodic or congenital ataxia. Clin Genet 2023. [PMID: 37177896 DOI: 10.1111/cge.14358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023]
Abstract
Loss of function variants in CACNA1A cause a broad spectrum of neurological disorders, including episodic ataxia, congenital or progressive ataxias, epileptic manifestations or developmental delay. Variants located on the AG/GT consensus splice sites are usually considered as responsible of splicing defects, but exonic or intronic variants located outside of the consensus splice site can also lead to abnormal splicing. We investigated the putative consequences on splicing of 11 CACNA1A variants of unknown significance (VUS) identified in patients with episodic ataxia or congenital ataxia. In silico splice predictions were performed and RNA obtained from fibroblasts was analyzed by Sanger sequencing. The presence of abnormal transcripts was confirmed in 10/11 patients, nine of them were considered as deleterious and one remained of unknown significance. Targeted next-generation RNA sequencing was done in a second step to compare the two methods. This method was successful to obtain the full cDNA sequence of CACNA1A. Despite the presence of several isoforms in the fibroblastic cells, it detected most of the abnormally spliced transcripts. In conclusion, RNA sequencing was efficient to confirm the pathogenicity of nine novel CACNA1A variants. Sanger or Next generation methods can be used depending on the facilities and organization of the laboratories.
Collapse
Affiliation(s)
- Florence Riant
- AP-HP, Service de Génétique Moléculaire Neurovasculaire, Hôpital Saint-Louis, Paris, France
| | - Lydie Burglen
- Département de Génétique et Embryologie Médicale, APHP, Sorbonne Université, Centre de Référence Malformations et Maladies Congénitales du Cervelet, Hôpital Trousseau, Paris, France
| | - Michaelle Corpechot
- AP-HP, Service de Génétique Moléculaire Neurovasculaire, Hôpital Saint-Louis, Paris, France
| | - Julien Robert
- AP-HP, Service de Génétique Moléculaire Neurovasculaire, Hôpital Saint-Louis, Paris, France
| | - Alexandra Durr
- Sorbonne Université, Paris Brain Institute (ICM Institut du Cerveau), INSERM, CNRS, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Guilhem Solé
- Service de Neurologie, Unité Neuromusculaire, CHU de Bordeaux - Hôpital Pellegrin, Bordeaux, France
| | - Florence Petit
- CHU Lille, Clinique de Génétique Guy Fontaine, Lille, France
| | - Cécile Freihuber
- Service de Neuropédiatrie, APHP, Hôpital Trousseau, Paris, France
| | - Olivier De Marco
- Service de Neurologie, Hôpital de La Roche sur Yon, La Roche sur Yon, France
| | - Catherine Sarret
- Service de Pédiatrie, Hôpital Estaing, Centre Hospitalier Universitaire de Clermont-Ferrand, Clermont-Ferrand, France
| | | | - Françoise Devillard
- Département de Génétique et Procréation, Hôpital Couple-Enfant, CHU de Grenoble, Grenoble, France
| | - Alexandra Afenjar
- Département de Génétique et Embryologie Médicale, APHP, Sorbonne Université, Centre de Référence Malformations et Maladies Congénitales du Cervelet, Hôpital Trousseau, Paris, France
| | - Bénédicte Héron
- Service de Neuropédiatrie, APHP, Hôpital Trousseau, Paris, France
| | | |
Collapse
|
21
|
Gao H, Hamp T, Ede J, Schraiber JG, McRae J, Singer-Berk M, Yang Y, Dietrich A, Fiziev P, Kuderna L, Sundaram L, Wu Y, Adhikari A, Field Y, Chen C, Batzoglou S, Aguet F, Lemire G, Reimers R, Balick D, Janiak MC, Kuhlwilm M, Orkin JD, Manu S, Valenzuela A, Bergman J, Rouselle M, Silva FE, Agueda L, Blanc J, Gut M, de Vries D, Goodhead I, Harris RA, Raveendran M, Jensen A, Chuma IS, Horvath J, Hvilsom C, Juan D, Frandsen P, de Melo FR, Bertuol F, Byrne H, Sampaio I, Farias I, do Amaral JV, Messias M, da Silva MNF, Trivedi M, Rossi R, Hrbek T, Andriaholinirina N, Rabarivola CJ, Zaramody A, Jolly CJ, Phillips-Conroy J, Wilkerson G, Abee C, Simmons JH, Fernandez-Duque E, Kanthaswamy S, Shiferaw F, Wu D, Zhou L, Shao Y, Zhang G, Keyyu JD, Knauf S, Le MD, Lizano E, Merker S, Navarro A, Batallion T, Nadler T, Khor CC, Lee J, Tan P, Lim WK, Kitchener AC, Zinner D, Gut I, Melin A, Guschanski K, Schierup MH, Beck RMD, Umapathy G, Roos C, Boubli JP, Lek M, Sunyaev S, O’Donnell A, Rehm H, Xu J, Rogers J, Marques-Bonet T, Kai-How Farh K. The landscape of tolerated genetic variation in humans and primates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.01.538953. [PMID: 37205491 PMCID: PMC10187174 DOI: 10.1101/2023.05.01.538953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Personalized genome sequencing has revealed millions of genetic differences between individuals, but our understanding of their clinical relevance remains largely incomplete. To systematically decipher the effects of human genetic variants, we obtained whole genome sequencing data for 809 individuals from 233 primate species, and identified 4.3 million common protein-altering variants with orthologs in human. We show that these variants can be inferred to have non-deleterious effects in human based on their presence at high allele frequencies in other primate populations. We use this resource to classify 6% of all possible human protein-altering variants as likely benign and impute the pathogenicity of the remaining 94% of variants with deep learning, achieving state-of-the-art accuracy for diagnosing pathogenic variants in patients with genetic diseases. One Sentence Summary Deep learning classifier trained on 4.3 million common primate missense variants predicts variant pathogenicity in humans.
Collapse
Affiliation(s)
- Hong Gao
- Illumina Artificial Intelligence Laboratory, Illumina Inc.; Foster City, California, 94404, USA
| | - Tobias Hamp
- Illumina Artificial Intelligence Laboratory, Illumina Inc.; Foster City, California, 94404, USA
| | - Jeffrey Ede
- Illumina Artificial Intelligence Laboratory, Illumina Inc.; Foster City, California, 94404, USA
| | - Joshua G. Schraiber
- Illumina Artificial Intelligence Laboratory, Illumina Inc.; Foster City, California, 94404, USA
| | - Jeremy McRae
- Illumina Artificial Intelligence Laboratory, Illumina Inc.; Foster City, California, 94404, USA
| | - Moriel Singer-Berk
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard; Boston, Massachusetts, 02142, USA
| | - Yanshen Yang
- Illumina Artificial Intelligence Laboratory, Illumina Inc.; Foster City, California, 94404, USA
| | - Anastasia Dietrich
- Illumina Artificial Intelligence Laboratory, Illumina Inc.; Foster City, California, 94404, USA
| | - Petko Fiziev
- Illumina Artificial Intelligence Laboratory, Illumina Inc.; Foster City, California, 94404, USA
| | - Lukas Kuderna
- Illumina Artificial Intelligence Laboratory, Illumina Inc.; Foster City, California, 94404, USA
- Institute of Evolutionary Biology (UPF-CSIC); PRBB, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Laksshman Sundaram
- Illumina Artificial Intelligence Laboratory, Illumina Inc.; Foster City, California, 94404, USA
| | - Yibing Wu
- Illumina Artificial Intelligence Laboratory, Illumina Inc.; Foster City, California, 94404, USA
| | - Aashish Adhikari
- Illumina Artificial Intelligence Laboratory, Illumina Inc.; Foster City, California, 94404, USA
| | - Yair Field
- Illumina Artificial Intelligence Laboratory, Illumina Inc.; Foster City, California, 94404, USA
| | - Chen Chen
- Illumina Artificial Intelligence Laboratory, Illumina Inc.; Foster City, California, 94404, USA
| | - Serafim Batzoglou
- Illumina Artificial Intelligence Laboratory, Illumina Inc.; Foster City, California, 94404, USA
| | - Francois Aguet
- Illumina Artificial Intelligence Laboratory, Illumina Inc.; Foster City, California, 94404, USA
| | - Gabrielle Lemire
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard; Boston, Massachusetts, 02142, USA
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School; Boston, Massachusetts, 02115, USA
| | - Rebecca Reimers
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School; Boston, Massachusetts, 02115, USA
| | - Daniel Balick
- Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School; Boston, Massachusetts, 02115, USA
| | - Mareike C. Janiak
- School of Science, Engineering & Environment, University of Salford; Salford, M5 4WT, United Kingdom
| | - Martin Kuhlwilm
- Institute of Evolutionary Biology (UPF-CSIC); PRBB, Dr. Aiguader 88, 08003 Barcelona, Spain
- Department of Evolutionary Anthropology, University of Vienna; Djerassiplatz 1, 1030, Vienna, Austria
- Human Evolution and Archaeological Sciences (HEAS), University of Vienna; 1030, Vienna, Austria
| | - Joseph D. Orkin
- Institute of Evolutionary Biology (UPF-CSIC); PRBB, Dr. Aiguader 88, 08003 Barcelona, Spain
- Département d’anthropologie, Université de Montréal; 3150 Jean-Brillant, Montréal, QC, H3T 1N8, Canada
| | - Shivakumara Manu
- Academy of Scientific and Innovative Research (AcSIR); Ghaziabad, 201002, India
- Laboratory for the Conservation of Endangered Species, CSIR-Centre for Cellular and Molecular Biology; Hyderabad, 500007, India
| | - Alejandro Valenzuela
- Institute of Evolutionary Biology (UPF-CSIC); PRBB, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Juraj Bergman
- Bioinformatics Research Centre, Aarhus University; Aarhus, 8000, Denmark
- Section for Ecoinformatics & Biodiversity, Department of Biology, Aarhus University; Aarhus, 8000, Denmark
| | | | - Felipe Ennes Silva
- Research Group on Primate Biology and Conservation, Mamirauá Institute for Sustainable Development; Estrada da Bexiga 2584, Tefé, Amazonas, CEP 69553-225, Brazil
- Faculty of Sciences, Department of Organismal Biology, Unit of Evolutionary Biology and Ecology, Université Libre de Bruxelles (ULB); Avenue Franklin D. Roosevelt 50, 1050, Brussels, Belgium
| | - Lidia Agueda
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST); Baldiri i Reixac 4, 08028, Barcelona, Spain
| | - Julie Blanc
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST); Baldiri i Reixac 4, 08028, Barcelona, Spain
| | - Marta Gut
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST); Baldiri i Reixac 4, 08028, Barcelona, Spain
| | - Dorien de Vries
- School of Science, Engineering & Environment, University of Salford; Salford, M5 4WT, United Kingdom
| | - Ian Goodhead
- School of Science, Engineering & Environment, University of Salford; Salford, M5 4WT, United Kingdom
| | - R. Alan Harris
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine; Houston, Texas, 77030, USA
| | - Muthuswamy Raveendran
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine; Houston, Texas, 77030, USA
| | - Axel Jensen
- Department of Ecology and Genetics, Animal Ecology, Uppsala University; SE-75236, Uppsala, Sweden
| | | | - Julie Horvath
- North Carolina Museum of Natural Sciences; Raleigh, North Carolina, 27601, USA
- Department of Biological and Biomedical Sciences, North Carolina Central University; Durham, North Carolina , 27707, USA
- Department of Biological Sciences, North Carolina State University; Raleigh, North Carolina , 27695, USA
- Department of Evolutionary Anthropology, Duke University; Durham, North Carolina , 27708, USA
- Renaissance Computing Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | - David Juan
- Institute of Evolutionary Biology (UPF-CSIC); PRBB, Dr. Aiguader 88, 08003 Barcelona, Spain
| | | | | | - Fabricio Bertuol
- Universidade Federal do Amazonas, Departamento de Genética, Laboratório de Evolução e Genética Animal (LEGAL); Manaus, Amazonas, 69080-900, Brazil
| | - Hazel Byrne
- Department of Anthropology, University of Utah; Salt Lake City, Utah, 84102, USA
| | - Iracilda Sampaio
- Universidade Federal do Para; Guamá, Belém - PA, 66075-110, Brazil
| | - Izeni Farias
- Universidade Federal do Amazonas, Departamento de Genética, Laboratório de Evolução e Genética Animal (LEGAL); Manaus, Amazonas, 69080-900, Brazil
| | - João Valsecchi do Amaral
- Research Group on Terrestrial Vertebrate Ecology, Mamirauá Institute for Sustainable Development; Tefé, Amazonas, 69553-225, Brazil
- Rede de Pesquisa para Estudos sobre Diversidade, Conservação e Uso da Fauna na Amazônia – RedeFauna; Manaus, Amazonas, 69080-900, Brazil
- Comunidad de Manejo de Fauna Silvestre en la Amazonía y en Latinoamérica – ComFauna; Iquitos, Loreto, 16001, Peru
| | - Mariluce Messias
- Universidade Federal de Rondonia; Porto Velho, Rondônia, 78900-000, Brazil
- PPGREN - Programa de Pós-Graduação “Conservação e Uso dos Recursos Naturais and BIONORTE - Programa de Pós-Graduação em Biodiversidade e Biotecnologia da Rede BIONORTE, Universidade Federal de Rondonia; Porto Velho, Rondônia, 78900-000, Brazil
| | - Maria N. F. da Silva
- Instituto Nacional de Pesquisas da Amazonia; Petrópolis, Manaus - AM, 69067-375, Brazil
| | - Mihir Trivedi
- Laboratory for the Conservation of Endangered Species, CSIR-Centre for Cellular and Molecular Biology; Hyderabad, 500007, India
| | - Rogerio Rossi
- Universidade Federal do Mato Grosso; Boa Esperança, Cuiabá - MT, 78060-900, Brazil
| | - Tomas Hrbek
- Universidade Federal do Amazonas, Departamento de Genética, Laboratório de Evolução e Genética Animal (LEGAL); Manaus, Amazonas, 69080-900, Brazil
- Department of Biology, Trinity University; San Antonio, Texas, 78212, USA
| | - Nicole Andriaholinirina
- Life Sciences and Environment, Technology and Environment of Mahajanga, University of Mahajanga; Mahajanga, 401, Madagascar
| | - Clément J. Rabarivola
- Life Sciences and Environment, Technology and Environment of Mahajanga, University of Mahajanga; Mahajanga, 401, Madagascar
| | - Alphonse Zaramody
- Life Sciences and Environment, Technology and Environment of Mahajanga, University of Mahajanga; Mahajanga, 401, Madagascar
| | | | | | - Gregory Wilkerson
- Keeling Center for Comparative Medicine and Research, MD Anderson Cancer Center; Houston, Texas, 77030, USA
| | | | - Joe H. Simmons
- Keeling Center for Comparative Medicine and Research, MD Anderson Cancer Center; Houston, Texas, 77030, USA
| | - Eduardo Fernandez-Duque
- Yale University; New Haven, Connecticut, 06520, USA
- Universidad Nacional de Formosa, Argentina Fundacion ECO, Formosa, Argentina
| | | | | | - Dongdong Wu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences; Kunming, Yunnan, 650223, China
| | - Long Zhou
- Center for Evolutionary & Organismal Biology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yong Shao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences; Kunming, Yunnan, 650223, China
| | - Guojie Zhang
- Center for Evolutionary & Organismal Biology, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Villum Center for Biodiversity Genomics, Section for Ecology and Evolution, Department of Biology, University of Copenhagen; Copenhagen, DK-2100, Denmark
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- Liangzhu Laboratory, Zhejiang University Medical Center; 1369 West Wenyi Road, Hangzhou, 311121, China
- Women’s Hospital, School of Medicine, Zhejiang University; 1 Xueshi Road, Shangcheng District, Hangzhou, 310006, China
| | - Julius D. Keyyu
- Tanzania Wildlife Research Institute (TAWIRI), Head Office; P.O.Box 661, Arusha, Tanzania
| | - Sascha Knauf
- Institute of International Animal Health/One Health, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health; 17493 Greifswald - Isle of Riems, Germany
| | - Minh D. Le
- Department of Environmental Ecology, Faculty of Environmental Sciences, University of Science and Central Institute for Natural Resources and Environmental Studies, Vietnam National University; Hanoi, 100000, Vietnam
| | - Esther Lizano
- Institute of Evolutionary Biology (UPF-CSIC); PRBB, Dr. Aiguader 88, 08003 Barcelona, Spain
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Barcelona, Spain; Catalan Institution of Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Stefan Merker
- Department of Zoology, State Museum of Natural History Stuttgart; 70191 Stuttgart, Germany
| | - Arcadi Navarro
- Institute of Evolutionary Biology (UPF-CSIC); PRBB, Dr. Aiguader 88, 08003 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA) and Universitat Pompeu Fabra, Pg. Luís Companys 23, Barcelona, 08010, Spain
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology; Av. Doctor Aiguader, N88, Barcelona, 08003, Spain
- BarcelonaBeta Brain Research Center, Pasqual Maragall Foundation; C. Wellington 30, Barcelona, 08005, Spain
| | - Thomas Batallion
- Bioinformatics Research Centre, Aarhus University; Aarhus, 8000, Denmark
| | - Tilo Nadler
- Cuc Phuong Commune; Nho Quan District, Ninh Binh Province, 430000, Vietnam
| | - Chiea Chuen Khor
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore 138672, Republic of Singapore
| | - Jessica Lee
- Mandai Nature; 80 Mandai Lake Road, Singapore 729826, Republic of Singapore
| | - Patrick Tan
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore 138672, Republic of Singapore
- SingHealth Duke-NUS Institute of Precision Medicine (PRISM); Singapore 168582, Republic of Singapore
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School; Singapore 168582, Republic of Singapore
| | - Weng Khong Lim
- SingHealth Duke-NUS Institute of Precision Medicine (PRISM); Singapore 168582, Republic of Singapore
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School; Singapore 168582, Republic of Singapore
- SingHealth Duke-NUS Genomic Medicine Centre; Singapore 168582, Republic of Singapore
| | - Andrew C. Kitchener
- Department of Natural Sciences, National Museums Scotland; Chambers Street, Edinburgh, EH1 1JF, UK
- School of Geosciences, University of Edinburgh; Drummond Street, Edinburgh, EH8 9XP, UK
| | - Dietmar Zinner
- Cognitive Ethology Laboratory, Germany Primate Center, Leibniz Institute for Primate Research; 37077 Göttingen, Germany
- Department of Primate Cognition, Georg-August-Universität Göttingen; 37077 Göttingen, Germany
| | - Ivo Gut
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST); Baldiri i Reixac 4, 08028, Barcelona, Spain
- Universitat Pompeu Fabra, Pg. Luís Companys 23, Barcelona, 08010, Spain
| | - Amanda Melin
- Leibniz Science Campus Primate Cognition; 37077 Göttingen, Germany
- Department of Anthropology & Archaeology and Department of Medical Genetics
| | - Katerina Guschanski
- Department of Ecology and Genetics, Animal Ecology, Uppsala University; SE-75236, Uppsala, Sweden
- Alberta Children’s Hospital Research Institute; University of Calgary; 2500 University Dr NW T2N 1N4, Calgary, Alberta, Canada
| | | | - Robin M. D. Beck
- School of Science, Engineering & Environment, University of Salford; Salford, M5 4WT, United Kingdom
| | - Govindhaswamy Umapathy
- Academy of Scientific and Innovative Research (AcSIR); Ghaziabad, 201002, India
- Laboratory for the Conservation of Endangered Species, CSIR-Centre for Cellular and Molecular Biology; Hyderabad, 500007, India
| | - Christian Roos
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh; Edinburgh, EH8 9XP, UK
| | - Jean P. Boubli
- School of Science, Engineering & Environment, University of Salford; Salford, M5 4WT, United Kingdom
| | - Monkol Lek
- Gene Bank of Primates and Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research; Kellnerweg 4, 37077 Göttingen, Germany
| | - Shamil Sunyaev
- Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School; Boston, Massachusetts, 02115, USA
- Department of Genetics, Yale School of Medicine; New Haven, Connecticut, 06520, USA
| | - Anne O’Donnell
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard; Boston, Massachusetts, 02142, USA
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School; Boston, Massachusetts, 02115, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, 02115, USA
| | - Heidi Rehm
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard; Boston, Massachusetts, 02142, USA
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School; Boston, Massachusetts, 02115, USA
| | - Jinbo Xu
- Illumina Artificial Intelligence Laboratory, Illumina Inc.; Foster City, California, 94404, USA
- Toyota Technological Institute at Chicago; Chicago, Illinois, 60637, USA
| | - Jeffrey Rogers
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine; Houston, Texas, 77030, USA
| | - Tomas Marques-Bonet
- Institute of Evolutionary Biology (UPF-CSIC); PRBB, Dr. Aiguader 88, 08003 Barcelona, Spain
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST); Baldiri i Reixac 4, 08028, Barcelona, Spain
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Barcelona, Spain; Catalan Institution of Research and Advanced Studies (ICREA), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA) and Universitat Pompeu Fabra, Pg. Luís Companys 23, Barcelona, 08010, Spain
| | - Kyle Kai-How Farh
- Illumina Artificial Intelligence Laboratory, Illumina Inc.; Foster City, California, 94404, USA
| |
Collapse
|
22
|
Chehrazi P, Lee KKY, Lavertu-Jolin M, Abbasnejad Z, Carreño-Muñoz MI, Chattopadhyaya B, Di Cristo G. p75 neurotrophin receptor in pre-adolescent prefrontal PV interneurons promotes cognitive flexibility in adult mice. Biol Psychiatry 2023:S0006-3223(23)01238-6. [PMID: 37120061 DOI: 10.1016/j.biopsych.2023.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 03/31/2023] [Accepted: 04/16/2023] [Indexed: 05/01/2023]
Abstract
BACKGROUND Parvalbumin (PV)-positive GABAergic cells provide robust perisomatic inhibition to neighboring pyramidal neurons and regulate brain oscillations. Alterations in PV interneuron connectivity and function in the medial prefrontal cortex (mPFC) have been consistently reported in psychiatric disorders associated with cognitive rigidity, suggesting that PV cell deficits could be a core cellular phenotype in these disorders. p75 neurotrophin receptor (p75NTR) regulates the time course of PV cell maturation in a cell-autonomous fashion. Whether p75NTR expression during postnatal development affects adult prefrontal PV cell connectivity and cognitive function is unknown. METHODS We generated transgenic mice with conditional knockout (cKO) of p75NTR in postnatal PV cells. We analysed PV cell connectivity and recruitment following a tail pinch, by immunolabeling and confocal imaging, in naïve mice or following p75NTR re-expression in pre- or post-adolescent mice using Cre-dependent viral vectors. Cognitive flexibility was evaluated using behavioral tests. RESULTS PV cell-specific p75NTR deletion increased both PV cell synapse density and the proportion of PV cells surrounded by perineuronal nets, a marker of mature PV cells, in adult mPFC but not visual cortex. Both phenotypes were rescued by viral-mediated re-introduction of p75NTR in pre-adolescent but not post-adolescent mPFC. Prefrontal cortical PV cells failed to upregulate c-Fos following a tail-pinch stimulation in adult cKO mice. Finally, cKO mice showed impaired fear memory extinction learning as well as deficits in a attention set-shifting task. CONCLUSION These findings suggest that p75NTR expression in adolescent PV cells contributes to the fine tuning of their connectivity and promotes cognitive flexibility in adulthood.
Collapse
Affiliation(s)
- Pegah Chehrazi
- Centre de Recherche, CHU Sainte-Justine (CHUSJ), Montréal, Canada; Department of Neurosciences, Université de Montréal, Montréal, Canada
| | - Karen Ka Yan Lee
- Centre de Recherche, CHU Sainte-Justine (CHUSJ), Montréal, Canada; Department of Neurosciences, Université de Montréal, Montréal, Canada
| | - Marisol Lavertu-Jolin
- Centre de Recherche, CHU Sainte-Justine (CHUSJ), Montréal, Canada; Department of Neurosciences, Université de Montréal, Montréal, Canada
| | - Zahra Abbasnejad
- Centre de Recherche, CHU Sainte-Justine (CHUSJ), Montréal, Canada; Department of Neurosciences, Université de Montréal, Montréal, Canada
| | - Maria Isabel Carreño-Muñoz
- Centre de Recherche, CHU Sainte-Justine (CHUSJ), Montréal, Canada; Department of Neurosciences, Université de Montréal, Montréal, Canada
| | | | - Graziella Di Cristo
- Centre de Recherche, CHU Sainte-Justine (CHUSJ), Montréal, Canada; Department of Neurosciences, Université de Montréal, Montréal, Canada.
| |
Collapse
|
23
|
Singhal P, Veturi Y, Dudek SM, Lucas A, Frase A, van Steen K, Schrodi SJ, Fasel D, Weng C, Pendergrass R, Schaid DJ, Kullo IJ, Dikilitas O, Sleiman PMA, Hakonarson H, Moore JH, Williams SM, Ritchie MD, Verma SS. Evidence of epistasis in regions of long-range linkage disequilibrium across five complex diseases in the UK Biobank and eMERGE datasets. Am J Hum Genet 2023; 110:575-591. [PMID: 37028392 PMCID: PMC10119154 DOI: 10.1016/j.ajhg.2023.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/07/2023] [Indexed: 04/09/2023] Open
Abstract
Leveraging linkage disequilibrium (LD) patterns as representative of population substructure enables the discovery of additive association signals in genome-wide association studies (GWASs). Standard GWASs are well-powered to interrogate additive models; however, new approaches are required for invesigating other modes of inheritance such as dominance and epistasis. Epistasis, or non-additive interaction between genes, exists across the genome but often goes undetected because of a lack of statistical power. Furthermore, the adoption of LD pruning as customary in standard GWASs excludes detection of sites that are in LD but might underlie the genetic architecture of complex traits. We hypothesize that uncovering long-range interactions between loci with strong LD due to epistatic selection can elucidate genetic mechanisms underlying common diseases. To investigate this hypothesis, we tested for associations between 23 common diseases and 5,625,845 epistatic SNP-SNP pairs (determined by Ohta's D statistics) in long-range LD (>0.25 cM). Across five disease phenotypes, we identified one significant and four near-significant associations that replicated in two large genotype-phenotype datasets (UK Biobank and eMERGE). The genes that were most likely involved in the replicated associations were (1) members of highly conserved gene families with complex roles in multiple pathways, (2) essential genes, and/or (3) genes that were associated in the literature with complex traits that display variable expressivity. These results support the highly pleiotropic and conserved nature of variants in long-range LD under epistatic selection. Our work supports the hypothesis that epistatic interactions regulate diverse clinical mechanisms and might especially be driving factors in conditions with a wide range of phenotypic outcomes.
Collapse
Affiliation(s)
- Pankhuri Singhal
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yogasudha Veturi
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Scott M Dudek
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Anastasia Lucas
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alex Frase
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kristel van Steen
- Department of Human Genetics, Katholieke Universiteit Leuven, ON4 Herestraat 49, 3000 Leuven, Belgium
| | - Steven J Schrodi
- Laboratory of Genetics, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53706, USA
| | - David Fasel
- Columbia University, New York, NY 10027, USA
| | | | | | | | | | | | | | - Hakon Hakonarson
- Children's Hospital of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jason H Moore
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Scott M Williams
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Marylyn D Ritchie
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Shefali S Verma
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
24
|
Guerra M, Medici V, Weatheritt R, Corvino V, Palacios D, Geloso MC, Farini D, Sette C. Fetal exposure to valproic acid dysregulates the expression of autism-linked genes in the developing cerebellum. Transl Psychiatry 2023; 13:114. [PMID: 37019889 PMCID: PMC10076313 DOI: 10.1038/s41398-023-02391-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 04/07/2023] Open
Abstract
Autism spectrum disorder (ASD) includes a set of highly heritable neurodevelopmental syndromes characterized by social and communication impairment, repetitive behaviour, and intellectual disability. Although mutations in multiple genes have been associated to ASD, most patients lack detectable genetic alterations. For this reason, environmental factors are commonly thought to also contribute to ASD aetiology. Transcriptome analyses have revealed that autistic brains possess distinct gene expression signatures, whose elucidation can provide insights about the mechanisms underlying the effects of ASD-causing genetic and environmental factors. Herein, we have identified a coordinated and temporally regulated programme of gene expression in the post-natal development of cerebellum, a brain area whose defects are strongly associated with ASD. Notably, this cerebellar developmental programme is significantly enriched in ASD-linked genes. Clustering analyses highlighted six different patterns of gene expression modulated during cerebellar development, with most of them being enriched in functional processes that are frequently dysregulated in ASD. By using the valproic acid mouse model of ASD, we found that ASD-linked genes are dysregulated in the developing cerebellum of ASD-like mice, a defect that correlates with impaired social behaviour and altered cerebellar cortical morphology. Moreover, changes in transcript levels were reflected in aberrant protein expression, indicating the functional relevance of these alterations. Thus, our work uncovers a complex ASD-related transcriptional programme regulated during cerebellar development and highlight genes whose expression is dysregulated in this brain area of an ASD mouse model.
Collapse
Affiliation(s)
- Marika Guerra
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Hearth, Rome, Italy
- GSTeP-Organoids Research Core Facility, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Vanessa Medici
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Hearth, Rome, Italy
| | - Robert Weatheritt
- Garvan Institute of Medical Research, EMBL Australia, Darlinghurst, NSW, Australia
| | - Valentina Corvino
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Hearth, Rome, Italy
| | - Daniela Palacios
- Department of Life Science and Public Health, Section of Biology, Catholic University of the Sacred Hearth, Rome, Italy
| | - Maria Concetta Geloso
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Hearth, Rome, Italy
- GSTeP-Organoids Research Core Facility, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Donatella Farini
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Claudio Sette
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Hearth, Rome, Italy.
- GSTeP-Organoids Research Core Facility, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy.
| |
Collapse
|
25
|
Pruunsild P, Bengtson CP, Loss I, Lohrer B, Bading H. Expression of the primate-specific LINC00473 RNA in mouse neurons promotes excitability and CREB-regulated transcription. J Biol Chem 2023; 299:104671. [PMID: 37019214 DOI: 10.1016/j.jbc.2023.104671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
The LINC00473 (Lnc473) gene has previously been shown to be associated with cancer and psychiatric disorders. Its expression is elevated in several types of tumors and decreased in the brains of patients diagnosed with schizophrenia or major depression. In neurons, Lnc473 transcription is strongly responsive to synaptic activity, suggesting a role in adaptive, plasticity-related mechanisms. However, the function of Lnc473 is largely unknown. Here, using a recombinant adeno-associated viral vector, we introduced a primate-specific human Lnc473 RNA into mouse primary neurons. We show that this resulted in a transcriptomic shift comprising downregulation of epilepsy-associated genes and a rise in cAMP response element binding protein (CREB) activity, which was driven by augmented CREB-regulated transcription coactivator 1 (CRTC1) nuclear localization. Moreover, we demonstrate that ectopic Lnc473 expression increased neuronal excitability as well as network excitability. These findings suggest that primates may possess a lineage-specific activity-dependent modulator of CREB-regulated neuronal excitability.
Collapse
|
26
|
Hassan A. Episodic Ataxias: Primary and Secondary Etiologies, Treatment, and Classification Approaches. Tremor Other Hyperkinet Mov (N Y) 2023; 13:9. [PMID: 37008993 PMCID: PMC10064912 DOI: 10.5334/tohm.747] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/03/2023] [Indexed: 03/30/2023] Open
Abstract
Background Episodic ataxia (EA), characterized by recurrent attacks of cerebellar dysfunction, is the manifestation of a group of rare autosomal dominant inherited disorders. EA1 and EA2 are most frequently encountered, caused by mutations in KCNA1 and CACNA1A. EA3-8 are reported in rare families. Advances in genetic testing have broadened the KCNA1 and CACNA1A phenotypes, and detected EA as an unusual presentation of several other genetic disorders. Additionally, there are various secondary causes of EA and mimicking disorders. Together, these can pose diagnostic challenges for neurologists. Methods A systematic literature review was performed in October 2022 for 'episodic ataxia' and 'paroxysmal ataxia', restricted to publications in the last 10 years to focus on recent clinical advances. Clinical, genetic, and treatment characteristics were summarized. Results EA1 and EA2 phenotypes have further broadened. In particular, EA2 may be accompanied by other paroxysmal disorders of childhood with chronic neuropsychiatric features. New treatments for EA2 include dalfampridine and fampridine, in addition to 4-aminopyridine and acetazolamide. There are recent proposals for EA9-10. EA may also be caused by gene mutations associated with chronic ataxias (SCA-14, SCA-27, SCA-42, AOA2, CAPOS), epilepsy syndromes (KCNA2, SCN2A, PRRT2), GLUT-1, mitochondrial disorders (PDHA1, PDHX, ACO2), metabolic disorders (Maple syrup urine disease, Hartnup disease, type I citrullinemia, thiamine and biotin metabolism defects), and others. Secondary causes of EA are more commonly encountered than primary EA (vascular, inflammatory, toxic-metabolic). EA can be misdiagnosed as migraine, peripheral vestibular disorders, anxiety, and functional symptoms. Primary and secondary EA are frequently treatable which should prompt a search for the cause. Discussion EA may be overlooked or misdiagnosed for a variety of reasons, including phenotype-genotype variability and clinical overlap between primary and secondary causes. EA is highly treatable, so it is important to consider in the differential diagnosis of paroxysmal disorders. Classical EA1 and EA2 phenotypes prompt single gene test and treatment pathways. For atypical phenotypes, next generation genetic testing can aid diagnosis and guide treatment. Updated classification systems for EA are discussed which may assist diagnosis and management.
Collapse
|
27
|
Chen X, Chen S, Li Z, Zhu R, Jia Z, Ban J, Zhen R, Chen X, Pan X, Ren Q, Yue L, Niu S. Effect of semaglutide and empagliflozin on cognitive function and hippocampal phosphoproteomic in obese mice. Front Pharmacol 2023; 14:975830. [PMID: 37007007 PMCID: PMC10063902 DOI: 10.3389/fphar.2023.975830] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 03/03/2023] [Indexed: 03/19/2023] Open
Abstract
Objective: Based on the 4D label-free phosphoproteomic technique, we examined the differences in cognitive function and hippocampal phosphorylated protein expression in high-fat diet-induced obese mice after the intervention of semaglutide and empagliflozin, as well as the effects of both on protein activity and function in obese mice’s hippocampal tissues and the signaling pathways involved.Methods: Thirty-two C57BL/6JC male mice were assigned to two groups randomly: A control group (group C, 10% of energy is from fat, n = 8) and a high-fat diet group (group H, 60% of energy is from fat, n = 24). The high-fat diet-induced obese mice were screened after 12 weeks of feeding based on the criterion that the bodyweight of mice in fat rich diet group was greater than or equal to 20% of the average body weight of the mice in the blank control group. Group H separate into group H (n = 8), group Semaglutide (group S, n = 8), and group empagliflozin (group E, n = 8). For a total of 12 weeks, group S received 30 nmol/kg/d bodyweight of semaglutide intraperitoneally, group E received 10 mg/kg/d bodyweight of empagliflozin via gavage, and groups C and H received equal amounts of saline by intraperitoneal injection and gavage. At the end of treatment, the mice were appraised for cognitive function employing the Morris water maze (MWM), and serum fasting glucose, lipids, and inflammatory parameters were measured. The 4D label-free phosphoproteomics method was employed to screen the differential phosphoproteins and loci in hippocampal tissues of mice in different treatment groups, and bioinformatics was used to analyze the biological processes, signaling pathways, and related protein–protein interaction (PPI) network analysis of these differentially phosphorylated proteins.Results: In comparison to normal controls, The escape latency of obese mice induced by high-fat diet was prolonged, the percentage of swimming time in the target quadrant was reduced, and the number of times of crossing the platform was reduced, whereas semaglutide and empagliflozin treatment reduced escape latency, increase the percentage of swim time in the target quadrant and increase the frequency of passing through the platform area, although there is little difference in the effect of the two drugs. The phosphoproteomic results showed 20,493 unique phosphorylated peptides, representing 21,239 phosphorylation sites and 4,290 phosphorylated proteins. Further analysis revealed that the proteins corresponding to these differentially phosphorylated sites are jointly distributed in signaling pathways such as dopaminergic synapses and axon guidance, and are involved in biological processes such as neuronal projection development, synaptic plasticity, and axonogenesis. Notably, the key factors voltage-dependent L-type calcium channel subunit alpha-1D (CACNA1D), voltage-dependent P/Q-type calcium channel subunit alpha-1A (CACNA1A), and voltage-dependent N-type calcium channel subunit alpha-1B (CACNA1B) were all found to be involved in the dopaminergic synapse pathway, and their expression was upregulated by semaglutide and empagliflozin.Conclusion: We found for the first time that a high-fat diet decreased CACNA1D, CACNA1A, and CACNA1B protein serine phosphorylation, which may affect neuronal development, synaptic plasticity, and cognitive function in mice. Notably, semaglutide and empagliflozin increased the phosphorylation of these proteins.
Collapse
Affiliation(s)
- Xiaoyi Chen
- Department of Internal Medicine, Hebei North University, Zhangjiakou, China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China
| | - Shuchun Chen
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China
- *Correspondence: Shuchun Chen,
| | - Zelin Li
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, China
| | - Ruiyi Zhu
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, China
| | - Zhuoya Jia
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, China
| | - Jiangli Ban
- Department of Internal Medicine, Hebei North University, Zhangjiakou, China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China
| | - Ruoxi Zhen
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, China
| | - Xing Chen
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, China
| | - Xiaoyu Pan
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, China
| | - Qingjuan Ren
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, China
| | - Lin Yue
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, China
| | - Shu Niu
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
28
|
Tu G, Guo Y, Xiao R, Tang L, Hu M, Liao B. Effects of Exercise Training on the Phosphoproteomics of the Medial Prefrontal Cortex in Rats With Autism Spectrum Disorder Induced by Valproic Acid. Neurorehabil Neural Repair 2023; 37:94-108. [PMID: 36860155 DOI: 10.1177/15459683231152814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
BACKGROUND The key neural pathological characteristics of autism spectrum disorder (ASD) include abnormal synaptic plasticity of the medial prefrontal cortex (mPFC). Exercise therapy is widely used to rehabilitate children with ASD, but its neurobiological mechanism is unclear. METHODS To clarify whether the structural and molecular plasticity of synapses in the mPFC are related to improvement in ASD behavioral deficits after continuous exercise rehabilitation training, we applied phosphoproteomic, behavioral, morphological, and molecular biological methods to investigate the impact of exercise on the phosphoprotein expression profile and synaptic structure of the mPFC in valproic acid (VPA)-induced ASD rats. RESULTS Exercise training differentially regulated the density, morphology, and ultrastructure of synapses in mPFC subregions in the VPA-induced ASD rats. In total, 1031 phosphopeptides were upregulated and 782 phosphopeptides were downregulated in the mPFC in the ASD group. After exercise training, 323 phosphopeptides were upregulated, and 1098 phosphopeptides were downregulated in the ASDE group. Interestingly, 101 upregulated and 33 downregulated phosphoproteins in the ASD group were reversed after exercise training, and these phosphoproteins were mostly involved in synapses. Consistent with the phosphoproteomics data, the total and phosphorylated levels of the proteins MARK1 and MYH10 were upregulated in the ASD group and reversed after exercise training. CONCLUSIONS The differential structural plasticity of synapses in mPFC subregions may be the basic neural architecture of ASD behavioral abnormalities. The phosphoproteins involved in mPFC synapses, such as MARK1 and MYH10, may play important roles in the exercise rehabilitation effect on ASD-induced behavioral deficits and synaptic structural plasticity, which requires further investigation.
Collapse
Affiliation(s)
- Genghong Tu
- Department of Sports Medicine, Guangzhou Sport University, Guangzhou, Guangdong, P.R. China.,Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Scientific Research Center, Guangzhou Sport University, Guangzhou, Guangdong, P.R. China
| | - Youli Guo
- Department of Pharmacy, Guangdong Provincial Corps Hospital of Chinese People's Armed Police Forces, Guangzhou, Guangdong, P.R. China
| | - Ruoshi Xiao
- Department of Sports Medicine, Guangzhou Sport University, Guangzhou, Guangdong, P.R. China.,Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Scientific Research Center, Guangzhou Sport University, Guangzhou, Guangdong, P.R. China
| | - Lianying Tang
- Department of Sports Medicine, Guangzhou Sport University, Guangzhou, Guangdong, P.R. China.,Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Scientific Research Center, Guangzhou Sport University, Guangzhou, Guangdong, P.R. China
| | - Min Hu
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Scientific Research Center, Guangzhou Sport University, Guangzhou, Guangdong, P.R. China
| | - Bagen Liao
- Department of Sports Medicine, Guangzhou Sport University, Guangzhou, Guangdong, P.R. China.,Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Scientific Research Center, Guangzhou Sport University, Guangzhou, Guangdong, P.R. China
| |
Collapse
|
29
|
Molecular and cellular evolution of the amygdala across species analyzed by single-nucleus transcriptome profiling. Cell Discov 2023; 9:19. [PMID: 36788214 PMCID: PMC9929086 DOI: 10.1038/s41421-022-00506-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 11/24/2022] [Indexed: 02/16/2023] Open
Abstract
The amygdala, or an amygdala-like structure, is found in the brains of all vertebrates and plays a critical role in survival and reproduction. However, the cellular architecture of the amygdala and how it has evolved remain elusive. Here, we generated single-nucleus RNA-sequencing data for more than 200,000 cells in the amygdala of humans, macaques, mice, and chickens. Abundant neuronal cell types from different amygdala subnuclei were identified in all datasets. Cross-species analysis revealed that inhibitory neurons and inhibitory neuron-enriched subnuclei of the amygdala were well-conserved in cellular composition and marker gene expression, whereas excitatory neuron-enriched subnuclei were relatively divergent. Furthermore, LAMP5+ interneurons were much more abundant in primates, while DRD2+ inhibitory neurons and LAMP5+SATB2+ excitatory neurons were dominant in the human central amygdalar nucleus (CEA) and basolateral amygdalar complex (BLA), respectively. We also identified CEA-like neurons and their species-specific distribution patterns in chickens. This study highlights the extreme cell-type diversity in the amygdala and reveals the conservation and divergence of cell types and gene expression patterns across species that may contribute to species-specific adaptations.
Collapse
|
30
|
Modeling Autism Spectrum Disorders with Induced Pluripotent Stem Cell-Derived Brain Organoids. Biomolecules 2023; 13:biom13020260. [PMID: 36830629 PMCID: PMC9953447 DOI: 10.3390/biom13020260] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 02/03/2023] Open
Abstract
Autism spectrum disorders (ASD) are a group of complex neurodevelopmental disorders that affect communication and social interactions and present with restricted interests and repetitive behavior patterns. The susceptibility to ASD is strongly influenced by genetic/heritable factors; however, there is still a large gap in understanding the cellular and molecular mechanisms underlying the neurobiology of ASD. Significant progress has been made in identifying ASD risk genes and the possible convergent pathways regulated by these gene networks during development. The breakthrough of cellular reprogramming technology has allowed the generation of induced pluripotent stem cells (iPSCs) from individuals with syndromic and idiopathic ASD, providing patient-specific cell models for mechanistic studies. In the past decade, protocols for developing brain organoids from these cells have been established, leading to significant advances in the in vitro reproducibility of the early steps of human brain development. Here, we reviewed the most relevant literature regarding the application of brain organoids to the study of ASD, providing the current state of the art, and discussing the impact of such models on the field, limitations, and opportunities for future development.
Collapse
|
31
|
ÇELİK ZB, TİRYAKİ ES, TÜRKDÖNMEZ E, ÇİÇEKLİ MN, ALTUN A, GÜNAYDIN C. Parallel changes in the promoter methylation of voltage-gated T-type calcium channel alpha 1 subunit G and histone deacetylase activity in the WAG/Rij model of absence epilepsy. JOURNAL OF HEALTH SCIENCES AND MEDICINE 2023. [DOI: 10.32322/jhsm.1207399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Objective: In the last two decades, research on epigenetic mechanisms has expanded dramatically. Recent studies demonstrated that epigenetic mechanisms regulate epilepsy and epileptogenic pathologies. In this study, we aimed to investigate changes in the promoter methylation status of the voltage-gated T-type calcium channel alpha 1 subunit G (CACNA1G) gene and total histone deacetylase activity in Wistar Albino Glaxo/Rijswijk (WAG/Rij) rats which is one of the commonly used genetic absence rat models of epilepsy in the three different age groups (3, 6, and 9 months old) on both sexes.
Material and Method: Evaluation of changes in the spike-wave discharges (SWDs) was performed with electrocorticography (ECoG). The promoter methylation status of the CACNA1G gene was determined by methylation-specific PCR (MSP), and histone deacetylase (HDAC) activity was determined spectrophotometrically.
Results: Our results demonstrated that the number of SWDs increased time-dependent in WAG/Rij. Additionally, it was observed that CACNA1G promoter methylation decreased, and total HDAC activity increased with age in both sexes.
Conclusion: Our results provide further support for epigenetic regulation in the absence epilepsy phenotype and suggest that the underlying mechanism behind the increase in the number of SWDs with age in the WAG/Rij animals might be regulated by CACNA1G promoter methylation or HDAC activity.
Collapse
|
32
|
Indelicato E, Boesch S. CACNA1A-Related Channelopathies: Clinical Manifestations and Treatment Options. Handb Exp Pharmacol 2023; 279:227-248. [PMID: 36592223 DOI: 10.1007/164_2022_625] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In the last decade, variants in the Ca2+ channel gene CACNA1A emerged as a frequent aetiology of rare neurological phenotypes sharing a common denominator of variable paroxysmal manifestations and chronic cerebellar dysfunction. The spectrum of paroxysmal manifestations encompasses migraine with hemiplegic aura, episodic ataxia, epilepsy and paroxysmal non-epileptic movement disorders. Additional chronic neurological symptoms range from severe developmental phenotypes in early-onset cases to neurobehavioural disorders and chronic cerebellar ataxia in older children and adults.In the present review we systematically approach the clinical manifestations of CACNA1A variants, delineate genotype-phenotype correlations and elaborate on the emerging concept of an age-dependent phenotypic spectrum in CACNA1A disease. We furthermore reflect on different therapy options available for paroxysmal symptoms in CACNA1A and address open issues to prioritize in the future clinical research.
Collapse
Affiliation(s)
- Elisabetta Indelicato
- Center for Rare Movement Disorders Innsbruck, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria.
| | - Sylvia Boesch
- Center for Rare Movement Disorders Innsbruck, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
33
|
Arruda MA, Arruda R. Case report: Look at my eyes. HEADACHE MEDICINE 2022. [DOI: 10.48208/headachemed.2022.38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The comorbidity of migraine and Autism Spectrum Disorder (ASD) still remain unclear. In spite of plausible evidences of such comorbidity, there is a scarcity of populational studies focusing this hypothesis. The diagnosis of migraine in children with ASD is very challenge due to the large clinical heterogeneity and limited communication skills, particularly verbal abilities in young children and those with intellectual disability. ASD and migraine are chronic prevalent disorders sharing some pathophysiological changes (neurotransmission dysregulation, altered immune response, abnormal findings in the cortical minicolumn organization, and dysfunctions in the gut–brain axis), susceptibility genes (including calcium channel mutations and polymorphisms), and atypical sensory processing. Herein, we take advantage of a prototypical case of an adolescent with episodic migraine transformed to chronic, not responsive to preventive treatment, to explore the diagnostic workup and successful personalized clinical and therapeutical management.
Collapse
|
34
|
Granerud G, Elvsåshagen T, Arntzen E, Juhasz K, Emilsen NM, Sønderby IE, Nærland T, Malt EA. A family study of symbolic learning and synaptic plasticity in autism spectrum disorder. Front Hum Neurosci 2022; 16:950922. [PMID: 36504626 PMCID: PMC9730282 DOI: 10.3389/fnhum.2022.950922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 05/23/2022] [Indexed: 11/25/2022] Open
Abstract
The current study presents a male with autism spectrum disorder (ASD) and a 3q29 deletion, and three healthy first-degree relatives. Our magnetic resonance imaging (MRI) dataset included a healthy control subset. We describe a comprehensive multimodal approach, including equivalence class formation, neurocognitive testing, MRI, and electroencephalography (EEG)-based cortical plasticity, which can provide new insights into socio-communicative and learning impairments and neural underpinnings in ASD. On neurocognitive testing, the proband showed reduced processing speed, attending behavior, and executive function. He required more training trials in equivalence class training compared with family members and exhibited impaired priming of words compared with priming with images. The proband had smaller intracranial volume and surface area and a larger visual evoked potential (VEP) C1 amplitude than family members and intact long-term potentiation (LTP)-like visual cortex plasticity. Together, these results suggest that 3q29 deletion-related ASD is associated with impaired problem-solving strategies in complex socio-communicative and learning tasks, smaller intracranial and surface area, altered VEP amplitude, and normal LTP-like visual cortex plasticity. Further studies are needed to clarify whether this multimodal approach can be used to identify ASD subgroups with distinct neurobiological alterations and to uncover mechanisms underlying socio-communicative and learning impairments. Lay Summary: We studied learning, brain activity, and brain structure in a person with autism and a genetic aberration, and his close relatives. Compared with relatives, the person with autism required more training for learning, and visual learning was better than verbal learning. This person had some changes in the activity of the visual cortex, and the size and the surface area of the brain were reduced. Knowledge about learning and brain mechanisms is valuable for the development of training programs for individuals with autism.
Collapse
Affiliation(s)
- Guro Granerud
- Department of Adult Habilitation, Akershus University Hospital, Oslo, Norway,Department of Behavioral Science, Oslo Metropolitan University, Oslo, Norway,KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway,*Correspondence: Guro Granerud
| | - Torbjørn Elvsåshagen
- Norwegian Centre for Mental Disorders Research, Oslo University Hospital, Oslo, Norway,Department of Neurology, Oslo University Hospital, Oslo, Norway,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Erik Arntzen
- Department of Behavioral Science, Oslo Metropolitan University, Oslo, Norway
| | - Katalin Juhasz
- Department of Adult Habilitation, Akershus University Hospital, Oslo, Norway
| | - Nina Merete Emilsen
- Department of Adult Habilitation, Akershus University Hospital, Oslo, Norway
| | - Ida Elken Sønderby
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway,Norwegian Centre for Mental Disorders Research, Oslo University Hospital, Oslo, Norway,Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Terje Nærland
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway,NevSom Department of Rare Disorders and Disabilities, Oslo University Hospital, Oslo, Norway
| | - Eva Albertsen Malt
- Department of Adult Habilitation, Akershus University Hospital, Oslo, Norway,Institute of Clinical Medicine, Campus Ahus, University of Oslo, Oslo, Norway
| |
Collapse
|
35
|
Bowling KM, Thompson ML, Kelly MA, Scollon S, Slavotinek AM, Powell BC, Kirmse BM, Hendon LG, Brothers KB, Korf BR, Cooper GM, Greally JM, Hurst ACE. Return of non-ACMG recommended incidental genetic findings to pediatric patients: considerations and opportunities from experiences in genomic sequencing. Genome Med 2022; 14:131. [PMID: 36414972 PMCID: PMC9682742 DOI: 10.1186/s13073-022-01139-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 11/10/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND The uptake of exome/genome sequencing has introduced unexpected testing results (incidental findings) that have become a major challenge for both testing laboratories and providers. While the American College of Medical Genetics and Genomics has outlined guidelines for laboratory management of clinically actionable secondary findings, debate remains as to whether incidental findings should be returned to patients, especially those representing pediatric populations. METHODS The Sequencing Analysis and Diagnostic Yield working group in the Clinical Sequencing Evidence-Generating Research Consortium has collected a cohort of pediatric patients found to harbor a genomic sequencing-identified non-ACMG-recommended incidental finding. The incidental variants were not thought to be associated with the indication for testing and were disclosed to patients and families. RESULTS In total, 23 "non-ACMG-recommended incidental findings were identified in 21 pediatric patients included in the study. These findings span four different research studies/laboratories and demonstrate differences in incidental finding return rate across study sites. We summarize specific cases to highlight core considerations that surround identification and return of incidental findings (uncertainty of disease onset, disease severity, age of onset, clinical actionability, and personal utility), and suggest that interpretation of incidental findings in pediatric patients can be difficult given evolving phenotypes. Furthermore, return of incidental findings can benefit patients and providers, but do present challenges. CONCLUSIONS While there may be considerable benefit to return of incidental genetic findings, these findings can be burdensome to providers and present risk to patients. It is important that laboratories conducting genomic testing establish internal guidelines in anticipation of detection. Moreover, cross-laboratory guidelines may aid in reducing the potential for policy heterogeneity across laboratories as it relates to incidental finding detection and return. However, future discussion is required to determine whether cohesive guidelines or policy statements are warranted.
Collapse
Affiliation(s)
- Kevin M Bowling
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | | | - Melissa A Kelly
- HudsonAlpha Clinical Services Lab, LLC, HudsonAlpha Institute for Biotechnology, Huntsville, USA
| | - Sarah Scollon
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Anne M Slavotinek
- Department of Pediatrics, University of California, San Francisco, CA, 94158, USA
| | - Bradford C Powell
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Brian M Kirmse
- Department of Pediatrics, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Laura G Hendon
- Department of Pediatrics, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Kyle B Brothers
- Norton Children's Research Institute Affiliated with UofL School of Medicine, Louisville, KY, 40202, USA
| | - Bruce R Korf
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, 25294, USA
| | - Gregory M Cooper
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | - John M Greally
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Anna C E Hurst
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, 25294, USA.
| |
Collapse
|
36
|
Cha J, Yu J, Cho JW, Hemberg M, Lee I. scHumanNet: a single-cell network analysis platform for the study of cell-type specificity of disease genes. Nucleic Acids Res 2022; 51:e8. [PMID: 36350625 PMCID: PMC9881140 DOI: 10.1093/nar/gkac1042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/19/2022] [Accepted: 10/25/2022] [Indexed: 11/10/2022] Open
Abstract
A major challenge in single-cell biology is identifying cell-type-specific gene functions, which may substantially improve precision medicine. Differential expression analysis of genes is a popular, yet insufficient approach, and complementary methods that associate function with cell type are required. Here, we describe scHumanNet (https://github.com/netbiolab/scHumanNet), a single-cell network analysis platform for resolving cellular heterogeneity across gene functions in humans. Based on cell-type-specific gene networks (CGNs) constructed under the guidance of the HumanNet reference interactome, scHumanNet displayed higher functional relevance to the cellular context than CGNs built by other methods on single-cell transcriptome data. Cellular deconvolution of gene signatures based on network compactness across cell types revealed breast cancer prognostic markers associated with T cells. scHumanNet could also prioritize genes associated with particular cell types using CGN centrality and identified the differential hubness of CGNs between disease and healthy conditions. We demonstrated the usefulness of scHumanNet by uncovering T-cell-specific functional effects of GITR, a prognostic gene for breast cancer, and functional defects in autism spectrum disorder genes specific for inhibitory neurons. These results suggest that scHumanNet will advance our understanding of cell-type specificity across human disease genes.
Collapse
Affiliation(s)
- Junha Cha
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Jiwon Yu
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Jae-Won Cho
- Evergrande Center for Immunologic Disease, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Martin Hemberg
- Correspondence may also be addressed to Martin Hemberg. Tel: +1 857 307 1422;
| | - Insuk Lee
- To whom correspondence should be addressed. Tel: +82 2 2123 5559; Fax: +82 2 362 7265;
| |
Collapse
|
37
|
Wong‐Spracklen VMY, Kolesnik A, Eck J, Sabanathan S, Spasic‐Boskovic O, Maw A, Baker K. Biallelic CACNA1A variants: Review of literature and report of a child with drug-resistant epilepsy and developmental delay. Am J Med Genet A 2022; 188:3306-3311. [PMID: 36063114 PMCID: PMC9826308 DOI: 10.1002/ajmg.a.62960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/19/2022] [Accepted: 07/24/2022] [Indexed: 01/31/2023]
Abstract
Biallelic variants in CACNA1A have previously been reported in nine individuals (four families) presenting with epilepsy and cognitive impairments of variable severity and age-of-onset. Here, we describe a child who presented at 6 months of age with drug-resistant epilepsy and developmental delay. At 10 years of age, she has profound impairments in motor function and communication. MRI was initially unremarkable, but progressed to severe cerebellar atrophy by age 3 years. Next Generation Sequencing and panel analysis identified a maternally inherited truncating variant c.2042_2043delAG, p.(Gln681ArgfsTer100) and paternally inherited missense variant c.1693G>A, p.(Glu565Lys). In contrast to previously reported biallelic cases, parents carrying these monoallelic variants did not display clear signs of a CACNA1A-associated syndrome. In conclusion, we provide further evidence that biallelic CACNA1A variants can cause a severe epileptic and developmental encephalopathy with progressive cerebellar atrophy, and highlight complexities of genetic counseling in such situations.
Collapse
Affiliation(s)
| | - Anna Kolesnik
- MRC Cognition and Brain Sciences UnitUniversity of CambridgeCambridgeUK
| | - Josefine Eck
- MRC Cognition and Brain Sciences UnitUniversity of CambridgeCambridgeUK
| | - Saras Sabanathan
- Department of Paediatric NeurosciencesEvelina Childrens HospitalLondonUK
| | | | - Anna Maw
- Department of Paediatric NeurologyCambridge University Hospitals NHS Foundation TrustCambridgeUK
| | - Kate Baker
- MRC Cognition and Brain Sciences UnitUniversity of CambridgeCambridgeUK
- Department of Medical GeneticsUniversity of CambridgeCambridgeUK
| |
Collapse
|
38
|
Lipman AR, Fan X, Shen Y, Chung WK. Clinical and genetic characterization of CACNA1A-related disease. Clin Genet 2022; 102:288-295. [PMID: 35722745 PMCID: PMC9458680 DOI: 10.1111/cge.14180] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 11/03/2022]
Abstract
Pathogenic variants in the CACNA1A gene have been associated with episodic ataxia type 2, familial hemiplegic migraine, and spinocerebellar ataxia 6. With increasing use of clinical genetic testing, associations have expanded to include developmental delay, epilepsy, paroxysmal dystonia, and neuropsychiatric disorders. We report 47 individuals with 33 unique likely pathogenic or pathogenic CACNA1A variants. A machine learning method, funNCion, was used to predict loss-of-function (LoF)/gain-of-function (GoF) impact of genetic variants, and a heuristic severity score was designed to analyze genotype/phenotype correlations. Commonly reported phenotypes include developmental delay/intellectual disability (96%), hemiplegic migraines (36%), episodic ataxia type 2 (32%), epilepsy (55%), autism spectrum disorder (23%), and paroxysmal tonic upward gaze (36%). Severity score was significantly higher for predicted GoF variants, variants in the S5/S6 helices, and the recurrent p.Val1392Met variant. Seizures/status epilepticus were correlated with GoF and were more frequent in those with the p.Val1392Met variant. Our findings demonstrate a breadth of disease severity in CACNA1A-related disease and suggest that the clinical phenotypic heterogeneity likely reflects diverse molecular phenotypes. A better understanding of the natural history of CACNA1A-related disease and genotype/phenotype correlations will help inform prognosis and prepare for future clinical trials.
Collapse
Affiliation(s)
- Amy R. Lipman
- Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Xiao Fan
- Department of Pediatrics, Columbia University, New York, NY, USA
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Yufeng Shen
- Department of Systems Biology, Columbia University, New York, NY, USA
- Department of Biomedical Informatics, Columbia University, New York, NY, USA
- JP Sulzberger Columbia Genome Center, Columbia University, New York, NY, USA
| | - Wendy K. Chung
- Department of Pediatrics, Columbia University, New York, NY, USA
- Department of Medicine, Columbia University, New York, NY, USA
| |
Collapse
|
39
|
Haase F, Singh R, Gloss B, Tam P, Gold W. Meta-Analysis Identifies BDNF and Novel Common Genes Differently Altered in Cross-Species Models of Rett Syndrome. Int J Mol Sci 2022; 23:11125. [PMID: 36232428 PMCID: PMC9570315 DOI: 10.3390/ijms231911125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/06/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022] Open
Abstract
Rett syndrome (RTT) is a rare disorder and one of the most abundant causes of intellectual disabilities in females. Single mutations in the gene coding for methyl-CpG-binding protein 2 (MeCP2) are responsible for the disorder. MeCP2 regulates gene expression as a transcriptional regulator as well as through epigenetic imprinting and chromatin condensation. Consequently, numerous biological pathways on multiple levels are influenced. However, the exact molecular pathways from genotype to phenotype are currently not fully elucidated. Treatment of RTT is purely symptomatic as no curative options for RTT have yet to reach the clinic. The paucity of this is mainly due to an incomplete understanding of the underlying pathophysiology of the disorder with no clinically useful common disease drivers, biomarkers, or therapeutic targets being identified. With the premise of identifying universal and robust disease drivers and therapeutic targets, here, we interrogated a range of RTT transcriptomic studies spanning different species, models, and MECP2 mutations. A meta-analysis using RNA sequencing data from brains of RTT mouse models, human post-mortem brain tissue, and patient-derived induced pluripotent stem cell (iPSC) neurons was performed using weighted gene correlation network analysis (WGCNA). This study identified a module of genes common to all datasets with the following ten hub genes driving the expression: ATRX, ADCY7, ADCY9, SOD1, CACNA1A, PLCG1, CCT5, RPS9, BDNF, and MECP2. Here, we discuss the potential benefits of these genes as therapeutic targets.
Collapse
Affiliation(s)
- Florencia Haase
- School of Medical Science, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
- Kids Neuroscience Centre, Kids Research, Children’s Hospital at Westmead, Westmead, NSW 2145, Australia
- Molecular Neurobiology Research Laboratory, Kids Research, Children’s Hospital at Westmead, Westmead, NSW 2145, Australia
| | - Rachna Singh
- School of Medicine Sydney, The University of Notre Dame, Chippendale, NSW 2007, Australia
| | - Brian Gloss
- Westmead Research Hub, Westmead Institute for Medical Research, Westmead, NSW 2145, Australia
| | - Patrick Tam
- School of Medical Science, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
- Embryology Research Unit, Children’s Medical Research Institute, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Wendy Gold
- School of Medical Science, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
- Kids Neuroscience Centre, Kids Research, Children’s Hospital at Westmead, Westmead, NSW 2145, Australia
- Molecular Neurobiology Research Laboratory, Kids Research, Children’s Hospital at Westmead, Westmead, NSW 2145, Australia
| |
Collapse
|
40
|
Crum RJ, Johnson SA, Jiang P, Jui JH, Zamora R, Cortes D, Kulkarni M, Prabahar A, Bolin J, Gann E, Elster E, Schobel SA, Larie D, Cockrell C, An G, Brown B, Hauskrecht M, Vodovotz Y, Badylak SF. Transcriptomic, Proteomic, and Morphologic Characterization of Healing in Volumetric Muscle Loss. Tissue Eng Part A 2022; 28:941-957. [PMID: 36039923 DOI: 10.1089/ten.tea.2022.0113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Skeletal muscle has a robust, inherent ability to regenerate in response to injury from acute to chronic. In severe trauma, however, complete regeneration is not possible, resulting in a permanent loss of skeletal muscle tissue referred to as volumetric muscle loss (VML). There are few consistently reliable therapeutic or surgical options to address VML. A major limitation in investigation of possible therapies is the absence of a well-characterized large animal model. Here, we present results of a comprehensive transcriptomic, proteomic, and morphologic characterization of wound healing following volumetric muscle loss in a novel canine model of VML which we compare to a nine-patient cohort of combat-associated VML. The canine model is translationally relevant as it provides both a regional (spatial) and temporal map of the wound healing processes that occur in human VML. Collectively, these data show the spatiotemporal transcriptomic, proteomic, and morphologic properties of canine VML healing as a framework and model system applicable to future studies investigating novel therapies for human VML.
Collapse
Affiliation(s)
- Raphael John Crum
- University of Pittsburgh, McGowan Institute for Regenerative Medicine, 450 Technology Dr., Suite 300, Pittsburgh, Pennsylvania, United States, 15219;
| | - Scott A Johnson
- University of Pittsburgh, McGowan Institute for Regenerative Medicine, 450 Technology Dr, Suite 300, Pittsburgh, Pennsylvania, United States, 15219;
| | - Peng Jiang
- Cleveland State University, Center for Gene Regulation in Health and Disease, Cleveland, Ohio, United States.,Cleveland State University, Center for Applied Data Analysis and Modeling (ADAM), Cleveland, Ohio, United States.,Cleveland State University, Department of Biological, Geological, and Environmental Sciences (BGES), Cleveland, Ohio, United States;
| | - Jayati H Jui
- University of Pittsburgh, Department of Computer Science, Pittsburgh, Pennsylvania, United States;
| | - Ruben Zamora
- University of Pittsburgh, McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania, United States.,University of Pittsburgh, Surgery, Pittsburgh, Pennsylvania, United States.,University of Pittsburgh, Center for Inflammation and Regeneration Modeling, Pittsburgh, Pennsylvania, United States.,University of Pittsburgh, Center for Systems Immunology, Pittsburgh, Pennsylvania, United States;
| | - Devin Cortes
- University of Pittsburgh, McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania, United States.,University of Pittsburgh, Bioengineering, Pittsburgh, Pennsylvania, United States;
| | - Mangesh Kulkarni
- University of Pittsburgh, McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania, United States.,University of Pittsburgh, Bioengineering, Pittsburgh, Pennsylvania, United States;
| | - Archana Prabahar
- Cleveland State University, Center for Gene Regulation in Health and Disease, Cleveland, Ohio, United States;
| | - Jennifer Bolin
- Morgridge Institute for Research, Madison, Wisconsin, United States;
| | - Eric Gann
- Uniformed Services University of the Health Sciences, Surgery, Bethesda, Maryland, United States.,Uniformed Services University of the Health Sciences, Surgical Critical Care Initiative, Department of Surgery, Bethesda, Maryland, United States.,Henry M Jackson Foundation for the Advancement of Military Medicine Inc, Bethesda, Maryland, United States;
| | - Eric Elster
- Uniformed Services University of the Health Sciences, Surgery, Bethesda, Maryland, United States.,Henry M Jackson Foundation for the Advancement of Military Medicine Inc, Bethesda, Maryland, United States.,Uniformed Services University of the Health Sciences, Surgical Critical Care Initiative, Department of Surgery, Bethesda, Maryland, United States.,Walter Reed Army Medical Center, Bethesda, Maryland, United States;
| | - Seth A Schobel
- Uniformed Services University of the Health Sciences, Surgery, Bethesda, Maryland, United States.,Henry M Jackson Foundation for the Advancement of Military Medicine Inc, Bethesda, Maryland, United States.,Uniformed Services University of the Health Sciences, Surgical Critical Care Initiative, Department of Surgery, Bethesda, Maryland, United States;
| | - Dale Larie
- University of Vermont, Department of Surgery, Burlington, Vermont, United States;
| | - Chase Cockrell
- University of Vermont, Department of Surgery, Burlington, Vermont, United States;
| | - Gary An
- University of Vermont, Department of Surgery, Burlington, Vermont, United States;
| | - Bryan Brown
- University of Pittsburgh, McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania, United States.,University of Pittsburgh, Bioengineering, Pittsburgh, Pennsylvania, United States;
| | - Milos Hauskrecht
- University of Pittsburgh, Department of Computer Science, Pittsburgh, Pennsylvania, United States;
| | - Yoram Vodovotz
- University of Pittsburgh, Surgery, Pittsburgh, Pennsylvania, United States.,University of Pittsburgh, Surgery, Pittsburgh, Pennsylvania, United States.,University of Pittsburgh, Center for Inflammation and Regeneration Modeling, Pittsburgh, Pennsylvania, United States.,University of Pittsburgh, Center for Systems Immunology, Pittsburgh, Pennsylvania, United States;
| | - Stephen F Badylak
- University of Pittsburgh, McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania, United States;
| |
Collapse
|
41
|
Iezzi D, Curti L, Ranieri G, Gerace E, Costa A, Ilari A, La Rocca A, Luceri C, D'Ambrosio M, Silvestri L, Scardigli M, Mannaioni G, Masi A. Acute rapamycin rescues the hyperexcitable phenotype of accumbal medium spiny neurons in the valproic acid rat model of autism spectrum disorder. Pharmacol Res 2022; 183:106401. [PMID: 35987482 DOI: 10.1016/j.phrs.2022.106401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/04/2022] [Accepted: 08/14/2022] [Indexed: 11/17/2022]
Abstract
We previously demonstrated that prenatal exposure to valproic acid (VPA), an environmental model of autism spectrum disorder (ASD), leads to a hyperexcitable phenotype associated with downregulation of inward-rectifying potassium currents in nucleus accumbens (NAc) medium spiny neurons (MSNs) of adolescent rats. Aberrant mTOR pathway function has been associated with autistic-like phenotypes in multiple animal models, including gestational exposure to VPA. The purpose of this work was to probe the involvement of the mTOR pathway in VPA-induced alterations of striatal excitability. Adolescent male Wistar rats prenatally exposed to VPA were treated acutely with the mTOR inhibitor rapamycin and used for behavioral tests, ex vivo brain slice electrophysiology, single-neuron morphometric analysis, synaptic protein quantification and gene expression analysis in the NAc. We report that postnatal rapamycin ameliorates the social deficit and reverts the abnormal excitability, but not the inward-rectifying potassium current defect, of accumbal MSNs. Synaptic transmission and neuronal morphology were largely unaffected by prenatal VPA exposure or postnatal rapamycin treatment. Transcriptome analysis revealed extensive deregulation of genes implied in neurodevelopmental disorders and ionic mechanisms exerted by prenatal VPA, which was partially reverted by postnatal rapamycin. The results of this work support the existence of antagonistic interaction between mTOR and VPA-induced pathways on social behavior, neurophysiological phenotype and gene expression profile, thus prompting further investigation of the mTOR pathway in the quest for specific therapeutic targets in ASD.
Collapse
Affiliation(s)
- D Iezzi
- Università degli Studi di Firenze, Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino - NEUROFARBA, viale Pieraccini 6, 50139, Firenze, Italy; Institut de Neurobiologie de la MEDiterranée - INMED, 163, Avenue de Luminy - Parc Scientifique, 13009, Marseille, France
| | - L Curti
- Università degli Studi di Firenze, Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino - NEUROFARBA, viale Pieraccini 6, 50139, Firenze, Italy
| | - G Ranieri
- Università degli Studi di Firenze, Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino - NEUROFARBA, viale Pieraccini 6, 50139, Firenze, Italy
| | - E Gerace
- Università degli Studi di Firenze, Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino - NEUROFARBA, viale Pieraccini 6, 50139, Firenze, Italy
| | - A Costa
- Università degli Studi di Firenze, Dipartimento di Scienze della Salute, viale Pieraccini 6, 50139, Firenze, Italy
| | - A Ilari
- Università degli Studi di Firenze, Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino - NEUROFARBA, viale Pieraccini 6, 50139, Firenze, Italy
| | - A La Rocca
- Università degli Studi di Firenze, Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino - NEUROFARBA, viale Pieraccini 6, 50139, Firenze, Italy
| | - C Luceri
- Università degli Studi di Firenze, Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino - NEUROFARBA, viale Pieraccini 6, 50139, Firenze, Italy
| | - M D'Ambrosio
- Università degli Studi di Firenze, Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino - NEUROFARBA, viale Pieraccini 6, 50139, Firenze, Italy
| | - L Silvestri
- Università degli Studi di Firenze, Dipartimento di Fisica e Astronomia, Via Sansone 1, 50019, Sesto Fiorentino, Italy; European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, 50019, Sesto Fiorentino, Italy
| | - M Scardigli
- Università degli Studi di Firenze, Dipartimento di Fisica e Astronomia, Via Sansone 1, 50019, Sesto Fiorentino, Italy; European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, 50019, Sesto Fiorentino, Italy
| | - G Mannaioni
- Università degli Studi di Firenze, Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino - NEUROFARBA, viale Pieraccini 6, 50139, Firenze, Italy
| | - A Masi
- Università degli Studi di Firenze, Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino - NEUROFARBA, viale Pieraccini 6, 50139, Firenze, Italy.
| |
Collapse
|
42
|
Xu Y, Wang Z, Sun Q, Zhou L, Xu H, Hu Y. Clinical features and CACNA1A gene mutation in a family with episodic ataxia type 2. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2022; 47:801-808. [PMID: 35837781 PMCID: PMC10930023 DOI: 10.11817/j.issn.1672-7347.2022.210650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Indexed: 06/15/2023]
Abstract
Episodic ataxia (EA) is a group of disorders characterized by recurrent spells of vertigo, truncal ataxia, and dysarthria. Episodic ataxia type 2 (EA2), the most common subtype of EA, is an autosomal dominant disease caused by mutation of the CACNA1A gene. EA2 has been rarely reported in the Chinese population. Here we present an EA2 family admitted to Xiangya Hospital in October 2018. The proband was a 22-year-old male who complained of recurrent spells of vertigo, slurred speech, and incoordination for 4 years. Brain magnetic resonance imaging (MRI) showed cerebellar atrophy. He had neuropsychological development disorder in childhood, and cognitive assessment in adulthood showed cognitive impairment. The proband's mother and grandmother had a similar history. Peripheral blood samples from the proband and family members were collected, and genomic DNA was isolated. Whole exome sequencing of the proband detected a heterozygous frameshift mutation c.2042_2043del (p.Q681Rfs*100) of CACNA1A gene. This mutation was verified in the proband and 2 family members using Sanger sequencing. One family member carrying this mutation was free of symptoms and signs, suggesting an incomplete penetrance of the mutation. We reported a variant c.2042_2043del of CACNA1A gene as the pathogenic mutation in a Chinese EA2 family for the first time. This case enriched the clinical spectrum of CACNA1A related EA2, and contributed to the understanding of clinical and genetic characteristics of EA2 to reduce misdiagnosis.
Collapse
Affiliation(s)
- Yinghui Xu
- Department of Geriatric Neurology, Xiangya Hospital, Central South University, Changsha 410008.
| | - Zhiqin Wang
- Department of Geriatric Neurology, Xiangya Hospital, Central South University, Changsha 410008
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha 410008, China
| | - Qiying Sun
- Department of Geriatric Neurology, Xiangya Hospital, Central South University, Changsha 410008
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha 410008, China
| | - Lin Zhou
- Department of Geriatric Neurology, Xiangya Hospital, Central South University, Changsha 410008
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha 410008, China
| | - Hongwei Xu
- Department of Geriatric Neurology, Xiangya Hospital, Central South University, Changsha 410008
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha 410008, China
| | - Yacen Hu
- Department of Geriatric Neurology, Xiangya Hospital, Central South University, Changsha 410008.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha 410008, China.
| |
Collapse
|
43
|
Rare CACNA1H and RELN variants interact through mTORC1 pathway in oligogenic autism spectrum disorder. Transl Psychiatry 2022; 12:234. [PMID: 35668055 PMCID: PMC9170683 DOI: 10.1038/s41398-022-01997-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/19/2022] [Accepted: 05/25/2022] [Indexed: 11/09/2022] Open
Abstract
Oligogenic inheritance of autism spectrum disorder (ASD) has been supported by several studies. However, little is known about how the risk variants interact and converge on causative neurobiological pathways. We identified in an ASD proband deleterious compound heterozygous missense variants in the Reelin (RELN) gene, and a de novo splicing variant in the Cav3.2 calcium channel (CACNA1H) gene. Here, by using iPSC-derived neural progenitor cells (NPCs) and a heterologous expression system, we show that the variant in Cav3.2 leads to increased calcium influx into cells, which overactivates mTORC1 pathway and, consequently, further exacerbates the impairment of Reelin signaling. Also, we show that Cav3.2/mTORC1 overactivation induces proliferation of NPCs and that both mutant Cav3.2 and Reelin cause abnormal migration of these cells. Finally, analysis of the sequencing data from two ASD cohorts-a Brazilian cohort of 861 samples, 291 with ASD; the MSSNG cohort of 11,181 samples, 5,102 with ASD-revealed that the co-occurrence of risk variants in both alleles of Reelin pathway genes and in one allele of calcium channel genes confer significant liability for ASD. Our results support the notion that genes with co-occurring deleterious variants tend to have interconnected pathways underlying oligogenic forms of ASD.
Collapse
|
44
|
Complex effects on Ca V2.1 channel gating caused by a CACNA1A variant associated with a severe neurodevelopmental disorder. Sci Rep 2022; 12:9186. [PMID: 35655070 PMCID: PMC9163077 DOI: 10.1038/s41598-022-12789-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 05/16/2022] [Indexed: 01/25/2023] Open
Abstract
P/Q-type Ca2+ currents mediated by CaV2.1 channels are essential for active neurotransmitter release at neuromuscular junctions and many central synapses. Mutations in CACNA1A, the gene encoding the principal CaV2.1 α1A subunit, cause a broad spectrum of neurological disorders. Typically, gain-of-function (GOF) mutations are associated with migraine and epilepsy while loss-of-function (LOF) mutations are causative for episodic and congenital ataxias. However, a cluster of severe CaV2.1 channelopathies have overlapping presentations which suggests that channel dysfunction in these disorders cannot always be defined bimodally as GOF or LOF. In particular, the R1667P mutation causes focal seizures, generalized hypotonia, dysarthria, congenital ataxia and, in one case, cerebral edema leading ultimately to death. Here, we demonstrate that the R1667P mutation causes both channel GOF (hyperpolarizing voltage-dependence of activation, slowed deactivation) and LOF (slowed activation kinetics) when expressed heterologously in tsA-201 cells. We also observed a substantial reduction in Ca2+ current density in this heterologous system. These changes in channel gating and availability/expression manifested in diminished Ca2+ flux during action potential-like stimuli. However, the integrated Ca2+ fluxes were no different when normalized to tail current amplitude measured upon repolarization from the reversal potential. In summary, our findings indicate a complex functional effect of R1667P and support the idea that pathological missense mutations in CaV2.1 may not represent exclusively GOF or LOF.
Collapse
|
45
|
Nakao A, Hayashida K, Ogura H, Mori Y, Imoto K. Hippocampus-related cognitive disorders develop in the absence of epilepsy and ataxia in the heterozygous Cacna1a mutant mice tottering. Channels (Austin) 2022; 16:113-126. [PMID: 35548926 PMCID: PMC9103357 DOI: 10.1080/19336950.2022.2072449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
CACNA1A-associated epilepsy and ataxia frequently accompany cognitive impairments as devastating co-morbidities. However, it is unclear whether the cognitive deficits are consequences secondary to the neurological symptoms elicited by CACNA1A mutations. To address this issue, Cacna1a mutant mice tottering (tg), and in particular tg/+ heterozygotes, serve as a suitable model system, given that tg/+ heterozygotes fail to display spontaneous absence epilepsy and ataxia typically observed in tg/tg homozygotes. Here, we examined hippocampus-dependent behaviors and hippocampal learning-related synaptic plasticity in tg mice. In behavioral analyses of tg/+ and tg/tg, acquisition and retention of spatial reference memory were characteristically impaired in the Morris water maze task, while working memory was intact in the eight-arm radial maze and T-maze tasks. tg/+ heterozygotes showed normal motor function in contrast to tg/tg homozygotes. In electrophysiological analyses, Schaffer collateral–CA1 synapses showed a deficit in the maintenance of long-term potentiation in tg/+ and tg/tg mice and an increased paired-pulse facilitation induced by paired pulses with 100 ms in tg/tg mice. Our results indicate that the tg mutation causes a dominant disorder of the hippocampus-related memory and synaptic plasticity, raising the possibility that in CACNA1A-associated human diseases, functionally aberrant CaV2.1 Ca2+ channels actively induce the observed cognitive deficits independently of the neurological symptoms.
Collapse
Affiliation(s)
- Akito Nakao
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Katsumi Hayashida
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Hiroo Ogura
- Product Creation Headquarters, Eisai Corporate, Limited, Tokyo, Japan
| | - Yasuo Mori
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Keiji Imoto
- Division of Neural Signaling, Department of Information Physiology, National Institute for Physiological Sciences, Okazaki, Japan
| |
Collapse
|
46
|
Invertebrate neurons as a simple model to study the hyperexcitable state of epileptic disorders in single cells, monosynaptic connections, and polysynaptic circuits. Biophys Rev 2022; 14:553-568. [PMID: 35528035 PMCID: PMC9043075 DOI: 10.1007/s12551-022-00942-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/09/2022] [Indexed: 12/17/2022] Open
Abstract
Epilepsy is a neurological disorder characterized by a hyperexcitable state in neurons from different brain regions. Much is unknown about epilepsy and seizures development, depicting a growing field of research. Animal models have provided important clues about the underlying mechanisms of seizure-generating neuronal circuits. Mammalian complexity still makes it difficult to define some principles of nervous system function, and non-mammalian models have played pivotal roles depending on the research question at hand. Mollusks and the Helix land snail have been used to study epileptic-like behavior in neurons. Neurons from these organisms confer advantages as single-cell identification, isolation, and culture, either as single cells or as physiological relevant monosynaptic or polysynaptic circuits, together with amenability to different protocols and treatments. This review's purpose consists in presenting relevant papers in order to gain a better understanding of Helix neurons, their characteristics, uses, and capabilities for studying the fundamental mechanisms of epileptic disorders and their treatment, to facilitate their more expansive use in epilepsy research.
Collapse
|
47
|
Genetic paroxysmal neurological disorders featuring episodic ataxia and epilepsy. Eur J Med Genet 2022; 65:104450. [DOI: 10.1016/j.ejmg.2022.104450] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 02/02/2022] [Accepted: 02/06/2022] [Indexed: 01/25/2023]
|
48
|
Niu X, Yang Y, Chen Y, Cheng M, Liu M, Ding C, Tian X, Yang Z, Jiang Y, Zhang Y. Genotype-phenotype correlation of CACNA1A variants in children with epilepsy. Dev Med Child Neurol 2022; 64:105-111. [PMID: 34263451 DOI: 10.1111/dmcn.14985] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/04/2021] [Indexed: 01/12/2023]
Abstract
AIM To explore the genotypes and phenotypes of CACNA1A variants in children with epilepsy. METHOD Eighteen children (six males, 12 females) with CACNA1A variants were identified using next-generation sequencing. RESULTS There were 14 missense variants, two nonsense variants, one frameshift variant, and one splice site variant. Sixteen variants were de novo. Age at seizure onset ranged from 1 day to 8 years; median age was 8 months. Multiple seizure types were observed, including focal, generalized tonic-clonic, myoclonic, and absence seizures, as well as epileptic spasms and tonic seizures. Focal motor status epilepticus occurred in 10 individuals and generalized motor status epilepticus occurred in two individuals. All 18 children showed developmental delay. Focal motor status epilepticus resulted in cerebral atrophy in five individuals, mainly on the contralateral side. Interictal electroencephalogram showed focal discharges in 12 individuals, whereas five individuals had generalized discharges. Three individuals were seizure-free, whereas 15 still had seizures and five had recurrent status epilepticus at last follow-up. INTERPRETATION Most children with epilepsy and CACNA1A variants had early seizure onset and developmental delay. Focal seizure was the most common seizure type. Most patients experienced status epilepticus. Unilateral cerebral atrophy could occur after focal motor status epilepticus. Patients with CACNA1A variants located in the transmembrane region may be at high risk of status epilepticus.
Collapse
Affiliation(s)
- Xueyang Niu
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Ying Yang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Yi Chen
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Miaomiao Cheng
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Ming Liu
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Changhong Ding
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Xiaojuan Tian
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Zhixian Yang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Yuwu Jiang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Yuehua Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| |
Collapse
|
49
|
Globa E, Zelinska N, Shcherbak Y, Bignon-Topalovic J, Bashamboo A, MсElreavey K. Disorders of Sex Development in a Large Ukrainian Cohort: Clinical Diversity and Genetic Findings. Front Endocrinol (Lausanne) 2022; 13:810782. [PMID: 35432193 PMCID: PMC9012099 DOI: 10.3389/fendo.2022.810782] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 01/31/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND The clinical profile and genetics of individuals with Disorders/Differences of Sex Development (DSD) has not been reported in Ukraine. MATERIALS AND METHODS We established the Ukrainian DSD Register and identified 682 DSD patients. This cohort includes, 357 patients (52.3% [303 patients with Turner syndrome)] with sex chromosome DSD, 119 (17.5%) with 46,XY DSD and 206 (30.2%) with 46,XX DSD. Patients with sex chromosome DSD and congenital adrenal hyperplasia (CAH, n=185) were excluded from further studies. Fluorescence in situ hybridization (FISH) was performed for eight 46,XX boys. 79 patients underwent Whole Exome Sequencing (WES). RESULTS The majority of patients with 46,XY and 46,XX DSD (n=140), were raised as female (56.3% and 61.9% respectively). WES (n=79) identified pathogenic (P) or likely pathogenic (LP) variants in 43% of the cohort. P/LP variants were identified in the androgen receptor (AR) and NR5A1 genes (20.2%). Variants in other DSD genes including AMHR2, HSD17B3, MYRF, ANOS1, FGFR11, WT1, DHX37, SRD5A1, GATA4, TBCE, CACNA1A and GLI2 were identified in 22.8% of cases. 83.3% of all P/LP variants are novel. 35.3% of patients with a genetic diagnosis had an atypical clinical presentation. A known pathogenic variant in WDR11, which was reported to cause congenital hypogonadotropic hypogonadism (CHH), was identified in individuals with primary hypogonadism. CONCLUSIONS WES is a powerful tool to identify novel causal variants in patients with DSD, including a significant minority that have an atypical clinical presentation. Our data suggest that heterozygous variants in the WDR11 gene are unlikely to cause of CHH.
Collapse
Affiliation(s)
- Evgenia Globa
- Ukrainian Scientific and Practical Center of Endocrine Surgery, Transplantation of Endocrine Organs and Tissues of the Ministry of Health of Ukraine, Kyiv, Ukraine
- *Correspondence: Evgenia Globa, ; orcid.org/0000-0001-7885-8195
| | - Natalia Zelinska
- Ukrainian Scientific and Practical Center of Endocrine Surgery, Transplantation of Endocrine Organs and Tissues of the Ministry of Health of Ukraine, Kyiv, Ukraine
| | - Yulia Shcherbak
- National Children’s Specialized Hospital OHMATDYT of the Ministry of Health of Ukraine, Kyiv, Ukraine
| | | | - Anu Bashamboo
- Human Developmental Genetics, Institute Pasteur, Paris, France
| | - Ken MсElreavey
- Human Developmental Genetics, Institute Pasteur, Paris, France
| |
Collapse
|
50
|
Peterson R, Gajam S, Mathew A, Thomas A. Sporadic hemiplegic migraine with CACNA1A mutation masquerading as acute meningoencephalitis. Ann Indian Acad Neurol 2022; 25:528-529. [PMID: 35936582 PMCID: PMC9350761 DOI: 10.4103/aian.aian_908_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 10/25/2021] [Indexed: 11/26/2022] Open
|