1
|
Chen B, Chen J, Shen Z, Wang W, Li J, Liu S, Cai H, Lu S. The Inhibition of γ-Aminobutyric Acid B1 Receptor Regulates Angiogenesis via the Hippo/YAP Signaling Pathway. Ann Vasc Surg 2024; 109:370-381. [PMID: 39025214 DOI: 10.1016/j.avsg.2024.05.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 05/07/2024] [Accepted: 05/18/2024] [Indexed: 07/20/2024]
Abstract
Promoting the establishment of collateral circulation is essential for chronic lower extremity ischemia. However, no effective therapeutic drugs have yet been developed. Recent studies discovered that in the peripheral arteries, there are γ-aminobutyric acid B1 (GABAB1) receptors expressed in endothelial cells and smooth muscle cells, these receptors may have some effects in regulating vascular functions, but the precise mechanism is not yet clear. This study explores the effect of GABAB1 receptor inhibition on angiogenesis and its regulatory mechanism. The expression of GABAB1 in human umbilical vein endothelial cells (HUVECs) was knocked down using shRNA transfection, and effects on HUVECs' proliferation, migration, and tube formation ability were detected. Western blot and RT-PCR were used to verify the signal pathway. The murine hind limb ischemia model was used to verify the effect of CGP35348, an antagonist of GABAB1R, on the recovery of blood flow perfusion and angiogenesis in ischemic tissues. Cell proliferation, migration, and tube formation ability were improved after GABAB1 receptor knockdown in HUVECs. The phosphorylation of the HIPPO/Yes-associated protein (YAP) pathway decreased, while the effect of promoting angiogenesis increased. After treating the ischemic hindlimbs of mice with GABAB1 receptor antagonists, the blood flow perfusion recovered and the angiogenesis increased. These findings demonstrate the effect of GABAB1 receptor inhibition on the HIPPO/YAP pathway in regulating angiogenesis, suggesting that inhibiting GABAB1 receptor levels might be a novel approach for chronic lower extremity ischemia diseases.
Collapse
MESH Headings
- Animals
- Humans
- Signal Transduction
- Hindlimb
- Cell Proliferation/drug effects
- Protein Serine-Threonine Kinases/metabolism
- Protein Serine-Threonine Kinases/genetics
- Neovascularization, Physiologic/drug effects
- Human Umbilical Vein Endothelial Cells/metabolism
- Hippo Signaling Pathway
- Cell Movement
- Ischemia/physiopathology
- Ischemia/metabolism
- Ischemia/genetics
- Disease Models, Animal
- YAP-Signaling Proteins/metabolism
- Receptors, GABA-B/metabolism
- Receptors, GABA-B/genetics
- Mice, Inbred C57BL
- Adaptor Proteins, Signal Transducing/metabolism
- Adaptor Proteins, Signal Transducing/genetics
- Cells, Cultured
- Phosphorylation
- GABA-B Receptor Antagonists/pharmacology
- Male
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Regional Blood Flow
- Collateral Circulation
- Cell Cycle Proteins/metabolism
- Cell Cycle Proteins/genetics
- Muscle, Skeletal/blood supply
- Muscle, Skeletal/metabolism
- Angiogenesis
Collapse
Affiliation(s)
- Bingyi Chen
- Department of Vascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jinxing Chen
- Department of Vascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zekun Shen
- Department of Vascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Weiyi Wang
- Department of Vascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jiayan Li
- Department of Vascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shuang Liu
- Department of Vascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Hui Cai
- Department of Vascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| | - Shaoying Lu
- Department of Vascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
2
|
Li X, Zhou S, Tae HS, Wang S, Li T, Cai W, Jiang T, Adams DJ, Yu R. N-Terminal Capping of the αO-Conotoxin Analogue GeX-2 Improves the Serum Stability and Selectivity toward the Human α9α10 Nicotinic Acetylcholine Receptor. J Med Chem 2024; 67:18400-18411. [PMID: 39361522 DOI: 10.1021/acs.jmedchem.4c01758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
α9α10 nicotinic acetylcholine receptors (nAChRs) are a promising nonopioid analgesic target, with α9α10 nAChR antagonists showing efficacy against chemotherapy-induced hyperalgesia and allodynia. GeX-2, a potent analgesic conotoxin antagonist of α9α10 nAChRs, has limited serum stability. This study improved GeX-2 stability by capping its N-terminal with fatty acids or polyethylene glycol chains, which enhanced its serum stability but eliminated activity at G protein-coupled γ-aminobutyric acid type B (GABAB) receptor-coupled CaV2.2 channels while preserving activity at α9α10 nAChRs. In vivo, α9α10 nAChRs antagonism alone did not alleviate neuropathic pain, highlighting the importance of GABAB receptor-coupled CaV2.2 channels in GeX-2's antinociceptive effects in the chronic constriction injury rat model. The GeX-2 analogue, with an N-terminal methyl group, showed improved activity and selectivity for α9α10 nAChRs, increased serum half-life, and strong analgesic effects in oxaliplatin-induced cold allodynia models. AlphaFold3 and molecular dynamics simulations provided insights into the binding modes and the effects of N-terminal capping, which informed future peptide therapeutic developments.
Collapse
Affiliation(s)
- Xiao Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Shenglu Zhou
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Han-Shen Tae
- Illawarra Health and Medical Research Institute (IHMRI), Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Shoushi Wang
- Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao 266042, China
| | - Tianmiao Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Wenqing Cai
- Shandong Academy of Pharmaceutical Sciences 989 Xinluo Street, Jinan 250101, China
| | - Tao Jiang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - David J Adams
- Illawarra Health and Medical Research Institute (IHMRI), Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Rilei Yu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| |
Collapse
|
3
|
Cevheroğlu O, Demirbaş B, Öğütcü D, Murat M. ADGRG1, an adhesion G protein-coupled receptor, forms oligomers. FEBS J 2024; 291:2461-2478. [PMID: 38468592 DOI: 10.1111/febs.17117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 01/26/2024] [Accepted: 03/01/2024] [Indexed: 03/13/2024]
Abstract
G protein-coupled receptor (GPCR) oligomerization is a highly debated topic in the field. While initially believed to function as monomers, current literature increasingly suggests that these cell surface receptors, spanning almost all GPCR families, function as homo- or hetero-oligomers. Yet, the functional consequences of these oligomeric complexes remain largely unknown. Adhesion GPCRs (aGPCRs) present an intriguing family of receptors characterized by their large and multi-domain N-terminal fragments (NTFs), intricate activation mechanisms, and the prevalence of numerous splice variants in almost all family members. In the present study, bioluminescence energy transfer (BRET) and Förster resonance energy transfer (FRET) were used to study the homo-oligomerization of adhesion G protein-coupled receptor G1 (ADGRG1; also known as GPR56) and to assess the involvement of NTFs in these receptor complexes. Based on the results presented herein, we propose that ADGRG1 forms 7-transmembrane-driven homo-oligomers on the plasma membrane. Additionally, Stachel motif interactions appear to influence the conformation of these receptor complexes.
Collapse
Affiliation(s)
| | - Berkay Demirbaş
- Department of Biological Sciences, Middle East Technical University, Çankaya, Turkey
| | - Dilara Öğütcü
- Department of Biological Sciences, Middle East Technical University, Çankaya, Turkey
| | - Merve Murat
- Department of Biological Sciences, Middle East Technical University, Çankaya, Turkey
| |
Collapse
|
4
|
Benke D, Bhat MA, Hleihil M. GABAB Receptors: Molecular Organization, Function, and Alternative Drug Development by Targeting Protein-Protein Interactions. THE RECEPTORS 2024:3-39. [DOI: 10.1007/978-3-031-67148-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
5
|
Fritzius T, Stawarski M, Isogai S, Bettler B. Structural Basis of GABA B Receptor Regulation and Signaling. Curr Top Behav Neurosci 2022; 52:19-37. [PMID: 32812202 DOI: 10.1007/7854_2020_147] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
GABAB receptors (GBRs), the G protein-coupled receptors for the inhibitory neurotransmitter γ-aminobutyric acid (GABA), activate Go/i-type G proteins that regulate adenylyl cyclase, Ca2+ channels, and K+ channels. GBR signaling to enzymes and ion channels influences neuronal activity, plasticity processes, and network activity throughout the brain. GBRs are obligatory heterodimers composed of GB1a or GB1b subunits with a GB2 subunit. Heterodimeric GB1a/2 and GB1b/2 receptors represent functional units that associate in a modular fashion with regulatory, trafficking, and effector proteins to generate receptors with distinct physiological functions. This review summarizes current knowledge on the structure, organization, and functions of multi-protein GBR complexes.
Collapse
Affiliation(s)
- Thorsten Fritzius
- Department of Biomedicine, Institute of Physiology, Pharmazentrum, University of Basel, Basel, Switzerland
| | - Michal Stawarski
- Department of Biomedicine, Institute of Physiology, Pharmazentrum, University of Basel, Basel, Switzerland
| | - Shin Isogai
- Biozentrum, Focal Area Structural Biology and Biophysics, University of Basel, Basel, Switzerland.
- Microbial Downstream Process Development, Lonza AG, Visp, Switzerland.
| | - Bernhard Bettler
- Department of Biomedicine, Institute of Physiology, Pharmazentrum, University of Basel, Basel, Switzerland.
| |
Collapse
|
6
|
Patwardhan A, Cheng N, Trejo J. Post-Translational Modifications of G Protein-Coupled Receptors Control Cellular Signaling Dynamics in Space and Time. Pharmacol Rev 2021; 73:120-151. [PMID: 33268549 PMCID: PMC7736832 DOI: 10.1124/pharmrev.120.000082] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are a large family comprising >800 signaling receptors that regulate numerous cellular and physiologic responses. GPCRs have been implicated in numerous diseases and represent the largest class of drug targets. Although advances in GPCR structure and pharmacology have improved drug discovery, the regulation of GPCR function by diverse post-translational modifications (PTMs) has received minimal attention. Over 200 PTMs are known to exist in mammalian cells, yet only a few have been reported for GPCRs. Early studies revealed phosphorylation as a major regulator of GPCR signaling, whereas later reports implicated a function for ubiquitination, glycosylation, and palmitoylation in GPCR biology. Although our knowledge of GPCR phosphorylation is extensive, our knowledge of the modifying enzymes, regulation, and function of other GPCR PTMs is limited. In this review we provide a comprehensive overview of GPCR post-translational modifications with a greater focus on new discoveries. We discuss the subcellular location and regulatory mechanisms that control post-translational modifications of GPCRs. The functional implications of newly discovered GPCR PTMs on receptor folding, biosynthesis, endocytic trafficking, dimerization, compartmentalized signaling, and biased signaling are also provided. Methods to detect and study GPCR PTMs as well as PTM crosstalk are further highlighted. Finally, we conclude with a discussion of the implications of GPCR PTMs in human disease and their importance for drug discovery. SIGNIFICANCE STATEMENT: Post-translational modification of G protein-coupled receptors (GPCRs) controls all aspects of receptor function; however, the detection and study of diverse types of GPCR modifications are limited. A thorough understanding of the role and mechanisms by which diverse post-translational modifications regulate GPCR signaling and trafficking is essential for understanding dysregulated mechanisms in disease and for improving and refining drug development for GPCRs.
Collapse
Affiliation(s)
- Anand Patwardhan
- Department of Pharmacology and the Biomedical Sciences Graduate Program, School of Medicine, University of California, San Diego, La Jolla, California
| | - Norton Cheng
- Department of Pharmacology and the Biomedical Sciences Graduate Program, School of Medicine, University of California, San Diego, La Jolla, California
| | - JoAnn Trejo
- Department of Pharmacology and the Biomedical Sciences Graduate Program, School of Medicine, University of California, San Diego, La Jolla, California
| |
Collapse
|
7
|
Huang B, St Onge CM, Ma H, Zhang Y. Design of bivalent ligands targeting putative GPCR dimers. Drug Discov Today 2020; 26:189-199. [PMID: 33075471 DOI: 10.1016/j.drudis.2020.10.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/15/2020] [Accepted: 10/09/2020] [Indexed: 12/17/2022]
Abstract
G protein-coupled receptors (GPCRs) have been exploited as primary targets for drug discovery, and GPCR dimerization offers opportunities for drug design and disease treatment. An important strategy for targeting putative GPCR dimers is the use of bivalent ligands, which are single molecules that contain two pharmacophores connected through a spacer. Here, we discuss the selection of pharmacophores, the optimal length and chemical composition of the spacer, and the choice of spacer attachment points to the pharmacophores. Furthermore, we review the most recent advances (from 2018 to the present) in the design, discovery and development of bivalent ligands. We aim to reveal the state-of-the-art design strategy for bivalent ligands and provide insights into future opportunities in this promising field of drug discovery.
Collapse
Affiliation(s)
- Boshi Huang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E. Leigh Street, Richmond, VA 23298, USA
| | - Celsey M St Onge
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E. Leigh Street, Richmond, VA 23298, USA
| | - Hongguang Ma
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E. Leigh Street, Richmond, VA 23298, USA
| | - Yan Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E. Leigh Street, Richmond, VA 23298, USA.
| |
Collapse
|
8
|
Zhang S, Xue L, Liu X, Zhang XC, Zhou R, Zhao H, Shen C, Pin JP, Rondard P, Liu J. Structural basis for distinct quality control mechanisms of GABA B receptor during evolution. FASEB J 2020; 34:16348-16363. [PMID: 33058267 DOI: 10.1096/fj.202001355rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/25/2020] [Accepted: 10/02/2020] [Indexed: 12/29/2022]
Abstract
Cell surface trafficking of many G protein-coupled receptors is tightly regulated. Among them, the mandatory heterodimer GABAB receptor for the main inhibitory neurotransmitter, γ-aminobutyric acid (GABA), is a model. In mammals, its cell surface trafficking is highly controlled by an endoplasmic reticulum retention signal in the C-terminal intracellular region of the GB1 subunit that is masked through a coiled-coil interaction with the GB2 subunit. Here, we investigate the molecular basis for the export of its homolog in Drosophila melanogaster that regulates the circadian rhythm and sleep. In contrast to mammals, the endoplasmic retention signal is carried by GB2, while GB1 reaches the cell surface alone. NMR analysis showed that the coiled-coil domain that controls GABAB heterodimer formation is structurally conserved between flies and mammals, despite specific features. These findings show the adaptation of a similar quality control system during evolution for maintaining the subunit composition of a functional heterodimeric receptor.
Collapse
Affiliation(s)
- Shenglan Zhang
- Cellular Signaling Laboratory, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of MOE, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Li Xue
- Cellular Signaling Laboratory, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of MOE, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xuehui Liu
- Core Facility for Protein Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xuejun Cai Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Rui Zhou
- Cellular Signaling Laboratory, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of MOE, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Han Zhao
- Cellular Signaling Laboratory, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of MOE, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Cangsong Shen
- Cellular Signaling Laboratory, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of MOE, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Jean-Philippe Pin
- CNRS, INSERM, Institut de Génomique Fonctionnelle, Université de Montpellier, Montpellier, France
| | - Philippe Rondard
- CNRS, INSERM, Institut de Génomique Fonctionnelle, Université de Montpellier, Montpellier, France
| | - Jianfeng Liu
- Cellular Signaling Laboratory, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of MOE, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| |
Collapse
|
9
|
Evenseth LSM, Gabrielsen M, Sylte I. The GABA B Receptor-Structure, Ligand Binding and Drug Development. Molecules 2020; 25:molecules25133093. [PMID: 32646032 PMCID: PMC7411975 DOI: 10.3390/molecules25133093] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/02/2020] [Accepted: 07/06/2020] [Indexed: 11/17/2022] Open
Abstract
The γ-aminobutyric acid (GABA) type B receptor (GABAB-R) belongs to class C of the G-protein coupled receptors (GPCRs). Together with the GABAA receptor, the receptor mediates the neurotransmission of GABA, the main inhibitory neurotransmitter in the central nervous system (CNS). In recent decades, the receptor has been extensively studied with the intention being to understand pathophysiological roles, structural mechanisms and develop drugs. The dysfunction of the receptor is linked to a broad variety of disorders, including anxiety, depression, alcohol addiction, memory and cancer. Despite extensive efforts, few compounds are known to target the receptor, and only the agonist baclofen is approved for clinical use. The receptor is a mandatory heterodimer of the GABAB1 and GABAB2 subunits, and each subunit is composed of an extracellular Venus Flytrap domain (VFT) and a transmembrane domain of seven α-helices (7TM domain). In this review, we briefly present the existing knowledge about the receptor structure, activation and compounds targeting the receptor, emphasizing the role of the receptor in previous and future drug design and discovery efforts.
Collapse
Affiliation(s)
- Linn Samira Mari Evenseth
- Molecular Pharmacology and Toxicology, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, NO-9037 Tromsø, Norway
| | - Mari Gabrielsen
- Molecular Pharmacology and Toxicology, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, NO-9037 Tromsø, Norway
| | - Ingebrigt Sylte
- Molecular Pharmacology and Toxicology, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, NO-9037 Tromsø, Norway
| |
Collapse
|
10
|
Lei T, Hu Z, Ding R, Chen J, Li S, Zhang F, Pu X, Zhao N. Exploring the Activation Mechanism of a Metabotropic Glutamate Receptor Homodimer via Molecular Dynamics Simulation. ACS Chem Neurosci 2020; 11:133-145. [PMID: 31815422 DOI: 10.1021/acschemneuro.9b00425] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Metabotropic glutamate receptors of class C GPCRs exist as constitutive dimers, which play important roles in activating excitatory synapses of the central nervous system. However, the activation mechanism induced by agonists has not been clarified in experiments. To address the problem, we used microsecond all-atom molecular dynamics (MD) simulation couple with protein structure network (PSN) to explore the glutamate-induced activation for the mGluR1 homodimer. The results indicate that glutamate binding stabilizes not only the closure of Venus flytrap domains but also the polar interaction of LB2-LB2, in turn keeping the extracelluar domain in the active state. The activation of the extracelluar domain drives transmembrane domains (TMDs) of the two protomers closer and induces asymmetric activation for the TMD domains of the two protomers. One protomer with lower binding affinity to the agonist is activated, while the other protomer with higher binding energy is still in the inactive state. The PSN analysis identifies the allosteric regulation pathway from the ligand-binding pocket in the extracellular domain to the G-protein binding site in the intracellular TMD region and further reveals that the asymmetric activation is attributed to a combination of trans-pathway and cis-pathway regulations from two glumatates, rather than a single activation pathway. These observations could provide valuable molecular information for understanding of the structure and the implications in drug efficacy for the class C GPCR dimers.
Collapse
Affiliation(s)
- Ting Lei
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Zhenxin Hu
- College of Computer Science, Sichuan University, Chengdu 610064, China
| | - Ruolin Ding
- West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jianfang Chen
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Shiqi Li
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Fuhui Zhang
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xuemei Pu
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Nanrong Zhao
- College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
11
|
Zhou X, Xia N, Lv B, Tang T, Nie S, Zhang M, Jiao J, Liu J, Xu C, Hou G, Yang X, Hu Y, Liao Y, Cheng X. Interleukin 35 ameliorates myocardial ischemia‐reperfusion injury by activating the gp130‐STAT3 axis. FASEB J 2020; 34:3224-3238. [PMID: 31917470 DOI: 10.1096/fj.201901718rr] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 12/17/2019] [Accepted: 12/20/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Xingdi Zhou
- Department of Cardiology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
- Key Laboratory of Biological Targeted Therapy of Education Ministry and Hubei Province Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Ni Xia
- Department of Cardiology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
- Key Laboratory of Biological Targeted Therapy of Education Ministry and Hubei Province Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Bingjie Lv
- Department of Cardiology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
- Key Laboratory of Biological Targeted Therapy of Education Ministry and Hubei Province Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Tingting Tang
- Department of Cardiology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
- Key Laboratory of Biological Targeted Therapy of Education Ministry and Hubei Province Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Shaofang Nie
- Department of Cardiology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
- Key Laboratory of Biological Targeted Therapy of Education Ministry and Hubei Province Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Min Zhang
- Department of Cardiology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
- Key Laboratory of Biological Targeted Therapy of Education Ministry and Hubei Province Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Jiao Jiao
- Department of Cardiology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
- Key Laboratory of Biological Targeted Therapy of Education Ministry and Hubei Province Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Jianfeng Liu
- Sino‐France Laboratory of cellular signaling, Key Laboratory of Molecular Biophysics of Ministry of Education College of Life Science and Technology and Collaborative Innovation Center for Genetics and Development Huazhong University of Science and Technology Wuhan Hubei China
| | - Chanjuan Xu
- Sino‐France Laboratory of cellular signaling, Key Laboratory of Molecular Biophysics of Ministry of Education College of Life Science and Technology and Collaborative Innovation Center for Genetics and Development Huazhong University of Science and Technology Wuhan Hubei China
| | - Guofei Hou
- Sino‐France Laboratory of cellular signaling, Key Laboratory of Molecular Biophysics of Ministry of Education College of Life Science and Technology and Collaborative Innovation Center for Genetics and Development Huazhong University of Science and Technology Wuhan Hubei China
| | - Xiangping Yang
- School of Basic Medicine Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Yu Hu
- Key Laboratory of Biological Targeted Therapy of Education Ministry and Hubei Province Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
- Institute of Hematology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Yuhua Liao
- Department of Cardiology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
- Key Laboratory of Biological Targeted Therapy of Education Ministry and Hubei Province Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Xiang Cheng
- Department of Cardiology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
- Key Laboratory of Biological Targeted Therapy of Education Ministry and Hubei Province Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| |
Collapse
|
12
|
Kniazeff J. The different aspects of the GABAB receptor allosteric modulation. FROM STRUCTURE TO CLINICAL DEVELOPMENT: ALLOSTERIC MODULATION OF G PROTEIN-COUPLED RECEPTORS 2020; 88:83-113. [DOI: 10.1016/bs.apha.2020.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
13
|
Luminescence- and Fluorescence-Based Complementation Assays to Screen for GPCR Oligomerization: Current State of the Art. Int J Mol Sci 2019; 20:ijms20122958. [PMID: 31213021 PMCID: PMC6627893 DOI: 10.3390/ijms20122958] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/05/2019] [Accepted: 06/12/2019] [Indexed: 01/22/2023] Open
Abstract
G protein-coupled receptors (GPCRs) have the propensity to form homo- and heterodimers. Dysfunction of these dimers has been associated with multiple diseases, e.g., pre-eclampsia, schizophrenia, and depression, among others. Over the past two decades, considerable efforts have been made towards the development of screening assays for studying these GPCR dimer complexes in living cells. As a first step, a robust in vitro assay in an overexpression system is essential to identify and characterize specific GPCR–GPCR interactions, followed by methodologies to demonstrate association at endogenous levels and eventually in vivo. This review focuses on protein complementation assays (PCAs) which have been utilized to study GPCR oligomerization. These approaches are typically fluorescence- and luminescence-based, making identification and localization of protein–protein interactions feasible. The GPCRs of interest are fused to complementary fluorescent or luminescent fragments that, upon GPCR di- or oligomerization, may reconstitute to a functional reporter, of which the activity can be measured. Various protein complementation assays have the disadvantage that the interaction between the reconstituted split fragments is irreversible, which can lead to false positive read-outs. Reversible systems offer several advantages, as they do not only allow to follow the kinetics of GPCR–GPCR interactions, but also allow evaluation of receptor complex modulation by ligands (either agonists or antagonists). Protein complementation assays may be used for high throughput screenings as well, which is highly relevant given the growing interest and effort to identify small molecule drugs that could potentially target disease-relevant dimers. In addition to providing an overview on how PCAs have allowed to gain better insights into GPCR–GPCR interactions, this review also aims at providing practical guidance on how to perform PCA-based assays.
Collapse
|
14
|
Molecular Docking of Phenylethylamine and CGP54626 to an Extracellular Domain of the GABAB-Receptor. NEUROPHYSIOLOGY+ 2018. [DOI: 10.1007/s11062-018-9743-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
15
|
Frangaj A, Fan QR. Structural biology of GABA B receptor. Neuropharmacology 2018; 136:68-79. [PMID: 29031577 PMCID: PMC5897222 DOI: 10.1016/j.neuropharm.2017.10.011] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 10/09/2017] [Accepted: 10/11/2017] [Indexed: 11/17/2022]
Abstract
Metabotropic GABAB receptor is a G protein-coupled receptor (GPCR) that mediates slow and prolonged inhibitory neurotransmission in the brain. It functions as a constitutive heterodimer composed of the GABAB1 and GABAB2 subunits. Each subunit contains three domains; the extracellular Venus flytrap module, seven-helix transmembrane region and cytoplasmic tail. In recent years, the three-dimensional structures of GABAB receptor extracellular and intracellular domains have been elucidated. These structures reveal the molecular basis of ligand recognition, receptor heterodimerization and receptor activation. Here we provide a brief review of the GABAB receptor structures, with an emphasis on describing the different ligand-bound states of the receptor. We will also compare these with the known structures of related GPCRs to shed light on the molecular mechanisms of activation and regulation in the GABAB system, as well as GPCR dimers in general. This article is part of the "Special Issue Dedicated to Norman G. Bowery".
Collapse
Affiliation(s)
- Aurel Frangaj
- Department of Pharmacology, Columbia University, New York, NY 10032, USA
| | - Qing R Fan
- Department of Pharmacology, Columbia University, New York, NY 10032, USA; Department of Pathology & Cell Biology, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
16
|
Wouters E, Vasudevan L, Ciruela F, Saini DK, Stove C, Van Craenenbroeck K. Assessing GPCR Dimerization in Living Cells: Comparison of the NanoBiT Assay with Related Bioluminescence- and Fluorescence-Based Approaches. RECEPTOR-RECEPTOR INTERACTIONS IN THE CENTRAL NERVOUS SYSTEM 2018. [DOI: 10.1007/978-1-4939-8576-0_15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
17
|
Lecat-Guillet N, Monnier C, Rovira X, Kniazeff J, Lamarque L, Zwier JM, Trinquet E, Pin JP, Rondard P. FRET-Based Sensors Unravel Activation and Allosteric Modulation of the GABA B Receptor. Cell Chem Biol 2017; 24:360-370. [PMID: 28286129 DOI: 10.1016/j.chembiol.2017.02.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 11/21/2016] [Accepted: 02/10/2017] [Indexed: 01/11/2023]
Abstract
The main inhibitory neurotransmitter, γ-aminobutyric acid (GABA), modulates many synapses by activating the G protein-coupled receptor GABAB, which is a target for various therapeutic applications. It is an obligatory heterodimer made of GB1 and GB2 that can be regulated by positive allosteric modulators (PAMs). The molecular mechanism of activation of the GABAB receptor remains poorly understood. Here, we have developed FRET-based conformational GABAB sensors compatible with high-throughput screening. We identified conformational changes occurring within the extracellular and transmembrane domains upon receptor activation, which are smaller than those observed in the related metabotropic glutamate receptors. These sensors also allow discrimination between agonists of different efficacies and between PAMs that have different modes of action, which has not always been possible using conventional functional assays. Our study brings important new information on the activation mechanism of the GABAB receptor and should facilitate the screening and identification of new chemicals targeting this receptor.
Collapse
Affiliation(s)
- Nathalie Lecat-Guillet
- Institut de Génomique Fonctionnelle (IGF), CNRS, INSERM, University of Montpellier, 141 rue de la Cardonille, 34094 Montpellier, France
| | - Carine Monnier
- Institut de Génomique Fonctionnelle (IGF), CNRS, INSERM, University of Montpellier, 141 rue de la Cardonille, 34094 Montpellier, France
| | - Xavier Rovira
- Institut de Génomique Fonctionnelle (IGF), CNRS, INSERM, University of Montpellier, 141 rue de la Cardonille, 34094 Montpellier, France
| | - Julie Kniazeff
- Institut de Génomique Fonctionnelle (IGF), CNRS, INSERM, University of Montpellier, 141 rue de la Cardonille, 34094 Montpellier, France
| | | | | | | | - Jean-Philippe Pin
- Institut de Génomique Fonctionnelle (IGF), CNRS, INSERM, University of Montpellier, 141 rue de la Cardonille, 34094 Montpellier, France
| | - Philippe Rondard
- Institut de Génomique Fonctionnelle (IGF), CNRS, INSERM, University of Montpellier, 141 rue de la Cardonille, 34094 Montpellier, France.
| |
Collapse
|
18
|
|
19
|
Núñez Miguel R, Sanders J, Furmaniak J, Rees Smith B. Glycosylation pattern analysis of glycoprotein hormones and their receptors. J Mol Endocrinol 2017; 58:25-41. [PMID: 27875255 DOI: 10.1530/jme-16-0169] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 11/13/2016] [Indexed: 11/08/2022]
Abstract
We have studied glycosylation patterns in glycoprotein hormones (GPHs) and glycoprotein hormone receptor (GPHR) extracellular domains (ECD) from different species to identify areas not glycosylated that could be involved in intermolecular or intramolecular interactions. Comparative models of the structure of the TSHR ECD in complex with TSH and in complex with TSHR autoantibodies (M22, stimulating and K1-70, blocking) were obtained based on the crystal structures of the FSH-FSHR ECD, M22-TSHR leucine-rich repeat domain (LRD) and K1-70-TSHR LRD complexes. The glycosylation sites of the GPHRs and GPHs from all species studied were mapped on the model of the human TSH TSHR ECD complex. The areas on the surfaces of GPHs that are known to interact with their receptors are not glycosylated and two areas free from glycosylation, not involved in currently known interactions, have been identified. The concave faces of GPHRs leucine-rich repeats 3-7 are free from glycosylation, consistent with known interactions with the hormones. In addition, four other non-glycosylated areas have been identified, two located on the receptors' convex surfaces, one in the long loop of the hinge regions and one at the C-terminus of the extracellular domains. Experimental evidence suggests that the non-glycosylated areas identified on the hormones and receptors are likely to be involved in forming intramolecular or intermolecular interactions.
Collapse
|
20
|
Metabotropic GABA signalling modulates longevity in C. elegans. Nat Commun 2015; 6:8828. [PMID: 26537867 PMCID: PMC4667614 DOI: 10.1038/ncomms9828] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Accepted: 10/08/2015] [Indexed: 02/05/2023] Open
Abstract
The nervous system plays an important but poorly understood role in modulating longevity. GABA, a prominent inhibitory neurotransmitter, is best known to regulate nervous system function and behaviour in diverse organisms. Whether GABA signalling affects aging, however, has not been explored. Here we examined mutants lacking each of the major neurotransmitters in C. elegans, and find that deficiency in GABA signalling extends lifespan. This pro-longevity effect is mediated by the metabotropic GABAB receptor GBB-1, but not ionotropic GABAA receptors. GBB-1 regulates lifespan through G protein-PLCβ signalling, which transmits longevity signals to the transcription factor DAF-16/FOXO, a key regulator of lifespan. Mammalian GABAB receptors can functionally substitute for GBB-1 in lifespan control in C. elegans. Our results uncover a new role of GABA signalling in lifespan regulation in C. elegans, raising the possibility that a similar process may occur in other organisms. The C. elegans nervous system influences organismal lifespan but mechanistic details are poorly understood. Here, Chun et al. show that the neurotransmitter GABA regulates worm lifespan by acting on GABAB receptors in motor neurons, which activate the transcription factor DAF-16 in the intestine.
Collapse
|
21
|
Wan M, Zhang W, Tian Y, Xu C, Xu T, Liu J, Zhang R. Unraveling a molecular determinant for clathrin-independent internalization of the M2 muscarinic acetylcholine receptor. Sci Rep 2015; 5:11408. [PMID: 26094760 PMCID: PMC4476042 DOI: 10.1038/srep11408] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 05/22/2015] [Indexed: 12/25/2022] Open
Abstract
Endocytosis and postendocytic sorting of G-protein-coupled receptors (GPCRs) is important for the regulation of both their cell surface density and signaling profile. Unlike the mechanisms of clathrin-dependent endocytosis (CDE), the mechanisms underlying the control of GPCR signaling by clathrin-independent endocytosis (CIE) remain largely unknown. Among the muscarinic acetylcholine receptors (mAChRs), the M4 mAChR undergoes CDE and recycling, whereas the M2 mAChR is internalized through CIE and targeted to lysosomes. Here we investigated the endocytosis and postendocytic trafficking of M2 mAChR based on a comparative analysis of the third cytoplasmic domain in M2 and M4 mAChRs. For the first time, we identified that the sequence (374)KKKPPPS(380) servers as a sorting signal for the clathrin-independent internalization of M2 mAChR. Switching (374)KKKPPPS(380) to the i3 loop of the M4 mAChR shifted the receptor into lysosomes through the CIE pathway; and therefore away from CDE and recycling. We also found another previously unidentified sequence that guides CDE of the M2 mAChR, (361)VARKIVKMTKQPA(373), which is normally masked in the presence of the downstream sequence (374)KKKPPPS(380). Taken together, our data indicate that endocytosis and postendocytic sorting of GPCRs that undergo CIE could be sequence-dependent.
Collapse
Affiliation(s)
- Min Wan
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wenhua Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yangli Tian
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chanjuan Xu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tao Xu
- 1] Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China [2] National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jianfeng Liu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Rongying Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
22
|
Zhang Z, Zhang W, Huang S, Sun Q, Wang Y, Hu Y, Sun N, Zhang Y, Jiang Z, Minato N, Pin JP, Su L, Liu J. GABAB receptor promotes its own surface expression by recruiting a Rap1-dependent signaling cascade. J Cell Sci 2015; 128:2302-13. [DOI: 10.1242/jcs.167056] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 05/05/2015] [Indexed: 12/11/2022] Open
Abstract
ABSTRACT
G-protein-coupled receptors (GPCRs) are key players in cell signaling, and their cell surface expression is tightly regulated. For many GPCRs such as β2-AR (β2-adrenergic receptor), receptor activation leads to downregulation of receptor surface expression, a phenomenon that has been extensively characterized. By contrast, some other GPCRs, such as GABAB receptor, remain relatively stable at the cell surface even after prolonged agonist treatment; however, the underlying mechanisms are unclear. Here, we identify the small GTPase Rap1 as a key regulator for promoting GABAB receptor surface expression. Agonist stimulation of GABAB receptor signals through Gαi/o to inhibit Rap1GAPII (also known as Rap1GAP1b, an isoform of Rap1GAP1), thereby activating Rap1 (which has two isoforms, Rap1a and Rap1b) in cultured cerebellar granule neurons (CGNs). The active form of Rap1 is then recruited to GABAB receptor through physical interactions in CGNs. This Rap1-dependent signaling cascade promotes GABAB receptor surface expression by stimulating receptor recycling. Our results uncover a new mechanism regulating GPCR surface expression and also provide a potential explanation for the slow, long-lasting inhibitory action of GABA neurotransmitter.
Collapse
Affiliation(s)
- Zongyong Zhang
- Cellular Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science and Technology and the Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wenhua Zhang
- Cellular Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science and Technology and the Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Siluo Huang
- Cellular Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science and Technology and the Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qian Sun
- Cellular Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science and Technology and the Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yunyun Wang
- Cellular Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science and Technology and the Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yongjian Hu
- Cellular Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science and Technology and the Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ninghua Sun
- Cellular Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science and Technology and the Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yilei Zhang
- Cellular Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science and Technology and the Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhihua Jiang
- Cellular Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science and Technology and the Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Nagahiro Minato
- Department of Immunology and Cell Biology, Kyoto University, Kyoto 606-8501, Japan
| | - Jean-Philippe Pin
- Institut de Génomique Fonctionnelle, CNRS, UMR 5203, Université Montpellier 1 et 2, Montpellier cedex 5 34094, France
| | - Li Su
- Cellular Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science and Technology and the Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jianfeng Liu
- Cellular Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science and Technology and the Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
23
|
Zhang XC, Liu J, Jiang D. Why is dimerization essential for class-C GPCR function? New insights from mGluR1 crystal structure analysis. Protein Cell 2015; 5:492-5. [PMID: 24805307 PMCID: PMC4085282 DOI: 10.1007/s13238-014-0062-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Xuejun C Zhang
- National Laboratory of Macromolecules, National Center of Protein Science-Beijing, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China,
| | | | | |
Collapse
|
24
|
Nørskov-Lauritsen L, Jørgensen S, Bräuner-Osborne H. N-glycosylation and disulfide bonding affects GPRC6A receptor expression, function, and dimerization. FEBS Lett 2015; 589:588-97. [PMID: 25617829 DOI: 10.1016/j.febslet.2015.01.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 12/28/2014] [Accepted: 01/14/2015] [Indexed: 12/20/2022]
Abstract
Investigation of post-translational modifications of receptor proteins is important for our understanding of receptor pharmacology and disease physiology. However, our knowledge about post-translational modifications of class C G protein-coupled receptors and how these modifications regulate expression and function is very limited. Herein, we show that the nutrient-sensing class C G protein-coupled receptor GPRC6A carries seven N-glycans and that one of these sites modulates surface expression whereas mutation of another site affects receptor function. GPRC6A has been speculated to form covalently linked dimers through cysteine disulfide linkage in the extracellular amino-terminal domain and here we show that GPRC6A indeed is a homodimer and that a disulfide bridge between the C131 residues is formed.
Collapse
Affiliation(s)
- Lenea Nørskov-Lauritsen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Stine Jørgensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Hans Bräuner-Osborne
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
25
|
Kakegawa W, Mitakidis N, Miura E, Abe M, Matsuda K, Takeo Y, Kohda K, Motohashi J, Takahashi A, Nagao S, Muramatsu SI, Watanabe M, Sakimura K, Aricescu A, Yuzaki M. Anterograde C1ql1 Signaling Is Required in Order to Determine and Maintain a Single-Winner Climbing Fiber in the Mouse Cerebellum. Neuron 2015; 85:316-29. [DOI: 10.1016/j.neuron.2014.12.020] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2014] [Indexed: 10/24/2022]
|
26
|
Chen LH, Sun B, Zhang Y, Xu TJ, Xia ZX, Liu JF, Nan FJ. Discovery of a Negative Allosteric Modulator of GABAB Receptors. ACS Med Chem Lett 2014; 5:742-7. [PMID: 25050158 PMCID: PMC4094264 DOI: 10.1021/ml500162z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Accepted: 05/27/2014] [Indexed: 12/11/2022] Open
Abstract
Initialized from the scaffold of CGP7930, an allosteric agonist of GABAB receptors, a series of noncompetitive antagonists were discovered. Among these compounds, compounds 3, 6, and 14 decreased agonist GABA-induced maximal effect of IP3 production in HEK293 cells overexpressing GABAB receptors and Gqi9 proteins without changing the EC50. Compounds 3, 6, and 14 not only inhibited agonist baclofen-induced ERK1/2 phosphorylation but also blocked CGP7930-induced ERK1/2 phosphorylation in HEK293 cells overexpressing GABAB receptors. The results suggested that compounds 3, 6, and 14 are negative allosteric modulators of GABAB receptors. The representative compound 14 decreased GABA-induced IP3 production with IC50 of 37.9 μM and had no effect on other GPCR Class C members such as mGluR1, mGluR2, and mGluR5. Finally, we showed that compound 14 did not bind to the orthosteric binding sites of GABAB receptors, demonstrating that compound 14 negatively modulated GABAB receptors activity as a negative allosteric modulator.
Collapse
Affiliation(s)
- Lin-Hai Chen
- National
Center for Drug Screening, State Key Laboratory of Drug Research,
Shanghai Institute of Materia Medica, Chinese
Academy of Sciences, Shanghai, China
| | - Bing Sun
- Cellular
Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry
of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yang Zhang
- Cellular
Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry
of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tong-Jie Xu
- Cellular
Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry
of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhi-Xiong Xia
- Cellular
Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry
of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jian-Feng Liu
- Cellular
Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry
of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fa-Jun Nan
- National
Center for Drug Screening, State Key Laboratory of Drug Research,
Shanghai Institute of Materia Medica, Chinese
Academy of Sciences, Shanghai, China
| |
Collapse
|
27
|
Xu F, Zhao H, Feng X, Chen L, Chen D, Zhang Y, Nan F, Liu J, Liu BF. Single-cell chemical proteomics with an activity-based probe: identification of low-copy membrane proteins on primary neurons. Angew Chem Int Ed Engl 2014; 53:6730-3. [PMID: 24850238 DOI: 10.1002/anie.201402363] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 04/24/2014] [Indexed: 11/08/2022]
Abstract
We propose a novel single-cell chemical proteomics (SCCP) strategy to profile low-abundance membrane proteins in single cells. In this approach, the membrane protein GB1 and its splicing variants were targeted on cultured cell lines and primary neurons using a specifically designed activity-based probe. The functionally labeled single cells were encapsulated in individual buffer droplets on a PDMS microwell array, and were further picked up one at a time and loaded into a capillary electrophoresis system for cell lysis, separation, and laser-induced fluorescence detection of the targeted proteins. The results revealed the expression of GB1 splicing variants in HEK and MEF cells, which was previously only suggested at the transcriptional level. We further applied this method to investigate single primary cells and observed significant heterogeneity among individual mouse cerebellar granule neurons. Interference experiments with GB1 antagonist and agonist validated this observation.
Collapse
Affiliation(s)
- Fei Xu
- Wuhan National Laboratory for Optoelectronics-, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China)
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Xu F, Zhao H, Feng X, Chen L, Chen D, Zhang Y, Nan F, Liu J, Liu BF. Single-Cell Chemical Proteomics with an Activity-Based Probe: Identification of Low-Copy Membrane Proteins on Primary Neurons. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201402363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
29
|
Xu C, Zhang W, Rondard P, Pin JP, Liu J. Complex GABAB receptor complexes: how to generate multiple functionally distinct units from a single receptor. Front Pharmacol 2014; 5:12. [PMID: 24575041 PMCID: PMC3920572 DOI: 10.3389/fphar.2014.00012] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 01/22/2014] [Indexed: 01/05/2023] Open
Abstract
The main inhibitory neurotransmitter, GABA, acts on both ligand-gated and G protein-coupled receptors, the GABAA/C and GABAB receptors, respectively. The later play important roles in modulating many synapses, both at the pre- and post-synaptic levels, and are then still considered as interesting targets to treat a number of brain diseases, including addiction. For many years, several subtypes of GABAB receptors were expected, but cloning revealed only two genes that work in concert to generate a single type of GABAB receptor composed of two subunits. Here we will show that the signaling complexity of this unit receptor type can be largely increased through various ways, including receptor stoichiometry, subunit isoforms, cell-surface expression and localization, crosstalk with other receptors, or interacting proteins. These recent data revealed how complexity of a receptor unit can be increased, observation that certainly are not unique to the GABAB receptor.
Collapse
Affiliation(s)
- Chanjuan Xu
- Cellular Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan, China
| | - Wenhua Zhang
- Cellular Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan, China
| | - Philippe Rondard
- Institut de Génomique Fonctionnelle, CNRS UMR5203, INSERM U661, Universités de Montpellier I & II Montpellier, France
| | - Jean-Philippe Pin
- Institut de Génomique Fonctionnelle, CNRS UMR5203, INSERM U661, Universités de Montpellier I & II Montpellier, France
| | - Jianfeng Liu
- Cellular Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan, China
| |
Collapse
|
30
|
Liebscher I, Schöneberg T, Prömel S. Progress in demystification of adhesion G protein-coupled receptors. Biol Chem 2014; 394:937-50. [PMID: 23518449 DOI: 10.1515/hsz-2013-0109] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 03/19/2013] [Indexed: 02/03/2023]
Abstract
Adhesion G protein-coupled receptors (aGPCR) form the second largest class of GPCR. They are phylogenetically old and have been highly conserved during evolution. Mutations in representatives of this class are associated with severe diseases such as Usher Syndrome, a combined congenital deaf-blindness, or bifrontal parietal polymicrogyria. The main characteristics of aGPCR are their enormous size and the complexity of their N termini. They contain a highly conserved GPCR proteolytic site (GPS) and several functional domains that have been implicated in cell-cell and cell-matrix interactions. Adhesion GPCR have been proposed to serve a dual function as adhesion molecules and as classical receptors. However, until recently there was no proof that aGPCR indeed couple to G proteins or even function as classical receptors. In this review, we have summarized and discussed recent evidence that aGPCR present many functional features of classical GPCR, including multiple G protein-coupling abilities, G protein-independent signaling and oligomerization, but also specific signaling properties only found in aGPCR.
Collapse
Affiliation(s)
- Ines Liebscher
- Molecular Biochemistry, Institute of Biochemistry, Medical Faculty, University of Leipzig, Johannisallee 30, D-04103 Leipzig, Germany
| | | | | |
Collapse
|
31
|
Zwier JM, Bazin H, Lamarque L, Mathis G. Luminescent lanthanide cryptates: from the bench to the bedside. Inorg Chem 2014; 53:1854-66. [PMID: 24392868 DOI: 10.1021/ic402234k] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The design and application of luminescent lanthanide cryptates for sensing biological interactions is highlighted through the review of the work performed in our laboratory and with academic collaborations. The path from the initial applications probing biochemical interaction in vitro to "state-of-the-art" cellular assays toward clinical applications using homogeneous time-resolved fluorescence technology is described. An overview of the luminescent lanthanide macrocyclic compounds developed at Cisbio in the recent past is given with an emphasis on specific constraints required by specific applications. Recent assays for drug-discovery and diagnostic purposes using both antibody-based and suicide-enzyme-based technology are illustrated. New perspectives in the field of molecular medicine and time-resolved microscopy are discussed.
Collapse
Affiliation(s)
- Jurriaan M Zwier
- Cisbio Bioassays , Parc Marcel Boiteux, BP 84175, Codolet, France
| | | | | | | |
Collapse
|
32
|
Geng Y, Bush M, Mosyak L, Wang F, Fan QR. Structural mechanism of ligand activation in human GABA(B) receptor. Nature 2013; 504:254-9. [PMID: 24305054 PMCID: PMC3865065 DOI: 10.1038/nature12725] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 09/30/2013] [Indexed: 01/02/2023]
Abstract
Human GABA(B) (γ-aminobutyric acid class B) receptor is a G-protein-coupled receptor central to inhibitory neurotransmission in the brain. It functions as an obligatory heterodimer of the subunits GBR1 and GBR2. Here we present the crystal structures of a heterodimeric complex between the extracellular domains of GBR1 and GBR2 in the apo, agonist-bound and antagonist-bound forms. The apo and antagonist-bound structures represent the resting state of the receptor; the agonist-bound complex corresponds to the active state. Both subunits adopt an open conformation at rest, and only GBR1 closes on agonist-induced receptor activation. The agonists and antagonists are anchored in the interdomain crevice of GBR1 by an overlapping set of residues. An antagonist confines GBR1 to the open conformation of the inactive state, whereas an agonist induces its domain closure for activation. Our data reveal a unique activation mechanism for GABA(B) receptor that involves the formation of a novel heterodimer interface between subunits.
Collapse
Affiliation(s)
- Yong Geng
- Department of Pharmacology, Columbia University, New York, New York 10032, USA
| | - Martin Bush
- Department of Pharmacology, Columbia University, New York, New York 10032, USA
| | - Lidia Mosyak
- Department of Pharmacology, Columbia University, New York, New York 10032, USA
| | - Feng Wang
- Department of Pharmacology, Columbia University, New York, New York 10032, USA
| | - Qing R Fan
- 1] Department of Pharmacology, Columbia University, New York, New York 10032, USA [2] Department of Pathology & Cell Biology, Columbia University, New York, New York 10032, USA
| |
Collapse
|
33
|
Conigrave AD, Ward DT. Calcium-sensing receptor (CaSR): pharmacological properties and signaling pathways. Best Pract Res Clin Endocrinol Metab 2013; 27:315-31. [PMID: 23856262 DOI: 10.1016/j.beem.2013.05.010] [Citation(s) in RCA: 157] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In this article we consider the mechanisms by which the calcium-sensing receptor (CaSR) induces its cellular responses via the control (activation or inhibition) of signaling pathways. We consider key features of CaSR-mediated signaling including its control of the heterotrimeric G-proteins Gq/11, Gi/o and G12/13 and the downstream consequences recognizing that very few CaSR-mediated cell phenomena have been fully described. We also consider the manner in which the CaSR contributes to the formation of specific signaling scaffolds via peptide recognition sequences in its intracellular C-terminal along with the origins of its high level of cooperativity, particularly for Ca(2+)o, and its remarkable resistance to desensitization. We also consider the nature of the mechanisms by which the CaSR controls oscillatory and sustained Ca(2+)i mobilizing responses and inhibits or elevates cyclic adenosine monophosphate (cAMP) levels dependent on the cellular and signaling context. Finally, we consider the diversity of the receptor's ligands, ligand binding sites and broader compartment-dependent physiological roles leading to the identification of pronounced ligand-biased signaling for agonists including Sr(2+) and modulators including l-amino acids and the clinically effective calcimimetic cinacalcet. We note the implications of these findings for the development of new designer drugs that might target the CaSR in pathophysiological contexts beyond those established for the treatment of disorders of calcium metabolism.
Collapse
Affiliation(s)
- Arthur D Conigrave
- School of Molecular Bioscience, University of Sydney, NSW 2006, Australia.
| | | |
Collapse
|
34
|
Aricescu AR, Owens RJ. Expression of recombinant glycoproteins in mammalian cells: towards an integrative approach to structural biology. Curr Opin Struct Biol 2013; 23:345-56. [PMID: 23623336 DOI: 10.1016/j.sbi.2013.04.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 03/30/2013] [Accepted: 04/02/2013] [Indexed: 01/26/2023]
Abstract
Mammalian cells are rapidly becoming the system of choice for the production of recombinant glycoproteins for structural biology applications. Their use has enabled the structural investigation of a whole new set of targets including large, multi-domain and highly glycosylated eukaryotic cell surface receptors and their supra-molecular assemblies. We summarize the technical advances that have been made in mammalian expression technology and highlight some of the structural insights that have been obtained using these methods. Looking forward, it is clear that mammalian cell expression will provide exciting and unique opportunities for an integrative approach to the structural study of proteins, especially of human origin and medically relevant, by bridging the gap between the purified state and the cellular context.
Collapse
Affiliation(s)
- A Radu Aricescu
- Division of Structural Biology, University of Oxford, Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, UK.
| | | |
Collapse
|
35
|
Edelstein SJ, Le Novère N. Cooperativity of allosteric receptors. J Mol Biol 2013; 425:1424-32. [PMID: 23523898 DOI: 10.1016/j.jmb.2013.03.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 03/01/2013] [Indexed: 01/04/2023]
Abstract
Cooperativity of ligand binding to allosteric receptors can be quantified using the Hill coefficient (nH) to measure the sigmoidal character of the binding curve. However, for measurements of the transition between conformational states, nH values can be misleading due to ambiguity of the reference state. For cooperative ligand binding, the reference state is a hyperbolic curve for a monomer with a single binding site characterized by nH=1. Therefore, binding curves with nH>1 provide a direct measure of cooperativity. For the dependence of the conformational state on ligand concentration, curves with nH>1 are observed, but in virtually all cases, the equivalent allosteric monomer has a value of nH<1. The ratio of the two nH values defines the effective cooperativity and always corresponds to nH=N (the number of protomers in the oligomer) for concerted transitions as specified by the Monod-Wyman-Changeux model. Dose-response curves for homopentameric α7 nicotinic receptors illustrate this relationship for both wild-type and mutant forms. For functional allosteric monomers such as G-protein-coupled receptors, normalization stretches the dose-response curve along the y-axis, thereby masking the "allosteric range" and increasing the apparent cooperativity to a limit for monomers of nH =1. The concepts of equivalent monomer and allosteric range were originally proposed in 1965 by Crick and Wyman in a manuscript circulated among the proponents of allostery, but only now published for the first time in this special issue.
Collapse
|
36
|
Illuminating the activation mechanisms and allosteric properties of metabotropic glutamate receptors. Proc Natl Acad Sci U S A 2013; 110:E1416-25. [PMID: 23487753 DOI: 10.1073/pnas.1215615110] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In multimeric cell-surface receptors, the conformational changes of the extracellular ligand-binding domains (ECDs) associated with receptor activation remain largely unknown. This is the case for the dimeric metabotropic glutamate receptors even though a number of ECD structures have been solved. Here, using an innovative approach based on cell-surface labeling and FRET, we demonstrate that a reorientation of the ECDs is associated with receptor and G-protein activation. Our approach helps identify partial agonists and highlights allosteric interactions between the effector and binding domains. Any approach expected to stabilize the active conformation of the effector domain increased the agonist potency in stabilizing the active ECDs conformation. These data provide key information on the structural dynamics and drug action at metabotropic glutamate receptors and validate an approach for tackling such analysis on other receptors.
Collapse
|
37
|
Zhang Z, Xue L, Guo H, Li Y, Ding H, Huang S. Phosphorylation-independent desensitization of metabotropic glutamate receptor 5 by G protein-coupled receptor kinase 2 in HEK 293 cells. Mol Biol 2013. [DOI: 10.1134/s0026893313010160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
38
|
Kniazeff J, Pin JP. Des dimères et des oligomères de récepteurs couplés aux protéines G, oui mais pourquoi ? Med Sci (Paris) 2012; 28:858-63. [DOI: 10.1051/medsci/20122810014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
39
|
Sigoillot M, Brockhoff A, Meyerhof W, Briand L. Sweet-taste-suppressing compounds: current knowledge and perspectives of application. Appl Microbiol Biotechnol 2012; 96:619-30. [PMID: 22983596 DOI: 10.1007/s00253-012-4387-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 08/20/2012] [Accepted: 08/21/2012] [Indexed: 01/07/2023]
Abstract
Sweet-tasting compounds are recognized by a heterodimeric receptor composed of the taste receptor, type 1, members 2 (T1R2) and 3 (T1R3) located in the mouth. This receptor is also expressed in the gut where it is involved in intestinal absorption, metabolic regulation, and glucose homeostasis. These metabolic functions make the sweet taste receptor a potential novel therapeutic target for the treatment of obesity and related metabolic dysfunctions such as diabetes. Existing sweet taste inhibitors or blockers that are still in development would constitute promising therapeutic agents. In this review, we will summarize the current knowledge of sweet taste inhibitors, including a sweet-taste-suppressing protein named gurmarin, which is only active on rodent sweet taste receptors but not on that of humans. In addition, their potential applications as therapeutic tools are discussed.
Collapse
Affiliation(s)
- Maud Sigoillot
- Centre des Sciences du Goût et de l'Alimentation, UMR-1324 INRA, UMR-6265 CNRS, Université de Bourgogne, 21000, Dijon, France
| | | | | | | |
Collapse
|
40
|
Distinct roles of metabotropic glutamate receptor dimerization in agonist activation and G-protein coupling. Proc Natl Acad Sci U S A 2012; 109:16342-7. [PMID: 22988116 DOI: 10.1073/pnas.1205838109] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The eight metabotropic glutamate receptors (mGluRs) are key modulators of synaptic transmission and are considered promising targets for the treatment of various brain disorders. Whereas glutamate acts at a large extracellular domain, allosteric modulators have been identified that bind to the seven transmembrane domain (7TM) of these dimeric G-protein-coupled receptors (GPCRs). We show here that the dimeric organization of mGluRs is required for the modulation of active and inactive states of the 7TM by agonists, but is not necessary for G-protein activation. Monomeric mGlu2, either as an isolated 7TM or in full-length, purified and reconstituted into nanodiscs, couples to G proteins upon direct activation by a positive allosteric modulator. However, only a reconstituted full-length dimeric mGlu2 activates G protein upon glutamate binding, suggesting that dimerization is required for glutamate induced activation. These data show that, even for such well characterized GPCR dimers like mGluR2, a single 7TM is sufficient for G-protein coupling. Despite this observation, the necessity of dimeric architecture for signaling induced by the endogenous ligand glutamate confirms that the central core of signaling complex is dimeric.
Collapse
|
41
|
Trzaskowski B, Latek D, Yuan S, Ghoshdastider U, Debinski A, Filipek S. Action of molecular switches in GPCRs--theoretical and experimental studies. Curr Med Chem 2012; 19:1090-109. [PMID: 22300046 PMCID: PMC3343417 DOI: 10.2174/092986712799320556] [Citation(s) in RCA: 336] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 12/30/2011] [Accepted: 01/02/2012] [Indexed: 01/14/2023]
Abstract
G protein coupled receptors (GPCRs), also called 7TM receptors, form a huge superfamily of membrane proteins that, upon activation by extracellular agonists, pass the signal to the cell interior. Ligands can bind either to extracellular N-terminus and loops (e.g. glutamate receptors) or to the binding site within transmembrane helices (Rhodopsin-like family). They are all activated by agonists although a spontaneous auto-activation of an empty receptor can also be observed. Biochemical and crystallographic methods together with molecular dynamics simulations and other theoretical techniques provided models of the receptor activation based on the action of so-called "molecular switches" buried in the receptor structure. They are changed by agonists but also by inverse agonists evoking an ensemble of activation states leading toward different activation pathways. Switches discovered so far include the ionic lock switch, the 3-7 lock switch, the tyrosine toggle switch linked with the nPxxy motif in TM7, and the transmission switch. The latter one was proposed instead of the tryptophan rotamer toggle switch because no change of the rotamer was observed in structures of activated receptors. The global toggle switch suggested earlier consisting of a vertical rigid motion of TM6, seems also to be implausible based on the recent crystal structures of GPCRs with agonists. Theoretical and experimental methods (crystallography, NMR, specific spectroscopic methods like FRET/BRET but also single-molecule-force-spectroscopy) are currently used to study the effect of ligands on the receptor structure, location of stable structural segments/domains of GPCRs, and to answer the still open question on how ligands are binding: either via ensemble of conformational receptor states or rather via induced fit mechanisms. On the other hand the structural investigations of homoand heterodimers and higher oligomers revealed the mechanism of allosteric signal transmission and receptor activation that could lead to design highly effective and selective allosteric or ago-allosteric drugs.
Collapse
Affiliation(s)
- B Trzaskowski
- Faculty of Chemistry, University of Warsaw, ul. Pasteura 1, 02-093 Warsaw, Poland
| | | | | | | | | | | |
Collapse
|
42
|
An activity-based probe reveals dynamic protein-protein interactions mediating IGF-1R transactivation by the GABA(B) receptor. Biochem J 2012; 443:627-34. [PMID: 22394253 DOI: 10.1042/bj20120188] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Many GPCRs (G-protein-coupled receptors) can activate RTKs (receptor tyrosine kinases) in the absence of RTK ligands, a phenomenon called transactivation. However, the underlying molecular mechanisms remain undefined. In the present study we investigate the molecular basis of GABA(B) (γ-aminobutyric acid B) receptor-mediated transactivation of IGF-1R (insulin-like growth factor type I receptor) in primary neurons. We take a chemical biology approach by developing an activity-based probe targeting the GABA(B) receptor. This probe enables us first to lock the GABA(B) receptor in an inactive state and then activate it with a positive allosteric modulator, thereby permitting monitoring of the dynamic of the protein complex associated with IGF-1R transactivation. We find that activation of the GABA(B) receptor induces a dynamic assembly and disassembly of a protein complex, including both receptors and their downstream effectors. FAK (focal adhesion kinase), a non-RTK, plays a key role in co-ordinating this dynamic process. Importantly, this dynamic of the GABA(B) receptor-associated complex is critical for transactivation and transactivation-dependent neuronal survival. The present study has identified an important mechanism underlying GPCR transactivation of RTKs, which was enabled by a new chemical biology tool generally applicable for dissecting GPCR signalling.
Collapse
|
43
|
Geng Y, Xiong D, Mosyak L, Malito DL, Kniazeff J, Chen Y, Burmakina S, Quick M, Bush M, Javitch JA, Pin JP, Fan QR. Structure and functional interaction of the extracellular domain of human GABA(B) receptor GBR2. Nat Neurosci 2012; 15:970-8. [PMID: 22660477 PMCID: PMC3374333 DOI: 10.1038/nn.3133] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 05/10/2012] [Indexed: 11/08/2022]
Abstract
Inhibitory neurotransmission is mediated primarily by GABA. The metabotropic GABA(B) receptor is a G protein-coupled receptor central to mammalian brain function. Malfunction of GABA(B) receptor has been implicated in several neurological disorders. GABA(B) receptor functions as a heterodimeric assembly of GBR1 and GBR2 subunits, where GBR1 is responsible for ligand-binding and GBR2 is responsible for G protein coupling. Here we demonstrate that the GBR2 ectodomain directly interacts with the GBR1 ectodomain to increase agonist affinity by selectively stabilizing the agonist-bound conformation of GBR1. We present the crystal structure of the GBR2 ectodomain, which reveals a polar heterodimeric interface. We also identify specific heterodimer contacts from both subunits, and GBR1 residues involved in ligand recognition. Lastly, our structural and functional data indicate that the GBR2 ectodomain adopts a constitutively open conformation, suggesting a structural asymmetry in the active state of GABA(B) receptor that is unique to the GABAergic system.
Collapse
Affiliation(s)
- Yong Geng
- Department of Pharmacology, Columbia University, New York, New York, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
The G-protein-coupled receptors (GPCRs) are one of the largest super families of cell-surface receptors and play crucial roles in virtually every organ system. One particular family of GPCRs, the class C GPCRs, is distinguished by a characteristically large extracellular domain and constitutive dimerization. The structure and activation mechanism of this family result in potentially unique ligand recognition sites, thereby offering a variety of possibilities by which receptor activity might be modulated using novel compounds. In the present article, we aim to provide an overview of the exact sites and structural features involved in ligand recognition of the class C GPCRs. Furthermore, we demonstrate the precise steps that occur during the receptor activation process, which underlie the possibilities by which receptor function may be altered by different approaches. Finally, we use four typical family members to illustrate orthosteric and allosteric sites with representative ligands and their corresponding therapeutic potential.
Collapse
|
45
|
Allostery in GPCRs: 'MWC' revisited. Trends Biochem Sci 2011; 36:663-72. [PMID: 21920759 DOI: 10.1016/j.tibs.2011.08.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 08/16/2011] [Accepted: 08/16/2011] [Indexed: 01/12/2023]
Abstract
G protein-coupled receptors (GPCRs) constitute the largest family of receptors in the genome and are the targets for at least 30% of current medicines. In recent years, there has been a dramatic increase in the discovery of allosteric modulators of GPCR activity and a growing appreciation of the diverse modes by which GPCRs can be regulated by both orthosteric and allosteric ligands. Interestingly, some of the contemporary views of GPCR function reflect characteristics that are shared by prototypical allosteric proteins, as encompassed in the classic Monod-Wyman-Changeux (MWC) model initially proposed for enzymes and subsequently extended to other protein families. In this review, we revisit the MWC model in the context of emerging structural, functional and operational data on GPCR allostery.
Collapse
|
46
|
Interdomain movements in metabotropic glutamate receptor activation. Proc Natl Acad Sci U S A 2011; 108:15480-5. [PMID: 21896740 DOI: 10.1073/pnas.1107775108] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many cell surface receptors are multimeric proteins, composed of several structural domains, some involved in ligand recognition, whereas others are responsible for signal transduction. In most cases, the mechanism of how ligand interaction in the extracellular domains leads to the activation of effector domains remains largely unknown. Here we examined how the extracellular ligand binding to the venus flytrap (VFT) domains of the dimeric metabotropic glutamate receptors activate the seven transmembrane (7TM) domains responsible for G protein activation. These two domains are interconnected by a cysteine-rich domain (CRD). We show that any of the four disulfide bridges of the CRD are required for the allosteric coupling between the VFT and the 7TM domains. More importantly, we show that a specific association of the two CRDs corresponds to the active state of the receptor. Indeed, a specific crosslinking of the CRDs with intersubunit disulfide bridges leads to fully constitutively active receptors, no longer activated by agonists nor by allosteric modulators. These data demonstrate that intersubunit movement at the level of the CRDs represents a key step in metabotropic glutamate receptor activation.
Collapse
|
47
|
Hannan S, Wilkins ME, Dehghani-Tafti E, Thomas P, Baddeley SM, Smart TG. Gamma-aminobutyric acid type B (GABA(B)) receptor internalization is regulated by the R2 subunit. J Biol Chem 2011; 286:24324-35. [PMID: 21724853 PMCID: PMC3129212 DOI: 10.1074/jbc.m110.220814] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 04/20/2011] [Indexed: 01/04/2023] Open
Abstract
γ-Aminobutyric acid type B (GABA(B)) receptors are important for slow synaptic inhibition in the CNS. The efficacy of inhibition is directly related to the stability of cell surface receptors. For GABA(B) receptors, heterodimerization between R1 and R2 subunits is critical for cell surface expression and signaling, but how this determines the rate and extent of receptor internalization is unknown. Here, we insert a high affinity α-bungarotoxin binding site into the N terminus of the R2 subunit and reveal its dominant role in regulating the internalization of GABA(B) receptors in live cells. To simultaneously study R1a and R2 trafficking, a new α-bungarotoxin binding site-labeling technique was used, allowing α-bungarotoxin conjugated to different fluorophores to selectively label R1a and R2 subunits. This approach demonstrated that R1a and R2 are internalized as dimers. In heterologous expression systems and neurons, the rates and extents of internalization for R1aR2 heteromers and R2 homomers are similar, suggesting a regulatory role for R2 in determining cell surface receptor stability. The fast internalization rate of R1a, which has been engineered to exit the endoplasmic reticulum, was slowed to that of R2 by truncating the R1a C-terminal tail or by removing a dileucine motif in its coiled-coil domain. Slowing the rate of internalization by co-assembly with R2 represents a novel role for GPCR heterodimerization whereby R2 subunits, via their C terminus coiled-coil domain, mask a dileucine motif on R1a subunits to determine the surface stability of the GABA(B) receptor.
Collapse
Affiliation(s)
- Saad Hannan
- From the Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, United Kingdom and
- GlaxoSmithKline R&D, Medicines Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, United Kingdom
| | - Megan E. Wilkins
- From the Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, United Kingdom and
| | - Ebrahim Dehghani-Tafti
- From the Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, United Kingdom and
| | - Philip Thomas
- From the Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, United Kingdom and
| | - Stuart M. Baddeley
- GlaxoSmithKline R&D, Medicines Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, United Kingdom
| | - Trevor G. Smart
- From the Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, United Kingdom and
| |
Collapse
|
48
|
Hannan S, Wilkins ME, Dehghani-Tafti E, Thomas P, Baddeley SM, Smart TG. γ-Aminobutyric Acid Type B (GABAB) Receptor Internalization Is Regulated by the R2 Subunit. J Biol Chem 2011. [DOI: 10.1074/jbc.m111.220814] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
49
|
Prézeau L, Rondard P, Goudet C, Kniazeff J, Pin JP. Class C receptor activation mechanisms illustrated by mGlu and GABAB receptors. A review. FLAVOUR FRAG J 2011. [DOI: 10.1002/ffj.2044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Laurent Prézeau
- CNRS, UMR 5203; Institut de Génomique Fonctionnelle, INSERM, U661, and Université Montpellier 1, 2; Montpellier; F-34000; France
| | - Philippe Rondard
- CNRS, UMR 5203; Institut de Génomique Fonctionnelle, INSERM, U661, and Université Montpellier 1, 2; Montpellier; F-34000; France
| | - Cyril Goudet
- CNRS, UMR 5203; Institut de Génomique Fonctionnelle, INSERM, U661, and Université Montpellier 1, 2; Montpellier; F-34000; France
| | - Julie Kniazeff
- CNRS, UMR 5203; Institut de Génomique Fonctionnelle, INSERM, U661, and Université Montpellier 1, 2; Montpellier; F-34000; France
| | - Jean-Philippe Pin
- CNRS, UMR 5203; Institut de Génomique Fonctionnelle, INSERM, U661, and Université Montpellier 1, 2; Montpellier; F-34000; France
| |
Collapse
|
50
|
Comps-Agrar L, Kniazeff J, Nørskov-Lauritsen L, Maurel D, Gassmann M, Gregor N, Prézeau L, Bettler B, Durroux T, Trinquet E, Pin JP. The oligomeric state sets GABA(B) receptor signalling efficacy. EMBO J 2011; 30:2336-49. [PMID: 21552208 PMCID: PMC3116278 DOI: 10.1038/emboj.2011.143] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 04/11/2011] [Indexed: 12/20/2022] Open
Abstract
G protein-coupled receptors (GPCRs) have key roles in cell-cell communication. Recent data suggest that these receptors can form large complexes, a possibility expected to expand the complexity of this regulatory system. Among the brain GPCRs, the heterodimeric GABA(B) receptor is one of the most abundant, being distributed in most brain regions, on either pre- or post-synaptic elements. Here, using specific antibodies labelled with time-resolved FRET compatible fluorophores, we provide evidence that the heterodimeric GABA(B) receptor can form higher-ordered oligomers in the brain, as suggested by the close proximity of the GABA(B1) subunits. Destabilizing the oligomers using a competitor or a GABA(B1) mutant revealed different G protein coupling efficiencies depending on the oligomeric state of the receptor. By examining, in heterologous system, the G protein coupling properties of such GABA(B) receptor oligomers composed of a wild-type and a non-functional mutant heterodimer, we provide evidence for a negative functional cooperativity between the GABA(B) heterodimers.
Collapse
Affiliation(s)
- Laëtitia Comps-Agrar
- CNRS, UMR5203, Institut de Génomique Fonctionnelle, Department of Molecular Pharmacology, Montpellier, France
- INSERM, U661, Montpellier, France
- Universités de Montpellier 1 and 2, UMR5203, Montpellier, France
- Cisbio, Parc Technologique Marcel Boiteux, Bagnols/Cèze Cedex, France
| | - Julie Kniazeff
- CNRS, UMR5203, Institut de Génomique Fonctionnelle, Department of Molecular Pharmacology, Montpellier, France
- INSERM, U661, Montpellier, France
- Universités de Montpellier 1 and 2, UMR5203, Montpellier, France
| | - Lenea Nørskov-Lauritsen
- CNRS, UMR5203, Institut de Génomique Fonctionnelle, Department of Molecular Pharmacology, Montpellier, France
- INSERM, U661, Montpellier, France
- Universités de Montpellier 1 and 2, UMR5203, Montpellier, France
| | - Damien Maurel
- CNRS, UMR5203, Institut de Génomique Fonctionnelle, Department of Molecular Pharmacology, Montpellier, France
- INSERM, U661, Montpellier, France
- Universités de Montpellier 1 and 2, UMR5203, Montpellier, France
- Cisbio, Parc Technologique Marcel Boiteux, Bagnols/Cèze Cedex, France
| | - Martin Gassmann
- Department of Biomedicine, Institute of Physiology, Pharmazentrum, University of Basel, Basel, Switzerland
| | - Nathalie Gregor
- Cisbio, Parc Technologique Marcel Boiteux, Bagnols/Cèze Cedex, France
| | - Laurent Prézeau
- CNRS, UMR5203, Institut de Génomique Fonctionnelle, Department of Molecular Pharmacology, Montpellier, France
- INSERM, U661, Montpellier, France
- Universités de Montpellier 1 and 2, UMR5203, Montpellier, France
| | - Bernhard Bettler
- Department of Biomedicine, Institute of Physiology, Pharmazentrum, University of Basel, Basel, Switzerland
| | - Thierry Durroux
- CNRS, UMR5203, Institut de Génomique Fonctionnelle, Department of Molecular Pharmacology, Montpellier, France
- INSERM, U661, Montpellier, France
- Universités de Montpellier 1 and 2, UMR5203, Montpellier, France
| | - Eric Trinquet
- Cisbio, Parc Technologique Marcel Boiteux, Bagnols/Cèze Cedex, France
| | - Jean-Philippe Pin
- CNRS, UMR5203, Institut de Génomique Fonctionnelle, Department of Molecular Pharmacology, Montpellier, France
- INSERM, U661, Montpellier, France
- Universités de Montpellier 1 and 2, UMR5203, Montpellier, France
| |
Collapse
|