1
|
Courbon GM, Rubinstein JL. CryoEM Reveals the Complexity and Diversity of ATP Synthases. Front Microbiol 2022; 13:864006. [PMID: 35783400 PMCID: PMC9244403 DOI: 10.3389/fmicb.2022.864006] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/30/2022] [Indexed: 11/14/2022] Open
Abstract
During respiration, adenosine triphosphate (ATP) synthases harness the electrochemical proton motive force (PMF) generated by the electron transport chain (ETC) to synthesize ATP. These macromolecular machines operate by a remarkable rotary catalytic mechanism that couples transmembrane proton translocation to rotation of a rotor subcomplex, and rotation to ATP synthesis. Initially, x-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy, and cross-linking were the only ways to gain insights into the three-dimensional (3D) structures of ATP synthases and, in particular, provided ground-breaking insights into the soluble parts of the complex that explained the catalytic mechanism by which rotation is coupled to ATP synthesis. In contrast, early electron microscopy was limited to studying the overall shape of the assembly. However, advances in electron cryomicroscopy (cryoEM) have allowed determination of high-resolution structures, including the membrane regions of ATP synthases. These studies revealed the high-resolution structures of the remaining ATP synthase subunits and showed how these subunits work together in the intact macromolecular machine. CryoEM continues to uncover the diversity of ATP synthase structures across species and has begun to show how ATP synthases can be targeted by therapies to treat human diseases.
Collapse
Affiliation(s)
- Gautier M. Courbon
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Medical Biophysics, The University of Toronto, Toronto, ON, Canada
| | - John L. Rubinstein
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Medical Biophysics, The University of Toronto, Toronto, ON, Canada
- Department of Biochemistry, The University of Toronto, Toronto, ON, Canada
- *Correspondence: John L. Rubinstein
| |
Collapse
|
2
|
Roh H, Kim DH. Genotypic and Phenotypic Characterization of Highly Alkaline-Resistant Carnobacterium maltaromaticum V-Type ATPase from the Dairy Product Based on Comparative Genomics. Microorganisms 2021; 9:microorganisms9061233. [PMID: 34204143 PMCID: PMC8229585 DOI: 10.3390/microorganisms9061233] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/29/2021] [Accepted: 06/01/2021] [Indexed: 11/16/2022] Open
Abstract
Although Carnobacterium maltaromaticum derived from dairy products has been used as a lactic acid bacterium industrially, several studies have reported potential pathogenicity and disease outbreaks. Because strains derived from diseased fish and dairy products are considered potentially virulent and beneficial, respectively, their genotypic and phenotypic characteristics have attracted considerable attention. A genome-wide comparison of 30 genome sequences (13, 3, and 14 strains from diseased aquatic animals, dairy products, and processed food, respectively) was carried out. Additionally, one dairy and two nondairy strains were incubated in nutrient-rich (diluted liquid media) and nutrient-deficient environments (PBS) at pH 10 to compare their alkaline resistance in accordance with different nutritional environments by measuring their optical density and viable bacterial cell counts. Interestingly, only dairy strains carried 11 shared accessory genes, and 8 genes were strongly involved in the V-type ATPase gene cluster. Given that V-type ATPase contributes to resistance to alkaline pH and salts using proton motive force generated via sodium translocation across the membrane, C. maltaromaticum with a V-type ATPase might use nutrients in food under high pH. Indeed, the dairy strain carrying the V-type ATPase exhibited the highest alkaline resistance only in the nutrient-rich environment with significant upregulation of V-type ATPase expression. These results suggest that the gene cluster of V-type ATPase and increased alkaline resistance of dairy strains facilitate adaptation in the long-term ripening of alkaline dairy products.
Collapse
|
3
|
Iida T, Minagawa Y, Ueno H, Kawai F, Murata T, Iino R. Single-molecule analysis reveals rotational substeps and chemo-mechanical coupling scheme of Enterococcus hirae V 1-ATPase. J Biol Chem 2019; 294:17017-17030. [PMID: 31519751 PMCID: PMC6851342 DOI: 10.1074/jbc.ra119.008947] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 09/13/2019] [Indexed: 12/13/2022] Open
Abstract
V1-ATPase (V1), the catalytic domain of an ion-pumping V-ATPase, is a molecular motor that converts ATP hydrolysis-derived chemical energy into rotation. Here, using a gold nanoparticle probe, we directly observed rotation of V1 from the pathogen Enterococcus hirae (EhV1). We found that 120° steps in each ATP hydrolysis event are divided into 40 and 80° substeps. In the main pause before the 40° substep and at low ATP concentration ([ATP]), the time constant was inversely proportional to [ATP], indicating that ATP binds during the main pause with a rate constant of 1.0 × 107 m-1 s-1 At high [ATP], we observed two [ATP]-independent time constants (0.5 and 0.7 ms). One of two time constants was prolonged (144 ms) in a rotation driven by slowly hydrolyzable ATPγS, indicating that ATP is cleaved during the main pause. In another subpause before the 80° substep, we noted an [ATP]-independent time constant (2.5 ms). Furthermore, in an ATP-driven rotation of an arginine-finger mutant in the presence of ADP, -80 and -40° backward steps were observed. The time constants of the pauses before -80° backward and +40° recovery steps were inversely proportional to [ADP] and [ATP], respectively, indicating that ADP- and ATP-binding events trigger these steps. Assuming that backward steps are reverse reactions, we conclude that 40 and 80° substeps are triggered by ATP binding and ADP release, respectively, and that the remaining time constant in the main pause represents phosphate release. We propose a chemo-mechanical coupling scheme of EhV1, including substeps largely different from those of F1-ATPases.
Collapse
Affiliation(s)
- Tatsuya Iida
- Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan.,Department of Functional Molecular Science, School of Physical Sciences, SOKENDAI (Graduate University for Advanced Studies), Shonan Village, Hayama, Kanagawa 240-0193, Japan
| | - Yoshihiro Minagawa
- Department of Applied Chemistry, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hiroshi Ueno
- Department of Applied Chemistry, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Fumihiro Kawai
- Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| | - Takeshi Murata
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan.,Japan Science and Technology Agency (JST), PRESTO, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Ryota Iino
- Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan .,Department of Functional Molecular Science, School of Physical Sciences, SOKENDAI (Graduate University for Advanced Studies), Shonan Village, Hayama, Kanagawa 240-0193, Japan
| |
Collapse
|
4
|
Sielaff H, Yanagisawa S, Frasch WD, Junge W, Börsch M. Structural Asymmetry and Kinetic Limping of Single Rotary F-ATP Synthases. Molecules 2019; 24:E504. [PMID: 30704145 PMCID: PMC6384691 DOI: 10.3390/molecules24030504] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/23/2019] [Accepted: 01/29/2019] [Indexed: 12/12/2022] Open
Abstract
F-ATP synthases use proton flow through the FO domain to synthesize ATP in the F₁ domain. In Escherichia coli, the enzyme consists of rotor subunits γεc10 and stator subunits (αβ)₃δab₂. Subunits c10 or (αβ)₃ alone are rotationally symmetric. However, symmetry is broken by the b₂ homodimer, which together with subunit δa, forms a single eccentric stalk connecting the membrane embedded FO domain with the soluble F₁ domain, and the central rotating and curved stalk composed of subunit γε. Although each of the three catalytic binding sites in (αβ)₃ catalyzes the same set of partial reactions in the time average, they might not be fully equivalent at any moment, because the structural symmetry is broken by contact with b₂δ in F₁ and with b₂a in FO. We monitored the enzyme's rotary progression during ATP hydrolysis by three single-molecule techniques: fluorescence video-microscopy with attached actin filaments, Förster resonance energy transfer between pairs of fluorescence probes, and a polarization assay using gold nanorods. We found that one dwell in the three-stepped rotary progression lasting longer than the other two by a factor of up to 1.6. This effect of the structural asymmetry is small due to the internal elastic coupling.
Collapse
Affiliation(s)
- Hendrik Sielaff
- Single-Molecule Microscopy Group, Jena University Hospital, Friedrich Schiller University, 07743 Jena, Germany.
| | - Seiga Yanagisawa
- School of Life Sciences, Arizona State University, Tempe, Arizona, AZ 85287, USA.
| | - Wayne D Frasch
- School of Life Sciences, Arizona State University, Tempe, Arizona, AZ 85287, USA.
| | - Wolfgang Junge
- Department of Biology & Chemistry, University of Osnabrück, 49076 Osnabrück, Germany.
| | - Michael Börsch
- Single-Molecule Microscopy Group, Jena University Hospital, Friedrich Schiller University, 07743 Jena, Germany.
| |
Collapse
|
5
|
Maruyama S, Suzuki K, Imamura M, Sasaki H, Matsunami H, Mizutani K, Saito Y, Imai FL, Ishizuka-Katsura Y, Kimura-Someya T, Shirouzu M, Uchihashi T, Ando T, Yamato I, Murata T. Metastable asymmetrical structure of a shaftless V 1 motor. SCIENCE ADVANCES 2019; 5:eaau8149. [PMID: 30729160 PMCID: PMC6353620 DOI: 10.1126/sciadv.aau8149] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 12/17/2018] [Indexed: 06/09/2023]
Abstract
V1-ATPase is an ATP-driven rotary motor that is composed of a ring-shaped A3B3 complex and a central DF shaft. The nucleotide-free A3B3 complex of Enterococcus hirae, composed of three identical A1B1 heterodimers, showed a unique asymmetrical structure, probably due to the strong binding of the N-terminal barrel domain, which forms a crown structure. Here, we mutated the barrel region to weaken the crown, and performed structural analyses using high-speed atomic force microscopy and x-ray crystallography of the mutant A3B3. The nucleotide-free mutant A3B3 complex had a more symmetrical open structure than the wild type. Binding of nucleotides produced a closely packed spiral-like structure with a disrupted crown. These findings suggest that wild-type A3B3 forms a metastable (stressed) asymmetric structure composed of unstable A1B1 conformers due to the strong constraint of the crown. The results further the understanding of the principle of the cooperative transition mechanism of rotary motors.
Collapse
Affiliation(s)
- Shintaro Maruyama
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage, Chiba 263-8522, Japan
| | - Kano Suzuki
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage, Chiba 263-8522, Japan
| | - Motonori Imamura
- Nano Life Science Institute (WPI NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Hikaru Sasaki
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage, Chiba 263-8522, Japan
| | - Hideyuki Matsunami
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Kenji Mizutani
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage, Chiba 263-8522, Japan
- Molecular Chirality Research, Chiba University, 1-33 Yayoi-cho, Inage, Chiba 263-8522, Japan
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Yasuko Saito
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Fabiana L. Imai
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage, Chiba 263-8522, Japan
| | - Yoshiko Ishizuka-Katsura
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Tomomi Kimura-Someya
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Mikako Shirouzu
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Takayuki Uchihashi
- CREST/JST, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
- Department of Physics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Toshio Ando
- Nano Life Science Institute (WPI NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
- CREST/JST, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Ichiro Yamato
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage, Chiba 263-8522, Japan
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Takeshi Murata
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage, Chiba 263-8522, Japan
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
- Molecular Chirality Research, Chiba University, 1-33 Yayoi-cho, Inage, Chiba 263-8522, Japan
- JST, PRESTO, 1-33 Yayoi-cho, Inage, Chiba 263-8522, Japan
| |
Collapse
|
6
|
Cossio P, Allegretti M, Mayer F, Müller V, Vonck J, Hummer G. Bayesian inference of rotor ring stoichiometry from electron microscopy images of archaeal ATP synthase. Microscopy (Oxf) 2018; 67:266-273. [PMID: 30032235 DOI: 10.1093/jmicro/dfy033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 06/20/2018] [Indexed: 12/24/2022] Open
Abstract
The 'Bayesian inference of electron microscopy' (BioEM) framework makes it possible to determine the stoichiometry of protein complexes using 3D coarse-grained models and a relatively small number of cryo-electron microscopy images as input. We applied the method to determine the most probable rotor ring stoichiometry of the archaeal Na+ ATP synthase from Pyrococcus furiosus, a multisubunit complex able to produce ATP under extreme conditions. Archaeal ATP synthases consist of a catalytic A1 part and a membrane-embedded AO portion. The AO portion is composed of a rotor ring and the a-subunit. The rotor ring of P. furiosus ATP synthase is composed of 16-kDa c-subunits, each consisting of four helices forming a bundle, with only one Na+-binding site per bundle. This ring was proposed to be decameric from LILBID-MS analysis of the entire ATP synthase. By contrast, the BioEM posterior favors a c9 ring stoichiometry. With BioEM, we ranked coarse-grained models of the whole complex with different ring geometry, using 6400 unprocessed particle images of the A1AO complex collected in vitreous ice. BioEM makes it possible to probabilistically establish the domain stoichiometry using low-resolution information and comparably few particle images.
Collapse
Affiliation(s)
- Pilar Cossio
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt am Main, Germany.,Biophysics of Tropical Diseases, Max Planck Tandem Group, University of Antioquia, Medellín, Colombia
| | - Matteo Allegretti
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Florian Mayer
- Department of Molecular Microbiology & Bioenergetics, Goethe University Frankfurt, Max-von-Laue-Strasse 9, Frankfurt am Main, Germany
| | - Volker Müller
- Department of Molecular Microbiology & Bioenergetics, Goethe University Frankfurt, Max-von-Laue-Strasse 9, Frankfurt am Main, Germany
| | - Janet Vonck
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt am Main, Germany.,Department of Physics, Goethe University Frankfurt, Max-von-Laue-Strasse 9, Frankfurt am Main, Germany
| |
Collapse
|
7
|
Harrison MA, Muench SP. The Vacuolar ATPase - A Nano-scale Motor That Drives Cell Biology. Subcell Biochem 2018; 87:409-459. [PMID: 29464568 DOI: 10.1007/978-981-10-7757-9_14] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The vacuolar H+-ATPase (V-ATPase) is a ~1 MDa membrane protein complex that couples the hydrolysis of cytosolic ATP to the transmembrane movement of protons. In essentially all eukaryotic cells, this acid pumping function plays critical roles in the acidification of endosomal/lysosomal compartments and hence in transport, recycling and degradative pathways. It is also important in acid extrusion across the plasma membrane of some cells, contributing to homeostatic control of cytoplasmic pH and maintenance of appropriate extracellular acidity. The complex, assembled from up to 30 individual polypeptides, operates as a molecular motor with rotary mechanics. Historically, structural inferences about the eukaryotic V-ATPase and its subunits have been made by comparison to the structures of bacterial homologues. However, more recently, we have developed a much better understanding of the complete structure of the eukaryotic complex, in particular through advances in cryo-electron microscopy. This chapter explores these recent developments, and examines what they now reveal about the catalytic mechanism of this essential proton pump and how its activity might be regulated in response to cellular signals.
Collapse
Affiliation(s)
- Michael A Harrison
- School of Biomedical Sciences, Faculty of Biological Sciences, The University of Leeds, Leeds, UK.
| | - Steven P Muench
- School of Biomedical Sciences, Faculty of Biological Sciences, The University of Leeds, Leeds, UK
| |
Collapse
|
8
|
Structure and dynamics of rotary V 1 motor. Cell Mol Life Sci 2018; 75:1789-1802. [PMID: 29387903 PMCID: PMC5910484 DOI: 10.1007/s00018-018-2758-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/25/2017] [Accepted: 01/18/2018] [Indexed: 12/14/2022]
Abstract
Rotary ATPases are unique rotary molecular motors that function as energy conversion machines. Among all known rotary ATPases, F1-ATPase is the best characterized rotary molecular motor. There are many high-resolution crystal structures and the rotation dynamics have been investigated in detail by extensive single-molecule studies. In contrast, knowledge on the structure and rotation dynamics of V1-ATPase, another rotary ATPase, has been limited. However, recent high-resolution structural studies and single-molecule studies on V1-ATPase have provided new insights on how the catalytic sites in this molecular motor change its conformation during rotation driven by ATP hydrolysis. In this review, we summarize recent information on the structural features and rotary dynamics of V1-ATPase revealed from structural and single-molecule approaches and discuss the possible chemomechanical coupling scheme of V1-ATPase with a focus on differences between rotary molecular motors.
Collapse
|
9
|
Isaka Y, Ekimoto T, Kokabu Y, Yamato I, Murata T, Ikeguchi M. Rotation Mechanism of Molecular Motor V 1-ATPase Studied by Multiscale Molecular Dynamics Simulation. Biophys J 2017; 112:911-920. [PMID: 28297650 PMCID: PMC5355535 DOI: 10.1016/j.bpj.2017.01.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 01/06/2017] [Accepted: 01/30/2017] [Indexed: 11/28/2022] Open
Abstract
Enterococcus hirae V1-ATPase is a molecular motor composed of the A3B3 hexamer ring and the central stalk. In association with ATP hydrolysis, three catalytic AB pairs in the A3B3 ring undergo conformational changes, which lead to a 120° rotation of the central stalk. To understand how the conformational changes of three catalytic pairs induce the 120° rotation of the central stalk, we performed multiscale molecular dynamics (MD) simulations in which coarse-grained and all-atom MD simulations were combined using a fluctuation matching methodology. During the rotation, a catalytic AB pair spontaneously adopted an intermediate conformation, which was not included in the initial inputs of the simulations and was essentially close to the “bindable-like” structure observed in a recently solved crystal structure. Furthermore, the creation of a space between the bindable-like and tight pairs was required for the central stalk to rotate without steric hindrance. These cooperative rearrangements of the three catalytic pairs are crucial for the rotation of the central stalk.
Collapse
Affiliation(s)
- Yuta Isaka
- Graduate School of Medical Life Science, Yokohama City University, Tsurumi, Yokohama, Japan
| | - Toru Ekimoto
- Graduate School of Medical Life Science, Yokohama City University, Tsurumi, Yokohama, Japan
| | - Yuichi Kokabu
- Graduate School of Medical Life Science, Yokohama City University, Tsurumi, Yokohama, Japan
| | - Ichiro Yamato
- Department of Biological Science and Technology, Tokyo University of Science, Katsushika-ku, Tokyo, Japan
| | - Takeshi Murata
- Department of Chemistry, Graduate School of Science, Chiba University, Inage, Chiba, Japan; JST, PRESTO, Inage, Chiba, Japan
| | - Mitsunori Ikeguchi
- Graduate School of Medical Life Science, Yokohama City University, Tsurumi, Yokohama, Japan.
| |
Collapse
|
10
|
Zhao J, Beyrakhova K, Liu Y, Alvarez CP, Bueler SA, Xu L, Xu C, Boniecki MT, Kanelis V, Luo ZQ, Cygler M, Rubinstein JL. Molecular basis for the binding and modulation of V-ATPase by a bacterial effector protein. PLoS Pathog 2017; 13:e1006394. [PMID: 28570695 PMCID: PMC5469503 DOI: 10.1371/journal.ppat.1006394] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 06/13/2017] [Accepted: 05/01/2017] [Indexed: 12/16/2022] Open
Abstract
Intracellular pathogenic bacteria evade the immune response by replicating within host cells. Legionella pneumophila, the causative agent of Legionnaires’ Disease, makes use of numerous effector proteins to construct a niche supportive of its replication within phagocytic cells. The L. pneumophila effector SidK was identified in a screen for proteins that reduce the activity of the proton pumping vacuolar-type ATPases (V-ATPases) when expressed in the yeast Saccharomyces cerevisae. SidK is secreted by L. pneumophila in the early stages of infection and by binding to and inhibiting the V-ATPase, SidK reduces phagosomal acidification and promotes survival of the bacterium inside macrophages. We determined crystal structures of the N-terminal region of SidK at 2.3 Å resolution and used single particle electron cryomicroscopy (cryo-EM) to determine structures of V-ATPase:SidK complexes at ~6.8 Å resolution. SidK is a flexible and elongated protein composed of an α-helical region that interacts with subunit A of the V-ATPase and a second region of unknown function that is flexibly-tethered to the first. SidK binds V-ATPase strongly by interacting via two α-helical bundles at its N terminus with subunit A. In vitro activity assays show that SidK does not inhibit the V-ATPase completely, but reduces its activity by ~40%, consistent with the partial V-ATPase deficiency phenotype its expression causes in yeast. The cryo-EM analysis shows that SidK reduces the flexibility of the A-subunit that is in the ‘open’ conformation. Fluorescence experiments indicate that SidK binding decreases the affinity of V-ATPase for a fluorescent analogue of ATP. Together, these results reveal the structural basis for the fine-tuning of V-ATPase activity by SidK. V-ATPase-driven acidification of lysosomes in phagocytic cells activates enzymes important for killing of phagocytized pathogens. Successful pathogens can subvert host defenses by secreting effectors that target V-ATPases to inhibit lysosomal acidification or lysosomal fusion with other cell compartments. This study reveals the structure of the V-ATPase:SidK complex, an assembly formed from the interaction of host and pathogen proteins involved in the infection of phagocytic white blood cells by Legionella pneumophila. The structure and activity of the V-ATPase is altered upon SidK binding, providing insight into the infection strategy used by L. pneumophila and possibly other intravacuolar pathogens.
Collapse
Affiliation(s)
- Jianhua Zhao
- The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Ksenia Beyrakhova
- Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Yao Liu
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Claudia P. Alvarez
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | | | - Li Xu
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Caishuang Xu
- Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Michal T. Boniecki
- Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Voula Kanelis
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Zhao-Qing Luo
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Miroslaw Cygler
- Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- * E-mail: (JLR); (MC)
| | - John L. Rubinstein
- The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- * E-mail: (JLR); (MC)
| |
Collapse
|
11
|
Liu QX, Zhang W, Wang J, Hou W, Wang YP. A proteomic approach reveals the differential protein expression in Drosophila melanogaster treated with red ginseng extract ( Panax ginseng). J Ginseng Res 2017; 42:343-351. [PMID: 29983616 PMCID: PMC6026366 DOI: 10.1016/j.jgr.2017.04.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 04/03/2017] [Accepted: 04/17/2017] [Indexed: 12/15/2022] Open
Abstract
Background Red ginseng is a popularly used traditional medicine with antiaging effects in Asian countries. The present study aimed to explore the changes in protein expression underlying the mechanisms of life span extension and antiaging caused by red ginseng extract (RGE) in Drosophila melanogaster. Methods A proteomic approach of two-dimensional polyacrylamide gel electrophoresis (2-DE) was used to identify the differential abundance of possible target proteins of RGE in D. melanogaster. The reliability of the 2-DE results was confirmed via Western blotting to measure the expression levels of selected proteins. Proteins altered at the expression level after RGE treatment (1 mg/mL) were identified by matrix-assisted laser desorption/ionization-time of flight tandem mass spectrometry and by searching against the National Center for Biotechnology nonredundant and Uniprot protein databases. The differentially expressed proteins were analyzed using bioinformatics methods. Results The average survival life span of D. melanogaster was significantly extended by 12.60% with RGE treatment (1 mg/mL) compared to untreated flies. This followed increased superoxide dismutase level and decreased methane dicarboxylic aldehyde content. Based on the searching strategy, 23 differentially expressed proteins were identified (16 up-regulated and 7 down-regulated) in the RGE-treated D. melanogaster. Transduction pathways were identified using the Kyoto Encyclopedia of Genes and Genomes database, and included the hippo and oxidative phosphorylation pathways that play important roles in life span extension and antiaging process of D. melanogaster. Conclusion Treatment with RGE in D. melanogaster demonstrated that mechanisms of life span extension and antiaging are regulated by multiple factors and complicated signal pathways.
Collapse
Affiliation(s)
- Qing-Xiu Liu
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Wei Zhang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China.,State Key Laboratory for Molecular Biology of Special Economic Animals, Changchun, Jilin, China
| | - Jia Wang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Wei Hou
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Ying-Ping Wang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China
| |
Collapse
|
12
|
In situ structure of trypanosomal ATP synthase dimer reveals a unique arrangement of catalytic subunits. Proc Natl Acad Sci U S A 2017; 114:992-997. [PMID: 28096380 DOI: 10.1073/pnas.1612386114] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We used electron cryotomography and subtomogram averaging to determine the in situ structures of mitochondrial ATP synthase dimers from two organisms belonging to the phylum euglenozoa: Trypanosoma brucei, a lethal human parasite, and Euglena gracilis, a photosynthetic protist. At a resolution of 32.5 Å and 27.5 Å, respectively, the two structures clearly exhibit a noncanonical F1 head, in which the catalytic (αβ)3 assembly forms a triangular pyramid rather than the pseudo-sixfold ring arrangement typical of all other ATP synthases investigated so far. Fitting of known X-ray structures reveals that this unusual geometry results from a phylum-specific cleavage of the α subunit, in which the C-terminal αC fragments are displaced by ∼20 Å and rotated by ∼30° from their expected positions. In this location, the αC fragment is unable to form the conserved catalytic interface that was thought to be essential for ATP synthesis, and cannot convert γ-subunit rotation into the conformational changes implicit in rotary catalysis. The new arrangement of catalytic subunits suggests that the mechanism of ATP generation by rotary ATPases is less strictly conserved than has been generally assumed. The ATP synthases of these organisms present a unique model system for discerning the individual contributions of the α and β subunits to the fundamental process of ATP synthesis.
Collapse
|
13
|
Suzuki K, Mizutani K, Maruyama S, Shimono K, Imai FL, Muneyuki E, Kakinuma Y, Ishizuka-Katsura Y, Shirouzu M, Yokoyama S, Yamato I, Murata T. Crystal structures of the ATP-binding and ADP-release dwells of the V 1 rotary motor. Nat Commun 2016; 7:13235. [PMID: 27807367 PMCID: PMC5095293 DOI: 10.1038/ncomms13235] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 09/14/2016] [Indexed: 12/21/2022] Open
Abstract
V1-ATPases are highly conserved ATP-driven rotary molecular motors found in various membrane systems. We recently reported the crystal structures for the Enterococcus hirae A3B3DF (V1) complex, corresponding to the catalytic dwell state waiting for ATP hydrolysis. Here we present the crystal structures for two other dwell states obtained by soaking nucleotide-free V1 crystals in ADP. In the presence of 20 μM ADP, two ADP molecules bind to two of three binding sites and cooperatively induce conformational changes of the third site to an ATP-binding mode, corresponding to the ATP-binding dwell. In the presence of 2 mM ADP, all nucleotide-binding sites are occupied by ADP to induce conformational changes corresponding to the ADP-release dwell. Based on these and previous findings, we propose a V1-ATPase rotational mechanism model.
Collapse
Affiliation(s)
- Kano Suzuki
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage, Chiba 263-8522, Japan
| | - Kenji Mizutani
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage, Chiba 263-8522, Japan
- Molecular Chirality Research Center, Chiba University, 1-33 Yayoi-cho, Inage, Chiba 263-8522, Japan
- Department of Biological Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba 278-8510, Japan
| | - Shintaro Maruyama
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage, Chiba 263-8522, Japan
| | - Kazumi Shimono
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi 274-8510, Japan
| | - Fabiana L. Imai
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage, Chiba 263-8522, Japan
| | - Eiro Muneyuki
- Department of Physics, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Tokyo 112-8551, Japan
| | - Yoshimi Kakinuma
- Laboratory of Molecular Physiology and Genetics, Faculty of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan
| | - Yoshiko Ishizuka-Katsura
- Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Mikako Shirouzu
- Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Shigeyuki Yokoyama
- RIKEN Structural Biology Laboratory, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Ichiro Yamato
- Department of Biological Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba 278-8510, Japan
| | - Takeshi Murata
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage, Chiba 263-8522, Japan
- Molecular Chirality Research Center, Chiba University, 1-33 Yayoi-cho, Inage, Chiba 263-8522, Japan
- Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
- JST, PRESTO, 1-33 Yayoi-cho, Inage, Chiba 263-8522, Japan
| |
Collapse
|
14
|
Abstract
F1- and V1-ATPase are rotary molecular motors that convert chemical energy released upon ATP hydrolysis into torque to rotate a central rotor axle against the surrounding catalytic stator cylinder with high efficiency. How conformational change occurring in the stator is coupled to the rotary motion of the axle is the key unknown in the mechanism of rotary motors. Here, we generated chimeric motor proteins by inserting an exogenous rod protein, FliJ, into the stator ring of F1 or of V1 and tested the rotation properties of these chimeric motors. Both motors showed unidirectional and continuous rotation, despite no obvious homology in amino acid sequence between FliJ and the intrinsic rotor subunit of F1 or V1 These results showed that any residue-specific interactions between the stator and rotor are not a prerequisite for unidirectional rotation of both F1 and V1 The torque of chimeric motors estimated from viscous friction of the rotation probe against medium revealed that whereas the F1-FliJ chimera generates only 10% of WT F1, the V1-FliJ chimera generates torque comparable to that of V1 with the native axle protein that is structurally more similar to FliJ than the native rotor of F1 This suggests that the gross structural mismatch hinders smooth rotation of FliJ accompanied with the stator ring of F1.
Collapse
|
15
|
Mazhab-Jafari MT, Rubinstein JL. Cryo-EM studies of the structure and dynamics of vacuolar-type ATPases. SCIENCE ADVANCES 2016; 2:e1600725. [PMID: 27532044 PMCID: PMC4985227 DOI: 10.1126/sciadv.1600725] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 06/15/2016] [Indexed: 06/06/2023]
Abstract
Electron cryomicroscopy (cryo-EM) has significantly advanced our understanding of molecular structure in biology. Recent innovations in both hardware and software have made cryo-EM a viable alternative for targets that are not amenable to x-ray crystallography or nuclear magnetic resonance (NMR) spectroscopy. Cryo-EM has even become the method of choice in some situations where x-ray crystallography and NMR spectroscopy are possible but where cryo-EM can determine structures at higher resolution or with less time or effort. Rotary adenosine triphosphatases (ATPases) are crucial to the maintenance of cellular homeostasis. These enzymes couple the synthesis or hydrolysis of adenosine triphosphate to the use or production of a transmembrane electrochemical ion gradient, respectively. However, the membrane-embedded nature and conformational heterogeneity of intact rotary ATPases have prevented their high-resolution structural analysis to date. Recent application of cryo-EM methods to the different types of rotary ATPase has led to sudden advances in understanding the structure and function of these enzymes, revealing significant conformational heterogeneity and characteristic transmembrane α helices that are highly tilted with respect to the membrane. In this Review, we will discuss what has been learned recently about rotary ATPase structure and function, with a particular focus on the vacuolar-type ATPases.
Collapse
Affiliation(s)
- Mohammad T. Mazhab-Jafari
- Molecular Structure and Function Program, The Hospital for Sick Children Research Institute, 686 Bay Street, Toronto, Ontario M5G 0A4, Canada
| | - John L. Rubinstein
- Molecular Structure and Function Program, The Hospital for Sick Children Research Institute, 686 Bay Street, Toronto, Ontario M5G 0A4, Canada
- Department of Biochemistry, The University of Toronto, 1 King’s College Circle, Toronto, Ontario M5S 1A8, Canada
- Department of Medical Biophysics, The University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| |
Collapse
|
16
|
Yamato I, Kakinuma Y, Murata T. Operating principles of rotary molecular motors: differences between F 1 and V 1 motors. Biophys Physicobiol 2016; 13:37-44. [PMID: 27924256 PMCID: PMC5042177 DOI: 10.2142/biophysico.13.0_37] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 02/11/2016] [Indexed: 12/01/2022] Open
Abstract
Among the many types of bioenergy-transducing machineries, F- and V-ATPases are unique bio- and nano-molecular rotary motors. The rotational catalysis of F1-ATPase has been investigated in detail, and molecular mechanisms have been proposed based on the crystal structures of the complex and on extensive single-molecule rotational observations. Recently, we obtained crystal structures of bacterial V1-ATPase (A3B3 and A3B3DF complexes) in the presence and absence of nucleotides. Based on these new structures, we present a novel model for the rotational catalysis mechanism of V1-ATPase, which is different from that of F1-ATPases.
Collapse
Affiliation(s)
- Ichiro Yamato
- Department of Biological Science and Technology, Tokyo University of Science, Tokyo 125-8585, Japan
| | - Yoshimi Kakinuma
- Laboratory of Molecular Physiology and Genetics, Faculty of Agriculture, Ehime University, Matsuyama, Ehime 790-8566, Japan
| | - Takeshi Murata
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba 263-8522, Japan; Molecular Chirality Research Center, Chiba University, Chiba 263-8522, Japan; JST, PRESTO, Chiba 263-8522, Japan
| |
Collapse
|
17
|
Mohanty S, Jobichen C, Chichili VPR, Velázquez-Campoy A, Low BC, Hogue CWV, Sivaraman J. Structural Basis for a Unique ATP Synthase Core Complex from Nanoarcheaum equitans. J Biol Chem 2015; 290:27280-27296. [PMID: 26370083 DOI: 10.1074/jbc.m115.677492] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Indexed: 11/06/2022] Open
Abstract
ATP synthesis is a critical and universal life process carried out by ATP synthases. Whereas eukaryotic and prokaryotic ATP synthases are well characterized, archaeal ATP synthases are relatively poorly understood. The hyperthermophilic archaeal parasite, Nanoarcheaum equitans, lacks several subunits of the ATP synthase and is suspected to be energetically dependent on its host, Ignicoccus hospitalis. This suggests that this ATP synthase might be a rudimentary machine. Here, we report the crystal structures and biophysical studies of the regulatory subunit, NeqB, the apo-NeqAB, and NeqAB in complex with nucleotides, ADP, and adenylyl-imidodiphosphate (non-hydrolysable analog of ATP). NeqB is ∼20 amino acids shorter at its C terminus than its homologs, but this does not impede its binding with NeqA to form the complex. The heterodimeric NeqAB complex assumes a closed, rigid conformation irrespective of nucleotide binding; this differs from its homologs, which require conformational changes for catalytic activity. Thus, although N. equitans possesses an ATP synthase core A3B3 hexameric complex, it might not function as a bona fide ATP synthase.
Collapse
Affiliation(s)
- Soumya Mohanty
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Chacko Jobichen
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | | | - Adrián Velázquez-Campoy
- the Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint-Unit Institute of Physical Chemistry "Rocasolano (IQFR)-Spanish National Research Council (CSIC)-BIFI, and Department of Biochemistry and Molecular and Cell Biology, University of Zaragoza and Fundacion ARAID, Government of Aragon, 50018 Zaragoza, Spain
| | - Boon Chuan Low
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore,; Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore.
| | - Christopher W V Hogue
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore,; Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
| | - J Sivaraman
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore,.
| |
Collapse
|
18
|
Electron cryomicroscopy observation of rotational states in a eukaryotic V-ATPase. Nature 2015; 521:241-5. [PMID: 25971514 DOI: 10.1038/nature14365] [Citation(s) in RCA: 218] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 03/05/2015] [Indexed: 01/19/2023]
Abstract
Eukaryotic vacuolar H(+)-ATPases (V-ATPases) are rotary enzymes that use energy from hydrolysis of ATP to ADP to pump protons across membranes and control the pH of many intracellular compartments. ATP hydrolysis in the soluble catalytic region of the enzyme is coupled to proton translocation through the membrane-bound region by rotation of a central rotor subcomplex, with peripheral stalks preventing the entire membrane-bound region from turning with the rotor. The eukaryotic V-ATPase is the most complex rotary ATPase: it has three peripheral stalks, a hetero-oligomeric proton-conducting proteolipid ring, several subunits not found in other rotary ATPases, and is regulated by reversible dissociation of its catalytic and proton-conducting regions. Studies of ATP synthases, V-ATPases, and bacterial/archaeal V/A-ATPases have suggested that flexibility is necessary for the catalytic mechanism of rotary ATPases, but the structures of different rotational states have never been observed experimentally. Here we use electron cryomicroscopy to obtain structures for three rotational states of the V-ATPase from the yeast Saccharomyces cerevisiae. The resulting series of structures shows ten proteolipid subunits in the c-ring, setting the ATP:H(+) ratio for proton pumping by the V-ATPase at 3:10, and reveals long and highly tilted transmembrane α-helices in the a-subunit that interact with the c-ring. The three different maps reveal the conformational changes that occur to couple rotation in the symmetry-mismatched soluble catalytic region to the membrane-bound proton-translocating region. Almost all of the subunits of the enzyme undergo conformational changes during the transitions between these three rotational states. The structures of these states provide direct evidence that deformation during rotation enables the smooth transmission of power through rotary ATPases.
Collapse
|
19
|
Rawson S, Phillips C, Huss M, Tiburcy F, Wieczorek H, Trinick J, Harrison MA, Muench SP. Structure of the vacuolar H+-ATPase rotary motor reveals new mechanistic insights. Structure 2015; 23:461-471. [PMID: 25661654 PMCID: PMC4353692 DOI: 10.1016/j.str.2014.12.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Revised: 12/05/2014] [Accepted: 12/06/2014] [Indexed: 01/08/2023]
Abstract
Vacuolar H(+)-ATPases are multisubunit complexes that operate with rotary mechanics and are essential for membrane proton transport throughout eukaryotes. Here we report a ∼ 1 nm resolution reconstruction of a V-ATPase in a different conformational state from that previously reported for a lower-resolution yeast model. The stator network of the V-ATPase (and by implication that of other rotary ATPases) does not change conformation in different catalytic states, and hence must be relatively rigid. We also demonstrate that a conserved bearing in the catalytic domain is electrostatic, contributing to the extraordinarily high efficiency of rotary ATPases. Analysis of the rotor axle/membrane pump interface suggests how rotary ATPases accommodate different c ring stoichiometries while maintaining high efficiency. The model provides evidence for a half channel in the proton pump, supporting theoretical models of ion translocation. Our refined model therefore provides new insights into the structure and mechanics of the V-ATPases.
Collapse
Affiliation(s)
- Shaun Rawson
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Clair Phillips
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Markus Huss
- Abteilung Tierphysiologie, Fachbereich Biologie/Chemie, Universität Osnabrück, 49069 Osnabrück, Germany
| | - Felix Tiburcy
- Abteilung Tierphysiologie, Fachbereich Biologie/Chemie, Universität Osnabrück, 49069 Osnabrück, Germany
| | - Helmut Wieczorek
- Abteilung Tierphysiologie, Fachbereich Biologie/Chemie, Universität Osnabrück, 49069 Osnabrück, Germany
| | - John Trinick
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Michael A Harrison
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Stephen P Muench
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
20
|
Zhou M, Robinson CV. Flexible membrane proteins: functional dynamics captured by mass spectrometry. Curr Opin Struct Biol 2014; 28:122-30. [DOI: 10.1016/j.sbi.2014.08.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 07/23/2014] [Accepted: 08/13/2014] [Indexed: 10/24/2022]
|
21
|
Ueno H, Minagawa Y, Hara M, Rahman S, Yamato I, Muneyuki E, Noji H, Murata T, Iino R. Torque generation of Enterococcus hirae V-ATPase. J Biol Chem 2014; 289:31212-23. [PMID: 25258315 DOI: 10.1074/jbc.m114.598177] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
V-ATPase (V(o)V1) converts the chemical free energy of ATP into an ion-motive force across the cell membrane via mechanical rotation. This energy conversion requires proper interactions between the rotor and stator in V(o)V1 for tight coupling among chemical reaction, torque generation, and ion transport. We developed an Escherichia coli expression system for Enterococcus hirae V(o)V1 (EhV(o)V1) and established a single-molecule rotation assay to measure the torque generated. Recombinant and native EhV(o)V1 exhibited almost identical dependence of ATP hydrolysis activity on sodium ion and ATP concentrations, indicating their functional equivalence. In a single-molecule rotation assay with a low load probe at high ATP concentration, EhV(o)V1 only showed the "clear" state without apparent backward steps, whereas EhV1 showed two states, "clear" and "unclear." Furthermore, EhV(o)V1 showed slower rotation than EhV1 without the three distinct pauses separated by 120° that were observed in EhV1. When using a large probe, EhV(o)V1 showed faster rotation than EhV1, and the torque of EhV(o)V1 estimated from the continuous rotation was nearly double that of EhV1. On the other hand, stepping torque of EhV1 in the clear state was comparable with that of EhV(o)V1. These results indicate that rotor-stator interactions of the V(o) moiety and/or sodium ion transport limit the rotation driven by the V1 moiety, and the rotor-stator interactions in EhV(o)V1 are stabilized by two peripheral stalks to generate a larger torque than that of isolated EhV1. However, the torque value was substantially lower than that of other rotary ATPases, implying the low energy conversion efficiency of EhV(o)V1.
Collapse
Affiliation(s)
- Hiroshi Ueno
- From the Department of Physics, Faculty of Science and Engineering, Chuo University, Tokyo 112-8551, Japan
| | - Yoshihiro Minagawa
- the Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Mayu Hara
- the Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Suhaila Rahman
- the Department of Biological Science and Technology, Tokyo University of Science, Tokyo 125-8585, Japan
| | - Ichiro Yamato
- the Department of Biological Science and Technology, Tokyo University of Science, Tokyo 125-8585, Japan
| | - Eiro Muneyuki
- From the Department of Physics, Faculty of Science and Engineering, Chuo University, Tokyo 112-8551, Japan
| | - Hiroyuki Noji
- the Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Takeshi Murata
- the Department of Chemistry, Graduate School of Science, Chiba University, Chiba 263-8522, Japan, JST, PRESTO, Chiba 263-8522, Japan,
| | - Ryota Iino
- the Okazaki Institute for Integrative Bioscience, Institute for Molecular Science, National Institutes of Natural Sciences, Aichi 444-8787, Japan, and the Department of Functional Molecular Science, School of Physical Sciences, The Graduate University for Advanced Studies (SOKENDAI), Kanagawa 240-0193, Japan
| |
Collapse
|
22
|
Marshansky V, Rubinstein JL, Grüber G. Eukaryotic V-ATPase: novel structural findings and functional insights. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:857-79. [PMID: 24508215 DOI: 10.1016/j.bbabio.2014.01.018] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Revised: 12/25/2013] [Accepted: 01/27/2014] [Indexed: 02/06/2023]
Abstract
The eukaryotic V-type adenosine triphosphatase (V-ATPase) is a multi-subunit membrane protein complex that is evolutionarily related to F-type adenosine triphosphate (ATP) synthases and A-ATP synthases. These ATPases/ATP synthases are functionally conserved and operate as rotary proton-pumping nano-motors, invented by Nature billions of years ago. In the first part of this review we will focus on recent structural findings of eukaryotic V-ATPases and discuss the role of different subunits in the function of the V-ATPase holocomplex. Despite structural and functional similarities between rotary ATPases, the eukaryotic V-ATPases are the most complex enzymes that have acquired some unconventional cellular functions during evolution. In particular, the novel roles of V-ATPases in the regulation of cellular receptors and their trafficking via endocytotic and exocytotic pathways were recently uncovered. In the second part of this review we will discuss these unique roles of V-ATPases in modulation of function of cellular receptors, involved in the development and progression of diseases such as cancer and diabetes as well as neurodegenerative and kidney disorders. Moreover, it was recently revealed that the V-ATPase itself functions as an evolutionarily conserved pH sensor and receptor for cytohesin-2/Arf-family GTP-binding proteins. Thus, in the third part of the review we will evaluate the structural basis for and functional insights into this novel concept, followed by the analysis of the potentially essential role of V-ATPase in the regulation of this signaling pathway in health and disease. Finally, future prospects for structural and functional studies of the eukaryotic V-ATPase will be discussed.
Collapse
Affiliation(s)
- Vladimir Marshansky
- Center for Systems Biology, Program in Membrane Biology, Division of Nephrology, Simches Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Department of Medicine, Harvard Medical School, Boston, MA 02114, USA; Kadmon Pharmaceuticals Corporation, Alexandria Center for Life Science, 450 East 29th Street, New York, NY 10016, USA.
| | - John L Rubinstein
- Molecular Structure and Function Program, The Hospital for Sick Children Research Institute, University of Toronto, Toronto, ON M5G 1X8, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5G 1X8, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1X8, Canada
| | - Gerhard Grüber
- Nanyang Technological University, Division of Structural Biology and Biochemistry, School of Biological Sciences, Singapore 637551, Republic of Singapore; Bioinformatics Institute, A(⁎)STAR, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
| |
Collapse
|
23
|
Flexibility within the rotor and stators of the vacuolar H+-ATPase. PLoS One 2013; 8:e82207. [PMID: 24312643 PMCID: PMC3846802 DOI: 10.1371/journal.pone.0082207] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 10/21/2013] [Indexed: 11/19/2022] Open
Abstract
The V-ATPase is a membrane-bound protein complex which pumps protons across the membrane to generate a large proton motive force through the coupling of an ATP-driven 3-stroke rotary motor (V1) to a multistroke proton pump (Vo). This is done with near 100% efficiency, which is achieved in part by flexibility within the central rotor axle and stator connections, allowing the system to flex to minimise the free energy loss of conformational changes during catalysis. We have used electron microscopy to reveal distinctive bending along the V-ATPase complex, leading to angular displacement of the V1 domain relative to the Vo domain to a maximum of ~30°. This has been complemented by elastic network normal mode analysis that shows both flexing and twisting with the compliance being located in the rotor axle, stator filaments, or both. This study provides direct evidence of flexibility within the V-ATPase and by implication in related rotary ATPases, a feature predicted to be important for regulation and their high energetic efficiencies.
Collapse
|
24
|
Minagawa Y, Ueno H, Hara M, Ishizuka-Katsura Y, Ohsawa N, Terada T, Shirouzu M, Yokoyama S, Yamato I, Muneyuki E, Noji H, Murata T, Iino R. Basic properties of rotary dynamics of the molecular motor Enterococcus hirae V1-ATPase. J Biol Chem 2013; 288:32700-32707. [PMID: 24089518 DOI: 10.1074/jbc.m113.506329] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
V-ATPases are rotary molecular motors that generally function as proton pumps. We recently solved the crystal structures of the V1 moiety of Enterococcus hirae V-ATPase (EhV1) and proposed a model for its rotation mechanism. Here, we characterized the rotary dynamics of EhV1 using single-molecule analysis employing a load-free probe. EhV1 rotated in a counterclockwise direction, exhibiting two distinct rotational states, namely clear and unclear, suggesting unstable interactions between the rotor and stator. The clear state was analyzed in detail to obtain kinetic parameters. The rotation rates obeyed Michaelis-Menten kinetics with a maximal rotation rate (Vmax) of 107 revolutions/s and a Michaelis constant (Km) of 154 μM at 26 °C. At all ATP concentrations tested, EhV1 showed only three pauses separated by 120°/turn, and no substeps were resolved, as was the case with Thermus thermophilus V1-ATPase (TtV1). At 10 μM ATP (<<Km), the distribution of the durations of the ATP-waiting pause fit well with a single-exponential decay function. The second-order binding rate constant for ATP was 2.3 × 10(6) M(-1) s(-1). At 40 mM ATP (>>Km), the distribution of the durations of the catalytic pause was reproduced by a consecutive reaction with two time constants of 2.6 and 0.5 ms. These kinetic parameters were similar to those of TtV1. Our results identify the common properties of rotary catalysis of V1-ATPases that are distinct from those of F1-ATPases and will further our understanding of the general mechanisms of rotary molecular motors.
Collapse
Affiliation(s)
- Yoshihiro Minagawa
- From the Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656
| | - Hiroshi Ueno
- the Department of Physics, Faculty of Science and Engineering, Chuo University, Tokyo 112-8551
| | - Mayu Hara
- From the Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656
| | | | - Noboru Ohsawa
- the RIKEN Systems and Structural Biology Center, Yokohama 230-0045
| | - Takaho Terada
- the RIKEN Systems and Structural Biology Center, Yokohama 230-0045
| | - Mikako Shirouzu
- the RIKEN Systems and Structural Biology Center, Yokohama 230-0045
| | | | - Ichiro Yamato
- the Department of Biological Science and Technology, Tokyo University of Science, Tokyo 125-8585
| | - Eiro Muneyuki
- the Department of Physics, Faculty of Science and Engineering, Chuo University, Tokyo 112-8551
| | - Hiroyuki Noji
- From the Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656
| | - Takeshi Murata
- the Department of Chemistry, Graduate School of Science, Chiba University, Chiba 263-8522; Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Chiba 263-8522, Japan.
| | - Ryota Iino
- From the Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656,.
| |
Collapse
|
25
|
Muench SP, Scheres SHW, Huss M, Phillips C, Vitavska O, Wieczorek H, Trinick J, Harrison MA. Subunit positioning and stator filament stiffness in regulation and power transmission in the V1 motor of the Manduca sexta V-ATPase. J Mol Biol 2013; 426:286-300. [PMID: 24075871 PMCID: PMC3899036 DOI: 10.1016/j.jmb.2013.09.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 09/04/2013] [Accepted: 09/05/2013] [Indexed: 12/01/2022]
Abstract
The vacuolar H+-ATPase (V-ATPase) is an ATP-driven proton pump essential to the function of eukaryotic cells. Its cytoplasmic V1 domain is an ATPase, normally coupled to membrane-bound proton pump Vo via a rotary mechanism. How these asymmetric motors are coupled remains poorly understood. Low energy status can trigger release of V1 from the membrane and curtail ATP hydrolysis. To investigate the molecular basis for these processes, we have carried out cryo-electron microscopy three-dimensional reconstruction of deactivated V1 from Manduca sexta. In the resulting model, three peripheral stalks that are parts of the mechanical stator of the V-ATPase are clearly resolved as unsupported filaments in the same conformations as in the holoenzyme. They are likely therefore to have inherent stiffness consistent with a role as flexible rods in buffering elastic power transmission between the domains of the V-ATPase. Inactivated V1 adopted a homogeneous resting state with one open active site adjacent to the stator filament normally linked to the H subunit. Although present at 1:1 stoichiometry with V1, both recombinant subunit C reconstituted with V1 and its endogenous subunit H were poorly resolved in three-dimensional reconstructions, suggesting structural heterogeneity in the region at the base of V1 that could indicate positional variability. If the position of H can vary, existing mechanistic models of deactivation in which it binds to and locks the axle of the V-ATPase rotary motor would need to be re-evaluated. Dissociation of vacuolar H+-ATPase domains deactivates its V1 motor. V1 has one “open” catalytic site linked to the stator filament bound by subunit H. Movement of subunit H to prevent rotary catalysis is possible. Three stator filaments project from deactivated V1, indicating inherent stiffness. This work gives new insight into energetic coupling and control in V-ATPases.
Collapse
Affiliation(s)
- Stephen P Muench
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Sjors H W Scheres
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| | - Markus Huss
- Abteilung Tierphysiologie, Fachbereich Biologie/Chemie, Universität Osnabrück, 49069 Osnabrück, Germany
| | - Clair Phillips
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Olga Vitavska
- Abteilung Tierphysiologie, Fachbereich Biologie/Chemie, Universität Osnabrück, 49069 Osnabrück, Germany
| | - Helmut Wieczorek
- Abteilung Tierphysiologie, Fachbereich Biologie/Chemie, Universität Osnabrück, 49069 Osnabrück, Germany
| | - John Trinick
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Michael A Harrison
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
26
|
Kishikawa JI, Ibuki T, Nakamura S, Nakanishi A, Minamino T, Miyata T, Namba K, Konno H, Ueno H, Imada K, Yokoyama K. Common evolutionary origin for the rotor domain of rotary ATPases and flagellar protein export apparatus. PLoS One 2013; 8:e64695. [PMID: 23724081 PMCID: PMC3665681 DOI: 10.1371/journal.pone.0064695] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 04/17/2013] [Indexed: 02/02/2023] Open
Abstract
The V1- and F1- rotary ATPases contain a rotor that rotates against a catalytic A3B3 or α3β3 stator. The rotor F1-γ or V1-DF is composed of both anti-parallel coiled coil and globular-loop parts. The bacterial flagellar type III export apparatus contains a V1/F1-like ATPase ring structure composed of FliI6 homo-hexamer and FliJ which adopts an anti-parallel coiled coil structure without the globular-loop part. Here we report that FliJ of Salmonella enterica serovar Typhimurium shows a rotor like function in Thermus thermophilus A3B3 based on both biochemical and structural analysis. Single molecular analysis indicates that an anti-parallel coiled-coil structure protein (FliJ structure protein) functions as a rotor in A3B3. A rotary ATPase possessing an F1-γ-like protein generated by fusion of the D and F subunits of V1 rotates, suggesting F1-γ could be the result of a fusion of the genes encoding two separate rotor subunits. Together with sequence comparison among the globular part proteins, the data strongly suggest that the rotor domains of the rotary ATPases and the flagellar export apparatus share a common evolutionary origin.
Collapse
Affiliation(s)
- Jun-ichi Kishikawa
- Department of Molecular Biosciences, Kyoto Sangyo University, Motoyama Kamigamo, Kita-ku, Kyoto, Japan
| | - Tatsuya Ibuki
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Shuichi Nakamura
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
- Department of Applied Physics, Graduate School of Engineering, Tohoku University, Sendai, Miyagi, Japan
| | - Astuko Nakanishi
- Department of Molecular Biosciences, Kyoto Sangyo University, Motoyama Kamigamo, Kita-ku, Kyoto, Japan
| | - Tohru Minamino
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
| | - Tomoko Miyata
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Keiichi Namba
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
- Riken Quantitative Biology Center, Osaka, Japan
| | - Hiroki Konno
- Imaging Research Division, Bio-AFM Frontier Research Center, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Hiroshi Ueno
- Department of Physics, Faculty of Science and Engineering, Chuo University, Bunkyo-ku, Tokyo, Japan
| | - Katsumi Imada
- Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
- * E-mail: (KI); (KY)
| | - Ken Yokoyama
- Department of Molecular Biosciences, Kyoto Sangyo University, Motoyama Kamigamo, Kita-ku, Kyoto, Japan
- * E-mail: (KI); (KY)
| |
Collapse
|
27
|
Nagamatsu Y, Takeda K, Kuranaga T, Numoto N, Miki K. Origin of asymmetry at the intersubunit interfaces of V1-ATPase from Thermus thermophilus. J Mol Biol 2013; 425:2699-708. [PMID: 23639357 DOI: 10.1016/j.jmb.2013.04.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 04/21/2013] [Accepted: 04/22/2013] [Indexed: 11/29/2022]
Abstract
V-type ATPase (V-ATPase) is one of the rotary ATPase complexes that mediate energy conversion between the chemical energy of ATP and the ion gradient across the membrane through a rotary catalytic mechanism. Because V-ATPase has structural features similar to those of well-studied F-type ATPase, the structure is expected to highlight the common essence of the torque generation of rotary ATPases. Here, we report a complete model of the extra-membrane domain of the V-ATPase (V1-ATPase) of a thermophilic bacterium, Thermus thermophilus, consisting of three A subunits, three B subunits, one D subunit, and one F subunit. The X-ray structure at 3.9Å resolution provides detailed information about the interactions between A3B3 and DF subcomplexes as well as interactions among the respective subunits, which are defined by the properties of side chains. Asymmetry at the intersubunit interfaces was detected from the structural differences among the three AB pairs in the different reaction states, while the large interdomain motion in the catalytic A subunits was not observed unlike F1 from various species and V1 from Enterococcus hirae. Asymmetry is mainly realized by rigid-body rearrangements of the relative position between A and B subunits. This is consistent with the previous observations by the high-resolution electron microscopy for the whole V-ATPase complexes. Therefore, our result plausibly implies that the essential motion for the torque generation is not the large interdomain movement of the catalytic subunits but the rigid-body rearrangement of subunits.
Collapse
Affiliation(s)
- Yumemi Nagamatsu
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | | | |
Collapse
|
28
|
Tani K, Arthur CP, Tamakoshi M, Yokoyama K, Mitsuoka K, Fujiyoshi Y, Gerle C. Visualization of two distinct states of disassembly in the bacterial V-ATPase from Thermus thermophilus. Microscopy (Oxf) 2013; 62:467-74. [PMID: 23572213 DOI: 10.1093/jmicro/dft020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
V-ATPases are multisubunit, membrane-bound, energy-converting, cellular machines whose assembly and disassembly is innately connected to their activity in vivo. In vitro V-ATPases show a propensity for disassembly that greatly complicates their functional, and, in particular, structural characterization. Direct structural evidence for early stages of their disassembly has not been reported yet. We analyzed the structure of the V-ATPase from Thermus thermophilus in a single negatively stained two-dimensional (2-D) crystal both by electron tomography and by electron crystallography. Our analysis demonstrated that for 2-D crystals of fragile macromolecular complexes, which are too heterogenous or too few for the merging of image data from many crystals, single-crystal 3-D reconstructions by electron tomography and electron crystallography are expedient tools of analysis. The asymmetric unit in the 2-D crystal lattice contains two different V-ATPase complexes that appear to be in an early stage of disassembly and with either one or both peripheral stalks not being visualized, suggesting the involvement of the peripheral stalks in early stages of disassembly.
Collapse
Affiliation(s)
- Kazutoshi Tani
- Cellular and Structural Physiology Institute, Nagoya University, Nagoya 464-8601, Japan
| | | | | | | | | | | | | |
Collapse
|
29
|
Basak S, Lim J, Manimekalai MSS, Balakrishna AM, Grüber G. Crystal and NMR structures give insights into the role and dynamics of subunit F of the eukaryotic V-ATPase from Saccharomyces cerevisiae. J Biol Chem 2013; 288:11930-9. [PMID: 23476018 DOI: 10.1074/jbc.m113.461533] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Subunit F of V-ATPases is proposed to undergo structural alterations during catalysis and reversible dissociation from the V1VO complex. Recently, we determined the low resolution structure of F from Saccharomyces cerevisiae V-ATPase, showing an N-terminal egg shape, connected to a C-terminal hook-like segment via a linker region. To understand the mechanistic role of subunit F of S. cerevisiae V-ATPase, composed of 118 amino acids, the crystal structure of the major part of F, F(1-94), was solved at 2.3 Å resolution. The structural features were confirmed by solution NMR spectroscopy using the entire F subunit. The eukaryotic F subunit consists of the N-terminal F(1-94) domain with four-parallel β-strands, which are intermittently surrounded by four α-helices, and the C terminus, including the α5-helix encompassing residues 103 to 113. Two loops (26)GQITPETQEK(35) and (60)ERDDI(64) are described to be essential in mechanistic processes of the V-ATPase enzyme. The (26)GQITPETQEK(35) loop becomes exposed when fitted into the recently determined EM structure of the yeast V1VO-ATPase. A mechanism is proposed in which the (26)GQITPETQEK(35) loop of subunit F and the flexible C-terminal domain of subunit H move in proximity, leading to an inhibitory effect of ATPase activity in V1. Subunits D and F are demonstrated to interact with subunit d. Together with NMR dynamics, the role of subunit F has been discussed in the light of its interactions in the processes of reversible disassembly and ATP hydrolysis of V-ATPases by transmitting movements of subunit d and H of the VO and V1 sector, respectively.
Collapse
Affiliation(s)
- Sandip Basak
- Nanyang Technological University, School of Biological Sciences, 60 Nanyang Drive, Singapore 637551, Singapore
| | | | | | | | | |
Collapse
|
30
|
Arai S, Saijo S, Suzuki K, Mizutani K, Kakinuma Y, Ishizuka-Katsura Y, Ohsawa N, Terada T, Shirouzu M, Yokoyama S, Iwata S, Yamato I, Murata T. Rotation mechanism of Enterococcus hirae V1-ATPase based on asymmetric crystal structures. Nature 2013; 493:703-7. [PMID: 23334411 DOI: 10.1038/nature11778] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 11/08/2012] [Indexed: 11/09/2022]
Abstract
In various cellular membrane systems, vacuolar ATPases (V-ATPases) function as proton pumps, which are involved in many processes such as bone resorption and cancer metastasis, and these membrane proteins represent attractive drug targets for osteoporosis and cancer. The hydrophilic V(1) portion is known as a rotary motor, in which a central axis DF complex rotates inside a hexagonally arranged catalytic A(3)B(3) complex using ATP hydrolysis energy, but the molecular mechanism is not well defined owing to a lack of high-resolution structural information. We previously reported on the in vitro expression, purification and reconstitution of Enterococcus hirae V(1)-ATPase from the A(3)B(3) and DF complexes. Here we report the asymmetric structures of the nucleotide-free (2.8 Å) and nucleotide-bound (3.4 Å) A(3)B(3) complex that demonstrate conformational changes induced by nucleotide binding, suggesting a binding order in the right-handed rotational orientation in a cooperative manner. The crystal structures of the nucleotide-free (2.2 Å) and nucleotide-bound (2.7 Å) V(1)-ATPase are also reported. The more tightly packed nucleotide-binding site seems to be induced by DF binding, and ATP hydrolysis seems to be stimulated by the approach of a conserved arginine residue. To our knowledge, these asymmetric structures represent the first high-resolution view of the rotational mechanism of V(1)-ATPase.
Collapse
Affiliation(s)
- Satoshi Arai
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage, Chiba 263-8522, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Tirtom NE, Okuno D, Nakano M, Yokoyama K, Noji H. Mechanical modulation of ATP-binding affinity of V1-ATPase. J Biol Chem 2012; 288:619-23. [PMID: 23155048 DOI: 10.1074/jbc.m112.420729] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
V(1)-ATPase is a rotary motor protein that rotates the central shaft in a counterclockwise direction hydrolyzing ATP. Although the ATP-binding process is suggested to be the most critical reaction step for torque generation in F(1)-ATPase (the closest relative of V(1)-ATPase evolutionarily), the role of ATP binding for V(1)-ATPase in torque generation has remained unclear. In the present study, we performed single-molecule manipulation experiments on V(1)-ATPase from Thermus thermophilus to investigate how the ATP-binding process is modulated upon rotation of the rotary shaft. When V(1)-ATPase showed an ATP-waiting pause, it was stalled at a target angle and then released. Based on the response of the V(1)-ATPase released, the ATP-binding probability was determined at individual stall angles. It was observed that the rate constant of ATP binding (k(on)) was exponentially accelerated with forward rotation, whereas the rate constant of ATP release (k(off)) was exponentially reduced. The angle dependence of the k(off) of V(1)-ATPase was significantly smaller than that of F(1)-ATPase, suggesting that the ATP-binding process is not the major torque-generating step in V(1)-ATPase. When V(1)-ATPase was stalled at the mean binding angle to restrict rotary Brownian motion, k(on) was evidently slower than that determined from free rotation, showing the reaction rate enhancement by conformational fluctuation. It was also suggested that shaft of V(1)-ATPase should be rotated at least 277° in a clockwise direction for efficient release of ATP under ATP-synthesis conditions.
Collapse
Affiliation(s)
- Naciye Esma Tirtom
- Department of Applied Chemistry, School of Engineering, the University of Tokyo, Tokyo 113-8656, Japan
| | | | | | | | | |
Collapse
|
32
|
Benlekbir S, Bueler SA, Rubinstein JL. Structure of the vacuolar-type ATPase from Saccharomyces cerevisiae at 11-Å resolution. Nat Struct Mol Biol 2012; 19:1356-62. [PMID: 23142977 DOI: 10.1038/nsmb.2422] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Accepted: 09/21/2012] [Indexed: 11/09/2022]
Abstract
Vacuolar-type ATPases (V-type ATPases) in eukaryotic cells are large membrane protein complexes that acidify various intracellular compartments. The enzymes are regulated by dissociation of the V(1) and V(O) regions of the complex. Here we present the structure of the Saccharomyces cerevisiae V-type ATPase at 11-Å resolution by cryo-EM of protein particles in ice. The structure explains many cross-linking and protein interaction studies. Docking of crystal structures suggests that inhibition of ATPase activity by the dissociated V(1) region involves rearrangement of the N- and C-terminal domains of subunit H and also suggests how this inhibition is triggered upon dissociation. We provide support for this model by demonstrating that mutation of subunit H to increase the rigidity of the linker between its two domains decreases its ability to inhibit ATPase activity.
Collapse
Affiliation(s)
- Samir Benlekbir
- Molecular Structure and Function Program, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | | | | |
Collapse
|
33
|
Parsons LS, Wilkens S. Probing subunit-subunit interactions in the yeast vacuolar ATPase by peptide arrays. PLoS One 2012; 7:e46960. [PMID: 23071676 PMCID: PMC3470569 DOI: 10.1371/journal.pone.0046960] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 09/07/2012] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Vacuolar (H(+))-ATPase (V-ATPase; V(1)V(o)-ATPase) is a large multisubunit enzyme complex found in the endomembrane system of all eukaryotic cells where its proton pumping action serves to acidify subcellular organelles. In the plasma membrane of certain specialized tissues, V-ATPase functions to pump protons from the cytoplasm into the extracellular space. The activity of the V-ATPase is regulated by a reversible dissociation mechanism that involves breaking and re-forming of protein-protein interactions in the V(1)-ATPase - V(o)-proton channel interface. The mechanism responsible for regulated V-ATPase dissociation is poorly understood, largely due to a lack of detailed knowledge of the molecular interactions that are responsible for the structural and functional link between the soluble ATPase and membrane bound proton channel domains. METHODOLOGY/PRINCIPAL FINDINGS To gain insight into where some of the stator subunits of the V-ATPase associate with each other, we have developed peptide arrays from the primary sequences of V-ATPase subunits. By probing the peptide arrays with individually expressed V-ATPase subunits, we have identified several key interactions involving stator subunits E, G, C, H and the N-terminal domain of the membrane bound a subunit. CONCLUSIONS The subunit-peptide interactions identified from the peptide arrays complement low resolution structural models of the eukaryotic vacuolar ATPase obtained from transmission electron microscopy. The subunit-subunit interaction data are discussed in context of our current model of reversible enzyme dissociation.
Collapse
Affiliation(s)
- Lee S. Parsons
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, United States of America
| | - Stephan Wilkens
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, United States of America
| |
Collapse
|
34
|
Oot RA, Huang LS, Berry EA, Wilkens S. Crystal structure of the yeast vacuolar ATPase heterotrimeric EGC(head) peripheral stalk complex. Structure 2012; 20:1881-92. [PMID: 23000382 DOI: 10.1016/j.str.2012.08.020] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 08/19/2012] [Accepted: 08/20/2012] [Indexed: 12/17/2022]
Abstract
Vacuolar ATPases (V-ATPases) are multisubunit rotary motor proton pumps that function to acidify subcellular organelles in all eukaryotic organisms. V-ATPase is regulated by a unique mechanism that involves reversible dissociation into V₁-ATPase and V₀ proton channel, a process that involves breaking of protein interactions mediated by subunit C, the cytoplasmic domain of subunit "a" and three "peripheral stalks," each made of a heterodimer of E and G subunits. Here, we present crystal structures of a yeast V-ATPase heterotrimeric complex composed of EG heterodimer and the head domain of subunit C (C(head)). The structures show EG heterodimer folded in a noncanonical coiled coil that is stabilized at its N-terminal ends by binding to C(head). The coiled coil is disrupted by a bulge of partially unfolded secondary structure in subunit G and we speculate that this unique feature in the eukaryotic V-ATPase peripheral stalk may play an important role in enzyme structure and regulation by reversible dissociation.
Collapse
Affiliation(s)
- Rebecca A Oot
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | | | | | | |
Collapse
|
35
|
Hildenbrand ZL, Molugu SK, Bernal RA. Anchoring and scaffolding: V(1)-ATPase interactions with widespread implications. Cell Cycle 2012; 11:2041-2. [PMID: 22592525 DOI: 10.4161/cc.20532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
36
|
Kishikawa JI, Yokoyama K. Reconstitution of vacuolar-type rotary H+-ATPase/synthase from Thermus thermophilus. J Biol Chem 2012; 287:24597-603. [PMID: 22582389 PMCID: PMC3397886 DOI: 10.1074/jbc.m112.367813] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Vacuolar-type rotary H+-ATPase/synthase (VoV1) from Thermus thermophilus, composed of nine subunits, A, B, D, F, C, E, G, I, and L, has been reconstituted from individually isolated V1 (A3B3D1F1) and Vo (C1E2G2I1L12) subcomplexes in vitro. A3B3D and A3B3 also reconstituted with Vo, resulting in a holoenzyme-like complexes. However, A3B3D-Vo and A3B3-Vo did not show ATP synthesis and dicyclohexylcarbodiimide-sensitive ATPase activity. The reconstitution process was monitored in real time by fluorescence resonance energy transfer (FRET) between an acceptor dye attached to subunit F or D in V1 or A3B3D and a donor dye attached to subunit C in Vo. The estimated dissociation constants Kd for VoV1 and A3B3D-Vo were ∼0.3 and ∼1 nm at 25 °C, respectively. These results suggest that the A3B3 domain tightly associated with the two EG peripheral stalks of Vo, even in the absence of the central shaft subunits. In addition, F subunit is essential for coupling of ATP hydrolysis and proton translocation and has a key role in the stability of whole complex. However, the contribution of the F subunit to the association of A3B3 with Vo is much lower than that of the EG peripheral stalks.
Collapse
Affiliation(s)
- Jun-ichi Kishikawa
- Department of Molecular Biosciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-ku, Kyoto 603-8555, Japan
| | | |
Collapse
|
37
|
Stewart AG, Lee LK, Donohoe M, Chaston JJ, Stock D. The dynamic stator stalk of rotary ATPases. Nat Commun 2012; 3:687. [PMID: 22353718 PMCID: PMC3293630 DOI: 10.1038/ncomms1693] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 01/19/2012] [Indexed: 11/09/2022] Open
Abstract
Rotary ATPases couple ATP hydrolysis/synthesis with proton translocation across biological membranes and so are central components of the biological energy conversion machinery. Their peripheral stalks are essential components that counteract torque generated by rotation of the central stalk during ATP synthesis or hydrolysis. Here we present a 2.25-Å resolution crystal structure of the peripheral stalk from Thermus thermophilus A-type ATPase/synthase. We identify bending and twisting motions inherent within the structure that accommodate and complement a radial wobbling of the ATPase headgroup as it progresses through its catalytic cycles, while still retaining azimuthal stiffness necessary to counteract rotation of the central stalk. The conformational freedom of the peripheral stalk is dictated by its unusual right-handed coiled-coil architecture, which is in principle conserved across all rotary ATPases. In context of the intact enzyme, the dynamics of the peripheral stalks provides a potential mechanism for cooperativity between distant parts of rotary ATPases. The peripheral stalks of rotary ATPases counteract torque generated by rotation of the central stalk during ATP synthesis or hydrolysis. Stewart et al. report the crystal structure of an A-type ATPase/synthase peripheral stalk and identify bending and twisting motions that permit the radial wobbling of the headgroup.
Collapse
Affiliation(s)
- Alastair G Stewart
- Structural and Computational Biology Division, The Victor Chang Cardiac Research Institute, Darlinghurst, Australia
| | | | | | | | | |
Collapse
|
38
|
Subnanometre-resolution structure of the intact Thermus thermophilus H+-driven ATP synthase. Nature 2011; 481:214-8. [DOI: 10.1038/nature10699] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Accepted: 11/03/2011] [Indexed: 01/15/2023]
|
39
|
Crystal structure of the central axis DF complex of the prokaryotic V-ATPase. Proc Natl Acad Sci U S A 2011; 108:19955-60. [PMID: 22114184 DOI: 10.1073/pnas.1108810108] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
V-ATPases function as ATP-dependent ion pumps in various membrane systems of living organisms. ATP hydrolysis causes rotation of the central rotor complex, which is composed of the central axis D subunit and a membrane c ring that are connected by F and d subunits. Here we determined the crystal structure of the DF complex of the prokaryotic V-ATPase of Enterococcus hirae at 2.0-Å resolution. The structure of the D subunit comprised a long left-handed coiled coil with a unique short β-hairpin region that is effective in stimulating the ATPase activity of V(1)-ATPase by twofold. The F subunit is bound to the middle portion of the D subunit. The C-terminal helix of the F subunit, which was believed to function as a regulatory region by extending into the catalytic A(3)B(3) complex, contributes to tight binding to the D subunit by forming a three-helix bundle. Both D and F subunits are necessary to bind the d subunit that links to the c ring. From these findings, we modeled the entire rotor complex (DFdc ring) of V-ATPase.
Collapse
|
40
|
Gerle C. Stabilization of Fo/Vo/Ao by a radial electric field. Biophysics (Nagoya-shi) 2011; 7:99-104. [PMID: 27857597 PMCID: PMC5036770 DOI: 10.2142/biophysics.7.99] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 09/26/2011] [Indexed: 12/01/2022] Open
Abstract
The membrane domain of rotary ATPases (Fo/Vo/Ao) contains a membrane-embedded rotor ring which rotates against an adjacent cation channel-forming subunit during catalysis. The mechanism that allows stabilization of the highly mobile and yet tightly connected domains during operation while not impeding rotation is unknown. Remarkably, all known ATPase rotor rings are filled by lipids. In the crystal structure of the rotor ring of a V-ATPase from Enterococcus hirae the ring filling lipids form a proper membrane that is lower with respect to the embedding membrane surrounding both subunits. I propose first, that a vertical shift between lumenal lipids and embedding outside membrane is a general feature of rotor rings and second that it leads to a radial potential fall-off between rotor ring and cation channel, creating attractive forces that impact rotor-stator interaction in Fo/Vo/Ao during rotation.
Collapse
Affiliation(s)
- Christoph Gerle
- Career Path Promotion Unit for Young Life Scientists, Kyoto University, Bldg. E, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
41
|
Saka HA, Thompson JW, Chen YS, Kumar Y, Dubois LG, Moseley MA, Valdivia RH. Quantitative proteomics reveals metabolic and pathogenic properties of Chlamydia trachomatis developmental forms. Mol Microbiol 2011; 82:1185-203. [PMID: 22014092 DOI: 10.1111/j.1365-2958.2011.07877.x] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Chlamydia trachomatis is an obligate intracellular pathogen responsible for ocular and genital infections of significant public health importance. C. trachomatis undergoes a biphasic developmental cycle alternating between two distinct forms: the infectious elementary body (EB), and the replicative but non-infectious reticulate body (RB). The molecular basis for these developmental transitions and the metabolic properties of the EB and RB forms are poorly understood as these bacteria have traditionally been difficult to manipulate through classical genetic approaches. Using two-dimensional liquid chromatography - tandem mass spectrometry (LC/LC-MS/MS) we performed a large-scale, label-free quantitative proteomic analysis of C. trachomatis LGV-L2 EB and RB forms. Additionally, we carried out LC-MS/MS to analyse the membranes of the pathogen-containing vacuole ('inclusion'). We developed a label-free quantification approaches to measure protein abundance in a mixed-proteome background which we applied for EB and RB quantitative analysis. In this manner, we catalogued the relative distribution of > 54% of the predicted proteins in the C. trachomatis LGV-L2 proteome. Proteins required for central metabolism and glucose catabolism were predominant in the EB, whereas proteins associated with protein synthesis, ATP generation and nutrient transport were more abundant in the RB. These findings suggest that the EB is primed for a burst in metabolic activity upon entry, whereas the RB form is geared towards nutrient utilization, a rapid increase in cellular mass, and securing the resources for an impending transition back to the EB form. The most revealing difference between the two forms was the relative deficiency of cytoplasmic factors required for efficient type III secretion (T3S) in the RB stage at 18 h post infection, suggesting a reduced T3S capacity or a low frequency of active T3S apparatus assembled on a 'per organism' basis. Our results show that EB and RB proteomes are streamlined to fulfil their predicted biological functions: maximum infectivity for EBs and replicative capacity for RBs.
Collapse
Affiliation(s)
- Hector A Saka
- Department of Molecular Genetics and Microbiology and Center for Microbial Pathogenesis, Duke University Medical Center, Durham, NC, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Zhou M, Morgner N, Barrera NP, Politis A, Isaacson SC, Matak-Vinković D, Murata T, Bernal RA, Stock D, Robinson CV. Mass spectrometry of intact V-type ATPases reveals bound lipids and the effects of nucleotide binding. Science 2011; 334:380-385. [PMID: 22021858 PMCID: PMC3927129 DOI: 10.1126/science.1210148] [Citation(s) in RCA: 222] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The ability of electrospray to propel large viruses into a mass spectrometer is established and is rationalized by analogy to the atmospheric transmission of the common cold. Much less clear is the fate of membrane-embedded molecular machines in the gas phase. Here we show that rotary adenosine triphosphatases (ATPases)/synthases from Thermus thermophilus and Enterococcus hirae can be maintained intact with membrane and soluble subunit interactions preserved in vacuum. Mass spectra reveal subunit stoichiometries and the identity of tightly bound lipids within the membrane rotors. Moreover, subcomplexes formed in solution and gas phases reveal the regulatory effects of nucleotide binding on both ATP hydrolysis and proton translocation. Consequently, we can link specific lipid and nucleotide binding with distinct regulatory roles.
Collapse
Affiliation(s)
- Min Zhou
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ
| | - Nina Morgner
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ
| | - Nelson P Barrera
- Department of Chemistry, Lensfield Road, University of Cambridge CB2 1EW
- Department of Physiology, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile
| | - Argyris Politis
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ
| | - Shoshanna C Isaacson
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ
| | | | - Takeshi Murata
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage, Chiba 263-8522, Japan
| | - Ricardo A Bernal
- Department of Chemistry, University of Texas at El Paso, El Paso, Texas 79968, USA
| | - Daniela Stock
- The Victor Chang Cardiac Research Institute, Lowy Packer Building, 405 Liverpool Street, Darlinghurst NSW 2010
- Faculty of Medicine, University of New South Wales, Sydney 2052, Australia
| | - Carol V Robinson
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ
| |
Collapse
|
43
|
Vma8p-GFP fusions can be functionally incorporated into V-ATPase, suggesting structural flexibility at the top of V1. Int J Mol Sci 2011; 12:4693-704. [PMID: 21845105 PMCID: PMC3155378 DOI: 10.3390/ijms12074693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 07/04/2011] [Accepted: 07/13/2011] [Indexed: 12/25/2022] Open
Abstract
The vacuolar ATPase (V-ATPase) complex of yeast (Saccharomyces cerevisiae) is comprised of two sectors, V(1) (catalytic) and V(O) (proton transfer). The hexameric (A(3)B(3)) cylinder of V(1) has a central cavity that must accommodate at least part of the rotary stalk of V-ATPase, a key component of which is subunit D (Vma8p). Recent electron microscopy (EM) data for the prokaryote V-ATPase complex (Thermus thermophilus) suggest that subunit D penetrates deeply into the central cavity. The functional counterpart of subunit D in mitochondrial F(1)F(O)-ATP synthase, subunit γ, occupies almost the entire length of the central cavity. To test whether the structure of yeast Vma8p mirrors that of subunit γ, we probed the location of the C-terminus of Vma8p by attachment of a large protein adduct, green fluorescent protein (GFP). We found that truncated Vma8p proteins lacking up to 40 C-terminal residues fused to GFP can be incorporated into functional V-ATPase complexes, and are able to support cell growth under alkaline conditions. We conclude that large protein adducts can be accommodated at the top of the central cavity of V(1) without compromising V-ATPase function, arguing for structural flexibility of the V(1) sector.
Collapse
|
44
|
Abstract
AbstractThe rotary ATPase family of membrane protein complexes may have only three members, but each one plays a fundamental role in biological energy conversion. The F1Fo-ATPase (F-ATPase) couples ATP synthesis to the electrochemical membrane potential in bacteria, mitochondria and chloroplasts, while the vacuolar H+-ATPase (V-ATPase) operates as an ATP-driven proton pump in eukaryotic membranes. In different species of archaea and bacteria, the A1Ao-ATPase (A-ATPase) can function as either an ATP synthase or an ion pump. All three of these multi-subunit complexes are rotary molecular motors, sharing a fundamentally similar mechanism in which rotational movement drives the energy conversion process. By analogy to macroscopic systems, individual subunits can be assigned to rotor, axle or stator functions. Recently, three-dimensional reconstructions from electron microscopy and single particle image processing have led to a significant step forward in understanding of the overall architecture of all three forms of these complexes and have allowed the organisation of subunits within the rotor and stator parts of the motors to be more clearly mapped out. This review describes the emerging consensus regarding the organisation of the rotor and stator components of V-, A- and F-ATPases, examining core similarities that point to a common evolutionary origin, and highlighting key differences. In particular, it discusses how newly revealed variation in the complexity of the inter-domain connections may impact on the mechanics and regulation of these molecular machines.
Collapse
|
45
|
Ibuki T, Imada K, Minamino T, Kato T, Miyata T, Namba K. Common architecture of the flagellar type III protein export apparatus and F- and V-type ATPases. Nat Struct Mol Biol 2011; 18:277-82. [PMID: 21278755 DOI: 10.1038/nsmb.1977] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Accepted: 11/17/2010] [Indexed: 01/06/2023]
Abstract
The proteins that form the bacterial flagellum are translocated to its distal end through the central channel of the growing flagellum by the flagellar-specific protein export apparatus, a family of the type III protein secretion system. FliI and FliJ are soluble components of this apparatus. FliI is an ATPase that has extensive structural similarity to the α and β subunits of F(o)F(1)-ATP synthase. FliJ is essential for export, but its function remains obscure. Here we show that the structure of FliJ derived from Salmonella enterica serovar Typhimurium is remarkably similar to that of the two-stranded α-helical coiled-coil part of the γ subunit of F(o)F(1)-ATP synthase and that FliJ promotes the formation of FliI hexamer rings by binding to the center of the ring. These results suggest that the type III protein export system and F- and V-type ATPases share a similar mechanism and an evolutionary relationship.
Collapse
|
46
|
Hildenbrand ZL, Molugu SK, Stock D, Bernal RA. The C-H peripheral stalk base: a novel component in V1-ATPase assembly. PLoS One 2010; 5:e12588. [PMID: 20838636 PMCID: PMC2933246 DOI: 10.1371/journal.pone.0012588] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 08/10/2010] [Indexed: 11/18/2022] Open
Abstract
Vacuolar ATPases (V-ATPases) are molecular machines responsible for creating electrochemical gradients and preserving pH-dependent cellular compartments by way of proton translocation across the membrane. V-ATPases employ a dynamic rotary mechanism that is driven by ATP hydrolysis and the central rotor stalk. Regulation of this rotational catalysis is the result of a reversible V1Vo-domain dissociation that is required to preserve ATP during instances of cellular starvation. Recently the method by which the free V1-ATPase abrogates the hydrolytic breakdown of ATP upon dissociating from the membrane has become increasingly clear. In this instance the central stalk subunit F adopts an extended conformation to engage in a bridging interaction tethering the rotor and stator components together. However, the architecture by which this mechanism is stabilized has remained ambiguous despite previous work. In an effort to elucidate the method by which the rotational catalysis is maintained, the architecture of the peripheral stalks and their respective binding interactions was investigated using cryo-electron microscopy. In addition to confirming the bridging interaction exuded by subunit F for the first time in a eukaryotic V-ATPase, subunits C and H are seen interacting with one another in a tight interaction that provides a base for the three EG peripheral stalks. The formation of a CE3G3H sub-assembly appears to be unique to the dissociated V-ATPase and highlights the stator architecture in addition to revealing a possible intermediate in the assembly mechanism of the free V1-ATPase.
Collapse
Affiliation(s)
- Zacariah L. Hildenbrand
- Department of Chemistry, University of Texas at El Paso, El Paso, Texas, United States of America
| | - Sudheer K. Molugu
- Department of Chemistry, University of Texas at El Paso, El Paso, Texas, United States of America
| | - Daniela Stock
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia
- Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Ricardo A. Bernal
- Department of Chemistry, University of Texas at El Paso, El Paso, Texas, United States of America
- * E-mail:
| |
Collapse
|
47
|
Balabaskaran Nina P, Dudkina NV, Kane LA, van Eyk JE, Boekema EJ, Mather MW, Vaidya AB. Highly divergent mitochondrial ATP synthase complexes in Tetrahymena thermophila. PLoS Biol 2010; 8:e1000418. [PMID: 20644710 PMCID: PMC2903591 DOI: 10.1371/journal.pbio.1000418] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Accepted: 06/01/2010] [Indexed: 12/28/2022] Open
Abstract
The F-type ATP synthase complex is a rotary nano-motor driven by proton motive force to synthesize ATP. Its F(1) sector catalyzes ATP synthesis, whereas the F(o) sector conducts the protons and provides a stator for the rotary action of the complex. Components of both F(1) and F(o) sectors are highly conserved across prokaryotes and eukaryotes. Therefore, it was a surprise that genes encoding the a and b subunits as well as other components of the F(o) sector were undetectable in the sequenced genomes of a variety of apicomplexan parasites. While the parasitic existence of these organisms could explain the apparent incomplete nature of ATP synthase in Apicomplexa, genes for these essential components were absent even in Tetrahymena thermophila, a free-living ciliate belonging to a sister clade of Apicomplexa, which demonstrates robust oxidative phosphorylation. This observation raises the possibility that the entire clade of Alveolata may have invented novel means to operate ATP synthase complexes. To assess this remarkable possibility, we have carried out an investigation of the ATP synthase from T. thermophila. Blue native polyacrylamide gel electrophoresis (BN-PAGE) revealed the ATP synthase to be present as a large complex. Structural study based on single particle electron microscopy analysis suggested the complex to be a dimer with several unique structures including an unusually large domain on the intermembrane side of the ATP synthase and novel domains flanking the c subunit rings. The two monomers were in a parallel configuration rather than the angled configuration previously observed in other organisms. Proteomic analyses of well-resolved ATP synthase complexes from 2-D BN/BN-PAGE identified orthologs of seven canonical ATP synthase subunits, and at least 13 novel proteins that constitute subunits apparently limited to the ciliate lineage. A mitochondrially encoded protein, Ymf66, with predicted eight transmembrane domains could be a substitute for the subunit a of the F(o) sector. The absence of genes encoding orthologs of the novel subunits even in apicomplexans suggests that the Tetrahymena ATP synthase, despite core similarities, is a unique enzyme exhibiting dramatic differences compared to the conventional complexes found in metazoan, fungal, and plant mitochondria, as well as in prokaryotes. These findings have significant implications for the origins and evolution of a central player in bioenergetics.
Collapse
Affiliation(s)
- Praveen Balabaskaran Nina
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Natalya V. Dudkina
- Department of Biophysical Chemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, The Netherlands
| | - Lesley A. Kane
- Department of Medicine, The Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Biological Chemistry, The Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Jennifer E. van Eyk
- Department of Medicine, The Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Biological Chemistry, The Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Egbert J. Boekema
- Department of Biophysical Chemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, The Netherlands
| | - Michael W. Mather
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Akhil B. Vaidya
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
48
|
Oot RA, Wilkens S. Domain characterization and interaction of the yeast vacuolar ATPase subunit C with the peripheral stator stalk subunits E and G. J Biol Chem 2010; 285:24654-64. [PMID: 20529855 DOI: 10.1074/jbc.m110.136960] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The proton pumping activity of the eukaryotic vacuolar ATPase (V-ATPase) is regulated by a unique mechanism that involves reversible enzyme dissociation. In yeast, under conditions of nutrient depletion, the soluble catalytic V(1) sector disengages from the membrane integral V(o), and at the same time, both functional units are silenced. Notably, during enzyme dissociation, a single V(1) subunit, C, is released into the cytosol. The affinities of the other V(1) and V(o) subunits for subunit C are therefore of particular interest. The C subunit crystal structure shows that the subunit is elongated and dumbbell-shaped with two globular domains (C(head) and C(foot)) separated by a flexible helical neck region (Drory, O., Frolow, F., and Nelson, N. (2004) EMBO Rep. 5, 1148-1152). We have recently shown that subunit C is bound in the V(1)-V(o) interface where the subunit is in contact with two of the three peripheral stators (subunit EG heterodimers): one via C(head) and one via C(foot) (Zhang, Z., Zheng, Y., Mazon, H., Milgrom, E., Kitagawa, N., Kish-Trier, E., Heck, A. J., Kane, P. M., and Wilkens, S. (2008) J. Biol. Chem. 283, 35983-35995). In vitro, however, subunit C binds only one EG heterodimer (Féthière, J., Venzke, D., Madden, D. R., and Böttcher, B. (2005) Biochemistry 44, 15906-15914), implying that EG has different affinities for the two domains of the C subunit. To determine which subunit C domain binds EG with high affinity, we have generated C(head) and C(foot) and characterized their interaction with subunit EG heterodimer. Our findings indicate that the high affinity site for EGC interaction is C(head). In addition, we provide evidence that the EGC(head) interaction greatly stabilizes EG heterodimer.
Collapse
Affiliation(s)
- Rebecca A Oot
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, New York 13210, USA
| | | |
Collapse
|
49
|
Lee LK, Stewart AG, Donohoe M, Bernal RA, Stock D. The structure of the peripheral stalk of Thermus thermophilus H+-ATPase/synthase. Nat Struct Mol Biol 2010; 17:373-8. [PMID: 20173764 DOI: 10.1038/nsmb.1761] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Accepted: 12/07/2009] [Indexed: 11/09/2022]
Abstract
Proton-translocating ATPases are ubiquitous protein complexes that couple ATP catalysis with proton translocation via a rotary catalytic mechanism. The peripheral stalks are essential components that counteract torque generated from proton translocation during ATP synthesis or from ATP hydrolysis during proton pumping. Despite their essential role, the peripheral stalks are the least conserved component of the complexes, differing substantially between subtypes in composition and stoichiometry. We have determined the crystal structure of the peripheral stalk of the A-type ATPase/synthase from Thermus thermophilus consisting of subunits E and G. The structure contains a heterodimeric right-handed coiled coil, a protein fold never observed before. We have fitted this structure into the 23 A resolution EM density of the intact A-ATPase complex, revealing the precise location of the peripheral stalk and new implications for the function and assembly of proton-translocating ATPases.
Collapse
Affiliation(s)
- Lawrence K Lee
- Structural and Computational Biology Division, The Victor Chang Cardiac Research Institute, Darlinghurst, Australia
| | | | | | | | | |
Collapse
|
50
|
Structure of intact Thermus thermophilus V-ATPase by cryo-EM reveals organization of the membrane-bound V(O) motor. Proc Natl Acad Sci U S A 2010; 107:1367-72. [PMID: 20080582 DOI: 10.1073/pnas.0911085107] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The eubacterium Thermus thermophilus uses a macromolecular assembly closely related to eukaryotic V-ATPase to produce its supply of ATP. This simplified V-ATPase offers several advantages over eukaryotic V-ATPases for structural analysis and investigation of the mechanism of the enzyme. Here we report the structure of the complex at approximately 16 A resolution as determined by single particle electron cryomicroscopy (cryo-EM). The resolution of the map and our use of cryo-EM, rather than negative stain EM, reveals detailed information about the internal organization of the assembly. We could separate the map into segments corresponding to subunits A and B, the threefold pseudosymmetric C-subunit, a central rotor consisting of subunits D and F, the L-ring, the stator subcomplex consisting of subunits I, E, and G, and a micelle of bound detergent. The architecture of the V(O) region shows a remarkably small area of contact between the I-subunit and the ring of L-subunits and is consistent with a two half-channel model for proton translocation. The arrangement of structural elements in V(O) gives insight into the mechanism of torque generation from proton translocation.
Collapse
|