1
|
Liu T, Jin D, Le SB, Chen D, Sebastian M, Riva A, Liu R, Tran DD. Machine Learning-Directed Conversion of Glioblastoma Cells to Dendritic Cell-Like Antigen-Presenting Cells as Cancer Immunotherapy. Cancer Immunol Res 2024; 12:1340-1360. [PMID: 39051633 PMCID: PMC11491168 DOI: 10.1158/2326-6066.cir-23-0721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 02/17/2024] [Accepted: 07/23/2024] [Indexed: 07/27/2024]
Abstract
Immunotherapy has limited efficacy in glioblastoma (GBM) due to the blood-brain barrier and the immunosuppressed or "cold" tumor microenvironment (TME) of GBM, which is dominated by immune-inhibitory cells and depleted of CTL and dendritic cells (DC). Here, we report the development and application of a machine learning precision method to identify cell fate determinants (CFD) that specifically reprogram GBM cells into induced antigen-presenting cells with DC-like functions (iDC-APC). In murine GBM models, iDC-APCs acquired DC-like morphology, regulatory gene expression profile, and functions comparable to natural DCs. Among these acquired functions were phagocytosis, direct presentation of endogenous antigens, and cross-presentation of exogenous antigens. The latter endowed the iDC-APCs with the ability to prime naïve CD8+ CTLs, a hallmark DC function critical for antitumor immunity. Intratumor iDC-APCs reduced tumor growth and improved survival only in immunocompetent animals, which coincided with extensive infiltration of CD4+ T cells and activated CD8+ CTLs in the TME. The reactivated TME synergized with an intratumor soluble PD1 decoy immunotherapy and a DC-based GBM vaccine, resulting in robust killing of highly resistant GBM cells by tumor-specific CD8+ CTLs and significantly extended survival. Lastly, we defined a unique CFD combination specifically for the human GBM to iDC-APC conversion of both glioma stem-like cells and non-stem-like cell GBM cells, confirming the clinical utility of a computationally directed, tumor-specific conversion immunotherapy for GBM and potentially other solid tumors.
Collapse
Affiliation(s)
- Tianyi Liu
- Division of Neuro-Oncology, Departments of Neurological Surgery and Neurology and the USC Brain Tumor Center, University of Southern California Keck School of Medicine, Los Angeles, CA 90033
| | - Dan Jin
- University of Florida College of Medicine, Gainesville, FL 32910
| | - Son B. Le
- Division of Neuro-Oncology, Departments of Neurological Surgery and Neurology and the USC Brain Tumor Center, University of Southern California Keck School of Medicine, Los Angeles, CA 90033
| | - Dongjiang Chen
- Division of Neuro-Oncology, Departments of Neurological Surgery and Neurology and the USC Brain Tumor Center, University of Southern California Keck School of Medicine, Los Angeles, CA 90033
| | - Mathew Sebastian
- University of Florida College of Medicine, Gainesville, FL 32910
| | - Alberto Riva
- University of Florida College of Medicine, Gainesville, FL 32910
| | - Ruixuan Liu
- University of Florida College of Medicine, Gainesville, FL 32910
| | - David D. Tran
- Division of Neuro-Oncology, Departments of Neurological Surgery and Neurology and the USC Brain Tumor Center, University of Southern California Keck School of Medicine, Los Angeles, CA 90033
| |
Collapse
|
2
|
Gress V, Roussy M, Boulianne L, Bilodeau M, Cardin S, El-Hachem N, Lisi V, Khakipoor B, Rouette A, Farah A, Théret L, Aubert L, Fatima F, Audemard É, Thibault P, Bonneil É, Chagraoui J, Laramée L, Gendron P, Jouan L, Jammali S, Paré B, Simpson SM, Tran TH, Duval M, Teira P, Bittencourt H, Santiago R, Barabé F, Sauvageau G, Smith MA, Hébert J, Roux PP, Gruber TA, Lavallée VP, Wilhelm BT, Cellot S. CBFA2T3::GLIS2 pediatric acute megakaryoblastic leukemia is sensitive to BCL-XL inhibition by navitoclax and DT2216. Blood Adv 2024; 8:112-129. [PMID: 37729615 PMCID: PMC10787250 DOI: 10.1182/bloodadvances.2022008899] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 07/25/2023] [Accepted: 09/02/2023] [Indexed: 09/22/2023] Open
Abstract
ABSTRACT Acute megakaryoblastic leukemia (AMKL) is a rare, developmentally restricted, and highly lethal cancer of early childhood. The paucity and hypocellularity (due to myelofibrosis) of primary patient samples hamper the discovery of cell- and genotype-specific treatments. AMKL is driven by mutually exclusive chimeric fusion oncogenes in two-thirds of the cases, with CBFA2T3::GLIS2 (CG2) and NUP98 fusions (NUP98r) representing the highest-fatality subgroups. We established CD34+ cord blood-derived CG2 models (n = 6) that sustain serial transplantation and recapitulate human leukemia regarding immunophenotype, leukemia-initiating cell frequencies, comutational landscape, and gene expression signature, with distinct upregulation of the prosurvival factor B-cell lymphoma 2 (BCL2). Cell membrane proteomic analyses highlighted CG2 surface markers preferentially expressed on leukemic cells compared with CD34+ cells (eg, NCAM1 and CD151). AMKL differentiation block in the mega-erythroid progenitor space was confirmed by single-cell profiling. Although CG2 cells were rather resistant to BCL2 genetic knockdown or selective pharmacological inhibition with venetoclax, they were vulnerable to strategies that target the megakaryocytic prosurvival factor BCL-XL (BCL2L1), including in vitro and in vivo treatment with BCL2/BCL-XL/BCL-W inhibitor navitoclax and DT2216, a selective BCL-XL proteolysis-targeting chimera degrader developed to limit thrombocytopenia in patients. NUP98r AMKL were also sensitive to BCL-XL inhibition but not the NUP98r monocytic leukemia, pointing to a lineage-specific dependency. Navitoclax or DT2216 treatment in combination with low-dose cytarabine further reduced leukemic burden in mice. This work extends the cellular and molecular diversity set of human AMKL models and uncovers BCL-XL as a therapeutic vulnerability in CG2 and NUP98r AMKL.
Collapse
Affiliation(s)
- Verena Gress
- Pediatric Hematology-Oncology Division, Charles-Bruneau Cancer Center, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
- Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Mathieu Roussy
- Pediatric Hematology-Oncology Division, Charles-Bruneau Cancer Center, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
- Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Luc Boulianne
- Pediatric Hematology-Oncology Division, Charles-Bruneau Cancer Center, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
- Department of Pathology, McGill University, Montréal, QC, Canada
| | - Mélanie Bilodeau
- Pediatric Hematology-Oncology Division, Charles-Bruneau Cancer Center, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
| | - Sophie Cardin
- Pediatric Hematology-Oncology Division, Charles-Bruneau Cancer Center, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
| | - Nehme El-Hachem
- Pediatric Hematology-Oncology Division, Charles-Bruneau Cancer Center, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
| | - Véronique Lisi
- Pediatric Hematology-Oncology Division, Charles-Bruneau Cancer Center, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
| | - Banafsheh Khakipoor
- Pediatric Hematology-Oncology Division, Charles-Bruneau Cancer Center, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
| | - Alexandre Rouette
- Molecular Diagnostic Laboratory, Centre Hospitalier Universitaire Sainte-Justine, Montréal, QC, Canada
| | - Azer Farah
- Pediatric Hematology-Oncology Division, Charles-Bruneau Cancer Center, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
| | - Louis Théret
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Léo Aubert
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Furat Fatima
- Pediatric Hematology-Oncology Division, Charles-Bruneau Cancer Center, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
- Department of Pathology, McGill University, Montréal, QC, Canada
| | - Éric Audemard
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Pierre Thibault
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Éric Bonneil
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Jalila Chagraoui
- Molecular Genetics of Stem Cells Laboratory, Institute for Research in Immunology and Cancer, Montréal, Québec, Canada
| | - Louise Laramée
- Pediatric Hematology-Oncology Division, Charles-Bruneau Cancer Center, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
| | - Patrick Gendron
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Loubna Jouan
- Molecular Diagnostic Laboratory, Centre Hospitalier Universitaire Sainte-Justine, Montréal, QC, Canada
| | - Safa Jammali
- Pediatric Hematology-Oncology Division, Charles-Bruneau Cancer Center, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
| | - Bastien Paré
- Pediatric Hematology-Oncology Division, Charles-Bruneau Cancer Center, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
| | - Shawn M Simpson
- Pediatric Hematology-Oncology Division, Charles-Bruneau Cancer Center, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
| | - Thai Hoa Tran
- Pediatric Hematology-Oncology Division, Charles-Bruneau Cancer Center, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
- Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Michel Duval
- Pediatric Hematology-Oncology Division, Charles-Bruneau Cancer Center, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
- Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Pierre Teira
- Pediatric Hematology-Oncology Division, Charles-Bruneau Cancer Center, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
- Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Henrique Bittencourt
- Pediatric Hematology-Oncology Division, Charles-Bruneau Cancer Center, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
- Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Raoul Santiago
- Division of Hematology-Oncology, Centre Hospitalier Universitaire de Québec-Université Laval, Québec City, QC, Canada
- Centre de recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec City, QC, Canada
| | - Frédéric Barabé
- Centre de recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec City, QC, Canada
- Department of Medicine, Faculty of Medicine, Université Laval, Québec City, QC, Canada
| | - Guy Sauvageau
- Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
- Molecular Genetics of Stem Cells Laboratory, Institute for Research in Immunology and Cancer, Montréal, Québec, Canada
- Division of Hematology, Maisonneuve-Rosemont Hospital, Montréal, QC, Canada
| | - Martin A Smith
- Pediatric Hematology-Oncology Division, Charles-Bruneau Cancer Center, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Josée Hébert
- Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
- Division of Hematology-Oncology and Quebec Leukemia Cell Bank, Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
| | - Philippe P Roux
- Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
- Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Tanja A Gruber
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA
| | - Vincent-Philippe Lavallée
- Pediatric Hematology-Oncology Division, Charles-Bruneau Cancer Center, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
- Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Brian T Wilhelm
- Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Sonia Cellot
- Pediatric Hematology-Oncology Division, Charles-Bruneau Cancer Center, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
- Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
3
|
Neault M, Lebert-Ghali CÉ, Fournier M, Capdevielle C, Garfinkle EAR, Obermayer A, Cotton A, Boulay K, Sawchyn C, St-Amand S, Nguyen KH, Assaf B, Mercier FE, Delisle JS, Drobetsky EA, Hulea L, Shaw TI, Zuber J, Gruber TA, Melichar HJ, Mallette FA. CBFA2T3-GLIS2-dependent pediatric acute megakaryoblastic leukemia is driven by GLIS2 and sensitive to navitoclax. Cell Rep 2023; 42:113084. [PMID: 37716355 DOI: 10.1016/j.celrep.2023.113084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 07/11/2023] [Accepted: 08/18/2023] [Indexed: 09/18/2023] Open
Abstract
Pediatric acute megakaryoblastic leukemia (AMKL) is an aggressive blood cancer associated with poor therapeutic response and high mortality. Here we describe the development of CBFA2T3-GLIS2-driven mouse models of AMKL that recapitulate the phenotypic and transcriptional signatures of the human disease. We show that an activating Ras mutation that occurs in human AMKL increases the penetrance and decreases the latency of CBF2AT3-GLIS2-driven AMKL. CBFA2T3-GLIS2 and GLIS2 modulate similar transcriptional networks. We identify the dominant oncogenic properties of GLIS2 that trigger AMKL in cooperation with oncogenic Ras. We find that both CBFA2T3-GLIS2 and GLIS2 alter the expression of a number of BH3-only proteins, causing AMKL cell sensitivity to the BCL2 inhibitor navitoclax both in vitro and in vivo, suggesting a potential therapeutic option for pediatric patients suffering from CBFA2T3-GLIS2-driven AMKL.
Collapse
Affiliation(s)
- Mathieu Neault
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Centre, Montréal, QC, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada
| | - Charles-Étienne Lebert-Ghali
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Centre, Montréal, QC, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada
| | - Marilaine Fournier
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Centre, Montréal, QC, Canada
| | - Caroline Capdevielle
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Centre, Montréal, QC, Canada; Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC, Canada
| | - Elizabeth A R Garfinkle
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Alyssa Obermayer
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | | | - Karine Boulay
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Centre, Montréal, QC, Canada; Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC, Canada
| | - Christina Sawchyn
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Centre, Montréal, QC, Canada; Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC, Canada
| | - Sarah St-Amand
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Centre, Montréal, QC, Canada; Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC, Canada
| | - Kamy H Nguyen
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Centre, Montréal, QC, Canada
| | - Béatrice Assaf
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Centre, Montréal, QC, Canada
| | | | - Jean-Sébastien Delisle
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Centre, Montréal, QC, Canada; Département de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Elliot A Drobetsky
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Centre, Montréal, QC, Canada; Département de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Laura Hulea
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Centre, Montréal, QC, Canada; Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC, Canada; Département de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Timothy I Shaw
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Johannes Zuber
- Research Institute of Molecular Pathology, Vienna, Austria
| | - Tanja A Gruber
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Heather J Melichar
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Centre, Montréal, QC, Canada; Département de Médecine, Université de Montréal, Montréal, QC, Canada.
| | - Frédérick A Mallette
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Centre, Montréal, QC, Canada; Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC, Canada; Département de Médecine, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
4
|
Kugler E, Madiwale S, Yong D, Thoms JAI, Birger Y, Sykes DB, Schmoellerl J, Drakul A, Priebe V, Yassin M, Aqaqe N, Rein A, Fishman H, Geron I, Chen CW, Raught B, Liu Q, Ogana H, Liedke E, Bourquin JP, Zuber J, Milyavsky M, Pimanda J, Privé GG, Izraeli S. The NCOR-HDAC3 co-repressive complex modulates the leukemogenic potential of the transcription factor ERG. Nat Commun 2023; 14:5871. [PMID: 37735473 PMCID: PMC10514085 DOI: 10.1038/s41467-023-41067-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 08/16/2023] [Indexed: 09/23/2023] Open
Abstract
The ERG (ETS-related gene) transcription factor is linked to various types of cancer, including leukemia. However, the specific ERG domains and co-factors contributing to leukemogenesis are poorly understood. Drug targeting a transcription factor such as ERG is challenging. Our study reveals the critical role of a conserved amino acid, proline, at position 199, located at the 3' end of the PNT (pointed) domain, in ERG's ability to induce leukemia. P199 is necessary for ERG to promote self-renewal, prevent myeloid differentiation in hematopoietic progenitor cells, and initiate leukemia in mouse models. Here we show that P199 facilitates ERG's interaction with the NCoR-HDAC3 co-repressor complex. Inhibiting HDAC3 reduces the growth of ERG-dependent leukemic and prostate cancer cells, indicating that the interaction between ERG and the NCoR-HDAC3 co-repressor complex is crucial for its oncogenic activity. Thus, targeting this interaction may offer a potential therapeutic intervention.
Collapse
Affiliation(s)
- Eitan Kugler
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Institute of Hematology, Davidoff Cancer Center, Rabin Medical Center, Petah Tikva, Israel
| | - Shreyas Madiwale
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Rina Zaizov Pediatric Hematology and Oncology Division Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | - Darren Yong
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Julie A I Thoms
- Adult Cancer Program, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
- School of Biomedical Sciences, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Yehudit Birger
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Rina Zaizov Pediatric Hematology and Oncology Division Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | - David B Sykes
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA & Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Johannes Schmoellerl
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Aneta Drakul
- Division of Pediatric Oncology, and Children Research Center, University Children's Hospital, Zurich, Switzerland
| | - Valdemar Priebe
- Division of Pediatric Oncology, and Children Research Center, University Children's Hospital, Zurich, Switzerland
| | - Muhammad Yassin
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nasma Aqaqe
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Avigail Rein
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Rina Zaizov Pediatric Hematology and Oncology Division Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | - Hila Fishman
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Rina Zaizov Pediatric Hematology and Oncology Division Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | - Ifat Geron
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Rina Zaizov Pediatric Hematology and Oncology Division Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | - Chun-Wei Chen
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Brian Raught
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Qiao Liu
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Heather Ogana
- Department of Pediatrics, Division of Hematology and Oncology, Children's Hospital Los Angeles, University of Southern California, Los Angeles, CA, USA
| | - Elisabeth Liedke
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Jean-Pierre Bourquin
- Division of Pediatric Oncology, and Children Research Center, University Children's Hospital, Zurich, Switzerland
| | - Johannes Zuber
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
- Medical University of Vienna, Vienna, Austria
| | - Michael Milyavsky
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - John Pimanda
- Adult Cancer Program, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
- School of Biomedical Sciences, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Gilbert G Privé
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada.
| | - Shai Izraeli
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
- The Rina Zaizov Pediatric Hematology and Oncology Division Schneider Children's Medical Center of Israel, Petach Tikva, Israel.
| |
Collapse
|
5
|
Ishii K, Cortese M, Leng X, Shokhirev MN, Asahina K. A neurogenetic mechanism of experience-dependent suppression of aggression. SCIENCE ADVANCES 2022; 8:eabg3203. [PMID: 36070378 PMCID: PMC9451153 DOI: 10.1126/sciadv.abg3203] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Aggression is an ethologically important social behavior, but excessive aggression can be detrimental to fitness. Social experiences among conspecific individuals reduce aggression in many species, the mechanism of which is largely unknown. We found that loss-of-function mutation of nervy (nvy), a Drosophila homolog of vertebrate myeloid translocation genes (MTGs), increased aggressiveness only in socially experienced flies and that this could be reversed by neuronal expression of human MTGs. A subpopulation of octopaminergic/tyraminergic neurons labeled by nvy was specifically required for such social experience-dependent suppression of aggression, in both males and females. Cell type-specific transcriptomic analysis of these neurons revealed aggression-controlling genes that are likely downstream of nvy. Our results illustrate both genetic and neuronal mechanisms by which the nervous system suppresses aggression in a social experience-dependent manner, a poorly understood process that is considered important for maintaining the fitness of animals.
Collapse
Affiliation(s)
- Kenichi Ishii
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Matteo Cortese
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Xubo Leng
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
- Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA, USA
| | - Maxim N. Shokhirev
- Razavi Newman Integrative Genomics and Bioinformatics Core, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Kenta Asahina
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
6
|
Li J, Shen Z, Wang Z, Chao H, Xu Y, Zeng Z, Bian X, Zhang J, Pan J, Miao W, Wu W, Yao L, Chen S, Wen L. CTCF: A novel fusion partner of ETO2 in a multiple relapsed acute myeloid leukemia patient. J Leukoc Biol 2021; 111:981-987. [PMID: 34622967 DOI: 10.1002/jlb.2a0720-441rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
ETO2 is a nuclear co-repressor, which plays a critical role in the regulation of the cell cycle, self-renewal capacity, and differentiation of hematopoietic progenitor cells. We identified novel fusion transcripts involving ETO2 and CTCF by RNA-seq in a multiple relapsed AML case. The CTCF-ETO2 and ETO2-CTCF chimeric genes were validated by RT-PCR and Sanger sequencing. In addition, both transcripts apparently promoted cell proliferation via JAK/STAT3 pathway that is sensitive to STAT3 inhibitors. The novel fusions may have prognostic value and pathogenic mechanisms in acute myeloid leukemia.
Collapse
Affiliation(s)
- Jiao Li
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, P. R. China.,Hematology Department, Yixing People's Hospital of Jiangsu Province, Yixing, Wuxi, P. R. China
| | - Zhen Shen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, P. R. China
| | - Zheng Wang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, P. R. China.,Suzhou Jsuniwell Medical Laboratory, Suzhou, P. R. China
| | - Hongying Chao
- Affiliated Changzhou Second Hospital of Nanjing Medical University, Changzhou, P. R. China
| | - Yi Xu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, P. R. China
| | - Zhao Zeng
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, P. R. China
| | - Xiaosen Bian
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, P. R. China
| | - Jun Zhang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, P. R. China
| | - Jinlan Pan
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, P. R. China
| | - Weiwei Miao
- Changshu No.1 People's Hospital, Suzhou, P. R. China
| | - Wenzhong Wu
- Hematology Department, Yixing People's Hospital of Jiangsu Province, Yixing, Wuxi, P. R. China
| | - Li Yao
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, P. R. China
| | - Suning Chen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, P. R. China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, P. R. China
| | - Lijun Wen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, P. R. China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, P. R. China
| |
Collapse
|
7
|
Abstract
Acute myeloid leukemia (AML) is a clinically, morphologically, and genetically heterogeneous disorder. Like many malignancies, the genomic landscape of pediatric AML has been mapped recently through sequencing of large cohorts of patients. Much has been learned about the biology of AML through studies of specific recurrent genetic lesions. Further, genetic lesions have been linked to specific clinical features, response to therapy, and outcome, leading to improvements in risk stratification. Lastly, targeted therapeutic approaches have been developed for the treatment of specific genetic lesions, some of which are already having a positive impact on outcomes. While the advances made based on the discoveries of sequencing studies are significant, much work is left. The biologic, clinical, and prognostic impact of a number of genetic lesions, including several seemingly unique to pediatric patients, remains undefined. While targeted approaches are being explored, for most, the efficacy and tolerability when incorporated into standard therapy is yet to be determined. Furthermore, the challenge of how to study small subpopulations with rare genetic lesions in an already rare disease will have to be considered. In all, while questions and challenges remain, precisely defining the genomic landscape of AML, holds great promise for ultimately leading to improved outcomes for affected patients.
Collapse
Affiliation(s)
- Shannon E Conneely
- Division of Pediatric Hematology/Oncology, Texas Children's Cancer Center, Baylor College of Medicine, 1102 Bates Avenue, Feigin Tower, Suite 1025, Houston, TX, 77030, USA
| | - Rachel E Rau
- Division of Pediatric Hematology/Oncology, Texas Children's Cancer Center, Baylor College of Medicine, 1102 Bates Avenue, Feigin Tower, Suite 1025, Houston, TX, 77030, USA.
| |
Collapse
|
8
|
Steinauer N, Guo C, Zhang J. The transcriptional corepressor CBFA2T3 inhibits all- trans-retinoic acid-induced myeloid gene expression and differentiation in acute myeloid leukemia. J Biol Chem 2020; 295:8887-8900. [PMID: 32434928 PMCID: PMC7335779 DOI: 10.1074/jbc.ra120.013042] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/17/2020] [Indexed: 01/10/2023] Open
Abstract
CBFA2/RUNX1 partner transcriptional co-repressor 3 (CBFA2T3, also known as MTG16 or ETO2) is a myeloid translocation gene family protein that functions as a master transcriptional corepressor in hematopoiesis. Recently, it has been shown that CBFA2T3 maintains leukemia stem cell gene expression and promotes relapse in acute myeloid leukemia (AML). However, a role for CBFA2T3 in myeloid differentiation of AML has not been reported. Here, we show that CBFA2T3 represses retinoic acid receptor (RAR) target gene expression and inhibits all-trans-retinoic acid (ATRA)-induced myeloid differentiation of AML cells. ChIP-Seq revealed that CBFA2T3 targets the RARα/RXRα cistrome in U937 AML cells, predominantly at myeloid-specific enhancers associated with terminal differentiation. CRISPR/Cas9-mediated abrogation of CBFA2T3 resulted in spontaneous and ATRA-induced activation of myeloid-specific genes in a manner correlated with myeloid differentiation. Importantly, these effects were reversed by CBFA2T3 re-expression. Mechanistic studies showed that CBFA2T3 inhibits RAR target gene transcription by acting at an early step to regulate histone acetyltransferase recruitment, histone acetylation, and chromatin accessibility at RARα target sites, independently of the downstream, RAR-mediated steps of transcription. Finally, we validated the inhibitory effect of CBFA2T3 on RAR in multiple AML subtypes and patient samples. To our knowledge, this is the first study to show that CBFA2T3 down-regulation is both necessary and sufficient for enhancing ATRA-induced myeloid gene expression and differentiation of AML cells. Our findings suggest that CBFA2T3 can serve as a potential target for enhancing AML responsiveness to ATRA differentiation therapies.
Collapse
Affiliation(s)
- Nickolas Steinauer
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Chun Guo
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Jinsong Zhang
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, Missouri, USA.
| |
Collapse
|
9
|
Jetten AM. Emerging Roles of GLI-Similar Krüppel-like Zinc Finger Transcription Factors in Leukemia and Other Cancers. Trends Cancer 2019; 5:547-557. [PMID: 31474360 DOI: 10.1016/j.trecan.2019.07.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/15/2019] [Accepted: 07/17/2019] [Indexed: 01/22/2023]
Abstract
GLI-similar 1-3 (GLIS1-3), a subfamily of Krüppel-like zinc finger transcription factors, function as key regulators of several biological processes important to oncogenesis, including control of cell proliferation, differentiation, self-renewal, and epithelial-mesenchymal transition. This review provides a short overview of the critical roles genetic changes in GLIS1-3 play in the development of several malignancies. This includes intrachromosomal translocations involving GLIS2 and ETO2/CBFA2T3 in the development of pediatric non-Down's syndrome (DS), acute megakaryoblastic leukemia (AMKL), a malignancy with poor prognosis, and an association of interchromosomal translocations between GLIS3, GLIS1, and PAX8, and between GLIS3 and CLPTM1L with hyalinizing trabecular tumors (HTTs) and fibrolamellar hepatocellular carcinoma (FHCC), respectively. Targeting upstream signaling pathways that regulate GLIS signaling may offer new therapeutic strategies in the management of cancer.
Collapse
Affiliation(s)
- Anton M Jetten
- Cell Biology Section, Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, 111 Alexander Drive, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
10
|
Tracey LJ, Brooke-Bisschop T, Jansen PWTC, Campos EI, Vermeulen M, Justice MJ. The Pluripotency Regulator PRDM14 Requires Hematopoietic Regulator CBFA2T3 to Initiate Leukemia in Mice. Mol Cancer Res 2019; 17:1468-1479. [PMID: 31015254 DOI: 10.1158/1541-7786.mcr-18-1327] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/07/2019] [Accepted: 04/19/2019] [Indexed: 12/20/2022]
Abstract
PR domain-containing 14 (Prdm14) is a pluripotency regulator central to embryonic stem cell identity and primordial germ cell specification. Genomic regions containing PRDM14 are often amplified leading to misexpression in human cancer. Prdm14 expression in mouse hematopoietic stem cells (HSC) leads to progenitor cell expansion prior to the development of T-cell acute lymphoblastic leukemia (T-ALL), consistent with PRDM14's role in cancer initiation. Here, we demonstrate mechanistic insight into PRDM14-driven leukemias in vivo. Mass spectrometry revealed novel PRDM14-protein interactions including histone H1, RNA-binding proteins, and the master hematopoietic regulator CBFA2T3. In mouse leukemic cells, CBFA2T3 and PRDM14 associate independently of the related ETO family member CBFA2T2, PRDM14's primary protein partner in pluripotent cells. CBFA2T3 plays crucial roles in HSC self-renewal and lineage commitment, and participates in oncogenic translocations in acute myeloid leukemia. These results suggest a model whereby PRDM14 recruits CBFA2T3 to DNA, leading to gene misregulation causing progenitor cell expansion and lineage perturbations preceding T-ALL development. Strikingly, Prdm14-induced T-ALL does not occur in mice deficient for Cbfa2t3, demonstrating that Cbfa2t3 is required for leukemogenesis. Moreover, T-ALL develops in Cbfa2t3 heterozygotes with a significantly longer latency, suggesting that PRDM14-associated T-ALL is sensitive to Cbfa2t3 levels. Our study highlights how an oncogenic protein uses a native protein in progenitor cells to initiate leukemia, providing insight into PRDM14-driven oncogenesis in other cell types. IMPLICATIONS: The pluripotency regulator PRDM14 requires the master hematopoietic regulator CBFA2T3 to initiate leukemia in progenitor cells, demonstrating an oncogenic role for CBFA2T3 and providing an avenue for targeting cancer-initiating cells.
Collapse
Affiliation(s)
- Lauren J Tracey
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.,Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Travis Brooke-Bisschop
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Pascal W T C Jansen
- Faculty of Science, Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Eric I Campos
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.,Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Michiel Vermeulen
- Faculty of Science, Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Monica J Justice
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada. .,Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
11
|
Masetti R, Guidi V, Ronchini L, Bertuccio NS, Locatelli F, Pession A. The changing scenario of non-Down syndrome acute megakaryoblastic leukemia in children. Crit Rev Oncol Hematol 2019; 138:132-138. [PMID: 31092368 DOI: 10.1016/j.critrevonc.2019.04.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/07/2019] [Accepted: 04/09/2019] [Indexed: 01/30/2023] Open
Abstract
Pediatric non-Down-syndrome acute megakaryoblastic leukemia (non-DS-AMKL) is a heterogeneous subtype of leukemia that has historically been associated with poor prognosis. Until the advent of large-scale genomic sequencing, the management of patients with non-DS-AMKL was very difficult due to the absence of reliable biological prognostic markers. The sequencing of large cohort of pediatric non-DS-AMKL samples led to the discovery of novel genetic aberrations, including high-frequency fusions, such as CBFA2T3-GLIS2 and NUP98-KDM5 A, as well as less frequent aberrations, such as HOX rearrangements. These new insights into the genetic landscape of pediatric non-DS-AMKL has allowed refining the risk-group stratification, leading to important changes in the prognostic scenario of these patients. This review summarizes the most important molecular pathogenic mechanisms of pediatric non-DS-AMKL. A critical discussion on how novel genetic abnormalities have refined the risk profile assessment and changed the management of these patients in clinical practice is also provided.
Collapse
Affiliation(s)
- Riccardo Masetti
- Department of Pediatrics, "Lalla Seràgnoli", Hematology-Oncology Unit, University of Bologna, Bologna, Italy
| | - Vanessa Guidi
- Department of Pediatrics, "Lalla Seràgnoli", Hematology-Oncology Unit, University of Bologna, Bologna, Italy.
| | - Laura Ronchini
- Department of Pediatrics, "Lalla Seràgnoli", Hematology-Oncology Unit, University of Bologna, Bologna, Italy
| | - Nicola Salvatore Bertuccio
- Department of Pediatrics, "Lalla Seràgnoli", Hematology-Oncology Unit, University of Bologna, Bologna, Italy
| | - Franco Locatelli
- Department of Pediatric Hematology-Oncology and Cell and Gene Therapy, IRCCS Ospedale Pediatrico Bambino Gesù, Sapienza University of Rome, Rome, Italy
| | - Andrea Pession
- Department of Pediatrics, "Lalla Seràgnoli", Hematology-Oncology Unit, University of Bologna, Bologna, Italy
| |
Collapse
|
12
|
Masetti R, Bertuccio SN, Pession A, Locatelli F. CBFA2T3-GLIS2-positive acute myeloid leukaemia. A peculiar paediatric entity. Br J Haematol 2018; 184:337-347. [PMID: 30592296 PMCID: PMC6590351 DOI: 10.1111/bjh.15725] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The scenario of paediatric acute myeloid leukaemia (AML), particularly non‐Down syndrome acute megakaryoblastic leukaemia (non‐DS‐AMKL), has been recently revolutionized by the advent of large‐scale, genomic sequencing technologies. In this changing landscape, a significantly relevant discovery has been represented by the identification of the CBFA2T3‐GLIS2 fusion gene, which is the result of a cryptic inversion of chromosome 16. It is the most frequent chimeric oncogene identified to date in non‐DS‐AMKL, although it seems not to be exclusively restricted to the French‐American‐British M7 subgroup. The CBFA2T3‐GLIS2 fusion gene characterizes a subtype of leukaemia that is specific to paediatrics, having never been identified in adults. It characterizes an extremely aggressive leukaemia, as the presence of this fusion is associated with a grim outcome in almost all of the case series reported, with overall survival rates ranging between 15% and 30%. Although the molecular basis that underlies this leukaemia subtype is still far from being completely elucidated, unique functional properties induced by CBFA2T3‐GLIS2 in the leukaemogenesis driving process have been recently identified. We here review the peculiarities of CBFA2T3‐GLIS2‐positive AML, describing its intriguing clinical and biological behaviour and providing some challenging targeting opportunities.
Collapse
Affiliation(s)
- Riccardo Masetti
- Department of Paediatrics, "Lalla Seràgnoli", Haematology-Oncology Unit, University of Bologna, Bologna, Italy
| | - Salvatore N Bertuccio
- Department of Paediatrics, "Lalla Seràgnoli", Haematology-Oncology Unit, University of Bologna, Bologna, Italy
| | - Andrea Pession
- Department of Paediatrics, "Lalla Seràgnoli", Haematology-Oncology Unit, University of Bologna, Bologna, Italy
| | - Franco Locatelli
- Department of Paediatric Haematology-Oncology and Cell and Gene Therapy, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
13
|
Lopez CK, Mercher T. [Pediatric de novo acute megakaryoblastic leukemia: an affair of complexes]. Med Sci (Paris) 2018; 34:954-962. [PMID: 30526836 DOI: 10.1051/medsci/2018237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Pediatric acute megakaryoblastic leukemia (AMKL) are generally associated with poor prognosis and the expression of fusion oncogenes involving transcriptional regulators. Recent results indicate that the ETO2-GLIS2 fusion, associated with 25-30 % of pediatric AMKL, binds and alters the activity of regulatory regions of gene expression, called "enhancers", resulting in the deregulation of GATA and ETS factors essential for the development of hematopoietic stem cells. An imbalance in GATA/ETS factor activity is also found in other AMKL subgroups. This review addresses the transcriptional bases of transformation in pediatric AMKL and therapeutic perspectives.
Collapse
Affiliation(s)
- Cécile K Lopez
- Inserm U1170, Institut Gustave Roussy, Pavillon recherche 2, 39 rue Camille Desmoulins, 94800 Villejuif, France
| | - Thomas Mercher
- Inserm U1170, Institut Gustave Roussy, Pavillon recherche 2, 39 rue Camille Desmoulins, 94800 Villejuif, France
| |
Collapse
|
14
|
Coppin E, Florentin J, Vasamsetti SB, Arunkumar A, Sembrat J, Rojas M, Dutta P. Splenic hematopoietic stem cells display a pre-activated phenotype. Immunol Cell Biol 2018; 96:10.1111/imcb.12035. [PMID: 29526053 PMCID: PMC6379147 DOI: 10.1111/imcb.12035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 02/16/2018] [Accepted: 03/05/2018] [Indexed: 12/12/2022]
Abstract
Splenic hematopoiesis is crucial to the pathogenesis of diseases including myocardial infarction and atherosclerosis. The spleen acts as a reservoir of myeloid cells, which are quickly expelled out in response to acute inflammation. In contrast to the well-defined bone marrow hematopoiesis, the cellular and molecular components sustaining splenic hematopoiesis are poorly understood. Surprisingly, we found that, unlike quiescent bone marrow hematopoietic stem cells (HSC), most of splenic HSC are in the G1 phase in C57BL/6 mice. Moreover, splenic HSC were enriched for genes involved in G0-G1 transition and expressed lower levels of genes responsible for G1-S transition. These data indicate that, at steady state, splenic HSC are pre-activated, which may expedite their cell cycle entry in emergency conditions. Consistently, in the acute phase of septic shock induced by LPS injection, splenic HSC entered the S-G2-M phase, whereas bone marrow HSC did not. Mobilization and transplantation experiments displayed that bone marrow HSC, once in the spleen, acquired cell cycle status similar to splenic HSC, strongly suggesting that the splenic microenvironment plays an important role in HSC pre-activation. In addition, we found that myeloid translocation gene 16 (Mtg16) deficiency in C57BL/6 mice resulted in significantly increased S-G2-M entry of splenic but not bone marrow HSC, suggesting that Mtg16 is an intrinsic negative regulator of G1-S transition in splenic HSC. Altogether, this study demonstrates that compared to bone marrow, splenic HSC are in a pre-activated state, which is driven by extracellular signals provided by splenic microenvironment and HSC intrinsic factor Mtg16.
Collapse
Affiliation(s)
- Emilie Coppin
- Division of Cardiology, Department of Medicine, Vascular Medicine Institute, University of Pittsburgh Medical Center, BST 1720.1, 200 Lothrop Street, Pittsburgh, PA 15213, USA
| | - Jonathan Florentin
- Division of Cardiology, Department of Medicine, Vascular Medicine Institute, University of Pittsburgh Medical Center, BST 1720.1, 200 Lothrop Street, Pittsburgh, PA 15213, USA
| | - Sathish Babu Vasamsetti
- Division of Cardiology, Department of Medicine, Vascular Medicine Institute, University of Pittsburgh Medical Center, BST 1720.1, 200 Lothrop Street, Pittsburgh, PA 15213, USA
| | - Anagha Arunkumar
- Division of Cardiology, Department of Medicine, Vascular Medicine Institute, University of Pittsburgh Medical Center, BST 1720.1, 200 Lothrop Street, Pittsburgh, PA 15213, USA
| | - John Sembrat
- Division of Cardiology, Department of Medicine, Vascular Medicine Institute, University of Pittsburgh Medical Center, BST 1720.1, 200 Lothrop Street, Pittsburgh, PA 15213, USA
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, PA 15261, USA
| | - Mauricio Rojas
- Division of Cardiology, Department of Medicine, Vascular Medicine Institute, University of Pittsburgh Medical Center, BST 1720.1, 200 Lothrop Street, Pittsburgh, PA 15213, USA
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, PA 15261, USA
| | - Partha Dutta
- Division of Cardiology, Department of Medicine, Vascular Medicine Institute, University of Pittsburgh Medical Center, BST 1720.1, 200 Lothrop Street, Pittsburgh, PA 15213, USA
| |
Collapse
|
15
|
Emerging Roles of MTG16 in Cell-Fate Control of Hematopoietic Stem Cells and Cancer. Stem Cells Int 2017; 2017:6301385. [PMID: 29358956 PMCID: PMC5735743 DOI: 10.1155/2017/6301385] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 10/12/2017] [Accepted: 10/23/2017] [Indexed: 12/13/2022] Open
Abstract
MTG16 (myeloid translocation gene on chromosome 16) and its related proteins, MTG8 and MTGR1, define a small family of transcriptional corepressors. These corepressors share highly conserved domain structures yet have distinct biological functions and tissue specificity. In vivo studies have shown that, of the three MTG corepressors, MTG16 is uniquely important for the regulation of hematopoietic stem/progenitor cell (HSPC) proliferation and differentiation. Apart from this physiological function, MTG16 is also involved in carcinomas and leukemias, acting as the genetic target of loss of heterozygosity (LOH) aberrations in breast cancer and recurrent translocations in leukemia. The frequent involvement of MTG16 in these disease etiologies implies an important developmental role for this transcriptional corepressor. Furthermore, mounting evidence suggests that MTG16 indirectly alters the disease course of several leukemias via its regulatory interactions with a variety of pathologic fusion proteins. For example, a recent study has shown that MTG16 can repress not only wild-type E2A-mediated transcription, but also leukemia fusion protein E2A-Pbx1-mediated transcription, suggesting that MTG16 may serve as a potential therapeutic target in acute lymphoblastic leukemia expressing the E2A-Pbx1 fusion protein. Given that leukemia stem cells share similar regulatory pathways with normal HSPCs, studies to further understand how MTG16 regulates cell proliferation and differentiation could lead to novel therapeutic approaches for leukemia treatment.
Collapse
|
16
|
Lopez CK, Malinge S, Gaudry M, Bernard OA, Mercher T. Pediatric Acute Megakaryoblastic Leukemia: Multitasking Fusion Proteins and Oncogenic Cooperations. Trends Cancer 2017; 3:631-642. [PMID: 28867167 DOI: 10.1016/j.trecan.2017.07.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/10/2017] [Accepted: 07/17/2017] [Indexed: 02/06/2023]
Abstract
Pediatric leukemia presents specific clinical and genetic features from adult leukemia but the underpinning mechanisms of transformation are still unclear. Acute megakaryoblastic leukemia (AMKL) is the malignant accumulation of progenitors of the megakaryocyte lineage that normally produce blood platelets. AMKL is diagnosed de novo, in patients showing a poor prognosis, or in Down syndrome (DS) patients with a better prognosis. Recent data show that de novo AMKL is primarily associated with chromosomal alterations leading to the expression of fusions between transcriptional regulators. This review highlights the most recurrent genetic events found in de novo pediatric AMKL patients and, based on recent functional analyses, proposes a mechanism of leukemogenesis common to de novo and DS-AMKL.
Collapse
MESH Headings
- Age Factors
- Animals
- Carcinogenesis/genetics
- Carcinogenesis/metabolism
- Cell Differentiation/genetics
- Cell Lineage/genetics
- Child
- Gene Expression Regulation, Leukemic
- Humans
- Leukemia, Megakaryoblastic, Acute/drug therapy
- Leukemia, Megakaryoblastic, Acute/etiology
- Leukemia, Megakaryoblastic, Acute/metabolism
- Leukemia, Megakaryoblastic, Acute/pathology
- Megakaryocytes/metabolism
- Megakaryocytes/pathology
- Molecular Targeted Therapy
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- Cécile K Lopez
- INSERM U1170, Equipe Labellisée Ligue Contre le Cancer, 94800 Villejuif, France; Gustave Roussy, 94800 Villejuif, France; Université Paris-Sud, 91405 Orsay, France
| | - Sébastien Malinge
- INSERM U1170, Equipe Labellisée Ligue Contre le Cancer, 94800 Villejuif, France; Gustave Roussy, 94800 Villejuif, France; Université Paris Diderot, 75013 Paris, France
| | - Muriel Gaudry
- INSERM U1170, Equipe Labellisée Ligue Contre le Cancer, 94800 Villejuif, France; Gustave Roussy, 94800 Villejuif, France; Université Paris-Sud, 91405 Orsay, France
| | - Olivier A Bernard
- INSERM U1170, Equipe Labellisée Ligue Contre le Cancer, 94800 Villejuif, France; Gustave Roussy, 94800 Villejuif, France; Université Paris-Sud, 91405 Orsay, France
| | - Thomas Mercher
- INSERM U1170, Equipe Labellisée Ligue Contre le Cancer, 94800 Villejuif, France; Gustave Roussy, 94800 Villejuif, France; Université Paris-Sud, 91405 Orsay, France; Université Paris Diderot, 75013 Paris, France.
| |
Collapse
|
17
|
McDonough EM, Barrett CW, Parang B, Mittal MK, Smith JJ, Bradley AM, Choksi YA, Coburn LA, Short SP, Thompson JJ, Zhang B, Poindexter SV, Fischer MA, Chen X, Li J, Revetta FL, Naik R, Washington MK, Rosen MJ, Hiebert SW, Wilson KT, Williams CS. MTG16 is a tumor suppressor in colitis-associated carcinoma. JCI Insight 2017; 2:78210. [PMID: 28814670 DOI: 10.1172/jci.insight.78210] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 07/14/2017] [Indexed: 12/27/2022] Open
Abstract
MTG16 is a member of the myeloid translocation gene (MTG) family of transcriptional corepressors. While MTGs were originally identified in chromosomal translocations in acute myeloid leukemia, recent studies have uncovered a role in intestinal biology. For example, Mtg16-/- mice have increased intestinal proliferation and are more sensitive to intestinal injury in colitis models. MTG16 is also underexpressed in patients with moderate/severe ulcerative colitis. Based on these findings, we postulated that MTG16 might protect against colitis-associated carcinogenesis. MTG16 was downregulated at the protein and RNA levels in patients with inflammatory bowel disease and in those with colitis-associated carcinoma. Mtg16-/- mice subjected to inflammatory carcinogenesis modeling exhibited worse colitis and increased tumor multiplicity and size. Loss of MTG16 also increased severity of dysplasia, apoptosis, proliferation, DNA damage, and WNT signaling. Moreover, transplantation of WT marrow into Mtg16-/- mice failed to rescue the Mtg16-/- protumorigenic phenotypes, indicating an epithelium-specific role for MTG16. While MTG dysfunction is widely appreciated in hematopoietic malignancies, the role of this gene family in epithelial homeostasis, and in colon cancer, was unrealized. This report identifies MTG16 as an important modulator of colitis and tumor development in inflammatory carcinogenesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yash A Choksi
- Department of Medicine, Division of Gastroenterology
| | - Lori A Coburn
- Department of Medicine, Division of Gastroenterology.,Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | | | | | | | | | - Melissa A Fischer
- Department of Biochemistry, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Xi Chen
- Department of Public Health Sciences and the Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Jiang Li
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California, USA
| | - Frank L Revetta
- Department of Pathology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Rishi Naik
- Department of Cancer Biology.,Department of Medicine, Division of Gastroenterology
| | - M Kay Washington
- Department of Pathology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Michael J Rosen
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Scott W Hiebert
- Department of Biochemistry, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Keith T Wilson
- Department of Cancer Biology.,Department of Medicine, Division of Gastroenterology.,Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, USA.,Vanderbilt-Ingram Cancer Center, Nashville, Tennessee, USA
| | - Christopher S Williams
- Department of Cancer Biology.,Department of Medicine, Division of Gastroenterology.,Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, USA.,Vanderbilt-Ingram Cancer Center, Nashville, Tennessee, USA
| |
Collapse
|
18
|
Thirant C, Ignacimouttou C, Lopez CK, Diop M, Le Mouël L, Thiollier C, Siret A, Dessen P, Aid Z, Rivière J, Rameau P, Lefebvre C, Khaled M, Leverger G, Ballerini P, Petit A, Raslova H, Carmichael CL, Kile BT, Soler E, Crispino JD, Wichmann C, Pflumio F, Schwaller J, Vainchenker W, Lobry C, Droin N, Bernard OA, Malinge S, Mercher T. ETO2-GLIS2 Hijacks Transcriptional Complexes to Drive Cellular Identity and Self-Renewal in Pediatric Acute Megakaryoblastic Leukemia. Cancer Cell 2017; 31:452-465. [PMID: 28292442 DOI: 10.1016/j.ccell.2017.02.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 12/22/2016] [Accepted: 02/09/2017] [Indexed: 12/17/2022]
Abstract
Chimeric transcription factors are a hallmark of human leukemia, but the molecular mechanisms by which they block differentiation and promote aberrant self-renewal remain unclear. Here, we demonstrate that the ETO2-GLIS2 fusion oncoprotein, which is found in aggressive acute megakaryoblastic leukemia, confers megakaryocytic identity via the GLIS2 moiety while both ETO2 and GLIS2 domains are required to drive increased self-renewal properties. ETO2-GLIS2 directly binds DNA to control transcription of associated genes by upregulation of expression and interaction with the ETS-related ERG protein at enhancer elements. Importantly, specific interference with ETO2-GLIS2 oligomerization reverses the transcriptional activation at enhancers and promotes megakaryocytic differentiation, providing a relevant interface to target in this poor-prognosis pediatric leukemia.
Collapse
Affiliation(s)
- Cécile Thirant
- INSERM U1170, Equipe Labellisée Ligue Contre le Cancer, Gustave Roussy Institute, 39 rue Camille Desmoulins, 94800 Villejuif, France; Gustave Roussy, 94800 Villejuif, France
| | - Cathy Ignacimouttou
- INSERM U1170, Equipe Labellisée Ligue Contre le Cancer, Gustave Roussy Institute, 39 rue Camille Desmoulins, 94800 Villejuif, France; Université Paris Diderot, 75013 Paris, France
| | - Cécile K Lopez
- INSERM U1170, Equipe Labellisée Ligue Contre le Cancer, Gustave Roussy Institute, 39 rue Camille Desmoulins, 94800 Villejuif, France; Université Paris-Sud, 91405 Orsay, France
| | | | - Lou Le Mouël
- Gustave Roussy, 94800 Villejuif, France; Université Paris-Sud, 91405 Orsay, France
| | - Clarisse Thiollier
- Gustave Roussy, 94800 Villejuif, France; Université Paris Diderot, 75013 Paris, France
| | - Aurélie Siret
- INSERM U1170, Equipe Labellisée Ligue Contre le Cancer, Gustave Roussy Institute, 39 rue Camille Desmoulins, 94800 Villejuif, France; Gustave Roussy, 94800 Villejuif, France
| | - Phillipe Dessen
- INSERM U1170, Equipe Labellisée Ligue Contre le Cancer, Gustave Roussy Institute, 39 rue Camille Desmoulins, 94800 Villejuif, France; Gustave Roussy, 94800 Villejuif, France
| | - Zakia Aid
- INSERM U1170, Equipe Labellisée Ligue Contre le Cancer, Gustave Roussy Institute, 39 rue Camille Desmoulins, 94800 Villejuif, France; Gustave Roussy, 94800 Villejuif, France
| | - Julie Rivière
- INSERM U1170, Equipe Labellisée Ligue Contre le Cancer, Gustave Roussy Institute, 39 rue Camille Desmoulins, 94800 Villejuif, France; Gustave Roussy, 94800 Villejuif, France
| | | | | | | | | | | | | | - Hana Raslova
- INSERM U1170, Equipe Labellisée Ligue Contre le Cancer, Gustave Roussy Institute, 39 rue Camille Desmoulins, 94800 Villejuif, France; Gustave Roussy, 94800 Villejuif, France
| | | | - Benjamin T Kile
- Walter and Eliza Hall Institute, Parkville, VIC 3052, Australia
| | - Eric Soler
- INSERM UMR967, 92265 Fontenay-aux-Roses, France
| | - John D Crispino
- Division of Hematology/Oncology, Northwestern University, Chicago, IL 60611, USA
| | - Christian Wichmann
- Department of Transfusion Medicine, Cell Therapeutics and Hemostaseology, Ludwig-Maximilian University Hospital, Munich, Germany
| | | | - Jürg Schwaller
- University Children's Hospital Beider Basel (UKBB), Departement of Biomedicine, University of Basel, 4031 Basel, Switzerland
| | - William Vainchenker
- INSERM U1170, Equipe Labellisée Ligue Contre le Cancer, Gustave Roussy Institute, 39 rue Camille Desmoulins, 94800 Villejuif, France; Gustave Roussy, 94800 Villejuif, France
| | - Camille Lobry
- INSERM U1170, Equipe Labellisée Ligue Contre le Cancer, Gustave Roussy Institute, 39 rue Camille Desmoulins, 94800 Villejuif, France; Gustave Roussy, 94800 Villejuif, France
| | - Nathalie Droin
- INSERM U1170, Equipe Labellisée Ligue Contre le Cancer, Gustave Roussy Institute, 39 rue Camille Desmoulins, 94800 Villejuif, France; Gustave Roussy, 94800 Villejuif, France; Université Paris-Sud, 91405 Orsay, France; INSERM U523, CNRS UMS3655, Gustave Roussy, 94800 Villejuif, France
| | - Olivier A Bernard
- INSERM U1170, Equipe Labellisée Ligue Contre le Cancer, Gustave Roussy Institute, 39 rue Camille Desmoulins, 94800 Villejuif, France; Gustave Roussy, 94800 Villejuif, France; Université Paris-Sud, 91405 Orsay, France
| | - Sébastien Malinge
- INSERM U1170, Equipe Labellisée Ligue Contre le Cancer, Gustave Roussy Institute, 39 rue Camille Desmoulins, 94800 Villejuif, France; Gustave Roussy, 94800 Villejuif, France
| | - Thomas Mercher
- INSERM U1170, Equipe Labellisée Ligue Contre le Cancer, Gustave Roussy Institute, 39 rue Camille Desmoulins, 94800 Villejuif, France; Gustave Roussy, 94800 Villejuif, France; Université Paris Diderot, 75013 Paris, France; Université Paris-Sud, 91405 Orsay, France.
| |
Collapse
|
19
|
Liggett LA, DeGregori J. Changing mutational and adaptive landscapes and the genesis of cancer. Biochim Biophys Acta Rev Cancer 2017; 1867:84-94. [PMID: 28167050 DOI: 10.1016/j.bbcan.2017.01.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 01/27/2017] [Accepted: 01/28/2017] [Indexed: 12/31/2022]
Abstract
By the time the process of oncogenesis has produced an advanced cancer, tumor cells have undergone extensive evolution. The cellular phenotypes resulting from this evolution have been well studied, and include accelerated growth rates, apoptosis resistance, immortality, invasiveness, and immune evasion. Yet with all of our current knowledge of tumor biology, the details of early oncogenesis have been difficult to observe and understand. Where different oncogenic mutations may work together to enhance the survival of a tumor cell, in isolation they are often pro-apoptotic, pro-differentiative or pro-senescent, and therefore often, somewhat paradoxically, disadvantageous to a cell. It is also becoming clear that somatic mutations, including those in known oncogenic drivers, are common in tissues starting at a young age. These observations raise the question: how do we largely avoid cancer for most of our lives? Here we propose that evolutionary forces can help explain this paradox. As humans and other organisms age or experience external insults such as radiation or smoking, the structure and function of tissues progressively degrade, resulting in altered stem cell niche microenvironments. As tissue integrity declines, it becomes less capable of supporting and maintaining resident stem cells. These stem cells then find themselves in a microenvironment to which they are poorly adapted, providing a competitive advantage to those cells that can restore their functionality and fitness through mutations or epigenetic changes. The resulting oncogenic clonal expansions then increase the odds of further cancer progression. Understanding how the causes of cancer, such as aging or smoking, affect tissue microenvironments to control the impact of mutations on somatic cell fitness can help reconcile the discrepancy between marked mutation accumulation starting early in life and the somatic evolution that leads to cancer at advanced ages or following carcinogenic insults. This article is part of a Special Issue entitled: Evolutionary principles - heterogeneity in cancer?, edited by Dr. Robert A. Gatenby.
Collapse
Affiliation(s)
- L Alexander Liggett
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, United States
| | - James DeGregori
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, United States; Integrated Department of Immunology, University of Colorado School of Medicine, Aurora, CO 80045, United States; Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, United States; Department of Medicine, Section of Hematology, University of Colorado School of Medicine, Aurora, CO 80045, United States.
| |
Collapse
|
20
|
New insights into transcriptional and leukemogenic mechanisms of AML1-ETO and E2A fusion proteins. ACTA ACUST UNITED AC 2016; 11:285-304. [PMID: 28261265 DOI: 10.1007/s11515-016-1415-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND Nearly 15% of acute myeloid leukemia (AML) cases are caused by aberrant expression of AML1-ETO, a fusion protein generated by the t(8;21) chromosomal translocation. Since its discovery, AML1-ETO has served as a prototype to understand how leukemia fusion proteins deregulate transcription to promote leukemogenesis. Another leukemia fusion protein, E2A-Pbx1, generated by the t(1;19) translocation, is involved in acute lymphoblastic leukemias (ALLs). While AML1-ETO and E2A-Pbx1 are structurally unrelated fusion proteins, we have recently shown that a common axis, the ETO/E-protein interaction, is involved in the regulation of both fusion proteins, underscoring the importance of studying protein-protein interactions in elucidating the mechanisms of leukemia fusion proteins. OBJECTIVE In this review, we aim to summarize these new developments while also providing a historic overview of the related early studies. METHODS A total of 218 publications were reviewed in this article, a majority of which were published after 2004.We also downloaded 3D structures of AML1-ETO domains from Protein Data Bank and provided a systematic summary of their structures. RESULTS By reviewing the literature, we summarized early and recent findings on AML1-ETO, including its protein-protein interactions, transcriptional and leukemogenic mechanisms, as well as the recently reported involvement of ETO family corepressors in regulating the function of E2A-Pbx1. CONCLUSION While the recent development in genomic and structural studies has clearly demonstrated that the fusion proteins function by directly regulating transcription, a further understanding of the underlying mechanisms, including crosstalk with other transcription factors and cofactors, and the protein-protein interactions in the context of native proteins, may be necessary for the development of highly targeted drugs for leukemia therapy.
Collapse
|
21
|
Stadhouders R, Cico A, Stephen T, Thongjuea S, Kolovos P, Baymaz HI, Yu X, Demmers J, Bezstarosti K, Maas A, Barroca V, Kockx C, Ozgur Z, van Ijcken W, Arcangeli ML, Andrieu-Soler C, Lenhard B, Grosveld F, Soler E. Control of developmentally primed erythroid genes by combinatorial co-repressor actions. Nat Commun 2015; 6:8893. [PMID: 26593974 PMCID: PMC4673834 DOI: 10.1038/ncomms9893] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 10/14/2015] [Indexed: 12/21/2022] Open
Abstract
How transcription factors (TFs) cooperate within large protein complexes to allow rapid modulation of gene expression during development is still largely unknown. Here we show that the key haematopoietic LIM-domain-binding protein-1 (LDB1) TF complex contains several activator and repressor components that together maintain an erythroid-specific gene expression programme primed for rapid activation until differentiation is induced. A combination of proteomics, functional genomics and in vivo studies presented here identifies known and novel co-repressors, most notably the ETO2 and IRF2BP2 proteins, involved in maintaining this primed state. The ETO2–IRF2BP2 axis, interacting with the NCOR1/SMRT co-repressor complex, suppresses the expression of the vast majority of archetypical erythroid genes and pathways until its decommissioning at the onset of terminal erythroid differentiation. Our experiments demonstrate that multimeric regulatory complexes feature a dynamic interplay between activating and repressing components that determines lineage-specific gene expression and cellular differentiation. Conserved sets of transcription factors (TFs) regulate hematopoiesis. Here, Stadhouders et al. show that IRF2BP2 is a component of the LDB1 TF complex and together with its co-repressor ETO2, enhances transcriptional repression, which plays a crucial role at the erythroid progenitor stage.
Collapse
Affiliation(s)
- Ralph Stadhouders
- Department of Cell Biology, Erasmus Medical Center, 3015CN Rotterdam, The Netherlands
| | - Alba Cico
- Inserm UMR967, CEA/DSV/iRCM, Laboratory of Molecular Hematopoiesis, Université Paris-Saclay, 92265 Fontenay-aux-Roses, France
| | - Tharshana Stephen
- Inserm UMR967, CEA/DSV/iRCM, Laboratory of Molecular Hematopoiesis, Université Paris-Saclay, 92265 Fontenay-aux-Roses, France
| | - Supat Thongjuea
- Computational Biology Unit, Bergen Center for Computational Science, N-5008 Bergen, Norway.,MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Petros Kolovos
- Department of Cell Biology, Erasmus Medical Center, 3015CN Rotterdam, The Netherlands
| | - H Irem Baymaz
- Department of Cell Biology, Erasmus Medical Center, 3015CN Rotterdam, The Netherlands
| | - Xiao Yu
- Department of Cell Biology, Erasmus Medical Center, 3015CN Rotterdam, The Netherlands
| | - Jeroen Demmers
- Department of Proteomics, Erasmus Medical Center, 3015CN Rotterdam, The Netherlands
| | - Karel Bezstarosti
- Department of Proteomics, Erasmus Medical Center, 3015CN Rotterdam, The Netherlands
| | - Alex Maas
- Department of Cell Biology, Erasmus Medical Center, 3015CN Rotterdam, The Netherlands
| | - Vilma Barroca
- CEA/DSV/iRCM/SCSR, Université Paris-Saclay, 92265 Fontenay-aux-Roses, France
| | - Christel Kockx
- Center for Biomics, Erasmus Medical Center, 3015CN Rotterdam, The Netherlands
| | - Zeliha Ozgur
- Center for Biomics, Erasmus Medical Center, 3015CN Rotterdam, The Netherlands
| | - Wilfred van Ijcken
- Center for Biomics, Erasmus Medical Center, 3015CN Rotterdam, The Netherlands
| | - Marie-Laure Arcangeli
- Inserm UMR967, CEA/DSV/iRCM, Laboratory of Hematopoietic and Leukemic Stem cells, Université Paris-Saclay, 92265 Fontenay-aux-Roses, France
| | - Charlotte Andrieu-Soler
- Inserm UMR967, CEA/DSV/iRCM, Laboratory of Molecular Hematopoiesis, Université Paris-Saclay, 92265 Fontenay-aux-Roses, France
| | - Boris Lenhard
- Department of Molecular Sciences, Faculty of Medicine, MRC Clinical Sciences Centre, Institute of Clinical Sciences, Imperial College London, London W12 0NN, UK
| | - Frank Grosveld
- Department of Cell Biology, Erasmus Medical Center, 3015CN Rotterdam, The Netherlands.,Cancer Genomics Center, Erasmus Medical Center, 3015CN Rotterdam, The Netherlands
| | - Eric Soler
- Department of Cell Biology, Erasmus Medical Center, 3015CN Rotterdam, The Netherlands.,Inserm UMR967, CEA/DSV/iRCM, Laboratory of Molecular Hematopoiesis, Université Paris-Saclay, 92265 Fontenay-aux-Roses, France.,Cancer Genomics Center, Erasmus Medical Center, 3015CN Rotterdam, The Netherlands.,Laboratory of Excellence GR-Ex, 75015 Paris, France
| |
Collapse
|
22
|
Goodings C, Smith E, Mathias E, Elliott N, Cleveland SM, Tripathi RM, Layer JH, Chen X, Guo Y, Shyr Y, Hamid R, Du Y, Davé UP. Hhex is Required at Multiple Stages of Adult Hematopoietic Stem and Progenitor Cell Differentiation. Stem Cells 2015; 33:2628-41. [PMID: 25968920 DOI: 10.1002/stem.2049] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 03/03/2015] [Accepted: 04/22/2015] [Indexed: 01/03/2023]
Abstract
Hhex encodes a homeodomain transcription factor that is widely expressed in hematopoietic stem and progenitor cell populations. Its enforced expression induces T-cell leukemia and we have implicated it as an important oncogene in early T-cell precursor leukemias where it is immediately downstream of an LMO2-associated protein complex. Conventional Hhex knockouts cause embryonic lethality precluding analysis of adult hematopoiesis. Thus, we induced highly efficient conditional knockout (cKO) using vav-Cre transgenic mice. Hhex cKO mice were viable and born at normal litter sizes. At steady state, we observed a defect in B-cell development that we localized to the earliest B-cell precursor, the pro-B-cell stage. Most remarkably, bone marrow transplantation using Hhex cKO donor cells revealed a more profound defect in all hematopoietic lineages. In contrast, sublethal irradiation resulted in normal myeloid cell repopulation of the bone marrow but markedly impaired repopulation of T- and B-cell compartments. We noted that Hhex cKO stem and progenitor cell populations were skewed in their distribution and showed enhanced proliferation compared to WT cells. Our results implicate Hhex in the maintenance of LT-HSCs and in lineage allocation from multipotent progenitors especially in stress hematopoiesis.
Collapse
Affiliation(s)
| | | | | | - Natalina Elliott
- MRC Molecular Hematology Unit, University of Oxford, Oxford, United Kingdom
| | | | | | | | - Xi Chen
- Department of Biostatistics, Center for Quantitative Sciences
| | - Yan Guo
- Department of Biostatistics, Center for Quantitative Sciences
| | - Yu Shyr
- Department of Biostatistics, Center for Quantitative Sciences
| | - Rizwan Hamid
- Division of Medical Genetics, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Yang Du
- Department of Pediatrics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Utpal P Davé
- Department of Cancer Biology.,Division of Hematology/Oncology.,Tennessee Valley Healthcare System, Nashville VA, Nashville, Tennessee, USA
| |
Collapse
|
23
|
Nguyen H, Mariotti J, Bareyan D, Carnahan R, Cooper T, Williams C, Engel M. ANTI-MTG16 ANTIBODIES REVEAL MTG16 SUBCELLULAR DISTRIBUTION AND NUCLEOCYTOPLASMIC TRANSPORT IN ERYTHROLEUKEMIA CELLS. ANTIBODY TECHNOLOGY JOURNAL 2015; 5:27-41. [PMID: 36267145 PMCID: PMC9580851 DOI: 10.2147/anti.s74419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The myeloid translocation gene (MTG) family of transcriptional co-repressors consists of three highly conserved members; MTG8, MTG16 and MTGR1, each evolutionarily related to the Drosophila protein NERVY and with orthologs across the mammalian hierarchy. By coordinating coincident interactions between DNA binding proteins, other co-repressors and epigenetic effectors, MTG proteins occupy a critical nexus in transcriptional control complexes to profoundly impact the specification of cell fate. MTG family members are most conserved within Nervy Homology Regions (NHR) 1-4, with each region fulfilling functions common to the family. Studies of functional differences between MTG proteins require carefully qualified immunologic reagents specific to each family member. We have developed a group of α-MTG16 antibodies and carefully characterized their specificity for MTG16. These tools reveal that MTG16 is concentrated in the cytoplasm of erythroleukemia cell lines from human and mouse. Using the CRM1 antagonist, leptomycin-B, we show that MTG16 levels rise in the nucleus of MEL cells and decline in the cytoplasm. Together, these data indicate bidirectional movement of MTG16 between cytoplasmic and nuclear compartments. Our work reveals an unrecognized feature of MTG16 regulation that may impact cell fate specification and provides reagents to address important questions regarding MTG16 functions in vivo.
Collapse
Affiliation(s)
- Hong Nguyen
- Department of Pediatrics, Vanderbilt University School of Medicine
| | - Jolene Mariotti
- Department of Pediatrics, Vanderbilt University School of Medicine
| | - Diana Bareyan
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine
| | - Robert Carnahan
- Department of Cancer Biology, Vanderbilt University School of Medicine
| | - Tracy Cooper
- Department of Cancer Biology, Vanderbilt University School of Medicine
| | | | - Michael Engel
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine
- Department of Pediatrics, University of Utah School of Medicine and Primary Children’s Hospital
| |
Collapse
|
24
|
Ghosh HS, Ceribelli M, Matos I, Lazarovici A, Bussemaker HJ, Lasorella A, Hiebert SW, Liu K, Staudt LM, Reizis B. ETO family protein Mtg16 regulates the balance of dendritic cell subsets by repressing Id2. ACTA ACUST UNITED AC 2014; 211:1623-35. [PMID: 24980046 PMCID: PMC4113936 DOI: 10.1084/jem.20132121] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Dendritic cells (DCs) comprise two major subsets, the interferon (IFN)-producing plasmacytoid DCs (pDCs) and antigen-presenting classical DCs (cDCs). The development of pDCs is promoted by E protein transcription factor E2-2, whereas E protein antagonist Id2 is specifically absent from pDCs. Conversely, Id2 is prominently expressed in cDCs and promotes CD8(+) cDC development. The mechanisms that control the balance between E and Id proteins during DC subset specification remain unknown. We found that the loss of Mtg16, a transcriptional cofactor of the ETO protein family, profoundly impaired pDC development and pDC-dependent IFN response. The residual Mtg16-deficient pDCs showed aberrant phenotype, including the expression of myeloid marker CD11b. Conversely, the development of cDC progenitors (pre-DCs) and of CD8(+) cDCs was enhanced. Genome-wide expression and DNA-binding analysis identified Id2 as a direct target of Mtg16. Mtg16-deficient cDC progenitors and pDCs showed aberrant induction of Id2, and the deletion of Id2 facilitated the impaired development of Mtg16-deficient pDCs. Thus, Mtg16 promotes pDC differentiation and restricts cDC development in part by repressing Id2, revealing a cell-intrinsic mechanism that controls subset balance during DC development.
Collapse
Affiliation(s)
- Hiyaa S Ghosh
- Department of Microbiology and Immunology, Center for Computational Biology and Bioinformatics, Institute for Cancer Genetics, Department of Pathology, and Department of Pediatrics, Columbia University Medical Center and Department of Biological Sciences and Department of Electrical Engineering, Columbia University, New York, NY 10032
| | - Michele Ceribelli
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Ines Matos
- Department of Microbiology and Immunology, Center for Computational Biology and Bioinformatics, Institute for Cancer Genetics, Department of Pathology, and Department of Pediatrics, Columbia University Medical Center and Department of Biological Sciences and Department of Electrical Engineering, Columbia University, New York, NY 10032
| | - Allan Lazarovici
- Department of Microbiology and Immunology, Center for Computational Biology and Bioinformatics, Institute for Cancer Genetics, Department of Pathology, and Department of Pediatrics, Columbia University Medical Center and Department of Biological Sciences and Department of Electrical Engineering, Columbia University, New York, NY 10032Department of Microbiology and Immunology, Center for Computational Biology and Bioinformatics, Institute for Cancer Genetics, Department of Pathology, and Department of Pediatrics, Columbia University Medical Center and Department of Biological Sciences and Department of Electrical Engineering, Columbia University, New York, NY 10032
| | - Harmen J Bussemaker
- Department of Microbiology and Immunology, Center for Computational Biology and Bioinformatics, Institute for Cancer Genetics, Department of Pathology, and Department of Pediatrics, Columbia University Medical Center and Department of Biological Sciences and Department of Electrical Engineering, Columbia University, New York, NY 10032Department of Microbiology and Immunology, Center for Computational Biology and Bioinformatics, Institute for Cancer Genetics, Department of Pathology, and Department of Pediatrics, Columbia University Medical Center and Department of Biological Sciences and Department of Electrical Engineering, Columbia University, New York, NY 10032
| | - Anna Lasorella
- Department of Microbiology and Immunology, Center for Computational Biology and Bioinformatics, Institute for Cancer Genetics, Department of Pathology, and Department of Pediatrics, Columbia University Medical Center and Department of Biological Sciences and Department of Electrical Engineering, Columbia University, New York, NY 10032Department of Microbiology and Immunology, Center for Computational Biology and Bioinformatics, Institute for Cancer Genetics, Department of Pathology, and Department of Pediatrics, Columbia University Medical Center and Department of Biological Sciences and Department of Electrical Engineering, Columbia University, New York, NY 10032Department of Microbiology and Immunology, Center for Computational Biology and Bioinformatics, Institute for Cancer Genetics, Department of Pathology, and Department of Pediatrics, Columbia University Medical Center and Department of Biological Sciences and Department of Electrical Engineering, Columbia University, New York, NY 10032
| | - Scott W Hiebert
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Kang Liu
- Department of Microbiology and Immunology, Center for Computational Biology and Bioinformatics, Institute for Cancer Genetics, Department of Pathology, and Department of Pediatrics, Columbia University Medical Center and Department of Biological Sciences and Department of Electrical Engineering, Columbia University, New York, NY 10032
| | - Louis M Staudt
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Boris Reizis
- Department of Microbiology and Immunology, Center for Computational Biology and Bioinformatics, Institute for Cancer Genetics, Department of Pathology, and Department of Pediatrics, Columbia University Medical Center and Department of Biological Sciences and Department of Electrical Engineering, Columbia University, New York, NY 10032
| |
Collapse
|
25
|
Abstract
TG-interacting factor 1 (TGIF1) is a transcriptional repressor that can modulate retinoic acid and transforming growth factor β signaling pathways. It is required for myeloid progenitor cell differentiation and survival, and mutations in the TGIF1 gene cause holoprosencephaly. Furthermore, we have previously observed that acute myelogenous leukemia (AML) patients with low TGIF1 levels had worse prognoses. Here, we explored the role of Tgif1 in murine hematopoietic stem cell (HSC) function. CFU assays showed that Tgif1(-/-) bone marrow cells produced more total colonies and had higher serial CFU potential. These effects were also observed in vivo, where Tgif1(-/-) bone marrow cells had higher repopulation potential in short- and long-term competitive repopulation assays than wild-type cells. Serial transplantation and replating studies showed that Tgif1(-/-) HSCs exhibited greater self-renewal and were less proliferative and more quiescent than wild-type cells, suggesting that Tgif1 is required for stem cells to enter the cell cycle. Furthermore, HSCs from Tgif1(+/-) mice had a phenotype similar to that of HSCs from Tgif1(-/-) mice, while bone marrow cells with overexpressing Tgif1 showed increased proliferation and lower survival in long-term transplant studies. Taken together, our data suggest that Tgif1 suppresses stem cell self-renewal and provide clues as to how reduced expression of TGIF1 may contribute to poor long-term survival in patients with AML.
Collapse
|
26
|
Gow CH, Guo C, Wang D, Hu Q, Zhang J. Differential involvement of E2A-corepressor interactions in distinct leukemogenic pathways. Nucleic Acids Res 2013; 42:137-52. [PMID: 24064250 PMCID: PMC3874172 DOI: 10.1093/nar/gkt855] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
E2A is a member of the E-protein family of transcription factors. Previous studies have reported context-dependent regulation of E2A-dependent transcription. For example, whereas the E2A portion of the E2A-Pbx1 leukemia fusion protein mediates robust transcriptional activation in t(1;19) acute lymphoblastic leukemia, the transcriptional activity of wild-type E2A is silenced by high levels of corepressors, such as the AML1-ETO fusion protein in t(8;21) acute myeloid leukemia and ETO-2 in hematopoietic cells. Here, we show that, unlike the HEB E-protein, the activation domain 1 (AD1) of E2A has specifically reduced corepressor interaction due to E2A-specific amino acid changes in the p300/CBP and ETO target motif. Replacing E2A-AD1 with HEB-AD1 abolished the ability of E2A-Pbx1 to activate target genes and to induce cell transformation. On the other hand, the weak E2A-AD1-corepressor interaction imposes a critical importance on another ETO-interacting domain, downstream ETO-interacting sequence (DES), for corepressor-mediated repression. Deletion of DES abrogates silencing of E2A activity by AML1-ETO in t(8;21) leukemia cells or by ETO-2 in normal hematopoietic cells. Our results reveal an E2A-specific mechanism important for its context-dependent activation and repression function, and provide the first evidence for the differential involvement of E2A-corepressor interactions in distinct leukemogenic pathways.
Collapse
Affiliation(s)
- Chien-Hung Gow
- Department of Cancer Biology, Vontz Center for Molecular Studies, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0521, USA
| | | | | | | | | |
Collapse
|
27
|
Kumar P, Sharoyko VV, Spégel P, Gullberg U, Mulder H, Olsson I, Ajore R. The transcriptional co-repressor myeloid translocation gene 16 inhibits glycolysis and stimulates mitochondrial respiration. PLoS One 2013; 8:e68502. [PMID: 23840896 PMCID: PMC3698176 DOI: 10.1371/journal.pone.0068502] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 05/29/2013] [Indexed: 12/15/2022] Open
Abstract
The myeloid translocation gene 16 product MTG16 is found in multiple transcription factor-containing complexes as a regulator of gene expression implicated in development and tumorigenesis. A stable Tet-On system for doxycycline-dependent expression of MTG16 was established in B-lymphoblastoid Raji cells to unravel its molecular functions in transformed cells. A noticeable finding was that expression of certain genes involved in tumor cell metabolism including 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 and 4 (PFKFB3 and PFKFB4), and pyruvate dehydrogenase kinase isoenzyme 1 (PDK1) was rapidly diminished when MTG16 was expressed. Furthermore, hypoxia-stimulated production of PFKFB3, PFKFB4 and PDK1 was inhibited by MTG16 expression. The genes in question encode key regulators of glycolysis and its coupling to mitochondrial metabolism and are commonly found to be overexpressed in transformed cells. The MTG16 Nervy Homology Region 2 (NHR2) oligomerization domain and the NHR3 protein-protein interaction domain were required intact for inhibition of PFKFB3, PFKFB4 and PDK1 expression to occur. Expression of MTG16 reduced glycolytic metabolism while mitochondrial respiration and formation of reactive oxygen species increased. The metabolic changes were paralleled by increased phosphorylation of mitogen-activated protein kinases, reduced levels of amino acids and inhibition of proliferation with a decreased fraction of cells in S-phase. Overall, our findings show that MTG16 can serve as a brake on glycolysis, a stimulator of mitochondrial respiration and an inhibitor of cell proliferation. Hence, elevation of MTG16 might have anti-tumor effect.
Collapse
Affiliation(s)
- Parveen Kumar
- Department of Hematology, Lund University, Lund, Sweden
| | - Vladimir V. Sharoyko
- Department of Clinical Sciences, Unit of Molecular Metabolism, Lund University Diabetes Centre, Malmö University Hospital, Malmö, Sweden
| | - Peter Spégel
- Department of Clinical Sciences, Unit of Molecular Metabolism, Lund University Diabetes Centre, Malmö University Hospital, Malmö, Sweden
| | | | - Hindrik Mulder
- Department of Clinical Sciences, Unit of Molecular Metabolism, Lund University Diabetes Centre, Malmö University Hospital, Malmö, Sweden
| | - Inge Olsson
- Department of Hematology, Lund University, Lund, Sweden
| | - Ram Ajore
- Department of Hematology, Lund University, Lund, Sweden
- * E-mail:
| |
Collapse
|
28
|
Role of transcriptional corepressor ETO2 in erythroid cells. Exp Hematol 2012; 41:303-15.e1. [PMID: 23127762 DOI: 10.1016/j.exphem.2012.10.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 10/02/2012] [Accepted: 10/30/2012] [Indexed: 02/08/2023]
Abstract
Transcriptional corepressor ETO2 is a component of a protein complex containing master regulators of hematopoiesis, including GATA-1, SCL/TAL1, LMO2, and LDB1. To elucidate the role of ETO2 during erythroid differentiation, including the effects of ETO2 on GATA-1 targets, we performed gene expression profiling using K562 cells overexpressed with ETO2. The analysis demonstrated that 667 and 598 genes were upregulated and downregulated (more than twofold), respectively, in ETO2-overexpressing cells. ETO2-repressed genes included those encoding prototypical erythroid proteins. To test what percentages of ETO2-repressed genes could be direct target genes of GATA-1 in K562 cells, we merged the microarray results with ChIP-seq profile (n = 5,749), demonstrating that 23.1% of ETO2-repressed genes contained significant GATA-1 in their loci. However, there was no significant enrichment of PU.1 target genes among ETO2-repressed genes. Gene ontology analysis among ETO2-repressed genes revealed significant enrichment of genes related to "oxygen transporter," corresponding to globin genes. Quantitative chromatin immunoprecipitation and ETO2 knockdown analyses confirmed that ETO2 directly regulates globin genes in K562 cells. Next, we evaluated the role of ETO2 in human primary erythroblasts, derived from cord blood CD34-positive cells. In an ex vivo model of erythroid differentiation from CD34-positive cells, ETO2 protein level peaked at day 2-4 and almost diminished at the later stage of differentiation. Furthermore, short hairpin RNA-mediated knockdown and retroviral vector-mediated overexpression of ETO2 in primary erythroblasts suggested that ETO2 significantly represses HBB, HBA, and ALAS2 expression. In summary, ETO2 regulates GATA-1 target genes critical for erythroid differentiation, and the decrease of ETO2 levels during erythroid differentiation would contribute to the activation of these targets.
Collapse
|