1
|
Tobler R, Souilmi Y, Huber CD, Bean N, Turney CSM, Grey ST, Cooper A. The role of genetic selection and climatic factors in the dispersal of anatomically modern humans out of Africa. Proc Natl Acad Sci U S A 2023; 120:e2213061120. [PMID: 37220274 PMCID: PMC10235988 DOI: 10.1073/pnas.2213061120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 03/14/2023] [Indexed: 05/25/2023] Open
Abstract
The evolutionarily recent dispersal of anatomically modern humans (AMH) out of Africa (OoA) and across Eurasia provides a unique opportunity to examine the impacts of genetic selection as humans adapted to multiple new environments. Analysis of ancient Eurasian genomic datasets (~1,000 to 45,000 y old) reveals signatures of strong selection, including at least 57 hard sweeps after the initial AMH movement OoA, which have been obscured in modern populations by extensive admixture during the Holocene. The spatiotemporal patterns of these hard sweeps provide a means to reconstruct early AMH population dispersals OoA. We identify a previously unsuspected extended period of genetic adaptation lasting ~30,000 y, potentially in the Arabian Peninsula area, prior to a major Neandertal genetic introgression and subsequent rapid dispersal across Eurasia as far as Australia. Consistent functional targets of selection initiated during this period, which we term the Arabian Standstill, include loci involved in the regulation of fat storage, neural development, skin physiology, and cilia function. Similar adaptive signatures are also evident in introgressed archaic hominin loci and modern Arctic human groups, and we suggest that this signal represents selection for cold adaptation. Surprisingly, many of the candidate selected loci across these groups appear to directly interact and coordinately regulate biological processes, with a number associated with major modern diseases including the ciliopathies, metabolic syndrome, and neurodegenerative disorders. This expands the potential for ancestral human adaptation to directly impact modern diseases, providing a platform for evolutionary medicine.
Collapse
Affiliation(s)
- Raymond Tobler
- Australian Centre for Ancient DNA, The University of Adelaide, Adelaide, SA5005, Australia
| | - Yassine Souilmi
- Australian Centre for Ancient DNA, The University of Adelaide, Adelaide, SA5005, Australia
- Environment Institute, The University of Adelaide, Adelaide, SA5005, Australia
| | - Christian D. Huber
- Australian Centre for Ancient DNA, The University of Adelaide, Adelaide, SA5005, Australia
| | - Nigel Bean
- Australian Research Council Centre of Excellence for Mathematical and Statistical Frontiers, The University of Adelaide, Adelaide, SA5005, Australia
- School of Mathematical Sciences, The University of Adelaide, Adelaide, SA5005, Australia
| | - Chris S. M. Turney
- Division of Research, University of Technology Sydney, Ultimo, NSW2007, Australia
| | - Shane T. Grey
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, NSW2052, Australia
- Transplantation Immunology Group, Translation Science Pillar, Garvan Institute of Medical Research, Darlinghurst, NSW2010, Australia
| | - Alan Cooper
- Australian Centre for Ancient DNA, The University of Adelaide, Adelaide, SA5005, Australia
- Blue Sky Genetics, Ashton, SA5137, Australia
| |
Collapse
|
2
|
Brucato N, André M, Hudjashov G, Mondal M, Cox MP, Leavesley M, Ricaut FX. Chronology of natural selection in Oceanian genomes. iScience 2022; 25:104583. [PMID: 35880026 PMCID: PMC9308150 DOI: 10.1016/j.isci.2022.104583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/11/2022] [Accepted: 06/07/2022] [Indexed: 11/30/2022] Open
Abstract
As human populations left Asia to first settle in Oceania around 50,000 years ago, they entered a territory ecologically separated from the Old World for millions of years. We analyzed genomic data of 239 modern Oceanian individuals to detect and date signals of selection specific to this region. Combining both relative and absolute dating approaches, we identified a strong selection pattern between 52,000 and 54,000 years ago in the genomes of descendants of the first settlers of Sahul. This strikingly corresponds to the dates of initial settlement as inferred from archaeological evidence. Loci under selection during this period, some showing enrichment in Denisovan ancestry, overlap genes involved in the immune response and diet, especially based on plants. Pathogens and natural resources, especially from endemic plants, therefore appear to have acted as strong selective pressures on the genomes of the first settlers of Sahul.
Collapse
Affiliation(s)
- Nicolas Brucato
- Laboratoire Évolution et Diversité Biologique (EDB UMR 5174), Université de Toulouse Midi-Pyrénées, CNRS, IRD, UPS. 118 route de Narbonne, Bat 4R1, 31062 cedex 9 Toulouse, France
| | - Mathilde André
- Laboratoire Évolution et Diversité Biologique (EDB UMR 5174), Université de Toulouse Midi-Pyrénées, CNRS, IRD, UPS. 118 route de Narbonne, Bat 4R1, 31062 cedex 9 Toulouse, France
- Institute of Genomics, University of Tartu, Tartu, 51010 Tartumaa, Estonia
| | - Georgi Hudjashov
- Institute of Genomics, University of Tartu, Tartu, 51010 Tartumaa, Estonia
| | - Mayukh Mondal
- Institute of Genomics, University of Tartu, Tartu, 51010 Tartumaa, Estonia
| | - Murray P. Cox
- School of Natural Sciences, Massey University, Palmerston North 4442, New Zealand
| | - Matthew Leavesley
- Strand of Anthropology, Sociology and Archaeology, School of Humanities and Social Sciences, University of Papua New Guinea, PO Box 320, National Capital District 134, Papua New Guinea
- College of Arts, Society and Education, James Cook University, P.O. Box 6811, Cairns, QLD 4870, Australia
- ARC Centre of Excellence for Australian Biodiversity and Heritage, University of Wollongong, Wollongong, NSW 2522, Australia
| | - François-Xavier Ricaut
- Laboratoire Évolution et Diversité Biologique (EDB UMR 5174), Université de Toulouse Midi-Pyrénées, CNRS, IRD, UPS. 118 route de Narbonne, Bat 4R1, 31062 cedex 9 Toulouse, France
| |
Collapse
|
3
|
Highland HM, Wojcik GL, Graff M, Nishimura KK, Hodonsky CJ, Baldassari AR, Cote AC, Cheng I, Gignoux CR, Tao R, Li Y, Boerwinkle E, Fornage M, Haessler J, Hindorff LA, Hu Y, Justice AE, Lin BM, Lin D, Stram DO, Haiman CA, Kooperberg C, Le Marchand L, Matise TC, Kenny EE, Carlson CS, Stahl EA, Avery CL, North KE, Ambite JL, Buyske S, Loos RJ, Peters U, Young KL, Bien SA, Huckins LM. Predicted gene expression in ancestrally diverse populations leads to discovery of susceptibility loci for lifestyle and cardiometabolic traits. Am J Hum Genet 2022; 109:669-679. [PMID: 35263625 PMCID: PMC9069067 DOI: 10.1016/j.ajhg.2022.02.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 02/15/2022] [Indexed: 02/06/2023] Open
Abstract
One mechanism by which genetic factors influence complex traits and diseases is altering gene expression. Direct measurement of gene expression in relevant tissues is rarely tenable; however, genetically regulated gene expression (GReX) can be estimated using prediction models derived from large multi-omic datasets. These approaches have led to the discovery of many gene-trait associations, but whether models derived from predominantly European ancestry (EA) reference panels can map novel associations in ancestrally diverse populations remains unclear. We applied PrediXcan to impute GReX in 51,520 ancestrally diverse Population Architecture using Genomics and Epidemiology (PAGE) participants (35% African American, 45% Hispanic/Latino, 10% Asian, and 7% Hawaiian) across 25 key cardiometabolic traits and relevant tissues to identify 102 novel associations. We then compared associations in PAGE to those in a random subset of 50,000 White British participants from UK Biobank (UKBB50k) for height and body mass index (BMI). We identified 517 associations across 47 tissues in PAGE but not UKBB50k, demonstrating the importance of diverse samples in identifying trait-associated GReX. We observed that variants used in PrediXcan models were either more or less differentiated across continental-level populations than matched-control variants depending on the specific population reflecting sampling bias. Additionally, variants from identified genes specific to either PAGE or UKBB50k analyses were more ancestrally differentiated than those in genes detected in both analyses, underlining the value of population-specific discoveries. This suggests that while EA-derived transcriptome imputation models can identify new associations in non-EA populations, models derived from closely matched reference panels may yield further insights. Our findings call for more diversity in reference datasets of tissue-specific gene expression.
Collapse
Affiliation(s)
- Heather M Highland
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA.
| | - Genevieve L Wojcik
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Mariaelisa Graff
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Katherine K Nishimura
- Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Chani J Hodonsky
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA; Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA
| | - Antoine R Baldassari
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Alanna C Cote
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Iona Cheng
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Christopher R Gignoux
- Colorado Center for Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ran Tao
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Yuqing Li
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Eric Boerwinkle
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Myriam Fornage
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center, Houston, TX 77030, USA; Brown Foundation Institute for Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Jeffrey Haessler
- Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Lucia A Hindorff
- Division of Genomic Medicine, NIH National Human Genome Research Institute, Bethesda, MD 20892, USA
| | - Yao Hu
- Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Anne E Justice
- Department of Population Health Sciences, Geisinger Health System, Danville, PA 17822, USA
| | - Bridget M Lin
- Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Danyu Lin
- Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Daniel O Stram
- Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Christopher A Haiman
- Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Charles Kooperberg
- Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; School of Public Health, University of Washington, Seattle, WA 98195, USA
| | | | - Tara C Matise
- Genetics, Rutgers University, New Brunswick, NJ 08901-8554, USA
| | - Eimear E Kenny
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Christopher S Carlson
- Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Eli A Stahl
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Christy L Avery
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Kari E North
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Jose Luis Ambite
- Information Sciences Institute, University of Southern California, Marina del Rey, CA 90292, USA
| | - Steven Buyske
- Statistics, Rutgers University, New Brunswick, NJ 08901-8554, USA
| | - Ruth J Loos
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ulrike Peters
- Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; School of Public Health, University of Washington, Seattle, WA 98195, USA
| | - Kristin L Young
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Stephanie A Bien
- Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Laura M Huckins
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Mental Illness Research, Education and Clinical Centers, James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY 14068, USA.
| |
Collapse
|
4
|
Sajan MP, Hansen BC, Acevedo‐Duncan M, Kindy MS, Cooper DR, Farese RV. Roles of hepatic atypical protein kinase C hyperactivity and hyperinsulinemia in insulin-resistant forms of obesity and type 2 diabetes mellitus. MedComm (Beijing) 2021; 2:3-16. [PMID: 34766133 PMCID: PMC8491214 DOI: 10.1002/mco2.54] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 12/21/2020] [Accepted: 12/28/2020] [Indexed: 11/10/2022] Open
Abstract
Diet-induced obesity, the metabolic syndrome, type 2 diabetes (DIO/MetS/T2DM), and their adverse sequelae have reached pandemic levels. In mice, DIO/MetS/T2DM initiation involves diet-dependent increases in lipids that activate hepatic atypical PKC (aPKC) and thereby increase lipogenic enzymes and proinflammatory cytokines. These or other hepatic aberrations, via adverse liver-to-muscle cross talk, rapidly impair postreceptor insulin signaling to glucose transport in muscle. The ensuing hyperinsulinemia further activates hepatic aPKC, which first blocks the ability of Akt to suppress gluconeogenic enzyme expression, and later impairs Akt activation, further increasing hepatic glucose production. Recent findings suggest that hepatic aPKC also increases a proteolytic enzyme that degrades insulin receptors. Fortunately, all hepatic aberrations and muscle impairments are prevented/reversed by inhibition or deficiency of hepatic aPKC. But, in the absence of treatment, hyperinsulinemia induces adverse events, some by using "spare receptors" to bypass receptor defects. Thus, in brain, hyperinsulinemia increases Aβ-plaque precursors and Alzheimer risk; in kidney, hyperinsulinemia activates the renin-angiotensin-adrenal axis, thus increasing vasoconstriction, sodium retention, and cardiovascular risk; and in liver, hyperinsulinemia increases lipogenesis, obesity, hepatosteatosis, hyperlipidemia, and cardiovascular risk. In summary, increases in hepatic aPKC are critically required for development of DIO/MetS/T2DM and its adverse sequelae, and therapeutic approaches that limit hepatic aPKC may be particularly effective.
Collapse
Affiliation(s)
- Mini P. Sajan
- Department of Internal MedicineUniversity of South Florida College of MedicineTampaFloridaUSA
- Research ServiceJames AHaley Veterans Administration Medical CenterTampaFloridaUSA
| | - Barbara C. Hansen
- Department of Internal MedicineUniversity of South Florida College of MedicineTampaFloridaUSA
| | - Mildred Acevedo‐Duncan
- Department of ChemistryCollege of Arts and SciencesUniversity of South FloridaTampaFloridaUSA
| | - Mark S. Kindy
- Research ServiceJames AHaley Veterans Administration Medical CenterTampaFloridaUSA
- Department of Pharmaceutical SciencesCollege of PharmacyUniversity of South FloridaTampaFloridaUSA
| | - Denise R. Cooper
- Research ServiceJames AHaley Veterans Administration Medical CenterTampaFloridaUSA
- Department of Molecular MedicineUniversity of South FloridaTampaFloridaUSA
| | - Robert V. Farese
- Department of Internal MedicineUniversity of South Florida College of MedicineTampaFloridaUSA
- Research ServiceJames AHaley Veterans Administration Medical CenterTampaFloridaUSA
| |
Collapse
|
5
|
Pan X, Zhu Y, Wu X, Liu L, Ying R, Wang L, Du N, Zhang J, Jin J, Meng X, Dai F, Huang Y. The interaction of ASIC1a and ERS mediates nerve cell apoptosis induced by insulin deficiency. Eur J Pharmacol 2020; 893:173816. [PMID: 33345857 DOI: 10.1016/j.ejphar.2020.173816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 12/07/2020] [Accepted: 12/11/2020] [Indexed: 10/22/2022]
Abstract
Diabetes-related brain complications are the most serious complications of terminal diabetes. The increasing evidence have showed that the predisposing factor is not only hyperglycemia, but also insulin deficiency. In this study, we demonstrated that insulin deficiency was involved in the apoptosis of nerve cells, and it was related to the interaction between acid-sensitive ion channel 1a (ASIC1a) and endoplasmic reticulum stress (ERS). By silencing C/EBP homologous protein (CHOP) and ASIC1a, the pro-apoptotic effect of insulin deficiency on NS20y cells was relieved. Further research found that the binding of CHOP and C/EBPα was increased in the nucleus of cells cultured without insulin, and C/EBPα was competitively inhibited as a negative regulator of ASIC1a, which further increased the ERS and lead to neuronal apoptosis. In summary, ERS and ASIC1a play an important role in neurological damage caused by insulin deficiency. Our finding may lead to new ideas and treatment of diabetes-related brain complications.
Collapse
Affiliation(s)
- Xuesheng Pan
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, China
| | - Yueqin Zhu
- Department of Pharmacy, West Branch of the First Affiliated Hospital of University of Science and Technology of China (Anhui Provincial Cancer Hospital), Hefei, 230031, China
| | - Xian Wu
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, China
| | - Lan Liu
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, China; Department of Pharmacy, Fuyang Hospital of Anhui Medical University, Fuyang, 236000, China
| | - Ruixue Ying
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Lili Wang
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, China
| | - Na Du
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, China
| | - Jin Zhang
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, China
| | - Juan Jin
- Department of Pharmacology, School of Basic Medicine, Anhui Medical University. Hefei, 230032, China
| | - Xiaoming Meng
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, China
| | - Fang Dai
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
| | - Yan Huang
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, China.
| |
Collapse
|
6
|
Zhang L, Li X, Zhang N, Yang X, Hou T, Fu W, Yuan F, Wang L, Wen H, Tian Y, Zhang H, Lu X, Zhu WG. WDFY2 Potentiates Hepatic Insulin Sensitivity and Controls Endosomal Localization of the Insulin Receptor and IRS1/2. Diabetes 2020; 69:1887-1902. [PMID: 32641353 DOI: 10.2337/db19-0699] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 06/04/2020] [Indexed: 11/13/2022]
Abstract
Endosomes help activate the hepatic insulin-evoked Akt signaling pathway, but the underlying regulatory mechanisms are unclear. Previous studies have suggested that the endosome-located protein WD repeat and FYVE domain-containing 2 (WDFY2) might be involved in metabolic disorders, such as diabetes. Here, we generated Wdfy2 knockout (KO) mice and assessed the metabolic consequences. These KO mice exhibited systemic insulin resistance, with increased gluconeogenesis and suppressed glycogen accumulation in the liver. Mechanistically, we found that the insulin-stimulated activation of Akt2 and its substrates FoxO1 and GSK-3β is attenuated in the Wdfy2 KO liver and H2.35 hepatocytes, suggesting that WDFY2 acts as an important regulator of hepatic Akt2 signaling. We further found that WDFY2 interacts with the insulin receptor (INSR) via its WD1-4 domain and localizes the INSR to endosomes after insulin stimulation. This process ensures that the downstream insulin receptor substrates 1 and 2 (IRS1/2) can be recruited to the endosomal INSR. IRS1/2-INSR binding promotes IRS1/2 phosphorylation and subsequent activation, initiating downstream Akt2 signaling in the liver. Interestingly, adeno-associated viral WDFY2 delivery ameliorated metabolic defects in db/db mice. These findings demonstrate that WDFY2 activates insulin-evoked Akt2 signaling by controlling endosomal localization of the INSR and IRS1/2 in hepatocytes. This pathway might constitute a new potential target for diabetes prevention or treatment.
Collapse
Affiliation(s)
- Luyao Zhang
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xue Li
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Nan Zhang
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xin Yang
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Tianyun Hou
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, International Cancer Center, Shenzhen University School of Medicine, Shenzhen, China
| | - Wan Fu
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Fengjie Yuan
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Lina Wang
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - He Wen
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, International Cancer Center, Shenzhen University School of Medicine, Shenzhen, China
| | - Yuan Tian
- Shenzhen Bay Laboratory, Shenzhen, China
| | - Hongquan Zhang
- Department of Human Anatomy, Histology, and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xifeng Lu
- Department of Physiology, Shenzhen University School of Medicine, Shenzhen, China
| | - Wei-Guo Zhu
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, International Cancer Center, Shenzhen University School of Medicine, Shenzhen, China
- Shenzhen Bay Laboratory, Shenzhen, China
| |
Collapse
|
7
|
Jacobs GS, Hudjashov G, Saag L, Kusuma P, Darusallam CC, Lawson DJ, Mondal M, Pagani L, Ricaut FX, Stoneking M, Metspalu M, Sudoyo H, Lansing JS, Cox MP. Multiple Deeply Divergent Denisovan Ancestries in Papuans. Cell 2019; 177:1010-1021.e32. [DOI: 10.1016/j.cell.2019.02.035] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 01/07/2019] [Accepted: 02/21/2019] [Indexed: 12/29/2022]
|
8
|
Yin Y, Zhou L, Zhan R, Zhang Q, Li M. Identification of WDR12 as a novel oncogene involved in hepatocellular carcinoma propagation. Cancer Manag Res 2018; 10:3985-3993. [PMID: 30310320 PMCID: PMC6166768 DOI: 10.2147/cmar.s176268] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is one of the most common malignant cancer worldwide. Importantly, the precise mechanisms causing HCC pathogenicity are still unknown. The identification of potential oncogenes plays significant roles in finding novel therapeutic targets for human HCC. Purpose WDR12 (WD repeat protein 12), a member of WD repeats family, plays crucial roles in the ribosome biogenesis pathway. However, Whether WDR12 contributes to HCC development remains unknown. The objective of this study was to elucidate the role of WDR12 in HCC development. Methods The expression level of WDR12 in HCC tissues and adjacent non-tumor tissues were detected form Gene Expression Omnibus (GEO) database. The expression level of WDR12 in HCC cell lines were examined by RT-PCR and western blot. Kaplan-Meier analysis were used to analyze the effect of WDR12 level on overall and disease-free survival of HCC patients. To examine whether WDR12 supports development of HCC, we inhibited expression of WDR12 by using an shRNA-encoding lentivirus system. Effects of WDR12 knockdown were evaluated on cell-growth, cell-proliferation and cell-migration. The mechanisms involved in HCC cells growth, proliferation and migration were analyzed by western blot assay. Results In silico analysis of HCC data sets showed that elevated expression of WDR12 correlated with high serum AFP level, high vascular invasion, high histologic grade and high TNM stage in HCC patients. Furthermore, up-regulated expression of WDR12 significantly correlated with the short overall survival and recurrence time of HCC patients. The shRNA-mediated knockdown of WDR12 expression resulted in reduced proliferation and migration of HepG2 and Huh-7 cells. Notably, inhibition of WDR12 resulted in decreased phosphorylation of AKT, mTOR and S6K1. Conclusion Our study indicates that WDR12 contributes to HCC propagation, and indicates that suppression of WDR12 may be a potential strategy for human HCC treatment.
Collapse
Affiliation(s)
- Yancun Yin
- Taishan Scholar Immunology Program, School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003, Shandong, China
| | - Ling Zhou
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine, School of Pharmacy, Binzhou Medical University, Yantai 264003, Shandong, China
| | - Renhui Zhan
- Medicine and Pharmacy Research Center, Binzhou Medical University, Yantai 264003, Shandong, China,
| | - Qiang Zhang
- Medicine and Pharmacy Research Center, Binzhou Medical University, Yantai 264003, Shandong, China,
| | - Minjing Li
- Medicine and Pharmacy Research Center, Binzhou Medical University, Yantai 264003, Shandong, China,
| |
Collapse
|
9
|
Dou T, Shen M, Ma M, Qu L, Li Y, Hu Y, Lu J, Guo J, Wang X, Wang K. Genetic architecture and candidate genes detected for chicken internal organ weight with a 600 K single nucleotide polymorphism array. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2018; 32:341-349. [PMID: 30056651 PMCID: PMC6409475 DOI: 10.5713/ajas.18.0274] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 07/23/2018] [Indexed: 12/22/2022]
Abstract
Objective Internal organs indirectly affect economic performance and well-being of animals. Study of internal organs during later layer period will allow full utilization of layer hens. Hence, we conducted a genome-wide association study (GWAS) to identify potential quantitative trait loci or genes that potentially contribute to internal organ weight. Methods A total of 1,512 chickens originating from White Leghorn and Dongxiang Blue-Shelled chickens were genotyped using high-density Affymetrix 600 K single nucleotide polymorphism (SNP) array. We conducted a GWAS, linkage disequilibrium analysis, and heritability estimated based on SNP information by using GEMMA, Haploview and GCTA software. Results Our results displayed that internal organ weights show moderate to high (0.283 to 0.640) heritability. Variance partitioned across chromosomes and chromosome lengths had a linear relationship for liver weight and gizzard weight (R2 = 0.493, 0.753). A total of 23 highly significant SNPs that associated with all internal organ weights were mainly located on Gallus gallus autosome (GGA) 1 and GGA4. Six SNPs on GGA2 affected heart weight. After the final analysis, five top SNPs were in or near genes 5-Hydroxytryptamine receptor 2A, general transcription factor IIF polypeptide 2, WD repeat and FYVE domain containing 2, non-SMC condensin I complex subunit G, and sonic hedgehog, which were considered as candidate genes having a pervasive role in internal organ weights. Conclusion Our findings provide an understanding of the underlying genetic architecture of internal organs and are beneficial in the selection of chickens.
Collapse
Affiliation(s)
- Taocun Dou
- Jiangsu Institute of Poultry Science, Chinese Academy of Agricultural Sciences, Yangzhou, Jiangsu 225216, China
| | - Manman Shen
- Jiangsu Institute of Poultry Science, Chinese Academy of Agricultural Sciences, Yangzhou, Jiangsu 225216, China.,College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Meng Ma
- Jiangsu Institute of Poultry Science, Chinese Academy of Agricultural Sciences, Yangzhou, Jiangsu 225216, China
| | - Liang Qu
- Jiangsu Institute of Poultry Science, Chinese Academy of Agricultural Sciences, Yangzhou, Jiangsu 225216, China.,College of Animal Science and Technology, Nanjing Agriculture University, Nanjing, Jiangsu 210095, China
| | - Yongfeng Li
- Jiangsu Institute of Poultry Science, Chinese Academy of Agricultural Sciences, Yangzhou, Jiangsu 225216, China
| | - Yuping Hu
- Jiangsu Institute of Poultry Science, Chinese Academy of Agricultural Sciences, Yangzhou, Jiangsu 225216, China
| | - Jian Lu
- Jiangsu Institute of Poultry Science, Chinese Academy of Agricultural Sciences, Yangzhou, Jiangsu 225216, China
| | - Jun Guo
- Jiangsu Institute of Poultry Science, Chinese Academy of Agricultural Sciences, Yangzhou, Jiangsu 225216, China
| | - Xingguo Wang
- Jiangsu Institute of Poultry Science, Chinese Academy of Agricultural Sciences, Yangzhou, Jiangsu 225216, China
| | - Kehua Wang
- Jiangsu Institute of Poultry Science, Chinese Academy of Agricultural Sciences, Yangzhou, Jiangsu 225216, China
| |
Collapse
|
10
|
Sajan MP, Lee MC, Foufelle F, Sajan J, Cleland C, Farese RV. Coordinated regulation of hepatic FoxO1, PGC-1α and SREBP-1c facilitates insulin action and resistance. Cell Signal 2018; 43:62-70. [DOI: 10.1016/j.cellsig.2017.12.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 12/17/2017] [Indexed: 01/16/2023]
|
11
|
Sajan MP, Ivey RA, Farese RV. BMI-related progression of atypical PKC-dependent aberrations in insulin signaling through IRS-1, Akt, FoxO1 and PGC-1α in livers of obese and type 2 diabetic humans. Metabolism 2015; 64:1454-65. [PMID: 26386696 PMCID: PMC4576742 DOI: 10.1016/j.metabol.2015.08.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 08/19/2015] [Accepted: 08/20/2015] [Indexed: 12/16/2022]
Abstract
Information on insulin resistance in human liver is limited. In mouse diet-induced obesity (DIO), hepatic insulin resistance initially involves: lipid+insulin-induced activation of atypical protein kinase C (aPKC); elevated Akt activity/activation but selective impairment of compartmentalized Akt-dependent FoxO1 phosphorylation; and increases in gluconeogenic and lipogenic enzymes. In advanced stages, e.g., in hepatocytes of type 2 diabetes (T2D) humans, insulin activation of insulin receptor substrate-1(IRS-1) and Akt fails, further increasing FoxO1-dependent gluconeogenic/lipogenic enzyme expression. Increases in hepatic PGC-1α also figure prominently, but uncertainly, in this scheme. Here, we examined signaling factors in liver samples harvested from human transplant donors with increasing BMI, 20→25→30→35→40→45. We found, relative to lean (BMI=20-25) humans, obese (BMI>30) humans had all abnormalities seen in early mouse DIO, but, surprisingly, at all elevated BMI levels, had decreased insulin receptor-1 (IRS-1) levels, decreased Akt activity, and increased expression/abundance of aPKC-ι and PGC-1α. Moreover, with increasing BMI, there were: progressive increases in aPKC activity and PKC-ι expression/abundance; progressive decreases in IRS-1 levels, Akt activity and FoxO1 phosphorylation; progressive increases in expression/abundance of PGC-1α; and progressive increases in gluconeogenic and lipogenic enzymes. Remarkably, all abnormalities reached T2D levels at higher BMI levels. Most importantly, both "early" and advanced abnormalities were largely reversed by 24-hour treatment of T2D hepatocytes with aPKC inhibitor. We conclude: hepatic insulin resistance in human obesity is: advanced; BMI-correlated; and sequentially involves increased aPKC-activating ceramide; increased aPKC levels and activity; decreases in IRS-1 levels, Akt activity, and FoxO1 phosphorylation; and increases in expression/abundance of PGC-1α and gluconeogenic and lipogenic genes.
Collapse
Affiliation(s)
- Mini P Sajan
- Research and Internal Medicine Services of the James A. Haley VA Medical Center, Tampa, FL; Department of Internal Medicine, University of South Florida College of Medicine, Tampa, FL
| | - Robert A Ivey
- Research and Internal Medicine Services of the James A. Haley VA Medical Center, Tampa, FL
| | - Robert V Farese
- Research and Internal Medicine Services of the James A. Haley VA Medical Center, Tampa, FL; Department of Internal Medicine, University of South Florida College of Medicine, Tampa, FL.
| |
Collapse
|
12
|
ZHOU RONGPING, DENG MINGTAO, CHEN LANYING, FANG NING, DU CHUAN, CHEN LINPAN, ZOU YEQING, DAI JIANGHUA, ZHU MEILAN, WANG WEI, LIN SIJIAN, LIU RONGHUA, LUO JUN. Shp2 regulates chlorogenic acid-induced proliferation and adipogenic differentiation of bone marrow-derived mesenchymal stem cells in adipogenesis. Mol Med Rep 2015; 11:4489-95. [DOI: 10.3892/mmr.2015.3285] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 12/17/2014] [Indexed: 11/05/2022] Open
|
13
|
Charbonnier LM, Janssen E, Chou J, Ohsumi TK, Keles S, Hsu JT, Massaad MJ, Garcia-Lloret M, Hanna-Wakim R, Dbaibo G, Alangari AA, Alsultan A, Al-Zahrani D, Geha RS, Chatila TA. Regulatory T-cell deficiency and immune dysregulation, polyendocrinopathy, enteropathy, X-linked-like disorder caused by loss-of-function mutations in LRBA. J Allergy Clin Immunol 2015; 135:217-27. [PMID: 25468195 PMCID: PMC4289093 DOI: 10.1016/j.jaci.2014.10.019] [Citation(s) in RCA: 175] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 10/15/2014] [Accepted: 10/16/2014] [Indexed: 01/26/2023]
Abstract
BACKGROUND A number of heritable immune dysregulatory diseases result from defects affecting regulatory T (Treg) cell development, function, or both. They include immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome, which is caused by mutations in forkhead box P3 (FOXP3), and IPEX-like disorders caused by mutations in IL-2 receptor α (IL2RA), signal transducer and activator of transcription 5b (STAT5b), and signal transducer and activator of transcription 1 (STAT1). However, the genetic defects underlying many cases of IPEX-like disorders remain unknown. OBJECTIVE We sought to identify the genetic abnormalities in patients with idiopathic IPEX-like disorders. METHODS We performed whole-exome and targeted gene sequencing and phenotypic and functional analyses of Treg cells. RESULTS A child who presented with an IPEX-like syndrome and severe Treg cell deficiency was found to harbor a nonsense mutation in the gene encoding LPS-responsive beige-like anchor (LRBA), which was previously implicated as a cause of common variable immunodeficiency with autoimmunity. Analysis of subjects with LRBA deficiency revealed marked Treg cell depletion; profoundly decreased expression of canonical Treg cell markers, including FOXP3, CD25, Helios, and cytotoxic T lymphocyte-associated antigen 4; and impaired Treg cell-mediated suppression. There was skewing in favor of memory T cells and intense autoantibody production, with marked expansion of T follicular helper and contraction of T follicular regulatory cells. Whereas the frequency of recent thymic emigrants and the differentiation of induced Treg cells were normal, LRBA-deficient T cells exhibited increased apoptosis and reduced activities of the metabolic sensors mammalian target of rapamycin complexes 1 and 2. CONCLUSION LRBA deficiency is a novel cause of IPEX-like syndrome and Treg cell deficiency associated with metabolic dysfunction and increased apoptosis of Treg cells.
Collapse
Affiliation(s)
- Louis-Marie Charbonnier
- Division of Immunology, Boston Children's Hospital, and the Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Erin Janssen
- Division of Immunology, Boston Children's Hospital, and the Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Janet Chou
- Division of Immunology, Boston Children's Hospital, and the Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Toshiro K Ohsumi
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Mass
| | - Sevgi Keles
- Division of Immunology, Boston Children's Hospital, and the Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Joyce T Hsu
- Division of Immunology, Boston Children's Hospital, and the Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Michel J Massaad
- Division of Immunology, Boston Children's Hospital, and the Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Maria Garcia-Lloret
- Division of Immunology, Department of Pediatrics, University of California at Los Angeles, Los Angeles, Calif
| | - Rima Hanna-Wakim
- Division of Pediatric Infectious Diseases, American University of Beirut, Beirut, Lebanon
| | - Ghassan Dbaibo
- Division of Pediatric Infectious Diseases, American University of Beirut, Beirut, Lebanon
| | - Abdullah A Alangari
- Department of Pediatrics, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Abdulrahman Alsultan
- Department of Pediatrics, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Daifulah Al-Zahrani
- Immunology and Allergy, Pediatric Department, King Abdulaziz Medical City-WR, Jeddah, Saudi Arabia
| | - Raif S Geha
- Division of Immunology, Boston Children's Hospital, and the Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Talal A Chatila
- Division of Immunology, Boston Children's Hospital, and the Department of Pediatrics, Harvard Medical School, Boston, Mass.
| |
Collapse
|
14
|
Sajan MP, Ivey RA, Lee MC, Farese RV. Hepatic insulin resistance in ob/ob mice involves increases in ceramide, aPKC activity, and selective impairment of Akt-dependent FoxO1 phosphorylation. J Lipid Res 2014; 56:70-80. [PMID: 25395359 DOI: 10.1194/jlr.m052977] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Pathogenesis of insulin resistance in leptin-deficient ob/ob mice is obscure. In another form of diet-dependent obesity, high-fat-fed mice, hepatic insulin resistance involves ceramide-induced activation of atypical protein kinase C (aPKC), which selectively impairs protein kinase B (Akt)-dependent forkhead box O1 protein (FoxO1) phosphorylation on scaffolding protein, 40 kDa WD(tryp-x-x-asp)-repeat propeller/FYVE protein (WD40/ProF), thereby increasing gluconeogenesis. Resultant hyperinsulinemia activates hepatic Akt and mammalian target of rapamycin C1, and further activates aPKC; consequently, lipogenic enzyme expression increases, and insulin signaling in muscle is secondarily impaired. Here, in obese minimally-diabetic ob/ob mice, hepatic ceramide and aPKC activity and its association with WD40/ProF were increased. Hepatic Akt activity was also increased, but Akt associated with WD40/ProF was diminished and accounted for reduced FoxO1 phosphorylation and increased gluconeogenic enzyme expression. Most importantly, liver-selective inhibition of aPKC decreased aPKC and increased Akt association with WD40/ProF, thereby restoring FoxO1 phosphorylation and reducing gluconeogenic enzyme expression. Additionally, lipogenic enzyme expression diminished, and insulin signaling in muscle, glucose tolerance, obesity, hepatosteatosis, and hyperlipidemia improved. In conclusion, hepatic ceramide accumulates in response to CNS-dependent dietary excess irrespective of fat content; hepatic insulin resistance is prominent in ob/ob mice and involves aPKC-dependent displacement of Akt fromWD40/ProF and subsequent impairment of FoxO1 phosphorylation and increased expression of hepatic gluconeogenic and lipogenic enzymes; and hepatic alterations diminish insulin signaling in muscle.
Collapse
Affiliation(s)
- Mini P Sajan
- Medical and Research Services, James A. Haley Veterans Medical Center, Tampa, FL Division of Endocrinology and Metabolism, Department of Internal Medicine, University of South Florida College of Medicine, Tampa, FL
| | - Robert A Ivey
- Medical and Research Services, James A. Haley Veterans Medical Center, Tampa, FL
| | - Mackenzie C Lee
- Medical and Research Services, James A. Haley Veterans Medical Center, Tampa, FL
| | - Robert V Farese
- Medical and Research Services, James A. Haley Veterans Medical Center, Tampa, FL Division of Endocrinology and Metabolism, Department of Internal Medicine, University of South Florida College of Medicine, Tampa, FL
| |
Collapse
|
15
|
Sajan MP, Acevedo-Duncan ME, Standaert ML, Ivey RA, Lee M, Farese RV. Akt-dependent phosphorylation of hepatic FoxO1 is compartmentalized on a WD40/ProF scaffold and is selectively inhibited by aPKC in early phases of diet-induced obesity. Diabetes 2014; 63:2690-701. [PMID: 24705403 PMCID: PMC4113067 DOI: 10.2337/db13-1863] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Initiating mechanisms that impair gluconeogenic enzymes and spare lipogenic enzymes in diet-induced obesity (DIO) are obscure. Here, we examined insulin signaling to Akt and atypical protein kinase C (aPKC) in liver and muscle and hepatic enzyme expression in mice consuming a moderate high-fat (HF) diet. In HF diet-fed mice, resting/basal and insulin-stimulated Akt and aPKC activities were diminished in muscle, but in liver, these activities were elevated basally and were increased by insulin to normal levels. Despite elevated hepatic Akt activity, FoxO1 phosphorylation, which diminishes gluconeogenesis, was impaired; in contrast, Akt-dependent phosphorylation of glycogenic GSK3β and lipogenic mTOR was elevated. Diminished Akt-dependent FoxO1 phosphorylation was associated with reduced Akt activity associated with scaffold protein WD40/Propeller/FYVE (WD40/ProF), which reportedly facilitates FoxO1 phosphorylation. In contrast, aPKC activity associated with WD40/ProF was increased. Moreover, inhibition of hepatic aPKC reduced its association with WD40/ProF, restored WD40/ProF-associated Akt activity, restored FoxO1 phosphorylation, and corrected excessive expression of hepatic gluconeogenic and lipogenic enzymes. Additionally, Akt and aPKC activities in muscle improved, as did glucose intolerance, weight gain, hepatosteatosis, and hyperlipidemia. We conclude that Akt-dependent FoxO1 phosphorylation occurs on the WD/Propeller/FYVE scaffold in liver and is selectively inhibited in early DIO by diet-induced increases in activity of cocompartmentalized aPKC.
Collapse
Affiliation(s)
- Mini P Sajan
- Medical and Research Services, James A. Haley Veterans Medical Center; Tampa, FLDivision of Endocrinology and Metabolism, Department of Internal Medicine, University of South Florida College of Medicine, Tampa, FL
| | - Mildred E Acevedo-Duncan
- Medical and Research Services, James A. Haley Veterans Medical Center; Tampa, FLDivision of Endocrinology and Metabolism, Department of Internal Medicine, University of South Florida College of Medicine, Tampa, FL
| | - Mary L Standaert
- Medical and Research Services, James A. Haley Veterans Medical Center; Tampa, FLDivision of Endocrinology and Metabolism, Department of Internal Medicine, University of South Florida College of Medicine, Tampa, FL
| | - Robert A Ivey
- Medical and Research Services, James A. Haley Veterans Medical Center; Tampa, FLDivision of Endocrinology and Metabolism, Department of Internal Medicine, University of South Florida College of Medicine, Tampa, FL
| | - Mackenzie Lee
- Medical and Research Services, James A. Haley Veterans Medical Center; Tampa, FLDivision of Endocrinology and Metabolism, Department of Internal Medicine, University of South Florida College of Medicine, Tampa, FL
| | - Robert V Farese
- Medical and Research Services, James A. Haley Veterans Medical Center; Tampa, FLDivision of Endocrinology and Metabolism, Department of Internal Medicine, University of South Florida College of Medicine, Tampa, FL
| |
Collapse
|
16
|
Hepatic Atypical Protein Kinase C: An Inherited Survival-Longevity Gene that Now Fuels Insulin-Resistant Syndromes of Obesity, the Metabolic Syndrome and Type 2 Diabetes Mellitus. J Clin Med 2014; 3:724-40. [PMID: 26237474 PMCID: PMC4449650 DOI: 10.3390/jcm3030724] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Revised: 06/19/2014] [Accepted: 06/24/2014] [Indexed: 12/25/2022] Open
Abstract
This review focuses on how insulin signals to metabolic processes in health, why this signaling is frequently deranged in Western/Westernized societies, how these derangements lead to, or abet development of, insulin-resistant states of obesity, the metabolic syndrome and type 2 diabetes mellitus, and what our options are for restoring insulin signaling, and glucose/lipid homeostasis. A central theme in this review is that excessive hepatic activity of an archetypal protein kinase enzyme, “atypical” protein kinase C (aPKC), plays a critically important role in the development of impaired glucose metabolism, systemic insulin resistance, and excessive hepatic production of glucose, lipids and proinflammatory factors that underlie clinical problems of glucose intolerance, obesity, hepatosteatosis, hyperlipidemia, and, ultimately, type 2 diabetes. The review suggests that normally inherited genes, in particular, the aPKC isoforms, that were important for survival and longevity in times of food scarcity are now liabilities in times of over-nutrition. Fortunately, new knowledge of insulin signaling mechanisms and how an aberration of excessive hepatic aPKC activation is induced by over-nutrition puts us in a position to target this aberration by diet and/or by specific inhibitors of hepatic aPKC.
Collapse
|
17
|
Kannan K, Coarfa C, Rajapakshe K, Hawkins SM, Matzuk MM, Milosavljevic A, Yen L. CDKN2D-WDFY2 is a cancer-specific fusion gene recurrent in high-grade serous ovarian carcinoma. PLoS Genet 2014; 10:e1004216. [PMID: 24675677 PMCID: PMC3967933 DOI: 10.1371/journal.pgen.1004216] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 01/16/2014] [Indexed: 02/01/2023] Open
Abstract
Ovarian cancer is the fifth leading cause of cancer death in women. Almost 70% of ovarian cancer deaths are due to the high-grade serous subtype, which is typically detected only after it has metastasized. Characterization of high-grade serous cancer is further complicated by the significant heterogeneity and genome instability displayed by this cancer. Other than mutations in TP53, which is common to many cancers, highly recurrent recombinant events specific to this cancer have yet to be identified. Using high-throughput transcriptome sequencing of seven patient samples combined with experimental validation at DNA, RNA and protein levels, we identified a cancer-specific and inter-chromosomal fusion gene CDKN2D-WDFY2 that occurs at a frequency of 20% among sixty high-grade serous cancer samples but is absent in non-cancerous ovary and fallopian tube samples. This is the most frequent recombinant event identified so far in high-grade serous cancer implying a major cellular lineage in this highly heterogeneous cancer. In addition, the same fusion transcript was also detected in OV-90, an established high-grade serous type cell line. The genomic breakpoint was identified in intron 1 of CDKN2D and intron 2 of WDFY2 in patient tumor, providing direct evidence that this is a fusion gene. The parental gene, CDKN2D, is a cell-cycle modulator that is also involved in DNA repair, while WDFY2 is known to modulate AKT interactions with its substrates. Transfection of cloned fusion construct led to loss of wildtype CDKN2D and wildtype WDFY2 protein expression, and a gain of a short WDFY2 protein isoform that is presumably under the control of the CDKN2D promoter. The expression of short WDFY2 protein in transfected cells appears to alter the PI3K/AKT pathway that is known to play a role in oncogenesis. CDKN2D-WDFY2 fusion could be an important molecular signature for understanding and classifying sub-lineages among heterogeneous high-grade serous ovarian carcinomas. High-grade serous carcinoma (HG-SC) is the most common subtype of ovarian cancer observed in women. This subtype of ovarian cancer is typically detected at advanced stages due to lack of effective early screening tools. Recurrent cancer-specific gene fusions resulting from chromosomal translocations have the potential to serve as effective screening tools as well as therapeutic targets. Here we identified CDKN2D-WDFY2 as a cancer-specific fusion gene present in 20% of HG-SC tumors, by far the most frequent gene recombinant event found in this highly heterogeneous disease. We also presented evidence that the expression of this fusion may affect the PI3K/AKT pathway that is important for cancer progression. Thus CDKN2D-WDFY2 could very well represent a major cellular lineage important for detecting and classifying heterogeneous ovarian carcinomas, and could provide insight into the underlying mechanism of this deadly disease. This is critical, given that ovarian cancer kills 140,200 women worldwide each year, and few ovarian cancer-specific molecular alterations are currently available for targeting and screening.
Collapse
Affiliation(s)
- Kalpana Kannan
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Cristian Coarfa
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Kimal Rajapakshe
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Shannon M. Hawkins
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Martin M. Matzuk
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Pharmacology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Aleksandar Milosavljevic
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Laising Yen
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
18
|
Agley CC, Rowlerson AM, Velloso CP, Lazarus NR, Harridge SDR. Human skeletal muscle fibroblasts, but not myogenic cells, readily undergo adipogenic differentiation. J Cell Sci 2013; 126:5610-25. [PMID: 24101731 DOI: 10.1242/jcs.132563] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We characterised the adherent cell types isolated from human skeletal muscle by enzymatic digestion, and demonstrated that even at 72 hours after isolation these cultures consisted predominantly of myogenic cells (CD56(+), desmin(+)) and fibroblasts (TE-7(+), collagen VI(+), PDGFRα(+), vimentin(+), fibronectin(+)). To evaluate the behaviour of the cell types obtained, we optimised a double immuno-magnetic cell-sorting method for the separation of myogenic cells from fibroblasts. This procedure gave purities of >96% for myogenic (CD56(+), desmin(+)) cells. The CD56(-) fraction obtained from the first sort was highly enriched in TE-7(+) fibroblasts. Using quantitative analysis of immunofluorescent staining for lipid content, lineage markers and transcription factors, we tested if the purified cell populations could differentiate into adipocytes in response to treatment with either fatty acids or adipocyte-inducing medium. Both treatments caused the fibroblasts to differentiate into adipocytes, as shown by loss of intracellular TE-7, upregulation of the adipogenic transcription factors PPARγ and C/EBPα, and adoption of a lipid-laden adipocyte morphology. By contrast, myogenic cells did not undergo adipogenesis and showed differential regulation of PPARγ and C/EBPα in response to these adipogenic treatments. Our results show that human skeletal muscle fibroblasts are at least bipotent progenitors that can remain as extracellular-matrix-producing cells or differentiate into adipocytes.
Collapse
Affiliation(s)
- Chibeza C Agley
- Centre of Human and Aerospace Physiological Sciences, School of Biomedical Sciences, King's College London, Shepherd's House, Guy's Campus, London SE1 1UL, UK
| | | | | | | | | |
Collapse
|
19
|
Li H, Li T, Wang S, Wei J, Fan J, Li J, Han Q, Liao L, Shao C, Zhao RC. miR-17-5p and miR-106a are involved in the balance between osteogenic and adipogenic differentiation of adipose-derived mesenchymal stem cells. Stem Cell Res 2012; 10:313-24. [PMID: 23399447 DOI: 10.1016/j.scr.2012.11.007] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 09/30/2012] [Accepted: 11/25/2012] [Indexed: 01/08/2023] Open
Abstract
Mesenchymal stem cells (MSCs) can differentiate into several distinct cell types, including osteoblasts and adipocytes. The balance between osteogenic and adipogenic differentiation is disrupted in several osteogenic-related disorders, such as osteoporosis. So far, little is known about the molecular mechanisms that drive final lineage commitment of MSCs. In this study, we revealed that miR-17-5p and miR-106a have dual functions in the modulation of human adipose-derived mesenchymal stem cells (hADSCs) commitment by gain- and loss-of-function assays. They could promote adipogenesis and inhibit osteogenesis. Luciferase reporter assay, western blot and ELISA suggested BMP2 was a direct target of miR-17-5p and miR-106a. Downregulation of endogeneous BMP2 by RNA interference suppressed osteogenesis and increased adipogenesis, similar to the effect of miR-17-5p and miR-106a upregulation. Moreover, the inhibitory effects of miR-17-5p on osteogenic and adipogenic differentiation of hADSCs could be reversed by BMP2 RNA interference. In conclusion, miR-17-5p and miR-106a regulate osteogenic and adipogenic lineage commitment of hADSCs by directly targeting BMP2, and subsequently decreased osteogenic TAZ, MSX2 and Runx2, and increased adipogenic C/EBPα and PPARγ.
Collapse
Affiliation(s)
- Hongling Li
- Center of Excellence in Tissue Engineering, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 5# Dongdansantiao, Beijing, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Park HG, Bak EJ, Woo GH, Kim JM, Quan Z, Kim JM, Yoon HK, Cheon SH, Yoon G, Yoo YJ, Na Y, Cha JH. Licochalcone E has an antidiabetic effect. J Nutr Biochem 2012; 23:759-67. [DOI: 10.1016/j.jnutbio.2011.03.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 03/03/2011] [Accepted: 03/25/2011] [Indexed: 01/14/2023]
|
21
|
Fritz RD, Radziwill G. CNK1 and other scaffolds for Akt/FoxO signaling. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:1971-7. [PMID: 21320536 DOI: 10.1016/j.bbamcr.2011.02.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 02/01/2011] [Accepted: 02/05/2011] [Indexed: 11/28/2022]
Abstract
FoxO transcription factors mediate anti-proliferative and pro-apoptotic signals and act as tumor suppressors in cancer. Posttranslational modifications including phosphorylation and acetylation regulate FoxO activity by a cytoplasmic-nuclear shuttle mechanism. Scaffold proteins coordinating signaling pathways in time and space play a critical role in this process. CNK1 acts as a scaffold protein in several signaling pathways controlling the function of FoxO proteins. An understanding of CNK1 and other scaffolds in the FoxO signaling network will provide insights how to release the tumor suppressor function of FoxO as a possibility to block oncogenic pathways. This article is part of a Special Issue entitled: P13K-AKT-FoxO axis in cancer and aging.
Collapse
Affiliation(s)
- Rafael D Fritz
- Department of Biomedicine, Institute of Biochemistry and Genetics, University of Basel, Mattenstrasse 28, CH-4058 Basel, Switzerland.
| | | |
Collapse
|
22
|
Mohite A, Chillar A, So SP, Cervantes V, Ruan KH. Novel Mechanism of the Vascular Protector Prostacyclin: Regulating MicroRNA Expression. Biochemistry 2011; 50:1691-9. [DOI: 10.1021/bi101654w] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Anita Mohite
- Center for Experimental Therapeutics and PharmacoInformatics and Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas 77004, United States
| | - Annirudha Chillar
- Center for Experimental Therapeutics and PharmacoInformatics and Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas 77004, United States
| | - Shui-Ping So
- Center for Experimental Therapeutics and PharmacoInformatics and Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas 77004, United States
| | - Vanessa Cervantes
- Center for Experimental Therapeutics and PharmacoInformatics and Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas 77004, United States
| | - Ke-He Ruan
- Center for Experimental Therapeutics and PharmacoInformatics and Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas 77004, United States
| |
Collapse
|
23
|
Fritz RD, Varga Z, Radziwill G. CNK1 is a novel Akt interaction partner that promotes cell proliferation through the Akt-FoxO signalling axis. Oncogene 2010; 29:3575-82. [PMID: 20383191 DOI: 10.1038/onc.2010.104] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Revised: 02/11/2010] [Accepted: 03/01/2010] [Indexed: 12/17/2022]
Abstract
The scaffold proteins connector enhancer of KSR (CNK) participate in Raf-, Rho- and NF-kappaB-dependent signalling and promote cell differentiation and invasion. In this study, we demonstrate that CNK1 downregulation inhibits, whereas CNK1 overexpression stimulates the proliferation of breast cancer cells and human embryonic kidney cells, respectively. This stimulatory effect depends on a functional phosphatidylinositol-3 kinase (PI3K) pathway because treatment of cells with the PI3K inhibitor, LY294002, abrogates CNK1-induced proliferation. CNK1 interacts with the PI3K effector Akt and knockdown of CNK1 decreases Akt activity in breast cancer cells. CNK1 controls Akt-dependent phosphorylation and transcriptional activity of FoxO, which is a negative regulator of proliferation. Consistent with this, CNK1-induced cell proliferation is blocked by FoxO overexpression. Moreover, CNK1 regulates anchorage-independent proliferation and focus formation of breast cancer cells. CNK1 is predominantly localized at the plasma membrane of breast cancer cells, whereas in non-transformed mammary epithelial cells, CNK1 is cytoplasmatic. Accordingly, CNK1 is found preferentially at the plasma membrane in carcinoma in situ and invasive breast cancer tumours compared with normal breast tissue sections. Analysis of multiple breast cancer samples reveals that CNK1-negative tumours show less Akt activity. Thus, CNK1 promotes oncogenic signalling through Akt in breast cancer cell lines and tumours.
Collapse
Affiliation(s)
- R D Fritz
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | | | | |
Collapse
|
24
|
Walz HA, Shi X, Chouinard M, Bue CA, Navaroli DM, Hayakawa A, Zhou QL, Nadler J, Leonard DM, Corvera S. Isoform-specific regulation of Akt signaling by the endosomal protein WDFY2. J Biol Chem 2010; 285:14101-8. [PMID: 20189988 DOI: 10.1074/jbc.m110.110536] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Recent work has led to the identification of novel endocytic compartments with functional roles in both protein trafficking and growth factor signal transduction. The phosphatidylinositol 3-phosphate binding, FYVE domain-containing protein WDFY2 is localized to a distinct subset of early endosomes, which are localized close to the plasma membrane. Here, we find that the serine/threonine kinase Akt interacts with these endosomes in an isoform-specific manner. Using quantitative fluorescence microscopy we demonstrate specific co-localization of WDFY2 with endogenous Akt2, but not Akt1. Moreover, depletion of WDFY2 leads to impaired phosphorylation of Akt in response to insulin due to isoform specific reduction of Akt2, but not Akt1, protein levels, and to a marked reduction in the insulin-stimulated phosphorylation of numerous Akt substrates. This is accompanied by an impairment in insulin-stimulated glucose transport and, after prolonged silencing, a reduction in the level of expression of adipogenic genes. We propose that WDFY2-enriched endosomes serve as a scaffold that enables specificity of insulin signaling through Akt2.
Collapse
Affiliation(s)
- Helena A Walz
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Localization of phosphatidylinositol (3,4,5)-trisphosphate to phagosomes in entamoeba histolytica achieved using glutathione S-transferase- and green fluorescent protein-tagged lipid biosensors. Infect Immun 2009; 78:125-37. [PMID: 19901063 DOI: 10.1128/iai.00719-09] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Entamoeba histolytica is an intestinal protozoan parasite that causes amoebic dysentery and liver abscess. Phagocytosis by the parasite is a critical virulence process, since it is a prerequisite for tissue invasion and establishment of chronic infection. While the roles of many of the proteins that regulate phagocytosis-related signaling events in E. histolytica have been characterized, the functions of lipids in this cellular process remain largely unknown in this parasite. In other systems, phosphatidylinositol (3,4,5)-trisphosphate (PIP(3)), a major product of phosphoinositide 3 kinase (PI3-kinase) activity, is essential for phagocytosis. Pleckstrin homology (PH) domains are protein domains that specifically bind to PIP(3). In this study, we utilized glutathione S-transferase (GST)- and green fluorescent protein (GFP)-labeled PH domains as lipid biosensors to characterize the spatiotemporal aspects of PIP(3) distribution during various endocytic processes in E. histolytica. PIP(3)-specific biosensors accumulated at extending pseudopodia and in phagosomal cups in trophozoites exposed to erythrocytes but did not localize to pinocytic compartments during the uptake of a fluid-phase marker, dextran. Our results suggest that PIP(3) is involved in the early stages of phagosome formation in E. histolytica. In addition, we demonstrated that PIP(3) exists at high steady-state levels in the plasma membrane of E. histolytica and that these levels, unlike those in mammalian cells, are not abolished by serum withdrawal. Finally, expression of a PH domain in trophozoites inhibited erythrophagocytosis and enhanced motility, providing genetic evidence supporting the role of PI3-kinase signaling in these processes in E. histolytica.
Collapse
|
26
|
Zhang L, Paddon C, Lewis MD, Grennan-Jones F, Ludgate M. Gsalpha signalling suppresses PPARgamma2 generation and inhibits 3T3L1 adipogenesis. J Endocrinol 2009; 202:207-15. [PMID: 19460852 PMCID: PMC2710974 DOI: 10.1677/joe-09-0099] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Since TSH receptor (TSHR) expression increases during adipogenesis and signals via cAMP/phospho-cAMP-response element binding protein (CREB), reported to be necessary and sufficient for adipogenesis, we hypothesised that TSHR activation would induce preadipocyte differentiation. Retroviral vectors introduced constitutively active TSHR (TSHR*) into 3T3L1 preadipocytes; despite increased cAMP (RIA) and phospho-CREB (western blot) there was no spontaneous adipogenesis (assessed morphologically, using oil red O and QPCR measurement of adipogenesis markers). We speculated that Gbetagamma signalling may be inhibitory but failed to induce adipogenesis using activated Gsalpha (gsp*). Inhibition of phosphodiesterases did not promote adipogenesis in TSHR* or gsp* populations. Furthermore, differentiation induced by adipogenic medium with pioglitazone was reduced in TSHR* and abolished in gsp* expressing 3T3L1 cells. TSHR* and gsp* did not inactivate PPARgamma (PPARG as listed in the HUGO database) by phosphorylation but expression of PPARgamma1 was reduced and PPARgamma2 undetectable in gsp*. FOXO1 phosphorylation (required to inactivate this repressor of adipogenesis) was lowest in gsp* despite the activation of AKT by phosphorylation. PROF is a mediator that facilitates FOXO1 phosphorylation by phospho-Akt. Its transcript levels remained constantly low in the gsp* population. In most measurements, the TSHR* cells were between the gsp* and control 3T3L1 preadipocytes. The enhanced down-regulation of PREF1 (adipogenesis inhibitor) permits retention of some adipogenic potential in the TSHR* population. We conclude that Gsalpha signalling impedes FOXO1 phosphorylation and thus inhibits PPARgamma transcription and the alternative promoter usage required to generate PPARgamma2, the fat-specific transcription factor necessary for adipogenesis.
Collapse
|
27
|
|
28
|
Bozulic L, Hemmings BA. PIKKing on PKB: regulation of PKB activity by phosphorylation. Curr Opin Cell Biol 2009; 21:256-61. [PMID: 19303758 DOI: 10.1016/j.ceb.2009.02.002] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2009] [Accepted: 02/16/2009] [Indexed: 01/25/2023]
Abstract
Ser/Thr protein kinase PKB/Akt is a key regulator of a wide range of cellular processes including growth, proliferation and survival. PKB is clearly a crucial signaling molecule and extensive research efforts aim to understand its regulation and action. Recent studies of the regulation of PKB activity by hydrophobic motif phosphorylation have yielded several exciting findings about members of the PI3-kinase-like family of kinases (PIKKs) acting as PKB regulators. Mammalian target of rapamycin complex 2 (mTORC2) and DNA-dependent protein kinase (DNA-PK) can both phosphorylate Ser473 and activate PKB. This present review concerns PKB regulation by mTORC2 and DNA-PK in a stimulus-dependent and context-dependent manner and the possible implications of this for PKB activity, substrate specificity and therapeutic intervention.
Collapse
Affiliation(s)
- Lana Bozulic
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | | |
Collapse
|
29
|
Abstract
The Akt serine/threonine kinase (also called protein kinase B) has emerged as a critical signaling molecule within eukaryotic cells. Significant progress has been made in clarifying its regulation by upstream kinases and identifying downstream mechanisms that mediate its effects in cells and contribute to signaling specificity. Here, we provide an overview of present advances in the field regarding the function of Akt in physiological and pathological cell function within a more generalized framework of Akt signal transduction. An emphasis is placed on the involvement of Akt in human diseases ranging from cancer to metabolic dysfunction and mental disease.
Collapse
Affiliation(s)
- T F Franke
- Department of Psychiatry, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|