1
|
Szodorai E, Hevesi Z, Wagner L, Hökfelt TGM, Harkany T, Schnell R. A hydrophobic groove in secretagogin allows for alternate interactions with SNAP-25 and syntaxin-4 in endocrine tissues. Proc Natl Acad Sci U S A 2024; 121:e2309211121. [PMID: 38593081 PMCID: PMC11032447 DOI: 10.1073/pnas.2309211121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 03/09/2024] [Indexed: 04/11/2024] Open
Abstract
Vesicular release of neurotransmitters and hormones relies on the dynamic assembly of the exocytosis/trans-SNARE complex through sequential interactions of synaptobrevins, syntaxins, and SNAP-25. Despite SNARE-mediated release being fundamental for intercellular communication in all excitable tissues, the role of auxiliary proteins modulating the import of reserve vesicles to the active zone, and thus, scaling repetitive exocytosis remains less explored. Secretagogin is a Ca2+-sensor protein with SNAP-25 being its only known interacting partner. SNAP-25 anchors readily releasable vesicles within the active zone, thus being instrumental for 1st phase release. However, genetic deletion of secretagogin impedes 2nd phase release instead, calling for the existence of alternative protein-protein interactions. Here, we screened the secretagogin interactome in the brain and pancreas, and found syntaxin-4 grossly overrepresented. Ca2+-loaded secretagogin interacted with syntaxin-4 at nanomolar affinity and 1:1 stoichiometry. Crystal structures of the protein complexes revealed a hydrophobic groove in secretagogin for the binding of syntaxin-4. This groove was also used to bind SNAP-25. In mixtures of equimolar recombinant proteins, SNAP-25 was sequestered by secretagogin in competition with syntaxin-4. Kd differences suggested that secretagogin could shape unidirectional vesicle movement by sequential interactions, a hypothesis supported by in vitro biological data. This mechanism could facilitate the movement of transport vesicles toward release sites, particularly in the endocrine pancreas where secretagogin, SNAP-25, and syntaxin-4 coexist in both α- and β-cells. Thus, secretagogin could modulate the pace and fidelity of vesicular hormone release by differential protein interactions.
Collapse
Affiliation(s)
- Edit Szodorai
- Division of Molecular and Cellular Neuroendocrinology, Department of Neuroscience, Biomedicum 7D, Karolinska Institutet, SolnaSE-17165, Sweden
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, ViennaA-1090, Austria
| | - Zsofia Hevesi
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, ViennaA-1090, Austria
| | - Ludwig Wagner
- Department of Internal Medicine III, Medical University of Vienna, ViennaA-1090, Austria
| | - Tomas G. M. Hökfelt
- Division of Molecular and Cellular Neuroendocrinology, Department of Neuroscience, Biomedicum 7D, Karolinska Institutet, SolnaSE-17165, Sweden
| | - Tibor Harkany
- Division of Molecular and Cellular Neuroendocrinology, Department of Neuroscience, Biomedicum 7D, Karolinska Institutet, SolnaSE-17165, Sweden
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, ViennaA-1090, Austria
| | - Robert Schnell
- Division of Molecular and Cellular Neuroendocrinology, Department of Neuroscience, Biomedicum 7D, Karolinska Institutet, SolnaSE-17165, Sweden
| |
Collapse
|
2
|
Xu J, Esser V, Gołębiowska-Mendroch K, Bolembach AA, Rizo J. Control of Munc13-1 Activity by Autoinhibitory Interactions Involving the Variable N-terminal Region. J Mol Biol 2024; 436:168502. [PMID: 38417672 PMCID: PMC11384659 DOI: 10.1016/j.jmb.2024.168502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/17/2024] [Accepted: 02/20/2024] [Indexed: 03/01/2024]
Abstract
Regulation of neurotransmitter release during presynaptic plasticity underlies varied forms of information processing in the brain. Munc13s play essential roles in release via their conserved C-terminal region, which contains a MUN domain involved in SNARE complex assembly, and controls multiple presynaptic plasticity processes. Munc13s also have a variable N-terminal region, which in Munc13-1 includes a calmodulin binding (CaMb) domain involved in short-term plasticity and a C2A domain that forms an inhibitory homodimer. The C2A domain is activated by forming a heterodimer with the zinc-finger domain of αRIMs, providing a link to αRIM-dependent short- and long-term plasticity. However, it is unknown how the functions of the N- and C-terminal regions are integrated, in part because of the difficulty of purifying Munc13-1 fragments containing both regions. We describe for the first time the purification of a Munc13-1 fragment spanning its entire sequence except for a flexible region between the C2A and CaMb domains. We show that this fragment is much less active than the Munc13-1 C-terminal region in liposome fusion assays and that its activity is strongly enhanced by the RIM2α zinc-finger domain together with calmodulin. NMR experiments show that the C2A and CaMb domains bind to the MUN domain and that these interactions are relieved by the RIM2α ZF domain and calmodulin, respectively. These results suggest a model whereby Munc13-1 activity in promoting SNARE complex assembly and neurotransmitter release are inhibited by interactions of the C2A and CaMb domains with the MUN domain that are relieved by αRIMs and calmodulin.
Collapse
Affiliation(s)
- Junjie Xu
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Victoria Esser
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Katarzyna Gołębiowska-Mendroch
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Agnieszka A Bolembach
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Josep Rizo
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
3
|
Soh WT, Roetschke HP, Cormican JA, Teo BF, Chiam NC, Raabe M, Pflanz R, Henneberg F, Becker S, Chari A, Liu H, Urlaub H, Liepe J, Mishto M. Protein degradation by human 20S proteasomes elucidates the interplay between peptide hydrolysis and splicing. Nat Commun 2024; 15:1147. [PMID: 38326304 PMCID: PMC10850103 DOI: 10.1038/s41467-024-45339-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 01/17/2024] [Indexed: 02/09/2024] Open
Abstract
If and how proteasomes catalyze not only peptide hydrolysis but also peptide splicing is an open question that has divided the scientific community. The debate has so far been based on immunopeptidomics, in vitro digestions of synthetic polypeptides as well as ex vivo and in vivo experiments, which could only indirectly describe proteasome-catalyzed peptide splicing of full-length proteins. Here we develop a workflow-and cognate software - to analyze proteasome-generated non-spliced and spliced peptides produced from entire proteins and apply it to in vitro digestions of 15 proteins, including well-known intrinsically disordered proteins such as human tau and α-Synuclein. The results confirm that 20S proteasomes produce a sizeable variety of cis-spliced peptides, whereas trans-spliced peptides are a minority. Both peptide hydrolysis and splicing produce peptides with well-defined characteristics, which hint toward an intricate regulation of both catalytic activities. At protein level, both non-spliced and spliced peptides are not randomly localized within protein sequences, but rather concentrated in hotspots of peptide products, in part driven by protein sequence motifs and proteasomal preferences. At sequence level, the different peptide sequence preference of peptide hydrolysis and peptide splicing suggests a competition between the two catalytic activities of 20S proteasomes during protein degradation.
Collapse
Affiliation(s)
- Wai Tuck Soh
- Research Group of Quantitative and Systems Biology, Max-Planck-Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany
| | - Hanna P Roetschke
- Research Group of Quantitative and Systems Biology, Max-Planck-Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany
- Centre for Inflammation Biology and Cancer Immunology & Peter Gorer Department of Immunobiology, King's College London, SE1 1UL, London, UK
- Research Group of Molecular Immunology, Francis Crick Institute, NW1 1AT, London, UK
| | - John A Cormican
- Research Group of Quantitative and Systems Biology, Max-Planck-Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany
| | - Bei Fang Teo
- Centre for Inflammation Biology and Cancer Immunology & Peter Gorer Department of Immunobiology, King's College London, SE1 1UL, London, UK
- Research Group of Molecular Immunology, Francis Crick Institute, NW1 1AT, London, UK
- Immunology Programme, Life Sciences Institute; Immunology Translational Research Program and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117456, Singapore
| | - Nyet Cheng Chiam
- Research Group of Quantitative and Systems Biology, Max-Planck-Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany
| | - Monika Raabe
- Research Group of Bioanalytical Mass Spectrometry, Max-Planck-Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany
| | - Ralf Pflanz
- Research Group of Bioanalytical Mass Spectrometry, Max-Planck-Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany
| | - Fabian Henneberg
- Department of Structural Dynamics, Max-Planck-Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany
| | - Stefan Becker
- Department of NMR-based Structural Biology, Max-Planck-Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany
| | - Ashwin Chari
- Research Group of Structural Biochemistry and Mechanisms, Max-Planck-Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany
| | - Haiyan Liu
- Immunology Programme, Life Sciences Institute; Immunology Translational Research Program and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117456, Singapore
| | - Henning Urlaub
- Research Group of Bioanalytical Mass Spectrometry, Max-Planck-Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany
- Institute of Clinical Chemistry, University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Juliane Liepe
- Research Group of Quantitative and Systems Biology, Max-Planck-Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany.
| | - Michele Mishto
- Centre for Inflammation Biology and Cancer Immunology & Peter Gorer Department of Immunobiology, King's College London, SE1 1UL, London, UK.
- Research Group of Molecular Immunology, Francis Crick Institute, NW1 1AT, London, UK.
| |
Collapse
|
4
|
Suryavanshi P, Sawant-Pokam P, Clair S, Brennan KC. Increased presynaptic excitability in a migraine with aura mutation. Brain 2024; 147:680-697. [PMID: 37831655 PMCID: PMC10834252 DOI: 10.1093/brain/awad326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/24/2023] [Accepted: 09/04/2023] [Indexed: 10/15/2023] Open
Abstract
Migraine is a common and disabling neurological disorder. The headache and sensory amplifications of migraine are attributed to hyperexcitable sensory circuits, but a detailed understanding remains elusive. A mutation in casein kinase 1 delta (CK1δ) was identified in non-hemiplegic familial migraine with aura and advanced sleep phase syndrome. Mice carrying the CK1δT44A mutation were more susceptible to spreading depolarization (the phenomenon that underlies migraine aura), but mechanisms underlying this migraine-relevant phenotype were not known. We used a combination of whole-cell electrophysiology and multiphoton imaging, in vivo and in brain slices, to compare CK1δT44A mice (adult males) to their wild-type littermates. We found that despite comparable synaptic activity at rest, CK1δT44A neurons were more excitable upon repetitive stimulation than wild-type, with a reduction in presynaptic adaptation at excitatory but not inhibitory synapses. The mechanism of this adaptation deficit was a calcium-dependent enhancement of the size of the readily releasable pool of synaptic vesicles, and a resultant increase in glutamate release, in CK1δT44A compared to wild-type synapses. Consistent with this mechanism, CK1δT44A neurons showed an increase in the cumulative amplitude of excitatory post-synaptic currents, and a higher excitation-to-inhibition ratio during sustained activity compared to wild-type. At a local circuit level, action potential bursts elicited in CK1δT44A neurons triggered an increase in recurrent excitation compared to wild-type, and at a network level, CK1δT44A mice showed a longer duration of 'up state' activity, which is dependent on recurrent excitation. Finally, we demonstrated that the spreading depolarization susceptibility of CK1δT44A mice could be returned to wild-type levels with the same intervention (reduced extracellular calcium) that normalized presynaptic adaptation. Taken together, these findings show a stimulus-dependent presynaptic gain of function at glutamatergic synapses in a genetic model of migraine, that accounts for the increased spreading depolarization susceptibility and may also explain the sensory amplifications that are associated with the disease.
Collapse
Affiliation(s)
- Pratyush Suryavanshi
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
- Interdepartmental Neuroscience Program, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
- Department of Pediatrics, University of Iowa, Iowa City, IA 52242, USA
| | - Punam Sawant-Pokam
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Sarah Clair
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - K C Brennan
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| |
Collapse
|
5
|
Xu J, Esser V, Gołębiowska-Mendroch K, Bolembach AA, Rizo J. Control of Munc13-1 Activity by Autoinhibitory Interactions Involving the Variable N-terminal Region. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.24.577102. [PMID: 38328168 PMCID: PMC10849727 DOI: 10.1101/2024.01.24.577102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Regulation of neurotransmitter release during presynaptic plasticity underlies varied forms of information processing in the brain. Munc13s play essential roles in release via their conserved C-terminal region, which contains a MUN domain involved SNARE complex assembly, and control multiple presynaptic plasticity processes. Munc13s also have a variable N-terminal region, which in Munc13-1 includes a calmodulin binding (CaMb) domain involved in short-term plasticity and a C2A domain that forms an inhibitory homodimer. The C2A domain is activated by forming a heterodimer with the zinc-finger domain of αRIMs, providing a link to αRIM-dependent short- and long-term plasticity. However, it is unknown how the functions of the N- and C-terminal regions are integrated, in part because of the difficulty of purifying Munc13-1 fragments containing both regions. We describe for the first time the purification of a Munc13-1 fragment spanning its entire sequence except for a flexible region between the C2A and CaMb domains. We show that this fragment is much less active than the Munc13-1 C-terminal region in liposome fusion assays and that its activity is strongly enhanced by the RIM2α zinc-finger domain together with calmodulin. NMR experiments show that the C2A and CaMb domains bind to the MUN domain and that these interactions are relieved by the RIM2α ZF domain and calmodulin, respectively. These results suggest a model whereby Munc13-1 activity in promoting SNARE complex assembly and neurotransmitter release are inhibited by interactions of the C2A and CaMb domains with the MUN domain that are relieved by αRIMs and calmodulin.
Collapse
Affiliation(s)
- Junjie Xu
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Victoria Esser
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Katarzyna Gołębiowska-Mendroch
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Current address: Jagiellonian University, Faculty of Chemistry, Department of Organic Chemistry, Gronostajowa 2, 30-387, Krakow, Poland
| | - Agnieszka A Bolembach
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Current address: Dioscuri Centre for RNA-Protein Interactions in Human Health and Disease, International Institute of Molecular and Cell Biology in Warsaw, 4 Ks. Trojdena Street, 02-109 Warsaw, Poland
| | - Josep Rizo
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
6
|
Vydra Bousova K, Zouharova M, Jiraskova K, Vetyskova V. Interaction of Calmodulin with TRPM: An Initiator of Channel Modulation. Int J Mol Sci 2023; 24:15162. [PMID: 37894842 PMCID: PMC10607381 DOI: 10.3390/ijms242015162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/05/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Transient receptor potential melastatin (TRPM) channels, a subfamily of the TRP superfamily, constitute a diverse group of ion channels involved in mediating crucial cellular processes like calcium homeostasis. These channels exhibit complex regulation, and one of the key regulatory mechanisms involves their interaction with calmodulin (CaM), a cytosol ubiquitous calcium-binding protein. The association between TRPM channels and CaM relies on the presence of specific CaM-binding domains in the channel structure. Upon CaM binding, the channel undergoes direct and/or allosteric structural changes and triggers down- or up-stream signaling pathways. According to current knowledge, ion channel members TRPM2, TRPM3, TRPM4, and TRPM6 are directly modulated by CaM, resulting in their activation or inhibition. This review specifically focuses on the interplay between TRPM channels and CaM and summarizes the current known effects of CaM interactions and modulations on TRPM channels in cellular physiology.
Collapse
|
7
|
Denesyuk AI, Permyakov SE, Permyakov EA, Johnson MS, Denessiouk K, Uversky VN. Canonical structural-binding modes in the calmodulin-target protein complexes. J Biomol Struct Dyn 2023; 41:7582-7594. [PMID: 36106955 DOI: 10.1080/07391102.2022.2123391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 09/04/2022] [Indexed: 10/14/2022]
Abstract
Intracellular calcium sensor protein calmodulin (CaM) belongs to the large EF-hand protein superfamily. CaM shows a unique and not fully understood ability to bind to multiple targets, allows them to participate in a variety of regulatory processes. The protein has two approximately symmetrical globular domains (the N- and C-lobes). Analysis of the CaM-binding sites of target proteins showed that they have two hydrophobic 'anchor' amino acids separated by 10 to 17 residues. Consequently, several CaM-binding motifs: {1-10}, {1-11}, {1-13}, {1-14}, {1-16}, {1-17}, differing by the distance between the two anchor residues along the amino acid sequence, have been identified. Despite extensive structural information on the role of target-protein amino acid residues in the formation of complexes with CaM, much less is known about the role of amino acids from CaM contributing to these interactions. In this work, a quantitative analysis of the contact surfaces of CaM and target proteins has been carried out for 35 representative three-dimensional structures. It has been shown that, in addition to the two hydrophobic terminal residues of the target fragment, the interaction also involves residues that are 4 residues earlier in the sequence (binding mode {1-5}). It has also been found that the N- and C-lobes of CaM bind the {1-5} motif located at the ends of the target in a structurally identical manner. Methionine residues at positions 51 (corresponding to 124 in the C-lobe), 71 (144), and 72 (145) of the CaM amino acid sequence are key hydrophobic residues for this interaction. They are located at the N- and C-boundaries of the even EF-hand motifs. The hydrophobic core of CaM ('Ф-quatrefoil') consists of 10 amino acids in the N-lobe (and in the C-lobe): Phe16 (Phe89), Phe19 (Phe92), Ile27 (Ile100), Thr29 (Ala102), Leu32 (Leu105), Ile52 (Ile125), Val55 (Ala128), Ile63 (Val136), Phe65 (Tyr138), and Phe68 (Phe141) and do not intersect with the target-binding methionine residues. CaM belongs to the 'dynamic' group of EF-hand proteins, in which calcium and protein ligand binding causes only global conformational changes but does not alter the conservative 'black' and 'grey' clusters described in our earlier works (PLoS One. 2014; 9(10):e109287). The membership of CaM in the 'dynamic' group is determined by the triggering and protective methionine layer: Met51 (Met124), Met71 (Met144) and Met72 (Met145). HIGHLIGHTSInterchain interactions in the unique 35 CaM complex structures were analyzed.Methionine amino acids of the N- and C-lobes of CaM form triggering and protective layers.Interactions of the target terminal residues with these methionine layers are structurally identical.CaM belonging to the 'dynamic' group is determined by the triggering and protective methionine layer.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Alexander I Denesyuk
- Institute for Biological Instrumentation of the, Russian Academy of Sciences, Federal Research Center, "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino Moscow Region, Russia
- Structural Bioinformatics Laboratory, Biochemistry, InFLAMES Research Flagship Center, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Sergei E Permyakov
- Institute for Biological Instrumentation of the, Russian Academy of Sciences, Federal Research Center, "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino Moscow Region, Russia
| | - Eugene A Permyakov
- Institute for Biological Instrumentation of the, Russian Academy of Sciences, Federal Research Center, "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino Moscow Region, Russia
| | - Mark S Johnson
- Structural Bioinformatics Laboratory, Biochemistry, InFLAMES Research Flagship Center, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Konstantin Denessiouk
- Structural Bioinformatics Laboratory, Biochemistry, InFLAMES Research Flagship Center, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Vladimir N Uversky
- Institute for Biological Instrumentation of the, Russian Academy of Sciences, Federal Research Center, "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino Moscow Region, Russia
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| |
Collapse
|
8
|
Díaz Casas A, Cordoba JJ, Ferrer BJ, Balakrishnan S, Wurm JE, Pastrana‐Ríos B, Chazin WJ. Binding by calmodulin is coupled to transient unfolding of the third FF domain of Prp40A. Protein Sci 2023; 32:e4606. [PMID: 36810829 PMCID: PMC10022492 DOI: 10.1002/pro.4606] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/16/2023] [Accepted: 02/18/2023] [Indexed: 02/24/2023]
Abstract
Human pre-mRNA processing protein 40 homolog A (hPrp40A) is a splicing factor that interacts with the Huntington's disease protein huntingtin (Htt). Evidence has accumulated that both Htt and hPrp40A are modulated by the intracellular Ca2+ sensor calmodulin (CaM). Here we report characterization of the interaction of human CM with the third FF domain (FF3 ) of hPrp40A using calorimetric, fluorescence and structural approaches. Homology modeling, differential scanning calorimetry and small angle X-ray scattering (SAXS) data show FF3 forms a folded globular domain. CaM was found to bind FF3 in a Ca2+ -dependent manner with a 1:1 stoichiometry and a dissociation constant (Kd ) of 25 ± 3 μM at 25°C. NMR studies showed that both domains of CaM are engaged in binding and SAXS analysis of the FF3 -CaM complex revealed CaM occupies an extended configuration. Analysis of the FF3 sequence showed that the anchors for CaM binding must be buried in its hydrophobic core, suggesting that binding to CaM requires unfolding of FF3 . Trp anchors were proposed based on sequence analysis and confirmed by intrinsic Trp fluorescence of FF3 upon binding of CaM and substantial reductions in affinity for Trp-Ala FF3 mutants. The consensus model of the complex showed that binding to CaM binding occurs to an extended, non-globular state of the FF3 , consistent with coupling to transient unfolding of the domain. The implications of these results are discussed in the context of the complex interplay of Ca2+ signaling and Ca2+ sensor proteins in modulating Prp40A-Htt function.
Collapse
Affiliation(s)
- A. Díaz Casas
- Department of BiochemistryVanderbilt UniversityNashvilleTennesseeUSA
- Center for Structural BiologyVanderbilt UniversityNashvilleTennesseeUSA
- Present address:
Department of Natural SciencesPontifical Catholic University of Puerto RicoPoncePuerto RicoUSA
| | - J. J. Cordoba
- Department of BiochemistryVanderbilt UniversityNashvilleTennesseeUSA
- Center for Structural BiologyVanderbilt UniversityNashvilleTennesseeUSA
- Chemical and Physical Biology Graduate ProgramVanderbilt UniversityNashvilleTennesseeUSA
| | - B. J. Ferrer
- Department of BiochemistryVanderbilt UniversityNashvilleTennesseeUSA
- Center for Structural BiologyVanderbilt UniversityNashvilleTennesseeUSA
- Chemical and Physical Biology Graduate ProgramVanderbilt UniversityNashvilleTennesseeUSA
| | - S. Balakrishnan
- Department of BiochemistryVanderbilt UniversityNashvilleTennesseeUSA
- Center for Structural BiologyVanderbilt UniversityNashvilleTennesseeUSA
| | - J. E. Wurm
- Chemical and Physical Biology Graduate ProgramVanderbilt UniversityNashvilleTennesseeUSA
| | - B. Pastrana‐Ríos
- Department of ChemistryUniversity of Puerto Rico, Mayagüez CampusMayagüezPuerto RicoUSA
| | - W. J. Chazin
- Department of BiochemistryVanderbilt UniversityNashvilleTennesseeUSA
- Center for Structural BiologyVanderbilt UniversityNashvilleTennesseeUSA
- Chemical and Physical Biology Graduate ProgramVanderbilt UniversityNashvilleTennesseeUSA
- Department of ChemistryVanderbilt UniversityNashvilleTennesseeUSA
| |
Collapse
|
9
|
Karschin N, Becker S, Griesinger C. Interdomain Dynamics via Paramagnetic NMR on the Highly Flexible Complex Calmodulin/Munc13-1. J Am Chem Soc 2022; 144:17041-17053. [PMID: 36082939 PMCID: PMC9501808 DOI: 10.1021/jacs.2c06611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Paramagnetic NMR constraints are very useful to study protein interdomain motion, but their interpretation is not always straightforward. On the example of the particularly flexible complex Calmodulin/Munc13-1, we present a new approach to characterize this motion with pseudocontact shifts and residual dipolar couplings. Using molecular mechanics, we sampled the conformational space of the complex and used a genetic algorithm to find ensembles that are in agreement with the data. We used the Bayesian information criterion to determine the ideal ensemble size. This way, we were able to make an accurate, unambiguous, reproducible model of the interdomain motion of Calmodulin/Munc13-1 without prior knowledge about the domain orientation from crystallography.
Collapse
Affiliation(s)
- Niels Karschin
- Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen, Niedersachsen D-37077, Germany
| | - Stefan Becker
- Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen, Niedersachsen D-37077, Germany
| | - Christian Griesinger
- Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen, Niedersachsen D-37077, Germany.,Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen D-37075, Germany
| |
Collapse
|
10
|
Rizo J, David G, Fealey ME, Jaczynska K. On the difficulties of characterizing weak protein interactions that are critical for neurotransmitter release. FEBS Open Bio 2022; 12:1912-1938. [PMID: 35986639 PMCID: PMC9623538 DOI: 10.1002/2211-5463.13473] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/09/2022] [Accepted: 08/18/2022] [Indexed: 01/25/2023] Open
Abstract
The mechanism of neurotransmitter release has been extensively characterized, showing that vesicle fusion is mediated by the SNARE complex formed by syntaxin-1, SNAP-25 and synaptobrevin. This complex is disassembled by N-ethylmaleimide sensitive factor (NSF) and SNAPs to recycle the SNAREs, whereas Munc18-1 and Munc13s organize SNARE complex assembly in an NSF-SNAP-resistant manner. Synaptotagmin-1 acts as the Ca2+ sensor that triggers exocytosis in a tight interplay with the SNAREs and complexins. Here, we review technical aspects associated with investigation of protein interactions underlying these steps, which is hindered because the release machinery is assembled between two membranes and is highly dynamic. Moreover, weak interactions, which are difficult to characterize, play key roles in neurotransmitter release, for instance by lowering energy barriers that need to be overcome in this highly regulated process. We illustrate the crucial role that structural biology has played in uncovering mechanisms underlying neurotransmitter release, but also discuss the importance of considering the limitations of the techniques used, including lessons learned from research in our lab and others. In particular, we emphasize: (a) the promiscuity of some protein sequences, including membrane-binding regions that can mediate irrelevant interactions with proteins in the absence of their native targets; (b) the need to ensure that weak interactions observed in crystal structures are biologically relevant; and (c) the limitations of isothermal titration calorimetry to analyze weak interactions. Finally, we stress that even studies that required re-interpretation often helped to move the field forward by improving our understanding of the system and providing testable hypotheses.
Collapse
Affiliation(s)
- Josep Rizo
- Department of BiophysicsUniversity of Texas Southwestern Medical CenterDallasTXUSA,Department of BiochemistryUniversity of Texas Southwestern Medical CenterDallasTXUSA,Department of PharmacologyUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | - Guillaume David
- Department of BiophysicsUniversity of Texas Southwestern Medical CenterDallasTXUSA,Department of BiochemistryUniversity of Texas Southwestern Medical CenterDallasTXUSA,Department of PharmacologyUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | - Michael E. Fealey
- Department of BiophysicsUniversity of Texas Southwestern Medical CenterDallasTXUSA,Department of BiochemistryUniversity of Texas Southwestern Medical CenterDallasTXUSA,Department of PharmacologyUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | - Klaudia Jaczynska
- Department of BiophysicsUniversity of Texas Southwestern Medical CenterDallasTXUSA,Department of BiochemistryUniversity of Texas Southwestern Medical CenterDallasTXUSA,Department of PharmacologyUniversity of Texas Southwestern Medical CenterDallasTXUSA
| |
Collapse
|
11
|
Synaptic Secretion and Beyond: Targeting Synapse and Neurotransmitters to Treat Neurodegenerative Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9176923. [PMID: 35923862 PMCID: PMC9343216 DOI: 10.1155/2022/9176923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/16/2022] [Accepted: 06/04/2022] [Indexed: 11/17/2022]
Abstract
The nervous system is important, because it regulates the physiological function of the body. Neurons are the most basic structural and functional unit of the nervous system. The synapse is an asymmetric structure that is important for neuronal function. The chemical transmission mode of the synapse is realized through neurotransmitters and electrical processes. Based on vesicle transport, the abnormal information transmission process in the synapse can lead to a series of neurorelated diseases. Numerous proteins and complexes that regulate the process of vesicle transport, such as SNARE proteins, Munc18-1, and Synaptotagmin-1, have been identified. Their regulation of synaptic vesicle secretion is complicated and delicate, and their defects can lead to a series of neurodegenerative diseases. This review will discuss the structure and functions of vesicle-based synapses and their roles in neurons. Furthermore, we will analyze neurotransmitter and synaptic functions in neurodegenerative diseases and discuss the potential of using related drugs in their treatment.
Collapse
|
12
|
The evolution of synaptic and cognitive capacity: Insights from the nervous system transcriptome of Aplysia. Proc Natl Acad Sci U S A 2022; 119:e2122301119. [PMID: 35867761 PMCID: PMC9282427 DOI: 10.1073/pnas.2122301119] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The gastropod mollusk Aplysia is an important model for cellular and molecular neurobiological studies, particularly for investigations of molecular mechanisms of learning and memory. We developed an optimized assembly pipeline to generate an improved Aplysia nervous system transcriptome. This improved transcriptome enabled us to explore the evolution of cognitive capacity at the molecular level. Were there evolutionary expansions of neuronal genes between this relatively simple gastropod Aplysia (20,000 neurons) and Octopus (500 million neurons), the invertebrate with the most elaborate neuronal circuitry and greatest behavioral complexity? Are the tremendous advances in cognitive power in vertebrates explained by expansion of the synaptic proteome that resulted from multiple rounds of whole genome duplication in this clade? Overall, the complement of genes linked to neuronal function is similar between Octopus and Aplysia. As expected, a number of synaptic scaffold proteins have more isoforms in humans than in Aplysia or Octopus. However, several scaffold families present in mollusks and other protostomes are absent in vertebrates, including the Fifes, Lev10s, SOLs, and a NETO family. Thus, whereas vertebrates have more scaffold isoforms from select families, invertebrates have additional scaffold protein families not found in vertebrates. This analysis provides insights into the evolution of the synaptic proteome. Both synaptic proteins and synaptic plasticity evolved gradually, yet the last deuterostome-protostome common ancestor already possessed an elaborate suite of genes associated with synaptic function, and critical for synaptic plasticity.
Collapse
|
13
|
Chamberlain SG, Gohlke A, Shafiq A, Squires IJ, Owen D, Mott HR. Calmodulin extracts the Ras family protein RalA from lipid bilayers by engagement with two membrane-targeting motifs. Proc Natl Acad Sci U S A 2021; 118:e2104219118. [PMID: 34480001 PMCID: PMC8433508 DOI: 10.1073/pnas.2104219118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 08/05/2021] [Indexed: 11/18/2022] Open
Abstract
RalA is a small GTPase and a member of the Ras family. This molecular switch is activated downstream of Ras and is widely implicated in tumor formation and growth. Previous work has shown that the ubiquitous Ca2+-sensor calmodulin (CaM) binds to small GTPases such as RalA and K-Ras4B, but a lack of structural information has obscured the functional consequences of these interactions. Here, we have investigated the binding of CaM to RalA and found that CaM interacts exclusively with the C terminus of RalA, which is lipidated with a prenyl group in vivo to aid membrane attachment. Biophysical and structural analyses show that the two RalA membrane-targeting motifs (the prenyl anchor and the polybasic motif) are engaged by distinct lobes of CaM and that CaM binding leads to removal of RalA from its membrane environment. The structure of this complex, along with a biophysical investigation into membrane removal, provides a framework with which to understand how CaM regulates the function of RalA and sheds light on the interaction of CaM with other small GTPases, including K-Ras4B.
Collapse
Affiliation(s)
- Samuel G Chamberlain
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom
| | - Andrea Gohlke
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge, CB4 0WG, United Kingdom
| | - Arooj Shafiq
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom
| | - Iolo J Squires
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom
| | - Darerca Owen
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom;
| | - Helen R Mott
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom;
| |
Collapse
|
14
|
Wang J, Qiao JD, Liu XR, Liu DT, Chen YH, Wu Y, Sun Y, Yu J, Ren RN, Mei Z, Liu YX, Shi YW, Jiang M, Lin SM, He N, Li B, Bian WJ, Li BM, Yi YH, Su T, Liu HK, Gu WY, Liao WP. UNC13B variants associated with partial epilepsy with favourable outcome. Brain 2021; 144:3050-3060. [PMID: 33876820 PMCID: PMC8634081 DOI: 10.1093/brain/awab164] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/25/2021] [Accepted: 04/03/2021] [Indexed: 11/12/2022] Open
Abstract
The unc-13 homolog B (UNC13B) gene encodes a presynaptic protein, mammalian uncoordinated 13-2 (Munc13-2), that is highly expressed in the brain-predominantly in the cerebral cortex-and plays an essential role in synaptic vesicle priming and fusion, potentially affecting neuronal excitability. However, the functional significance of UNC13B mutation in human disease is not known. In this study we screened for novel genetic variants in a cohort of 446 unrelated cases (families) with partial epilepsy without acquired causes by trio-based whole-exome sequencing. UNC13B variants were identified in 12 individuals affected by partial epilepsy and/or febrile seizures from eight unrelated families. The eight probands all had focal seizures and focal discharges in EEG recordings, including two patients who experienced frequent daily seizures and one who showed abnormalities in the hippocampus by brain MRI; however, all of the patients showed favorable outcome without intellectual or developmental abnormalities. The identified UNC13B variants included one nonsense variant, two variants at or around a splice site, one compound heterozygous missense variant, and four missense variants that cosegregated in the families. The frequency of UNC13B variants identified in the present study was significantly higher than that in a control cohort of Han Chinese and controls of the East Asian and all populations in the Genome Aggregation Database. Computational modeling, including hydrogen bond and docking analyses, suggested that the variants lead to functional impairment. In Drosophila, seizure rate and duration were increased by Unc13b knockdown compared to wild-type flies, but these effects were less pronounced than in sodium voltage-gated channel alpha subunit 1 (Scn1a) knockdown Drosophila. Electrophysiologic recordings showed that excitatory neurons in Unc13b-deficient flies exhibited increased excitability. These results suggest that UNC13B is potentially associated with epilepsy. The frequent daily seizures and hippocampal abnormalities but ultimately favorable outcome under antiepileptic therapy in our patients indicate that partial epilepsy caused by UNC13B variant is a clinically manageable condition.
Collapse
Affiliation(s)
- Jie Wang
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Jing-Da Qiao
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Xiao-Rong Liu
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - De-Tian Liu
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Yan-Hui Chen
- Department of Pediatrics, Fujian Medical University Union Hospital, Fujian, China
| | - Yi Wu
- Department of Pediatrics, Fujian Medical University Union Hospital, Fujian, China
| | - Yan Sun
- Department of Pediatrics, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
| | - Jing Yu
- Department of Pediatrics, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
| | - Rong-Na Ren
- Department of Pediatrics and Neurosurgery, 900 Hospital of the Joint Logistics Team, Fujian, China
| | - Zhen Mei
- Department of Pediatrics and Neurosurgery, 900 Hospital of the Joint Logistics Team, Fujian, China
| | - Yu-Xi Liu
- Department of Neurology, The First Affiliated Hospital of Shanxi Medical University, Shanxi, China
| | - Yi-Wu Shi
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Mi Jiang
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Si-Mei Lin
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Na He
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Bin Li
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Wen-Jun Bian
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Bing-Mei Li
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Yong-Hong Yi
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Tao Su
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | | | - Wei-Yue Gu
- Chigene (Beijing) Translational Medical Research Center Co., Beijing, China
| | - Wei-Ping Liao
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | | |
Collapse
|
15
|
Núñez E, Muguruza-Montero A, Villarroel A. Atomistic Insights of Calmodulin Gating of Complete Ion Channels. Int J Mol Sci 2020; 21:ijms21041285. [PMID: 32075037 PMCID: PMC7072864 DOI: 10.3390/ijms21041285] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/07/2020] [Accepted: 02/12/2020] [Indexed: 12/13/2022] Open
Abstract
Intracellular calcium is essential for many physiological processes, from neuronal signaling and exocytosis to muscle contraction and bone formation. Ca2+ signaling from the extracellular medium depends both on membrane potential, especially controlled by ion channels selective to K+, and direct permeation of this cation through specialized channels. Calmodulin (CaM), through direct binding to these proteins, participates in setting the membrane potential and the overall permeability to Ca2+. Over the past years many structures of complete channels in complex with CaM at near atomic resolution have been resolved. In combination with mutagenesis-function, structural information of individual domains and functional studies, different mechanisms employed by CaM to control channel gating are starting to be understood at atomic detail. Here, new insights regarding four types of tetrameric channels with six transmembrane (6TM) architecture, Eag1, SK2/SK4, TRPV5/TRPV6 and KCNQ1–5, and its regulation by CaM are described structurally. Different CaM regions, N-lobe, C-lobe and EF3/EF4-linker play prominent signaling roles in different complexes, emerging the realization of crucial non-canonical interactions between CaM and its target that are only evidenced in the full-channel structure. Different mechanisms to control gating are used, including direct and indirect mechanical actuation over the pore, allosteric control, indirect effect through lipid binding, as well as direct plugging of the pore. Although each CaM lobe engages through apparently similar alpha-helices, they do so using different docking strategies. We discuss how this allows selective action of drugs with great therapeutic potential.
Collapse
|
16
|
Piotrowski C, Moretti R, Ihling CH, Haedicke A, Liepold T, Lipstein N, Meiler J, Jahn O, Sinz A. Delineating the Molecular Basis of the Calmodulin‒bMunc13-2 Interaction by Cross-Linking/Mass Spectrometry-Evidence for a Novel CaM Binding Motif in bMunc13-2. Cells 2020; 9:cells9010136. [PMID: 31936129 PMCID: PMC7017353 DOI: 10.3390/cells9010136] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/23/2019] [Accepted: 01/02/2020] [Indexed: 01/20/2023] Open
Abstract
Exploring the interactions between the Ca2+ binding protein calmodulin (CaM) and its target proteins remains a challenging task. Members of the Munc13 protein family play an essential role in short-term synaptic plasticity, modulated via the interaction with CaM at the presynaptic compartment. In this study, we focus on the bMunc13-2 isoform expressed in the brain, as strong changes in synaptic transmission were observed upon its mutagenesis or deletion. The CaM–bMunc13-2 interaction was previously characterized at the molecular level using short bMunc13-2-derived peptides only, revealing a classical 1–5–10 CaM binding motif. Using larger protein constructs, we have now identified for the first time a novel and unique CaM binding site in bMunc13-2 that contains an N-terminal extension of a classical 1–5–10 CaM binding motif. We characterize this motif using a range of biochemical and biophysical methods and highlight its importance for the CaM–bMunc13-2 interaction.
Collapse
Affiliation(s)
- Christine Piotrowski
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, D-06120 Halle/Saale, Germany
| | - Rocco Moretti
- Center for Structural Biology, Department of Chemistry, Vanderbilt University, Nashville, TN 37221, USA
| | - Christian H. Ihling
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, D-06120 Halle/Saale, Germany
| | - André Haedicke
- Biophysical Chemistry, Institute of Chemistry, Martin Luther University Halle-Wittenberg, D-06120 Halle/Saale, Germany
| | - Thomas Liepold
- Proteomics Group, Max Planck Institute of Experimental Medicine, D-37075 Göttingen, Germany
| | - Noa Lipstein
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, D-37075 Göttingen, Germany
| | - Jens Meiler
- Center for Structural Biology, Department of Chemistry, Vanderbilt University, Nashville, TN 37221, USA
| | - Olaf Jahn
- Proteomics Group, Max Planck Institute of Experimental Medicine, D-37075 Göttingen, Germany
- Correspondence: (O.J.); (A.S.); Tel.: +49-551-3899-313 (O.J.); +49-345-5525170 (A.S.)
| | - Andrea Sinz
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, D-06120 Halle/Saale, Germany
- Correspondence: (O.J.); (A.S.); Tel.: +49-551-3899-313 (O.J.); +49-345-5525170 (A.S.)
| |
Collapse
|
17
|
Braitbard M, Schneidman-Duhovny D, Kalisman N. Integrative Structure Modeling: Overview and Assessment. Annu Rev Biochem 2019; 88:113-135. [PMID: 30830798 DOI: 10.1146/annurev-biochem-013118-111429] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Integrative structure modeling computationally combines data from multiple sources of information with the aim of obtaining structural insights that are not revealed by any single approach alone. In the first part of this review, we survey the commonly used sources of structural information and the computational aspects of model building. Throughout the past decade, integrative modeling was applied to various biological systems, with a focus on large protein complexes. Recent progress in the field of cryo-electron microscopy (cryo-EM) has resolved many of these complexes to near-atomic resolution. In the second part of this review, we compare a range of published integrative models with their higher-resolution counterparts with the aim of critically assessing their accuracy. This comparison gives a favorable view of integrative modeling and demonstrates its ability to yield accurate and informative results. We discuss possible roles of integrative modeling in the new era of cryo-EM and highlight future challenges and directions.
Collapse
Affiliation(s)
- Merav Braitbard
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel;
| | - Dina Schneidman-Duhovny
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel; .,School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel;
| | - Nir Kalisman
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel;
| |
Collapse
|
18
|
Rizo J. Mechanism of neurotransmitter release coming into focus. Protein Sci 2018; 27:1364-1391. [PMID: 29893445 DOI: 10.1002/pro.3445] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 05/10/2018] [Indexed: 12/11/2022]
Abstract
Research for three decades and major recent advances have provided crucial insights into how neurotransmitters are released by Ca2+ -triggered synaptic vesicle exocytosis, leading to reconstitution of basic steps that underlie Ca2+ -dependent membrane fusion and yielding a model that assigns defined functions for central components of the release machinery. The soluble N-ethyl maleimide sensitive factor attachment protein receptors (SNAREs) syntaxin-1, SNAP-25, and synaptobrevin-2 form a tight SNARE complex that brings the vesicle and plasma membranes together and is key for membrane fusion. N-ethyl maleimide sensitive factor (NSF) and soluble NSF attachment proteins (SNAPs) disassemble the SNARE complex to recycle the SNAREs for another round of fusion. Munc18-1 and Munc13-1 orchestrate SNARE complex formation in an NSF-SNAP-resistant manner by a mechanism whereby Munc18-1 binds to synaptobrevin and to a self-inhibited "closed" conformation of syntaxin-1, thus forming a template to assemble the SNARE complex, and Munc13-1 facilitates assembly by bridging the vesicle and plasma membranes and catalyzing opening of syntaxin-1. Synaptotagmin-1 functions as the major Ca2+ sensor that triggers release by binding to membrane phospholipids and to the SNAREs, in a tight interplay with complexins that accelerates membrane fusion. Many of these proteins act as both inhibitors and activators of exocytosis, which is critical for the exquisite regulation of neurotransmitter release. It is still unclear how the actions of these various proteins and multiple other components that control release are integrated and, in particular, how they induce membrane fusion, but it can be expected that these fundamental questions can be answered in the near future, building on the extensive knowledge already available.
Collapse
Affiliation(s)
- Josep Rizo
- Departments of Biophysics, Biochemistry and Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, 75390
| |
Collapse
|
19
|
Johnson CN, Potet F, Thompson MK, Kroncke BM, Glazer AM, Voehler MW, Knollmann BC, George AL, Chazin WJ. A Mechanism of Calmodulin Modulation of the Human Cardiac Sodium Channel. Structure 2018; 26:683-694.e3. [PMID: 29606593 PMCID: PMC5932218 DOI: 10.1016/j.str.2018.03.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 01/26/2018] [Accepted: 03/08/2018] [Indexed: 12/26/2022]
Abstract
The function of the human cardiac sodium channel (NaV1.5) is modulated by the Ca2+ sensor calmodulin (CaM), but the underlying mechanism(s) are controversial and poorly defined. CaM has been reported to bind in a Ca2+-dependent manner to two sites in the intracellular loop that is critical for inactivation of NaV1.5 (inactivation gate [IG]). The affinity of CaM for the complete IG was significantly stronger than that of fragments that lacked both complete binding sites. Structural analysis by nuclear magnetic resonance, crystallographic, and scattering approaches revealed that CaM simultaneously engages both IG sites using an extended configuration. Patch-clamp recordings for wild-type and mutant channels with an impaired CaM-IG interaction revealed CaM binding to the IG promotes recovery from inactivation while impeding the kinetics of inactivation. Models of full-length NaV1.5 suggest that CaM binding to the IG directly modulates channel function by destabilizing the inactivated state, which would promote resetting of the IG after channels close.
Collapse
Affiliation(s)
- Christopher N Johnson
- Division of Clinical Pharmacology, Vanderbilt University, Nashville, TN 37240, USA; Department of Biochemistry, Vanderbilt University, Nashville, TN 37205, USA; Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA; Center for Arrhythmia Research and Therapeutics, Vanderbilt University, Nashville, TN 37240, USA.
| | - Franck Potet
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago IL 60611, USA
| | - Matthew K Thompson
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37205, USA; Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Brett M Kroncke
- Division of Clinical Pharmacology, Vanderbilt University, Nashville, TN 37240, USA; Center for Arrhythmia Research and Therapeutics, Vanderbilt University, Nashville, TN 37240, USA
| | - Andrew M Glazer
- Division of Clinical Pharmacology, Vanderbilt University, Nashville, TN 37240, USA; Center for Arrhythmia Research and Therapeutics, Vanderbilt University, Nashville, TN 37240, USA
| | - Markus W Voehler
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA; Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Bjorn C Knollmann
- Division of Clinical Pharmacology, Vanderbilt University, Nashville, TN 37240, USA; Center for Arrhythmia Research and Therapeutics, Vanderbilt University, Nashville, TN 37240, USA
| | - Alfred L George
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago IL 60611, USA
| | - Walter J Chazin
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37205, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA; Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
20
|
Bokhovchuk FM, Bate N, Kovalevskaya NV, Goult BT, Spronk CAEM, Vuister GW. The Structural Basis of Calcium-Dependent Inactivation of the Transient Receptor Potential Vanilloid 5 Channel. Biochemistry 2018; 57:2623-2635. [DOI: 10.1021/acs.biochem.7b01287] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Fedir M. Bokhovchuk
- Department of Molecular and Cell Biology, Leicester Institute of Structural and Chemical Biology, University of Leicester, Lancaster Road, Leicester LE1 9HN, United Kingdom
| | - Neil Bate
- Department of Molecular and Cell Biology, Leicester Institute of Structural and Chemical Biology, University of Leicester, Lancaster Road, Leicester LE1 9HN, United Kingdom
| | - Nadezda V. Kovalevskaya
- Department of Molecular and Cell Biology, Leicester Institute of Structural and Chemical Biology, University of Leicester, Lancaster Road, Leicester LE1 9HN, United Kingdom
| | - Benjamin T. Goult
- Department of Molecular and Cell Biology, Leicester Institute of Structural and Chemical Biology, University of Leicester, Lancaster Road, Leicester LE1 9HN, United Kingdom
| | - Chris A. E. M. Spronk
- Department of Molecular and Cell Biology, Leicester Institute of Structural and Chemical Biology, University of Leicester, Lancaster Road, Leicester LE1 9HN, United Kingdom
- JSC Spronk, Vilnius, Lithuania
| | - Geerten W. Vuister
- Department of Molecular and Cell Biology, Leicester Institute of Structural and Chemical Biology, University of Leicester, Lancaster Road, Leicester LE1 9HN, United Kingdom
| |
Collapse
|
21
|
Bate N, Caves RE, Skinner SP, Goult BT, Basran J, Mitcheson JS, Vuister GW. A Novel Mechanism for Calmodulin-Dependent Inactivation of Transient Receptor Potential Vanilloid 6. Biochemistry 2018; 57:2611-2622. [DOI: 10.1021/acs.biochem.7b01286] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Neil Bate
- Department of Molecular and Cell Biology, Leicester Institute of Structural and Chemical Biology, University of Leicester, Henry Wellcome Building, Lancaster Road, Leicester LE1 9HN, United Kingdom
| | - Rachel E. Caves
- Department of Molecular and Cell Biology, Leicester Institute of Structural and Chemical Biology, University of Leicester, Henry Wellcome Building, Lancaster Road, Leicester LE1 9HN, United Kingdom
| | - Simon P. Skinner
- Department of Molecular and Cell Biology, Leicester Institute of Structural and Chemical Biology, University of Leicester, Henry Wellcome Building, Lancaster Road, Leicester LE1 9HN, United Kingdom
| | - Benjamin T. Goult
- Department of Molecular and Cell Biology, Leicester Institute of Structural and Chemical Biology, University of Leicester, Henry Wellcome Building, Lancaster Road, Leicester LE1 9HN, United Kingdom
| | - Jaswir Basran
- Department of Molecular and Cell Biology, Leicester Institute of Structural and Chemical Biology, University of Leicester, Henry Wellcome Building, Lancaster Road, Leicester LE1 9HN, United Kingdom
| | - John S. Mitcheson
- Department of Molecular and Cell Biology, Leicester Institute of Structural and Chemical Biology, University of Leicester, Henry Wellcome Building, Lancaster Road, Leicester LE1 9HN, United Kingdom
| | - Geerten W. Vuister
- Department of Molecular and Cell Biology, Leicester Institute of Structural and Chemical Biology, University of Leicester, Henry Wellcome Building, Lancaster Road, Leicester LE1 9HN, United Kingdom
| |
Collapse
|
22
|
Villalobo A, Ishida H, Vogel HJ, Berchtold MW. Calmodulin as a protein linker and a regulator of adaptor/scaffold proteins. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1865:507-521. [PMID: 29247668 DOI: 10.1016/j.bbamcr.2017.12.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/07/2017] [Accepted: 12/08/2017] [Indexed: 01/29/2023]
Abstract
Calmodulin (CaM) is a universal regulator for a huge number of proteins in all eukaryotic cells. Best known is its function as a calcium-dependent modulator of the activity of enzymes, such as protein kinases and phosphatases, as well as other signaling proteins including membrane receptors, channels and structural proteins. However, less well known is the fact that CaM can also function as a Ca2+-dependent adaptor protein, either by bridging between different domains of the same protein or by linking two identical or different target proteins together. These activities are possible due to the fact that CaM contains two independently-folded Ca2+ binding lobes that are able to interact differentially and to some degree separately with targets proteins. In addition, CaM can interact with and regulates several proteins that function exclusively as adaptors. This review provides an overview over our present knowledge concerning the structural and functional aspects of the role of CaM as an adaptor protein and as a regulator of known adaptor/scaffold proteins.
Collapse
Affiliation(s)
- Antonio Villalobo
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Arturo Duperier 4, E-28029 Madrid, Spain.
| | - Hiroaki Ishida
- Department of Biological Sciences, University of Calgary, 2500 University Dr. N.W., Calgary, Alberta T2N 1N4, Canada
| | - Hans J Vogel
- Department of Biological Sciences, University of Calgary, 2500 University Dr. N.W., Calgary, Alberta T2N 1N4, Canada.
| | - Martin W Berchtold
- Department of Biology, University of Copenhagen, 13 Universitetsparken, DK-2100 Copenhagen Ø, Denmark.
| |
Collapse
|
23
|
Abstract
AKAP79/150 is essential for coordinating second messenger-responsive enzymes in processes including synaptic long-term depression. Ca2+ directly regulates AKAP79 through its effector calmodulin (CaM), but the molecular basis of this regulation was previously unknown. Here, we report that CaM recognizes a ‘1-4-7-8’ pattern of hydrophobic amino acids starting at Trp79 in AKAP79. Cross-linking coupled to mass spectrometry assisted mapping of the interaction site. Removal of the CaM-binding sequence in AKAP79 prevents formation of a Ca2+-sensitive interface between AKAP79 and calcineurin, and increases resting cellular PKA phosphorylation. We determined a crystal structure of CaM bound to a peptide encompassing its binding site in AKAP79. CaM adopts a highly compact conformation in which its open Ca2+-activated C-lobe and closed N-lobe cooperate to recognize a mixed α/310 helix in AKAP79. The structure guided a bioinformatic screen to identify potential sites in other proteins that may employ similar motifs for interaction with CaM. The A-kinase anchoring protein AKAP79 is regulated by calmodulin (CaM). Here, the authors use crosslinking coupled to mass spectrometry to identify the CaM-binding site in AKAP79 and present the structure of CaM bound to an AKAP79 peptide. The structure shows that CaM adopts a highly compact conformation to interact with a mixed α/310 helix in AKAP79.
Collapse
|
24
|
Wang P, Wang ZY. Metal ions influx is a double edged sword for the pathogenesis of Alzheimer's disease. Ageing Res Rev 2017; 35:265-290. [PMID: 27829171 DOI: 10.1016/j.arr.2016.10.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Revised: 09/08/2016] [Accepted: 10/17/2016] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease (AD) is a common form of dementia in aged people, which is defined by two pathological characteristics: β-amyloid protein (Aβ) deposition and tau hyperphosphorylation. Although the mechanisms of AD development are still being debated, a series of evidence supports the idea that metals, such as copper, iron, zinc, magnesium and aluminium, are involved in the pathogenesis of the disease. In particular, the processes of Aβ deposition in senile plaques (SP) and the inclusion of phosphorylated tau in neurofibrillary tangles (NFTs) are markedly influenced by alterations in the homeostasis of the aforementioned metal ions. Moreover, the mechanisms of oxidative stress, synaptic plasticity, neurotoxicity, autophagy and apoptosis mediate the effects of metal ions-induced the aggregation state of Aβ and phosphorylated tau on AD development. More importantly, imbalance of these mechanisms finally caused cognitive decline in different experiment models. Collectively, reconstructing the signaling network that regulates AD progression by metal ions may provide novel insights for developing chelators specific for metal ions to combat AD.
Collapse
Affiliation(s)
- Pu Wang
- College of Life and Health Sciences, Northeastern University, No. 3-11, Wenhua Road, Shenyang, 110819, PR China.
| | - Zhan-You Wang
- College of Life and Health Sciences, Northeastern University, No. 3-11, Wenhua Road, Shenyang, 110819, PR China.
| |
Collapse
|
25
|
Lipstein N, Göth M, Piotrowski C, Pagel K, Sinz A, Jahn O. Presynaptic Calmodulin targets: lessons from structural proteomics. Expert Rev Proteomics 2017; 14:223-242. [DOI: 10.1080/14789450.2017.1275966] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Noa Lipstein
- Department of Molecular Neurobiology, Max-Planck-Institute of Experimental Medicine, Göttingen, Germany
| | - Melanie Göth
- Institute of Chemistry and Biochemistry, Free University Berlin, Berlin & Fritz Haber Institute of the Max-Planck-Society, Berlin, Germany
| | - Christine Piotrowski
- Department of Pharmaceutical Chemistry & Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Kevin Pagel
- Institute of Chemistry and Biochemistry, Free University Berlin, Berlin & Fritz Haber Institute of the Max-Planck-Society, Berlin, Germany
| | - Andrea Sinz
- Department of Pharmaceutical Chemistry & Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Olaf Jahn
- Proteomics Group, Max-Planck-Institute of Experimental Medicine, Göttingen, Germany
| |
Collapse
|
26
|
Xu J, Camacho M, Xu Y, Esser V, Liu X, Trimbuch T, Pan YZ, Ma C, Tomchick DR, Rosenmund C, Rizo J. Mechanistic insights into neurotransmitter release and presynaptic plasticity from the crystal structure of Munc13-1 C 1C 2BMUN. eLife 2017; 6. [PMID: 28177287 PMCID: PMC5344669 DOI: 10.7554/elife.22567] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 02/07/2017] [Indexed: 12/25/2022] Open
Abstract
Munc13–1 acts as a master regulator of neurotransmitter release, mediating docking-priming of synaptic vesicles and diverse presynaptic plasticity processes. It is unclear how the functions of the multiple domains of Munc13–1 are coordinated. The crystal structure of a Munc13–1 fragment including its C1, C2B and MUN domains (C1C2BMUN) reveals a 19.5 nm-long multi-helical structure with the C1 and C2B domains packed at one end. The similar orientations of the respective diacyglycerol- and Ca2+-binding sites of the C1 and C2B domains suggest that the two domains cooperate in plasma-membrane binding and that activation of Munc13–1 by Ca2+ and diacylglycerol during short-term presynaptic plasticity are closely interrelated. Electrophysiological experiments in mouse neurons support the functional importance of the domain interfaces observed in C1C2BMUN. The structure imposes key constraints for models of neurotransmitter release and suggests that Munc13–1 bridges the vesicle and plasma membranes from the periphery of the membrane-membrane interface. DOI:http://dx.doi.org/10.7554/eLife.22567.001 The human brain contains billions of cells called neurons that communicate with each other using molecules called neurotransmitters. An electrical signal in one neuron triggers the release of neurotransmitters from the cell, which then activate or inhibit electrical signals in neighboring neurons. Inside the cell, neurotransmitters are stored in small bubble-like structures called synaptic vesicles. The vesicles fuse with the membrane that surrounds the cell to release the neurotransmitters. This process must be tightly controlled to ensure that neurotransmitters are released rapidly and at the right time. A protein called Munc13 is a key component of the machinery that regulates the fusion of synaptic vesicles. It helps the synaptic vesicle to dock onto the cell membrane and get ready for fusion. Munc13 is a large protein and contains several different regions, including three domains called C1, C2B and MUN. These three domains control the release of neurotransmitters, but how they do so is poorly understood. Xu, Camacho et al. used a technique called X-ray crystallography to analyse the three-dimensional shape of the part of Munc13 that contains the three domains. The experiments reveal that the MUN domain forms a long rod-like shape with the C1 and C2B domains packed at one end. Several mutations that reduce the ability of the domains to interact with each other altered the release of neurotransmitters from mouse neurons to different extents. These findings suggest that the overall architecture of the region containing the C1, C2B and MUN domains is important for the normal activity of Munc13. The structure revealed by Xu, Camacho et al. sets a framework for understanding how Munc13 controls neurotransmitter release, and thus mediates diverse forms of information processing in the brain. DOI:http://dx.doi.org/10.7554/eLife.22567.002
Collapse
Affiliation(s)
- Junjie Xu
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Marcial Camacho
- Department of Neurophysiology, NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Yibin Xu
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Victoria Esser
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Xiaoxia Liu
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Thorsten Trimbuch
- Department of Neurophysiology, NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Yun-Zu Pan
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Cong Ma
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan, China.,College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Diana R Tomchick
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States
| | - Christian Rosenmund
- Department of Neurophysiology, NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Josep Rizo
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
27
|
Calmodulin interacts with Rab3D and modulates osteoclastic bone resorption. Sci Rep 2016; 6:37963. [PMID: 27897225 PMCID: PMC5126571 DOI: 10.1038/srep37963] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 11/03/2016] [Indexed: 11/09/2022] Open
Abstract
Calmodulin is a highly versatile protein that regulates intracellular calcium homeostasis and is involved in a variety of cellular functions including cardiac excitability, synaptic plasticity and signaling transduction. During osteoclastic bone resorption, calmodulin has been reported to concentrate at the ruffled border membrane of osteoclasts where it is thought to modulate bone resorption activity in response to calcium. Here we report an interaction between calmodulin and Rab3D, a small exocytic GTPase and established regulator osteoclastic bone resorption. Using yeast two-hybrid screening together with a series of protein-protein interaction studies, we show that calmodulin interacts with Rab3D in a calcium dependent manner. Consistently, expression of a calcium insensitive form of calmodulin (i.e. CaM1234) perturbs calmodulin-Rab3D interaction as monitored by bioluminescence resonance energy transfer (BRET) assays. In osteoclasts, calmodulin and Rab3D are constitutively co-expressed during RANKL-induced osteoclast differentiation, co-occupy plasma membrane fractions by differential gradient sedimentation assay and colocalise in the ruffled border as revealed by confocal microscopy. Further, functional blockade of calmodulin-Rab3D interaction by calmidazolium chloride coincides with an attenuation of osteoclastic bone resorption. Our data imply that calmodulin- Rab3D interaction is required for efficient bone resorption by osteoclasts in vitro.
Collapse
|
28
|
Michie KA, Kwan AH, Tung CS, Guss JM, Trewhella J. A Highly Conserved Yet Flexible Linker Is Part of a Polymorphic Protein-Binding Domain in Myosin-Binding Protein C. Structure 2016; 24:2000-2007. [PMID: 27720588 DOI: 10.1016/j.str.2016.08.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 08/08/2016] [Accepted: 08/29/2016] [Indexed: 10/20/2022]
Abstract
The nuclear magnetic resonance (NMR) structure of the tri-helix bundle (THB) of the m-domain plus C2 (ΔmC2) of myosin-binding protein C (MyBP-C) has revealed a highly flexible seven-residue linker between the structured THB and C2. Bioinformatics shows significant patterns of conservation across the THB-linker sequence, with the linker containing a strictly conserved serine in all MyBP-C isoforms. Clinically linked mutations further support the functional significance of the THB-linker region. NMR, small-angle X-ray scattering, and binding studies show the THB-linker plus the first ten residues of C2 undergo dramatic changes when ΔmC2 binds Ca2+-calmodulin, with the linker and C2 N-terminal residues contributing significantly to the affinity. Modeling of all available experimental data indicates that the THB tertiary structure must be disrupted to form the complex. These results are discussed in the context of the THB-linker and the N-terminal residues of C2 forming a polymorphic binding domain that could accommodate multiple binding partners in the dynamic sarcomere.
Collapse
Affiliation(s)
- Katharine A Michie
- School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
| | - Ann H Kwan
- School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
| | - Chang-Shung Tung
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545, USA; Biology Department, University of New Mexico, Albuquerque, NM 87131, USA
| | - J Mitchell Guss
- School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
| | - Jill Trewhella
- School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia.
| |
Collapse
|
29
|
Shukla D, Peck A, Pande VS. Conformational heterogeneity of the calmodulin binding interface. Nat Commun 2016; 7:10910. [PMID: 27040077 PMCID: PMC4822001 DOI: 10.1038/ncomms10910] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 01/28/2016] [Indexed: 01/13/2023] Open
Abstract
Calmodulin (CaM) is a ubiquitous Ca(2+) sensor and a crucial signalling hub in many pathways aberrantly activated in disease. However, the mechanistic basis of its ability to bind diverse signalling molecules including G-protein-coupled receptors, ion channels and kinases remains poorly understood. Here we harness the high resolution of molecular dynamics simulations and the analytical power of Markov state models to dissect the molecular underpinnings of CaM binding diversity. Our computational model indicates that in the absence of Ca(2+), sub-states in the folded ensemble of CaM's C-terminal domain present chemically and sterically distinct topologies that may facilitate conformational selection. Furthermore, we find that local unfolding is off-pathway for the exchange process relevant for peptide binding, in contrast to prior hypotheses that unfolding might account for binding diversity. Finally, our model predicts a novel binding interface that is well-populated in the Ca(2+)-bound regime and, thus, a candidate for pharmacological intervention.
Collapse
Affiliation(s)
- Diwakar Shukla
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
- SIMBIOS NIH Center for Biomedical Computation, Stanford University, Stanford, California 94305, USA
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Ariana Peck
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Vijay S. Pande
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
- SIMBIOS NIH Center for Biomedical Computation, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
30
|
Identification of the Calmodulin-Binding Domains of Fas Death Receptor. PLoS One 2016; 11:e0146493. [PMID: 26735300 PMCID: PMC4703387 DOI: 10.1371/journal.pone.0146493] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 12/17/2015] [Indexed: 01/25/2023] Open
Abstract
The extrinsic apoptotic pathway is initiated by binding of a Fas ligand to the ectodomain of the surface death receptor Fas protein. Subsequently, the intracellular death domain of Fas (FasDD) and that of the Fas-associated protein (FADD) interact to form the core of the death-inducing signaling complex (DISC), a crucial step for activation of caspases that induce cell death. Previous studies have shown that calmodulin (CaM) is recruited into the DISC in cholangiocarcinoma cells and specifically interacts with FasDD to regulate the apoptotic/survival signaling pathway. Inhibition of CaM activity in DISC stimulates apoptosis significantly. We have recently shown that CaM forms a ternary complex with FasDD (2:1 CaM:FasDD). However, the molecular mechanism by which CaM binds to two distinct FasDD motifs is not fully understood. Here, we employed mass spectrometry, nuclear magnetic resonance (NMR), biophysical, and biochemical methods to identify the binding regions of FasDD and provide a molecular basis for the role of CaM in Fas-mediated apoptosis. Proteolytic digestion and mass spectrometry data revealed that peptides spanning residues 209-239 (Fas-Pep1) and 251-288 (Fas-Pep2) constitute the two CaM-binding regions of FasDD. To determine the molecular mechanism of interaction, we have characterized the binding of recombinant/synthetic Fas-Pep1 and Fas-Pep2 peptides with CaM. Our data show that both peptides engage the N- and C-terminal lobes of CaM simultaneously. Binding of Fas-Pep1 to CaM is entropically driven while that of Fas-Pep2 to CaM is enthalpically driven, indicating that a combination of electrostatic and hydrophobic forces contribute to the stabilization of the FasDD-CaM complex. Our data suggest that because Fas-Pep1 and Fas-Pep2 are involved in extensive intermolecular contacts with the death domain of FADD, binding of CaM to these regions may hinder its ability to bind to FADD, thus greatly inhibiting the initiation of apoptotic signaling pathway.
Collapse
|
31
|
Ferrero JJ, Ramírez-Franco J, Martín R, Bartolomé-Martín D, Torres M, Sánchez-Prieto J. Cross-talk between metabotropic glutamate receptor 7 and beta adrenergic receptor signaling at cerebrocortical nerve terminals. Neuropharmacology 2015. [PMID: 26211974 DOI: 10.1016/j.neuropharm.2015.07.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The co-existence of presynaptic G protein coupled receptors, GPCRs, has received little attention, despite the fact that interplay between the signaling pathways activated by such receptors may affect the neurotransmitter release. Using immunocytochemistry and immuhistochemistry we show that mGlu7 and β-adrenergic receptors are co-expressed in a sub-population of cerebrocortical nerve terminals. mGlu7 receptors readily couple to pathways that inhibit glutamate release. We found that when mGlu7 receptors are also coupled to pathways that enhance glutamate release by prolonged exposure to agonist, and β-adrenergic receptors are also activated, a cross-talk between their signaling pathways occurs that affect the overall release response. This interaction is the result of mGlu7 receptors inhibiting the adenylyl cyclase activated by β adrenergic receptors. Thus, blocking Gi/o proteins with pertussis toxin provokes a further increase in release after receptor co-activation which is also observed after activating β-adrenergic receptor signaling pathways downstream of adenylyl cyclase with the cAMP analog Sp8Br or 8pCPT-2-OMe-cAMP (a specific activator of the guanine nucleotide exchange protein directly activated by cAMP, EPAC). Co-activation of mGlu7 and β-adrenergic receptors also enhances PLC-dependent accumulation of IP1 and the translocation of the active zone protein Munc13-1 to the membrane, indicating that release potentiation by these receptors involves the modulation of the release machinery.
Collapse
Affiliation(s)
- José Javier Ferrero
- Departamento de Bioquímica, Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain; Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Hospital Clínico San Carlos, C/Profesor Martín Lagos s/n, Madrid 28040, Spain
| | - Jorge Ramírez-Franco
- Departamento de Bioquímica, Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain
| | - Ricardo Martín
- Departamento de Bioquímica, Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain; Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Hospital Clínico San Carlos, C/Profesor Martín Lagos s/n, Madrid 28040, Spain
| | - David Bartolomé-Martín
- Departamento de Bioquímica, Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain; Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Hospital Clínico San Carlos, C/Profesor Martín Lagos s/n, Madrid 28040, Spain
| | - Magdalena Torres
- Departamento de Bioquímica, Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain; Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Hospital Clínico San Carlos, C/Profesor Martín Lagos s/n, Madrid 28040, Spain
| | - José Sánchez-Prieto
- Departamento de Bioquímica, Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain; Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Hospital Clínico San Carlos, C/Profesor Martín Lagos s/n, Madrid 28040, Spain.
| |
Collapse
|
32
|
Herbst S, Lipstein N, Jahn O, Sinz A. Structural insights into calmodulin/Munc13 interaction. Biol Chem 2015; 395:763-8. [PMID: 24854537 DOI: 10.1515/hsz-2014-0134] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 04/11/2014] [Indexed: 11/15/2022]
Abstract
Munc13 proteins are essential presynaptic regulators that mediate synaptic vesicle priming and play a role in the regulation of neuronal short-term synaptic plasticity. All four Munc13 isoforms share a common domain structure, including a calmodulin (CaM) binding site in their otherwise divergent N-termini. Here, we summarize recent results on the investigation of the CaM/Munc13 interaction. By combining chemical cross-linking, photoaffinity labeling, and mass spectrometry, we showed that all neuronal Munc13 isoforms exhibit similar CaM binding modes. Moreover, we demonstrated that the 1-5-8-26 CaM binding motif discovered in Munc13-1 cannot be induced in the classical CaM target skMLCK, indicating unique features of the Munc13 CaM binding motif.
Collapse
|
33
|
Van Hook MJ, Parmelee CM, Chen M, Cork KM, Curto C, Thoreson WB. Calmodulin enhances ribbon replenishment and shapes filtering of synaptic transmission by cone photoreceptors. ACTA ACUST UNITED AC 2014; 144:357-78. [PMID: 25311636 PMCID: PMC4210432 DOI: 10.1085/jgp.201411229] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
At the first synapse in the vertebrate visual pathway, light-evoked changes in photoreceptor membrane potential alter the rate of glutamate release onto second-order retinal neurons. This process depends on the synaptic ribbon, a specialized structure found at various sensory synapses, to provide a supply of primed vesicles for release. Calcium (Ca(2+)) accelerates the replenishment of vesicles at cone ribbon synapses, but the mechanisms underlying this acceleration and its functional implications for vision are unknown. We studied vesicle replenishment using paired whole-cell recordings of cones and postsynaptic neurons in tiger salamander retinas and found that it involves two kinetic mechanisms, the faster of which was diminished by calmodulin (CaM) inhibitors. We developed an analytical model that can be applied to both conventional and ribbon synapses and showed that vesicle resupply is limited by a simple time constant, τ = 1/(Dρδs), where D is the vesicle diffusion coefficient, δ is the vesicle diameter, ρ is the vesicle density, and s is the probability of vesicle attachment. The combination of electrophysiological measurements, modeling, and total internal reflection fluorescence microscopy of single synaptic vesicles suggested that CaM speeds replenishment by enhancing vesicle attachment to the ribbon. Using electroretinogram and whole-cell recordings of light responses, we found that enhanced replenishment improves the ability of cone synapses to signal darkness after brief flashes of light and enhances the amplitude of responses to higher-frequency stimuli. By accelerating the resupply of vesicles to the ribbon, CaM extends the temporal range of synaptic transmission, allowing cones to transmit higher-frequency visual information to downstream neurons. Thus, the ability of the visual system to encode time-varying stimuli is shaped by the dynamics of vesicle replenishment at photoreceptor synaptic ribbons.
Collapse
Affiliation(s)
- Matthew J Van Hook
- Department of Ophthalmology and Visual Sciences and Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198
| | - Caitlyn M Parmelee
- Department of Mathematics, University of Nebraska-Lincoln, Lincoln, NE 68588
| | - Minghui Chen
- Department of Ophthalmology and Visual Sciences and Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198 Department of Ophthalmology and Visual Sciences and Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198
| | - Karlene M Cork
- Department of Ophthalmology and Visual Sciences and Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198 Department of Ophthalmology and Visual Sciences and Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198
| | - Carina Curto
- Department of Mathematics, University of Nebraska-Lincoln, Lincoln, NE 68588 Department of Mathematics, The Pennsylvania State University, University Park, State College, PA 16802
| | - Wallace B Thoreson
- Department of Ophthalmology and Visual Sciences and Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198 Department of Ophthalmology and Visual Sciences and Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198
| |
Collapse
|
34
|
Pettelkau J, Ihling CH, Frohberg P, van Werven L, Jahn O, Sinz A. Reliable identification of cross-linked products in protein interaction studies by 13C-labeled p-benzoylphenylalanine. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2014; 25:1628-1641. [PMID: 25031183 DOI: 10.1007/s13361-014-0944-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 05/22/2014] [Accepted: 05/26/2014] [Indexed: 06/03/2023]
Abstract
We describe the use of the (13)C-labeled artificial amino acid p-benzoyl-L-phenylalanine (Bpa) to improve the reliability of cross-linked product identification. Our strategy is exemplified for two protein-peptide complexes. These studies indicate that in many cases the identification of a cross-link without additional stable isotope labeling would result in an ambiguous assignment of cross-linked products. The use of a (13)C-labeled photoreactive amino acid is considered to be preferred over the use of deuterated cross-linkers as retention time shifts in reversed phase chromatography can be ruled out. The observation of characteristic fragment ions additionally increases the reliability of cross-linked product assignment. Bpa possesses a broad reactivity towards different amino acids and the derived distance information allows mapping of spatially close amino acids and thus provides more solid structural information of proteins and protein complexes compared to the longer deuterated amine-reactive cross-linkers, which are commonly used for protein 3D-structure analysis and protein-protein interaction studies.
Collapse
Affiliation(s)
- Jens Pettelkau
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin-Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | | | | | | | | | | |
Collapse
|
35
|
Wang X, Boyken SE, Hu J, Xu X, Rimer RP, Shea MA, Shaw AS, Andreotti AH, Huang YH. Calmodulin and PI(3,4,5)P₃ cooperatively bind to the Itk pleckstrin homology domain to promote efficient calcium signaling and IL-17A production. Sci Signal 2014; 7:ra74. [PMID: 25097034 DOI: 10.1126/scisignal.2005147] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Precise regulation of the kinetics and magnitude of Ca(2+) signaling enables this signal to mediate diverse responses, such as cell migration, differentiation, vesicular trafficking, and cell death. We showed that the Ca(2+)-binding protein calmodulin (CaM) acted in a positive feedback loop to potentiate Ca(2+) signaling downstream of the Tec kinase family member Itk. Using NMR (nuclear magnetic resonance), we mapped CaM binding to two loops adjacent to the lipid-binding pocket within the Itk pleckstrin homology (PH) domain. The Itk PH domain bound synergistically to Ca(2+)/CaM and the lipid phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P3], such that binding to Ca(2+)/CaM enhanced the binding to PI(3,4,5)P3 and vice versa. Disruption of CaM binding attenuated Itk recruitment to the membrane and diminished release of Ca(2+) from the endoplasmic reticulum. Moreover, disruption of this feedback loop abrogated Itk-dependent production of the proinflammatory cytokine IL-17A (interleukin-17A) by CD4(+) T cells. Additionally, we found that CaM associated with PH domains from other proteins, indicating that CaM may regulate other PH domain-containing proteins.
Collapse
Affiliation(s)
- Xinxin Wang
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Scott E Boyken
- Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Jiancheng Hu
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Xiaolu Xu
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ryan P Rimer
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Madeline A Shea
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | - Andrey S Shaw
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Amy H Andreotti
- Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Yina H Huang
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA. Department of Pathology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA. Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA.
| |
Collapse
|
36
|
Presequence recognition by the tom40 channel contributes to precursor translocation into the mitochondrial matrix. Mol Cell Biol 2014; 34:3473-85. [PMID: 25002531 DOI: 10.1128/mcb.00433-14] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
More than 70% of mitochondrial proteins utilize N-terminal presequences as targeting signals. Presequence interactions with redundant cytosolic receptor domains of the translocase of the outer mitochondrial membrane (TOM) are well established. However, after the presequence enters the protein-conducting Tom40 channel, the recognition events that occur at the trans side leading up to the engagement of the presequence with inner membrane-bound receptors are less well defined. Using a photoaffinity-labeling approach with modified presequence peptides, we identified Tom40 as a presequence interactor of the TOM complex. Utilizing mass spectrometry, we mapped Tom40's presequence-interacting regions to both sides of the β-barrel. Analysis of a phosphorylation site within one of the presequence-interacting regions revealed altered translocation kinetics along the presequence pathway. Our analyses assess the relation between the identified presequence-binding region of Tom40 and the intermembrane space domain of Tom22. The identified presequence-interacting region of Tom40 is capable of functioning independently of the established trans-acting TOM presequence-binding domain during matrix import.
Collapse
|
37
|
The Ever Changing Moods of Calmodulin: How Structural Plasticity Entails Transductional Adaptability. J Mol Biol 2014; 426:2717-35. [DOI: 10.1016/j.jmb.2014.05.016] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 05/14/2014] [Accepted: 05/16/2014] [Indexed: 11/20/2022]
|
38
|
Vlach J, Samal AB, Saad JS. Solution structure of calmodulin bound to the binding domain of the HIV-1 matrix protein. J Biol Chem 2014; 289:8697-705. [PMID: 24500712 DOI: 10.1074/jbc.m113.543694] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Subcellular distribution of calmodulin (CaM) in human immunodeficiency virus type-1 (HIV-1)-infected cells is distinct from that observed in uninfected cells. CaM co-localizes and interacts with the HIV-1 Gag protein in the cytosol of infected cells. Although it has been shown that binding of Gag to CaM is mediated by the matrix (MA) domain, the structural details of this interaction are not known. We have recently shown that binding of CaM to MA induces a conformational change that triggers myristate exposure, and that the CaM-binding domain of MA is confined to a region spanning residues 8-43 (MA-(8-43)). Here, we present the NMR structure of CaM bound to MA-(8-43). Our data revealed that MA-(8-43), which contains a novel CaM-binding motif, binds to CaM in an antiparallel mode with the N-terminal helix (α1) anchored to the CaM C-terminal lobe, and the C-terminal helix (α2) of MA-(8-43) bound to the N-terminal lobe of CaM. The CaM protein preserves a semiextended conformation. Binding of MA-(8-43) to CaM is mediated by numerous hydrophobic interactions and stabilized by favorable electrostatic contacts. Our structural data are consistent with the findings that CaM induces unfolding of the MA protein to have access to helices α1 and α2. It is noteworthy that several MA residues involved in CaM binding have been previously implicated in membrane binding, envelope incorporation, and particle production. The present findings may ultimately help in identification of the functional role of CaM in HIV-1 replication.
Collapse
Affiliation(s)
- Jiri Vlach
- From the Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | | | | |
Collapse
|
39
|
Herbst S, Maucher D, Schneider M, Ihling CH, Jahn O, Sinz A. Munc13-like skMLCK variants cannot mimic the unique calmodulin binding mode of Munc13 as evidenced by chemical cross-linking and mass spectrometry. PLoS One 2013; 8:e75119. [PMID: 24130683 PMCID: PMC3794949 DOI: 10.1371/journal.pone.0075119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 08/08/2013] [Indexed: 11/18/2022] Open
Abstract
Among the neuronal binding partners of calmodulin (CaM) are Munc13 proteins as essential presynaptic regulators that play a key role in synaptic vesicle priming and are crucial for presynaptic short-term plasticity. Recent NMR structural investigations of a CaM/Munc13-1 peptide complex have revealed an extended structure, which contrasts the compact structures of most classical CaM/target complexes. This unusual binding mode is thought to be related to the presence of an additional hydrophobic anchor residue at position 26 of the CaM binding motif of Munc13-1, resulting in a novel 1-5-8-26 motif. Here, we addressed the question whether the 1-5-8-26 CaM binding motif is a Munc13-related feature or whether it can be induced in other CaM targets by altering the motif's core residues. For this purpose, we chose skeletal muscle myosin light chain kinase (skMLCK) with a classical 1-5-8-14 CaM binding motif and constructed three skMLCK peptide variants mimicking Munc13-1, in which the hydrophobic anchor amino acid at position 14 was moved to position 26. Chemical cross-linking between CaM and skMLCK peptide variants combined with high-resolution mass spectrometry yielded insights into the peptides' binding modes. This structural comparison together with complementary binding data from surface plasmon resonance experiments revealed that skMLCK variants with an artificial 1-5-8-26 motif cannot mimic CaM binding of Munc13-1. Apparently, additional features apart from the spacing of the hydrophobic anchor residues are required to define the functional 1-5-8-26 motif of Munc13-1. We conclude that Munc13 proteins display a unique CaM binding behavior to fulfill their role as efficient presynaptic calcium sensors over broad range of Ca(2+) concentrations.
Collapse
Affiliation(s)
- Sabine Herbst
- Department of Pharmaceutical Chemistry & Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Daniel Maucher
- Department of Pharmaceutical Chemistry & Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Marian Schneider
- Research Group Artificial Binding Proteins, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Christian H. Ihling
- Department of Pharmaceutical Chemistry & Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Olaf Jahn
- Proteomics Group, Max-Planck-Institute of Experimental Medicine, Göttingen, Germany
| | - Andrea Sinz
- Department of Pharmaceutical Chemistry & Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- * E-mail:
| |
Collapse
|
40
|
Structural insights into calmodulin/adenylyl cyclase 8 interaction. Anal Bioanal Chem 2013; 405:9333-42. [PMID: 24071896 DOI: 10.1007/s00216-013-7358-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Revised: 07/22/2013] [Accepted: 09/09/2013] [Indexed: 10/26/2022]
Abstract
Calmodulin (CaM) is a highly conserved intracellular Ca(2+)-binding protein that exerts important functions in many cellular processes. Prominent examples of CaM-regulated proteins are adenylyl cyclases (ACs), which synthesize cAMP as a central second messenger. The interaction of ACs with CaM represents the link between Ca(2+)-signaling and cAMP-signaling pathways. Thereby, different AC isoforms stimulated by CaM, comprise diverse mechanisms of regulation by the Ca(2+) sensor. To extend the structural information about the detailed mechanisms underlying the regulation of AC8 by CaM, we employed an integrated approach combining chemical cross-linking and mass spectrometry with two peptides representing the CaM-binding regions of AC8. These experiments reveal that the structures of CaM/AC8 peptide complexes are similar to that of the CaM/skeletal muscle myosin light chain kinase peptide complex where CaM is collapsed around the target peptide that binds to CaM in an antiparallel orientation. Cross-linking experiments were complemented by investigating the binding of AC8 peptides to CaM thermodynamically with isothermal titration calorimetry. There were no hints on a complex, in which both AC8 peptides bind simultaneously to CaM, refining our current understanding of the interaction between CaM and AC8.
Collapse
|
41
|
Ferrero JJ, Alvarez AM, Ramírez-Franco J, Godino MC, Bartolomé-Martín D, Aguado C, Torres M, Luján R, Ciruela F, Sánchez-Prieto J. β-Adrenergic receptors activate exchange protein directly activated by cAMP (Epac), translocate Munc13-1, and enhance the Rab3A-RIM1α interaction to potentiate glutamate release at cerebrocortical nerve terminals. J Biol Chem 2013; 288:31370-85. [PMID: 24036110 DOI: 10.1074/jbc.m113.463877] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The adenylyl cyclase activator forskolin facilitates synaptic transmission presynaptically via cAMP-dependent protein kinase (PKA). In addition, cAMP also increases glutamate release via PKA-independent mechanisms, although the downstream presynaptic targets remain largely unknown. Here, we describe the isolation of a PKA-independent component of glutamate release in cerebrocortical nerve terminals after blocking Na(+) channels with tetrodotoxin. We found that 8-pCPT-2'-O-Me-cAMP, a specific activator of the exchange protein directly activated by cAMP (Epac), mimicked and occluded forskolin-induced potentiation of glutamate release. This Epac-mediated increase in glutamate release was dependent on phospholipase C, and it increased the hydrolysis of phosphatidylinositol 4,5-bisphosphate. Moreover, the potentiation of glutamate release by Epac was independent of protein kinase C, although it was attenuated by the diacylglycerol-binding site antagonist calphostin C. Epac activation translocated the active zone protein Munc13-1 from soluble to particulate fractions; it increased the association between Rab3A and RIM1α and redistributed synaptic vesicles closer to the presynaptic membrane. Furthermore, these responses were mimicked by the β-adrenergic receptor (βAR) agonist isoproterenol, consistent with the immunoelectron microscopy and immunocytochemical data demonstrating presynaptic expression of βARs in a subset of glutamatergic synapses in the cerebral cortex. Based on these findings, we conclude that βARs couple to a cAMP/Epac/PLC/Munc13/Rab3/RIM-dependent pathway to enhance glutamate release at cerebrocortical nerve terminals.
Collapse
Affiliation(s)
- Jose J Ferrero
- From the Departamento de Bioquímica, Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Hu Z, Tong XJ, Kaplan JM. UNC-13L, UNC-13S, and Tomosyn form a protein code for fast and slow neurotransmitter release in Caenorhabditis elegans. eLife 2013; 2:e00967. [PMID: 23951547 PMCID: PMC3743133 DOI: 10.7554/elife.00967] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 07/10/2013] [Indexed: 11/13/2022] Open
Abstract
Synaptic transmission consists of fast and slow components of neurotransmitter release. Here we show that these components are mediated by distinct exocytic proteins. The Caenorhabditis elegans unc-13 gene is required for SV exocytosis, and encodes long and short isoforms (UNC-13L and S). Fast release was mediated by UNC-13L, whereas slow release required both UNC-13 proteins and was inhibited by Tomosyn. The spatial location of each protein correlated with its effect. Proteins adjacent to the dense projection mediated fast release, while those controlling slow release were more distal or diffuse. Two UNC-13L domains accelerated release. C2A, which binds RIM (a protein associated with calcium channels), anchored UNC-13 at active zones and shortened the latency of release. A calmodulin binding site accelerated release but had little effect on UNC-13’s spatial localization. These results suggest that UNC-13L, UNC-13S, and Tomosyn form a molecular code that dictates the timing of neurotransmitter release. DOI:http://dx.doi.org/10.7554/eLife.00967.001 Neurons communicate with one another at junctions called synapses. When an electrical signal known as an action potential travels along a neuron and arrives at a synapse, the neuron releases a package of transmitter chemicals into the synapse. These chemicals then diffuse across the gap and bind to receptors on a second neuron, conveying the signal to the target neuron. The strength of a synapse depends in part on the number of packages, or vesicles, of transmitter chemicals that are available for release. Most synapses contain multiple populations of vesicles: some that are released within a few milliseconds of the arrival of an action potential, and others that are released more slowly. The vesicles that are released rapidly are found close to sites at which calcium ions enter the neuron, whereas the others are located further from these sites. However, little is known about the molecular basis of the differences between fast and slow vesicle release. Now Hu et al. have studied the proteins involved in these two processes in C. elegans, a nematode worm that is often used in neuroscience because it has a simple nervous system, consisting of just 302 neurons, and a well-characterized genome. Hu et al. showed that the release of synaptic vesicles at the neuromuscular junction between neurons and muscles in C. elegans also has slow and fast components. A long form of UNC-13, which is also found in mammals, promotes fast release of transmitter vesicles. Slow release is mediated by an independent pathway that involves both long and short UNC-13 proteins, as well as a protein called Tomosyn. As in mammals, long UNC-13 is localized to the sites at which calcium ions enter neurons, whereas short UNC-13 is more widely distributed throughout neurons. The work of Hu et al. provides a molecular explanation for how the timing of transmitter release is determined. Because the UNC-13 and Tomosyn proteins are evolutionarily conserved, this mechanism is likely to be present in other animals too. DOI:http://dx.doi.org/10.7554/eLife.00967.002
Collapse
Affiliation(s)
- Zhitao Hu
- Department of Molecular Biology , Massachusetts General Hospital , Boston , United States
| | | | | |
Collapse
|
43
|
The Munc13 proteins differentially regulate readily releasable pool dynamics and calcium-dependent recovery at a central synapse. J Neurosci 2013; 33:8336-51. [PMID: 23658173 DOI: 10.1523/jneurosci.5128-12.2013] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The Munc13 gene family encodes molecules located at the synaptic active zone that regulate the reliability of synapses to encode information over a wide range of frequencies in response to action potentials. In the CNS, proteins of the Munc13 family are critical in regulating neurotransmitter release and synaptic plasticity. Although Munc13-1 is essential for synaptic transmission, it is paradoxical that Munc13-2 and Munc13-3 are functionally dispensable at some synapses, although their loss in other synapses leads to increases in frequency-dependent facilitation. We addressed this issue at the calyx of Held synapse, a giant glutamatergic synapse that we found to express all these Munc13 isoforms. We studied their roles in the regulation of synaptic transmission and their impact on the reliability of information transfer. Through detailed electrophysiological analyses of Munc13-2, Munc13-3, and Munc13-2-3 knock-out and wild-type mice, we report that the combined loss of Munc13-2 and Munc13-3 led to an increase in the rate of calcium-dependent recovery and a change in kinetics of release of the readily releasable pool. Furthermore, viral-mediated overexpression of a dominant-negative form of Munc13-1 at the calyx demonstrated that these effects are Munc13-1 dependent. Quantitative immunohistochemistry using Munc13-fluorescent protein knock-in mice revealed that Munc13-1 is the most highly expressed Munc13 isoform at the calyx and the only one highly colocalized with Bassoon at the active zone. Based on these data, we conclude that Munc13-2 and Munc13-3 isoforms limit the ability of Munc13-1 to regulate calcium-dependent replenishment of readily releasable pool and slow pool to fast pool conversion in central synapses.
Collapse
|
44
|
Persistent posttetanic depression at cerebellar parallel fiber to Purkinje cell synapses. PLoS One 2013; 8:e70277. [PMID: 23922966 PMCID: PMC3726549 DOI: 10.1371/journal.pone.0070277] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 06/20/2013] [Indexed: 01/28/2023] Open
Abstract
Plasticity at the cerebellar parallel fiber to Purkinje cell synapse may underlie information processing and motor learning. In vivo, parallel fibers appear to fire in short high frequency bursts likely to activate sparsely distributed synapses over the Purkinje cell dendritic tree. Here, we report that short parallel fiber tetanic stimulation evokes a ∼7–15% depression which develops over 2 min and lasts for at least 20 min. In contrast to the concomitantly evoked short-term endocannabinoid-mediated depression, this persistent posttetanic depression (PTD) does not exhibit a dependency on the spatial pattern of synapse activation and is not caused by any detectable change in presynaptic calcium signaling. This persistent PTD is however associated with increased paired-pulse facilitation and coefficient of variation of synaptic responses, suggesting that its expression is presynaptic. The chelation of postsynaptic calcium prevents its induction, suggesting that post- to presynaptic (retrograde) signaling is required. We rule out endocannabinoid signaling since the inhibition of type 1 cannabinoid receptors, monoacylglycerol lipase or vanilloid receptor 1, or incubation with anandamide had no detectable effect. The persistent PTD is maximal in pre-adolescent mice, abolished by adrenergic and dopaminergic receptors block, but unaffected by adrenergic and dopaminergic agonists. Our data unveils a novel form of plasticity at parallel fiber synapses: a persistent PTD induced by physiologically relevant input patterns, age-dependent, and strongly modulated by the monoaminergic system. We further provide evidence supporting that the plasticity mechanism involves retrograde signaling and presynaptic diacylglycerol.
Collapse
|
45
|
Dynamic Control of Synaptic Vesicle Replenishment and Short-Term Plasticity by Ca2+-Calmodulin-Munc13-1 Signaling. Neuron 2013; 79:82-96. [DOI: 10.1016/j.neuron.2013.05.011] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2013] [Indexed: 02/02/2023]
|
46
|
Tidow H, Nissen P. Structural diversity of calmodulin binding to its target sites. FEBS J 2013; 280:5551-65. [PMID: 23601118 DOI: 10.1111/febs.12296] [Citation(s) in RCA: 211] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 04/11/2013] [Accepted: 04/16/2013] [Indexed: 11/28/2022]
Abstract
Calmodulin (CaM) is a ubiquitous, highly conserved, eukaryotic protein that binds to and regulates a number of diverse target proteins involved in different functions such as metabolism, muscle contraction, apoptosis, memory, inflammation and the immune response. In this minireview, we analyze the large number of CaM-complex structures deposited in the Protein Data Bank (i.e. crystal and nuclear magnetic resonance structures) to gain insight into the structural diversity of CaM-binding sites and mechanisms, such as those for CaM-activated protein kinases and phosphatases, voltage-gated Ca(2+)-channels and the plasma membrane Ca(2+)-ATPase.
Collapse
Affiliation(s)
- Henning Tidow
- Centre for Membrane Pumps in Cells and Disease - PUMPkin, Aarhus University, Denmark; Department of Molecular Biology and Genetics, Aarhus University, Denmark
| | | |
Collapse
|
47
|
Ferrero JJ, Bartolomé-Martín D, Torres M, Sánchez-Prieto J. Potentiation of mGlu7 receptor-mediated glutamate release at nerve terminals containing N and P/Q type Ca2+ channels. Neuropharmacology 2013; 67:213-22. [DOI: 10.1016/j.neuropharm.2012.10.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 09/18/2012] [Accepted: 10/06/2012] [Indexed: 12/27/2022]
|
48
|
Friedrich R, Gottfried I, Ashery U. Munc13-1 Translocates to the Plasma Membrane in a Doc2B- and Calcium-Dependent Manner. Front Endocrinol (Lausanne) 2013; 4:119. [PMID: 24062723 PMCID: PMC3775473 DOI: 10.3389/fendo.2013.00119] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Accepted: 08/27/2013] [Indexed: 11/13/2022] Open
Abstract
Munc13-1 is a presynaptic protein activated by calcium, calmodulin, and diacylglycerols (DAG) that is known to enhance vesicle priming. Doc2B is another presynaptic protein that translocates to the plasma membrane (PM) upon elevation of internal calcium concentration ([Ca(2+)]i) to the submicromolar range, and increases both spontaneous and asynchronous release in a calcium-dependent manner. We speculated that Doc2B also recruits Munc13-1 to the PM since these two proteins have been shown to interact physiologically and this interaction is enhanced by Ca(2+). However, this calcium-dependent co-translocation has never actually been shown. To examine this possibility, we expressed both proteins tagged to fluorescent proteins in PC12 cells and stimulated the cells to investigate the recruitment hypothesis using imaging techniques. We found that Munc13-1 does indeed translocate to the PM upon elevation in [Ca(2+)]i, but only when co-expressed with Doc2B. Interestingly, Munc13-1 co-translocates at a slower rate than Doc2B. Moreover, while Doc2B dislocates from the PM as soon as the [Ca(2+)]i returns to basal levels, Munc13-1 dislocates at a slower rate and a fraction of it accumulates on the PM. This accumulation is more pronounced under subsequent stimulations, suggesting that Munc13-1 accumulation builds up as some other factors accumulate at the PM. Munc13-1 co-translocation and accumulation was reduced when its mutant Munc13-1(H567K), which is unable to bind DAG, was co-expressed with Doc2B, suggesting that Munc13-1 accumulation depends on DAG levels. These results suggest that Doc2B enables recruitment of Munc13-1 to the PM in a [Ca(2+)]i-dependent manner and offers another possible Munc13-1-regulatory mechanism that is both calcium- and Doc2B-dependent.
Collapse
Affiliation(s)
- Reut Friedrich
- Department of Neurobiology, Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Irit Gottfried
- Department of Neurobiology, Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Uri Ashery
- Department of Neurobiology, Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- *Correspondence: Uri Ashery, Department of Neurobiology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel e-mail:
| |
Collapse
|
49
|
Structural characterization of the interaction of human lactoferrin with calmodulin. PLoS One 2012; 7:e51026. [PMID: 23236421 PMCID: PMC3516504 DOI: 10.1371/journal.pone.0051026] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 10/29/2012] [Indexed: 12/21/2022] Open
Abstract
Lactoferrin (Lf) is an 80 kDa, iron (Fe3+)-binding immunoregulatory glycoprotein secreted into most exocrine fluids, found in high concentrations in colostrum and milk, and released from neutrophil secondary granules at sites of infection and inflammation. In a number of cell types, Lf is internalized through receptor-mediated endocytosis and targeted to the nucleus where it has been demonstrated to act as a transcriptional trans-activator. Here we characterize human Lf’s interaction with calmodulin (CaM), a ubiquitous, 17 kDa regulatory calcium (Ca2+)-binding protein localized in the cytoplasm and nucleus of activated cells. Due to the size of this intermolecular complex (∼100 kDa), TROSY-based NMR techniques were employed to structurally characterize Ca2+-CaM when bound to intact apo-Lf. Both CaM’s backbone amides and the ε-methyl group of key methionine residues were used as probes in chemical shift perturbation and cross-saturation experiments to define the binding interface of apo-Lf on Ca2+-CaM. Unlike the collapsed conformation through which Ca2+-CaM binds the CaM-binding domains of its classical targets, Ca2+-CaM assumes an extended structure when bound to apo-Lf. Apo-Lf appears to interact predominantly with the C-terminal lobe of Ca2+-CaM, enabling the N-terminal lobe to potentially bind another target. Our use of intact apo-Lf has made possible the identification of a secondary interaction interface, removed from CaM’s primary binding domain. Secondary interfaces play a key role in the target’s response to CaM binding, highlighting the importance of studying intact complexes. This solution-based approach can be applied to study other regulatory calcium-binding EF-hand proteins in intact intermolecular complexes.
Collapse
|
50
|
Adaptive regulation maintains posttetanic potentiation at cerebellar granule cell synapses in the absence of calcium-dependent PKC. J Neurosci 2012; 32:13004-9. [PMID: 22993418 DOI: 10.1523/jneurosci.0683-12.2012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Posttetanic potentiation (PTP) is a transient, calcium-dependent increase in the efficacy of synaptic transmission following elevated presynaptic activity. The calcium-dependent protein kinase C (PKC(Ca)) isoforms PKCα and PKCβ mediate PTP at the calyx of Held synapse, with PKCβ contributing significantly more than PKCα. It is not known whether PKC(Ca) isoforms play a conserved role in PTP at other synapses. We examined this question at the parallel fiber → Purkinje cell (PF→PC) synapse, where PKC inhibitors suppress PTP. We found that PTP is preserved when single PKC(Ca) isoforms are knocked out and in PKCα/β double knock-out (dko) mice, even though in the latter all PKC(Ca) isoforms are eliminated from granule cells. However, in contrast to wild-type and single knock-out animals, PTP in PKCα/β dko animals is not suppressed by PKC inhibitors. These results indicate that PKC(Ca) isoforms mediate PTP at the PF→PC synapse in wild-type and single knock-out animals. However, unlike the calyx of Held, at the PF→PC synapse either PKCα or PKCβ alone is sufficient to mediate PTP, and if both isoforms are eliminated a compensatory PKC-independent mechanism preserves the plasticity. These results suggest that a feedback mechanism allows granule cells to maintain the normal properties of short-term synaptic plasticity even when the mechanism that mediates PTP in wild-type mice is eliminated.
Collapse
|