1
|
Burzi IS, Parchi PD, Barachini S, Pardini E, Sardo Infirri G, Montali M, Petrini I. Hypoxia Promotes the Stemness of Mesangiogenic Progenitor Cells and Prevents Osteogenic but not Angiogenic Differentiation. Stem Cell Rev Rep 2024; 20:1830-1842. [PMID: 38914791 PMCID: PMC11457687 DOI: 10.1007/s12015-024-10749-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2024] [Indexed: 06/26/2024]
Abstract
The stem cell niche in the bone marrow is a hypoxic environment, where the low oxygen tension preserves the pluripotency of stem cells. We have identified mesangiogenic progenitor cells (MPC) exhibiting angiogenic and mesenchymal differentiation capabilities in vitro. The effect of hypoxia on MPC has not been previously explored. In this study, MPCs were isolated from volunteers' bone marrow and cultured under both normoxic and hypoxic conditions (3% O2). MPCs maintained their characteristic morphology and surface marker expression (CD18 + CD31 + CD90-CD73-) under hypoxia. However, hypoxic conditions led to reduced MPC proliferation in primary cultures and hindered their differentiation into mesenchymal stem cells (MSCs) upon exposure to differentiative medium. First passage MSCs derived from MPC appeared unaffected by hypoxia, exhibiting no discernible differences in proliferative potential or cell cycle. However, hypoxia impeded the subsequent osteogenic differentiation of MSCs, as evidenced by decreased hydroxyapatite deposition. Conversely, hypoxia did not impact the angiogenic differentiation potential of MPCs, as demonstrated by spheroid-based assays revealing comparable angiogenic sprouting and tube-like formation capabilities under both hypoxic and normoxic conditions. These findings indicate that hypoxia preserves the stemness phenotype of MPCs, inhibits their differentiation into MSCs, and hampers their osteogenic maturation while leaving their angiogenic potential unaffected. Our study sheds light on the intricate effects of hypoxia on bone marrow-derived MPCs and their differentiation pathways.
Collapse
Affiliation(s)
- Irene Sofia Burzi
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Via Savi 2, 56125, Pisa, Italy
| | - Paolo Domenico Parchi
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Via Savi 2, 56125, Pisa, Italy
| | - Serena Barachini
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, 56125, Pisa, Italy
| | - Eleonora Pardini
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Via Savi 2, 56125, Pisa, Italy
| | - Gisella Sardo Infirri
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Via Savi 2, 56125, Pisa, Italy
| | - Marina Montali
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, 56125, Pisa, Italy
| | - Iacopo Petrini
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Via Savi 2, 56125, Pisa, Italy.
| |
Collapse
|
2
|
Jiang N, Tian X, Wang Q, Hao J, Jiang J, Wang H. Regulation Mechanisms and Maintenance Strategies of Stemness in Mesenchymal Stem Cells. Stem Cell Rev Rep 2024; 20:455-483. [PMID: 38010581 DOI: 10.1007/s12015-023-10658-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2023] [Indexed: 11/29/2023]
Abstract
Stemness pertains to the intrinsic ability of mesenchymal stem cells (MSCs) to undergo self-renewal and differentiate into multiple lineages, while simultaneously impeding their differentiation and preserving crucial differentiating genes in a state of quiescence and equilibrium. Owing to their favorable attributes, including uncomplicated isolation protocols, ethical compliance, and ease of procurement, MSCs have become a focal point of inquiry in the domains of regenerative medicine and tissue engineering. As age increases or ex vivo cultivation is prolonged, the functionality of MSCs decreases and their stemness gradually diminishes, thereby limiting their potential therapeutic applications. Despite the existence of several uncertainties surrounding the comprehension of MSC stemness, considerable advancements have been achieved in the clarification of the potential mechanisms that lead to stemness loss, as well as the associated strategies for stemness maintenance. This comprehensive review provides a systematic overview of the factors influencing the preservation of MSC stemness, the molecular mechanisms governing it, the strategies for its maintenance, and the therapeutic potential associated with stemness. Finally, we underscore the obstacles and prospective avenues in present investigations, providing innovative perspectives and opportunities for the preservation and therapeutic utilization of MSC stemness.
Collapse
Affiliation(s)
- Nizhou Jiang
- Central Hospital of Dalian University of Technology Department of Spine Surgery, Dalian, China
- The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiliang Tian
- The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Quanxiang Wang
- Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, China
| | - Jiayu Hao
- Central Hospital of Dalian University of Technology Department of Spine Surgery, Dalian, China
| | - Jian Jiang
- Central Hospital of Dalian University of Technology Department of Spine Surgery, Dalian, China.
| | - Hong Wang
- Central Hospital of Dalian University of Technology Department of Spine Surgery, Dalian, China.
| |
Collapse
|
3
|
Bustamante-Marin XM, Capel B. Oxygen availability influences the incidence of testicular teratoma in Dnd1Ter/+ mice. Front Genet 2023; 14:1179256. [PMID: 37180974 PMCID: PMC10169730 DOI: 10.3389/fgene.2023.1179256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/14/2023] [Indexed: 05/16/2023] Open
Abstract
Testicular teratomas and teratocarcinomas are the most common testicular germ cell tumors in early childhood and young men, and they are frequently found unilaterally in the left testis. In 129/SvJ mice carrying a heterozygous copy of the potent modifier of tumor incidence Ter, a point mutation in the dead-end homolog one gene (Dnd1 Ter/+), ∼70% of the unilateral teratomas arise in the left testis. We previously showed that in mice, left/right differences in vascular architecture are associated with reduced hemoglobin saturation and increased levels of the hypoxia inducible factor-1 alpha (HIF-1α) in the left compared to the right testis. To test the hypothesis that systemic reduction of oxygen availability in Dnd1 Ter/+ mice would lead to an increased incidence of bilateral tumors, we placed pregnant females from 129/SvJ Dnd1 Ter/+ intercross matings in a hypobaric chamber for 12-h intervals. Our results show that in 129/SvJ Dnd1 Ter/+ male gonads, the incidence of bilateral teratoma increased from 3.3% to 64% when fetuses were exposed to acute low oxygen conditions for 12-h between E13.8 and E14.3. The increase in tumor incidence correlated with the maintenance of high expression of pluripotency genes Oct4, Sox2 and Nanog, elevated activity of the Nodal signaling pathway, and suppression of germ cell mitotic arrest. We propose that the combination of heterozygosity for the Ter mutation and hypoxia causes a delay in male germ cell differentiation that promotes teratoma initiation.
Collapse
Affiliation(s)
- Ximena M. Bustamante-Marin
- Department of Cell Biology, Duke University Medical Center, Durham, NC, United States
- Departamento Biomédico, Facultad de Ciencias De La Salud, Universidad de Antofagasta, Antofagasta, Chile
| | - Blanche Capel
- Department of Cell Biology, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
4
|
Chen P, Tang S, Li M, Wang D, Chen C, Qiu Y, Fang Z, Zhang H, Gao H, Weng H, Hu K, Lin J, Lin Q, Tan Y, Li S, Chen J, Chen L, Chen X. Single-Cell and Spatial Transcriptomics Decodes Wharton's Jelly-Derived Mesenchymal Stem Cells Heterogeneity and a Subpopulation with Wound Repair Signatures. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204786. [PMID: 36504438 PMCID: PMC9896049 DOI: 10.1002/advs.202204786] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/18/2022] [Indexed: 06/17/2023]
Abstract
The highly heterogeneous characteristics of Wharton's jelly mesenchymal stem cells (WJ-MSCs) may be responsible for the poor clinical outcomes and poor reproducibility of treatments based on WJ-MSCs. Exploration of WJ-MSC heterogeneity with multimodal single-cell technologies will aid in establishing accurate MSC subtyping and developing screening protocols for dominant functional subpopulations. Here, the characteristics of WJ-MSCs are systematically analyzed by single cell and spatial transcriptome sequencing. Single-cell transcriptomics analysis identifies four WJ-MSC subpopulations, namely proliferative_MSCs, niche-supporting_MSCs, metabolism-related_MSCs and biofunctional-type_MSCs. Furthermore, the transcriptome, cellular heterogeneity, and cell-state trajectories of these subpopulations are characterized. Intriguingly, the biofunctional-type MSCs (marked by S100A9, CD29, and CD142) selected in this study exhibit promising wound repair properties in vitro and in vivo. Finally, by integrating omics data, it has been found that the S100A9+ CD29+ CD142+ subpopulation is more enriched in the fetal segment of the umbilical cord, suggesting that this subpopulation deriving from the fetal segment may have potential for developing into an ideal therapeutic agent for wound healing. Overall, the presented study comprehensively maps the heterogeneity of WJ-MSCs and provides an essential resource for future development of WJ-MSC-based drugs.
Collapse
|
5
|
Babu LK, Ghosh D. Looking at Mountains: Role of Sustained Hypoxia in Regulating Bone Mineral Homeostasis in Relation to Wnt Pathway and Estrogen. Clin Rev Bone Miner Metab 2022. [DOI: 10.1007/s12018-022-09283-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Chen W, Wu P, Yu F, Luo G, Qing L, Tang J. HIF-1α Regulates Bone Homeostasis and Angiogenesis, Participating in the Occurrence of Bone Metabolic Diseases. Cells 2022; 11:cells11223552. [PMID: 36428981 PMCID: PMC9688488 DOI: 10.3390/cells11223552] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/16/2022] [Accepted: 11/07/2022] [Indexed: 11/12/2022] Open
Abstract
In the physiological condition, the skeletal system's bone resorption and formation are in dynamic balance, called bone homeostasis. However, bone homeostasis is destroyed under pathological conditions, leading to the occurrence of bone metabolism diseases. The expression of hypoxia-inducible factor-1α (HIF-1α) is regulated by oxygen concentration. It affects energy metabolism, which plays a vital role in preventing bone metabolic diseases. This review focuses on the HIF-1α pathway and describes in detail the possible mechanism of its involvement in the regulation of bone homeostasis and angiogenesis, as well as the current experimental studies on the use of HIF-1α in the prevention of bone metabolic diseases. HIF-1α/RANKL/Notch1 pathway bidirectionally regulates the differentiation of macrophages into osteoclasts under different conditions. In addition, HIF-1α is also regulated by many factors, including hypoxia, cofactor activity, non-coding RNA, trace elements, etc. As a pivotal pathway for coupling angiogenesis and osteogenesis, HIF-1α has been widely studied in bone metabolic diseases such as bone defect, osteoporosis, osteonecrosis of the femoral head, fracture, and nonunion. The wide application of biomaterials in bone metabolism also provides a reasonable basis for the experimental study of HIF-1α in preventing bone metabolic diseases.
Collapse
|
7
|
Ye Y, Zhao X, Xu Y, Yu J. Hypoxia-Inducible Non-coding RNAs in Mesenchymal Stem Cell Fate and Regeneration. FRONTIERS IN DENTAL MEDICINE 2021. [DOI: 10.3389/fdmed.2021.799716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stem cells (MSCs) can differentiate into multiple cell lines, which makes them an important source of cells for tissue engineering applications. They are defined by the capability to renew themselves and maintain pluripotency. This ability is modulated by the balance between complex cues from cellular microenvironment. Self-renewal and differentiation abilities are regulated by particular microenvironmental signals. Oxygen is considered to be an important part of cell microenvironment, which not only acts as a metabolic substrate but also a signal molecule. It has been proved that MSCs are hypoxic in the physiological environment. Signals from MSCs' microenvironment or niche which means the anatomical location of the MSCs, maintain the final properties of MSCs. Physiological conditions like oxygen tension are deemed to be a significant part of the mesenchymal stem cell niche, and have been proved to be involved in modulating embryonic and adult MSCs. Non-coding RNAs (ncRNAs), which play a key role in cell signal transduction, transcription and translation of genes, have been widely concerned as epigenetic regulators in a great deal of tissues. With the rapid development of bioinformatics analysis tools and high-throughput RNA sequencing technology, more and more evidences show that ncRNAs play a key role in tissue regeneration. It shows potential as a biomarker of MSC differentiation. In this paper, we reviewed the physiological correlation of hypoxia as a unique environmental parameter which is conducive to MSC expansion and maintenance, discussed the correlation of tissue engineering, and summarized the influence of hypoxia related ncRNAs on MSCs' fate and regeneration. This review will provide reference for future research of MSCs' regeneration.
Collapse
|
8
|
HIF1α/HIF2α-Sox2/Klf4 promotes the malignant progression of glioblastoma via the EGFR-PI3K/AKT signalling pathway with positive feedback under hypoxia. Cell Death Dis 2021; 12:312. [PMID: 33762574 PMCID: PMC7990922 DOI: 10.1038/s41419-021-03598-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 12/12/2022]
Abstract
Previous studies have suggested that hypoxic responses are regulated by hypoxia-inducible factors (HIFs), which in turn promote the malignant progression of glioblastoma (GBM) by inhibiting apoptosis and increasing proliferation; these events lead to a poor prognosis of GBM patients. However, there are still no HIF-targeted therapies for the treatment of GBM. We have conducted series of experiments and discovered that GBM cells exhibit features indicative of malignant progression and are present in a hypoxic environment. Knocking out HIF1α or HIF2α alone resulted in no significant change in cell proliferation and cell cycle progression in response to acute hypoxia, but cells showed inhibition of stemness expression and chemosensitization to temozolomide (TMZ) treatment. However, simultaneously knocking out HIF1α and HIF2α inhibited cell cycle arrest and promoted proliferation with decreased stemness, making GBM cells more sensitive to chemotherapy, which could improve patient prognosis. Thus, HIF1α and HIF2α regulate each other with negative feedback. In addition, HIF1α and HIF2α are upstream regulators of epidermal growth factor (EGF), which controls the malignant development of GBM through the EGFR-PI3K/AKT-mTOR-HIF1α signalling pathway. In brief, the HIF1α/HIF2α-EGF/EGFR-PI3K/AKT-mTOR-HIF1α signalling axis contributes to the growth of GBM through a positive feedback mechanism. Finally, HIF1α and HIF2α regulate Sox2 and Klf4, contributing to stemness expression and inducing cell cycle arrest, thus increasing malignancy in GBM. In summary, HIF1α and HIF2α regulate glioblastoma malignant progression through the EGFR-PI3K/AKT pathway via a positive feedback mechanism under the effects of Sox2 and Klf4, which provides a new tumour development model and strategy for glioblastoma treatment.
Collapse
|
9
|
α-Tocopherol Acetate Attenuates Mitochondrial Oxygen Consumption and Maintains Primitive Cells within Mesenchymal Stromal Cell Population. Stem Cell Rev Rep 2021; 17:1390-1405. [PMID: 33511517 DOI: 10.1007/s12015-020-10111-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2020] [Indexed: 12/12/2022]
Abstract
We present here the data showing, in standard cultures exposed to atmospheric O2 concentration, that alpha-tocopherol acetate (α-TOA) has a positive impact on primitive cells inside mesenchymal stromal cell (MstroC) population, by maintaining their proliferative capacity. α-TOA decreases the O2 consumption rate of MStroC probably by impacting respiratory chain complex II activity. This action, however, is not associated with a compensatory increase in glycolysis activity, in spite of the fact that the degradation of HIF-1α was decreased in presence of α-TOA. This is in line with a moderate enhancement of mtROS upon α-TOA treatment. However, the absence of glycolysis stimulation implies the inactivity of HIF-1α which might - if it were active - be related to the maintenance of stemness. It should be stressed that α-TOA might act directly on the gene expression as well as the mtROS themselves, which remains to be elucidated. Alpha-tocopherol acetate (α-TOA), a synthetic vitamin E ester, attenuates electron flow through electron transport chain (ETC) which is probably associated with a moderate increase in mtROS in Mesenchymal Stromal Cells. α-TOA action results in enhancement of the proliferative capacity and maintenance of the differentiation potential of the mesenchymal stem and progenitor cells.
Collapse
|
10
|
Differentiation Potential of Early- and Late-Passage Adipose-Derived Mesenchymal Stem Cells Cultured under Hypoxia and Normoxia. Stem Cells Int 2020; 2020:8898221. [PMID: 33014073 PMCID: PMC7519987 DOI: 10.1155/2020/8898221] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/25/2020] [Accepted: 08/28/2020] [Indexed: 02/07/2023] Open
Abstract
With an increasing focus on the large-scale expansion of mesenchymal stem cells (MSCs) required for clinical applications for the treatment of joint and bone diseases such as osteoarthritis, the optimisation of conditions for in vitro MSC expansion requires careful consideration to maintain native MSC characteristics. Physiological parameters such as oxygen concentration, media constituents, and passage numbers influence the properties of MSCs and may have major impact on their therapeutic potential. Cells grown under hypoxic conditions have been widely documented in clinical use. Culturing MSCs on large scale requires bioreactor culture; however, it is challenging to maintain low oxygen and other physiological parameters over several passages in large bioreactor vessels. The necessity to scale up the production of cells in vitro under normoxia may affect important attributes of MSCs. For these reasons, our study investigated the effects of normoxic and hypoxic culture condition on early- and late-passage adipose-derived MSCs. We examined effect of each condition on the expression of key stem cell marker genes POU5F1, NANOG, and KLF4, as well as differentiation genes RUNX2, COL1A1, SOX9, COL2A1, and PPARG. We found that expression levels of stem cell marker genes and osteogenic and chondrogenic genes were higher in normoxia compared to hypoxia. Furthermore, expression of these genes reduced with passage number, with the exception of PPARG, an adipose differentiation marker, possibly due to the adipose origin of the MSCs. We confirmed by flow cytometry the presence of cell surface markers CD105, CD73, and CD90 and lack of expression of CD45, CD34, CD14, and CD19 across all conditions. Furthermore, in vitro differentiation confirmed that both early- and late-passage adipose-derived MSCs grown in hypoxia or normoxia could differentiate into chondrogenic and osteogenic cell types. Our results demonstrate that the minimal standard criteria to define MSCs as suitable for laboratory-based and preclinical studies can be maintained in early- or late-passage MSCs cultured in hypoxia or normoxia. Therefore, any of these culture conditions could be used when scaling up MSCs in bioreactors for allogeneic clinical applications or tissue engineering for the treatment of joint and bone diseases such as osteoarthritis.
Collapse
|
11
|
Mochizuki M, Sagara H, Nakahara T. Type I collagen facilitates safe and reliable expansion of human dental pulp stem cells in xenogeneic serum-free culture. Stem Cell Res Ther 2020; 11:267. [PMID: 32660544 PMCID: PMC7359624 DOI: 10.1186/s13287-020-01776-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/26/2020] [Accepted: 06/12/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Human dental pulp stem cells (DPSCs) are a readily accessible and promising cell source for regenerative medicine. We recently reported that a xenogeneic serum-free culture medium (XFM) is preferable to fetal bovine serum-containing culture medium for ex vivo expansion of DPSCs; however, we observed that, upon reaching overconfluence, XFM cells developed a multilayered structure and frequently underwent apoptotic death, resulting in reduced cell yield. Therefore, we focused on optimization of the XFM culture system to avoid the undesirable death of DPSCs. METHODS We selected type I collagen (COL) as the optimal coating substrate for the cultureware and compared DPSCs cultured on COL in XFM (COL-XFM cells) to the conventional XFM cultures (XFM cells). RESULTS Our results demonstrated that COL coating facilitated significantly higher rates of cell isolation and growth; upon reaching overconfluence, cell survival and sustained proliferative potential resulted in two-fold yield compared to the XFM cells. Surprisingly, after subculturing the overconfluent COL-XFM cultures, the cells retained stem cell behavior including stable cell growth, multidifferentiation potential, stem cell phenotype, and chromosomal stability, which was achieved through HIF-1α-dependent production and uniform distribution of collagen type I and its interactions with integrins α2β1 and α11β1 at overconfluency. In contrast, cells undergoing apoptotic death within overconfluent XFM cultures had disorganized mitochondria with membrane depolarization. CONCLUSION The use of COL as a coating substrate promises safe and reliable handling of DPSCs in XFM culture, allowing translational stem cell medicine to achieve stable isolation, expansion, and banking of donor-derived stem cells.
Collapse
Affiliation(s)
- Mai Mochizuki
- Department of Life Science Dentistry, The Nippon Dental University, 1-9-20 Fujimi, Chiyoda-ku, Tokyo, 102-8159, Japan
- Department of Developmental and Regenerative Dentistry, The Nippon Dental University School of Life Dentistry at Tokyo, 1-9-20 Fujimi, Chiyoda-ku, Tokyo, 102-8159, Japan
| | - Hiroshi Sagara
- Medical Proteomics Laboratory, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Taka Nakahara
- Department of Developmental and Regenerative Dentistry, The Nippon Dental University School of Life Dentistry at Tokyo, 1-9-20 Fujimi, Chiyoda-ku, Tokyo, 102-8159, Japan.
| |
Collapse
|
12
|
Kaneda-Ikeda E, Iwata T, Mizuno N, Nagahara T, Kajiya M, Ouhara K, Yoshioka M, Ishida S, Kawaguchi H, Kurihara H. Regulation of osteogenesis via miR-101-3p in mesenchymal stem cells by human gingival fibroblasts. J Bone Miner Metab 2020; 38:442-455. [PMID: 31970478 DOI: 10.1007/s00774-019-01080-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 12/27/2019] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Mesenchymal stem cells (MSCs) can differentiate into various types of cells and can thus be used for periodontal regenerative therapy. However, the mechanism of differentiation is still unclear. Transplanted MSCs are, via their transcription factors or microRNAs (miRNAs), affected by periodontal cells with direct contact or secretion of humoral factors. Therefore, transplanted MSCs are regulated by humoral factors from human gingival fibroblasts (HGF). Moreover, insulin-like growth factor (IGF)-1 is secreted from HGF and regulates periodontal regeneration. To clarify the regulatory mechanism for MSC differentiation by humoral factors from HGF, we identified key genes, specifically miRNAs, involved in this process, and determined their function in MSC differentiation. MATERIALS AND METHODS Mesenchymal stem cells were indirectly co-cultured with HGF in osteogenic or growth conditions and then evaluated for osteogenesis, undifferentiated MSC markers, and characteristic miRNAs. MSCs had their miRNA expression levels adjusted or were challenged with IGF-1 during osteogenesis, or both of which were performed, and then, MSCs were evaluated for osteogenesis or undifferentiated MSC markers. RESULTS Mesenchymal stem cells co-cultured with HGF showed suppression of osteogenesis and characteristic expression of ETV1, an undifferentiated MSC marker, as well as miR-101-3p. Over-expression of miR-101-3p regulated osteogenesis and ETV1 expression as well as indirect co-culture with HGF. IGF-1 induced miR-101-3p and ETV1 expression. However, IGF-1 did not suppress osteogenesis. CONCLUSIONS Humoral factors from HGF suppressed osteogenesis in MSCs. The effect was regulated by miRNAs and undifferentiated MSC markers. miR-101-3p and ETV1 were the key factors and were regulated by IGF-1.
Collapse
Affiliation(s)
- Eri Kaneda-Ikeda
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, 734-8553, Japan
| | - Tomoyuki Iwata
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, 734-8553, Japan.
| | - Noriyoshi Mizuno
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, 734-8553, Japan
| | - Takayoshi Nagahara
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, 734-8553, Japan
| | - Mikihito Kajiya
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, 734-8553, Japan
| | - Kazuhisa Ouhara
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, 734-8553, Japan
| | - Minami Yoshioka
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, 734-8553, Japan
| | - Shu Ishida
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, 734-8553, Japan
| | - Hiroyuki Kawaguchi
- Department of Department of General Dentistry, Hiroshima University Hospital, Hiroshima, 734-8553, Japan
| | - Hidemi Kurihara
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, 734-8553, Japan
| |
Collapse
|
13
|
Chen W, Zhuo Y, Duan D, Lu M. Effects of Hypoxia on Differentiation of Mesenchymal Stem Cells. Curr Stem Cell Res Ther 2020; 15:332-339. [PMID: 31441734 DOI: 10.2174/1574888x14666190823144928] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/25/2019] [Accepted: 07/15/2019] [Indexed: 12/20/2022]
Abstract
Mesenchymal Stem Cells (MSCs) are distributed in many parts of the human body, including
the bone marrow, placenta, umbilical cord, fat, and nasal mucosa. One of the unique features of
MSCs is their multidirectional differentiation potential, including the ability to undergo osteogenesis,
adipogenesis, and chondrogenesis, and to produce neurons, endothelial cells, Schwann cells, medullary
nucleus cells, cardiomyocytes, and alveolar epithelial cells. MSCs have thus become a hot research
topic in recent years. Numerous studies have investigated the differentiation of MSCs into various
types of cells in vitro and their application to numerous fields. However, most studies have cultured
MSCs under atmospheric oxygen tension with an oxygen concentration of 21%, which does not reflect
a normal physiological state, given that the oxygen concentration generally used in vitro is four to ten
times that to which MSCs would be exposed in the body. We therefore review the growing number of
studies exploring the effect of hypoxic preconditioning on the differentiation of MSCs.
Collapse
Affiliation(s)
- Wei Chen
- Hunan Provincial Key Laboratory of Neurorestoratology, The Second Affiliated Hospital (the 921st Hospital of PLA), Hunan Normal University, Changsha, Hunan 410003, China
| | - Yi Zhuo
- Hunan Provincial Key Laboratory of Neurorestoratology, The Second Affiliated Hospital (the 921st Hospital of PLA), Hunan Normal University, Changsha, Hunan 410003, China
| | - Da Duan
- Hunan Provincial Key Laboratory of Neurorestoratology, The Second Affiliated Hospital (the 921st Hospital of PLA), Hunan Normal University, Changsha, Hunan 410003, China
| | - Ming Lu
- Hunan Provincial Key Laboratory of Neurorestoratology, The Second Affiliated Hospital (the 921st Hospital of PLA), Hunan Normal University, Changsha, Hunan 410003, China
| |
Collapse
|
14
|
Deynoux M, Sunter N, Ducrocq E, Dakik H, Guibon R, Burlaud-Gaillard J, Brisson L, Rouleux-Bonnin F, le Nail LR, Hérault O, Domenech J, Roingeard P, Fromont G, Mazurier F. A comparative study of the capacity of mesenchymal stromal cell lines to form spheroids. PLoS One 2020; 15:e0225485. [PMID: 32484831 PMCID: PMC7266346 DOI: 10.1371/journal.pone.0225485] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 05/17/2020] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSC)-spheroid models favor maintenance of stemness, ex vivo expansion and transplantation efficacy. Spheroids may also be considered as useful surrogate models of the hematopoietic niche. However, accessibility to primary cells, from bone marrow (BM) or adipose tissues, may limit their experimental use and the lack of consistency in methods to form spheroids may affect data interpretation. In this study, we aimed to create a simple model by examining the ability of cell lines, from human (HS-27a and HS-5) and murine (MS-5) BM origins, to form spheroids, compared to primary human MSCs (hMSCs). Our protocol efficiently allowed the spheroid formation from all cell types within 24 hours. Whilst hMSC-spheroids began to shrink after 24 hours, the size of spheroids from cell lines remained constant during three weeks. The difference was partially explained by the balance between proliferation and cell death, which could be triggered by hypoxia and induced oxidative stress. Our results demonstrate that, like hMSCs, MSC cell lines make reproductible spheroids that are easily handled. Thus, this model could help in understanding mechanisms involved in MSC functions and may provide a simple model by which to study cell interactions in the BM niche.
Collapse
Affiliation(s)
- Margaux Deynoux
- EA 7501 GICC, CNRS ERL 7001 LNOx, Université de Tours, Tours, France
| | - Nicola Sunter
- EA 7501 GICC, CNRS ERL 7001 LNOx, Université de Tours, Tours, France
| | - Elfi Ducrocq
- EA 7501 GICC, CNRS ERL 7001 LNOx, Université de Tours, Tours, France
| | - Hassan Dakik
- EA 7501 GICC, CNRS ERL 7001 LNOx, Université de Tours, Tours, France
| | - Roseline Guibon
- Anatomie et cytologie pathologique, CHRU de Tours, Tours, France
- INSERM UMR1069, Nutrition, Croissance et Cancer, Université de Tours, Tours, France
| | - Julien Burlaud-Gaillard
- Plateforme IBiSA de Microscopie Electronique, Université et CHRU de Tours, Tours, France
- INSERM U1259 MAVIVH, Université et CHRU de Tours, Tours, France
| | - Lucie Brisson
- INSERM UMR1069, Nutrition, Croissance et Cancer, Université de Tours, Tours, France
| | | | | | - Olivier Hérault
- EA 7501 GICC, CNRS ERL 7001 LNOx, Université de Tours, Tours, France
- Service d'hématologie biologique, CHRU de Tours, Tours, France
| | - Jorge Domenech
- EA 7501 GICC, CNRS ERL 7001 LNOx, Université de Tours, Tours, France
- Service d'hématologie biologique, CHRU de Tours, Tours, France
| | - Philippe Roingeard
- Plateforme IBiSA de Microscopie Electronique, Université et CHRU de Tours, Tours, France
- INSERM U1259 MAVIVH, Université et CHRU de Tours, Tours, France
| | - Gaëlle Fromont
- Anatomie et cytologie pathologique, CHRU de Tours, Tours, France
- INSERM UMR1069, Nutrition, Croissance et Cancer, Université de Tours, Tours, France
| | - Frédéric Mazurier
- EA 7501 GICC, CNRS ERL 7001 LNOx, Université de Tours, Tours, France
- * E-mail:
| |
Collapse
|
15
|
Kaneda-Ikeda E, Iwata T, Mizuno N, Nagahara T, Kajiya M, Takeda K, Hirata R, Ishida S, Yoshioka M, Fujita T, Kawaguchi H, Kurihara H. Periodontal ligament cells regulate osteogenesis via miR-299-5p in mesenchymal stem cells. Differentiation 2020; 112:47-57. [PMID: 31951879 DOI: 10.1016/j.diff.2020.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/29/2019] [Accepted: 01/06/2020] [Indexed: 01/08/2023]
Abstract
BACKGROUND The periodontal ligament contains periodontal ligament cells, which is a heterogeneous cell population, and includes progenitor cells that can differentiate into osteoblasts/cementoblasts. Mesenchymal stem cells (MSCs) can differentiate into various cells and can be used for periodontal regenerative therapy. Therefore, transplanted MSCs can be affected by humoral factors from periodontal ligament cells via the transcription factors or microRNAs (miRNAs) of MSCs. In addition, periostin (POSTN) is secreted from HPL cells and can regulate periodontal regeneration and homeostasis. To clarify the regulatory mechanism of humoral factors from periodontal ligament cells, we attempted to identify key genes, specifically microRNAs, involved in this process. METHODS Human MSCs (hMSCs) were indirectly co-cultured with human periodontal ligament cells (HPL cells) and then evaluated for osteogenesis, undifferentiated MSCs markers, and miRNA profiles. Furthermore, hMSCs were indirectly co-cultured with HPL cells in the presence of anti-POSTN monoclonal antibody (anti-POSTN Ab) to block the effect of POSTN from HPL cells, and then evaluated for osteogenesis or undifferentiated MSC markers. Moreover, hMSCs showed alterations in miRNA expression or cultured with HPL were challenged with POSTN during osteogenesis, and cells were evaluated for osteogenesis or undifferentiated MSC markers. RESULTS hMSCs co-cultured with HPL cells showed suppressed osteogenesis and characteristic expression of SOX11, an undifferentiated MSC marker, as well as miR-299-5p. Overexpression of miR-299-5p regulated osteogenesis and SOX11 expression as observed with indirect co-culture with HPL cells. Furthermore, MSCs co-cultured with HPL cells were recovered from the suppression of osteogenesis and SOX11 mRNA expression by anti-POSTN Ab. However, POSTN induced miR-299-5p and SOX11 expression, and enhanced osteogenesis. CONCLUSION Humoral factors from HPL cells suppressed osteogenesis in hMSCs. The suppressive effect was mediated by miR-299-5p and SOX11 in hMSCs.
Collapse
Affiliation(s)
- Eri Kaneda-Ikeda
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, 734-8553, Japan
| | - Tomoyuki Iwata
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, 734-8553, Japan.
| | - Noriyoshi Mizuno
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, 734-8553, Japan
| | - Takayoshi Nagahara
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, 734-8553, Japan
| | - Mikihito Kajiya
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, 734-8553, Japan
| | - Katsuhiro Takeda
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, 734-8553, Japan; Department of Biological Endodontics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, 734-8553, Japan
| | - Reika Hirata
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, 734-8553, Japan
| | - Shu Ishida
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, 734-8553, Japan
| | - Minami Yoshioka
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, 734-8553, Japan
| | - Tsuyoshi Fujita
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, 734-8553, Japan
| | - Hiroyuki Kawaguchi
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, 734-8553, Japan; Department of Department of General Dentistry, Hiroshima University Hospital, Hiroshima, 734-8553, Japan
| | - Hidemi Kurihara
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, 734-8553, Japan
| |
Collapse
|
16
|
Zhang M, Shi X, Wu J, Wang Y, Lin J, Zhao Y, Li H, Ren M, Hu R, Liu F, Deng H. CoCl 2 induced hypoxia enhances osteogenesis of rat bone marrow mesenchymal stem cells through cannabinoid receptor 2. Arch Oral Biol 2019; 108:104525. [PMID: 31472278 DOI: 10.1016/j.archoralbio.2019.104525] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/02/2019] [Accepted: 08/12/2019] [Indexed: 02/07/2023]
Abstract
OBJECTIVES This study aims to investigate the role of Cannabinoid receptor 2 (CB2) on osteogenesis of bone marrow-derived mesenchymal stem cells (BMSCs) under hypoxia. MATERIALS AND METHODS BMSCs were isolated from Sprague-Dawley rats and cultured in the presence of cobalt chloride (CoCl2) to induce intracellular hypoxia. Cell proliferation was measured with MTT assay. Quantitative real-time PCR and western blot were applied to evaluate the mRNA and protein expressions of CB2 and osteogenic indicators including osteocalcin, RUNX2, collagen-1 and osterix (SP7). The osteogenic differentiation of BMSCs was further examined by ALP assay and alizarin red S (ARS) staining. Moreover, the activation of MAPKs signaling pathways was analyzed by western blot. RESULTS CoCl2 dose-dependently increased hypoxia inducible factor while higher concentrations (200 and 400 μM) of CoCl2 markedly inhibited cell proliferation. CoCl2 induced hypoxia significantly increased the protein and mRNA expressions of osteocalcin, RUNX2, collagen-1 and osterix, along with enhanced ALP and ARS staining. Interestingly, such effects can be inhibited by the addition of CB2 inhibitor AM630. Moreover, AM630 partially inhibited hypoxia-induced p38 and ERK pathways, which may lead to a decrease in the osteogenic transcripts of RUNX2, collagen-1 and osterix. CONCLUSIONS CoCl2 induced hypoxia could promote osteogenesis of rat BMSCs possibly through CB2.
Collapse
Affiliation(s)
- Menghan Zhang
- School of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xinlian Shi
- School of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jingxiang Wu
- School of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yi Wang
- School of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jian Lin
- School of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ya Zhao
- School of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Huimin Li
- School of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Manman Ren
- School of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Rongdang Hu
- School of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Fen Liu
- Department of Histology and Embryology, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Hui Deng
- School of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
17
|
Brown C, McKee C, Bakshi S, Walker K, Hakman E, Halassy S, Svinarich D, Dodds R, Govind CK, Chaudhry GR. Mesenchymal stem cells: Cell therapy and regeneration potential. J Tissue Eng Regen Med 2019; 13:1738-1755. [PMID: 31216380 DOI: 10.1002/term.2914] [Citation(s) in RCA: 352] [Impact Index Per Article: 58.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/15/2019] [Accepted: 06/07/2019] [Indexed: 12/12/2022]
Abstract
Rapid advances in the isolation of multipotent progenitor cells, routinely called mesenchymal stromal/stem cells (MSCs), from various human tissues and organs have provided impetus to the field of cell therapy and regenerative medicine. The most widely studied sources of MSCs include bone marrow, adipose, muscle, peripheral blood, umbilical cord, placenta, fetal tissue, and amniotic fluid. According to the standard definition of MSCs, these clonal cells adhere to plastic, express cluster of differentiation (CD) markers such as CD73, CD90, and CD105 markers, and can differentiate into adipogenic, chondrogenic, and osteogenic lineages in vitro. However, isolated MSCs have been reported to vary in their potency and self-renewal potential. As a result, the MSCs used for clinical applications often lead to variable or even conflicting results. The lack of uniform characterization methods both in vitro and in vivo also contributes to this confusion. Therefore, the name "MSCs" itself has been increasingly questioned lately. As the use of MSCs is expanding rapidly, there is an increasing need to understand the potential sources and specific potencies of MSCs. This review discusses and compares the characteristics of MSCs and suggests that the variations in their distinctive features are dependent on the source and method of isolation as well as epigenetic changes during maintenance and growth. We also discuss the potential opportunities and challenges of MSC research with the hope to stimulate their use for therapeutic and regenerative medicine.
Collapse
Affiliation(s)
- Christina Brown
- Department of Biological Sciences, Oakland University, Rochester, MI, USA.,OU-WB Institute for Stem Cell and Regenerative Medicine, Oakland University, Rochester, MI, USA
| | - Christina McKee
- Department of Biological Sciences, Oakland University, Rochester, MI, USA.,OU-WB Institute for Stem Cell and Regenerative Medicine, Oakland University, Rochester, MI, USA
| | - Shreeya Bakshi
- Department of Biological Sciences, Oakland University, Rochester, MI, USA.,OU-WB Institute for Stem Cell and Regenerative Medicine, Oakland University, Rochester, MI, USA
| | - Keegan Walker
- Department of Biological Sciences, Oakland University, Rochester, MI, USA.,OU-WB Institute for Stem Cell and Regenerative Medicine, Oakland University, Rochester, MI, USA
| | - Eryk Hakman
- Department of Obstetrics and Gynecology, Ascension Providence Hospital, Southfield, MI, USA
| | - Sophia Halassy
- Department of Obstetrics and Gynecology, Ascension Providence Hospital, Southfield, MI, USA
| | - David Svinarich
- Department of Obstetrics and Gynecology, Ascension Providence Hospital, Southfield, MI, USA.,Ascension Providence Hospital, Southfield, MI, USA
| | - Robert Dodds
- Department of Obstetrics and Gynecology, Ascension Providence Hospital, Southfield, MI, USA
| | - Chhabi K Govind
- Department of Biological Sciences, Oakland University, Rochester, MI, USA.,OU-WB Institute for Stem Cell and Regenerative Medicine, Oakland University, Rochester, MI, USA
| | - G Rasul Chaudhry
- Department of Biological Sciences, Oakland University, Rochester, MI, USA.,OU-WB Institute for Stem Cell and Regenerative Medicine, Oakland University, Rochester, MI, USA
| |
Collapse
|
18
|
Camacho-Cardenosa M, Camacho-Cardenosa A, Timón R, Olcina G, Tomas-Carus P, Brazo-Sayavera J. Can Hypoxic Conditioning Improve Bone Metabolism? A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16101799. [PMID: 31117194 PMCID: PMC6572511 DOI: 10.3390/ijerph16101799] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/14/2019] [Accepted: 05/15/2019] [Indexed: 12/17/2022]
Abstract
Among other functions, hypoxia-inducible factor plays a critical role in bone–vascular coupling and bone formation. Studies have suggested that hypoxic conditioning could be a potential nonpharmacological strategy for treating skeletal diseases. However, there is no clear consensus regarding the bone metabolism response to hypoxia. Therefore, this review aims to examine the impact of different modes of hypoxia conditioning on bone metabolism. The PubMed and Web of Science databases were searched for experimental studies written in English that investigated the effects of modification of ambient oxygen on bone remodelling parameters of healthy organisms. Thirty-nine studies analysed the effect of sustained or cyclic hypoxia exposure on genetic and protein expression and mineralisation capacity of different cell models; three studies carried out in animal models implemented sustained or cyclic hypoxia; ten studies examined the effect of sustained, intermittent or cyclic hypoxia on bone health and hormonal responses in humans. Different modes of hypoxic conditioning may have different impacts on bone metabolism both in vivo and in vitro. Additional research is necessary to establish the optimal cyclical dose of oxygen concentration and exposure time.
Collapse
Affiliation(s)
| | | | - Rafael Timón
- Faculty of Sport Science, University of Extremadura, 10003 Cáceres, Spain.
| | - Guillermo Olcina
- Faculty of Sport Science, University of Extremadura, 10003 Cáceres, Spain.
| | - Pablo Tomas-Carus
- Departamento de Desporto e Saúde, Escola de Ciência e Tecnologia, Universidade de Évora, 7000-812 Évora, Portugal.
- Comprehensive Health Research Centre (CHRC), University of Évora, 7000-812 Évora, Portugal.
| | - Javier Brazo-Sayavera
- Instituto Superior de Educación Física, Universidad de la República, 40000 Rivera, Uruguay.
- Polo de Desarrollo Universitario EFISAL, Universidad de la República, 40000 Rivera, Uruguay.
| |
Collapse
|
19
|
Kim C, Park JM, Song Y, Kim S, Moon J. HIF1α-mediated AIMP3 suppression delays stem cell aging via the induction of autophagy. Aging Cell 2019; 18:e12909. [PMID: 30706629 PMCID: PMC6413650 DOI: 10.1111/acel.12909] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 01/03/2019] [Indexed: 12/31/2022] Open
Abstract
Senescence in stem cells, which occurs as a consequence of chronic responses to the environment, defines the capacity of stem cells for proliferation and differentiation as well as their potential for tissue regeneration and homeostasis maintenance. Although stem cells reside under low oxygen pressure and the availability of oxygen is known to be a crucial determinant in their fate, the key modulators in stem cell aging and the underlying mechanism have yet to be unraveled. Human placenta‐derived mesenchymal stem cells (hpMSCs) were cultured under hypoxia (3% O2) or normoxia (21% O2) to investigate the key factors that regulate stem cell senescence under hypoxic conditions. RNA sequencing results suggested that the expression of aminoacyl‐tRNA synthetase‐interacting multifunctional protein 3 (AIMP3, EEF1E1), an aging inducer, in the hpMSCs was dramatically repressed under hypoxia with concurrent suppression of the aging marker p16INK4a. The hpMSCs that overexpressed AIMP3 under hypoxic conditions displayed significantly decreased proliferation and fewer stem cell characteristics, whereas the downregulation of AIMP3 ameliorated the age‐related senescence of MSCs. Consistent with the results of the hpMSCs, MSCs isolated from the adipose tissue of AIMP3‐overexpressing mice exhibited decreased stem cell functions. Interestingly, AIMP3‐induced senescence is negatively regulated by hypoxia‐inducible factor 1α (HIF1α) and positively regulated by Notch3. Furthermore, we showed that AIMP3 enhanced mitochondrial respiration and suppressed autophagic activity, indicating that the AIMP3‐associated modulation of metabolism and autophagy is a key mechanism in the senescence of stem cells and further suggesting a novel target for interventions against aging.
Collapse
Affiliation(s)
- Chul Kim
- Department of Biotechnology, College of Life Science; CHA University; Pocheon-si Korea
| | - Ji-Min Park
- Department of Biotechnology, College of Life Science; CHA University; Pocheon-si Korea
| | - Youngsook Song
- Department of Biotechnology, College of Life Science; CHA University; Pocheon-si Korea
| | - Sunghoon Kim
- Medicinal Bioconvergence Research Center; Seoul National University; Seoul Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Technology; Seoul National University; Suwon Korea
| | - Jisook Moon
- Department of Biotechnology, College of Life Science; CHA University; Pocheon-si Korea
| |
Collapse
|
20
|
Relevance of Oxygen Concentration in Stem Cell Culture for Regenerative Medicine. Int J Mol Sci 2019; 20:ijms20051195. [PMID: 30857245 PMCID: PMC6429522 DOI: 10.3390/ijms20051195] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 02/28/2019] [Accepted: 03/04/2019] [Indexed: 01/10/2023] Open
Abstract
The key hallmark of stem cells is their ability to self-renew while keeping a differentiation potential. Intrinsic and extrinsic cell factors may contribute to a decline in these stem cell properties, and this is of the most importance when culturing them. One of these factors is oxygen concentration, which has been closely linked to the maintenance of stemness. The widely used environmental 21% O2 concentration represents a hyperoxic non-physiological condition, which can impair stem cell behaviour by many mechanisms. The goal of this review is to understand these mechanisms underlying the oxygen signalling pathways and their negatively-associated consequences. This may provide a rationale for culturing stem cells under physiological oxygen concentration for stem cell therapy success, in the field of tissue engineering and regenerative medicine.
Collapse
|
21
|
Mechanism of the natural product moracin-O derived MO-460 and its targeting protein hnRNPA2B1 on HIF-1α inhibition. Exp Mol Med 2019; 51:1-14. [PMID: 30755586 PMCID: PMC6372683 DOI: 10.1038/s12276-018-0200-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 10/12/2018] [Accepted: 10/16/2018] [Indexed: 02/06/2023] Open
Abstract
Hypoxia-inducible factor-1α (HIF-1α) mediates tumor cell adaptation to hypoxic conditions and is a potentially important anticancer therapeutic target. We previously developed a method for synthesizing a benzofuran-based natural product, (R)-(-)-moracin-O, and obtained a novel potent analog, MO-460 that suppresses the accumulation of HIF-1α in Hep3B cells. However, the molecular target and underlying mechanism of action of MO-460 remained unclear. In the current study, we identified heterogeneous nuclear ribonucleoprotein A2B1 (hnRNPA2B1) as a molecular target of MO-460. MO-460 inhibits the initiation of HIF-1α translation by binding to the C-terminal glycine-rich domain of hnRNPA2B1 and inhibiting its subsequent binding to the 3’-untranslated region of HIF-1α mRNA. Moreover, MO-460 suppresses HIF-1α protein synthesis under hypoxic conditions and induces the accumulation of stress granules. The data provided here suggest that hnRNPA2B1 serves as a crucial molecular target in hypoxia-induced tumor survival and thus offer an avenue for the development of novel anticancer therapies. A synthetic analog of a chemical found in fruit suppresses tumor growth by targeting an RNA-binding protein (hnRNPA2B1) and preventing the production of a pro-cancer regulatory factor. Nak-Kyun Soung from the Korea Research Institute of Bioscience and Biotechnology, Cheongju, South Korea, and coworkers built on their previous discovery that a compound derived from a medicinal plant metabolite can suppress the activity of hypoxia-inducible factor-1α (HIF-1α). This protein, which is involved in many aspects of cancer biology, is activated in the low-oxygen microenvironments found inside tumors. The researchers show that the compound binds to a protein that helps with the conversion of HIF-1α–encoding RNA transcripts into HIF-1α proteins. Liver cancer cells treated with the compound grew slowly and produced less HIF-1α under both normal and low-oxygen culture conditions, highlighting the potential of this anti-cancer strategy.
Collapse
|
22
|
Bahsoun S, Coopman K, Forsyth NR, Akam EC. The Role of Dissolved Oxygen Levels on Human Mesenchymal Stem Cell Culture Success, Regulatory Compliance, and Therapeutic Potential. Stem Cells Dev 2018; 27:1303-1321. [DOI: 10.1089/scd.2017.0291] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Soukaina Bahsoun
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Karen Coopman
- Centre for Biological Engineering, Loughborough University, Loughborough, United Kingdom
| | - Nicholas R. Forsyth
- Guy Hilton Research Centre, Institute for Science and Technology in Medicine, Keele University, Keele, United Kingdom
| | - Elizabeth C. Akam
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| |
Collapse
|
23
|
Taheem DK, Foyt DA, Loaiza S, Ferreira SA, Ilic D, Auner HW, Grigoriadis AE, Jell G, Gentleman E. Differential Regulation of Human Bone Marrow Mesenchymal Stromal Cell Chondrogenesis by Hypoxia Inducible Factor-1α Hydroxylase Inhibitors. Stem Cells 2018; 36:1380-1392. [PMID: 29726060 PMCID: PMC6124654 DOI: 10.1002/stem.2844] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 03/27/2018] [Accepted: 04/22/2018] [Indexed: 01/22/2023]
Abstract
The transcriptional profile induced by hypoxia plays important roles in the chondrogenic differentiation of marrow stromal/stem cells (MSC) and is mediated by the hypoxia inducible factor (HIF) complex. However, various compounds can also stabilize HIF's oxygen-responsive element, HIF-1α, at normoxia and mimic many hypoxia-induced cellular responses. Such compounds may prove efficacious in cartilage tissue engineering, where microenvironmental cues may mediate functional tissue formation. Here, we investigated three HIF-stabilizing compounds, which each have distinct mechanisms of action, to understand how they differentially influenced the chondrogenesis of human bone marrow-derived MSC (hBM-MSC) in vitro. hBM-MSCs were chondrogenically-induced in transforming growth factor-β3-containing media in the presence of HIF-stabilizing compounds. HIF-1α stabilization was assessed by HIF-1α immunofluorescence staining, expression of HIF target and articular chondrocyte specific genes by quantitative polymerase chain reaction, and cartilage-like extracellular matrix production by immunofluorescence and histochemical staining. We demonstrate that all three compounds induced similar levels of HIF-1α nuclear localization. However, while the 2-oxoglutarate analog dimethyloxalylglycine (DMOG) promoted upregulation of a selection of HIF target genes, desferrioxamine (DFX) and cobalt chloride (CoCl2 ), compounds that chelate or compete with divalent iron (Fe2+ ), respectively, did not. Moreover, DMOG induced a more chondrogenic transcriptional profile, which was abolished by Acriflavine, an inhibitor of HIF-1α-HIF-β binding, while the chondrogenic effects of DFX and CoCl2 were more limited. Together, these data suggest that HIF-1α function during hBM-MSC chondrogenesis may be regulated by mechanisms with a greater dependence on 2-oxoglutarate than Fe2+ availability. These results may have important implications for understanding cartilage disease and developing targeted therapies for cartilage repair. Stem Cells 2018;36:1380-1392.
Collapse
Affiliation(s)
- Dheraj K. Taheem
- Centre for Craniofacial and Regenerative BiologyWomen's Health Academic Centre KHP, King's College LondonLondonUnited Kingdom
| | - Daniel A. Foyt
- Centre for Craniofacial and Regenerative BiologyWomen's Health Academic Centre KHP, King's College LondonLondonUnited Kingdom
| | - Sandra Loaiza
- Cancer Cell Protein Metabolism Group, Department of MedicineImperial College LondonLondonUnited Kingdom
| | - Silvia A. Ferreira
- Centre for Craniofacial and Regenerative BiologyWomen's Health Academic Centre KHP, King's College LondonLondonUnited Kingdom
| | - Dusko Ilic
- Division of Women's HealthWomen's Health Academic Centre KHP, King's College LondonLondonUnited Kingdom
| | - Holger W. Auner
- Cancer Cell Protein Metabolism Group, Department of MedicineImperial College LondonLondonUnited Kingdom
| | - Agamemnon E. Grigoriadis
- Centre for Craniofacial and Regenerative BiologyWomen's Health Academic Centre KHP, King's College LondonLondonUnited Kingdom
| | - Gavin Jell
- Division of Surgery & Interventional ScienceUniversity College LondonLondonUnited Kingdom
| | - Eileen Gentleman
- Centre for Craniofacial and Regenerative BiologyWomen's Health Academic Centre KHP, King's College LondonLondonUnited Kingdom
| |
Collapse
|
24
|
Hypoxic culture enhances the expansion of rat bone marrow-derived mesenchymal stem cells via the regulatory pathways of cell division and apoptosis. In Vitro Cell Dev Biol Anim 2018; 54:666-676. [PMID: 30136033 DOI: 10.1007/s11626-018-0281-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 07/12/2018] [Indexed: 02/07/2023]
Abstract
This study aimed to examine the proliferative behavior and molecular mechanisms of rat bone marrow-derived MSCs (rBMSCs) cultured under three different oxygen concentrations. Passaged rBMSCs exhibited significantly greater proliferation rates at 1% O2 and 5% O2 than those at 18% O2 and the cells exposed to 1% O2 showed the highest proliferative potential, which was evidenced by the growth curves, colony-forming efficiencies, and CCK-8 absorbance values. The rBMSCs grown under hypoxic culture conditions (1% O2 and 5% O2) had the increased percentage of cells in S + G2/M-phase and the decreased apoptotic index, compared with normoxia (18% O2). It was revealed for the first time that there were more phosphohistone H3 (PHH3)-positive cells and higher expressions of proliferating cell nuclear antigen (PCNA) in the hypoxic cultures of rBMSCs than in the normoxic culture. Hypoxia upregulated the anti-apoptotic protein Bcl-2 and downregulated the pro-apoptotic proteins Bax and the cleaved caspase-3 in cultured rBMSCs. The levels of hypoxia-inducible factor-1α (HIF-1α) and phosphorylated extracellular signal-regulated kinase 1/2 (p-ERK1/2) were increased in the hypoxic-cultured rBMSCs. Nevertheless, no significant difference was observed in p53 level of rBMSCs between different oxygen concentrations. In conclusion, the hypoxia exerts a promoting effect on the in vitro expansion of rBMSCs via several signaling and molecular pathways involved in the control of cell cycle and apoptosis.
Collapse
|
25
|
Song X, Su L, Yin H, Dai J, Wei H. Effects of HSYA on the proliferation and apoptosis of MSCs exposed to hypoxic and serum deprivation conditions. Exp Ther Med 2018; 15:5251-5260. [PMID: 29904409 PMCID: PMC5996714 DOI: 10.3892/etm.2018.6125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 03/05/2018] [Indexed: 02/06/2023] Open
Abstract
As a primary active ingredient of safflor yellow, hydroxysafflor yellow A (HSYA) exhibits notable antioxidative and neuroprotective effects. The aim of the present study was to investigate the protective effects of HSYA in mesenchymal stem cells (MSCs) exposed to hypoxia (5% O2) and serum deprivation (H/SD), and to explore the mechanisms underlying HSYA-mediated protection. Under H/SD conditions, HSYA was applied to protect MSCs against injury. Cell viability, proliferation, apoptosis and reactive oxygen species (ROS) levels were determined using an 5-ethynyl-2′-deoxyuridine assay, MTT assay, Hoechst 33342/propidium iodide and 2′,7′-dichlorodihydrofluorescein diacetate staining, respectively. The results revealed that 160 mg/l HSYA significantly reduced apoptosis and ROS levels compared with the H/SD group; however, HSYA demonstrated minimal effects on cell proliferation. A western blot assay demonstrated that HSYA reduced cleaved caspase-3 expression and cytC release from the mitochondria to the cytoplasm when compared with the H/SD group. In addition, western blotting and RT-qPCR analyses revealed that HSYA treatment significantly increased the expression of hypoxia inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF). In conclusion, the results of the current study demonstrated that HSYA exerts protective effects against H/SD-induced apoptosis in MSCs potentially via activation of the HIF-1α/VEGF signaling pathway and stabilization of the mitochondrial membrane.
Collapse
Affiliation(s)
- Xiaoqing Song
- Biology Office, Basic Medical College of Hebei North University, Zhangjiakou, Hebei 075000, P.R. China
| | - Lining Su
- Biology Office, Basic Medical College of Hebei North University, Zhangjiakou, Hebei 075000, P.R. China
| | - Haifeng Yin
- Biology Office, Basic Medical College of Hebei North University, Zhangjiakou, Hebei 075000, P.R. China
| | - Jin Dai
- Biology Office, Basic Medical College of Hebei North University, Zhangjiakou, Hebei 075000, P.R. China
| | - Huiping Wei
- Biology Office, Basic Medical College of Hebei North University, Zhangjiakou, Hebei 075000, P.R. China
| |
Collapse
|
26
|
Zhang B, Ye H, Yang A. Mathematical modelling of interacting mechanisms for hypoxia mediated cell cycle commitment for mesenchymal stromal cells. BMC SYSTEMS BIOLOGY 2018; 12:35. [PMID: 29606139 PMCID: PMC5879778 DOI: 10.1186/s12918-018-0560-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 03/14/2018] [Indexed: 12/20/2022]
Abstract
Background Existing experimental data have shown hypoxia to be an important factor affecting the proliferation of mesenchymal stromal cells (MSCs), but the contrasting observations made at various hypoxic levels raise the questions of whether hypoxia accelerates proliferation, and how. On the other hand, in order to meet the increasing demand of MSCs, an optimised bioreactor control strategy is needed to enhance in vitro production. Results A comprehensive, single-cell mathematical model has been constructed in this work, which combines cellular oxygen sensing with hypoxia-mediated cell cycle progression to predict cell cycle commitment as a proxy to proliferation rate. With oxygen levels defined for in vitro cell culture, the model predicts enhanced proliferation under intermediate (2–8%) and mild (8–15%) hypoxia and cell quiescence under severe (< 2%) hypoxia. Global sensitivity analysis and quasi-Monte Carlo simulation revealed that within a certain range (+/− 100%), model parameters affect (with varying significance) the minimum commitment time, but the existence of a range of optimal oxygen tension could be preserved with the hypothesized effects of Hif2α and reactive oxygen species (ROS). It appears that Hif2α counteracts Hif1α and ROS-mediated protein deactivation under intermediate hypoxia and normoxia (20%), respectively, to regulate the response of cell cycle commitment to oxygen tension. Conclusion Overall, this modelling study offered an integrative framework to capture several interacting mechanisms and allowed in silico analysis of their individual and collective roles in shaping the hypoxia-mediated commitment to cell cycle. The model offers a starting point to the establishment of a suitable mechanism that can satisfactorily explain the different existing experimental observations from different studies, and warrants future extension and dedicated experimental validation to eventually support bioreactor optimisation. Electronic supplementary material The online version of this article (10.1186/s12918-018-0560-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Engineering Science, University of Oxford, Oxford, UK.,Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK
| | - Hua Ye
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK
| | - Aidong Yang
- Department of Engineering Science, University of Oxford, Oxford, UK.
| |
Collapse
|
27
|
MGF E peptide pretreatment improves the proliferation and osteogenic differentiation of BMSCs via MEK-ERK1/2 and PI3K-Akt pathway under severe hypoxia. Life Sci 2017; 189:52-62. [DOI: 10.1016/j.lfs.2017.09.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 08/29/2017] [Accepted: 09/15/2017] [Indexed: 12/15/2022]
|
28
|
Zhang H, Li L, Li M, Huang X, Xie W, Xiang W, Yao P. Combination of betulinic acid and chidamide inhibits acute myeloid leukemia by suppression of the HIF1α pathway and generation of reactive oxygen species. Oncotarget 2017; 8:94743-94758. [PMID: 29212263 PMCID: PMC5706909 DOI: 10.18632/oncotarget.21889] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 09/24/2017] [Indexed: 12/04/2022] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disorder of the hematopoietic system with no common genetic “Achilles heel” that can be targeted. Most patients respond well to standard therapy, while a majority relapse, and development of an effective therapy for AML patients is still urgently needed. In this study, we demonstrated that betulinic acid (BA) significantly increased Aryl hydrocarbon receptor (AHR) expression through demethylation on the AHR promoter in AML cells, and the increased AHR expression interacts with and sequesters ARNT, subsequently suppressing hypoxia-inducible factor-1α (HIF1α) pathway. We also found that histone deacetylase inhibitor chidamide (CDM) treatment significantly increased p300 over-acetylation in AML cells with dissociation of p300 with HIF1α, and subsequently suppressed the HIF1α pathway. Further investigation showed that BA/CDM combination additively increased generation of reactive oxygen species (ROS) with DNA damage, apoptosis and mitochondrial dysfunction. Also, BA/CDM combination additively suppressed the HIF1α pathway with decreased VEGF expression. in vivo mice study showed that BA/CDM combination significantly suppressed AML tumor growth, and overexpression of SOD2 and a constitutive HIF1α (HIF1C) completely diminished this effect. We conclude that a BA/CDM combination inhibits AML tumors through ROS over-generation and HIF1α pathway suppression. This is the first time we have shown the potential effect and possible mechanism of BA and CDM on the inhibition of AML tumor growth.
Collapse
Affiliation(s)
- Hongyu Zhang
- Department of Hematology, Peking University Shenzhen Hospital, Shenzhen 518036, P.R. China
| | - Ling Li
- Department of Pediatrics, Maternal and Child Health Care Hospital of Hainan Province, Haikou 570206, P.R. China
| | - Min Li
- Institute of Burns, Tongren Hospital of Wuhan University, Wuhan 430060, P.R. China
| | - Xiaodong Huang
- Institute of Burns, Tongren Hospital of Wuhan University, Wuhan 430060, P.R. China
| | - Weiguo Xie
- Institute of Burns, Tongren Hospital of Wuhan University, Wuhan 430060, P.R. China
| | - Wei Xiang
- Department of Pediatrics, Maternal and Child Health Care Hospital of Hainan Province, Haikou 570206, P.R. China
| | - Paul Yao
- Department of Hematology, Peking University Shenzhen Hospital, Shenzhen 518036, P.R. China.,Department of Pediatrics, Maternal and Child Health Care Hospital of Hainan Province, Haikou 570206, P.R. China.,Institute of Burns, Tongren Hospital of Wuhan University, Wuhan 430060, P.R. China
| |
Collapse
|
29
|
Zhou Y, Tsai TL, Li WJ. Strategies to retain properties of bone marrow-derived mesenchymal stem cells ex vivo. Ann N Y Acad Sci 2017; 1409:3-17. [PMID: 28984359 DOI: 10.1111/nyas.13451] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 07/05/2017] [Accepted: 07/18/2017] [Indexed: 02/06/2023]
Abstract
Mesenchymal stem cells (MSCs) have been extensively used for cell therapies and tissue engineering. The current MSC strategy requires a large quantity of cells for such applications, which can be achieved through cell expansion in culture. In the body, stem cell fate is largely determined by their microenvironment, known as the niche. The complex and dynamic stem cell niche provides physical, mechanical, and chemical cues to collaboratively regulate cell activities. It remains a great challenge to maintain the properties of MSCs in culture. Constructing a microenvironment as an engineered stem cell niche in culture to maintain MSC phenotypes, properties, and functions is a viable strategy to address the issue. Here, we review the current understanding of MSC behavior in the bone marrow niche, describe different strategies to engineer an in vitro microenvironment for maintaining MSC properties and functions, and discuss previous findings on environmental factors critical to the modulation of MSC activities in engineered microenvironments.
Collapse
Affiliation(s)
- Yaxian Zhou
- Laboratory of Musculoskeletal Biology and Regenerative Medicine, Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, Wisconsin.,Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin
| | - Tsung-Lin Tsai
- Laboratory of Musculoskeletal Biology and Regenerative Medicine, Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, Wisconsin.,Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin
| | - Wan-Ju Li
- Laboratory of Musculoskeletal Biology and Regenerative Medicine, Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, Wisconsin.,Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
30
|
Han KH, Kim AK, Kim MH, Kim DH, Go HN, Kang D, Chang JW, Choi SW, Kang KS, Kim DI. Protein profiling and angiogenic effect of hypoxia-cultured human umbilical cord blood-derived mesenchymal stem cells in hindlimb ischemia. Tissue Cell 2017; 49:680-690. [PMID: 28958480 DOI: 10.1016/j.tice.2017.09.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 09/05/2017] [Accepted: 09/14/2017] [Indexed: 12/19/2022]
Abstract
The aim of the present study was to investigate protein profiles of human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) cultured in normoxic (21% O2) and hypoxic (1% O2) conditions, and evaluate oxygenation effects on angiogenesis in an ischemic hindlimb mouse model using a modified ischemic scoring system. Hypoxic conditions did not change the expression of phenotypic markers and increased adipogenesis and chondrogenesis. Epidermal growth factor (EGF), transforming growth factor alpha (TGF-α), TGF-β RII, and vascular endothelial growth factor (VEGF) were upregulated in the conditioned medium of hypoxic hUCB-MSCs, which are commonly related to angiogenesis and proliferation of biological processes by Gene Ontology. In the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, significant enrichment of the phosphorylation of abelson murine leukemia viral oncogene homolog 1 (ABL1) (Phospho-Tyr204) and B-cell lymphoma-extra large (BCL-XL) (Phospho-Thr47) as anti-apoptotic pathways was observed in hypoxic hUCB-MSCs. Furthermore, hypoxic conditions induced proliferation and migration, and reduced apoptosis of hUCB-MSCs in vitro. Based on the results of protein antibody array, we evaluated the angiogenic effects of injecting normoxic or hypoxic hUCB-MSCs (1×106) into the ischemic hindlimb muscles of mice. Ischemic scores and capillary generation were significantly greater in the hypoxic hUCB-MSC injection group than in the normoxic hUCB-MSC group. Our findings demonstrate that culturing hUCB-MSCs in hypoxic conditions not only significantly enriches phosphorylation in the anti-apoptosis pathway and enhances the secretion of several angiogenic proteins from cells, but also alleviates ischemic injury of hindlimb of mice.
Collapse
Affiliation(s)
- Kyu-Hyun Han
- Division of Vascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Ae-Kyeong Kim
- Division of Vascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Min-Hee Kim
- Division of Vascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Do-Hyung Kim
- Division of Vascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Ha-Nl Go
- Division of Vascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Donglim Kang
- Division of Vascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Jong Wook Chang
- Stem Cell & Regenerative Medicine Institute, Research Institute for Future Medicine, Samsung Medical Center, Seoul 06351, Republic of Korea
| | - Soon Won Choi
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 151-747, Republic of Korea
| | - Kyung-Sun Kang
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 151-747, Republic of Korea
| | - Dong-Ik Kim
- Division of Vascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea.
| |
Collapse
|
31
|
Zhuo Y, Wang L, Ge L, Li X, Duan D, Teng X, Jiang M, Liu K, Yuan T, Wu P, Wang H, Deng Y, Xie H, Chen P, Xia Y, Lu M. Hypoxic Culture Promotes Dopaminergic-Neuronal Differentiation of Nasal Olfactory Mucosa Mesenchymal Stem Cells via Upregulation of Hypoxia-Inducible Factor-1α. Cell Transplant 2017; 26:1452-1461. [PMID: 28901191 PMCID: PMC5680974 DOI: 10.1177/0963689717720291] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 02/14/2017] [Accepted: 02/24/2017] [Indexed: 01/09/2023] Open
Abstract
Olfactory mucosa mesenchymal stem cells (OM-MSCs) display significant clonogenic activity and may be easily propagated for Parkinson's disease therapies. Methods of inducing OM-MSCs to differentiate into dopaminergic (DAergic) neurons using olfactory ensheathing cells (OECs) are thus an attractive topic of research. We designed a hypoxic induction protocol to generate DAergic neurons from OM-MSCs using a physiological oxygen (O2) level of 3% and OEC-conditioned medium (OCM; HI group). The normal induction (NI) group was cultured in O2 at ambient air level (21%). The role of hypoxia-inducible factor-1α (HIF-1α) in the differentiation of OM-MSCs under hypoxia was investigated by treating cells with an HIF-1α inhibitor before induction (HIR group). The proportions of β-tubulin- and tyrosine hydroxylase (TH)-positive cells were significantly increased in the HI group compared with the NI and HIR groups, as shown by immunocytochemistry and Western blotting. Furthermore, the level of dopamine was significantly increased in the HI group. A slow outward potassium current was recorded in differentiated cells after 21 d of induction using whole-cell voltage-clamp tests. A hypoxic environment thus promotes OM-MSCs to differentiate into DAergic neurons by increasing the expression of HIF-1α and by activating downstream target gene TH. This study indicated that OCM under hypoxic conditions could significantly upregulate key transcriptional factors involved in the development of DAergic neurons from OM-MSCs, mediated by HIF-1α. Hypoxia promotes DAergic neuronal differentiation of OM-MSCs, and HIF-1α may play an important role in hypoxia-inducible pathways during DAergic lineage specification and differentiation in vitro.
Collapse
Affiliation(s)
- Yi Zhuo
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Lei Wang
- Department of Neurosurgery, Affiliated Haikou Hospital of Xiangya School of Central South University, Haikou, China
| | - Lite Ge
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Xuan Li
- Cardiopulmonary Function Test Center, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Da Duan
- Department of Neurosurgery, The Second Affiliated Hospital of Hunan Normal University (PLA 163 Hospital), Changsha, China
| | - Xiaohua Teng
- Department of Neurosurgery, The Second Affiliated Hospital of Hunan Normal University (PLA 163 Hospital), Changsha, China
| | - Miao Jiang
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Kai Liu
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Ting Yuan
- Department of Neurosurgery, The Second Affiliated Hospital of Hunan Normal University (PLA 163 Hospital), Changsha, China
| | - Pei Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Hunan Normal University (PLA 163 Hospital), Changsha, China
| | - Hao Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Hunan Normal University (PLA 163 Hospital), Changsha, China
| | - Yujia Deng
- Department of Neurosurgery, The Second Affiliated Hospital of Hunan Normal University (PLA 163 Hospital), Changsha, China
| | - Huali Xie
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Ping Chen
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Ying Xia
- Department of Neurosurgery, Affiliated Haikou Hospital of Xiangya School of Central South University, Haikou, China
| | - Ming Lu
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, China
| |
Collapse
|
32
|
|
33
|
Basudhar D, Somasundaram V, de Oliveira GA, Kesarwala A, Heinecke JL, Cheng RY, Glynn SA, Ambs S, Wink DA, Ridnour LA. Nitric Oxide Synthase-2-Derived Nitric Oxide Drives Multiple Pathways of Breast Cancer Progression. Antioxid Redox Signal 2017; 26:1044-1058. [PMID: 27464521 PMCID: PMC5488348 DOI: 10.1089/ars.2016.6813] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
SIGNIFICANCE Breast cancer is the second leading cause of cancer-related deaths among women in the United States. Development and progression of malignancy are associated with diverse cell signaling pathways that control cell proliferation, survival, motility, invasion, and metastasis. Recent Advances: An increasing number of clinical studies have implicated a strong relationship between elevated tumor nitric oxide synthase-2 (NOS2) expression and poor patient survival. CRITICAL ISSUES Herein, we review what we believe to be key mechanisms in the role(s) of NOS2-derived nitric oxide (NO) as a driver of breast cancer disease progression. High NO increases cyclooxygenase-2 activity, hypoxia inducible factor-1 alpha protein stabilization, and activation of important cell signaling pathways, including phosphoinositide 3-kinase/protein kinase B, mitogen-activated protein kinase, epidermal growth factor receptor, and Ras, through post-translational protein modifications. Moreover, dysregulated NO flux within the tumor microenvironment has other important roles, including the promotion of angiogenesis and modulation of matrix metalloproteinase/tissue inhibitor matrix metalloproteinase associated with tumor progression. FUTURE DIRECTIONS The elucidation of these and other NO-driven pathways implicates NOS2 as a key driver of breast cancer disease progression and provides a new perspective in the identification of novel targets that may be therapeutically beneficial in the treatment of estrogen receptor-negative disease. Antioxid. Redox Signal. 26, 1044-1058.
Collapse
Affiliation(s)
- Debashree Basudhar
- Cancer and Inflammation Program, National Cancer Institute-Frederick, Frederick, Maryland
| | - Veena Somasundaram
- Cancer and Inflammation Program, National Cancer Institute-Frederick, Frederick, Maryland
| | | | - Aparna Kesarwala
- Radiation Oncology Branch, National Cancer Institute, Bethesda, Maryland
| | - Julie L. Heinecke
- Cancer and Inflammation Program, National Cancer Institute-Frederick, Frederick, Maryland
| | - Robert Y. Cheng
- Cancer and Inflammation Program, National Cancer Institute-Frederick, Frederick, Maryland
| | - Sharon A. Glynn
- Pathology, Lambe Institute for Translational Research, School of Medicine, National University of Ireland, Galway, Ireland
| | - Stefan Ambs
- Laboratory of Human Carcinogenesis, National Cancer Institute, Bethesda, Maryland
| | - David A. Wink
- Cancer and Inflammation Program, National Cancer Institute-Frederick, Frederick, Maryland
| | - Lisa A. Ridnour
- Cancer and Inflammation Program, National Cancer Institute-Frederick, Frederick, Maryland
| |
Collapse
|
34
|
Lv B, Li F, Fang J, Xu L, Sun C, Han J, Hua T, Zhang Z, Feng Z, Jiang X. Hypoxia inducible factor 1α promotes survival of mesenchymal stem cells under hypoxia. Am J Transl Res 2017; 9:1521-1529. [PMID: 28386377 PMCID: PMC5376042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 11/18/2016] [Indexed: 06/07/2023]
Abstract
Mesenchymal stem cells (MSCs) are ideal materials for cell therapy. Research has indicated that hypoxia benefits MSC survival, but little is known about the underlying mechanism. This study aims to uncover potential mechanisms involving hypoxia inducible factor 1α (HIF1A) to explain the promoted MSC survival under hypoxia. MSCs were obtained from Sprague-Dawley rats and cultured under normoxia or hypoxia condition. The overexpression vector or small interfering RNA of Hif1a gene was transfected to MSCs, after which cell viability, apoptosis and expression of HIF1A were analyzed by MTT assay, flow cytometry, qRT-PCR and Western blot. Factors in p53 pathway were detected to reveal the related mechanisms. Results showed that hypoxia elevated MSCs viability and up-regulated HIF1A (P < 0.05) as previously reported. HIF1A overexpression promoted viability (P < 0.01) and suppressed apoptosis (P < 0.001) under normoxia. Correspondingly, HIF1A knockdown inhibited viability (P < 0.05) and promoted apoptosis (P < 0.01) of MSCs under hypoxia. Expression analysis suggested that p53, phosphate-p53 and p21 were repressed by HIF1A overexpression and promoted by HIF1A knockdown, and B-cell CLL/lymphoma 2 (BCL2) expression had the opposite pattern (P < 0.05). These results suggest that HIF1A may improve viability and suppress apoptosis of MSCs, implying the protective effect of HIF1A on MSC survival under hypoxia. The underlying mechanisms may involve the HIF1A-suppressed p53 pathway. This study helps to explain the mechanism of MSC survival under hypoxia, and facilitates the application of MSCs in cell therapy.
Collapse
Affiliation(s)
- Bingke Lv
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University; The National Key Clinical Specialty; The Engineering Technology Research Center of Education Ministry of China; Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration Guangzhou 510282, China
| | - Feng Li
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University; The National Key Clinical Specialty; The Engineering Technology Research Center of Education Ministry of China; Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration Guangzhou 510282, China
| | - Jie Fang
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University; The National Key Clinical Specialty; The Engineering Technology Research Center of Education Ministry of China; Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration Guangzhou 510282, China
| | - Limin Xu
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University; The National Key Clinical Specialty; The Engineering Technology Research Center of Education Ministry of China; Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration Guangzhou 510282, China
| | - Chengmei Sun
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University; The National Key Clinical Specialty; The Engineering Technology Research Center of Education Ministry of China; Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration Guangzhou 510282, China
| | - Jianbang Han
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University; The National Key Clinical Specialty; The Engineering Technology Research Center of Education Ministry of China; Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration Guangzhou 510282, China
| | - Tian Hua
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University; The National Key Clinical Specialty; The Engineering Technology Research Center of Education Ministry of China; Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration Guangzhou 510282, China
| | - Zhongfei Zhang
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University; The National Key Clinical Specialty; The Engineering Technology Research Center of Education Ministry of China; Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration Guangzhou 510282, China
| | - Zhiming Feng
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University; The National Key Clinical Specialty; The Engineering Technology Research Center of Education Ministry of China; Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration Guangzhou 510282, China
| | - Xiaodan Jiang
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University; The National Key Clinical Specialty; The Engineering Technology Research Center of Education Ministry of China; Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration Guangzhou 510282, China
| |
Collapse
|
35
|
Taguchi T, Cho JY, Hao J, Nout-Lomas YS, Kang KS, Griffon DJ. Influence of hypoxia on the stemness of umbilical cord matrix-derived mesenchymal stem cells cultured on chitosan films. J Biomed Mater Res B Appl Biomater 2017; 106:501-511. [PMID: 28188976 DOI: 10.1002/jbm.b.33864] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 11/20/2016] [Accepted: 01/26/2017] [Indexed: 12/13/2022]
Abstract
Chitosan is attractive as a substrate for stem cell expansion because it improves stemness through formation of spheroids. Hypoxia has also been proposed as a strategy to enhance stemness and survival of stem cells after in vivo implantation. This study was therefore designed to evaluate the influence of hypoxia on chitosan-induced behavior of stem cells. Umbilical cord matrix-derived stem cells were cultured on chitosan film or standard plate under normoxia and hypoxia, for 3 and 7 days. Based on immunophenotyping, chitosan strongly suppresses the expression of CD90 and CD105 cell surface markers, changes partially reversed by combined exposure to hypoxia. Hypoxia generally increased the volume and number of spheroids formed on chitosan, but the cellularity of cultures on chitosan films remained lower than that of standard plates. After 7 days of culture, the expression of stemness related genes (Oct4, Sox2, and Nanog) was best stimulated by combined exposure to chitosan and hypoxia. Based on our results, conditioning stem cells for 7 days on chitosan films under hypoxic conditions is recommended to enhance the stemness of stem cells, and minimize cell loss due to lack of attachment on chitosan. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 501-511, 2018.
Collapse
Affiliation(s)
- Takashi Taguchi
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, California
| | - Jane Y Cho
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, California
| | - Jijun Hao
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, California
| | - Yvette S Nout-Lomas
- College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Kyung-Sun Kang
- College of Veterinary Medicine, Korean Adult Stem Cell Research Center, Seoul National University, Seoul, Korea
| | - Dominique J Griffon
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, California
| |
Collapse
|
36
|
Chen CC, Hsia CW, Ho CW, Liang CM, Chen CM, Huang KL, Kang BH, Chen YH. Hypoxia and hyperoxia differentially control proliferation of rat neural crest stem cells via distinct regulatory pathways of the HIF1α-CXCR4 and TP53-TPM1 proteins. Dev Dyn 2017; 246:162-185. [PMID: 28002632 DOI: 10.1002/dvdy.24481] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 12/09/2016] [Accepted: 12/13/2016] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Neural crest stem cells (NCSCs) are a population of adult multipotent stem cells. We are interested in studying whether oxygen tensions affect the capability of NCSCs to self-renew and repair damaged tissues. NCSCs extracted from the hair follicle bulge region of the rat whisker pad were cultured in vitro under different oxygen tensions. RESULTS We found significantly increased and decreased rates of cell proliferation in rat NCSCs (rNCSCs) cultured, respectively, at 0.5% and 80% oxygen levels. At 0.5% oxygen, the expression of both hypoxia-inducible factor (HIF) 1α and CXCR4 was greatly enhanced in the rNCSC nuclei and was suppressed by incubation with the CXCR4-specific antagonist AMD3100. In addition, the rate of cell apoptosis in the rNCSCs cultured at 80% oxygen was dramatically increased, associated with increased nuclear expression of TP53, decreased cytoplasmic expression of TPM1 (tropomyosin-1), and increased nuclear-to-cytoplasmic translocation of S100A2. Incubation of rNCSCs with the antioxidant N-acetylcysteine (NAC) overcame the inhibitory effect of 80% oxygen on proliferation and survival of rNCSCs. CONCLUSIONS Our results show for the first time that extreme oxygen tensions directly control NCSC proliferation differentially via distinct regulatory pathways of proteins, with hypoxia via the HIF1α-CXCR4 pathway and hyperoxia via the TP53-TPM1 pathway. Developmental Dynamics 246:162-185, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Chien-Cheng Chen
- Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Neihu District, Taipei City, Taiwan
| | - Ching-Wu Hsia
- Department of Finance, School of Management, Shih Hsin University, Wenshan District, Taipei City, Taiwan
| | - Cheng-Wen Ho
- Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Neihu District, Taipei City, Taiwan
- Division of Rehabilitation Medicine, Taoyuan Armed Forces General Hospital, Longtan District, Taoyuan City, Taiwan
| | - Chang-Min Liang
- Department of Ophthalmology, Tri-Service General Hospital, Neihu District, Taipei City, Taiwan
| | - Chieh-Min Chen
- Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Neihu District, Taipei City, Taiwan
| | - Kun-Lun Huang
- Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Neihu District, Taipei City, Taiwan
- Department of Undersea and Hyperbaric Medicine, Tri-Service General Hospital, Neihu District, Taipei City, Taiwan
| | - Bor-Hwang Kang
- Division of Diving Medicine, Zuoying Branch of Kaohsiung Armed Forces General Hospital, Zuoying District, Kaohsiung City, Taiwan
- Department of Otorhinolaryngology - Head and Neck Surgery, Tri-Service General Hospital, Taipei City, Taiwan
| | - Yi-Hui Chen
- Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Neihu District, Taipei City, Taiwan
| |
Collapse
|
37
|
Kim DS, Lee MW, Ko YJ, Park HJ, Park YJ, Kim DI, Jung HL, Sung KW, Koo HH, Yoo KH. Application of human mesenchymal stem cells cultured in different oxygen concentrations for treatment of graft-versus-host disease in mice. Biomed Res 2017; 37:311-317. [PMID: 27784875 DOI: 10.2220/biomedres.37.311] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Human mesenchymal stem cell (MSC) heterogeneity and problems associated with the ex vivo expansion of MSC are linked with the failure of MSC clinical trials. In this study, we compared the effect of MSCs cultured in different oxygen concentrations on GVHD in mice to elucidate whether hypoxia improves the immunosuppressive capacity of MSCs. Hypoxia increased the proliferative activity and the expression of several stemness and chemokine genes, such as KLF4, OCT4, C-MYC, CCL2, and CXCL10. Mice that received MSCs cultured in normoxia or hypoxia showed alleviated symptoms of GVHD and increased survival times. However, there was no significant difference in survival rates between mice that received MSCs cultured in normoxia and hypoxia. These data suggest that hypoxic culture is a useful method for maintaining and obtaining MSCs used for cell therapy and that the therapeutic potential of MSCs cultured in hypoxia warrants further investigation.
Collapse
Affiliation(s)
- Dae Seong Kim
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Sandvig I, Gadjanski I, Vlaski-Lafarge M, Buzanska L, Loncaric D, Sarnowska A, Rodriguez L, Sandvig A, Ivanovic Z. Strategies to Enhance Implantation and Survival of Stem Cells After Their Injection in Ischemic Neural Tissue. Stem Cells Dev 2017; 26:554-565. [PMID: 28103744 DOI: 10.1089/scd.2016.0268] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
High post-transplantation cell mortality is the main limitation of various approaches that are aimed at improving regeneration of injured neural tissue by an injection of neural stem cells (NSCs) and mesenchymal stromal cells (MStroCs) in and/or around the lesion. Therefore, it is of paramount importance to identify efficient ways to increase cell transplant viability. We have previously proposed the "evolutionary stem cell paradigm," which explains the association between stem cell anaerobic/microaerophilic metabolic set-up and stem cell self-renewal and inhibition of differentiation. Applying these principles, we have identified the main critical point in the collection and preparation of these cells for experimental therapy: exposure of the cells to atmospheric O2, that is, to oxygen concentrations that are several times higher than the physiologically relevant ones. In this way, the primitive anaerobic cells become either inactivated or adapted, through commitment and differentiation, to highly aerobic conditions (20%-21% O2 in atmospheric air). This inadvertently compromises the cells' survival once they are transplanted into normal tissue, especially in the hypoxic/anoxic/ischemic environment, which is typical of central nervous system (CNS) lesions. In addition to the findings suggesting that stem cells can shift to glycolysis and can proliferate in anoxia, recent studies also propose that stem cells may be able to proliferate in completely anaerobic or ischemic conditions by relying on anaerobic mitochondrial respiration. In this systematic review, we propose strategies to enhance the survival of NSCs and MStroCs that are implanted in hypoxic/ischemic neural tissue by harnessing their anaerobic nature and maintaining as well as enhancing their anaerobic properties via appropriate ex vivo conditioning.
Collapse
Affiliation(s)
- Ioanna Sandvig
- 1 Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Ivana Gadjanski
- 2 Innovation Center, Faculty of Mechanical Engineering, University of Belgrade , Belgrade, Serbia .,3 Belgrade Metropolitan University , Belgrade, Serbia
| | - Marija Vlaski-Lafarge
- 4 French Blood Institute (EFS) , Aquitaine-Limousin Branch, Bordeaux, France .,5 U1035 INSERM/Bordeaux University , Bordeaux Cedex, France
| | - Leonora Buzanska
- 6 Stem Cell Bioengineering Unit, Mossakowski Medical Research Centre Polish Academy Sciences, Warsaw, Poland
| | - Darija Loncaric
- 4 French Blood Institute (EFS) , Aquitaine-Limousin Branch, Bordeaux, France .,5 U1035 INSERM/Bordeaux University , Bordeaux Cedex, France
| | - Ana Sarnowska
- 6 Stem Cell Bioengineering Unit, Mossakowski Medical Research Centre Polish Academy Sciences, Warsaw, Poland
| | - Laura Rodriguez
- 4 French Blood Institute (EFS) , Aquitaine-Limousin Branch, Bordeaux, France .,5 U1035 INSERM/Bordeaux University , Bordeaux Cedex, France
| | - Axel Sandvig
- 1 Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway .,7 Division of Pharmacology and Clinical Neurosciences, Department of Neurosurgery and Clinical Neurophysiology, Umeå University Hospital , Umeå, Sweden
| | - Zoran Ivanovic
- 4 French Blood Institute (EFS) , Aquitaine-Limousin Branch, Bordeaux, France .,5 U1035 INSERM/Bordeaux University , Bordeaux Cedex, France
| |
Collapse
|
39
|
Kim JH, Lee HS, Choi HK, Kim JA, Chu IS, Leem SH, Oh IH. Heterogeneous Niche Activity of Ex-Vivo Expanded MSCs as Factor for Variable Outcomes in Hematopoietic Recovery. PLoS One 2016; 11:e0168036. [PMID: 28030562 PMCID: PMC5193420 DOI: 10.1371/journal.pone.0168036] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 11/23/2016] [Indexed: 12/11/2022] Open
Abstract
Ex-vivo expanded mesenchymal stromal cells (MSCs) are increasingly used for paracrine support of hematopoietic stem cell (HSC) regeneration, but inconsistent outcomes have hindered ongoing clinical trials. Here, we show that significant heterogeneity in the niche activity of MSCs is created during their culture in various serum-supplemented media. The MSCs cultured under stimulatory or non-stimulatory culture conditions exhibited differences in colony forming unit-fibroblast contents, expression levels of cross-talk molecules (Jagged-1 and CXCL-12) and their support for HSC self-renewal. Accordingly, the enhancing effects of MSCs on hematopoietic engraftment were only visible when HSCs were co-transplanted with MSCs under stimulatory conditions. Of note, these differences in MSCs and their effects on HSCs were readily reversed by switching the cultures, indicating that the difference in niche activity can be caused by distinct functional state, rather than by clonal heterogeneity. Supporting the findings, transcriptomic analysis showed distinct upstream signaling pathways such as inhibition of P53 and activation of ER-stress response gene ATF4 for MSCs under stimulatory conditions. Taken together, our study shows that the niche activity of MSCs can vary rapidly by the extrinsic cues during culture causing variable outcomes in hematopoietic recoveries, and point to the possibility that MSCs can be pre-screened for more predictable efficacy in various cell therapy trials.
Collapse
Affiliation(s)
- Jung-Ho Kim
- Catholic High-Performance Cell Therapy Center & Department of Medical Life Science, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ho-Sun Lee
- Catholic High-Performance Cell Therapy Center & Department of Medical Life Science, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyun-Kyung Choi
- Catholic High-Performance Cell Therapy Center & Department of Medical Life Science, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jin-A Kim
- Catholic High-Performance Cell Therapy Center & Department of Medical Life Science, The Catholic University of Korea, Seoul, Republic of Korea
| | - In-Sun Chu
- Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Sun-Hee Leem
- Department of Biological Science, Dong-A university, Busan, Republic of Korea
| | - Il-Hoan Oh
- Catholic High-Performance Cell Therapy Center & Department of Medical Life Science, The Catholic University of Korea, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
40
|
Acute Hypoxic Stress Affects Migration Machinery of Tissue O 2-Adapted Adipose Stromal Cells. Stem Cells Int 2016; 2016:7260562. [PMID: 28115943 PMCID: PMC5225392 DOI: 10.1155/2016/7260562] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 11/01/2016] [Accepted: 11/16/2016] [Indexed: 12/17/2022] Open
Abstract
The ability of mesenchymal stromal (stem) cells (MSCs) to be mobilised from their local depot towards sites of injury and to participate in tissue repair makes these cells promising candidates for cell therapy. Physiological O2 tension in an MSC niche in vivo is about 4-7%. However, most in vitro studies of MSC functional activity are performed at 20% O2. Therefore, this study focused on the effects of short-term hypoxic stress (0.1% O2, 24 h) on adipose tissue-derived MSC motility at tissue-related O2 level. No significant changes in integrin expression were detected after short-term hypoxic stress. However, O2 deprivation provoked vimentin disassembly and actin polymerisation and increased cell stiffness. In addition, hypoxic stress induced the downregulation of ACTR3, DSTN, MACF1, MID1, MYPT1, NCK1, ROCK1, TIAM1, and WASF1 expression, the products of which are known to be involved in leading edge formation and cell translocation. These changes were accompanied by the attenuation of targeted and nontargeted migration of MSCs after short-term hypoxic exposure, as demonstrated in scratch and transwell migration assays. These results indicate that acute hypoxic stress can modulate MSC function in their native milieu, preventing their mobilisation from sites of injury.
Collapse
|
41
|
Stiers PJ, van Gastel N, Carmeliet G. Targeting the hypoxic response in bone tissue engineering: A balance between supply and consumption to improve bone regeneration. Mol Cell Endocrinol 2016; 432:96-105. [PMID: 26768117 DOI: 10.1016/j.mce.2015.12.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 12/22/2015] [Accepted: 12/31/2015] [Indexed: 12/19/2022]
Abstract
Bone tissue engineering is a promising therapeutic alternative for bone grafting of large skeletal defects. It generally comprises an ex vivo engineered combination of a carrier structure, stem/progenitor cells and growth factors. However, the success of these regenerative implants largely depends on how well implanted cells will adapt to the hostile and hypoxic host environment they encounter after implantation. In this review, we will discuss how hypoxia signalling may be used to improve bone regeneration in a tissue-engineered construct. First, hypoxia signalling induces angiogenesis which increases the survival of the implanted cells as well as stimulates bone formation. Second, hypoxia signalling has also angiogenesis-independent effects on mesenchymal cells in vitro, offering exciting new possibilities to improve tissue-engineered bone regeneration in vivo. In addition, studies in other fields have shown that benefits of modulating hypoxia signalling include enhanced cell survival, proliferation and differentiation, culminating in a more potent regenerative implant. Finally, the stimulation of endochondral bone formation as a physiological pathway to circumvent the harmful effects of hypoxia will be briefly touched upon. Thus, angiogenic dependent and independent processes may counteract the deleterious hypoxic effects and we will discuss several therapeutic strategies that may be combined to withstand the hypoxia upon implantation and improve bone regeneration.
Collapse
Affiliation(s)
- Pieter-Jan Stiers
- Laboratory of Clinical and Experimental Endocrinology, Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium; Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
| | - Nick van Gastel
- Laboratory of Clinical and Experimental Endocrinology, Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium; Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
| | - Geert Carmeliet
- Laboratory of Clinical and Experimental Endocrinology, Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium; Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium.
| |
Collapse
|
42
|
Liedtke S, Sacchetti B, Laitinen A, Donsante S, Klöckers R, Laitinen S, Riminucci M, Kogler G. Low oxygen tension reveals distinct HOX codes in human cord blood-derived stromal cells associated with specific endochondral ossification capacities in vitro and in vivo. J Tissue Eng Regen Med 2016; 11:2725-2736. [PMID: 27214005 DOI: 10.1002/term.2167] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 12/21/2015] [Accepted: 02/03/2016] [Indexed: 12/17/2022]
Abstract
Effects of oxygen tension on the generation, expansion, proliferation and differentiation of stromal cell types is widely described in the literature. However, data on the internal heterogeneity of applied cell populations at different O2 levels and possible impacts on differentiation potentials are controversial. Here, the expression of 39 human HOX genes was determined in neonatal cord blood stromal cells and linked to differentiation-associated signatures. In cord blood, unrestricted somatic stromal cells (USSCs), lacking HOX gene expression, and cord blood-derived multipotent stromal cells (CB-MSCs), expressing about 20 HOX genes, are distinguished by their specific HOX code. Interestingly, 74% of the clones generated at 21% O2 were HOX-negative USSCs, whereas 73% of upcoming clones at 3% O2 were HOX-positive CB-MSCs. In order to better categorize distinct cell lines generated at 3% O2 , the expression of all 39 HOX genes within HOX clusters A, B, C and D were tested and new subtypes defined: cells negative in all four HOX clusters (USSCs); cells positive in all four clusters (CB-MSCsABCD ); and subpopulations missing a single cluster (CB-MSCsACD and CB-MSCsBCD ). Comprehensive qPCR analyses of established chondro-osteomarkers revealed subtype-specific signatures verifiably associated with in vitro and in vivo differentiation capacity. The data presented here underline the necessity of better characterizing distinct cell populations at a clonal level, taking advantage of the inherent specific HOX code as a distinguishing feature between individual subtypes. Moreover, the correlation of subtype-specific molecular signatures with in vitro and in vivo bone formation is discussed. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Stefanie Liedtke
- Institute of Transplantation Diagnostics and Cell Therapeutics, Heinrich-Heine-University Medical Centre, Düsseldorf, Germany
| | - Benedetto Sacchetti
- Stem Cell Laboratory, Department of Molecular Medicine, Sapienza University, Rome, Italy
| | - Anita Laitinen
- Research and Development, Medical Services, Finnish Red Cross Blood Service, Helsinki, Finland
| | - Samantha Donsante
- Stem Cell Laboratory, Department of Molecular Medicine, Sapienza University, Rome, Italy
| | - Robert Klöckers
- Institute of Transplantation Diagnostics and Cell Therapeutics, Heinrich-Heine-University Medical Centre, Düsseldorf, Germany
| | - Saara Laitinen
- Research and Development, Medical Services, Finnish Red Cross Blood Service, Helsinki, Finland
| | - Mara Riminucci
- Stem Cell Laboratory, Department of Molecular Medicine, Sapienza University, Rome, Italy
| | - Gesine Kogler
- Institute of Transplantation Diagnostics and Cell Therapeutics, Heinrich-Heine-University Medical Centre, Düsseldorf, Germany
| |
Collapse
|
43
|
Takahashi N, Davy PMC, Gardner LH, Mathews J, Yamazaki Y, Allsopp RC. Hypoxia Inducible Factor 1 Alpha Is Expressed in Germ Cells throughout the Murine Life Cycle. PLoS One 2016; 11:e0154309. [PMID: 27148974 PMCID: PMC4858237 DOI: 10.1371/journal.pone.0154309] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 04/12/2016] [Indexed: 01/09/2023] Open
Abstract
Pluripotent stem cells of the early embryo, and germ line cells, are essential to ensure uncompromised development to adulthood as well as species propagation, respectively. Recently, the transcription factor hypoxia inducible factor 1 alpha (Hif1α) has been shown to have important roles in embryonic stem cells; in particular, regulation of conversion to glycolytic metabolism and, as we have shown, maintenance of functional levels of telomerase. In the present study, we sought to assess whether Hif1α was also expressed in the primitive cells of the murine embryo. We observed expression of Hif1α in pre-implantation embryos, specifically the 2-cell stage, morula, and blastocyst. Robust Hif1α expression was also observed in male and female primordial germ cells. We subsequently assessed whether Hif1α was expressed in adult male and female germ cells. In the testis, Hif1α was robustly expressed in spermatogonial cells, in both juvenile (6-week old) and adult (3-month old) males. In the ovaries, Hif1α was expressed in mature oocytes from adult females, as assessed both in situ and in individual oocytes flushed from super-ovulated females. Analysis of Hif1α transcript levels indicates a mechanism of regulation during early development that involves stockpiling of Hif1α protein in mature oocytes, presumably to provide protection from hypoxic stress until the gene is re-activated at the blastocyst stage. Together, these observations show that Hif1α is expressed throughout the life-cycle, including both the male and female germ line, and point to an important role for Hif1α in early progenitor cells.
Collapse
Affiliation(s)
- Natsumi Takahashi
- Institute for Biogenesis Research, John A Burns School of Medicine, Honolulu, Hawaii, United States of America
| | - Philip M. C. Davy
- Institute for Biogenesis Research, John A Burns School of Medicine, Honolulu, Hawaii, United States of America
| | - Lauren H. Gardner
- Institute for Biogenesis Research, John A Burns School of Medicine, Honolulu, Hawaii, United States of America
| | - Juanita Mathews
- Institute for Biogenesis Research, John A Burns School of Medicine, Honolulu, Hawaii, United States of America
| | - Yuki Yamazaki
- Institute for Biogenesis Research, John A Burns School of Medicine, Honolulu, Hawaii, United States of America
| | - Richard C. Allsopp
- Institute for Biogenesis Research, John A Burns School of Medicine, Honolulu, Hawaii, United States of America
- * E-mail:
| |
Collapse
|
44
|
Petrangeli E, Coroniti G, Brini AT, de Girolamo L, Stanco D, Niada S, Silecchia G, Morgante E, Lubrano C, Russo MA, Salvatori L. Hypoxia Promotes the Inflammatory Response and Stemness Features in Visceral Fat Stem Cells From Obese Subjects. J Cell Physiol 2016. [PMID: 26224080 DOI: 10.1002/jcp.25113] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Low-grade chronic inflammation is a salient feature of obesity and many associated disorders. This condition frequently occurs in central obesity and is connected to alterations of the visceral adipose tissue (AT) microenvironment. Understanding how obesity is related to inflammation may allow the development of therapeutics aimed at improving metabolic parameters in obese patients. To achieve this aim, we compared the features of two subpopulations of adipose-derived stem cells (ASC) isolated from both subcutaneous and visceral AT of obese patients with the features of two subpopulations of ASC from the same isolation sites of non-obese individuals. In particular, the behavior of ASC of obese versus non-obese subjects during hypoxia, which occurs in obese AT and is an inducer of the inflammatory response, was evaluated. Obesity deeply influenced ASC from visceral AT (obV-ASC); these cells appeared to exhibit clearly distinguishable morphology and ultrastructure as well as reduced proliferation, clonogenicity and expression of stemness, differentiation and inflammation-related genes. These cells also exhibited a deregulated response to hypoxia, which induced strong tissue-specific NF-kB activation and an NF-kB-mediated increase in inflammatory and fibrogenic responses. Moreover, obV-ASC, which showed a less stem-like phenotype, recovered stemness features after hypoxia. Our findings demonstrated the peculiar behavior of obV-ASC, their influence on the obese visceral AT microenvironment and the therapeutic potential of NF-kB inhibitors. These novel findings suggest that the deregulated hyper-responsiveness to hypoxic stimulus of ASC from visceral AT of obese subjects may contribute via paracrine mechanisms to low-grade chronic inflammation, which has been implicated in obesity-related morbidity.
Collapse
Affiliation(s)
- Elisa Petrangeli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy.,CNR, Institute of Molecular Biology and Pathology, Rome, Italy
| | - Giuseppe Coroniti
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Anna T Brini
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy.,IRCCS Galeazzi Orthopaedic Institute, Milan, Italy
| | | | | | - Stefania Niada
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Gianfranco Silecchia
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Emanuela Morgante
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Carla Lubrano
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Luisa Salvatori
- CNR, Institute of Molecular Biology and Pathology, Rome, Italy
| |
Collapse
|
45
|
Yoo HI, Moon YH, Kim MS. Effects of CoCl2 on multi-lineage differentiation of C3H/10T1/2 mesenchymal stem cells. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2015; 20:53-62. [PMID: 26807023 PMCID: PMC4722191 DOI: 10.4196/kjpp.2016.20.1.53] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 08/10/2015] [Accepted: 08/20/2015] [Indexed: 12/16/2022]
Abstract
Mesenchymal stem cells (MSCs) in the bone marrow and other somatic tissues reside in an environment with relative low oxygen tension. Cobalt chloride (CoCl2) can mimic hypoxic conditions through transcriptional changes of some genes including hypoxia-inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF). This study evaluated the potential role of CoCl2 preconditioning on multi-lineage differentiation of C3H/10T1/2, a murine MSC line to understand its possible molecular mechanisms in vitro. CoCl2 treatment of MSCs markedly increased HIF-1α and VEGF mRNA, and protein expression of HIF-1α. Temporary preconditioning of MSCs with CoCl2 induced up-regulation of osteogenic markers including alkaline phosphatase, osteocalcin, and type I collagen during osteogenic differentiation, followed by enhanced mineralization. CoCl2 also increased chondrogenic markers including aggrecan, sox9, and type II collagen, and promoted chondrocyte differentiation. CoCl2 suppressed the expression of adipogenic markers including PPARγ, aP2, and C/EBPα, and inhibited adipogenesis. Temporary preconditioning with CoCl2 could affect the multi-lineage differentiation of MSCs.
Collapse
Affiliation(s)
- Hong Il Yoo
- Department of Oral Anatomy, School of Dentistry, Chonnam National University, Gwangju 61186, Korea
| | - Yeon Hee Moon
- Department of Dental Hygiene, Chodang University, Muan 58530, Korea
| | - Min Seok Kim
- Department of Oral Anatomy, School of Dentistry, Chonnam National University, Gwangju 61186, Korea
| |
Collapse
|
46
|
Rodrigues M, Wong VW, Rennert RC, Davis CR, Longaker MT, Gurtner GC. Progenitor cell dysfunctions underlie some diabetic complications. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:2607-18. [PMID: 26079815 DOI: 10.1016/j.ajpath.2015.05.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 04/01/2015] [Accepted: 05/04/2015] [Indexed: 02/08/2023]
Abstract
Stem cells and progenitor cells are integral to tissue homeostasis and repair. They contribute to health through their ability to self-renew and commit to specialized effector cells. Recently, defects in a variety of progenitor cell populations have been described in both preclinical and human diabetes. These deficits affect multiple aspects of stem cell biology, including quiescence, renewal, and differentiation, as well as homing, cytokine production, and neovascularization, through mechanisms that are still unclear. More important, stem cell aberrations resulting from diabetes have direct implications on tissue function and seem to persist even after return to normoglycemia. Understanding how diabetes alters stem cell signaling and homeostasis is critical for understanding the complex pathophysiology of many diabetic complications. Moreover, the success of cell-based therapies will depend on a more comprehensive understanding of these deficiencies. This review has three goals: to analyze stem cell pathways dysregulated during diabetes, to highlight the effects of hyperglycemic memory on stem cells, and to define ways of using stem cell therapy to overcome diabetic complications.
Collapse
Affiliation(s)
- Melanie Rodrigues
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University, Stanford, California
| | - Victor W Wong
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University, Stanford, California
| | - Robert C Rennert
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University, Stanford, California
| | - Christopher R Davis
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University, Stanford, California
| | - Michael T Longaker
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University, Stanford, California
| | - Geoffrey C Gurtner
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University, Stanford, California.
| |
Collapse
|
47
|
Beegle J, Lakatos K, Kalomoiris S, Stewart H, Isseroff RR, Nolta JA, Fierro FA. Hypoxic preconditioning of mesenchymal stromal cells induces metabolic changes, enhances survival, and promotes cell retention in vivo. Stem Cells 2015; 33:1818-28. [PMID: 25702874 PMCID: PMC10757456 DOI: 10.1002/stem.1976] [Citation(s) in RCA: 162] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 01/23/2015] [Indexed: 12/20/2022]
Abstract
Mesenchymal stem cells/multipotent stromal cells (MSCs) are promising therapeutics for a variety of conditions. However, after transplantation, cell retention remains extremely challenging. Given that many hypoxic signals are transitory and that the therapeutic administration of MSCs is typically into tissues that are normally hypoxic, we studied the effect of hypoxic preconditioning (HP) prior to new exposure to hypoxia. We show that preincubation for 2 days or more in 1% oxygen reduces serum deprivation-mediated cell death, as observed by higher cell numbers and lower incorporation of EthD-III and Annexin V. Consistently, HP-MSCs expressed significantly lower levels of cytochrome c and heme oxygenase 1 as compared to controls. Most importantly, HP-MSCs showed enhanced survival in vivo after intramuscular injection into immune deficient NOD/SCID-IL2Rgamma(-/-) mice. Interestingly, HP-MSCs consume glucose and secrete lactate at a slower rate than controls, possibly promoting cell survival, as glucose remains available to the cells for longer periods of time. In addition, we compared the metabolome of HP-MSCs to controls, before and after hypoxia and serum deprivation, and identified several possible mediators for HP-mediated cell survival. Overall, our findings suggest that preincubation of MSCs for 2 days or more in hypoxia induces metabolic changes that yield higher retention after transplantation.
Collapse
Affiliation(s)
- Julie Beegle
- Institute for Regenerative Cures, University of California, Davis, California, USA
| | - Kinga Lakatos
- Institute for Regenerative Cures, University of California, Davis, California, USA
| | - Stefanos Kalomoiris
- Institute for Regenerative Cures, University of California, Davis, California, USA
| | - Heather Stewart
- Institute for Regenerative Cures, University of California, Davis, California, USA
| | - R Rivkah Isseroff
- Institute for Regenerative Cures, University of California, Davis, California, USA
| | - Jan A Nolta
- Institute for Regenerative Cures, University of California, Davis, California, USA
| | - Fernando A Fierro
- Institute for Regenerative Cures, University of California, Davis, California, USA
| |
Collapse
|
48
|
Zhang Y, Lv J, Guo H, Wei X, Li W, Xu Z. Hypoxia-induced proliferation in mesenchymal stem cells and angiotensin II-mediated PI3K/AKT pathway. Cell Biochem Funct 2015; 33:51-8. [PMID: 25703688 DOI: 10.1002/cbf.3080] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 10/06/2014] [Accepted: 11/04/2014] [Indexed: 11/09/2022]
Affiliation(s)
- Yujuan Zhang
- Institute for Fetology; First Hospital of Soochow University; Suzhou China
| | - Juanxiu Lv
- Institute for Fetology; First Hospital of Soochow University; Suzhou China
| | - Hui Guo
- Institute for Fetology; First Hospital of Soochow University; Suzhou China
| | - Xiaoguang Wei
- Institute for Fetology; First Hospital of Soochow University; Suzhou China
| | - Weisheng Li
- Institute for Fetology; First Hospital of Soochow University; Suzhou China
| | - Zhice Xu
- Institute for Fetology; First Hospital of Soochow University; Suzhou China
- Center for Perinatal Biology; Loma Linda University; California USA
| |
Collapse
|
49
|
Farrell MJ, Shin JI, Smith LJ, Mauck RL. Functional consequences of glucose and oxygen deprivation on engineered mesenchymal stem cell-based cartilage constructs. Osteoarthritis Cartilage 2015; 23:134-42. [PMID: 25241241 PMCID: PMC4275365 DOI: 10.1016/j.joca.2014.09.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 09/03/2014] [Accepted: 09/05/2014] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Tissue engineering approaches for cartilage repair have focused on the use of mesenchymal stem cells (MSCs). For clinical success, MSCs must survive and produce extracellular matrix in the physiological context of the synovial joint, where low nutrient conditions engendered by avascularity, nutrient utilization, and waste production prevail. This study sought to delineate the role of microenvironmental stressors on MSC viability and functional capacity in three dimensional (3D) culture. DESIGN We evaluated the impact of glucose and oxygen deprivation on the functional maturation of 3D MSC-laden agarose constructs. Since MSC isolation procedures result in a heterogeneous cell population, we also utilized micro-pellet culture to investigate whether clonal subpopulations respond to these microenvironmental stressors in a distinct fashion. RESULTS MSC health and the functional maturation of 3D constructs were compromised by both glucose and oxygen deprivation. Importantly, glucose deprivation severely limited viability, and so compromised the functional maturation of 3D constructs to the greatest extent. The observation that not all cells died suggested there exists heterogeneity in the response of MSC populations to metabolic stressors. Population heterogeneity was confirmed through a series of studies utilizing clonally derived subpopulations, with a spectrum of matrix production and cell survival observed under conditions of metabolic stress. CONCLUSIONS Our findings show that glucose deprivation has a significant impact on functional maturation, and that some MSC subpopulations are more resilient to metabolic challenge than others. These findings suggest that pre-selection of subpopulations that are resilient to metabolic challenge may improve in vivo outcomes.
Collapse
Affiliation(s)
- M J Farrell
- Department of Orthopaedic Surgery, McKay Orthopaedic Research Laboratory, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA; Translational Musculoskeletal Research Center, Philadelphia VA Medical Center, Department of Veterans Affairs, Philadelphia, PA 19104, USA
| | - J I Shin
- Department of Orthopaedic Surgery, McKay Orthopaedic Research Laboratory, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - L J Smith
- Department of Orthopaedic Surgery, McKay Orthopaedic Research Laboratory, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Translational Musculoskeletal Research Center, Philadelphia VA Medical Center, Department of Veterans Affairs, Philadelphia, PA 19104, USA; Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - R L Mauck
- Department of Orthopaedic Surgery, McKay Orthopaedic Research Laboratory, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA; Translational Musculoskeletal Research Center, Philadelphia VA Medical Center, Department of Veterans Affairs, Philadelphia, PA 19104, USA.
| |
Collapse
|
50
|
Abstract
Eph receptor tyrosine kinases control cell-cell interactions during normal and oncogenic development, and are implicated in a range of processes including angiogenesis, stem cell maintenance and metastasis. They are thus of great interest as targets for cancer therapy. EphA3, originally isolated from leukemic and melanoma cells, is presently one of the most promising therapeutic targets, with multiple tumor-promoting roles in a variety of cancer types. This review focuses on EphA3, its functions in controlling cellular behavior, both in normal and pathological development, and most particularly in cancer.
Collapse
Affiliation(s)
- Peter W Janes
- Department of Biochemistry and Molecular Biology, Monash University , Victoria , Australia and
| | | | | | | | | | | |
Collapse
|