1
|
Jin J, Chen H, Wang H, Gu Y, Yang L. Therapeutic mechanism and key active ingredients of Yinxing Mihuan Oral Solution in coronary heart disease comorbidity with anxiety: A network pharmacology and molecular docking approach. Medicine (Baltimore) 2024; 103:e40183. [PMID: 39470548 PMCID: PMC11521018 DOI: 10.1097/md.0000000000040183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/13/2024] [Accepted: 10/03/2024] [Indexed: 10/30/2024] Open
Abstract
Yinxing Mihuan Oral Solution (YMOS) is a Chinese patent medicine for treating coronary heart disease combined anxiety (CHDCA), but the molecular mechanism of its treatment is still unclear. This article aims to understand the molecular mechanism, optimize clinical drug use, and guide new drug development. Using the Swiss Target Prediction database, we obtained the main chemical composition of YMOS. Then we used network pharmacology to identify their potential targets. Network construction, coupled with protein-protein interaction and enrichment analysis was used to identify representative components and core targets. Finally, molecular docking simulation was conducted to further refine the drug-target interaction. Forty-two active chemicals were found in YMOS and 91 target genes related to CHDCA. The treatment effect was found to be associated with 1908 biological processes and 160 pathways, as revealed by the outcomes of the enrichment analysis. The potential therapeutic mechanisms of the drug are closely related to its antioxidant, anti-inflammatory, and vascular function regulation pathways, and the main core targets include albumin, tumor necrosis factor, TP53, AKT serine/threonine kinase 1, interleukin 1 beta, and vascular endothelial growth factor A. The potential molecular mechanisms of YMOS in CHDCA treatment were identified using network pharmacology and molecular docking approaches. The results reveal the systemic biological implications of YMOS. This study has systematically uncovered the molecular mechanism of YMOS for the first time, offering fresh insights for evidence-based clinical applications.
Collapse
Affiliation(s)
- Jiajun Jin
- Department of Cardiology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi Province, China
| | - Huaigang Chen
- Department of Cardiology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi Province, China
- Medical College of Nanchang University, Nanchang, Jiangxi Province, China
| | - Hong Wang
- Department of Cardiology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi Province, China
| | - Yuncheng Gu
- Department of Science and Education, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi Province, China
| | - Liu Yang
- Department of Cardiology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi Province, China
| |
Collapse
|
2
|
Mirgaux M, Leherte L, Wouters J. Human indoleamine-2,3-dioxygenase 2 cofactor lability and low substrate affinity explained by homology modeling, molecular dynamics and molecular docking. J Biomol Struct Dyn 2024; 42:4475-4488. [PMID: 37301605 DOI: 10.1080/07391102.2023.2220830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/28/2023] [Indexed: 06/12/2023]
Abstract
The human indoleamine-2,3-dioxygenase 2 (hIDO2) protein is growing of interest as it is increasingly implicated in multiple diseases (cancer, autoimmune diseases, COVID-19). However, it is only poorly reported in the literature. Its mode of action remains unknown because it does not seem to catalyze the reaction for which it is attributed: the degradation of the L-Tryptophan into N-formyl-kynurenine. This contrasts with its paralog, the human indoleamine-2,3-dioxygenase 1 (hIDO1), which has been extensively studied in the literature and for which several inhibitors are already in clinical trials. Yet, the recent failure of one of the most advanced hIDO1 inhibitors, the Epacadostat, could be caused by a still unknown interaction between hIDO1 and hIDO2. In order to better understand the mechanism of hIDO2, and in the absence of experimental structural data, a computational study mixing homology modeling, Molecular Dynamics, and molecular docking was conducted. The present article highlights an exacerbated lability of the cofactor as well as an inadequate positioning of the substrate in the active site of hIDO2, which might bring part of an answer to its lack of activity.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Manon Mirgaux
- Department of Chemistry, Laboratoire de Chimie Biologique Structurale (CBS), Namur Institute of Structured Matter (NISM), Namur Research Institute for Life Science (NARILIS), University of Namur (UNamur), Namur, Belgium
| | - Laurence Leherte
- Department of Chemistry, Laboratoire de Chimie Biologique Structurale (CBS), Namur Institute of Structured Matter (NISM), Namur Research Institute for Life Science (NARILIS), University of Namur (UNamur), Namur, Belgium
| | - Johan Wouters
- Department of Chemistry, Laboratoire de Chimie Biologique Structurale (CBS), Namur Institute of Structured Matter (NISM), Namur Research Institute for Life Science (NARILIS), University of Namur (UNamur), Namur, Belgium
| |
Collapse
|
3
|
Ballesteros J, Rivas D, Duque G. The Role of the Kynurenine Pathway in the Pathophysiology of Frailty, Sarcopenia, and Osteoporosis. Nutrients 2023; 15:3132. [PMID: 37513550 PMCID: PMC10383689 DOI: 10.3390/nu15143132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/30/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Tryptophan is an essential nutrient required to generate vitamin B3 (niacin), which is mainly involved in energy metabolism and DNA production. Alterations in tryptophan metabolism could have significant effects on aging and musculoskeletal health. The kynurenine pathway, essential in tryptophan catabolism, is modulated by inflammatory factors that are increased in older persons, a process known as inflammaging. Osteoporosis, sarcopenia, osteosarcopenia, and frailty have also been linked with chronically increased levels of inflammatory factors. Due to the disruption of the kynurenine pathway by chronic inflammation and/or changes in the gut microbiota, serum levels of toxic metabolites are increased and are associated with the pathophysiology of those conditions. In contrast, anabolic products of this pathway, such as picolinic acid, have demonstrated a positive effect on skeletal muscle and bone. In addition, physical activity can modulate this pathway by promoting the secretion of anabolic kynurenines. According to the evidence collected, kynurenines could have a promising role as biomarkers for osteoporosis sarcopenia, osteosarcopenia, and frailty in older persons. In addition, some of these metabolites could become important targets for developing new pharmacological treatments for these conditions.
Collapse
Affiliation(s)
- Juan Ballesteros
- Servicio de Geriatría, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain
- Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Daniel Rivas
- Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Gustavo Duque
- Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
- Dr. Joseph Kaufmann Chair in Geriatric Medicine, Faculty of Medicine, McGill University, Montreal, QC H4A 3J1, Canada
| |
Collapse
|
4
|
Davies C, Dötsch L, Ciulla MG, Hennes E, Yoshida K, Gasper R, Scheel R, Sievers S, Strohmann C, Kumar K, Ziegler S, Waldmann H. Identification of a Novel Pseudo-Natural Product Type IV IDO1 Inhibitor Chemotype. Angew Chem Int Ed Engl 2022; 61:e202209374. [PMID: 35959923 DOI: 10.1002/anie.202209374] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Indexed: 01/07/2023]
Abstract
Natural product (NP)-inspired design principles provide invaluable guidance for bioactive compound discovery. Pseudo-natural products (PNPs) are de novo combinations of NP fragments to target biologically relevant chemical space not covered by NPs. We describe the design and synthesis of apoxidoles, a novel pseudo-NP class, whereby indole- and tetrahydropyridine fragments are linked in monopodal connectivity not found in nature. Apoxidoles are efficiently accessible by an enantioselective [4+2] annulation reaction. Biological evaluation revealed that apoxidoles define a new potent type IV inhibitor chemotype of indoleamine 2,3-dioxygenase 1 (IDO1), a heme-containing enzyme considered a target for the treatment of neurodegeneration, autoimmunity and cancer. Apoxidoles target apo-IDO1, prevent heme binding and induce unique amino acid positioning as revealed by crystal structure analysis. Novel type IV apo-IDO1 inhibitors are in high demand, and apoxidoles may provide new opportunities for chemical biology and medicinal chemistry research.
Collapse
Affiliation(s)
- Caitlin Davies
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany
- Technical University of Dortmund, Department of Chemical Biology, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| | - Lara Dötsch
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany
- Technical University of Dortmund, Department of Chemical Biology, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| | - Maria Gessica Ciulla
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany
- Current address: Institute for Stem-Cell Biology, Regenerative Medicine and Innovative Therapies, IRCCS Casa Sollievo della Sofferenza, 71013, San Giovanni Rotondo, Italy
- Center for Nanomedicine and Tissue Engineering (CNTE), ASST Grande Ospedale Metropolitano Niguarda, 20162, Milan, Italy
| | - Elisabeth Hennes
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany
- Technical University of Dortmund, Department of Chemical Biology, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| | - Kei Yoshida
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany
| | - Raphael Gasper
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany
| | - Rebecca Scheel
- Technical University of Dortmund, Department of Inorganic Chemistry, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| | - Sonja Sievers
- Compound Management and Screening Center (COMAS), Otto-Hahn-Strasse 11, 44227, Dortmund, Germany
| | - Carsten Strohmann
- Technical University of Dortmund, Department of Inorganic Chemistry, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| | - Kamal Kumar
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany
- Current address: AiCuris Anti-infective Cures AG, Friedrich-Ebert-Str. 475, 42117, Wuppertal, Germany
| | - Slava Ziegler
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany
| | - Herbert Waldmann
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany
- Technical University of Dortmund, Department of Chemical Biology, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| |
Collapse
|
5
|
Davidson M, Rashidi N, Nurgali K, Apostolopoulos V. The Role of Tryptophan Metabolites in Neuropsychiatric Disorders. Int J Mol Sci 2022; 23:ijms23179968. [PMID: 36077360 PMCID: PMC9456464 DOI: 10.3390/ijms23179968] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/27/2022] [Accepted: 08/31/2022] [Indexed: 12/20/2022] Open
Abstract
In recent decades, neuropsychiatric disorders such as major depressive disorder, schizophrenia, bipolar, etc., have become a global health concern, causing various detrimental influences on patients. Tryptophan is an important amino acid that plays an indisputable role in several physiological processes, including neuronal function and immunity. Tryptophan’s metabolism process in the human body occurs using different pathways, including the kynurenine and serotonin pathways. Furthermore, other biologically active components, such as serotonin, melatonin, and niacin, are by-products of Tryptophan pathways. Current evidence suggests that a functional imbalance in the synthesis of Tryptophan metabolites causes the appearance of pathophysiologic mechanisms that leads to various neuropsychiatric diseases. This review summarizes the pharmacological influences of tryptophan and its metabolites on the development of neuropsychiatric disorders. In addition, tryptophan and its metabolites quantification following the neurotransmitters precursor are highlighted. Eventually, the efficiency of various biomarkers such as inflammatory, protein, electrophysiological, genetic, and proteomic biomarkers in the diagnosis/treatment of neuropsychiatric disorders was discussed to understand the biomarker application in the detection/treatment of various diseases.
Collapse
Affiliation(s)
- Majid Davidson
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3011, Australia
- Regenerative Medicine and Stem Cells Program, Australian Institute of Musculoskeletal Science (AIMSS), Melbourne, VIC 3021, Australia
| | - Niloufar Rashidi
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3011, Australia
- Regenerative Medicine and Stem Cells Program, Australian Institute of Musculoskeletal Science (AIMSS), Melbourne, VIC 3021, Australia
| | - Kulmira Nurgali
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3011, Australia
- Regenerative Medicine and Stem Cells Program, Australian Institute of Musculoskeletal Science (AIMSS), Melbourne, VIC 3021, Australia
- Department of Medicine Western Health, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3011, Australia
- Immunology Program, Australian Institute of Musculoskeletal Science (AIMSS), Melbourne, VIC 3021, Australia
- Correspondence:
| |
Collapse
|
6
|
Davies C, Dötsch L, Ciulla MG, Hennes E, Yoshida K, Gasper R, Scheel R, Sievers S, Strohmann C, Kumar K, Ziegler S, Waldmann H. Identification of a Novel Pseudo‐Natural Product Type IV IDO1 Inhibitor Chemotype. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Caitlin Davies
- Max-Planck-Institut für molekulare Physiologie: Max-Planck-Institut fur molekulare Physiologie Chemical Biology GERMANY
| | - Lara Dötsch
- Max-Planck-Institut für molekulare Physiologie: Max-Planck-Institut fur molekulare Physiologie Chemical Biology GERMANY
| | - Maria Gessica Ciulla
- Max-Planck-Institut für molekulare Physiologie: Max-Planck-Institut fur molekulare Physiologie Chemical Biology GERMANY
| | - Elisabeth Hennes
- Max-Planck-Institut für molekulare Physiologie: Max-Planck-Institut fur molekulare Physiologie Chemical Biology GERMANY
| | - Kei Yoshida
- Max-Planck-Institut für molekulare Physiologie: Max-Planck-Institut fur molekulare Physiologie Chemical Biology GERMANY
| | - Raphael Gasper
- Max-Planck-Institut für molekulare Physiologie: Max-Planck-Institut fur molekulare Physiologie Crystallography and Biophysics Facility GERMANY
| | - Rebecca Scheel
- Technische Universität Dortmund: Technische Universitat Dortmund Inorganic Chemistry GERMANY
| | - Sonja Sievers
- Max-Planck-Institut für molekulare Physiologie: Max-Planck-Institut fur molekulare Physiologie Compound Management and Screening Center GERMANY
| | - Carsten Strohmann
- Technische Universität Dortmund: Technische Universitat Dortmund Inorganic Chemistry GERMANY
| | - Kamal Kumar
- Max-Planck-Institut für molekulare Physiologie: Max-Planck-Institut fur molekulare Physiologie Chemical Biology GERMANY
| | - Slava Ziegler
- Max-Planck-Institut für molekulare Physiologie: Max-Planck-Institut fur molekulare Physiologie Chemical Biology GERMANY
| | - Herbert Waldmann
- Max-Planck-Institute of Molecular Physiology: Max-Planck-Institut fur molekulare Physiologie Chemical Biology Otto-Hahn-Str. 11 44227 Dortmund GERMANY
| |
Collapse
|
7
|
Dual-target inhibitors of indoleamine 2, 3 dioxygenase 1 (Ido1): A promising direction in cancer immunotherapy. Eur J Med Chem 2022; 238:114524. [PMID: 35696861 DOI: 10.1016/j.ejmech.2022.114524] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 02/08/2023]
Abstract
Indoleamine 2, 3-dioxygenase 1 (IDO1) is a rate-limiting enzyme that catalyzes the kynurenine (Kyn) pathway of tryptophan metabolism in the first step, and the kynurenine pathway plays a fundamental role in immunosuppression in the tumor microenvironment. Therefore, researchers are vigorously developing IDO1 inhibitors, hoping to apply them to cancer immunotherapy. Nowadays, there have been 11 kinds of IDO1 inhibitors entering clinical trials, among which many inhibitors have shown good tumor inhibitory effect in phase I/II clinical trials. But the phase III study of the most promising IDO1 inhibitor compound 29 (Epacadostat) failed in 2018, which may be caused by the compensation effect offered by tryptophan 2,3-dioxygenase (TDO), the mismatched drug combination strategies, or other reasons. Luckily, dual-target inhibitors show great potential and advantages in solving these problems. In recent years, many studies have linked IDO1 to popular targets and selected many IDO1 dual-target inhibitors through pharmacophore fusion strategy and library construction, which enhance the tumor inhibitory effect and reduce side effects. Currently, three kinds of IDO1/TDO dual-target inhibitors have entered clinical trials, and extensive studies have been developing on IDO1 dual-target inhibitors. In this review, we summarize the IDO1 dual-target inhibitors developed in recent years and focus on the structure optimization process, structure-activity relationship, and the efficacy of in vitro and in vivo experiments, shedding a light on the pivotal significance of IDO1 dual-target inhibitors in the treatment of cancer, providing inspiration for the development of new IDO1 dual-target inhibitors.
Collapse
|
8
|
Salminen A. Role of indoleamine 2,3-dioxygenase 1 (IDO1) and kynurenine pathway in the regulation of the aging process. Ageing Res Rev 2022; 75:101573. [PMID: 35085834 DOI: 10.1016/j.arr.2022.101573] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/12/2022] [Accepted: 01/21/2022] [Indexed: 02/07/2023]
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO1) is activated in chronic inflammatory states, e.g., in the aging process and age-related diseases. IDO1 enzyme catabolizes L-tryptophan (L-Trp) into kynurenine (KYN) thus stimulating the KYN pathway. The depletion of L-Trp inhibits the proliferation of immune cells in inflamed tissues and it also reduces serotonin synthesis predisposing to psychiatric disorders. Interestingly, IDO1 protein contains two immunoreceptor tyrosine-based inhibitory motifs (ITIM) which trigger suppressive signaling through the binding of PI3K p110 and SHP-1 proteins. This immunosuppressive activity is not dependent on the catalytic activity of IDO1. KYN and its metabolite, kynurenic acid (KYNA), are potent activators of the aryl hydrocarbon receptor (AhR) which can enhance immunosuppression. IDO1-KYN-AhR signaling counteracts excessive pro-inflammatory responses in acute inflammation but in chronic inflammatory states it has many harmful effects. A chronic low-grade inflammation is associated with the aging process, a state called inflammaging. There is substantial evidence that the activation of the IDO1-KYN-AhR pathway robustly increases with the aging process. The activation of IDO1-KYN-AhR signaling does not only suppress the functions of effector immune cells, probably promoting immunosenescence, but it also impairs autophagy, induces cellular senescence, and remodels the extracellular matrix as well as enhancing the development of osteoporosis and vascular diseases. I will review the function of IDO1-KYN-AhR signaling and discuss its activation with aging as an enhancer of the aging process.
Collapse
|
9
|
Cao T, Dai G, Chu H, Kong C, Duan H, Tian N, Sun Z. Single-nucleotide polymorphisms and activities of indoleamine 2,3-dioxygenase isoforms, IDO1 and IDO2, in tuberculosis patients. Hereditas 2022; 159:5. [PMID: 35045867 PMCID: PMC8767668 DOI: 10.1186/s41065-022-00219-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/29/2021] [Indexed: 11/21/2022] Open
Abstract
Purpose To explore the role and effects of the single-nucleotide polymorphisms (SNPs) of the two functionally related indoleamine 2,3-dioxygenase (IDO) isoforms on IDO activity in the Chinese Han ethnic population. Methods A total of 151 consecutive patients of Chinese Han ethnicity (99 men and 52 women; average age 51.92 ± 18.26 years) with pulmonary TB admitted to Beijing Chest Hospital between July 2016 and February 2017 were enrolled in the study. The serum levels of tryptophan (Trp) and its metabolites, IDO1 and IDO2 mRNA levels, and the relationship of IDO1 and IDO2 SNPs with the serum Kyn/Trp ratio in TB patients and healthy controls were examined by LC/ESI–MS/MS analysis. Genomic DNA was isolated from whole blood, and the PCR products were sequenced and analyzed. Results In Chinese Han participants, only IDO2 had SNPs R248W and Y359X that affected IDO activity, as determined by the serum Kyn/Trp ratio. IDO1 and IDO2 mRNA levels were inversely related in TB patients and healthy controls. Conclusions IDO2 SNPs and the opposite expression pattern of IDO1 and IDO2 affected IDO activity in Chinese Han TB patients.
Collapse
|
10
|
He X, He G, Chu Z, Wu H, Wang J, Ge Y, Shen H, Zhang S, Shan J, Peng K, Wei Z, Zou Y, Xu Y, Zhu Q. Discovery of the First Potent IDO1/IDO2 Dual Inhibitors: A Promising Strategy for Cancer Immunotherapy. J Med Chem 2021; 64:17950-17968. [PMID: 34854662 DOI: 10.1021/acs.jmedchem.1c01305] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Indoleamine 2,3-dioxygenase-1 (IDO1) plays an important role in tumor immune escape. However, unsatisfactory clinical efficacies of selective IDO1 inhibitors have impeded their further development, suggesting that they do not exert sufficient antitumor effects by selectively inhibiting IDO1. IDO2, an isoenzyme of IDO1, is overexpressed in some human tumors, and emerging evidence suggests that concomitant inhibition of IDO1/2 may have synergistic effects in cancer treatment, revealing a promising cancer immunotherapeutic strategy. Herein, we describe the discovery of compound 4t, the first inhibitor targeting both IDO1/2 that has excellent in vitro inhibitory activity (IDO1 IC50 = 28 nM and IDO2 IC50 = 144 nM). Notably, 4t (TGI = 69.7%) exhibited significantly stronger in vivo antitumor potency than epacadostat (TGI = 49.4%) in CT26 xenograft mouse models, highlighting the advantages of IDO1/2 dual inhibitors for tumor immunotherapy. Preliminary mechanistic studies in vivo further identified that 4t exerts its antitumor effect by inhibiting IDO1/2.
Collapse
Affiliation(s)
- Xin He
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Guangchao He
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Zhaoxing Chu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Huanhuan Wu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Junjie Wang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Yiran Ge
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Hui Shen
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Shan Zhang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Jinxi Shan
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Kewen Peng
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Zhifeng Wei
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Yi Zou
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Yungen Xu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.,Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Qihua Zhu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.,Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
11
|
Kassab SE, Mowafy S. Structural Basis of Selective Human Indoleamine-2,3-dioxygenase 1 (hIDO1) Inhibition. ChemMedChem 2021; 16:3149-3164. [PMID: 34174026 DOI: 10.1002/cmdc.202100253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/23/2021] [Indexed: 11/08/2022]
Abstract
hIDO1 is a heme-dioxygenase overexpressed in the tumor microenvironment and is implicated in the survival of cancer cells. Metabolism of tryptophan to N-formyl-kynurenine by hIDO1 leads to immune suppression to result in cancer cell immune escape. In this article, we discuss the discovery of selective hIDO1 inhibitors for therapeutic intervention that have been promoted to clinical trials and for which crystallographic structural information is available for the respective inhibitor-enzyme complex. The structural insights are based on the complex crystal structures and the relative biological data profiles. The structural basis of selective hIDO1 inhibition, as discussed herein, opens new avenues to the discovery of novel inhibitors with improved activity profiles, selectivity, and distinct structure frameworks.
Collapse
Affiliation(s)
- Shaymaa Emam Kassab
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Damanhour University, Damanhour, El-Buhaira, 22516, Egypt
| | - Samar Mowafy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Misr International University, Cairo, 11431, Egypt.,Department of Chemistry, University of Washington, Seattle, Washington, 98195, United States of America
| |
Collapse
|
12
|
Groth B, Venkatakrishnan P, Lin SJ. NAD + Metabolism, Metabolic Stress, and Infection. Front Mol Biosci 2021; 8:686412. [PMID: 34095234 PMCID: PMC8171187 DOI: 10.3389/fmolb.2021.686412] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/05/2021] [Indexed: 12/26/2022] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) is an essential metabolite with wide-ranging and significant roles in the cell. Defects in NAD+ metabolism have been associated with many human disorders; it is therefore an emerging therapeutic target. Moreover, NAD+ metabolism is perturbed during colonization by a variety of pathogens, either due to the molecular mechanisms employed by these infectious agents or by the host immune response they trigger. Three main biosynthetic pathways, including the de novo and salvage pathways, contribute to the production of NAD+ with a high degree of conservation from bacteria to humans. De novo biosynthesis, which begins with l-tryptophan in eukaryotes, is also known as the kynurenine pathway. Intermediates of this pathway have various beneficial and deleterious effects on cellular health in different contexts. For example, dysregulation of this pathway is linked to neurotoxicity and oxidative stress. Activation of the de novo pathway is also implicated in various infections and inflammatory signaling. Given the dynamic flexibility and multiple roles of NAD+ intermediates, it is important to understand the interconnections and cross-regulations of NAD+ precursors and associated signaling pathways to understand how cells regulate NAD+ homeostasis in response to various growth conditions. Although regulation of NAD+ homeostasis remains incompletely understood, studies in the genetically tractable budding yeast Saccharomyces cerevisiae may help provide some molecular basis for how NAD+ homeostasis factors contribute to the maintenance and regulation of cellular function and how they are regulated by various nutritional and stress signals. Here we present a brief overview of recent insights and discoveries made with respect to the relationship between NAD+ metabolism and selected human disorders and infections, with a particular focus on the de novo pathway. We also discuss how studies in budding yeast may help elucidate the regulation of NAD+ homeostasis.
Collapse
Affiliation(s)
- Benjamin Groth
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, Davis, CA, United States
| | - Padmaja Venkatakrishnan
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, Davis, CA, United States
| | - Su-Ju Lin
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, Davis, CA, United States
| |
Collapse
|
13
|
Investigating the effects of IDO1, PTGS2, and TGF-β1 overexpression on immunomodulatory properties of hTERT-MSCs and their extracellular vesicles. Sci Rep 2021; 11:7825. [PMID: 33837229 PMCID: PMC8035148 DOI: 10.1038/s41598-021-87153-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 03/25/2021] [Indexed: 02/07/2023] Open
Abstract
The therapeutic potential of mesenchymal stem cells (MSCs) is out of the question. Yet, recent drawbacks have resulted in a strategic shift towards the application of MSC-derived cell-free products such as extracellular vesicles (EVs). Recent reports revealed that functional properties of MSCs, including EV secretion patterns, correlate with microenvironmental cues. These findings highlight the urgent need for defining the optimal circumstances for EV preparation. Considering the limitations of primary cells, we employed immortalized cells as an alternative source to prepare therapeutically sufficient EV numbers. Herein, the effects of different conditional environments are explored on human TERT-immortalized MSCs (hTERT-MSCs). The latter were transduced to overexpress IDO1, PTGS2, and TGF-β1 transgenes either alone or in combination, and their immunomodulatory properties were analyzed thereafter. Likewise, EVs derived from these various MSCs were extensively characterized. hTERT-MSCs-IDO1 exerted superior inhibitory effects on lymphocytes, significantly more than hTERT-MSCs-IFN-γ. As such, IDO1 overexpression promoted the immunomodulatory properties of such enriched EVs. Considering the limitations of cell therapy like tumor formation and possible immune responses in the host, the results presented herein might be considered as a feasible model for the induction of immunomodulation in off-the-shelf and cell-free therapeutics, especially for autoimmune diseases.
Collapse
|
14
|
Liu XH, Zhai XY. Role of tryptophan metabolism in cancers and therapeutic implications. Biochimie 2021; 182:131-139. [PMID: 33460767 DOI: 10.1016/j.biochi.2021.01.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 01/08/2021] [Accepted: 01/10/2021] [Indexed: 12/15/2022]
Abstract
Tryptophan (Trp) metabolism is associated with diverse biological processes, including nerve conduction, inflammation, and the immune response. The majority of free Trp is broken down through the kynurenine (Kyn) pathway (KP), in which indoleamine-2,3-dioxygenase (IDO) and tryptophan-2,3-dioxygenase (TDO) catalyze the rate-limiting step. Clinical studies have demonstrated that Trp metabolism promotes tumor progression due to modulation of the immunosuppressive microenvironment through multiple mechanisms. In this process, IDO-expressing dendritic cells (DCs) exhibit tolerogenic potential and orchestrate T cell immune responses. Various signaling molecules control IDO expression, initiating the immunoregulatory pathway of Trp catabolism. Based on these characteristics, KP enzymes and catabolites are emerging as significant prognostic indicators and potential therapeutic targets of cancer. The physiological and oncologic roles of Trp metabolism are briefly summarized here, along with great challenges for treatment strategies.
Collapse
Affiliation(s)
- Xiao-Han Liu
- Department of Histology and Embryology, Basic Medical College, China Medical University, Shenyang, Liaoning, 110122, China
| | - Xiao-Yue Zhai
- Department of Histology and Embryology, Basic Medical College, China Medical University, Shenyang, Liaoning, 110122, China.
| |
Collapse
|
15
|
Dolšak A, Gobec S, Sova M. Indoleamine and tryptophan 2,3-dioxygenases as important future therapeutic targets. Pharmacol Ther 2020; 221:107746. [PMID: 33212094 DOI: 10.1016/j.pharmthera.2020.107746] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/06/2020] [Accepted: 11/10/2020] [Indexed: 02/07/2023]
Abstract
Conversion of tryptophan to N-formylkynurenine is the first and rate-limiting step of the tryptophan metabolic pathway (i.e., the kynurenine pathway). This conversion is catalyzed by three enzyme isoforms: indoleamine 2,3-dioxygenase 1 (IDO1), indoleamine 2,3-dioxygenase 2 (IDO2), and tryptophan 2,3-dioxygenase (TDO). As this pathway generates numerous metabolites that are involved in various pathological conditions, IDOs and TDO represent important targets for therapeutic intervention. This pathway has especially drawn attention due to its importance in tumor resistance. Over the last decade, a large number of IDO and TDO inhibitors have been developed, many of which have entered clinical trials. Here, detailed structural comparisons of these three enzymes (with emphasis on their active sites), their involvement in cellular signaling, and their role(s) in pathological conditions are discussed. Furthermore, the most important recent inhibitors described in papers and patents and involved in clinical trials are reviewed, with a focus on both selective and multiple inhibitors. A short overview of the biochemical and cellular assays used for inhibitory potency evaluation is also presented. This review summarizes recent advances on IDO and TDO as potential drug targets, and provides the key features and perspectives for further research and development of potent inhibitors of the kynurenine pathway.
Collapse
Affiliation(s)
- Ana Dolšak
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, SI-1000 Ljubljana, Slovenia
| | - Stanislav Gobec
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, SI-1000 Ljubljana, Slovenia
| | - Matej Sova
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
16
|
Mandarano M, Bellezza G, Belladonna ML, Vannucci J, Gili A, Ferri I, Lupi C, Ludovini V, Falabella G, Metro G, Mondanelli G, Chiari R, Cagini L, Stracci F, Roila F, Puma F, Volpi C, Sidoni A. Indoleamine 2,3-Dioxygenase 2 Immunohistochemical Expression in Resected Human Non-small Cell Lung Cancer: A Potential New Prognostic Tool. Front Immunol 2020; 11:839. [PMID: 32536910 PMCID: PMC7267213 DOI: 10.3389/fimmu.2020.00839] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/14/2020] [Indexed: 12/13/2022] Open
Abstract
Indoleamine 2,3-dioxygenase 2 (IDO2) is an analog of the tryptophan degrading and immunomodulating enzyme indoleamine 2,3-dioxygenase 1 (IDO1). Although the role of IDO1 is largely understood, the function of IDO2 is not yet well-elucidated. IDO2 overexpression was documented in some human tumors, but the linkage between IDO2 expression and cancer progression is still unclear, in particular in non-small cell lung cancer (NSCLC). Immunohistochemical expression and cellular localization of IDO2 was evaluated on 191 formalin-fixed and paraffin-embedded resected NSCLC. Correlations between IDO2 expression, clinical-pathological data, tumor-infiltrating lymphocytes (TILs), immunosuppressive tumor molecules (IDO1 and programmed cell death ligand-1 - PD-L1 -) and patients' prognosis were evaluated. IDO2 high expression is strictly related to high PD-L1 level among squamous cell carcinomas group (p = 0.012), to either intratumoral or mixed localization of TILs (p < 0.001) and to adenocarcinoma histotype (p < 0.001). Furthermore, a significant correlation between IDO2 high expression and poor non-small cell lung cancer prognosis was detected (p = 0.011). The current study reaches interesting knowledge about IDO2 in non-small cell lung cancer. The close relationship between IDO2 expression, PD-L1 increased levels, TILs localization and NSCLC poor prognosis, assumed IDO2 as a potential prognostic biomarker to be exploited for optimizing innovative combined therapies with immune checkpoint inhibitors.
Collapse
MESH Headings
- Adenocarcinoma/metabolism
- Adenocarcinoma/pathology
- Adenocarcinoma/surgery
- Adult
- Aged
- Aged, 80 and over
- B7-H1 Antigen/metabolism
- Biomarkers, Tumor/metabolism
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Non-Small-Cell Lung/surgery
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Carcinoma, Squamous Cell/surgery
- Disease Progression
- Female
- Follow-Up Studies
- Humans
- Immunohistochemistry/methods
- Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Lung Neoplasms/surgery
- Lymphocytes, Tumor-Infiltrating/immunology
- Male
- Middle Aged
- Prognosis
Collapse
Affiliation(s)
- Martina Mandarano
- Section of Anatomic Pathology and Histology, Department of Experimental Medicine, Medical School, University of Perugia, Perugia, Italy
| | - Guido Bellezza
- Section of Anatomic Pathology and Histology, Department of Experimental Medicine, Medical School, University of Perugia, Perugia, Italy
| | - Maria Laura Belladonna
- Section of Pharmacology, Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Jacopo Vannucci
- Department of Thoracic Surgery, Medical School, University of Perugia, Perugia, Italy
| | - Alessio Gili
- Section of Public Health, Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Ivana Ferri
- Section of Anatomic Pathology and Histology, Department of Experimental Medicine, Medical School, University of Perugia, Perugia, Italy
| | | | - Vienna Ludovini
- Department of Medical Oncology, Santa Maria della Misericordia Hospital, Perugia, Italy
| | - Giulia Falabella
- Section of Anatomic Pathology and Histology, Department of Experimental Medicine, Medical School, University of Perugia, Perugia, Italy
| | - Giulio Metro
- Department of Medical Oncology, Santa Maria della Misericordia Hospital, Perugia, Italy
| | - Giada Mondanelli
- Section of Pharmacology, Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Rita Chiari
- Medical Oncology, Ospedali Riuniti Padova sud, Padova, Italy
| | - Lucio Cagini
- Department of Thoracic Surgery, Medical School, University of Perugia, Perugia, Italy
| | - Fabrizio Stracci
- Section of Public Health, Department of Experimental Medicine, University of Perugia, Perugia, Italy
- Umbria Cancer Registry, Perugia, Italy
| | - Fausto Roila
- Department of Medical Oncology, Santa Maria della Misericordia Hospital, Perugia, Italy
| | - Francesco Puma
- Department of Thoracic Surgery, Medical School, University of Perugia, Perugia, Italy
| | - Claudia Volpi
- Section of Pharmacology, Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Angelo Sidoni
- Section of Anatomic Pathology and Histology, Department of Experimental Medicine, Medical School, University of Perugia, Perugia, Italy
| |
Collapse
|
17
|
Kazmierski WM, Xia B, Miller J, De la Rosa M, Favre D, Dunham RM, Washio Y, Zhu Z, Wang F, Mebrahtu M, Deng H, Basilla J, Wang L, Evindar G, Fan L, Olszewski A, Prabhu N, Davie C, Messer JA, Samano V. DNA-Encoded Library Technology-Based Discovery, Lead Optimization, and Prodrug Strategy toward Structurally Unique Indoleamine 2,3-Dioxygenase-1 (IDO1) Inhibitors. J Med Chem 2020; 63:3552-3562. [PMID: 32073266 DOI: 10.1021/acs.jmedchem.9b01799] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We report the discovery of a novel indoleamine 2,3-dioxygenase-1 (IDO1) inhibitor class through the affinity selection of a previously unreported indole-based DNA-encoded library (DEL). The DEL exemplar, spiro-chromane 1, had moderate IDO1 potency but high in vivo clearance. Series optimization quickly afforded a potent, low in vivo clearance lead 11. Although amorphous 11 was highly bio-available, crystalline 11 was poorly soluble and suffered disappointingly low bio-availability because of solubility-limited absorption. A prodrug approach was deployed and proved effective in discovering the highly bio-available phosphonooxymethyl 31, which rapidly converted to 11 in vivo. Obtaining crystalline 31 proved problematic, however; thus salt screening was performed in an attempt to circumvent this obstacle and successfully delivered greatly soluble and bio-available crystalline tris-salt 32. IDO1 inhibitor 32 is characterized by a low calculated human dose, best-in-class potential, and an unusual inhibition mode by binding the IDO1 heme-free (apo) form.
Collapse
Affiliation(s)
- Wieslaw M Kazmierski
- HIV Discovery Performance Unit, GlaxoSmithKline, Research Triangle Park, Durham, North Carolina 27709, United States
| | - Bing Xia
- Encoded Library Technologies/NCE Molecular Discovery, R&D Medicinal Science and Technology, GSK, 200 Cambridge Park Drive, Cambridge, Massachusetts 02140, United States
| | - John Miller
- HIV Discovery Performance Unit, GlaxoSmithKline, Research Triangle Park, Durham, North Carolina 27709, United States
| | - Martha De la Rosa
- HIV Discovery Performance Unit, GlaxoSmithKline, Research Triangle Park, Durham, North Carolina 27709, United States
| | - David Favre
- HIV Discovery Performance Unit, GlaxoSmithKline, Research Triangle Park, Durham, North Carolina 27709, United States
| | - Richard M Dunham
- HIV Discovery Performance Unit, GlaxoSmithKline, Research Triangle Park, Durham, North Carolina 27709, United States
| | - Yoshiaki Washio
- MST Medicine Design, Medicinal Chemistry, GlaxoSmithKline, Gunnels Wood Rd, Stevenage SG1 2NY, U.K
| | - Zhengrong Zhu
- Encoded Library Technologies/NCE Molecular Discovery, R&D Medicinal Science and Technology, GSK, 200 Cambridge Park Drive, Cambridge, Massachusetts 02140, United States
| | - Feng Wang
- DMPK/IVIVT, GlaxoSmithKline, 1250 S. Collegeville Rd, Collegeville, Pennsylvania 19426-0989, United States
| | - Makda Mebrahtu
- Screening, Profiling & Mechanistic Biology, RD Platform Technology & Science, GlaxoSmithKline, 1250 S. Collegeville Rd, Collegeville, Pennsylvania 19426-0989, United States
| | - Hongfeng Deng
- Encoded Library Technologies/NCE Molecular Discovery, R&D Medicinal Science and Technology, GSK, 200 Cambridge Park Drive, Cambridge, Massachusetts 02140, United States
| | - Jonathan Basilla
- Screening, Profiling & Mechanistic Biology, RD Platform Technology & Science, GlaxoSmithKline, 1250 S. Collegeville Rd, Collegeville, Pennsylvania 19426-0989, United States
| | - Liping Wang
- Drug Design and Selection, GlaxoSmithKline, 1250 S. Collegeville Rd, Collegeville, Pennsylvania 19426, United States
| | - Ghotas Evindar
- Encoded Library Technologies/NCE Molecular Discovery, R&D Medicinal Science and Technology, GSK, 200 Cambridge Park Drive, Cambridge, Massachusetts 02140, United States
| | - Lijun Fan
- Encoded Library Technologies/NCE Molecular Discovery, R&D Medicinal Science and Technology, GSK, 200 Cambridge Park Drive, Cambridge, Massachusetts 02140, United States
| | - Alison Olszewski
- Encoded Library Technologies/NCE Molecular Discovery, R&D Medicinal Science and Technology, GSK, 200 Cambridge Park Drive, Cambridge, Massachusetts 02140, United States
| | - Ninad Prabhu
- Encoded Library Technologies/NCE Molecular Discovery, R&D Medicinal Science and Technology, GSK, 200 Cambridge Park Drive, Cambridge, Massachusetts 02140, United States
| | - Christopher Davie
- Encoded Library Technologies/NCE Molecular Discovery, R&D Medicinal Science and Technology, GSK, 200 Cambridge Park Drive, Cambridge, Massachusetts 02140, United States
| | - Jeffrey A Messer
- Encoded Library Technologies/NCE Molecular Discovery, R&D Medicinal Science and Technology, GSK, 200 Cambridge Park Drive, Cambridge, Massachusetts 02140, United States
| | - Vicente Samano
- HIV Discovery Performance Unit, GlaxoSmithKline, Research Triangle Park, Durham, North Carolina 27709, United States
| |
Collapse
|
18
|
Lanser L, Kink P, Egger EM, Willenbacher W, Fuchs D, Weiss G, Kurz K. Inflammation-Induced Tryptophan Breakdown is Related With Anemia, Fatigue, and Depression in Cancer. Front Immunol 2020; 11:249. [PMID: 32153576 PMCID: PMC7047328 DOI: 10.3389/fimmu.2020.00249] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 01/30/2020] [Indexed: 12/13/2022] Open
Abstract
Many patients with cancer suffer from anemia, depression, and an impaired quality of life (QoL). These patients often also show decreased plasma tryptophan levels and increased kynurenine concentrations in parallel with elevated concentrations of Th1 type immune activation marker neopterin. In the course of anti-tumor immune response, the pro-inflammatory cytokine interferon gamma (IFN-γ) induces both, the enzyme indoleamine 2,3-dioxygenase (IDO) to degrade tryptophan and the enzyme GTP-cyclohydrolase I to form neopterin. High neopterin concentrations as well as an increased kynurenine to tryptophan ratio (Kyn/Trp) in the blood of cancer patients are predictive for a worse outcome. Inflammation-mediated tryptophan catabolism along the kynurenine pathway is related to fatigue and anemia as well as to depression and a decreased QoL in patients with solid tumors. In fact, enhanced tryptophan breakdown might greatly contribute to the development of anemia, fatigue, and depression in cancer patients. IDO activation and stimulation of the kynurenine pathway exert immune regulatory mechanisms, which may impair anti-tumor immune responses. In addition, tumor cells can degrade tryptophan to weaken immune responses directed against them. High IDO expression in the tumor tissue is associated with a poor prognosis of patients. The efficiency of IDO-inhibitors to inhibit cancer progression is currently tested in combination with established chemotherapies and with immune checkpoint inhibitors. Inflammation-mediated tryptophan catabolism and its possible influence on the development and persistence of anemia, fatigue, and depression in cancer patients are discussed.
Collapse
Affiliation(s)
- Lukas Lanser
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Patricia Kink
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Eva Maria Egger
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Wolfgang Willenbacher
- Department of Internal Medicine V, Medical University of Innsbruck, Innsbruck, Austria
- Oncotyrol Centre for Personalized Cancer Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Dietmar Fuchs
- Division of Biological Chemistry, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Guenter Weiss
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Katharina Kurz
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
19
|
Gut microorganisms and their metabolites modulate the severity of acute colitis in a tryptophan metabolism-dependent manner. Eur J Nutr 2020; 59:3591-3601. [PMID: 32055962 DOI: 10.1007/s00394-020-02194-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 01/28/2020] [Indexed: 12/13/2022]
Abstract
PURPOSE Growing evidence shows that nutrient metabolism affects inflammatory bowel diseases (IBD) development. Previously, we showed that deficiency of indoleamine 2,3-dioxygenase 1 (Ido1), a tryptophan-catabolizing enzyme, reduced the severity of dextran sulfate sodium (DSS)-induced colitis in mice. However, the roles played by intestinal microbiota in generating the differences in disease progression between Ido1+/+ and Ido1-/- mice are unknown. Therefore, we aimed to investigate the interactions between the intestinal microbiome and host IDO1 in governing intestinal inflammatory responses. METHODS Microbial 16s rRNA sequencing was conducted in Ido1+/+ and Ido1-/- mice after DSS treatment. Bacteria-derived tryptophan metabolites were measured in urine. Transcriptome analysis revealed the effects of the metabolite and IDO1 expression in HCT116 cells. Colitis severity of Ido1+/+ was compared to Ido1-/- mice following fecal microbiota transplantation (FMT). RESULTS Microbiome analysis through 16S-rRNA gene sequencing showed that IDO1 deficiency increased intestinal bacteria that use tryptophan preferentially to produce indolic compounds. Urinary excretion of 3-indoxyl sulfate, a metabolized form of gut bacteria-derived indole, was significantly higher in Ido1-/- than in Ido1+/+ mice. Transcriptome analysis showed that tight junction transcripts were significantly increased by indole treatment in HCT116 cells; however, the effects were diminished by IDO1 overexpression. Using FMT experiments, we demonstrated that bacteria from Ido1-/- mice could directly attenuate the severity of DSS-induced colitis. CONCLUSIONS Our results provide evidence that a genetic defect in utilizing tryptophan affects intestinal microbiota profiles, altering microbial metabolites, and colitis development. This suggests that the host and intestinal microbiota communicate through shared nutrient metabolic networks.
Collapse
|
20
|
Abstract
Tryptophan (TRP), an essential amino acid in mammals, is involved in several physiological processes including neuronal function, immunity, and gut homeostasis. In humans, TRP is metabolized via the kynurenine and serotonin pathways, leading to the generation of biologically active compounds, such as serotonin, melatonin and niacin. In addition to endogenous TRP metabolism, resident gut microbiota also contributes to the production of specific TRP metabolites and indirectly influences host physiology. The variety of physiologic functions regulated by TRP reflects the complex pattern of diseases associated with altered homeostasis. Indeed, an imbalance in the synthesis of TRP metabolites has been associated with pathophysiologic mechanisms occurring in neurologic and psychiatric disorders, in chronic immune activation and in the immune escape of cancer. In this chapter, the role of TRP metabolism in health and disease is presented. Disorders involving the central nervous system, malignancy, inflammatory bowel and cardiovascular disease are discussed.
Collapse
Affiliation(s)
- Stefano Comai
- Division of Neuroscience, San Raffaele Scientific Institute and Vita-Salute University, Milan, Italy; Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Antonella Bertazzo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Martina Brughera
- Division of Neuroscience, San Raffaele Scientific Institute and Vita-Salute University, Milan, Italy
| | - Sara Crotti
- Institute of Paediatric Research-Città della Speranza, Padua, Italy.
| |
Collapse
|
21
|
Napolioni V, Pariano M, Borghi M, Oikonomou V, Galosi C, De Luca A, Stincardini C, Vacca C, Renga G, Lucidi V, Colombo C, Fiscarelli E, Lass-Flörl C, Carotti A, D'Amico L, Majo F, Russo MC, Ellemunter H, Spolzino A, Mosci P, Brancorsini S, Aversa F, Velardi A, Romani L, Costantini C. Genetic Polymorphisms Affecting IDO1 or IDO2 Activity Differently Associate With Aspergillosis in Humans. Front Immunol 2019; 10:890. [PMID: 31134053 PMCID: PMC6514051 DOI: 10.3389/fimmu.2019.00890] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/08/2019] [Indexed: 12/29/2022] Open
Abstract
Aspergillus is the causative agent of human diseases ranging from asthma to invasive infection. Genetic and environmental factors are crucial in regulating the interaction between the host and Aspergillus. The role played by the enzyme indoleamine 2,3-dioxygenase 1 (IDO1), which catalyzes the first and rate-limiting step of tryptophan catabolism along the kynurenine pathway, is increasingly being recognized, but whether and how genetic variation of IDO1 influences the risk of aspergillosis in susceptible patients is incompletely understood. In addition, whether the closely related protein IDO2 plays a similar role remains unexplored. In the present study, we performed genetic association studies in two different cohorts of susceptible patients [cystic fibrosis (CF) patients and recipients of hematopoietic stem cell transplantation (HSCT)], and identified IDO1 polymorphisms that associate with the risk of infection in both cohorts. By using human bronchial epithelial cells and PBMC from CF and HSCT patients, respectively, we could show that the IDO1 polymorphisms appeared to down-modulate IDO1 expression and function in response to IFNγ or Aspergillus conidia, and to associate with an increased inflammatory response. In contrast, IDO2 polymorphisms, including variants known to profoundly affect protein expression and function, were differently associated with the risk of aspergillosis in the two cohorts of patients as no association was found in CF patients as opposed to recipients of HSCT. By resorting to a murine model of bone marrow transplantation, we could show that the absence of IDO2 more severely affected fungal burden and lung pathology upon infection with Aspergillus as compared to IDO1, and this effect appeared to be linked to a deficit in the antifungal effector phagocytic activity. Thus, our study confirms and extends the role of IDO1 in the response to Aspergillus, and shed light on the possible involvement of IDO2 in specific clinical settings.
Collapse
Affiliation(s)
- Valerio Napolioni
- Department of Neurology and Neurological Sciences, School of Medicine, Stanford University Stanford, CA, United States
| | - Marilena Pariano
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Monica Borghi
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Vasilis Oikonomou
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Claudia Galosi
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Antonella De Luca
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | | | - Carmine Vacca
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Giorgia Renga
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Vincenzina Lucidi
- Unit of Endocrinology and Diabetes, Bambino Gesù Children's Hospital, Rome, Italy
| | - Carla Colombo
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | | | - Cornelia Lass-Flörl
- Division of Hygiene and Medical Microbiology, Innsbruck Medical University, Innsbruck, Austria
| | - Alessandra Carotti
- Institute of Hematology-Centro di Ricerche Emato-Oncologiche, University of Perugia, Perugia, Italy
| | - Lucia D'Amico
- Institute of Hematology-Centro di Ricerche Emato-Oncologiche, University of Perugia, Perugia, Italy
| | - Fabio Majo
- Unit of Endocrinology and Diabetes, Bambino Gesù Children's Hospital, Rome, Italy
| | - Maria Chiara Russo
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | | | - Angelica Spolzino
- Division of Hematology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Paolo Mosci
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | | | - Franco Aversa
- Division of Hematology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Andrea Velardi
- Institute of Hematology-Centro di Ricerche Emato-Oncologiche, University of Perugia, Perugia, Italy
| | - Luigina Romani
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Claudio Costantini
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
22
|
|
23
|
Dostal CR, Carson Sulzer M, Kelley KW, Freund GG, M cCusker RH. Glial and tissue-specific regulation of Kynurenine Pathway dioxygenases by acute stress of mice. Neurobiol Stress 2017; 7:1-15. [PMID: 29520368 PMCID: PMC5840960 DOI: 10.1016/j.ynstr.2017.02.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 01/10/2017] [Accepted: 02/07/2017] [Indexed: 01/11/2023] Open
Abstract
Stressors activate the hypothalamic-pituitary-adrenal (HPA) axis and immune system eliciting changes in cognitive function, mood and anxiety. An important link between stress and altered behavior is stimulation of the Kynurenine Pathway which generates neuroactive and immunomodulatory kynurenines. Tryptophan entry into this pathway is controlled by rate-limiting indoleamine/tryptophan 2,3-dioxygenases (DOs: Ido1, Ido2, Tdo2). Although implicated as mediating changes in behavior, detecting stress-induced DO expression has proven inconsistent. Thus, C57BL/6J mice were used to characterize DO expression in brain-regions, astrocytes and microglia to characterize restraint-stress-induced DO expression. Stress increased kynurenine in brain and plasma, demonstrating increased DO activity. Of three Ido1 transcripts, only Ido1-v1 expression was increased by stress and within astrocytes, not microglia, indicating transcript- and glial-specificity. Stress increased Ido1-v1 only in frontal cortex and hypothalamus, indicating brain-region specificity. Of eight Ido2 transcripts, Ido2-v3 expression was increased by stress, again only within astrocytes. Likewise, stress increased Tdo2-FL expression in astrocytes, not microglia. Interestingly, Ido2 and Tdo2 transcripts were not correspondingly induced in Ido1-knockout (Ido1KO) mice, suggesting that Ido1 is necessary for the central DO response to acute stress. Unlike acute inflammatory models resulting in DO induction within microglia, only astrocyte DO expression was increased by acute restraint-stress, defining their unique role during stress-dependent activation of the Kynurenine Pathway.
Collapse
Affiliation(s)
- Carlos R. Dostal
- Neuroscience Program, 250 Edward R Madigan Laboratory, 1201 W. Gregory Drive, Urbana, IL 61801, USA
- Medical Scholars Program, 250 Edward R Madigan Laboratory, 1201 W. Gregory Drive, Urbana, IL 61801, USA
| | - Megan Carson Sulzer
- School of Molecular and Cellular Biology, 250 Edward R Madigan Laboratory, 1201 W. Gregory Drive, Urbana, IL 61801, USA
| | - Keith W. Kelley
- Neuroscience Program, 250 Edward R Madigan Laboratory, 1201 W. Gregory Drive, Urbana, IL 61801, USA
- Department of Animal Sciences, 250 Edward R Madigan Laboratory, 1201 W. Gregory Drive, Urbana, IL 61801, USA
- Department of Pathology, University of Illinois at Urbana-Champaign, 250 Edward R Madigan Laboratory, 1201 W. Gregory Drive, Urbana, IL 61801, USA
| | - Gregory G. Freund
- Neuroscience Program, 250 Edward R Madigan Laboratory, 1201 W. Gregory Drive, Urbana, IL 61801, USA
- Department of Animal Sciences, 250 Edward R Madigan Laboratory, 1201 W. Gregory Drive, Urbana, IL 61801, USA
- Department of Pathology, University of Illinois at Urbana-Champaign, 250 Edward R Madigan Laboratory, 1201 W. Gregory Drive, Urbana, IL 61801, USA
| | - Robert H. McCusker
- Neuroscience Program, 250 Edward R Madigan Laboratory, 1201 W. Gregory Drive, Urbana, IL 61801, USA
- Department of Animal Sciences, 250 Edward R Madigan Laboratory, 1201 W. Gregory Drive, Urbana, IL 61801, USA
- Department of Pathology, University of Illinois at Urbana-Champaign, 250 Edward R Madigan Laboratory, 1201 W. Gregory Drive, Urbana, IL 61801, USA
| |
Collapse
|
24
|
Brooks AK, Janda TM, Lawson MA, Rytych JL, Smith RA, Ocampo-Solis C, McCusker RH. Desipramine decreases expression of human and murine indoleamine-2,3-dioxygenases. Brain Behav Immun 2017; 62:219-229. [PMID: 28212884 PMCID: PMC5382643 DOI: 10.1016/j.bbi.2017.02.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 02/01/2017] [Accepted: 02/13/2017] [Indexed: 12/13/2022] Open
Abstract
Abundant evidence connects depression symptomology with immune system activation, stress and subsequently elevated levels of kynurenine. Anti-depressants, such as the tricyclic norepinephrine/serotonin reuptake inhibitor desipramine (Desip), were developed under the premise that increasing extracellular neurotransmitter level was the sole mechanism by which they alleviate depressive symptomologies. However, evidence suggests that anti-depressants have additional actions that contribute to their therapeutic potential. The Kynurenine Pathway produces tryptophan metabolites that modulate neurotransmitter activity. This recognition identified another putative pathway for anti-depressant targeting. Considering a recognized role of the Kynurenine Pathway in depression, we investigated the potential for Desip to alter expression of rate-limiting enzymes of this pathway: indoleamine-2,3-dioxygenases (Ido1 and Ido2). Mice were administered lipopolysaccharide (LPS) or synthetic glucocorticoid dexamethasone (Dex) with Desip to determine if Desip alters indoleamine-dioxygenase (DO) expression in vivo following a modeled immune and stress response. This work was followed by treating murine and human peripheral blood mononuclear cells (PBMCs) with interferon-gamma (IFNγ) and Desip. In vivo: Desip blocked LPS-induced Ido1 expression in hippocampi, astrocytes, microglia and PBMCs and Ido2 expression by PBMCs. Ex vivo: Desip decreased IFNγ-induced Ido1 and Ido2 expression in murine PBMCs. This effect was directly translatable to the human system as Desip decreased IDO1 and IDO2 expression by human PBMCs. These data demonstrate for the first time that an anti-depressant alters expression of Ido1 and Ido2, identifying a possible new mechanism behind anti-depressant activity. Furthermore, we propose the assessment of PBMCs for anti-depressant responsiveness using IDO expression as a biomarker.
Collapse
Affiliation(s)
- Alexandra K Brooks
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States; Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States; Integrative Immunology and Behavior Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States.
| | - Tiffany M Janda
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States; Integrative Immunology and Behavior Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States.
| | - Marcus A Lawson
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States; Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States; Integrative Immunology and Behavior Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States.
| | - Jennifer L Rytych
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States; Integrative Immunology and Behavior Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States.
| | - Robin A Smith
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States; Integrative Immunology and Behavior Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States.
| | - Cecilia Ocampo-Solis
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States; Integrative Immunology and Behavior Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States.
| | - Robert H McCusker
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States; Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States; Integrative Immunology and Behavior Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States; Department of Pathology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States.
| |
Collapse
|
25
|
Nienhaus K, Nickel E, Nienhaus GU. Substrate binding in human indoleamine 2,3-dioxygenase 1: A spectroscopic analysis. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:453-463. [DOI: 10.1016/j.bbapap.2017.02.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 01/22/2017] [Accepted: 02/07/2017] [Indexed: 11/27/2022]
|
26
|
Novikov O, Wang Z, Stanford EA, Parks AJ, Ramirez-Cardenas A, Landesman E, Laklouk I, Sarita-Reyes C, Gusenleitner D, Li A, Monti S, Manteiga S, Lee K, Sherr DH. An Aryl Hydrocarbon Receptor-Mediated Amplification Loop That Enforces Cell Migration in ER-/PR-/Her2- Human Breast Cancer Cells. Mol Pharmacol 2016; 90:674-688. [PMID: 27573671 PMCID: PMC5074452 DOI: 10.1124/mol.116.105361] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 08/24/2016] [Indexed: 12/18/2022] Open
Abstract
The endogenous ligand-activated aryl hydrocarbon receptor (AHR) plays an important role in numerous biologic processes. As the known number of AHR-mediated processes grows, so too does the importance of determining what endogenous AHR ligands are produced, how their production is regulated, and what biologic consequences ensue. Consequently, our studies were designed primarily to determine whether ER−/PR−/Her2− breast cancer cells have the potential to produce endogenous AHR ligands and, if so, how production of these ligands is controlled. We postulated that: 1) malignant cells produce tryptophan-derived AHR ligand(s) through the kynurenine pathway; 2) these metabolites have the potential to drive AHR-dependent breast cancer migration; 3) the AHR controls expression of a rate-limiting kynurenine pathway enzyme(s) in a closed amplification loop; and 4) environmental AHR ligands mimic the effects of endogenous ligands. Data presented in this work indicate that primary human breast cancers, and their metastases, express high levels of AHR and tryptophan-2,3-dioxygenase (TDO); representative ER−/PR−/Her2− cell lines express TDO and produce sufficient intracellular kynurenine and xanthurenic acid concentrations to chronically activate the AHR. TDO overexpression, or excess kynurenine or xanthurenic acid, accelerates migration in an AHR-dependent fashion. Environmental AHR ligands 2,3,7,8-tetrachlorodibenzo[p]dioxin and benzo[a]pyrene mimic this effect. AHR knockdown or inhibition significantly reduces TDO2 expression. These studies identify, for the first time, a positive amplification loop in which AHR-dependent TDO2 expression contributes to endogenous AHR ligand production. The net biologic effect of AHR activation by endogenous ligands, which can be mimicked by environmental ligands, is an increase in tumor cell migration, a measure of tumor aggressiveness.
Collapse
Affiliation(s)
- Olga Novikov
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts (O.N., Z.W., E.A.S., A.J.P., A.R.-C., D.H.S.); Boston University Molecular and Translational Medicine Program, Boston, Massachusetts (O.N., E.A.S.); Department of Medicine, Division of Computational Biomedicine, Boston University School of Medicine, Boston, Massachusetts (D.G., A.L., S.Mo.); Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts (E.L., I.L., C.S.-R.); and Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts (S.Ma., K.L.)
| | - Zhongyan Wang
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts (O.N., Z.W., E.A.S., A.J.P., A.R.-C., D.H.S.); Boston University Molecular and Translational Medicine Program, Boston, Massachusetts (O.N., E.A.S.); Department of Medicine, Division of Computational Biomedicine, Boston University School of Medicine, Boston, Massachusetts (D.G., A.L., S.Mo.); Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts (E.L., I.L., C.S.-R.); and Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts (S.Ma., K.L.)
| | - Elizabeth A Stanford
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts (O.N., Z.W., E.A.S., A.J.P., A.R.-C., D.H.S.); Boston University Molecular and Translational Medicine Program, Boston, Massachusetts (O.N., E.A.S.); Department of Medicine, Division of Computational Biomedicine, Boston University School of Medicine, Boston, Massachusetts (D.G., A.L., S.Mo.); Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts (E.L., I.L., C.S.-R.); and Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts (S.Ma., K.L.)
| | - Ashley J Parks
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts (O.N., Z.W., E.A.S., A.J.P., A.R.-C., D.H.S.); Boston University Molecular and Translational Medicine Program, Boston, Massachusetts (O.N., E.A.S.); Department of Medicine, Division of Computational Biomedicine, Boston University School of Medicine, Boston, Massachusetts (D.G., A.L., S.Mo.); Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts (E.L., I.L., C.S.-R.); and Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts (S.Ma., K.L.)
| | - Alejandra Ramirez-Cardenas
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts (O.N., Z.W., E.A.S., A.J.P., A.R.-C., D.H.S.); Boston University Molecular and Translational Medicine Program, Boston, Massachusetts (O.N., E.A.S.); Department of Medicine, Division of Computational Biomedicine, Boston University School of Medicine, Boston, Massachusetts (D.G., A.L., S.Mo.); Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts (E.L., I.L., C.S.-R.); and Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts (S.Ma., K.L.)
| | - Esther Landesman
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts (O.N., Z.W., E.A.S., A.J.P., A.R.-C., D.H.S.); Boston University Molecular and Translational Medicine Program, Boston, Massachusetts (O.N., E.A.S.); Department of Medicine, Division of Computational Biomedicine, Boston University School of Medicine, Boston, Massachusetts (D.G., A.L., S.Mo.); Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts (E.L., I.L., C.S.-R.); and Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts (S.Ma., K.L.)
| | - Israa Laklouk
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts (O.N., Z.W., E.A.S., A.J.P., A.R.-C., D.H.S.); Boston University Molecular and Translational Medicine Program, Boston, Massachusetts (O.N., E.A.S.); Department of Medicine, Division of Computational Biomedicine, Boston University School of Medicine, Boston, Massachusetts (D.G., A.L., S.Mo.); Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts (E.L., I.L., C.S.-R.); and Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts (S.Ma., K.L.)
| | - Carmen Sarita-Reyes
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts (O.N., Z.W., E.A.S., A.J.P., A.R.-C., D.H.S.); Boston University Molecular and Translational Medicine Program, Boston, Massachusetts (O.N., E.A.S.); Department of Medicine, Division of Computational Biomedicine, Boston University School of Medicine, Boston, Massachusetts (D.G., A.L., S.Mo.); Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts (E.L., I.L., C.S.-R.); and Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts (S.Ma., K.L.)
| | - Daniel Gusenleitner
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts (O.N., Z.W., E.A.S., A.J.P., A.R.-C., D.H.S.); Boston University Molecular and Translational Medicine Program, Boston, Massachusetts (O.N., E.A.S.); Department of Medicine, Division of Computational Biomedicine, Boston University School of Medicine, Boston, Massachusetts (D.G., A.L., S.Mo.); Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts (E.L., I.L., C.S.-R.); and Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts (S.Ma., K.L.)
| | - Amy Li
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts (O.N., Z.W., E.A.S., A.J.P., A.R.-C., D.H.S.); Boston University Molecular and Translational Medicine Program, Boston, Massachusetts (O.N., E.A.S.); Department of Medicine, Division of Computational Biomedicine, Boston University School of Medicine, Boston, Massachusetts (D.G., A.L., S.Mo.); Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts (E.L., I.L., C.S.-R.); and Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts (S.Ma., K.L.)
| | - Stefano Monti
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts (O.N., Z.W., E.A.S., A.J.P., A.R.-C., D.H.S.); Boston University Molecular and Translational Medicine Program, Boston, Massachusetts (O.N., E.A.S.); Department of Medicine, Division of Computational Biomedicine, Boston University School of Medicine, Boston, Massachusetts (D.G., A.L., S.Mo.); Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts (E.L., I.L., C.S.-R.); and Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts (S.Ma., K.L.)
| | - Sara Manteiga
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts (O.N., Z.W., E.A.S., A.J.P., A.R.-C., D.H.S.); Boston University Molecular and Translational Medicine Program, Boston, Massachusetts (O.N., E.A.S.); Department of Medicine, Division of Computational Biomedicine, Boston University School of Medicine, Boston, Massachusetts (D.G., A.L., S.Mo.); Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts (E.L., I.L., C.S.-R.); and Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts (S.Ma., K.L.)
| | - Kyongbum Lee
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts (O.N., Z.W., E.A.S., A.J.P., A.R.-C., D.H.S.); Boston University Molecular and Translational Medicine Program, Boston, Massachusetts (O.N., E.A.S.); Department of Medicine, Division of Computational Biomedicine, Boston University School of Medicine, Boston, Massachusetts (D.G., A.L., S.Mo.); Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts (E.L., I.L., C.S.-R.); and Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts (S.Ma., K.L.)
| | - David H Sherr
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts (O.N., Z.W., E.A.S., A.J.P., A.R.-C., D.H.S.); Boston University Molecular and Translational Medicine Program, Boston, Massachusetts (O.N., E.A.S.); Department of Medicine, Division of Computational Biomedicine, Boston University School of Medicine, Boston, Massachusetts (D.G., A.L., S.Mo.); Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts (E.L., I.L., C.S.-R.); and Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts (S.Ma., K.L.)
| |
Collapse
|
27
|
El Jamal SM, Taylor EB, Abd Elmageed ZY, Alamodi AA, Selimovic D, Alkhateeb A, Hannig M, Hassan SY, Santourlidis S, Friedlander PL, Haikel Y, Vijaykumar S, Kandil E, Hassan M. Interferon gamma-induced apoptosis of head and neck squamous cell carcinoma is connected to indoleamine-2,3-dioxygenase via mitochondrial and ER stress-associated pathways. Cell Div 2016; 11:11. [PMID: 27486476 PMCID: PMC4969639 DOI: 10.1186/s13008-016-0023-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 06/15/2016] [Indexed: 12/25/2022] Open
Abstract
Background Tumor response to immunotherapy is the consequence of a concerted crosstalk between cytokines and effector cells. Interferon gamma (IFNγ) is one of the common cytokines coordinating tumor immune response and the associated biological consequences. Although the role of IFNγ in the modulation of tumor immunity has been widely documented, the mechanisms regulating IFNγ-induced cell death, during the course of immune therapy, is not described in detail. Results IFNγ triggered apoptosis of CLS-354 and RPMI 2650 cells, enhanced the protein expression and activation of indoleamine 2,3-dioxygenase (IDO), and suppressed the basal expression of heme oxygenase-1(HO-1). Interestingly, IFNγ induced the loss of mitochondrial membrane potential (Δψm) and increased accumulation of reactive oxygen species (ROS). The cytokine also induced the activation of Janus kinase (JAK)/Signal Transducer and Activator of Transcription (STAT)1, apoptosis signal-regulating kinase 1 (ASK1), p38, c-jun-N-terminal kinase (JNK) and NF-κB pathways and the transcription factors STAT1, interferon regulatory factor 1 (IRF1), AP-1, ATF-2, NF-κB and p53, and expression of Noxa protein. Furthermore, IFNγ was found to trigger endoplasmic reticulum (ER) stress as evidenced by the cleavage of caspase-4 and activation of protein kinase RNA-like endoplasmic reticulum kinase (PERK) and inositol-requiring-1α (IRE1α) pathways. Using specific inhibitors, we identified a potential role for IDO as apoptotic mediator in the regulation of IFNγ-induced apoptosis of head and neck squamous cell carcinoma (HNSCC) cells via Noxa-mediated mitochondrial dysregulation and ER stress. Conclusion In addition to the elucidation of the role of IDO in the modulation of apoptosis, our study provides new insights into the molecular mechanisms of IFNγ-induced apoptosis of HNSCC cells during the course of immune therapy.
Collapse
Affiliation(s)
- Siraj M El Jamal
- Department of Pathology, University of Mississippi Medical Center, Jackson, MS 39216 USA
| | - Erin B Taylor
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216 USA
| | | | - Abdulhadi A Alamodi
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216 USA
| | - Denis Selimovic
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University, Kirrberger Str. 100, 66421 Homburg/Saar, Germany ; Division of Oral Health Science, Department of Restorative Dentistry, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Abdulaziz Alkhateeb
- Clinic of Dermatology, University Hospital of Aachen, Puwelstrasse 30, Aachen, Germany ; College of Medicine, King Faisal University, Alhofuf, Saudi Arabia
| | - Matthias Hannig
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University, Kirrberger Str. 100, 66421 Homburg/Saar, Germany
| | - Sofie Y Hassan
- Clinic of Dermatology, University Hospital of Aachen, Puwelstrasse 30, Aachen, Germany
| | - Simeon Santourlidis
- Epigenetics Core Laboratory, Institute of Transplantation Diagnostics and Cell Therapeutics, University Hospital of Duesseldorf, Heinrich-Heine-University of Duesseldorf, Mooren Str.5, 40225 Duesseldorf, Germany
| | - Paul L Friedlander
- Departments of Surgery, Tulane University School of Medicine, New Orleans, LA 70112 USA
| | - Youssef Haikel
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France ; Department of Operative Dentistry and Endodontics, Dental Faculty, University of Strasbourg, 67000 Strasbourg, France
| | - Srinivasan Vijaykumar
- Department of Radiation Oncology, University of Mississippi Medical Center, Jackson, MS 39216 USA ; Cancer Institute, University of Mississippi Medical Center, Jackson, MS 39216 USA
| | - Emad Kandil
- Departments of Surgery, Tulane University School of Medicine, New Orleans, LA 70112 USA
| | - Mohamed Hassan
- Department of Pathology, University of Mississippi Medical Center, Jackson, MS 39216 USA ; Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University, Kirrberger Str. 100, 66421 Homburg/Saar, Germany ; Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France ; Cancer Institute, University of Mississippi Medical Center, Jackson, MS 39216 USA
| |
Collapse
|
28
|
Hascitha J, Priya R, Jayavelu S, Dhandapani H, Selvaluxmy G, Sunder Singh S, Rajkumar T. Analysis of Kynurenine/Tryptophan ratio and expression of IDO1 and 2 mRNA in tumour tissue of cervical cancer patients. Clin Biochem 2016; 49:919-24. [DOI: 10.1016/j.clinbiochem.2016.04.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 03/16/2016] [Accepted: 04/15/2016] [Indexed: 12/12/2022]
|
29
|
Takamatsu M, Hirata A, Ohtaki H, Hoshi M, Ando T, Ito H, Hatano Y, Tomita H, Kuno T, Saito K, Seishima M, Hara A. Inhibition of indoleamine 2,3-dioxygenase 1 expression alters immune response in colon tumor microenvironment in mice. Cancer Sci 2015; 106:1008-15. [PMID: 26033215 PMCID: PMC4556390 DOI: 10.1111/cas.12705] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 05/11/2015] [Accepted: 05/25/2015] [Indexed: 12/13/2022] Open
Abstract
Indoleamine 2,3-dioxygenase (IDO), an enzyme that degrades the essential amino acid l-tryptophan along the kynurenine pathway, exerts immunomodulatory effects in a number of diseases. IDO expression is increased in tumor tissue and in draining lymph nodes; this increase is thought to play a role in tumor evasion by suppressing the immune response. A competitive inhibitor of IDO is currently being tested in clinical trials for the treatment of relapsed or refractory solid tumors, but the efficacy of IDO inhibition in colorectal tumors remains to be fully elucidated. In this study, we investigated the effect of IDO deficiency on colon tumorigenesis in mice by genetic deletion and pharmacological inhibition. Ido1-deficient(−/−) mice were crossed with ApcMin/+ mice or were administered azoxymethane with or without dextran sodium sulfate. Ido1 deficiency did not lead to significant differences in the size and number of colon tumors. Similarly, the pharmacological inhibition of IDO using 1-methyltryptophan (1-mT) also resulted in no significant differences in tumor size and number in ApcMin/+ mice. However, Ido1 deficiency altered the immune response in the tumor microenvironment, showing a significant increase in mRNA expression of pro-inflammatory cytokines and a significant decrease in the number of Foxp3-positive regulatory T cells in the colon tumors of Ido1(−/−) mice. Importantly, 1-mT treatment also significantly altered cytokine expression in the colon tumor tissues. These results suggest that IDO inhibition alone cannot sufficiently suppress colon cancer development in mice despite its immunomodulatory activity in the tumor microenvironment.
Collapse
Affiliation(s)
- Manabu Takamatsu
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Akihiro Hirata
- Division of Animal Experiment, Life Science Research Center, Gifu University, Gifu, Japan
| | - Hirofumi Ohtaki
- Department of Informative Clinical Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Masato Hoshi
- Faculty of Health Science, Suzuka University of Medical Science, Mie, Japan
| | - Tatsuya Ando
- Department of Informative Clinical Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Hiroyasu Ito
- Department of Informative Clinical Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Yuichiro Hatano
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Hiroyuki Tomita
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Toshiya Kuno
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Kuniaki Saito
- Human Health Sciences, Kyoto University Graduate School of Medicine and Faculty of Medicine, Kyoto, Japan
| | - Mitsuru Seishima
- Department of Informative Clinical Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Akira Hara
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| |
Collapse
|
30
|
Abstract
IDO1 (indoleamine 2,3-dioxygenase 1) is a member of a unique class of mammalian haem dioxygenases that catalyse the oxidative catabolism of the least-abundant essential amino acid, L-Trp (L-tryptophan), along the kynurenine pathway. Significant increases in knowledge have been recently gained with respect to understanding the fundamental biochemistry of IDO1 including its catalytic reaction mechanism, the scope of enzyme reactions it catalyses, the biochemical mechanisms controlling IDO1 expression and enzyme activity, and the discovery of enzyme inhibitors. Major advances in understanding the roles of IDO1 in physiology and disease have also been realised. IDO1 is recognised as a prominent immune regulatory enzyme capable of modulating immune cell activation status and phenotype via several molecular mechanisms including enzyme-dependent deprivation of L-Trp and its conversion into the aryl hydrocarbon receptor ligand kynurenine and other bioactive kynurenine pathway metabolites, or non-enzymatic cell signalling actions involving tyrosine phosphorylation of IDO1. Through these different modes of biochemical signalling, IDO1 regulates certain physiological functions (e.g. pregnancy) and modulates the pathogenesis and severity of diverse conditions including chronic inflammation, infectious disease, allergic and autoimmune disorders, transplantation, neuropathology and cancer. In the present review, we detail the current understanding of IDO1’s catalytic actions and the biochemical mechanisms regulating IDO1 expression and activity. We also discuss the biological functions of IDO1 with a focus on the enzyme's immune-modulatory function, its medical implications in diverse pathological settings and its utility as a therapeutic target.
Collapse
|