1
|
Wang B, Shen B, Xiang W, Shen H. Advances in the study of LNPs for mRNA delivery and clinical applications. Virus Genes 2024; 60:577-591. [PMID: 39172354 DOI: 10.1007/s11262-024-02102-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/14/2024] [Indexed: 08/23/2024]
Abstract
Messenger ribonucleic acid (mRNA) was discovered in 1961 as an intermediary for transferring genetic information from DNA to ribosomes for protein synthesis. The COVID-19 pandemic brought worldwide attention to mRNA vaccines. The emergency use authorization of two COVID-19 mRNA vaccines, BNT162b2 and mRNA-1273, were major achievements in the history of vaccine development. Lipid nanoparticles (LNPs), one of the most superior non-viral delivery vectors available, have made many exciting advances in clinical translation as part of the COVID-19 vaccine and therefore has the potential to accelerate the clinical translation of many gene drugs. In addition, due to these small size, biocompatibility and excellent biodegradability, LNPs can efficiently deliver nucleic acids into cells, which is particularly important for current mRNA therapeutic regimens. LNPs are composed cationic or pH-dependent ionizable lipid bilayer, polyethylene glycol (PEG), phospholipids, and cholesterol, represents an advanced system for the delivery of mRNA vaccines. Furthermore, optimization of these four components constituting the LNPs have demonstrated enhanced vaccine efficacy and diminished adverse effects. The incorporation of biodegradable lipids enhance the biocompatibility of LNPs, thereby improving its potential as an efficacious therapeutic approach for a wide range of challenging and intricate diseases, encompassing infectious diseases, liver disorders, cancer, cardiovascular diseases, cerebrovascular conditions, among others. Consequently, this review aims to furnish the scientific community with the most up-to-date information regarding mRNA vaccines and LNP delivery systems.
Collapse
Affiliation(s)
- Bili Wang
- National Clinical Research Center for Child Health, National Children's Regional Medical Center, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Biao Shen
- Hangzhou Cybernax Biotechnology Co. Ltd, Hangzhou, 311202, China
| | - Wenqing Xiang
- National Clinical Research Center for Child Health, National Children's Regional Medical Center, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Hongqiang Shen
- National Clinical Research Center for Child Health, National Children's Regional Medical Center, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China.
| |
Collapse
|
2
|
Okada Y, Kumagai Y, Okura I, Otsuki M, Ishida N, Iwama Y, Minamida T, Yagi Y, Kurosawa T, van Boxmeer J, Zhang Y, Smolenov I, Walson JL. Immunogenicity of a booster dose of a bivalent (Asp614Gly and omicron BA.4/5 variant) self-amplifying mRNA SARS-CoV-2 booster vaccine versus the BNT162b2 omicron BA.4/5 mRNA vaccine: a randomised phase 3 trial. THE LANCET. INFECTIOUS DISEASES 2024:S1473-3099(24)00565-6. [PMID: 39461355 DOI: 10.1016/s1473-3099(24)00565-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/09/2024] [Accepted: 08/19/2024] [Indexed: 10/29/2024]
Abstract
BACKGROUND We previously showed that ARCT-154, a self-amplifying mRNA COVID-19 vaccine, had improved immunogenicity and antibody persistence compared with conventional mRNA or adenovirus vector vaccines. In this study, we compared ARCT-2301, a bivalent self-amplifying mRNA vaccine (Asp614Gly and omicron BA.4/5 variant), with the bivalent Comirnaty omicron BA.4-5 vaccine, to determine whether this improved response persisted in bivalent formulations against different SARS-CoV-2 variants. METHODS This randomised, multicentre, phase 3, observer-masked, active-controlled comparative study was done at nine hospitals in Japan. Eligible participants were healthy Japanese adults, aged at least 18 years, who had previously received a full immunisation series of three to five doses of mRNA COVID-19 vaccines (Comirnaty or Spikevax [Moderna]), with the last dose received at least 3 months before screening for this trial. Participants were randomly assigned (1:1) to either ARCT-2301 or Comirnaty BA.4-5 mRNA vaccine using interactive computer-generated randomisation with a block size of four. Randomisation was stratified by gender (men vs women), age group (<65 years vs ≥65 years), type of vaccine used for last vaccination (bivalent omicron BA.1 vs bivalent omicron BA.4/5), and time since last COVID-19 vaccination (<5 months vs ≥5 months). ARCT-2301 was supplied in vials containing 100 μg lyophilised mRNA, 50 μg mRNA each coding for the full-length spike proteins of the ancestral Asp614Gly SARS-CoV-2 strain and omicron BA.4/5 variant. Immediately before use, each vial was reconstituted with 10 mL saline. The comparator original omicron BA.4/5 mRNA vaccine (Comirnaty BA.4-5) was supplied in ready-to-use vials containing a single dose of 30 μg mRNA in 0·3 mL volume. Both vaccines were administered by intramuscular injection in the deltoid of the non-dominant arm. The primary outcome of the study was to show non-inferiority of immunogenicity of ARCT-2301 versus Comirnaty BA.4-5 at day 29 as neutralising antibody geometric mean titres (GMT) and seroresponse rates against omicron BA.4/5. Primary analyses were done in a per-protocol manner. The trial is registered with the Japan Registry for Clinical Trials, jRCT2031230340. FINDINGS Between Sept 29 and Nov 18, 2023, we enrolled 930 participants (451 men and 479 women) to receive a booster dose of ARCT-2301 (n=465) or Comirnaty BA.4-5 (n=465). The primary immunogenicity outcome to show that the antibody response at day 29 against omicron BA.4/5 elicited by ARCT-2301 was non-inferior to that elicited with Comirnaty BA.4-5 was achieved, both by GMT ratio (1·49, 95% CI 1·26-1·76) and difference in seroresponse rate (7·2%, 95% CI 0·6-13·7). Furthermore, the differences in antibody response between the groups showed superiority for ARCT-2301 against Wuhan-Hu-1 using both criteria, with a GMT ratio of 1·45 (95% CI 1·28-1·63) and a difference in seroresponse rate of 12·5% (95% CI 5·9-19·0), and omicron XBB.1.5, with a GMT ratio of 1·63 (95% CI 1·36-1·94) and a seroresponse rate difference of 16·7% (95% CI 10·1-23·2). Both vaccines were well-tolerated with mainly mild, transient solicited adverse events and no causally related severe or serious adverse events. INTERPRETATION Boosting mRNA-immunised adults with ARCT-2301 induced superior immunogenicity compared with Comirnaty BA.4-5 against both Wuhan-Hu-1 and omicron BA.4/5 variant COVID-19, and elicited a higher response against omicron XBB.1.5. Both vaccines had similar tolerability profiles. Self-amplifying mRNA vaccines could provide a substantial contribution to pandemic preparedness and response, inducing robust immune responses with a lower dose of mRNA to allow wider and more equitable distribution. FUNDING Japanese Ministry of Health, Labour, and Welfare and Meiji Seika Pharma.
Collapse
Affiliation(s)
| | - Yuji Kumagai
- Kitasato University Kitasato Institute Hospital, Tokyo, Japan
| | | | | | | | | | | | | | | | | | - Ye Zhang
- Arcturus Therapeutics, San Diego, CA, USA
| | | | | |
Collapse
|
3
|
Hameed H, Sarwar HS, Younas K, Zaman M, Jamshaid M, Irfan A, Khalid M, Sohail MF. Exploring the potential of nanomedicine for gene therapy across the physicochemical and cellular barriers. Funct Integr Genomics 2024; 24:177. [PMID: 39340586 DOI: 10.1007/s10142-024-01459-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024]
Abstract
After COVID-19, a turning point in the way of pharmaceutical technology is gene therapy with beneficial potential to start a new medical era. However, commercialization of such pharmaceuticals would never be possible without the help of nanotechnology. Nanomedicine can fulfill the growing needs linked to safety, efficiency, and site-specific targeted delivery of Gene therapy-based pharmaceuticals. This review's goal is to investigate how nanomedicine may be used to transfer nucleic acids by getting beyond cellular and physicochemical barriers. Firstly, we provide a full description of types of gene therapy, their mechanism, translation, transcription, expression, type, and details of diseases with possible mechanisms that can only be treated with genes-based pharmaceuticals. Additionally, we also reviewed different types of physicochemical barriers, physiological and cellular barriers in nucleic acids (DNA/RNA) based drug delivery. Finally, we highlight the need and importance of cationic lipid-based nanomedicine/nanocarriers in gene-linked drug delivery and how nanotechnology can help to overcome the above-discussed barrier in gene therapy and their biomedical applications.
Collapse
Affiliation(s)
- Huma Hameed
- Faculty of Pharmaceutical Sciences, University of Central Punjab (UCP), Lahore, 54000, Pakistan.
| | - Hafiz Shoaib Sarwar
- Faculty of Pharmaceutical Sciences, University of Central Punjab (UCP), Lahore, 54000, Pakistan
| | - Komel Younas
- Faculty of Pharmacy, University Paris Saclay, 17 Avenue des sciences, 91190, Orsay, France
| | - Muhammad Zaman
- Faculty of Pharmaceutical Sciences, University of Central Punjab (UCP), Lahore, 54000, Pakistan
| | - Muhammad Jamshaid
- Faculty of Pharmaceutical Sciences, University of Central Punjab (UCP), Lahore, 54000, Pakistan
| | - Ali Irfan
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Maha Khalid
- Faculty of Pharmaceutical Sciences, University of Central Punjab (UCP), Lahore, 54000, Pakistan
| | - Muhammad Farhan Sohail
- Department of Chemistry, SBASSE, Lahore University of Management Sciences (LUMS), Lahore, 54000, Pakistan
- Alliant College of Pharmacy and Allied Health Sciences, Lahore, 54000, Pakistan
| |
Collapse
|
4
|
Rappuoli R, Alter G, Pulendran B. Transforming vaccinology. Cell 2024; 187:5171-5194. [PMID: 39303685 DOI: 10.1016/j.cell.2024.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/24/2024] [Accepted: 07/12/2024] [Indexed: 09/22/2024]
Abstract
The COVID-19 pandemic placed the field of vaccinology squarely at the center of global consciousness, emphasizing the vital role of vaccines as transformative public health tools. The impact of vaccines was recently acknowledged by the award of the 2023 Nobel Prize in Physiology or Medicine to Katalin Kariko and Drew Weissman for their seminal contributions to the development of mRNA vaccines. Here, we provide a historic perspective on the key innovations that led to the development of some 27 licensed vaccines over the past two centuries and recent advances that promise to transform vaccines in the future. Technological revolutions such as reverse vaccinology, synthetic biology, and structure-based design transformed decades of vaccine failures into successful vaccines against meningococcus B and respiratory syncytial virus (RSV). Likewise, the speed and flexibility of mRNA vaccines profoundly altered vaccine development, and the advancement of novel adjuvants promises to revolutionize our ability to tune immunity. Here, we highlight exciting new advances in the field of systems immunology that are transforming our mechanistic understanding of the human immune response to vaccines and how to predict and manipulate them. Additionally, we discuss major immunological challenges such as learning how to stimulate durable protective immune response in humans.
Collapse
Affiliation(s)
| | - Galit Alter
- Moderna Therapeutics, Cambridge, MA 02139, USA.
| | - Bali Pulendran
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA; Department of Pathology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA.
| |
Collapse
|
5
|
Chandra S, Wilson JC, Good D, Wei MQ. mRNA vaccines: a new era in vaccine development. Oncol Res 2024; 32:1543-1564. [PMID: 39308511 PMCID: PMC11413818 DOI: 10.32604/or.2024.043987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 07/02/2024] [Indexed: 09/25/2024] Open
Abstract
The advent of RNA therapy, particularly through the development of mRNA cancer vaccines, has ushered in a new era in the field of oncology. This article provides a concise overview of the key principles, recent advancements, and potential implications of mRNA cancer vaccines as a groundbreaking modality in cancer treatment. mRNA cancer vaccines represent a revolutionary approach to combatting cancer by leveraging the body's innate immune system. These vaccines are designed to deliver specific mRNA sequences encoding cancer-associated antigens, prompting the immune system to recognize and mount a targeted response against malignant cells. This personalized and adaptive nature of mRNA vaccines holds immense potential for addressing the heterogeneity of cancer and tailoring treatments to individual patients. Recent breakthroughs in the development of mRNA vaccines, exemplified by the success of COVID-19 vaccines, have accelerated their application in oncology. The mRNA platform's versatility allows for the rapid adaptation of vaccine candidates to various cancer types, presenting an agile and promising avenue for therapeutic intervention. Clinical trials of mRNA cancer vaccines have demonstrated encouraging results in terms of safety, immunogenicity, and efficacy. Pioneering candidates, such as BioNTech's BNT111 and Moderna's mRNA-4157, have exhibited promising outcomes in targeting melanoma and solid tumors, respectively. These successes underscore the potential of mRNA vaccines to elicit robust and durable anti-cancer immune responses. While the field holds great promise, challenges such as manufacturing complexities and cost considerations need to be addressed for widespread adoption. The development of scalable and cost-effective manufacturing processes, along with ongoing clinical research, will be pivotal in realizing the full potential of mRNA cancer vaccines. Overall, mRNA cancer vaccines represent a cutting-edge therapeutic approach that holds the promise of transforming cancer treatment. As research progresses, addressing challenges and refining manufacturing processes will be crucial in advancing these vaccines from clinical trials to mainstream oncology practice, offering new hope for patients in the fight against cancer.
Collapse
Affiliation(s)
- Shubhra Chandra
- School of Pharmacy & Medical Sciences, Gold Coast campus, Griffith University, Brisbane, QLD-4222, Australia
- Menzies Health Institute Queensland (MHIQ), Gold Coast Campus, Griffith University, Brisbane, QLD-4215, Australia
| | - Jennifer C Wilson
- School of Pharmacy & Medical Sciences, Gold Coast campus, Griffith University, Brisbane, QLD-4222, Australia
- Menzies Health Institute Queensland (MHIQ), Gold Coast Campus, Griffith University, Brisbane, QLD-4215, Australia
| | - David Good
- School of Allied Health, Australian Catholic University, Brisbane, QLD-4014, Australia
| | - Ming Q Wei
- School of Pharmacy & Medical Sciences, Gold Coast campus, Griffith University, Brisbane, QLD-4222, Australia
- Menzies Health Institute Queensland (MHIQ), Gold Coast Campus, Griffith University, Brisbane, QLD-4215, Australia
| |
Collapse
|
6
|
Cui X, Vervaeke P, Gao Y, Opsomer L, Sun Q, Snoeck J, Devriendt B, Zhong Z, Sanders NN. Immunogenicity and biodistribution of lipid nanoparticle formulated self-amplifying mRNA vaccines against H5 avian influenza. NPJ Vaccines 2024; 9:138. [PMID: 39097672 PMCID: PMC11298010 DOI: 10.1038/s41541-024-00932-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 07/17/2024] [Indexed: 08/05/2024] Open
Abstract
This study reports on the immunogenicity and biodistribution of H5 hemagglutinin (HA)-based self-amplifying (sa) mRNA vaccines in mice. Four sa-mRNA vaccines encoding either a secreted full-length HA, a secreted HA head domain, a secreted HA stalk domain, or a full-length membrane-anchored HA were investigated. All vaccines elicited an adaptive immune response. However, the full-length HA sa-RNA vaccines demonstrated superior performance compared to head and stalk domain vaccines. The antibody titers positively correlated with the vaccine dose. Cellular immune responses and antigen-specific IgA antibodies in the lungs were also observed. The comparison of the sa-mRNA vaccines encoding the secreted and membrane-anchored full-length HA revealed that anchoring of the HA to the membrane significantly enhanced the antibody and cellular responses. In addition to the injection site, the intramuscularly injected sa-mRNA-LNPs were also detected in the draining lymph nodes, spleen, and to a lesser extent, in the lung, kidney, liver, and heart.
Collapse
Affiliation(s)
- Xiaole Cui
- Laboratory of Gene Therapy, Faculty of Veterinary Medicine, Ghent University, B-9820, Merelbeke, Belgium
| | - Pieter Vervaeke
- Laboratory of Gene Therapy, Faculty of Veterinary Medicine, Ghent University, B-9820, Merelbeke, Belgium
| | - Ya Gao
- Department of Translational Physiology, Infectiology and Public Health, Ghent University, B-9820, Merelbeke, Belgium
| | - Lisa Opsomer
- Laboratory of Gene Therapy, Faculty of Veterinary Medicine, Ghent University, B-9820, Merelbeke, Belgium
| | - Qing Sun
- Laboratory of Gene Therapy, Faculty of Veterinary Medicine, Ghent University, B-9820, Merelbeke, Belgium
| | - Janne Snoeck
- Laboratory of Gene Therapy, Faculty of Veterinary Medicine, Ghent University, B-9820, Merelbeke, Belgium
| | - Bert Devriendt
- Department of Translational Physiology, Infectiology and Public Health, Ghent University, B-9820, Merelbeke, Belgium
| | - Zifu Zhong
- Department of Pharmaceutics, Ghent University, Ghent, Belgium.
- Cancer Research Institute (CRIG), Ghent University, 9000, Ghent, Belgium.
| | - Niek N Sanders
- Laboratory of Gene Therapy, Faculty of Veterinary Medicine, Ghent University, B-9820, Merelbeke, Belgium.
- Cancer Research Institute (CRIG), Ghent University, 9000, Ghent, Belgium.
| |
Collapse
|
7
|
Tajudeen YA, Oladipo HJ, Yusuff SI, Abimbola SO, Abdulkadir M, Oladunjoye IO, Omotosho AO, Egbewande OM, Shittu HD, Yusuf RO, Ogundipe O, Muili AO, Afolabi AO, Dahesh SMA, Gameil MAM, El-Sherbini MS. A landscape review of malaria vaccine candidates in the pipeline. Trop Dis Travel Med Vaccines 2024; 10:19. [PMID: 39085983 PMCID: PMC11293096 DOI: 10.1186/s40794-024-00222-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 04/15/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Globally, malaria continues to pose a major health challenge, with approximately 247 million cases of the illness and 627,000 deaths reported in 2021. However, the threat is particularly pronounced in sub-Saharan African countries, where pregnant women and children under the age of five face heightened vulnerability to the disease. As a result, the imperative to develop malaria vaccines especially for these vulnerable populations, remains crucial in the pursuit of malaria eradication. However, despite decades of research, effective vaccine development faces technical challenges, including the rapid spread of drug-resistant parasite strains, the complex parasite lifecycle, the development of liver hypnozoites with potential for relapse, and evasion of the host immune system. This review aims to discuss the different malaria vaccine candidates in the pipeline, highlighting different approaches used for adjuvating these candidates, their benefits, and outcomes, and summarizing the progress of these vaccine candidates under development. METHOD A comprehensive web-based search for peer-reviewed journal articles published in SCOPUS, MEDLINE (via PubMed), Science Direct, WHO, and Advanced Google Scholar databases was conducted from 1990 to May 2022. Context-specific keywords such as "Malaria", "Malaria Vaccine", "Malaria Vaccine Candidates", "Vaccine Development", "Vaccine Safety", "Clinical Trials", "mRNA Vaccines", "Viral Vector Vaccines", "Protein-based Vaccines", "Subunit Vaccines", "Vaccine Adjuvants", "Vaccine-induced Immune Responses", and "Immunogenicity" were emphatically considered. Articles not directly related to malaria vaccine candidates in preclinical and clinical stages of development were excluded. RESULTS Various approaches have been studied for malaria vaccine development, targeting different parasite lifecycle stages, including the pre-erythrocytic, erythrocytic, and sexual stages. The RTS, S/AS01 vaccine, the first human parasite vaccine reaching WHO-listed authority maturity level 4, has demonstrated efficacy in preventing clinical malaria in African children. However, progress was slow in introducing other safe, and feasible malaria vaccines through clinical trials . Recent studies highlight the potential effectiveness of combining pre-erythrocytic and blood-stage vaccines, along with the advantages of mRNA vaccines for prophylaxis and treatment, and nonstructural vaccines for large-scale production. CONCLUSION Malaria vaccine candidates targeting different lifecycle stages of the parasite range from chemoprophylaxis vaccination to cross-species immune protection. The use of a multi-antigen, multi-stage combinational vaccine is therefore essential in the context of global health. This demands careful understanding and critical consideration of the long-term multi-faceted interplay of immune interference, co-dominance, complementary immune response, molecular targets, and adjuvants affecting the overall vaccine-induced immune response. Despite challenges, advancements in clinical trials and vaccination technology offer promising possibilities for novel approaches in malaria vaccine development.
Collapse
Affiliation(s)
- Yusuf Amuda Tajudeen
- Department of Microbiology, Faculty of Life Sciences, University of Ilorin, P.M.B. 1515, Ilorin, 240003, Nigeria
- Department of Epidemiology and Medical Statistics, Faculty of Public Health, College of Medicine, University of Ibadan, P.M.B 5017 G.P.O, Ibadan, Oyo State, Nigeria
| | - Habeebullah Jayeola Oladipo
- Department of Microbiology, Faculty of Life Sciences, University of Ilorin, P.M.B. 1515, Ilorin, 240003, Nigeria
- Faculty of Pharmaceutical Sciences, University of Ilorin, P.M.B. 1515, Ilorin, 240003, Nigeria
| | - Sodiq Inaolaji Yusuff
- Department of Medicine, Faculty of Clinical Sciences, Obafemi Awolowo University, Ibadan- Ife Rd, Ife, 220282, Osun State, Nigeria
| | - Samuel O Abimbola
- Cyprus International Institute of Environmental and Public Health, Cyprus University of Technology, Limassol, 3036, Cyprus
| | - Muritala Abdulkadir
- Faculty of Pharmaceutical Sciences, University of Ilorin, P.M.B. 1515, Ilorin, 240003, Nigeria
| | - Iyiola Olatunji Oladunjoye
- Department of Microbiology, Faculty of Life Sciences, University of Ilorin, P.M.B. 1515, Ilorin, 240003, Nigeria
| | - Abass Olawale Omotosho
- Department of Microbiology, Faculty of Pure and Applied Sciences, Kwara State University, P.M.B 1530, Malete-Ilorin, Ilorin, Nigeria
| | | | | | - Rashidat Onyinoyi Yusuf
- Faculty of Pharmaceutical Sciences, University of Ilorin, P.M.B. 1515, Ilorin, 240003, Nigeria
| | - Oluwatosin Ogundipe
- Department of Epidemiology and Medical Statistics, Faculty of Public Health, College of Medicine, University of Ibadan, P.M.B 5017 G.P.O, Ibadan, Oyo State, Nigeria
| | - Abdulbasit Opeyemi Muili
- Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, P.M.B 4000, Ogbomosho, Oyo State, Nigeria
| | - Abdullateef Opeyemi Afolabi
- Faculty of Biomedical Sciences, Department of Microbiology and Immunology, Kampala International University, Bushenyi, Uganda.
| | - Salwa M A Dahesh
- Research Institute of Medical Entomology, General Organization for Teaching Hospitals and Institutes, GOTHI, Damietta, Egypt
| | | | - Mona Said El-Sherbini
- Department of Medical Parasitology, Faculty of Medicine, Cairo University, Cairo, 11562, Egypt
| |
Collapse
|
8
|
Wang C, Yuan F. A comprehensive comparison of DNA and RNA vaccines. Adv Drug Deliv Rev 2024; 210:115340. [PMID: 38810703 PMCID: PMC11181159 DOI: 10.1016/j.addr.2024.115340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/06/2024] [Accepted: 05/18/2024] [Indexed: 05/31/2024]
Abstract
Nucleic acid technology has revolutionized vaccine development, enabling rapid design and production of RNA and DNA vaccines for prevention and treatment of diseases. The successful deployment of mRNA and plasmid DNA vaccines against COVID-19 has further validated the technology. At present, mRNA platform is prevailing due to its higher efficacy, while DNA platform is undergoing rapid evolution because it possesses unique advantages that can potentially overcome the problems associated with the mRNA platform. To help understand the recent performances of the two vaccine platforms and recognize their clinical potentials in the future, this review compares the advantages and drawbacks of mRNA and DNA vaccines that are currently known in the literature, in terms of development timeline, financial cost, ease of distribution, efficacy, safety, and regulatory approval of products. Additionally, the review discusses the ongoing clinical trials, strategies for improvement, and alternative designs of RNA and DNA platforms for vaccination.
Collapse
Affiliation(s)
- Chunxi Wang
- Department of Biomedical Engineering, Duke University, Durham, NC 27705, United States
| | - Fan Yuan
- Department of Biomedical Engineering, Duke University, Durham, NC 27705, United States.
| |
Collapse
|
9
|
Pawar S, Pingale P, Garkal A, Osmani RAM, Gajbhiye K, Kulkarni M, Pardeshi K, Mehta T, Rajput A. Unlocking the potential of nanocarrier-mediated mRNA delivery across diverse biomedical frontiers: A comprehensive review. Int J Biol Macromol 2024; 267:131139. [PMID: 38615863 DOI: 10.1016/j.ijbiomac.2024.131139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/23/2024] [Accepted: 03/23/2024] [Indexed: 04/16/2024]
Abstract
Messenger RNA (mRNA) has gained marvelous attention for managing and preventing various conditions like cancer, Alzheimer's, infectious diseases, etc. Due to the quick development and success of the COVID-19 mRNA-based vaccines, mRNA has recently grown in prominence. A lot of products are in clinical trials and some are already FDA-approved. However, still improvements in line of optimizing stability and delivery, reducing immunogenicity, increasing efficiency, expanding therapeutic applications, scalability and manufacturing, and long-term safety monitoring are needed. The delivery of mRNA via a nanocarrier system gives a synergistic outcome for managing chronic and complicated conditions. The modified nanocarrier-loaded mRNA has excellent potential as a therapeutic strategy. This emerging platform covers a wide range of diseases, recently, several clinical studies are ongoing and numerous publications are coming out every year. Still, many unexplained physical, biological, and technical problems of mRNA for safer human consumption. These complications were addressed with various nanocarrier formulations. This review systematically summarizes the solved problems and applications of nanocarrier-based mRNA delivery. The modified nanocarrier mRNA meaningfully improved mRNA stability and abridged its immunogenicity issues. Furthermore, several strategies were discussed that can be an effective solution in the future for managing complicated diseases.
Collapse
Affiliation(s)
- Smita Pawar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N.P. Marg, Matunga (E), Mumbai 400019, Maharashtra, India
| | - Prashant Pingale
- Department of Pharmaceutics, GES's Sir Dr. M. S. Gosavi College of Pharmaceutical Education and Research, Nashik 422005, Maharashtra, India
| | - Atul Garkal
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India; Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Riyaz Ali M Osmani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Kavita Gajbhiye
- Department of Pharmaceutics, Bharti Vidyapeeth Deemed University, Poona College of Pharmacy, Erandwane, Pune 411038, Maharashtra, India
| | - Madhur Kulkarni
- SCES's Indira College of Pharmacy, New Pune Mumbai Highway, Tathwade 411033, Pune, Maharashtra, India
| | - Krutika Pardeshi
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Sandip University, Nashik 422213, Maharashtra, India
| | - Tejal Mehta
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India
| | - Amarjitsing Rajput
- Department of Pharmaceutics, Bharti Vidyapeeth Deemed University, Poona College of Pharmacy, Erandwane, Pune 411038, Maharashtra, India.
| |
Collapse
|
10
|
Wu Y, Yu S, de Lázaro I. Advances in lipid nanoparticle mRNA therapeutics beyond COVID-19 vaccines. NANOSCALE 2024; 16:6820-6836. [PMID: 38502114 DOI: 10.1039/d4nr00019f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
The remarkable success of two lipid nanoparticle-mRNA vaccines against coronavirus disease (COVID-19) has placed the therapeutic and prophylactic potential of messenger RNA (mRNA) in the spotlight. It has also drawn attention to the indispensable role of lipid nanoparticles in enabling the effects of this nucleic acid. To date, lipid nanoparticles are the most clinically advanced non-viral platforms for mRNA delivery. This is thanks to their favorable safety profile and efficiency in protecting the nucleic acid from degradation and allowing its cellular uptake and cytoplasmic release upon endosomal escape. Moreover, the development of lipid nanoparticle-mRNA therapeutics was already a very active area of research even before the COVID-19 pandemic, which has likely only begun to bear its fruits. In this Review, we first discuss key aspects of the development of lipid nanoparticles as mRNA carriers. We then highlight promising preclinical and clinical studies involving lipid nanoparticle-mRNA formulations against infectious diseases and cancer, and to enable protein replacement or supplementation and genome editing. Finally, we elaborate on the challenges in advancing lipid nanoparticle-mRNA technology to widespread therapeutic use.
Collapse
Affiliation(s)
- Yeung Wu
- Department of Biomedical Engineering, NYU Tandon School of Engineering, New York University, USA.
| | - Sinuo Yu
- Department of Biomedical Engineering, NYU Tandon School of Engineering, New York University, USA.
| | - Irene de Lázaro
- Department of Biomedical Engineering, NYU Tandon School of Engineering, New York University, USA.
- Cardiovascular Research Center, Division of Cardiology, Department of Medicine, NYU Grossman School of Medicine, New York University, USA
- Harvard John A. Paulson School of Engineering and Applied Science, Harvard University, USA
| |
Collapse
|
11
|
Ho M, Price HCW, Evans TS, O'Sullivan E. Dynamics of technology emergence in innovation networks. Sci Rep 2024; 14:1411. [PMID: 38228669 PMCID: PMC10791630 DOI: 10.1038/s41598-023-50280-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/18/2023] [Indexed: 01/18/2024] Open
Abstract
To create the next innovative product, participants in science need to understand which existing technologies can be combined, what new science must be discovered, and what new technologies must be invented. Knowledge of these often arrives by means of expert consensus or popularity metrics, masking key information on how intellectual efforts accumulate into technological progress. To address this shortcoming, we first present a method to establish a mathematical link between technological evolution and complex networks: a path of events that narrates innovation bottlenecks. Next, we quantify the position and proximity of documents to these innovation paths. The result is an innovation network that more exhaustively captures deterministic knowledge flows with respect to a marketed innovative product. Our dataset, containing over three million biomedical citations, demonstrates the possibility of quantifying the accumulation, speed, and division of labour in innovation over a sixty-year time horizon. The significance of this study includes the (i) use of a purpose-generated dataset showing causal paths from research to development to product; (ii) analysis of the innovation process as a directed acyclic graph; (iii) comparison between calendar time and network time; (iv) ordering of science funders along technology lifecycles; (v) quantification of innovative activities' importance to an innovative outcome; and (vi) integration of publication, patent, clinical trial, regulatory data to study innovation holistically.
Collapse
Affiliation(s)
- Martin Ho
- Centre for Science Technology and Innovation Policy, University of Cambridge, Cambridge, CB3 0HU, UK.
- Department of Engineering, University of Cambridge, Cambridge, CB3 0HU, UK.
| | - Henry C W Price
- Centre for Complexity Science, Imperial College London, London, SW7 2AZ, UK
- Theoretical Physics Group, Department of Physics, Imperial College London, London, SW7 2AZ, UK
| | - Tim S Evans
- Centre for Complexity Science, Imperial College London, London, SW7 2AZ, UK
- Theoretical Physics Group, Department of Physics, Imperial College London, London, SW7 2AZ, UK
| | - Eoin O'Sullivan
- Centre for Science Technology and Innovation Policy, University of Cambridge, Cambridge, CB3 0HU, UK
- Department of Engineering, University of Cambridge, Cambridge, CB3 0HU, UK
| |
Collapse
|
12
|
Wang AYL, Chang YC, Chen KH, Loh CYY. Potential Application of Modified mRNA in Cardiac Regeneration. Cell Transplant 2024; 33:9636897241248956. [PMID: 38715279 PMCID: PMC11080755 DOI: 10.1177/09636897241248956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/26/2024] [Accepted: 04/07/2024] [Indexed: 05/12/2024] Open
Abstract
Heart failure remains the leading cause of human death worldwide. After a heart attack, the formation of scar tissue due to the massive death of cardiomyocytes leads to heart failure and sudden death in most cases. In addition, the regenerative ability of the adult heart is limited after injury, partly due to cell-cycle arrest in cardiomyocytes. In the current post-COVID-19 era, urgently authorized modified mRNA (modRNA) vaccines have been widely used to prevent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Therefore, modRNA-based protein replacement may act as an alternative strategy for improving heart disease. It is a safe, effective, transient, low-immunogenic, and integration-free strategy for in vivo protein expression, in addition to recombinant protein and stem-cell regenerative therapies. In this review, we provide a summary of various cardiac factors that have been utilized with the modRNA method to enhance cardiovascular regeneration, cardiomyocyte proliferation, fibrosis inhibition, and apoptosis inhibition. We further discuss other cardiac factors, modRNA delivery methods, and injection methods using the modRNA approach to explore their application potential in heart disease. Factors for promoting cardiomyocyte proliferation such as a cocktail of three genes comprising FoxM1, Id1, and Jnk3-shRNA (FIJs), gp130, and melatonin have potential to be applied in the modRNA approach. We also discuss the current challenges with respect to modRNA-based cardiac regenerative medicine that need to be overcome to apply this approach to heart disease. This review provides a short description for investigators interested in the development of alternative cardiac regenerative medicines using the modRNA platform.
Collapse
Affiliation(s)
- Aline Yen Ling Wang
- Center for Vascularized Composite Allotransplantation, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yun-Ching Chang
- Department of Health Industry Technology Management, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Kuan-Hung Chen
- Department of Physical Medicine & Rehabilitation, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | | |
Collapse
|
13
|
Poveda C, Chen YL, Strych U. Generation and Characterization of In Vitro Transcribed mRNA. Methods Mol Biol 2024; 2786:147-165. [PMID: 38814393 DOI: 10.1007/978-1-0716-3770-8_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Here we describe the in vitro preparation of mRNA from DNA templates, including setting up the transcription reaction, mRNA capping, and mRNA labeling. We then describe methods used for mRNA characterization, including UV and fluorescence spectrophotometry, as well as gel electrophoresis. Moreover, characterization of the in vitro transcribed RNA using the Bioanalyzer instrument is described, allowing a higher resolution analysis of the target molecules. For the in vitro testing of the mRNA molecules, we include protocols for the transfection of various primary cell cultures and the confirmation of translation by intracellular staining and western blotting.
Collapse
Affiliation(s)
- Cristina Poveda
- Baylor College of Medicine, Department of Pediatrics, Division of Pediatric Tropical Medicine, Houston, TX, USA
- Texas Children's Hospital Center for Vaccine Development, Houston, TX, USA
| | - Yi-Lin Chen
- Texas Children's Hospital Center for Vaccine Development, Houston, TX, USA
| | - Ulrich Strych
- Baylor College of Medicine, Department of Pediatrics, Division of Pediatric Tropical Medicine, Houston, TX, USA.
- Texas Children's Hospital Center for Vaccine Development, Houston, TX, USA.
| |
Collapse
|
14
|
Zimmermann L, Erbar S. Trans-Amplifying RNA Vaccines Against Infectious Diseases: A Comparison with Non-Replicating and Self-Amplifying RNA. Methods Mol Biol 2024; 2786:135-144. [PMID: 38814392 DOI: 10.1007/978-1-0716-3770-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
The recent COVID-19 pandemic as well as other past and recent outbreaks of newly or re-emerging viruses show the urgent need to develop potent new vaccine approaches, that enable a quick response to prevent global spread of infectious diseases. The breakthrough of first messenger RNA (mRNA)-based vaccines 2019 approved only months after identification of the causative virus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), opens a big new field for vaccine engineering. Currently, two major types of mRNA are being pursued as vaccines for the prevention of infectious diseases. One is non-replicating mRNA, including nucleoside-modified mRNA, used in the current COVID-19 vaccines of Moderna and BioNTech (Sahin et al., Nat Rev Drug Discov 13(10):759-780, 2014; Baden et al., N Engl J Med 384(5):403-416, 2021; Polack et al., N Engl J Med 383(27):2603-2615, 2020), the other is self-amplifying RNA (saRNA) derived from RNA viruses. Recently, trans-amplifying RNA, a split vector system, has been described as a third class of mRNA (Spuul et al., J Virol 85(10):4739-4751, 2011; Blakney et al., Front Mol Biosci 5:71, 2018; Beissert et al., Mol Ther 28(1):119-128, 2020). In this chapter we review the different types of mRNA currently used for vaccine development with focus on trans-amplifying RNA.
Collapse
|
15
|
Kola NS, Patel D, Thakur A. RNA-Based Vaccines and Therapeutics Against Intracellular Pathogens. Methods Mol Biol 2024; 2813:321-370. [PMID: 38888787 DOI: 10.1007/978-1-0716-3890-3_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
RNA-based vaccines have sparked a paradigm shift in the treatment and prevention of diseases by nucleic acid medicines. There has been a notable surge in the development of nucleic acid therapeutics and vaccines following the global approval of the two messenger RNA-based COVID-19 vaccines. This growth is fueled by the exploration of numerous RNA products in preclinical stages, offering several advantages over conventional methods, i.e., safety, efficacy, scalability, and cost-effectiveness. In this chapter, we provide an overview of various types of RNA and their mechanisms of action for stimulating immune responses and inducing therapeutic effects. Furthermore, this chapter delves into the varying delivery systems, particularly emphasizing the use of nanoparticles to deliver RNA. The choice of delivery system is an intricate process involved in developing nucleic acid medicines that significantly enhances their stability, biocompatibility, and site-specificity. Additionally, this chapter sheds light on the current landscape of clinical trials of RNA therapeutics and vaccines against intracellular pathogens.
Collapse
Affiliation(s)
- Naga Suresh Kola
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada
| | - Dhruv Patel
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada
| | - Aneesh Thakur
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
16
|
Chen J, Pan L, Lu Y, Zhang T, Xu D, Yan S, Ouyang Z. Evolution of global scientific collaboration in mRNA vaccine research: Insights from bibliometric and social network analysis (2010~2023). Hum Vaccin Immunother 2023; 19:2276624. [PMID: 37964602 PMCID: PMC10653775 DOI: 10.1080/21645515.2023.2276624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/25/2023] [Indexed: 11/16/2023] Open
Abstract
The field of mRNA vaccines has witnessed rapid development in recent years, leading to significant changes in global scientific collaboration. In this study, a bibliometric and social network analysis was conducted to reveal the evolution of global scientific collaboration in mRNA vaccine research. Altogether 6974 articles published since 2010 were retrieved and categorized into Period 1 (2010-2019), Period 2 (2020-2021) and Period 3 (2022-2023). During Period 2 and 3, there was a significant rise in the proportion of publications involving domestic inter-institutional cooperation (42.0%, 54.0% and 59.1%, respectively in Period 1, 2, and 3), while a significant decrease in international cooperation (32.1%, 23.7% and 21.0%). More countries participated in international collaboration during Period 2 and 3, with the US, the UK and Germany remaining top three throughout all periods, while some other countries like Italy, Japan, and China experiencing significant shifts. Significant correlations between collaboration type and publication impact and between geographical distance and collaborative publication counts were detected. Furthermore, significant changes in research focuses and institutions that are major contributors in the mRNA vaccine development have been observed. In conclusion, the mRNA vaccine field has experienced rapid development over the past decade, with significant evolutions of global scientific collaboration detected in our study.
Collapse
Affiliation(s)
- Juan Chen
- Institute of Medical Information/Medical Library, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Lizi Pan
- Institute of Medical Information/Medical Library, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yan Lu
- Institute of Medical Information/Medical Library, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ting Zhang
- Institute of Medical Information/Medical Library, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Dongzi Xu
- Institute of Medical Information/Medical Library, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Shu Yan
- Institute of Medical Information/Medical Library, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zhaolian Ouyang
- Institute of Medical Information/Medical Library, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
17
|
Kackos CM, DeBeauchamp J, Davitt CJH, Lonzaric J, Sealy RE, Hurwitz JL, Samsa MM, Webby RJ. Seasonal quadrivalent mRNA vaccine prevents and mitigates influenza infection. NPJ Vaccines 2023; 8:157. [PMID: 37828126 PMCID: PMC10570305 DOI: 10.1038/s41541-023-00752-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 09/25/2023] [Indexed: 10/14/2023] Open
Abstract
Annually, seasonal influenza is responsible for millions of infections and hundreds of thousands of deaths. The current method for managing influenza is vaccination using a standardized amount of the influenza virus' primary surface antigen, hemagglutinin (HA), as the intended target of the immune response. This vaccination strategy results in vaccines with variable efficacy year to year due to antigenic drift of HA, which can be further exacerbated by manufacturing processes optimizing growth of vaccine virus in eggs. Due to these limitations, alternative vaccine platforms are actively being explored to improve influenza vaccine efficacy, including cell-based, recombinant protein, and mRNA vaccines. mRNA's rapid, in vitro production makes it an appealing platform for influenza vaccination, and the success of SARS-CoV-2 mRNA vaccines in the clinic has encouraged the development of mRNA vaccines for other pathogens. Here, the immunogenicity and protective efficacy of a quadrivalent mRNA vaccine encoding HA from four seasonal influenza viruses, A/California/07/2009 (H1N1), A/Hong Kong/4801/2014 (H3N2), B/Brisbane/60/2008 (B-Victoria lineage), and B/Phuket/3073/2013 (B-Yamagata lineage), was evaluated. In mice, a 120 μg total dose of this quadrivalent mRNA vaccine induced robust antibody titers against each subtype that were commensurate with titers when each antigen was administered alone. Following A/California/04/2009 challenge, mice were fully protected from morbidity and mortality, even at doses as low as 1 μg of each antigen. Additionally, a single administration of 10 μg of quadrivalent mRNA was sufficient to prevent weight loss caused by A/California/04/2009. These results support the promise of this mRNA vaccine for prevention and mitigation of influenza vaccine.
Collapse
Affiliation(s)
- Christina M Kackos
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
- St. Jude Children's Research Hospital Graduate School of Biomedical Sciences, Memphis, TN, USA
| | - Jennifer DeBeauchamp
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | | | - Robert E Sealy
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Julia L Hurwitz
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Richard J Webby
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
18
|
Wang YS, Kumari M, Chen GH, Hong MH, Yuan JPY, Tsai JL, Wu HC. mRNA-based vaccines and therapeutics: an in-depth survey of current and upcoming clinical applications. J Biomed Sci 2023; 30:84. [PMID: 37805495 PMCID: PMC10559634 DOI: 10.1186/s12929-023-00977-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 09/29/2023] [Indexed: 10/09/2023] Open
Abstract
mRNA-based drugs have tremendous potential as clinical treatments, however, a major challenge in realizing this drug class will promise to develop methods for safely delivering the bioactive agents with high efficiency and without activating the immune system. With regard to mRNA vaccines, researchers have modified the mRNA structure to enhance its stability and promote systemic tolerance of antigenic presentation in non-inflammatory contexts. Still, delivery of naked modified mRNAs is inefficient and results in low levels of antigen protein production. As such, lipid nanoparticles have been utilized to improve delivery and protect the mRNA cargo from extracellular degradation. This advance was a major milestone in the development of mRNA vaccines and dispelled skepticism about the potential of this technology to yield clinically approved medicines. Following the resounding success of mRNA vaccines for COVID-19, many other mRNA-based drugs have been proposed for the treatment of a variety of diseases. This review begins with a discussion of mRNA modifications and delivery vehicles, as well as the factors that influence administration routes. Then, we summarize the potential applications of mRNA-based drugs and discuss further key points pertaining to preclinical and clinical development of mRNA drugs targeting a wide range of diseases. Finally, we discuss the latest market trends and future applications of mRNA-based drugs.
Collapse
Affiliation(s)
- Yu-Shiuan Wang
- Institute of Cellular and Organismic Biology, Academia Sinica, No. 128, Academia Road, Section 2, Nankang, Taipei, 11529, Taiwan
| | - Monika Kumari
- Institute of Cellular and Organismic Biology, Academia Sinica, No. 128, Academia Road, Section 2, Nankang, Taipei, 11529, Taiwan
| | - Guan-Hong Chen
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11571, Taiwan
| | - Ming-Hsiang Hong
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11571, Taiwan
| | - Joyce Pei-Yi Yuan
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11571, Taiwan
| | - Jui-Ling Tsai
- Institute of Cellular and Organismic Biology, Academia Sinica, No. 128, Academia Road, Section 2, Nankang, Taipei, 11529, Taiwan
| | - Han-Chung Wu
- Institute of Cellular and Organismic Biology, Academia Sinica, No. 128, Academia Road, Section 2, Nankang, Taipei, 11529, Taiwan.
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11571, Taiwan.
| |
Collapse
|
19
|
Cheung M, Chang C, Rathnasinghe R, Rossignol E, Zhang Y, Ferrari A, Patel H, Huang Y, Sanchez Guillen M, Scalzo T, Lee C, Otten GR, Settembre EC, Music N, Palladino G, Wen Y. Self-amplifying mRNA seasonal influenza vaccines elicit mouse neutralizing antibody and cell-mediated immunity and protect ferrets. NPJ Vaccines 2023; 8:150. [PMID: 37794051 PMCID: PMC10550923 DOI: 10.1038/s41541-023-00747-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 09/19/2023] [Indexed: 10/06/2023] Open
Abstract
Currently licensed influenza vaccines focus immune responses on viral hemagglutinin (HA), while the other major surface glycoprotein neuraminidase (NA) is not tightly controlled in inactivated vaccine formulations despite evidence that anti-NA antibodies reduce clinical disease. We utilized a bicistronic self-amplifying mRNA (sa-mRNA) platform encoding both HA and NA from four seasonal influenza strains, creating a quadrivalent influenza vaccine. sa-mRNA vaccines encoding an NA component induced the production of NA-inhibiting antibodies and CD4+ T-cell responses in both monovalent and quadrivalent formulations. Including NA in the vaccine enabled cross-neutralization against antigenically drifted strains and provided greater protection than HA alone upon A(H3N2) challenge in ferrets. These results demonstrate that next-generation bicistronic sa-mRNA vaccines expressing HA and NA induce potent antibodies against both viral coat proteins, as well as vaccine-specific cell-mediated immunity. When formulated as a quadrivalent seasonal influenza vaccine, the sa-mRNA platform provides an opportunity to increase the breadth of protection through cross-neutralizing anti-NA antibodies.
Collapse
Affiliation(s)
| | - Cheng Chang
- CSL Seqirus, 225 Wyman Street, Waltham, MA, 02451, USA
| | | | | | - Yunfei Zhang
- CSL Seqirus, 225 Wyman Street, Waltham, MA, 02451, USA
| | | | - Harsh Patel
- CSL Seqirus, 225 Wyman Street, Waltham, MA, 02451, USA
| | - Yanjun Huang
- CSL Seqirus, 225 Wyman Street, Waltham, MA, 02451, USA
| | | | - Tina Scalzo
- CSL Seqirus, 225 Wyman Street, Waltham, MA, 02451, USA
| | - Changkeun Lee
- CSL Seqirus, 225 Wyman Street, Waltham, MA, 02451, USA
| | | | | | - Nedzad Music
- CSL Seqirus, 225 Wyman Street, Waltham, MA, 02451, USA
| | | | - Yingxia Wen
- CSL Seqirus, 225 Wyman Street, Waltham, MA, 02451, USA.
| |
Collapse
|
20
|
Xu H, Zhu S, Govinden R, Chenia HY. Multiple Vaccines and Strategies for Pandemic Preparedness of Avian Influenza Virus. Viruses 2023; 15:1694. [PMID: 37632036 PMCID: PMC10459121 DOI: 10.3390/v15081694] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/14/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Avian influenza viruses (AIV) are a continuous cause of concern due to their pandemic potential and devasting effects on poultry, birds, and human health. The low pathogenic avian influenza virus has the potential to evolve into a highly pathogenic avian influenza virus, resulting in its rapid spread and significant outbreaks in poultry. Over the years, a wide array of traditional and novel strategies has been implemented to prevent the transmission of AIV in poultry. Mass vaccination is still an economical and effective approach to establish immune protection against clinical virus infection. At present, some AIV vaccines have been licensed for large-scale production and use in the poultry industry; however, other new types of AIV vaccines are currently under research and development. In this review, we assess the recent progress surrounding the various types of AIV vaccines, which are based on the classical and next-generation platforms. Additionally, the delivery systems for nucleic acid vaccines are discussed, since these vaccines have attracted significant attention following their significant role in the fight against COVID-19. We also provide a general introduction to the dendritic targeting strategy, which can be used to enhance the immune efficiency of AIV vaccines. This review may be beneficial for the avian influenza research community, providing ideas for the design and development of new AIV vaccines.
Collapse
Affiliation(s)
- Hai Xu
- Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China;
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Durban 4001, South Africa;
| | - Shanyuan Zhu
- Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China;
| | - Roshini Govinden
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Durban 4001, South Africa;
| | - Hafizah Y. Chenia
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Durban 4001, South Africa;
| |
Collapse
|
21
|
Montero DA, Garcia-Betancourt R, Vidal RM, Velasco J, Palacios PA, Schneider D, Vega C, Gómez L, Montecinos H, Soto-Shara R, Oñate Á, Carreño LJ. A chimeric protein-based vaccine elicits a strong IgG antibody response and confers partial protection against Shiga toxin-producing Escherichia coli in mice. Front Immunol 2023; 14:1186368. [PMID: 37575242 PMCID: PMC10413102 DOI: 10.3389/fimmu.2023.1186368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/11/2023] [Indexed: 08/15/2023] Open
Abstract
Background Shiga toxin-producing Escherichia coli (STEC) is a foodborne pathogen that causes gastrointestinal infections, ranging from acute diarrhea and dysentery to life-threatening diseases such as Hemolytic Uremic Syndrome. Currently, a vaccine to prevent STEC infection is an unmet medical need. Results We developed a chimeric protein-based vaccine targeting seven virulence factors of STEC, including the Stx2B subunit, Tir, Intimin, EspA, Cah, OmpT, and AggA proteins. Immunization of mice with this vaccine candidate elicited significant humoral and cellular immune responses against STEC. High levels of specific IgG antibodies were found in the serum and feces of immunized mice. However, specific IgA antibodies were not detected in either serum or feces. Furthermore, a significantly higher percentage of antigen-specific CD4+ T cells producing IFN-γ, IL-4, and IL-17 was observed in the spleens of immunized mice. Notably, the immunized mice showed decreased shedding of STEC O157:H7 and STEC O91:H21 strains and were protected against weight loss during experimental infection. Additionally, infection with the STEC O91:H21 strain resulted in kidney damage in control unimmunized mice; however, the extent of damage was slightly lower in immunized mice. Our findings suggest that IgG antibodies induced by this vaccine candidate may have a role in inhibiting bacterial adhesion and complement-mediated killing. Conclusion This study provides evidence that IgG responses are involved in the host defense against STEC. However, our results do not rule out that other classes of antibodies also participate in the protection against this pathogen. Additional work is needed to improve the protection conferred by our vaccine candidate and to elucidate the relevant immune responses that lead to complete protection against this pathogen.
Collapse
Affiliation(s)
- David A. Montero
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Instituto Milenio de Inmunología e Inmunoterapia, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Richard Garcia-Betancourt
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Instituto Milenio de Inmunología e Inmunoterapia, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Roberto M. Vidal
- Instituto Milenio de Inmunología e Inmunoterapia, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Juliana Velasco
- Unidad de Paciente Crítico, Clínica Hospital del Profesor, Santiago, Chile
- Programa de Formación de Especialista en Medicina de Urgencia, Universidad Andrés Bello, Santiago, Chile
| | - Pablo A. Palacios
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Instituto Milenio de Inmunología e Inmunoterapia, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Daniela Schneider
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Instituto Milenio de Inmunología e Inmunoterapia, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Carolina Vega
- Plataforma Experimental, Facultad de Odontología, Universidad de Chile, Santiago, Chile
| | - Leonardo Gómez
- Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Hernán Montecinos
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Rodrigo Soto-Shara
- Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Ángel Oñate
- Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Leandro J. Carreño
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Instituto Milenio de Inmunología e Inmunoterapia, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
22
|
Ghaemi A, Vakili-Azghandi M, Abnous K, Taghdisi SM, Ramezani M, Alibolandi M. Oral non-viral gene delivery platforms for therapeutic applications. Int J Pharm 2023; 642:123198. [PMID: 37406949 DOI: 10.1016/j.ijpharm.2023.123198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 06/18/2023] [Accepted: 07/01/2023] [Indexed: 07/07/2023]
Abstract
Since gene therapy can regulate gene and protein expression directly, it has a great potential to prevent or treat a variety of genetic or acquired diseases through vaccines such as viral infections, cystic fibrosis, and cancer. Owing to their high efficacy, in vivo gene therapy trials are usually conducted intravenously, which is usually costly and invasive. There are several advantages to oral drug administration over intravenous injections, such as better patient compliance, ease of use, and lower cost. However, gene therapy is successful if the oligonucleotides can cross the cell membrane easily and reach the nucleus after the endosomal escape. In order to accomplish this task and deliver the cargo to the intended location, appropriate delivery systems should be introduced. This review summarizes oral delivery systems developed for effective gene delivery, vaccination, and treatment of various diseases. Studies have also shown that oral delivery approaches are potentially applicable to treat various diseases, especially inflammatory bowel disease, stomach, and colorectal cancers. Also, the current review provides an update overview on the development of non-viral and oral gene delivery techniques for gene therapy and vaccination purposes.
Collapse
Affiliation(s)
- Asma Ghaemi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Masoume Vakili-Azghandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mohammad Taghdisi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
23
|
Liu Y, Li Y, Hu Q. Advances in saRNA Vaccine Research against Emerging/Re-Emerging Viruses. Vaccines (Basel) 2023; 11:1142. [PMID: 37514957 PMCID: PMC10383046 DOI: 10.3390/vaccines11071142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/18/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Although conventional vaccine approaches have proven to be successful in preventing infectious diseases in past decades, for vaccine development against emerging/re-emerging viruses, one of the main challenges is rapid response in terms of design and manufacture. mRNA vaccines can be designed and produced within days, representing a powerful approach for developing vaccines. Furthermore, mRNA vaccines can be scaled up and may not have the risk of integration. mRNA vaccines are roughly divided into non-replicating mRNA vaccines and self-amplifying RNA (saRNA) vaccines. In this review, we provide an overview of saRNA vaccines, and discuss future directions and challenges in advancing this promising vaccine platform to combat emerging/re-emerging viruses.
Collapse
Affiliation(s)
- Yalan Liu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
- Hubei Jiangxia Laboratory, Wuhan 430200, China
| | - Yuncheng Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Qinxue Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
- Institute for Infection and Immunity, St George's, University of London, London SW17 0RE, UK
| |
Collapse
|
24
|
Dailey GP, Crosby EJ, Hartman ZC. Cancer vaccine strategies using self-replicating RNA viral platforms. Cancer Gene Ther 2023; 30:794-802. [PMID: 35821284 PMCID: PMC9275542 DOI: 10.1038/s41417-022-00499-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 05/21/2022] [Accepted: 06/23/2022] [Indexed: 11/09/2022]
Abstract
The development and success of RNA-based vaccines targeting SARS-CoV-2 has awakened new interest in utilizing RNA vaccines against cancer, particularly in the emerging use of self-replicating RNA (srRNA) viral vaccine platforms. These vaccines are based on different single-stranded RNA viruses, which encode RNA for target antigens in addition to replication genes that are capable of massively amplifying RNA messages after infection. The encoded replicase genes also stimulate innate immunity, making srRNA vectors ideal candidates for anti-tumor vaccination. In this review, we summarize different types of srRNA platforms that have emerged and review evidence for their efficacy in provoking anti-tumor immunity to different antigens. These srRNA platforms encompass the use of naked RNA, DNA-launched replicons, viral replicon particles (VRP), and most recently, synthetic srRNA replicon particles. Across these platforms, studies have demonstrated srRNA vaccine platforms to be potent inducers of anti-tumor immunity, which can be enhanced by homologous vaccine boosting and combining with chemotherapies, radiation, and immune checkpoint inhibition. As such, while this remains an active area of research, the past and present trajectory of srRNA vaccine development suggests immense potential for this platform in producing effective cancer vaccines.
Collapse
Affiliation(s)
| | | | - Zachary C Hartman
- Department of Surgery, Duke University, Durham, NC, USA.
- Department of Pathology, Duke University, Durham, NC, USA.
- Department of Immunology, Duke University, Durham, NC, USA.
| |
Collapse
|
25
|
Koff WC, Rappuoli R, Plotkin SA. Historical advances in structural and molecular biology and how they impacted vaccine development. J Mol Biol 2023; 435:168113. [PMID: 37080423 DOI: 10.1016/j.jmb.2023.168113] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/11/2023] [Accepted: 04/11/2023] [Indexed: 04/22/2023]
Abstract
Vaccines are among the greatest tools for prevention and control of disease. They have eliminated smallpox from the planet, decreased morbidity and mortality for major infectious diseases like polio, measles, mumps, and rubella, significantly blunted the impact of the COVID-19 pandemic, and prevented viral induced cancers such as cervical cancer caused by human papillomavirus. Recent technological advances, in genomics, structural biology, and human immunology have transformed vaccine development, enabling new technologies such as mRNA vaccines to greatly accelerate development of new and improved vaccines. In this review, we briefly highlight the history of vaccine development, and provide examples of where advances in genomics and structural biology, paved the way for development of vaccines for bacterial and viral diseases.
Collapse
Affiliation(s)
- Wayne C Koff
- President and CEO, Human Immunome Project, New York, NY, USA
| | - Rino Rappuoli
- Chief Scientific Officer, Fondazione Biotechnopolo, Siena, Italy
| | - Stanley A Plotkin
- Emeritus Professor of Pediatrics, University of Pennsylvania and Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
26
|
You H, Jones MK, Gordon CA, Arganda AE, Cai P, Al-Wassiti H, Pouton CW, McManus DP. The mRNA Vaccine Technology Era and the Future Control of Parasitic Infections. Clin Microbiol Rev 2023; 36:e0024121. [PMID: 36625671 PMCID: PMC10035331 DOI: 10.1128/cmr.00241-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Despite intensive long-term efforts, with very few exceptions, the development of effective vaccines against parasitic infections has presented considerable challenges, given the complexity of parasite life cycles, the interplay between parasites and their hosts, and their capacity to escape the host immune system and to regulate host immune responses. For many parasitic diseases, conventional vaccine platforms have generally proven ill suited, considering the complex manufacturing processes involved and the costs they incur, the inability to posttranslationally modify cloned target antigens, and the absence of long-lasting protective immunity induced by these antigens. An effective antiparasite vaccine platform is required to assess the effectiveness of novel vaccine candidates at high throughput. By exploiting the approach that has recently been used successfully to produce highly protective COVID mRNA vaccines, we anticipate a new wave of research to advance the use of mRNA vaccines to prevent parasitic infections in the near future. This article considers the characteristics that are required to develop a potent antiparasite vaccine and provides a conceptual foundation to promote the development of parasite mRNA-based vaccines. We review the recent advances and challenges encountered in developing antiparasite vaccines and evaluate the potential of developing mRNA vaccines against parasites, including those causing diseases such as malaria and schistosomiasis, against which vaccines are currently suboptimal or not yet available.
Collapse
Affiliation(s)
- Hong You
- Department of Infection and Inflammation, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Malcolm K. Jones
- School of Veterinary Science, The University of Queensland, Brisbane, Australia
| | - Catherine A. Gordon
- Department of Infection and Inflammation, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Alexa E. Arganda
- Department of Infection and Inflammation, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Pengfei Cai
- Department of Infection and Inflammation, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Harry Al-Wassiti
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Colin W. Pouton
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Donald P. McManus
- Department of Infection and Inflammation, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| |
Collapse
|
27
|
Wang Z, Ma W, Fu X, Qi Y, Zhao Y, Zhang S. Development and applications of mRNA treatment based on lipid nanoparticles. Biotechnol Adv 2023; 65:108130. [PMID: 36933868 DOI: 10.1016/j.biotechadv.2023.108130] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/06/2022] [Accepted: 03/13/2023] [Indexed: 03/18/2023]
Abstract
Nucleic acid-based therapies such as messenger RNA have the potential to revolutionize modern medicine and enhance the performance of existing pharmaceuticals. The key challenges of mRNA-based therapies are delivering the mRNA safely and effectively to the target tissues and cells and controlling its release from the delivery vehicle. Lipid nanoparticles (LNPs) have been widely studied as drug carriers and are considered to be state-of-the-art technology for nucleic acid delivery. In this review, we begin by presenting the advantages and mechanisms of action of mRNA therapeutics. Then we discuss the design of LNP platforms based on ionizable lipids and the applications of mRNA-LNP vaccines for prevention of infectious diseases and for treatment of cancer and various genetic diseases. Finally, we describe the challenges and future prospects of mRNA-LNP therapeutics.
Collapse
Affiliation(s)
- Zhe Wang
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Wanting Ma
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Xingxing Fu
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Yanfei Qi
- Centenary Institute, The University of Sydney, Sydney, NSW 2050, Australia
| | - Yinan Zhao
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Shubiao Zhang
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China.
| |
Collapse
|
28
|
Ramos da Silva J, Bitencourt Rodrigues K, Formoso Pelegrin G, Silva Sales N, Muramatsu H, de Oliveira Silva M, Porchia BFMM, Moreno ACR, Aps LRMM, Venceslau-Carvalho AA, Tombácz I, Fotoran WL, Karikó K, Lin PJC, Tam YK, de Oliveira Diniz M, Pardi N, de Souza Ferreira LC. Single immunizations of self-amplifying or non-replicating mRNA-LNP vaccines control HPV-associated tumors in mice. Sci Transl Med 2023; 15:eabn3464. [PMID: 36867683 DOI: 10.1126/scitranslmed.abn3464] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
As mRNA vaccines have proved to be very successful in battling the coronavirus disease 2019 (COVID-19) pandemic, this new modality has attracted widespread interest for the development of potent vaccines against other infectious diseases and cancer. Cervical cancer caused by persistent human papillomavirus (HPV) infection is a major cause of cancer-related deaths in women, and the development of safe and effective therapeutic strategies is urgently needed. In the present study, we compared the performance of three different mRNA vaccine modalities to target tumors associated with HPV-16 infection in mice. We generated lipid nanoparticle (LNP)-encapsulated self-amplifying mRNA as well as unmodified and nucleoside-modified non-replicating mRNA vaccines encoding a chimeric protein derived from the fusion of the HPV-16 E7 oncoprotein and the herpes simplex virus type 1 glycoprotein D (gDE7). We demonstrated that single low-dose immunizations with any of the three gDE7 mRNA vaccines induced activation of E7-specific CD8+ T cells, generated memory T cell responses capable of preventing tumor relapses, and eradicated subcutaneous tumors at different growth stages. In addition, the gDE7 mRNA-LNP vaccines induced potent tumor protection in two different orthotopic mouse tumor models after administration of a single vaccine dose. Last, comparative studies demonstrated that all three gDE7 mRNA-LNP vaccines proved to be superior to gDE7 DNA and gDE7 recombinant protein vaccines. Collectively, we demonstrated the immunogenicity and therapeutic efficacy of three different mRNA vaccines in extensive comparative experiments. Our data support further evaluation of these mRNA vaccines in clinical trials.
Collapse
Affiliation(s)
- Jamile Ramos da Silva
- Vaccine Development Laboratory, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil.,Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Karine Bitencourt Rodrigues
- Vaccine Development Laboratory, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Guilherme Formoso Pelegrin
- Vaccine Development Laboratory, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Natiely Silva Sales
- Vaccine Development Laboratory, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Hiromi Muramatsu
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mariângela de Oliveira Silva
- Vaccine Development Laboratory, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Bruna F M M Porchia
- Vaccine Development Laboratory, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil.,Laboratory of Tumor Immunology, Department of Immunology, Biomedical Sciences Institute, University of São Paulo, São Paulo, SP 05508-000, Brazil.,ImunoTera Soluções Terapêuticas Ltda., São Paulo, SP 05508-000, Brazil
| | - Ana Carolina Ramos Moreno
- Vaccine Development Laboratory, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Luana Raposo M M Aps
- Vaccine Development Laboratory, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil.,ImunoTera Soluções Terapêuticas Ltda., São Paulo, SP 05508-000, Brazil
| | - Aléxia Adrianne Venceslau-Carvalho
- Vaccine Development Laboratory, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - István Tombácz
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wesley Luzetti Fotoran
- Department of Parasitology, Institute for Biomedical Sciences, University of São Paulo, SP 05508-000, Brazil
| | | | | | - Ying K Tam
- Acuitas Therapeutics, Vancouver, BC V6T1Z3, Canada
| | - Mariana de Oliveira Diniz
- Vaccine Development Laboratory, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Norbert Pardi
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Luís Carlos de Souza Ferreira
- Vaccine Development Laboratory, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil.,Scientific Platform Pasteur USP, University of São Paulo, São Paulo, SP, 05508-020, Brazil
| |
Collapse
|
29
|
Zhang H, Xiong Y, Xiao W, Wu Y. Investigation of Genome Biology by Synthetic Genome Engineering. Bioengineering (Basel) 2023; 10:271. [PMID: 36829765 PMCID: PMC9952402 DOI: 10.3390/bioengineering10020271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
Synthetic genomes were designed based on an understanding of natural genomic information, offering an opportunity to engineer and investigate biological systems on a genome-wide scale. Currently, the designer version of the M. mycoides genome and the E. coli genome, as well as most of the S. cerevisiae genome, have been synthesized, and through the cycles of design-build-test and the following engineering of synthetic genomes, many fundamental questions of genome biology have been investigated. In this review, we summarize the use of synthetic genome engineering to explore the structure and function of genomes, and highlight the unique values of synthetic genomics.
Collapse
Affiliation(s)
- Hui Zhang
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yao Xiong
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Wenhai Xiao
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yi Wu
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
30
|
Seo H, Jeon L, Kwon J, Lee H. High-Precision Synthesis of RNA-Loaded Lipid Nanoparticles for Biomedical Applications. Adv Healthc Mater 2023; 12:e2203033. [PMID: 36737864 DOI: 10.1002/adhm.202203033] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/26/2023] [Indexed: 02/05/2023]
Abstract
The recent development of RNA-based therapeutics in delivering nucleic acids for gene editing and regulating protein translation has led to the effective treatment of various diseases including cancer, inflammatory and genetic disorder, as well as infectious diseases. Among these, lipid nanoparticles (LNP) have emerged as a promising platform for RNA delivery and have shed light by resolving the inherent instability issues of naked RNA and thereby enhancing the therapeutic potency. These LNP consisting of ionizable lipid, helper lipid, cholesterol, and poly(ethylene glycol)-anchored lipid can stably enclose RNA and help them release into the cells' cytosol. Herein, the significant progress made in LNP research starting from the LNP constituents, formulation, and their diverse applications is summarized first. Moreover, the microfluidic methodologies which allow precise assembly of these newly developed constituents to achieve LNP with controllable composition and size, high encapsulation efficiency as well as scalable production are highlighted. Furthermore, a short discussion on current challenges as well as an outlook will be given on emerging approaches to resolving these issues.
Collapse
Affiliation(s)
- Hanjin Seo
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, Korea
| | - Leekang Jeon
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, Korea
| | - Jaeyeong Kwon
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, Korea
| | - Hyomin Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, Korea
| |
Collapse
|
31
|
Puccetti M, Schoubben A, Giovagnoli S, Ricci M. Biodrug Delivery Systems: Do mRNA Lipid Nanoparticles Come of Age? Int J Mol Sci 2023; 24:ijms24032218. [PMID: 36768539 PMCID: PMC9917085 DOI: 10.3390/ijms24032218] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/10/2023] [Accepted: 01/17/2023] [Indexed: 01/27/2023] Open
Abstract
As an appealing alternative to treat and prevent diseases ranging from cancer to COVID-19, mRNA has demonstrated significant clinical effects. Nanotechnology facilitates the successful implementation of the systemic delivery of mRNA for safe human consumption. In this manuscript, we provide an overview of current mRNA therapeutic applications and discuss key biological barriers to delivery and recent advances in the development of nonviral systems. The relevant challenges that LNPs face in achieving cost-effective and widespread clinical implementation when delivering mRNA are likewise discussed.
Collapse
|
32
|
Schmidt C, Schnierle BS. Self-Amplifying RNA Vaccine Candidates: Alternative Platforms for mRNA Vaccine Development. Pathogens 2023; 12:138. [PMID: 36678486 PMCID: PMC9863218 DOI: 10.3390/pathogens12010138] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
The present use of mRNA vaccines against COVID-19 has shown for the first time the potential of mRNA vaccines for infectious diseases. Here we will summarize the current knowledge about improved mRNA vaccines, i.e., the self-amplifying mRNA (saRNA) vaccines. This approach may enhance antigen expression by amplification of the antigen-encoding RNA. RNA design, RNA delivery, and the innate immune responses induced by RNA will be reviewed.
Collapse
Affiliation(s)
- Christin Schmidt
- Section AIDS and Newly Emerging Pathogens, Department of Virology, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Barbara S. Schnierle
- Section AIDS and Newly Emerging Pathogens, Department of Virology, Paul-Ehrlich-Institut, 63225 Langen, Germany
| |
Collapse
|
33
|
Donahue DA, Ballesteros C, Maruggi G, Glover C, Ringenberg MA, Marquis M, Ben Abdeljelil N, Ashraf A, Rodriguez LA, Stokes AH. Nonclinical Safety Assessment of Lipid Nanoparticle-and Emulsion-Based Self-Amplifying mRNA Vaccines in Rats. Int J Toxicol 2023; 42:37-49. [PMID: 36472205 DOI: 10.1177/10915818221138781] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Vaccines containing mRNA with the capacity to self-amplify represent an alternative to the mRNA vaccines that came to prominence during the COVID-19 pandemic. To gain further insights on the safety profile of self-amplifying mRNA- (SAM-) vaccines, this preclinical toxicology study in rats evaluated the effect of (i) the type of delivery system (lipid nanoparticle [LNP] vs cationic nano-emulsion [CNE]); (ii) antigen-encoding sequence (rabies glycoprotein G vs SARS-CoV-2 Spike); and (iii) RNA amplification. Further analyses also evaluated gene expression in peripheral blood after vaccination, and the biodistribution of vaccine RNA. The SAM vaccines administered as two doses 2-weeks apart had acceptable safety profiles in rats, with respect to clinical signs, blood biochemistry, and macroscopic and microscopic pathology. A transient increase in ALT/AST ratio occurred only in female rats and in the absence of muscle and liver damage was dependent on RNA amplification and appeared related to the greater quantities of vaccine RNA in the muscle and livers of female rats vs male rats. The RNA and delivery-vehicle components, but not the nature of the antigen-coding sequence or the requirement for RNA amplification, affected aspects of the stimulation of innate-immune activity, which was consistent with the transient activation of type I and type II interferon signaling. The delivery vehicle, LNP, differed from CNE as vaccine RNA in CNE compositions appeared independently to stimulate innate-immune activity at 4 hours after vaccination. Our analysis supports further studies to assess whether these differences in innate-immune activity affect safety and efficacy of the SAM vaccine.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Asma Ashraf
- Charles River Laboratories, Laval, QC, Canada
| | | | | |
Collapse
|
34
|
Yang L, Gong L, Wang P, Zhao X, Zhao F, Zhang Z, Li Y, Huang W. Recent Advances in Lipid Nanoparticles for Delivery of mRNA. Pharmaceutics 2022; 14:2682. [PMID: 36559175 PMCID: PMC9787894 DOI: 10.3390/pharmaceutics14122682] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
Messenger RNA (mRNA), which is composed of ribonucleotides that carry genetic information and direct protein synthesis, is transcribed from a strand of DNA as a template. On this basis, mRNA technology can take advantage of the body's own translation system to express proteins with multiple functions for the treatment of various diseases. Due to the advancement of mRNA synthesis and purification, modification and sequence optimization technologies, and the emerging lipid nanomaterials and other delivery systems, mRNA therapeutic regimens are becoming clinically feasible and exhibit significant reliability in mRNA stability, translation efficiency, and controlled immunogenicity. Lipid nanoparticles (LNPs), currently the leading non-viral delivery vehicles, have made many exciting advances in clinical translation as part of the COVID-19 vaccines and therefore have the potential to accelerate the clinical translation of gene drugs. Additionally, due to their small size, biocompatibility, and biodegradability, LNPs can effectively deliver nucleic acids into cells, which is particularly important for the current mRNA regimens. Therefore, the cutting-edge LNP@mRNA regimens hold great promise for cancer vaccines, infectious disease prevention, protein replacement therapy, gene editing, and rare disease treatment. To shed more lights on LNP@mRNA, this paper mainly discusses the rational of choosing LNPs as the non-viral vectors to deliver mRNA, the general rules for mRNA optimization and LNP preparation, and the various parameters affecting the delivery efficiency of LNP@mRNA, and finally summarizes the current research status as well as the current challenges. The latest research progress of LNPs in the treatment of other diseases such as oncological, cardiovascular, and infectious diseases is also given. Finally, the future applications and perspectives for LNP@mRNA are generally introduced.
Collapse
Affiliation(s)
- Lei Yang
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Liming Gong
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ping Wang
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xinghui Zhao
- Beijing Bio-Bank Co., Ltd., Beijing 100107, China
| | - Feng Zhao
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhijie Zhang
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yunfei Li
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Wei Huang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
35
|
Chen J, Zhang T, Lu Y, Yang X, Ouyang Z. Emerging trends of research on mRNA vaccines: A co-citation analysis. Hum Vaccin Immunother 2022; 18:2110409. [PMID: 36018287 DOI: 10.1080/21645515.2022.2110409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
This study was designed to evaluate the emerging trends of research on mRNA vaccines. Altogether 3056 research articles related to mRNA vaccines published since 2010 were retrieved from the Web of Science database, based on which a co-citation analysis was conducted using CiteSpace. A total of 12 clusters were derived, all of which were classified into three periods according to the content and publication time of articles: (1) The preliminary exploratory period before early 2010s, when the potential of mRNA to induce immune response was evaluated; (2) the growing up period from early 2010s to 2019, when the stability and immunogenicity of mRNA vaccines were improved and the clinical development of products were pushed forward; (3) the rapid maturity period after the outbreak of COVID-19, when two products for COVID-19 were authorized for the first time. The approval of COVID-19 vaccines is an encouraging start, while the enormous potential of mRNA vaccines remains to be explored. Future research on mRNA-based infectious disease vaccines will focus on further optimizing mRNA modification and delivery, solving problems of the approved vaccines in real world, investigating mRNA vaccines for other infectious indications, and developing self-amplifying or thermostable vaccines. Future research on mRNA-based therapeutic cancer vaccines will focus on screening proper neoantigens, enhancing the delivery of mRNA into antigen-presenting cells and overcoming suppressive tumor microenvironment.
Collapse
Affiliation(s)
- Juan Chen
- Institute of Medical Information/Medical Library, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ting Zhang
- Institute of Medical Information/Medical Library, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yan Lu
- Institute of Medical Information/Medical Library, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaoyi Yang
- Institute of Medical Information/Medical Library, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zhaolian Ouyang
- Institute of Medical Information/Medical Library, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
36
|
Duthie MS, Machado BAS, Badaró R, Kaye PM, Reed SG. Leishmaniasis Vaccines: Applications of RNA Technology and Targeted Clinical Trial Designs. Pathogens 2022; 11:pathogens11111259. [PMID: 36365010 PMCID: PMC9695603 DOI: 10.3390/pathogens11111259] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/20/2022] [Accepted: 10/27/2022] [Indexed: 11/17/2022] Open
Abstract
Leishmania parasites cause a variety of discrete clinical diseases that present in regions where their specific sand fly vectors sustain transmission. Clinical and laboratory research indicate the potential of immunization to prevent leishmaniasis and a wide array of vaccine candidates have been proposed. Unfortunately, multiple factors have precluded advancement of more than a few Leishmania targeting vaccines to clinical trial. The recent maturation of RNA vaccines into licensed products in the context of COVID-19 indicates the likelihood of broader use of the technology. Herein, we discuss the potential benefits provided by RNA technology as an approach to address the bottlenecks encountered for Leishmania vaccines. Further, we outline a variety of strategies that could be used to more efficiently evaluate Leishmania vaccine efficacy, including controlled human infection models and initial use in a therapeutic setting, that could prioritize candidates before evaluation in larger, longer and more complicated field trials.
Collapse
Affiliation(s)
| | - Bruna A S Machado
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador 41650-010, Bahia, Brazil
| | - Roberto Badaró
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador 41650-010, Bahia, Brazil
| | - Paul M Kaye
- York Biomedical Research Institute, Hull York Medical School, University of York, York YO10 5DD, UK
| | - Steven G Reed
- HDT Bio, 1616 Eastlake Ave E, Seattle, WA 98102, USA
| |
Collapse
|
37
|
Papukashvili D, Rcheulishvili N, Liu C, Ji Y, He Y, Wang PG. Self-Amplifying RNA Approach for Protein Replacement Therapy. Int J Mol Sci 2022; 23:12884. [PMID: 36361673 PMCID: PMC9655356 DOI: 10.3390/ijms232112884] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 07/30/2023] Open
Abstract
Messenger RNA (mRNA) technology has already been successfully tested preclinically and there are ongoing clinical trials for protein replacement purposes; however, more effort has been put into the development of prevention strategies against infectious diseases. Apparently, mRNA vaccine approval against coronavirus disease 2019 (COVID-19) is a landmark for opening new opportunities for managing diverse health disorders based on this approach. Indeed, apart from infectious diseases, it has also been widely tested in numerous directions including cancer prevention and the treatment of inherited disorders. Interestingly, self-amplifying RNA (saRNA)-based technology is believed to display more developed RNA therapy compared with conventional mRNA technique in terms of its lower dosage requirements, relatively fewer side effects, and possessing long-lasting effects. Nevertheless, some challenges still exist that need to be overcome in order to achieve saRNA-based drug approval in clinics. Hence, the current review discusses the feasibility of saRNA utility for protein replacement therapy on various health disorders including rare hereditary diseases and also provides a detailed overview of saRNA advantages, its molecular structure, mechanism of action, and relevant delivery platforms.
Collapse
Affiliation(s)
| | | | | | | | - Yunjiao He
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518000, China
| | - Peng George Wang
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518000, China
| |
Collapse
|
38
|
Salod Z, Mahomed O. Mapping Potential Vaccine Candidates Predicted by VaxiJen for Different Viral Pathogens between 2017-2021-A Scoping Review. Vaccines (Basel) 2022; 10:1785. [PMID: 36366294 PMCID: PMC9695814 DOI: 10.3390/vaccines10111785] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/16/2022] [Accepted: 10/18/2022] [Indexed: 09/29/2023] Open
Abstract
Reverse vaccinology (RV) is a promising alternative to traditional vaccinology. RV focuses on in silico methods to identify antigens or potential vaccine candidates (PVCs) from a pathogen's proteome. Researchers use VaxiJen, the most well-known RV tool, to predict PVCs for various pathogens. The purpose of this scoping review is to provide an overview of PVCs predicted by VaxiJen for different viruses between 2017 and 2021 using Arksey and O'Malley's framework and the Preferred Reporting Items for Systematic Reviews extension for Scoping Reviews (PRISMA-ScR) guidelines. We used the term 'vaxijen' to search PubMed, Scopus, Web of Science, EBSCOhost, and ProQuest One Academic. The protocol was registered at the Open Science Framework (OSF). We identified articles on this topic, charted them, and discussed the key findings. The database searches yielded 1033 articles, of which 275 were eligible. Most studies focused on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), published between 2020 and 2021. Only a few articles (8/275; 2.9%) conducted experimental validations to confirm the predictions as vaccine candidates, with 2.2% (6/275) articles mentioning recombinant protein expression. Researchers commonly targeted parts of the SARS-CoV-2 spike (S) protein, with the frequently predicted epitopes as PVCs being major histocompatibility complex (MHC) class I T cell epitopes WTAGAAAYY, RQIAPGQTG, IAIVMVTIM, and B cell epitope IAPGQTGKIADY, among others. The findings of this review are promising for the development of novel vaccines. We recommend that vaccinologists use these findings as a guide to performing experimental validation for various viruses, with SARS-CoV-2 as a priority, because better vaccines are needed, especially to stay ahead of the emergence of new variants. If successful, these vaccines could provide broader protection than traditional vaccines.
Collapse
Affiliation(s)
- Zakia Salod
- Discipline of Public Health Medicine, University of KwaZulu-Natal, Durban 4051, South Africa
| | | |
Collapse
|
39
|
Liu T, Tian Y, Zheng A, Cui C. Design Strategies for and Stability of mRNA-Lipid Nanoparticle COVID-19 Vaccines. Polymers (Basel) 2022; 14:4195. [PMID: 36236141 PMCID: PMC9572882 DOI: 10.3390/polym14194195] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/25/2022] Open
Abstract
Messenger RNA (mRNA) vaccines have shown great preventive potential in response to the novel coronavirus (COVID-19) pandemic. The lipid nanoparticle (LNP), as a non-viral vector with good safety and potency factors, is applied to mRNA delivery in the clinic. Among the recently FDA-approved SARS-CoV-2 mRNA vaccines, lipid-based nanoparticles have been shown to be well-suited to antigen presentation and enhanced immune stimulation to elicit potent humoral and cellular immune responses. However, a design strategy for optimal mRNA-LNP vaccines has not been fully elaborated. In this review, we comprehensively and systematically discuss the research strategies for mRNA-LNP vaccines against COVID-19, including antigen and lipid carrier selection, vaccine preparation, quality control, and stability. Meanwhile, we also discuss the potential development directions for mRNA-LNP vaccines in the future. We also conduct an in-depth review of those technologies and scientific insights in regard to the mRNA-LNP field.
Collapse
Affiliation(s)
- Ting Liu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Yang Tian
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Aiping Zheng
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Chunying Cui
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| |
Collapse
|
40
|
Tian Y, Deng Z, Yang P. mRNA vaccines: A novel weapon to control infectious diseases. Front Microbiol 2022; 13:1008684. [PMID: 36267192 PMCID: PMC9576954 DOI: 10.3389/fmicb.2022.1008684] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/06/2022] [Indexed: 12/01/2022] Open
Abstract
Infectious diseases have always threatened human life, but with the development of vaccines, effective strategies for preventing and controlling these diseases have become available. The global outbreak of COVID-19 ushered in the advent of mRNA vaccine technologies, which quickly led to the introduction of mRNA vaccines effective against SARS-CoV-2. The success of this approach has stimulated research into the use of mRNA vaccines in the fight against other emerging as well as remerging infectious diseases. This review examines the constructive strategies and delivery systems used in mRNA vaccines and provides an overview of current clinical trials of those vaccines in the prevention of infectious diseases. The underlying mechanisms of mRNA vaccines are also discussed, including the double-edged sword of the innate immune response. Finally, the challenges but also the potential of mRNA vaccines are considered.
Collapse
Affiliation(s)
- Yuying Tian
- Faculty of Hepato-Pancreato-Biliary Surgery, Institute of Hepatobiliary Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- Inner Mongolia Medical University, Hohhot, China
| | - Zhuoya Deng
- Faculty of Hepato-Pancreato-Biliary Surgery, Institute of Hepatobiliary Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Penghui Yang
- Faculty of Hepato-Pancreato-Biliary Surgery, Institute of Hepatobiliary Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- Inner Mongolia Medical University, Hohhot, China
- *Correspondence: Penghui Yang,
| |
Collapse
|
41
|
Kumar S, Kumar GS, Maitra SS, Malý P, Bharadwaj S, Sharma P, Dwivedi VD. Viral informatics: bioinformatics-based solution for managing viral infections. Brief Bioinform 2022; 23:6659740. [PMID: 35947964 DOI: 10.1093/bib/bbac326] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 06/26/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Several new viral infections have emerged in the human population and establishing as global pandemics. With advancements in translation research, the scientific community has developed potential therapeutics to eradicate or control certain viral infections, such as smallpox and polio, responsible for billions of disabilities and deaths in the past. Unfortunately, some viral infections, such as dengue virus (DENV) and human immunodeficiency virus-1 (HIV-1), are still prevailing due to a lack of specific therapeutics, while new pathogenic viral strains or variants are emerging because of high genetic recombination or cross-species transmission. Consequently, to combat the emerging viral infections, bioinformatics-based potential strategies have been developed for viral characterization and developing new effective therapeutics for their eradication or management. This review attempts to provide a single platform for the available wide range of bioinformatics-based approaches, including bioinformatics methods for the identification and management of emerging or evolved viral strains, genome analysis concerning the pathogenicity and epidemiological analysis, computational methods for designing the viral therapeutics, and consolidated information in the form of databases against the known pathogenic viruses. This enriched review of the generally applicable viral informatics approaches aims to provide an overview of available resources capable of carrying out the desired task and may be utilized to expand additional strategies to improve the quality of translation viral informatics research.
Collapse
Affiliation(s)
- Sanjay Kumar
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India.,Center for Bioinformatics, Computational and Systems Biology, Pathfinder Research and Training Foundation, Greater Noida, India
| | - Geethu S Kumar
- Department of Life Science, School of Basic Science and Research, Sharda University, Greater Noida, Uttar Pradesh, India.,Center for Bioinformatics, Computational and Systems Biology, Pathfinder Research and Training Foundation, Greater Noida, India
| | | | - Petr Malý
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences v.v.i., BIOCEV Research Center, Vestec, Czech Republic
| | - Shiv Bharadwaj
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences v.v.i., BIOCEV Research Center, Vestec, Czech Republic
| | - Pradeep Sharma
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Vivek Dhar Dwivedi
- Center for Bioinformatics, Computational and Systems Biology, Pathfinder Research and Training Foundation, Greater Noida, India.,Institute of Advanced Materials, IAAM, 59053 Ulrika, Sweden
| |
Collapse
|
42
|
Venter JC, Glass JI, Hutchison CA, Vashee S. Synthetic chromosomes, genomes, viruses, and cells. Cell 2022; 185:2708-2724. [PMID: 35868275 PMCID: PMC9347161 DOI: 10.1016/j.cell.2022.06.046] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/24/2022] [Accepted: 06/24/2022] [Indexed: 10/17/2022]
Abstract
Synthetic genomics is the construction of viruses, bacteria, and eukaryotic cells with synthetic genomes. It involves two basic processes: synthesis of complete genomes or chromosomes and booting up of those synthetic nucleic acids to make viruses or living cells. The first synthetic genomics efforts resulted in the construction of viruses. This led to a revolution in viral reverse genetics and improvements in vaccine design and manufacture. The first bacterium with a synthetic genome led to construction of a minimal bacterial cell and recoded Escherichia coli strains able to incorporate multiple non-standard amino acids in proteins and resistant to phage infection. Further advances led to a yeast strain with a synthetic genome and new approaches for animal and plant artificial chromosomes. On the horizon there are dramatic advances in DNA synthesis that will enable extraordinary new opportunities in medicine, industry, agriculture, and research.
Collapse
Affiliation(s)
- J Craig Venter
- The J. Craig Venter Institute, La Jolla, CA, and Rockville, MD, USA.
| | - John I Glass
- The J. Craig Venter Institute, La Jolla, CA, and Rockville, MD, USA
| | | | - Sanjay Vashee
- The J. Craig Venter Institute, La Jolla, CA, and Rockville, MD, USA
| |
Collapse
|
43
|
Gómez-Aguado I, Rodríguez-Castejón J, Beraza-Millor M, Rodríguez-Gascón A, Del Pozo-Rodríguez A, Solinís MÁ. mRNA delivery technologies: Toward clinical translation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 372:207-293. [PMID: 36064265 DOI: 10.1016/bs.ircmb.2022.04.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Messenger RNA (mRNA)-therapies have recently taken a huge step toward clinic thanks to the first mRNA-based medicinal products marketed. mRNA features for clinical purposes are improved by chemical modifications, but the inclusion in a delivery system is a regular requirement. mRNA nanomedicines must be designed for the specific therapeutic purpose, protecting the nucleic acid and facilitating the overcoming of biological barriers. Polymers, polypeptides, and cationic lipids are the main used materials to design mRNA delivery systems. Among them, lipid nanoparticles (LNPs) are the most advanced ones, and currently they are at the forefront of preclinical and clinical evaluation in several fields, including immunotherapy (against infectious diseases and cancer), protein replacement, gene editing and regenerative medicine. This chapter includes an overview on mRNA delivery technologies, with special interest in LNPs, and the most recent advances in their clinical application. Liposomes are the mRNA delivery technology with the highest clinical translation among LNPs, whereas the first clinical trial of a therapeutic mRNA formulated in exosomes has been recently approved for protein replacement therapy. The first mRNA products approved by the regulatory agencies worldwide are LNP-based mRNA vaccines against viral infections, specifically against the 2019 coronavirus disease (COVID-19). The clinical translation of mRNA-therapies for cancer is mainly focused on three strategies: anti-cancer vaccination by means of delivering cancer antigens or acting as an adjuvant, mRNA-engineered chimeric antigen receptors (CARs) and T-cell receptors (TCRs), and expression of antibodies and immunomodulators. Cancer immunotherapy and, more recently, COVID-19 vaccines spearhead the advance of mRNA clinical use.
Collapse
Affiliation(s)
- Itziar Gómez-Aguado
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain; Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents, and Gene Therapy, Vitoria-Gasteiz, Spain
| | - Julen Rodríguez-Castejón
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain; Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents, and Gene Therapy, Vitoria-Gasteiz, Spain
| | - Marina Beraza-Millor
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain; Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents, and Gene Therapy, Vitoria-Gasteiz, Spain
| | - Alicia Rodríguez-Gascón
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain; Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents, and Gene Therapy, Vitoria-Gasteiz, Spain
| | - Ana Del Pozo-Rodríguez
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain; Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents, and Gene Therapy, Vitoria-Gasteiz, Spain
| | - María Ángeles Solinís
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain; Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents, and Gene Therapy, Vitoria-Gasteiz, Spain.
| |
Collapse
|
44
|
Zhang M, Hussain A, Yang H, Zhang J, Liang XJ, Huang Y. mRNA-based modalities for infectious disease management. NANO RESEARCH 2022; 16:672-691. [PMID: 35818566 PMCID: PMC9258466 DOI: 10.1007/s12274-022-4627-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/01/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
The novel coronavirus disease 2019 (COVID-19) is still rampant all over the world, causing incalculable losses to the world. Major pharmaceutical organizations around the globe are focusing on vaccine research and drug development to prevent further damage caused by the pandemic. The messenger RNA (mRNA) technology has got ample of attention after the success of the two very effective mRNA vaccines during the recent pandemic of COVID-19. mRNA vaccine has been promoted to the core stage of pharmaceutical industry, and the rapid development of mRNA technology has exceeded expectations. Beyond COVID-19, the mRNA vaccine has been tested for various infectious diseases and undergoing clinical trials. Due to the ability of constant mutation, the viral infections demand abrupt responses and immediate production, and therefore mRNA-based technology offers best answers to sudden outbreaks. The need for mRNA-based vaccine became more obvious due to the recent emergence of new Omicron variant. In this review, we summarized the unique properties of mRNA-based vaccines for infectious diseases, delivery technologies, discussed current challenges, and highlighted the prospects of this promising technology in the future. We also discussed various clinical studies as well preclinical studies conducted on mRNA therapeutics for diverse infectious diseases.
Collapse
Affiliation(s)
- Mengjie Zhang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, School of Medical Technology (Institute of Engineering Medicine), Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081 China
| | - Abid Hussain
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, School of Medical Technology (Institute of Engineering Medicine), Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081 China
| | - Haiyin Yang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, School of Medical Technology (Institute of Engineering Medicine), Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081 China
| | - Jinchao Zhang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry and Environmental Science, Hebei University, Baoding, 071002 China
| | - Xing-Jie Liang
- Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing, 100190 China
| | - Yuanyu Huang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, School of Medical Technology (Institute of Engineering Medicine), Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081 China
- School of Materials and the Environment, Beijing Institute of Technology, Zhuhai, 519085 China
| |
Collapse
|
45
|
Abstract
Current influenza vaccines, while being the best method of managing viral outbreaks, have several major drawbacks that prevent them from being wholly-effective. They need to be updated regularly and require extensive resources to develop. When considering alternatives, the recent deployment of mRNA vaccines for SARS-CoV-2 has created a unique opportunity to evaluate a new platform for seasonal and pandemic influenza vaccines. The mRNA format has previously been examined for application to influenza and promising data suggest it may be a viable format for next-generation influenza vaccines. Here, we discuss the prospect of shifting global influenza vaccination efforts to an mRNA-based system that might allow better control over the product and immune responses and could aid in the development of a universal vaccine.
Collapse
Affiliation(s)
- Jessica R Shartouny
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Anice C Lowen
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
- Emory Center of Excellence for Influenza Research and Response (Emory-CEIRR), USA
| |
Collapse
|
46
|
Palladino G, Chang C, Lee C, Music N, De Souza I, Nolasco J, Amoah S, Suphaphiphat P, Otten GR, Settembre EC, Wen Y. Self-amplifying mRNA SARS-CoV-2 vaccines raise cross-reactive immune response to variants and prevent infection in animal models. Mol Ther Methods Clin Dev 2022; 25:225-235. [PMID: 35345593 PMCID: PMC8942436 DOI: 10.1016/j.omtm.2022.03.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 03/17/2022] [Indexed: 02/07/2023]
Abstract
The spike (S) protein of SARS-CoV-2 plays a crucial role in cell entry, and the nucleocapsid (N) protein is highly conserved among human coronavirus homologs. For potentially broad effectiveness against both original virus and emerging variants, we developed Alphavirus-based self-amplifying mRNA (sa-mRNA) SARS-CoV-2 vaccines: an sa-mRNA S encoding a full-length S protein stabilized in a prefusion conformation and an sa-mRNA S-N co-expressing S and N proteins for the original virus. We show that these sa-mRNA SARS-CoV-2 vaccines raised potent neutralizing antibody responses in mice against not only the original virus but also the Alpha, Beta, Gamma, and Delta variants. sa-mRNA S vaccines against the Alpha and Beta variants also raised robust cross-reactive neutralizing antibody responses against their homologous viruses and heterologous variants. sa-mRNA S and sa-mRNA S-N vaccines elicited Th1-dominant, antigen-specific CD4+ T cell responses to S and N proteins and robust and broad CD8+ T cell responses to S protein. Hamsters immunized with either vaccine were fully protected from lung infection and showed significant reduction of viral load in upper respiratory tract. Our findings demonstrate that sa-mRNA SARS-CoV-2 vaccines are potent in animal models with potential to be highly effective against SARS-CoV-2 infection in humans.
Collapse
Affiliation(s)
| | - Cheng Chang
- Seqirus, a CSL Company, 50 Hampshire Street, Cambridge, MA 02139, USA
| | - Changkeun Lee
- Seqirus, a CSL Company, 50 Hampshire Street, Cambridge, MA 02139, USA
| | - Nedzad Music
- Seqirus, a CSL Company, 50 Hampshire Street, Cambridge, MA 02139, USA
| | - Ivna De Souza
- Seqirus, a CSL Company, 50 Hampshire Street, Cambridge, MA 02139, USA
| | - Jonathan Nolasco
- Seqirus, a CSL Company, 50 Hampshire Street, Cambridge, MA 02139, USA
| | - Samuel Amoah
- Seqirus, a CSL Company, 50 Hampshire Street, Cambridge, MA 02139, USA
| | | | - Gillis R Otten
- Seqirus, a CSL Company, 50 Hampshire Street, Cambridge, MA 02139, USA
| | - Ethan C Settembre
- Seqirus, a CSL Company, 50 Hampshire Street, Cambridge, MA 02139, USA
| | - Yingxia Wen
- Seqirus, a CSL Company, 50 Hampshire Street, Cambridge, MA 02139, USA
| |
Collapse
|
47
|
Qin S, Tang X, Chen Y, Chen K, Fan N, Xiao W, Zheng Q, Li G, Teng Y, Wu M, Song X. mRNA-based therapeutics: powerful and versatile tools to combat diseases. Signal Transduct Target Ther 2022; 7:166. [PMID: 35597779 PMCID: PMC9123296 DOI: 10.1038/s41392-022-01007-w] [Citation(s) in RCA: 249] [Impact Index Per Article: 83.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/04/2022] [Accepted: 04/19/2022] [Indexed: 02/06/2023] Open
Abstract
The therapeutic use of messenger RNA (mRNA) has fueled great hope to combat a wide range of incurable diseases. Recent rapid advances in biotechnology and molecular medicine have enabled the production of almost any functional protein/peptide in the human body by introducing mRNA as a vaccine or therapeutic agent. This represents a rising precision medicine field with great promise for preventing and treating many intractable or genetic diseases. In addition, in vitro transcribed mRNA has achieved programmed production, which is more effective, faster in design and production, as well as more flexible and cost-effective than conventional approaches that may offer. Based on these extraordinary advantages, mRNA vaccines have the characteristics of the swiftest response to large-scale outbreaks of infectious diseases, such as the currently devastating pandemic COVID-19. It has always been the scientists’ desire to improve the stability, immunogenicity, translation efficiency, and delivery system to achieve efficient and safe delivery of mRNA. Excitingly, these scientific dreams have gradually been realized with the rapid, amazing achievements of molecular biology, RNA technology, vaccinology, and nanotechnology. In this review, we comprehensively describe mRNA-based therapeutics, including their principles, manufacture, application, effects, and shortcomings. We also highlight the importance of mRNA optimization and delivery systems in successful mRNA therapeutics and discuss the key challenges and opportunities in developing these tools into powerful and versatile tools to combat many genetic, infectious, cancer, and other refractory diseases.
Collapse
Affiliation(s)
- Shugang Qin
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoshan Tang
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yuting Chen
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Kepan Chen
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Na Fan
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Wen Xiao
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qian Zheng
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Guohong Li
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yuqing Teng
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Min Wu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58203, USA
| | - Xiangrong Song
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
48
|
Li Y, Ma X, Yue Y, Zhang K, Cheng K, Feng Q, Ma N, Liang J, Zhang T, Zhang L, Chen Z, Wang X, Ren L, Zhao X, Nie G. Rapid Surface Display of mRNA Antigens by Bacteria-Derived Outer Membrane Vesicles for a Personalized Tumor Vaccine. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109984. [PMID: 35315546 DOI: 10.1002/adma.202109984] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/21/2022] [Indexed: 06/14/2023]
Abstract
Therapeutic mRNA vaccination is an attractive approach to trigger antitumor immunity. However, the mRNA delivery technology for customized tumor vaccine is still limited. In this work, bacteria-derived outer membrane vesicles (OMVs) are employed as an mRNA delivery platform by genetically engineering with surface decoration of RNA binding protein, L7Ae, and lysosomal escape protein, listeriolysin O (OMV-LL). OMV-LL can rapidly adsorb box C/D sequence-labelled mRNA antigens through L7Ae binding (OMV-LL-mRNA) and deliver them into dendritic cells (DCs), following by the cross-presentation via listeriolysin O-mediated endosomal escape. OMV-LL-mRNA significantly inhibits melanoma progression and elicits 37.5% complete regression in a colon cancer model. OMV-LL-mRNA induces a long-term immune memory and protects the mice from tumor challenge after 60 days. In summary, this platform provides a delivery technology distinct from lipid nanoparticles (LNPs) for personalized mRNA tumor vaccination, and with a "Plug-and-Display" strategy that enables its versatile application in mRNA vaccines.
Collapse
Affiliation(s)
- Yao Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
- Department of Biomaterials, Key Laboratory of Biomedical Engineering of Fujian Province, College of Materials, Xiamen University, Xiamen, Fujian, 361005, China
| | - Xiaotu Ma
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Yale Yue
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Kaiyue Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Keman Cheng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Qingqing Feng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Nana Ma
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Jie Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Tianjiao Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Lizhuo Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Zhiqiang Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Xinwei Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Lei Ren
- Department of Biomaterials, Key Laboratory of Biomedical Engineering of Fujian Province, College of Materials, Xiamen University, Xiamen, Fujian, 361005, China
| | - Xiao Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
- IGDB-NCNST Joint Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Xiamen, Beijing, 100101, China
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Xiamen, Beijing, 100049, China
- The GBA National Institute for Nanotechnology Innovation, Guangdong, 510700, China
| |
Collapse
|
49
|
Deviatkin AA, Simonov RA, Trutneva KA, Maznina AA, Khavina EM, Volchkov PY. Universal Flu mRNA Vaccine: Promises, Prospects, and Problems. Vaccines (Basel) 2022; 10:vaccines10050709. [PMID: 35632465 PMCID: PMC9145388 DOI: 10.3390/vaccines10050709] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 02/05/2023] Open
Abstract
The seasonal flu vaccine is, essentially, the only known way to prevent influenza epidemics. However, this approach has limited efficacy due to the high diversity of influenza viruses. Several techniques could potentially overcome this obstacle. A recent first-in-human study of a chimeric hemagglutinin-based universal influenza virus vaccine demonstrated promising results. The coronavirus pandemic triggered the development of fundamentally new vaccine platforms that have demonstrated their effectiveness in humans. Currently, there are around a dozen messenger RNA and self-amplifying RNA flu vaccines in clinical or preclinical trials. However, the applicability of novel approaches for a universal influenza vaccine creation remains unclear. The current review aims to cover the current state of this problem and to suggest future directions for RNA-based flu vaccine development.
Collapse
Affiliation(s)
- Andrei A. Deviatkin
- The National Medical Research Center for Endocrinology, 117036 Moscow, Russia; (A.A.D.); (K.A.T.)
- Genome Engineering Lab, Life Sciences Research Center, Moscow Institute of Physics and Technology (National Research University), 141700 Dolgoprudniy, Russia; (R.A.S.); (A.A.M.); (E.M.K.)
| | - Ruslan A. Simonov
- Genome Engineering Lab, Life Sciences Research Center, Moscow Institute of Physics and Technology (National Research University), 141700 Dolgoprudniy, Russia; (R.A.S.); (A.A.M.); (E.M.K.)
| | - Kseniya A. Trutneva
- The National Medical Research Center for Endocrinology, 117036 Moscow, Russia; (A.A.D.); (K.A.T.)
- Genome Engineering Lab, Life Sciences Research Center, Moscow Institute of Physics and Technology (National Research University), 141700 Dolgoprudniy, Russia; (R.A.S.); (A.A.M.); (E.M.K.)
| | - Anna A. Maznina
- Genome Engineering Lab, Life Sciences Research Center, Moscow Institute of Physics and Technology (National Research University), 141700 Dolgoprudniy, Russia; (R.A.S.); (A.A.M.); (E.M.K.)
| | - Elena M. Khavina
- Genome Engineering Lab, Life Sciences Research Center, Moscow Institute of Physics and Technology (National Research University), 141700 Dolgoprudniy, Russia; (R.A.S.); (A.A.M.); (E.M.K.)
| | - Pavel Y. Volchkov
- The National Medical Research Center for Endocrinology, 117036 Moscow, Russia; (A.A.D.); (K.A.T.)
- Genome Engineering Lab, Life Sciences Research Center, Moscow Institute of Physics and Technology (National Research University), 141700 Dolgoprudniy, Russia; (R.A.S.); (A.A.M.); (E.M.K.)
- Correspondence:
| |
Collapse
|
50
|
Kwon S, Kwon M, Im S, Lee K, Lee H. mRNA vaccines: the most recent clinical applications of synthetic mRNA. Arch Pharm Res 2022; 45:245-262. [PMID: 35426547 PMCID: PMC9012156 DOI: 10.1007/s12272-022-01381-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/05/2022] [Indexed: 12/24/2022]
Abstract
Synthetic mRNA has been considered as an emerging biotherapeutic agent for the past decades. Recently, the SARS-CoV-2 pandemic has led to the first clinical use of synthetic mRNA. mRNA vaccines showed far surpassing influences on the public as compared to other vaccine platforms such as viral vector vaccines and recombinant protein vaccines. It allowed rapid development and production of vaccines that have never been achieved in history. Synthetic mRNA, called in vitro transcribed (IVT) mRNA, is the key component of mRNA vaccines. It has several advantages over conventional gene-expressing systems such as plasmid DNA and viral vectors. It can translate proteins in the cytoplasm by structurally resembling natural mRNA and exhibit various protein expression patterns depending on how it is engineered. Another advantage is that synthetic mRNA enables fast, scalable, and cost-effective production. Therefore, starting with the mRNA vaccine, synthetic mRNA is now in the spotlight as a promising new drug development agent. In this review, we will summarize the latest IVT mRNA technology such as new mRNA structures or large-scale production. In addition, the nature of the innate immunogenicity of IVT mRNA will be discussed along with its roles in the development of vaccines. Finally, the principles of the mRNA vaccine and the future direction of synthetic mRNA will be provided.
Collapse
Affiliation(s)
- Suji Kwon
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Minseon Kwon
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Seongeun Im
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Kyuri Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| | - Hyukjin Lee
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea.
| |
Collapse
|