1
|
Thai QM, Nguyen TH, Phung HTT, Pham MQ, Pham NKT, Horng JT, Ngo ST. MedChemExpress compounds prevent neuraminidase N1 via physics- and knowledge-based methods. RSC Adv 2024; 14:18950-18956. [PMID: 38873542 PMCID: PMC11167619 DOI: 10.1039/d4ra02661f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/07/2024] [Indexed: 06/15/2024] Open
Abstract
Influenza A viruses spread out worldwide, causing several global concerns. Hence, discovering neuraminidase inhibitors to prevent the influenza A virus is of great interest. In this work, a machine learning model was employed to evaluate the ligand-binding affinity of ca. 10 000 compounds from the MedChemExpress (MCE) database for inhibiting neuraminidase. Atomistic simulations, including molecular docking and molecular dynamics simulations, then confirmed the ligand-binding affinity. Furthermore, we clarified the physical insights into the binding process of ligands to neuraminidase. It was found that five compounds, including micronomicin, didesmethyl cariprazine, argatroban, Kgp-IN-1, and AY 9944, are able to inhibit neuraminidase N1 of the influenza A virus. Ten residues, including Glu119, Asp151, Arg152, Trp179, Gln228, Glu277, Glu278, Arg293, Asn295, and Tyr402, may be very important in controlling the ligand-binding process to N1.
Collapse
Affiliation(s)
- Quynh Mai Thai
- Laboratory of Biophysics, Institute for Advanced Study in Technology, Ton Duc Thang University Ho Chi Minh City Vietnam
- Faculty of Pharmacy, Ton Duc Thang University Ho Chi Minh City Vietnam
| | - Trung Hai Nguyen
- Laboratory of Biophysics, Institute for Advanced Study in Technology, Ton Duc Thang University Ho Chi Minh City Vietnam
- Faculty of Pharmacy, Ton Duc Thang University Ho Chi Minh City Vietnam
| | | | - Minh Quan Pham
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology Hanoi Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology Hanoi Vietnam
| | - Nguyen Kim Tuyen Pham
- Faculty of Environment, Sai Gon University 273 An Duong Vuong, Ward 3, District 5 Ho Chi Minh City Vietnam
| | - Jim-Tong Horng
- Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University Kweishan Taoyuan Taiwan
| | - Son Tung Ngo
- Laboratory of Biophysics, Institute for Advanced Study in Technology, Ton Duc Thang University Ho Chi Minh City Vietnam
- Faculty of Pharmacy, Ton Duc Thang University Ho Chi Minh City Vietnam
| |
Collapse
|
2
|
Ackerman A, Martin B, Tanisha M, Edoh K, Ward JP. High-Dimensional Contact Network Epidemiology. EPIDEMIOLOGIA 2023; 4:286-297. [PMID: 37489500 PMCID: PMC10366896 DOI: 10.3390/epidemiologia4030029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 06/23/2023] [Accepted: 06/29/2023] [Indexed: 07/26/2023] Open
Abstract
Contact network models are recent alternatives to equation-based models in epidemiology. In this paper, the spread of disease is modeled on contact networks using bond percolation. The weight of the edges in the contact graphs is determined as a function of several variables in which case the weight is the product of the probabilities of independent events involving each of the variables. In the first experiment, the weight of the edges is computed from a single variable involving the number of passengers on flights between two cities within the United States, and in the second experiment, the weight of the edges is computed as a function of several variables using data from 2012 Kenyan household contact networks. In addition, the paper explored the dynamics and adaptive nature of contact networks. The results from the contact network model outperform the equation-based model in estimating the spread of the 1918 Influenza virus.
Collapse
Affiliation(s)
- Andrew Ackerman
- School of Mathematical and Statistical Sciences, Clemson University, Clemson, SC 29634, USA
| | - Briquelle Martin
- Department of Mathematical Sciences, Appalachian State University, Boone, NC 28608, USA
| | - Martin Tanisha
- Department of Mathematics and Statistics, NC A&T State University, Greensboro, NC 27411, USA
| | - Kossi Edoh
- Department of Mathematics and Statistics, NC A&T State University, Greensboro, NC 27411, USA
| | - John Paul Ward
- Department of Mathematics and Statistics, NC A&T State University, Greensboro, NC 27411, USA
| |
Collapse
|
3
|
A delicate balancing act: immunity and immunopathology in human H7N9 influenza virus infections. Curr Opin Infect Dis 2020; 32:191-195. [PMID: 30888978 DOI: 10.1097/qco.0000000000000538] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
PURPOSE OF REVIEW A delicate balance exists between a protective and detrimental immune response to an invading viral pathogen. Here, we review the latest advancements in our understanding of immunity and immunopathology during H7N9 influenza A virus (IAV) infections and its relevance to disease management and diagnosis. RECENT FINDINGS Recent studies have highlighted the role of specific leukocytes in the pathogenesis of H7N9 IAV infections and potential diagnostic role that host cytokine profiles can play in forecasting disease severity. Furthermore, alterations in diet have emerged as a possible preventive measure for severe IAV infections. SUMMARY The recent emergence and continued evolution of H7N9 IAVs have emphasized the threat that these avian viruses pose to human health. Understanding the role of the host immune response in both disease protection and pathogenesis is an essential first step in the creation of novel therapeutic and preventive measures for H7N9 IAV infections.
Collapse
|
4
|
Tzeng TT, Chen PL, Weng TC, Tsai SY, Lai CC, Chou HI, Chen PW, Lu CC, Liu MT, Sung WC, Lee MS, Hu AYC. Development of high-growth influenza H7N9 prepandemic candidate vaccine viruses in suspension MDCK cells. J Biomed Sci 2020; 27:47. [PMID: 32241276 PMCID: PMC7115086 DOI: 10.1186/s12929-020-00645-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 03/27/2020] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Influenza vaccine manufacturers traditionally use egg-derived candidate vaccine viruses (CVVs) to produce high-yield influenza viruses for seasonal or pandemic vaccines; however, these egg-derived CVVs need an adaptation process for the virus to grow in mammalian cells. The low yields of cell-based manufacturing systems using egg-derived CVVs remain an unsolved issue. This study aimed to develop high-growth cell-derived CVVs for MDCK cell-based vaccine manufacturing platforms. METHODS Four H7N9 CVVs were generated in characterized Vero and adherent MDCK (aMDCK) cells. Furthermore, reassortant viruses were amplified in adherent MDCK (aMDCK) cells with certification, and their growth characteristics were detected in aMDCK cells and new suspension MDCK (sMDCK) cells. Finally, the plaque-forming ability, biosafety, and immunogenicity of H7N9 reassortant viruses were evaluated. RESULTS The HA titers of these CVVs produced in proprietary suspension MDCK (sMDCK) cells and chicken embryos were 2- to 8-fold higher than those in aMDCK cells. All H7N9 CVVs showed attenuated characteristics by trypsin-dependent plaque assay and chicken embryo lethality test. The alum-adjuvanted NHRI-RG5 (derived from the fifth wave H7N9 virus A/Guangdong/SP440/2017) vaccine had the highest immunogenicity and cross-reactivity among the four H7N9 CVVs. Finally, we found that AddaVax adjuvant improved the cross-reactivity of low pathogenic H7N9 virus against highly pathogenic H7N9 viruses. CONCLUSIONS Our study indicates that cell-derived H7N9 CVVs possessed high growth rate in new sMDCK cells and low pathogenicity in chicken embryo, and that CVVs generated by this platform are also suitable for both cell- and egg-based prepandemic vaccine production.
Collapse
Affiliation(s)
- Tsai-Teng Tzeng
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes (NHRI), 35 Keyan Road, Zhunan, Miaoli County, 35053, Taiwan
| | - Po-Ling Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes (NHRI), 35 Keyan Road, Zhunan, Miaoli County, 35053, Taiwan.,Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Tsai-Chuan Weng
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes (NHRI), 35 Keyan Road, Zhunan, Miaoli County, 35053, Taiwan
| | - Shin-Yi Tsai
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes (NHRI), 35 Keyan Road, Zhunan, Miaoli County, 35053, Taiwan
| | - Chia-Chun Lai
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes (NHRI), 35 Keyan Road, Zhunan, Miaoli County, 35053, Taiwan.,College of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Hsin-I Chou
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes (NHRI), 35 Keyan Road, Zhunan, Miaoli County, 35053, Taiwan
| | - Pin-Wen Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes (NHRI), 35 Keyan Road, Zhunan, Miaoli County, 35053, Taiwan
| | - Chia-Chun Lu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes (NHRI), 35 Keyan Road, Zhunan, Miaoli County, 35053, Taiwan
| | - Ming-Tsan Liu
- Centers for Disease Control, Ministry of Health and Welfare, Taipei, 689, Taiwan
| | - Wang-Chou Sung
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes (NHRI), 35 Keyan Road, Zhunan, Miaoli County, 35053, Taiwan
| | - Min-Shi Lee
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes (NHRI), 35 Keyan Road, Zhunan, Miaoli County, 35053, Taiwan
| | - Alan Yung-Chih Hu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes (NHRI), 35 Keyan Road, Zhunan, Miaoli County, 35053, Taiwan.
| |
Collapse
|
5
|
Yan Q, Tang S, Jin Z, Xiao Y. Identifying Risk Factors Of A(H7N9) Outbreak by Wavelet Analysis and Generalized Estimating Equation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16081311. [PMID: 31013684 PMCID: PMC6518036 DOI: 10.3390/ijerph16081311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 03/29/2019] [Accepted: 04/07/2019] [Indexed: 11/16/2022]
Abstract
Five epidemic waves of A(H7N9) occurred between March 2013 and May 2017 in China. However, the potential risk factors associated with disease transmission remain unclear. To address the spatial–temporal distribution of the reported A(H7N9) human cases (hereafter referred to as “cases”), statistical description and geographic information systems were employed. Based on long-term observation data, we found that males predominated the majority of A(H7N9)-infected individuals and that most males were middle-aged or elderly. Further, wavelet analysis was used to detect the variation in time-frequency between A(H7N9) cases and meteorological factors. Moreover, we formulated a Poisson regression model to explore the relationship among A(H7N9) cases and meteorological factors, the number of live poultry markets (LPMs), population density and media coverage. The main results revealed that the impact factors of A(H7N9) prevalence are manifold, and the number of LPMs has a significantly positive effect on reported A(H7N9) cases, while the effect of weekly average temperature is significantly negative. This confirms that the interaction of multiple factors could result in a serious A(H7N9) outbreak. Therefore, public health departments adopting the corresponding management measures based on both the number of LPMs and the forecast of meteorological conditions are crucial for mitigating A(H7N9) prevalence.
Collapse
Affiliation(s)
- Qinling Yan
- School of Mathematics and Information Science, Shaanxi Normal University, Xi'an 710119, China.
| | - Sanyi Tang
- School of Mathematics and Information Science, Shaanxi Normal University, Xi'an 710119, China.
| | - Zhen Jin
- Complex System Research center, Shanxi University, Taiyuan 030006, China.
| | - Yanni Xiao
- Department of Applied Mathematics, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
6
|
Kiso M, Iwatsuki-Horimoto K, Yamayoshi S, Uraki R, Ito M, Nakajima N, Yamada S, Imai M, Kawakami E, Tomita Y, Fukuyama S, Itoh Y, Ogasawara K, Lopes TJS, Watanabe T, Moncla LH, Hasegawa H, Friedrich TC, Neumann G, Kawaoka Y. Emergence of Oseltamivir-Resistant H7N9 Influenza Viruses in Immunosuppressed Cynomolgus Macaques. J Infect Dis 2017; 216:582-593. [PMID: 28931216 DOI: 10.1093/infdis/jix296] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/21/2017] [Indexed: 11/13/2022] Open
Abstract
Antiviral compounds (eg, the neuraminidase inhibitor oseltamivir) are invaluable for the treatment of individuals infected with influenza A viruses of the H7N9 subtype (A[H7N9]), which have infected and killed hundreds of persons. However, oseltamivir treatment often leads to the emergence of resistant viruses in immunocompromised individuals. To better understand the emergence and properties of oseltamivir-resistant A(H7N9) viruses in immunosuppressed individuals, we infected immunosuppressed cynomolgus macaques with an A(H7N9) virus and treated them with oseltamivir. Disease severity and mortality were higher in immunosuppressed than in immunocompetent animals. Oseltamivir treatment at 2 different doses reduced A(H7N9) viral titers in infected animals, but even high-dose oseltamivir did not block viral replication sufficiently to suppress the emergence of resistant variants. Some resistant variants were not appreciably attenuated in cultured cells, but an oseltamivir-resistant A(H7N9) virus did not transmit among ferrets. These findings are useful for the control of A(H7N9) virus infections in clinical settings.
Collapse
Affiliation(s)
- Maki Kiso
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo
| | - Kiyoko Iwatsuki-Horimoto
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo
| | - Seiya Yamayoshi
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo
| | - Ryuta Uraki
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo
| | - Mutsumi Ito
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo
| | - Noriko Nakajima
- Department of Pathology, National Institute of Infectious Diseases, Tokyo
| | - Shinya Yamada
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo
| | - Masaki Imai
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo
| | - Eiryo Kawakami
- Laboratory for Disease Systems Modeling, RIKEN Center for Integrative Medical Sciences, Kanagawa
| | - Yuriko Tomita
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo
| | - Satoshi Fukuyama
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo.,ERATO Infection-Induced Host Responses Project, Japan Science and Technology Agency, Saitama
| | - Yasushi Itoh
- Department of Pathology, Shiga University of Medical Science, Japan
| | | | - Tiago J S Lopes
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo.,Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison
| | - Tokiko Watanabe
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo.,ERATO Infection-Induced Host Responses Project, Japan Science and Technology Agency, Saitama
| | - Louise H Moncla
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison.,Wisconsin National Primate Research Center, Madison
| | - Hideki Hasegawa
- Department of Pathology, National Institute of Infectious Diseases, Tokyo
| | - Thomas C Friedrich
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison.,Wisconsin National Primate Research Center, Madison
| | - Gabriele Neumann
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison
| | - Yoshihiro Kawaoka
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo.,ERATO Infection-Induced Host Responses Project, Japan Science and Technology Agency, Saitama.,Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison
| |
Collapse
|
7
|
Evaluation of the absolute affinity of neuraminidase inhibitor using steered molecular dynamics simulations. J Mol Graph Model 2017; 77:137-142. [PMID: 28854402 DOI: 10.1016/j.jmgm.2017.08.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 08/18/2017] [Accepted: 08/21/2017] [Indexed: 11/20/2022]
Abstract
The absolute free energy difference of binding (ΔG) between neuraminidase and its inhibitor was evaluated using fast pulling of ligand (FPL) method over steered molecular dynamics (SMD) simulations. The metric was computed through linear interaction approximation. Binding nature was described by free energy differences of electrostatic and van der Waals (vdW) interactions. The finding indicates that vdW metric is dominant over electrostatics in binding process. The computed values are in good agreement with experimental data with a correlation coefficient of R=0.82 and error of σΔGexp=2.2kcal/mol. The results were observed using Amber99SB-ILDN force field in comparison with CHARMM27 and GROMOS96 43a1 force fields. Obtained results may stimulate the search for an Influenza therapy.
Collapse
|
8
|
Anderson CE, Holstein CA, Strauch EM, Bennett S, Chevalier A, Nelson J, Fu E, Baker D, Yager P. Rapid Diagnostic Assay for Intact Influenza Virus Using a High Affinity Hemagglutinin Binding Protein. Anal Chem 2017; 89:6608-6615. [PMID: 28499086 DOI: 10.1021/acs.analchem.7b00769] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Influenza is a ubiquitous and recurring infection that results in approximately 500 000 deaths globally each year. Commercially available rapid diagnostic tests are based upon detection of the influenza nucleoprotein, which are limited in that they are unable to differentiate by species and require an additional viral lysis step. Sample preprocessing can be minimized or eliminated by targeting the intact influenza virus, thereby reducing assay complexity and leveraging the large number of hemagglutinin proteins on the surface of each virus. Here, we report the development of a paper-based influenza assay that targets the hemagglutinin protein; the assay employs a combination of antibodies and novel computationally designed, recombinant affinity proteins as the capture and detection agents. This system leverages the customizability of recombinant protein design to target the conserved receptor-binding pocket of the hemagglutinin protein and to match the trimeric nature of hemagglutinin for improved avidity. Using this assay, we demonstrate the first instance of intact influenza virus detection using a combination of antibody and affinity proteins within a porous network. The recombinant head region binder based assays yield superior analytical sensitivity as compared to the antibody based assay, with lower limits of detection of 3.54 × 107 and 1.34 × 107 CEID50/mL for the mixed and all binder stacks, respectively. Not only does this work describe the development of a novel influenza assay, it also demonstrates the power of recombinant affinity proteins for use in rapid diagnostic assays.
Collapse
Affiliation(s)
- Caitlin E Anderson
- Department of Bioengineering, University of Washington , Seattle, Washington 98195-5061, United States
| | - Carly A Holstein
- Department of Bioengineering, University of Washington , Seattle, Washington 98195-5061, United States
| | - Eva-Maria Strauch
- Department of Biochemistry, University of Washington , Seattle, Washington 98195-7350, United States
| | - Steven Bennett
- Department of Bioengineering, University of Washington , Seattle, Washington 98195-5061, United States
| | - Aaron Chevalier
- Department of Bioengineering, University of Washington , Seattle, Washington 98195-5061, United States.,Department of Biochemistry, University of Washington , Seattle, Washington 98195-7350, United States
| | - Jorgen Nelson
- Department of Biochemistry, University of Washington , Seattle, Washington 98195-7350, United States
| | - Elain Fu
- School of Chemical, Biological, and Environmental Engineering, Oregon State University , Corvallis, Oregon 97331, United States
| | - David Baker
- Department of Biochemistry, University of Washington , Seattle, Washington 98195-7350, United States
| | - Paul Yager
- Department of Bioengineering, University of Washington , Seattle, Washington 98195-5061, United States
| |
Collapse
|
9
|
Leyva-Grado VH, Palese P. Aerosol administration increases the efficacy of oseltamivir for the treatment of mice infected with influenza viruses. Antiviral Res 2017; 142:12-15. [PMID: 28286235 DOI: 10.1016/j.antiviral.2017.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 02/28/2017] [Accepted: 03/06/2017] [Indexed: 11/24/2022]
Abstract
Oseltamivir is an influenza neuraminidase inhibitor that along with supportive therapy has shown to help critically ill patients infected with H7N9 and H1N1pdm influenza virus strains to recover from disease. The standard of care recommends the administration of oseltamivir via oral route which represents difficulties in patients with gastrointestinal complications. Here we tested the use of aerosol administration of oseltamivir to treat mice infected with influenza A/H7N9 virus or influenza A/H1N1pdm virus and directly compared this approach to the standard of care, oral administration. Using nose only delivery of aerosolized oseltamivir we observed a significant increase in efficacy of the treatment compared to oral administration characterized by reduced body weight loss, increased survival rate and dose sparing. The preclinical data presented here supports the possibility of using this approach in clinical settings.
Collapse
Affiliation(s)
- Victor H Leyva-Grado
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Peter Palese
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
10
|
Wang J, Li F, Ma C. Recent progress in designing inhibitors that target the drug-resistant M2 proton channels from the influenza A viruses. Biopolymers 2016; 104:291-309. [PMID: 25663018 DOI: 10.1002/bip.22623] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 01/24/2015] [Indexed: 12/15/2022]
Abstract
Influenza viruses are the causative agents for seasonal influenza, which results in thousands of deaths and millions of hospitalizations each year. Moreover, sporadic transmission of avian or swan influenza viruses to humans often leads to an influenza pandemic, as there is no preimmunity in the human body to fight against such novel strains. The metastable genome of the influenza viruses, coupled with the reassortment of different strains from a wide range of host origins, leads to the continuous evolution of the influenza virus diversity. Such characteristics of influenza viruses present a grand challenge in devising therapeutic strategies to combat influenza virus infection. This review summarizes recent progress in designing small molecule inhibitors that target the drug-resistant influenza A virus M2 proton channels and highlights the contribution of mechanistic studies of proton conductance to drug discovery. The lessons learned throughout the course of M2 drug discovery might provide insights for designing inhibitors that target other therapeutically important ion channels.
Collapse
Affiliation(s)
- Jun Wang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721.,BIO5 Institute, University of Arizona, Tucson, AZ, 85721
| | - Fang Li
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721
| | - Chunlong Ma
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721
| |
Collapse
|
11
|
Yusuf M, Mohamed N, Mohamad S, Janezic D, Damodaran KV, Wahab HA. H274Y’s Effect on Oseltamivir Resistance: What Happens Before the Drug Enters the Binding Site. J Chem Inf Model 2016; 56:82-100. [DOI: 10.1021/acs.jcim.5b00331] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Muhammad Yusuf
- Pharmaceutical
Design and Simulation (PhDS) Laboratory, School of Pharmaceutical
Sciences, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia
| | - Nornisah Mohamed
- Pharmaceutical
Design and Simulation (PhDS) Laboratory, School of Pharmaceutical
Sciences, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia
| | - Suriyati Mohamad
- Pharmaceutical
Design and Simulation (PhDS) Laboratory, School of Pharmaceutical
Sciences, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia
- School
of Biological Sciences, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia
| | - Dusanka Janezic
- Faculty
of Mathematics, Natural Sciences and Information Technologies, University of Primorska, SI-6000 Koper, Slovenia
| | - K. V. Damodaran
- Pharmaceutical
Design and Simulation (PhDS) Laboratory, School of Pharmaceutical
Sciences, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia
| | - Habibah A. Wahab
- Pharmaceutical
Design and Simulation (PhDS) Laboratory, School of Pharmaceutical
Sciences, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia
- Malaysian
Institute of Pharmaceuticals and Nutraceuticals, Ministry of Science, Technology and Innovation, Halaman Bukit Gambir, 11900 Bayan Lepas, Pulau Pinang, Malaysia
| |
Collapse
|
12
|
Farooqui A, Huang L, Wu S, Cai Y, Su M, Lin P, Chen W, Fang X, Zhang L, Liu Y, Zeng T, Paquette SG, Khan A, Kelvin AA, Kelvin DJ. Assessment of Antiviral Properties of Peramivir against H7N9 Avian Influenza Virus in an Experimental Mouse Model. Antimicrob Agents Chemother 2015; 59:7255-64. [PMID: 26369969 PMCID: PMC4649212 DOI: 10.1128/aac.01885-15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 09/03/2015] [Indexed: 02/05/2023] Open
Abstract
The H7N9 influenza virus causes a severe form of disease in humans. Neuraminidase inhibitors, including oral oseltamivir and injectable peramivir, are the first choices of antiviral treatment for such cases; however, the clinical efficacy of these drugs is questionable. Animal experimental models are essential for understanding the viral replication kinetics under the selective pressure of antiviral agents. This study demonstrates the antiviral activity of peramivir in a mouse model of H7N9 avian influenza virus infection. The data show that repeated administration of peramivir at 30 mg/kg of body weight successfully eradicated the virus from the respiratory tract and extrapulmonary tissues during the acute response, prevented clinical signs of the disease, including neuropathy, and eventually protected mice against lethal H7N9 influenza virus infection. Early treatment with peramivir was found to be associated with better disease outcomes.
Collapse
Affiliation(s)
- Amber Farooqui
- Division of Immunology, International Institute of Infection and Immunity, University Health Network & Shantou University Medical College, Shantou, China Division of Experimental Therapeutics, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou, Guangdong, China
| | - Linxi Huang
- Infectious Diseases Department, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Suwu Wu
- Intensive Care Unit, Shantou Central Hospital, Shantou, China
| | - Yingmu Cai
- Department of Laboratory Medicine, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Min Su
- Department of Pathology, Shantou University Medical College, Shantou, China
| | - Pengzhou Lin
- Infectious Diseases Department, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Weihong Chen
- Intensive Care Unit, Shantou Central Hospital, Shantou, China
| | - Xibin Fang
- Intensive Care Unit, Shantou Central Hospital, Shantou, China
| | - Li Zhang
- Division of Immunology, International Institute of Infection and Immunity, University Health Network & Shantou University Medical College, Shantou, China
| | - Yisu Liu
- Division of Immunology, International Institute of Infection and Immunity, University Health Network & Shantou University Medical College, Shantou, China
| | - Tiansheng Zeng
- Division of Immunology, International Institute of Infection and Immunity, University Health Network & Shantou University Medical College, Shantou, China
| | - Stephane G Paquette
- Division of Experimental Therapeutics, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Adnan Khan
- Division of Immunology, International Institute of Infection and Immunity, University Health Network & Shantou University Medical College, Shantou, China Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou, Guangdong, China
| | - Alyson A Kelvin
- Division of Experimental Therapeutics, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - David J Kelvin
- Division of Immunology, International Institute of Infection and Immunity, University Health Network & Shantou University Medical College, Shantou, China Division of Experimental Therapeutics, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou, Guangdong, China Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
13
|
Molecular docking of potential inhibitors for influenza H7N9. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2015; 2015:480764. [PMID: 25861376 PMCID: PMC4377397 DOI: 10.1155/2015/480764] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 02/22/2015] [Accepted: 02/22/2015] [Indexed: 01/06/2023]
Abstract
As a new strain of virus emerged in 2013, avian influenza A (H7N9) virus is a threat to the public health, due to its high lethality and pathogenicity. Furthermore, H7N9 has already generated various mutations such as neuraminidase R294K mutation which could make the anti-influenza oseltamivir less effective or ineffective. In this regard, it is urgent to develop new effective anti-H7N9 drug. In this study, we used the general H7N9 neuraminidase and oseltamivir-resistant influenza virus neuraminidase as the acceptors and employed the small molecules including quercetin, chlorogenic acid, baicalein, and oleanolic acid as the donors to perform the molecular docking for exploring the binding abilities between these small molecules and neuraminidase. The results showed that quercetin, chlorogenic acid, oleanolic acid, and baicalein present oseltamivir-comparable high binding potentials with neuraminidase. Further analyses showed that R294K mutation in neuraminidase could remarkably decrease the binding energies for oseltamivir, while other small molecules showed stable binding abilities with mutated neuraminidase. Taken together, the molecular docking studies identified four potential inhibitors for neuraminidase of H7N9, which might be effective for the drug-resistant mutants.
Collapse
|
14
|
Viral lung infections: epidemiology, virology, clinical features, and management of avian influenza A(H7N9). Curr Opin Pulm Med 2015; 20:225-32. [PMID: 24637225 DOI: 10.1097/mcp.0000000000000047] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW The avian influenza A(H7N9) virus has jumped species barrier and caused severe human infections. Here, we present the virological features relevant to clinical practice, and summarize the epidemiology, clinical findings, diagnosis, treatment, and preventive strategies of A(H7N9) infection. RECENT FINDINGS As of 18 February 2014, A(H7N9) virus has caused 354 infections in mainland China, Taiwan, and Hong Kong with a case-fatality rate of 32%. Elderly men were most affected. Most patients acquired the infection from direct contact with poultry or from a contaminated environment, although person-to-person transmission has likely occurred. A(H7N9) infection has usually presented with severe pneumonia, often complicated by acute respiratory distress syndrome and multiorgan failure. Mild infections have been reported in children and young adults. Nasopharyngeal aspirate and sputum samples should be collected for diagnosis, preferably using reverse transcriptase-PCR. Early treatment with neuraminidase inhibitors improved survival, but the efficacy of antivirals was hampered by resistant mutants. The closure of live poultry markets in affected areas has significantly contributed to the decline in the incidence of human cases. SUMMARY The emergence of A(H7N9) virus represents a significant health threat. High vigilance is necessary so that appropriate treatment can be instituted for the patient and preventive measures can be implemented.
Collapse
|
15
|
Drug susceptibility profile and pathogenicity of H7N9 influenza virus (Anhui1 lineage) with R292K substitution. Emerg Microbes Infect 2014; 3:e78. [PMID: 26038501 PMCID: PMC4274890 DOI: 10.1038/emi.2014.80] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 09/21/2014] [Accepted: 09/22/2014] [Indexed: 01/19/2023]
Abstract
Neuraminidase inhibitors (NAIs) are the only available licensed therapeutics against human H7N9 influenza virus infections. The emergence of NAI-resistant variants of H7N9viruses with an NA R292K mutation poses a therapeutic challenge. A comprehensive understanding of the susceptibility of these viruses to clinically available NAIs, non-NAIs and their combinations is crucial for effective treatment. In this study, by using limited serial passage and plaque purification, an R292K variant of the Anhui1 lineage was isolated from a patient with clinical evidence of resistance to oseltamivir. In vitro and cell-based assays confirmed a high level of resistance conferred by the R292K mutation to oseltamivir carboxylate and a moderate level of resistance to zanamivir and peramivir. Non-NAI antivirals, such as T-705, ribavirin and NT-300, efficiently inhibited both the variant and the wild-type in cell-based assays. A combination of NAIs and non-NAIs did not exhibit a marked synergistic effect against the R292K variant. However, the combination of two non-NAIs (T-705 and ribavirin) exhibited significant synergism against the mutant virus. In experimentally infected mice, the variant showed delayed onset of symptoms, a reduced viral load and attenuated lethality compared with the wild-type. Our study suggested non-NAIs should be tested clinically for H7N9 patients with a sustained high viral load. Possible drug combination regimens, such as T-705 plus ribavirin, should be further tested in animal models. The pathogenicity and transmissibility of the R292K H7N9 variant should be further assessed with genetically well-characterized pairs of viruses and, most-desirably, with competitive fitness experiments.
Collapse
|
16
|
Profiles of acute cytokine and antibody responses in patients infected with avian influenza A H7N9. PLoS One 2014; 9:e101788. [PMID: 25003343 PMCID: PMC4086936 DOI: 10.1371/journal.pone.0101788] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 06/10/2014] [Indexed: 01/05/2023] Open
Abstract
The influenza A H7N9 virus outbreak in Eastern China in the spring of 2013 represented a novel, emerging avian influenza transmission to humans. While clinical and microbiological features of H7N9 infection have been reported in the literature, the current study investigated acute cytokine and antibody responses in acute H7N9 infection. Between March 27, 2013 and April 23, 2013, six patients with confirmed H7N9 influenza infection were admitted to Drum Tower Hospital, Nanjing, China. Acute phase serum cytokine profiles were determined using a high-throughput multiplex assay. Daily H7 hemagglutinin (HA)-specific IgG, IgM, and IgA responses were monitored by ELISA. Neutralizing antibodies specific for H7N9 viruses were determined against a pseudotyped virus expressing the novel H7 subtype HA antigen. Five cytokines (IL-6, IP-10, IL-10, IFNγ, and TNFα) were significantly elevated in H7N9-infected patients when compared to healthy volunteers. Serum H7 HA-specific IgG, as well as IgM and IgA responses, were detected within 8 days of disease onset and increased in a similar pattern during acute infection. Neutralizing antibodies developed shortly after the appearance of binding antibody responses and showed similar kinetics as a fraction of the total H7 HA-specific IgG responses. H7N9 infection resulted in hallmark serum cytokine increases, which correlated with fever and disease persistence. The novel finding of simultaneous development of IgG, IgM, and IgA responses in acute H7N9 infection points to the potential for live influenza viruses to elicit fast and potent protective antibodies to limit the infection.
Collapse
|
17
|
Xiao XC, Li KB, Chen ZQ, Di B, Yang ZC, Yuan J, Luo HB, Ye SL, Liu H, Lu JY, Nie Z, Tang XP, Wang M, Zheng BJ. Transmission of avian influenza A(H7N9) virus from father to child: a report of limited person-to-person transmission, Guangzhou, China, January 2014. ACTA ACUST UNITED AC 2014; 19. [PMID: 24993555 DOI: 10.2807/1560-7917.es2014.19.25.20837] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We investigated a possible person-to-person transmission within a family cluster of two confirmed influenza A(H7N9) patients in Guangzhou, China. The index case, a man in his late twenties, worked in a wet market that was confirmed to be contaminated by the influenza A(H7N9) virus. He developed a consistent fever and severe pneumonia after 4 January 2014. In contrast, the second case, his five-year-old child, who only developed a mild disease 10 days after disease onset of the index case, did not have any contact with poultry and birds but had unprotected and very close contact with the index case. The sequences of the haemagglutinin (HA) genes of the virus stains isolated from the two cases were 100% identical. These findings strongly suggest that the second case might have acquired the infection via transmission of the virus from the sick father. Fortunately, all 40 close contacts, including the other four family members who also had unprotected and very close contact with the cases, did not acquire influenza A(H7N9) virus infection, indicating that the person-to-person transmissibility of the virus remained limited. Our finding underlines the importance of carefully, thoroughly and punctually following-up close contacts of influenza A(H7N9) cases to allow detection of any secondary cases, as these may constitute an early warning signal of the virus's increasing ability to transmit from person-to-person.
Collapse
Affiliation(s)
- X C Xiao
- Guangzhou Center for Disease Control and Prevention, Guangzhou, Guangdong, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Transcriptomic characterization of the novel avian-origin influenza A (H7N9) virus: specific host response and responses intermediate between avian (H5N1 and H7N7) and human (H3N2) viruses and implications for treatment options. mBio 2014; 5:e01102-13. [PMID: 24496798 PMCID: PMC3950506 DOI: 10.1128/mbio.01102-13] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
UNLABELLED A novel avian-origin H7N9 influenza A virus (IAV) emerged in China in 2013, causing mild to lethal human respiratory infections. H7N9 originated with multiple reassortment events between avian viruses and carries genetic markers of human adaptation. Determining whether H7N9 induces a host response closer to that with human or avian IAV is important in order to better characterize this emerging virus. Here we compared the human lung epithelial cell response to infection with A/Anhui/01/13 (H7N9) or highly pathogenic avian-origin H5N1, H7N7, or human seasonal H3N2 IAV. The transcriptomic response to H7N9 was highly specific to this strain but was more similar to the response to human H3N2 than to that to other avian IAVs. H7N9 and H3N2 both elicited responses related to eicosanoid signaling and chromatin modification, whereas H7N9 specifically induced genes regulating the cell cycle and transcription. Among avian IAVs, the response to H7N9 was closest to that elicited by H5N1 virus. Host responses common to H7N9 and the other avian viruses included the lack of induction of the antigen presentation pathway and reduced proinflammatory cytokine induction compared to that with H3N2. Repression of these responses could have an important impact on the immunogenicity and virulence of H7N9 in humans. Finally, using a genome-based drug repurposing approach, we identified several drugs predicted to regulate the host response to H7N9 that may act as potential antivirals, including several kinase inhibitors, as well as FDA-approved drugs, such as troglitazone and minocycline. Importantly, we validated that minocycline inhibited H7N9 replication in vitro, suggesting that our computational approach holds promise for identifying novel antivirals. IMPORTANCE Whether H7N9 will be the next pandemic influenza virus or will persist and sporadically infect humans from its avian reservoir, similar to H5N1, is not known yet. High-throughput profiling of the host response to infection allows rapid characterization of virus-host interactions and generates many hypotheses that will accelerate understanding and responsiveness to this potential threat. We show that the cellular response to H7N9 virus is closer to that induced by H3N2 than to that induced by H5N1, reflecting the potential of this new virus for adaptation to humans. Importantly, dissecting the host response to H7N9 may guide host-directed antiviral development.
Collapse
|
19
|
Wu YL, Shen LW, Ding YP, Tanaka Y, Zhang W. Preliminary success in the characterization and management of a sudden breakout of a novel H7N9 influenza A virus. Int J Biol Sci 2014; 10:109-18. [PMID: 24520209 PMCID: PMC3920865 DOI: 10.7150/ijbs.8198] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 12/05/2013] [Indexed: 12/21/2022] Open
Abstract
Influenza has always been one of the major threats to human health. The Spanish influenza in 1918, the pandemic influenza A/H1N1 in 2009, and the avian influenza A/H5N1 have brought about great disasters or losses to mankind. More recently, a novel avian influenza A/H7N9 broke out in China and until December 2, 2013, it had caused 139 cases of infection, including 45 deaths. Its risk and pandemic potential attract worldwide attention. In this article, we summarize epidemiology, virology characteristics, clinical symptoms, diagnosis methods, clinical treatment and preventive measures about the avian influenza A/H7N9 virus infection to provide a reference for a possible next wave of flu outbreak.
Collapse
Affiliation(s)
- Yan-Ling Wu
- 1. Lab of Molecular Immunology, Virus Inspection Department, Zhejiang Provincial Center for Disease Control and Prevention, 630 Xincheng Road, Hangzhou, 310051, PR China
| | - Li-Wen Shen
- 2. Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, PR China
| | - Yan-Ping Ding
- 1. Lab of Molecular Immunology, Virus Inspection Department, Zhejiang Provincial Center for Disease Control and Prevention, 630 Xincheng Road, Hangzhou, 310051, PR China
- 2. Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, PR China
| | - Yoshimasa Tanaka
- 3. Center for Innovation in Immunoregulative Technology and Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Wen Zhang
- 2. Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, PR China
| |
Collapse
|
20
|
Klausberger M, Wilde M, Palmberger D, Hai R, Albrecht RA, Margine I, Hirsh A, García-Sastre A, Grabherr R, Krammer F. One-shot vaccination with an insect cell-derived low-dose influenza A H7 virus-like particle preparation protects mice against H7N9 challenge. Vaccine 2013; 32:355-62. [PMID: 24262313 PMCID: PMC3906608 DOI: 10.1016/j.vaccine.2013.11.036] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 11/04/2013] [Accepted: 11/07/2013] [Indexed: 01/25/2023]
Abstract
Human infections with a novel influenza A H7N9 subtype virus were reported in China recently. The virus caused severe disease with high mortality rates and it raised concerns over its pandemic potential. Here, we assessed in the mouse model protective efficacy of single immunisations with low vaccine doses of insect cell-derived H7 virus-like particles, consisting of hemagglutinin and matrix protein. Vaccinated mice were fully protected and survived a stringent lethal challenge (100 mLD50) with H7N9, even after a single, unadjuvanted, low vaccine dose (0.03 μg). Serum analysis revealed broad reactivity and hemagglutination inhibition activity across a panel of divergent H7 strains. Moreover, we detected significant levels of cross-reactivity to related group 2 hemagglutinins. These data demonstrate that virus-like particle vaccines have the potential to induce broadly protective immunity against the novel H7N9 virus and a variety of other H7 strains.
Collapse
Affiliation(s)
- Miriam Klausberger
- Vienna Institute of BioTechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Monika Wilde
- Vienna Institute of BioTechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Dieter Palmberger
- Vienna Institute of BioTechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Rong Hai
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Randy A Albrecht
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Irina Margine
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Graduate School of Biological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ariana Hirsh
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Reingard Grabherr
- Vienna Institute of BioTechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
21
|
Yiu Lai K, Wing Yiu Ng G, Fai Wong K, Fan Ngai Hung I, Kam Fai Hong J, Fan Cheng F, Kwok Cheung Chan J. Human H7N9 avian influenza virus infection: a review and pandemic risk assessment. Emerg Microbes Infect 2013; 2:e48. [PMID: 26038484 PMCID: PMC3824111 DOI: 10.1038/emi.2013.48] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Revised: 06/12/2013] [Accepted: 06/18/2013] [Indexed: 12/20/2022]
Abstract
China is undergoing a recent outbreak of a novel H7N9 avian influenza virus (nH7N9) infection that has thus far involved 132 human patients, including 37 deaths. The nH7N9 virus is a reassortant virus originating from the H7N3, H7N9 and H9N2 avian influenza viruses. nH7N9 isolated from humans contains features related to adaptation to humans, including a Q226L mutation in the hemagglutinin cleavage site and E627K and D701N mutations in the PB2 protein. Live poultry markets provide an environment for the emergence, spread and maintenance of nH7N9 as well as for the selection of mutants that facilitate nH7N9 binding to and replication in the human upper respiratory tract. Innate immune suppression conferred by the internal genes of H9N2 may contribute to the virulence of nH7N9. The quail may serve as the intermediate host during the adaptation of avian influenza viruses from domestic waterfowl to gallinaceous poultry, such as chickens and related terrestrial-based species, due to the selection of viral mutants with a short neuraminidase stalk. Infections in chickens, common quails, red-legged partridges and turkeys may select for mutants with human receptor specificity. Infection in Ratitae species may lead to the selection of PB2-E627K and PB2-D701N mutants and the conversion of nH7N9 to a highly pathogenic avian influenza virus.
Collapse
Affiliation(s)
- Kang Yiu Lai
- Department of Intensive Care, Queen Elizabeth Hospital , Hong Kong, China
| | - George Wing Yiu Ng
- Department of Intensive Care, Queen Elizabeth Hospital , Hong Kong, China
| | - Kit Fai Wong
- Department of Pathology, Queen Elizabeth Hospital , Hong Kong, China
| | | | | | - Fanny Fan Cheng
- Department of Medicine, Queen Elizabeth Hospital , Hong Kong, China
| | | |
Collapse
|
22
|
Characterization of H7N9 influenza A viruses isolated from humans. Nature 2013; 501:551-5. [PMID: 23842494 PMCID: PMC3891892 DOI: 10.1038/nature12392] [Citation(s) in RCA: 328] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 06/20/2013] [Indexed: 01/20/2023]
Abstract
Avian influenza A viruses rarely infect humans; however, when human infection and subsequent human-to-human transmission occurs, worldwide outbreaks (pandemics) can result. The recent sporadic infections of humans in China with a previously unrecognized avian influenza A virus of the H7N9 subtype (A(H7N9)) have caused concern owing to the appreciable case fatality rate associated with these infections (more than 25%), potential instances of human-to-human transmission, and the lack of pre-existing immunity among humans to viruses of this subtype. Here we characterize two early human A(H7N9) isolates, A/Anhui/1/2013 (H7N9) and A/Shanghai/1/2013 (H7N9); hereafter referred to as Anhui/1 and Shanghai/1, respectively. In mice, Anhui/1 and Shanghai/1 were more pathogenic than a control avian H7N9 virus (A/duck/Gunma/466/2011 (H7N9); Dk/GM466) and a representative pandemic 2009 H1N1 virus (A/California/4/2009 (H1N1pdm09); CA04). Anhui/1, Shanghai/1 and Dk/GM466 replicated well in the nasal turbinates of ferrets. In nonhuman primates, Anhui/1 and Dk/GM466 replicated efficiently in the upper and lower respiratory tracts, whereas the replicative ability of conventional human influenza viruses is typically restricted to the upper respiratory tract of infected primates. By contrast, Anhui/1 did not replicate well in miniature pigs after intranasal inoculation. Critically, Anhui/1 transmitted through respiratory droplets in one of three pairs of ferrets. Glycan arrays showed that Anhui/1, Shanghai/1 and A/Hangzhou/1/2013 (H7N9) (a third human A(H7N9) virus tested in this assay) bind to human virus-type receptors, a property that may be critical for virus transmissibility in ferrets. Anhui/1 was found to be less sensitive in mice to neuraminidase inhibitors than a pandemic H1N1 2009 virus, although both viruses were equally susceptible to an experimental antiviral polymerase inhibitor. The robust replicative ability in mice, ferrets and nonhuman primates and the limited transmissibility in ferrets of Anhui/1 suggest that A(H7N9) viruses have pandemic potential.
Collapse
|
23
|
Affiliation(s)
- Alan J Hay
- Virology Division, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, UK.
| | | |
Collapse
|