1
|
He C, Wang T, Han Y, Zuo C, Wang G. Jun-activated SOCS1 enhances ubiquitination and degradation of CCAAT/enhancer-binding protein β to ameliorate cerebral ischaemia/reperfusion injury. J Physiol 2024; 602:4959-4985. [PMID: 39197117 DOI: 10.1113/jp285673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 06/18/2024] [Indexed: 08/30/2024] Open
Abstract
This study investigates the molecular mechanisms behind ischaemia/reperfusion (I/R) injury in the brain, focusing on neuronal apoptosis. It scrutinizes the role of the Jun proto-oncogene in apoptosis, involvement of SOCS1 in neural precursor cell accumulation in ischaemic regions, and the upregulation of C-EBPβ in the hippocampus following I/R. Key to the study is understanding how Jun controls C-EBPβ degradation via SOCS1, potentially offering new clinical treatment avenues for I/R. Techniques such as mRNA sequencing, KEGG enrichment analysis and protein-protein interaction (PPI) in mouse models have indicated involvement of Jun (AP-1) in I/R-induced cerebral damage. The study employs middle cerebral artery occlusion in different mouse models and oxygen-glucose deprivation/reoxygenation in cortical neurons to examine the impacts of Jun and SOCS1 manipulation on cerebral I/R injury and neuronal damage. The findings reveal that I/R reduces Jun expression in the brain, but its restoration lessens cerebral I/R injury and neuron death. Jun activates SOCS1 transcriptionally, leading to C-EBPβ degradation, thereby diminishing cerebral I/R injury through the SOCS1/C-EBPβ pathway. These insights provide a deeper understanding of post-I/R cerebral injury mechanisms and suggest new therapeutic targets for cerebral I/R injury. KEY POINTS: Jun and SOCS1 are poorly expressed, and C-EBPβ is highly expressed in ischaemia/reperfusion mouse brain tissues. Jun transcriptionally activates SOCS1. SOCS1 promotes the ubiquitination-dependent C-EBPβ protein degradation. Jun blunts oxygen-glucose deprivation/reoxygenation-induced neuron apoptosis and alleviates neuronal injury. This study provides a theoretical basis for the management of post-I/R brain injury.
Collapse
Affiliation(s)
- Chuan He
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, P.R. China
| | - Tie Wang
- Department of Clinical Laboratory, The First Hospital of Jilin University, Changchun, P.R. China
| | - Yanwu Han
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, P.R. China
| | - Changyang Zuo
- Department of Neurosurgery, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, P.R. China
| | - Guangming Wang
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, P.R. China
| |
Collapse
|
2
|
Lei P, Wang X, Qu X, Qi R, Chen D, Chang Y. The expression of SOCS1 is regulated by promoter DNA methylation and is associated with mitochondria-mediated apoptosis of T-2 induced chondrocytes. Exp Cell Res 2024; 441:114152. [PMID: 38971518 DOI: 10.1016/j.yexcr.2024.114152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/31/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
At present, the function of SOCS1 in Kashin-Beck disease (KBD) has not been reported. This study aims to explore the expression and mechanism of SOCS1 in KBD, and provide theoretical basis for the prevention and treatment of KBD. The expression of SOCS1 were measured by qRT-PCR and Western blot. ELISA was used to detect the content of SOCS1 in serum and synovial fluid. CCK-8 kits were selected to measure the cell viability. Methylation Specific PCR (MSP) assay is used to detect the methylation level of SOCS1 in chondrocytes. Flow cytometry was used to analyze the apoptosis rate of chondrocytes in different groups. The expression of apoptosis related proteins (caspase-3 and caspase-9) and Cytochrome c were detected using Western blot. The mitochondrial ROS, ATP and the activity of mitochondrial respiratory chain complexes were detected using commercial kits. The results showed that the expression of SOCS1 significantly increases in KBD patients and T-2 induced chondrocytes. Further research has found that the methylation levels of SOCS1 were significantly reduced in KBD patients and T-2 induced chondrocytes. Functional studies have found that SOCS1 silencing inhibited chondrocyte apoptosis and mitochondrial dysfunction. More importantly, SOCS1 regulated mitochondrial mediated chondrocyte apoptosis through the IGF-1/IGF-1R/FAK/Drp1 pathway. In conclusion, SOCS1 expression is increased and methylation levels are decreased in KBD, and is involved in regulating mitochondrial mediated apoptosis in T-2 induced chondrocytes through IGF-1/IGF-1R/FAK/Drp1 signaling. This study provides new theoretical basis for the treatment and prevention of KBD in clinical practice.
Collapse
Affiliation(s)
- Pengzhen Lei
- Department of Orthopedics, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, China
| | - Xiaoqing Wang
- Nursing Department, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, China
| | - Xiaodong Qu
- Department of Orthopedics, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, China
| | - Rui Qi
- Department of Orthopedics, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, China
| | - Duanmingyu Chen
- Department of Orthopedics, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, China
| | - Yanhai Chang
- Department of Orthopedics, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, China.
| |
Collapse
|
3
|
Teng X, Mou DC, Li HF, Jiao L, Wu SS, Pi JK, Wang Y, Zhu ML, Tang M, Liu Y. SIGIRR deficiency contributes to CD4 T cell abnormalities by facilitating the IL1/C/EBPβ/TNF-α signaling axis in rheumatoid arthritis. Mol Med 2022; 28:135. [DOI: 10.1186/s10020-022-00563-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 10/28/2022] [Indexed: 11/19/2022] Open
Abstract
Abstract
Background
Rheumatoid arthritis (RA) is a complex autoimmune disease with multiple etiological factors, among which aberrant memory CD4 T cells activation plays a key role in the initiation and perpetuation of the disease. SIGIRR (single immunoglobulin IL-1R-related receptor), a member of the IL-1 receptor (ILR) family, acts as a negative regulator of ILR and Toll-like receptor (TLR) downstream signaling pathways and inflammation. The aim of this study was to investigate the potential roles of SIGIRR on memory CD4 T cells in RA and the underlying cellular and molecular mechanisms.
Methods
Single-cell transcriptomics and bulk RNA sequencing data were integrated to predict SIGIRR gene distribution on different immune cell types of human PBMCs. Flow cytometry was employed to determine the differential expression of SIGIRR on memory CD4 T cells between the healthy and RA cohorts. A Spearman correlation study was used to determine the relationship between the percentage of SIGIRR+ memory CD4 T cells and RA disease activity. An AIA mouse model (antigen-induced arthritis) and CD4 T cells transfer experiments were performed to investigate the effect of SIGIRR deficiency on the development of arthritis in vivo. Overexpression of SIGIRR in memory CD4 T cells derived from human PBMCs or mouse spleens was utilized to confirm the roles of SIGIRR in the intracellular cytokine production of memory CD4 T cells. Immunoblots and RNA interference were employed to understand the molecular mechanism by which SIGIRR regulates TNF-α production in CD4 T cells.
Results
SIGIRR was preferentially distributed by human memory CD4 T cells, as revealed by single-cell RNA sequencing. SIGIRR expression was substantially reduced in RA patient-derived memory CD4 T cells, which was inversely associated with RA disease activity and related to enhanced TNF-α production. SIGIRR-deficient mice were more susceptible to antigen-induced arthritis (AIA), which was attributed to unleashed TNF-α production in memory CD4 T cells, confirmed by decreased TNF-α production resulting from ectopic expression of SIGIRR. Mechanistically, SIGIRR regulates the IL-1/C/EBPβ/TNF-α signaling axis, as established by experimental evidence and cis-acting factor bioinformatics analysis.
Conclusion
Taken together, SIGIRR deficiency in memory CD4 T cells in RA raises the possibility that receptor induction can target key abnormalities in T cells and represents a potentially novel strategy for immunomodulatory therapy.
Collapse
|
4
|
Adipose-Derived Mesenchymal Stromal Cells Treated with Interleukin 1 Beta Produced Chondro-Protective Vesicles Able to Fast Penetrate in Cartilage. Cells 2021; 10:cells10051180. [PMID: 34066077 PMCID: PMC8151616 DOI: 10.3390/cells10051180] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/07/2021] [Accepted: 05/09/2021] [Indexed: 01/14/2023] Open
Abstract
The study of the miRNA cargo embedded in extracellular vesicles (EVs) released from adipose-derived mesenchymal stromal cells (ASC) preconditioned with IL-1β, an inflammatory stimulus driving osteoarthritis (OA), along with EVs-cartilage dynamic interaction represent poorly explored fields and are the purpose of the present research. ASCs were isolated from subcutaneous adipose tissue and EVs collected by ultracentrifugation. Shuttled miRNAs were scored by high-throughput screening and analyzed through bioinformatics approach that predicted the potentially modulated OA-related pathways. Fluorescently labeled EVs incorporation into OA cartilage explants was followed in vitro by time-lapse coherent anti-Stokes Raman scattering; second harmonic generation and two-photon excited fluorescence. After IL-1β preconditioning, 7 miRNA were up-regulated, 4 down-regulated, 37 activated and 17 silenced. Bioinformatics allowed to identify miRNAs and target genes mainly involved in Wnt, Notch, TGFβ and Indian hedgehog (IHH) pathways, cartilage homeostasis, immune/inflammatory responses, cell senescence and autophagy. As well, ASC-EVs steadily diffuse in cartilage cells and matrix, reaching a plateau 16 h after administration. Overall, ASCs preconditioned with IL-1β allows secretion of EVs embedded with a chondro-protective miRNA cargo, able to fast penetrate in collagen-rich areas of cartilage with tissue saturation in a day. Further functional studies exploring the EVs dose-effects are needed to achieve clinical relevance.
Collapse
|
5
|
Pang KL, Chow YY, Leong LM, Law JX, Ghafar NA, Soelaiman IN, Chin KY. Establishing SW1353 Chondrocytes as a Cellular Model of Chondrolysis. Life (Basel) 2021; 11:272. [PMID: 33805920 PMCID: PMC8064306 DOI: 10.3390/life11040272] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/14/2021] [Accepted: 03/23/2021] [Indexed: 01/16/2023] Open
Abstract
Osteoarthritis (OA) is the most common degenerative joint disease characterised by chondrocyte cell death. An in vitro model of chondrocyte cell death may facilitate drug discovery in OA management. In this study, the cytotoxicity and mode of cell death of SW1353 chondrocytes treated with 24 h of OA inducers, including interleukin-1β (IL-1β), hydrogen peroxide (H2O2) and monosodium iodoacetate (MIA), were investigated. The microscopic features, oxidative (isoprostane) and inflammatory markers (tumour necrosis factor-alpha; TNF-α) for control and treated cells were compared. Our results showed that 24 h of H2O2 and MIA caused oxidative stress and a concentration-dependent reduction of SW1353 cell viability without TNF-α level upregulation. H2O2 primarily induced chondrocyte apoptosis with the detection of blebbing formation, cell shrinkage and cellular debris. MIA induced S-phase arrest on chondrocytes with a reduced number of attached cells but without significant cell death. On the other hand, 24 h of IL-1β did not affect the cell morphology and viability of SW1353 cells, with a significant increase in intracellular TNF-α levels without inducing oxidative stress. In conclusion, each OA inducer exerts differential effects on SW1353 chondrocyte cell fate. IL-1β is suitable in the inflammatory study but not for chondrocyte cell death. H2O2 and MIA are suitable for inducing chondrocyte cell death and growth arrest, respectively.
Collapse
Affiliation(s)
- Kok-Lun Pang
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (K.-L.P.); (I.N.S.)
| | - Yoke Yue Chow
- Department of Orthopaedic and Trauma Medicine, Deanery of Clinical Sciences, The University of Edinburgh, Edinburgh EH16 4SB, UK;
| | - Lek Mun Leong
- Prima Nexus Sdn. Bhd., Kuala Lumpur 50470, Malaysia;
- Department of Biomedical Science, Faculty of Science, Lincoln University College, Petaling Jaya 47301, Malaysia
| | - Jia Xian Law
- Centre for Tissue Engineering and Regenerative Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur 56000, Malaysia;
| | - Norzana Abd Ghafar
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia;
| | - Ima Nirwana Soelaiman
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (K.-L.P.); (I.N.S.)
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (K.-L.P.); (I.N.S.)
| |
Collapse
|
6
|
Chen J, Sun J, Hu Y, Wan X, Wang Y, Gao M, Liang J, Liu T, Sun X. MicroRNA-191-5p ameliorates amyloid-β 1-40 -mediated retinal pigment epithelium cell injury by suppressing the NLRP3 inflammasome pathway. FASEB J 2021; 35:e21184. [PMID: 33715208 DOI: 10.1096/fj.202000645rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 10/12/2020] [Accepted: 10/28/2020] [Indexed: 12/13/2022]
Abstract
Amyloid β (Aβ) is a crucial component of drusen, the hallmark of the early stage of age-related macular degeneration (AMD), and can cause retinal pigment epithelium (RPE) cell damage through activation of the inflammatory response. MicroRNAs play a critical role in inflammation. However, the mechanism underlying the effect of microRNAs on the NLRP3 inflammasome induced by Aβ remains poorly understood. In the present study, we demonstrated that Aβ1-40 -mediated RPE damage by inducing a decrease in endogenous miR-191-5p expression. This led to the upregulation of its target gene, C/EBPβ. C/EBPβ acts as a transcription factor for NLRP3, promotes its transcription, and upregulates the downstream inflammatory factors Caspase-1 and IL-1β. Correspondingly, overexpression of miR-191-5p alleviated RPE cell injury by suppressing inflammation. The present study elucidates a novel transcriptional regulatory mechanism of the NLRP3 inflammasome. Our findings suggest an anti-inflammatory effect of miR-191-5p in Aβ1-40 -induced RPE impairment, shedding light on novel preventive or therapeutic approaches for AMD-associated RPE impairment.
Collapse
Affiliation(s)
- Jieqiong Chen
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China.,Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Junran Sun
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Yifan Hu
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China.,Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaoling Wan
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Yuwei Wang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China.,Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Min Gao
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China.,Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jian Liang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Te Liu
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaodong Sun
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China.,Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
7
|
Nam B, Park H, Lee YL, Oh Y, Park J, Kim SY, Weon S, Choi SH, Yang JH, Jo S, Kim TH. TGFβ1 Suppressed Matrix Mineralization of Osteoblasts Differentiation by Regulating SMURF1-C/EBPβ-DKK1 Axis. Int J Mol Sci 2020; 21:ijms21249771. [PMID: 33371439 PMCID: PMC7767413 DOI: 10.3390/ijms21249771] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/16/2020] [Accepted: 12/18/2020] [Indexed: 12/24/2022] Open
Abstract
Transforming growth factor β1 (TGFβ1) is a major mediator in the modulation of osteoblast differentiation. However, the underlying molecular mechanism is still not fully understood. Here, we show that TGFβ1 has a dual stage-dependent role in osteoblast differentiation; TGFβ1 induced matrix maturation but inhibited matrix mineralization. We discovered the underlying mechanism of the TGFβ1 inhibitory role in mineralization using human osteoprogenitors. In particular, the matrix mineralization-related genes of osteoblasts such as osteocalcin (OCN), Dickkopf 1 (DKK1), and CCAAT/enhancer-binding protein beta (C/EBPβ) were dramatically suppressed by TGFβ1 treatment. The suppressive effects of TGFβ1 were reversed with anti-TGFβ1 treatment. Mechanically, TGFβ1 decreased protein levels of C/EBPβ without changing mRNA levels and reduced both mRNA and protein levels of DKK1. The degradation of the C/EBPβ protein by TGFβ1 was dependent on the ubiquitin–proteasome pathway. TGFβ1 degraded the C/EBPβ protein by inducing the expression of the E3 ubiquitin ligase Smad ubiquitin regulatory factor 1 (SMURF1) at the transcript level, thereby reducing the C/EBPβ-DKK1 regulatory mechanism. Collectively, our findings suggest that TGFβ1 suppressed the matrix mineralization of osteoblast differentiation by regulating the SMURF1-C/EBPβ-DKK1 axis.
Collapse
Affiliation(s)
- Bora Nam
- Institute for Rheumatology Research, Hanyang University, Seoul 04763, Korea; (B.N.); (H.P.); (Y.L.L.); (Y.O.); (J.P.); (S.Y.K.); (S.W.)
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul 04763, Korea
| | - Hyosun Park
- Institute for Rheumatology Research, Hanyang University, Seoul 04763, Korea; (B.N.); (H.P.); (Y.L.L.); (Y.O.); (J.P.); (S.Y.K.); (S.W.)
- Department of Translational Medicine, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea
| | - Young Lim Lee
- Institute for Rheumatology Research, Hanyang University, Seoul 04763, Korea; (B.N.); (H.P.); (Y.L.L.); (Y.O.); (J.P.); (S.Y.K.); (S.W.)
| | - Younseo Oh
- Institute for Rheumatology Research, Hanyang University, Seoul 04763, Korea; (B.N.); (H.P.); (Y.L.L.); (Y.O.); (J.P.); (S.Y.K.); (S.W.)
| | - Jinsung Park
- Institute for Rheumatology Research, Hanyang University, Seoul 04763, Korea; (B.N.); (H.P.); (Y.L.L.); (Y.O.); (J.P.); (S.Y.K.); (S.W.)
- Department of Translational Medicine, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea
| | - So Yeon Kim
- Institute for Rheumatology Research, Hanyang University, Seoul 04763, Korea; (B.N.); (H.P.); (Y.L.L.); (Y.O.); (J.P.); (S.Y.K.); (S.W.)
- Department of Translational Medicine, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea
| | - Subin Weon
- Institute for Rheumatology Research, Hanyang University, Seoul 04763, Korea; (B.N.); (H.P.); (Y.L.L.); (Y.O.); (J.P.); (S.Y.K.); (S.W.)
- Department of Translational Medicine, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea
| | - Sung Hoon Choi
- Department of Orthopedic Surgery, Hanyang University Seoul Hospital, Seoul 04763, Korea;
| | - Jae-Hyuk Yang
- Department of Orthopedic Surgery, Hanyang University Guri Hospital, Guri 11923, Korea;
| | - Sungsin Jo
- Institute for Rheumatology Research, Hanyang University, Seoul 04763, Korea; (B.N.); (H.P.); (Y.L.L.); (Y.O.); (J.P.); (S.Y.K.); (S.W.)
- Correspondence: (S.J.); (T.-H.K.); Tel.: +82-2-2290-9248 (S.J.); +82-2-2290-9245 (T.-H.K.); Fax: +82-2-2298-8231 (S.J. & T.-H.K.)
| | - Tae-Hwan Kim
- Institute for Rheumatology Research, Hanyang University, Seoul 04763, Korea; (B.N.); (H.P.); (Y.L.L.); (Y.O.); (J.P.); (S.Y.K.); (S.W.)
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul 04763, Korea
- Department of Translational Medicine, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea
- Correspondence: (S.J.); (T.-H.K.); Tel.: +82-2-2290-9248 (S.J.); +82-2-2290-9245 (T.-H.K.); Fax: +82-2-2298-8231 (S.J. & T.-H.K.)
| |
Collapse
|
8
|
Jo S, Yoon S, Lee SY, Kim SY, Park H, Han J, Choi SH, Han JS, Yang JH, Kim TH. DKK1 Induced by 1,25D3 Is Required for the Mineralization of Osteoblasts. Cells 2020; 9:cells9010236. [PMID: 31963554 PMCID: PMC7017072 DOI: 10.3390/cells9010236] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/09/2020] [Accepted: 01/16/2020] [Indexed: 02/07/2023] Open
Abstract
1α,25-dihydroxyvitamin D3 (1,25D3), the most popular drug for osteoporosis treatment, drives osteoblast differentiation and bone mineralization. Wnt/β-catenin signaling is involved in commitment and differentiation of osteoblasts, but the role of the Dickkopf-related protein 1 (DKK1), a Wnt antagonist, in osteoblasts remains unknown. Here, we demonstrate the molecular mechanism of DKK1 induction by 1,25D3 and its physiological role during osteoblast differentiation. 1,25D3 markedly promoted the expression of both CCAAT/enhancer binding protein beta (C/EBPβ) and DKK1 at day 7 during osteoblast differentiation. Interestingly, mRNA and protein levels of C/EBPβ and DKK1 in osteoblasts were elevated by 1,25D3. We also found that C/EBPβ, in response to 1,25D3, directly binds to the human DKK1 promoter. Knockdown of C/EBPβ downregulated the expression of DKK1 in osteoblasts, which was partially reversed by 1,25D3. In contrast, overexpression of C/EBPβ upregulated DKK1 expression in osteoblasts, which was enhanced by 1,25D3. Furthermore, 1,25D3 treatment in osteoblasts stimulated secretion of DKK1 protein within the endoplasmic reticulum to extracellular. Intriguingly, blocking DKK1 attenuated calcified nodule formation in mineralized osteoblasts, but not ALP activity or collagen synthesis. Taken together, these observations suggest that 1,25D3 promotes the mineralization of osteoblasts through activation of DKK1 followed by an increase of C/EBPβ.
Collapse
Affiliation(s)
- Sungsin Jo
- Hanyang University Institute for Rheumatology Research, Seoul 04763, Korea; (S.J.); (S.Y.); (S.Y.K.); (H.P.)
| | - Subin Yoon
- Hanyang University Institute for Rheumatology Research, Seoul 04763, Korea; (S.J.); (S.Y.); (S.Y.K.); (H.P.)
- Department of Translational Medicine, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea
| | - So Young Lee
- Department of Biomedical Sciences, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea; (S.Y.L.); (J.-S.H.)
| | - So Yeon Kim
- Hanyang University Institute for Rheumatology Research, Seoul 04763, Korea; (S.J.); (S.Y.); (S.Y.K.); (H.P.)
| | - Hyosun Park
- Hanyang University Institute for Rheumatology Research, Seoul 04763, Korea; (S.J.); (S.Y.); (S.Y.K.); (H.P.)
| | | | - Sung Hoon Choi
- Department of Orthopaedic Surgery, Hanyang University Seoul Hospital, Seoul 04763, Korea;
| | - Joong-Soo Han
- Department of Biomedical Sciences, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea; (S.Y.L.); (J.-S.H.)
- Biomedical Research Institute and Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, Seoul 04763, Korea
| | - Jae-Hyuk Yang
- Department of Orthopaedic Surgery, Hanyang University Guri Hospital, Gyeonggi-do 11923, Korea;
| | - Tae-Hwan Kim
- Hanyang University Institute for Rheumatology Research, Seoul 04763, Korea; (S.J.); (S.Y.); (S.Y.K.); (H.P.)
- Department of Translational Medicine, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul 04763, Korea
- Correspondence: ; Tel.: +82-2-2290-9245; Fax: +82-2-2298-8231
| |
Collapse
|
9
|
Jo S, Lee YY, Han J, Lee YL, Yoon S, Lee J, Oh Y, Han JS, Sung IH, Park YS, Kim TH. CCAAT/enhancer-binding protein beta (C/EBPβ) is an important mediator of 1,25 dihydroxyvitamin D3 (1,25D3)-induced receptor activator of nuclear factor kappa-B ligand (RANKL) expression in osteoblasts. BMB Rep 2020. [PMID: 30355436 PMCID: PMC6605518 DOI: 10.5483/bmbrep.2019.52.6.166] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Receptor activator of nuclear factor kappa B ligand (RANKL) expression in osteoblasts is regulated by 1,25-dihydroxyvitamin D3 (1,25D3). CCAAT/enhancer-binding protein beta (C/EBPβ) has been proposed to function as a transcription factor and upregulate RANKL expression, but it is still uncertain how C/EBPβ is involved in 1,25D3-induced RANKL expression of osteoblasts. 1,25D3 stimulation increased the expression of RANKL and C/EPBβ genes in osteoblasts and enhanced phosphorylation and stability of these proteins. Moreover, induction of RANKL expression by 1,25D3 in osteoblasts was downregulated upon knockdown of C/EBPβ. In contrast, C/EBPβ overexpression directly upregulated RANKL promoter activity and exhibited a synergistic effect on 1,25D3-induced RANKL expression. In particular, 1,25D3 treatment of osteoblasts increased C/EBPβ protein binding to the RANKL promoter. In conclusion, C/EBPβ is required for induction of RANKL by 1,25D3. [BMB Reports 2019; 52(6): 391-396].
Collapse
Affiliation(s)
- Sungsin Jo
- Hanyang University Hospital for Rheumatic Diseases, Seoul 04763, Korea
| | - Yun Young Lee
- Department of Biomedical Sciences, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea
| | | | - Young Lim Lee
- Hanyang University Hospital for Rheumatic Diseases, Seoul 04763, Korea
| | - Subin Yoon
- Hanyang University Hospital for Rheumatic Diseases, Seoul 04763, Korea; Department of Translational Medicine, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea
| | - Jaehyun Lee
- Hanyang University Hospital for Rheumatic Diseases, Seoul 04763, Korea; Department of Translational Medicine, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea
| | - Younseo Oh
- Hanyang University Hospital for Rheumatic Diseases, Seoul 04763, Korea; Department of Translational Medicine, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea
| | - Joong-Soo Han
- Hanyang University Hospital for Rheumatic Diseases, Seoul 04763, Korea; Department of Translational Medicine, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea
| | - Il-Hoon Sung
- Department of Orthopedic Surgery, Hanyang University Hospital, Seoul 04763, Korea
| | - Ye-Soo Park
- Department of Orthopedic Surgery, Hanyang University Hospital, Seoul 04763, Korea
| | - Tae-Hwan Kim
- Hanyang University Hospital for Rheumatic Diseases, Seoul 04763, Korea
| |
Collapse
|
10
|
Ji B, Ma Y, Wang H, Fang X, Shi P. Activation of the P38/CREB/MMP13 axis is associated with osteoarthritis. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:2195-2204. [PMID: 31308631 PMCID: PMC6613348 DOI: 10.2147/dddt.s209626] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 06/04/2019] [Indexed: 12/27/2022]
Abstract
Purposes Osteoarthritis (OA) is a common joint disease characterized by the degradation of articular cartilage and joint inflammation. Interleukin-1ß induces P38/cAMP response element binding protein (CREB) pathway activation, resulting in increased expression of matrix metallopeptidase-13 (MMP13) in chondrocytes. However, the role of the P38/CREB/MMP13 axis is unclear in the progression of OA. In this study, we aimed to answer the following questions: (1) how does the P38/CREB/MMP13 axis in cartilage from patients with OA compare with control specimens? (2) Can the P38 agonist anisomycin (ANS) induce mouse OA? Materials and methods Surgical specimens of human cartilage were divided into OA and control groups. Surgical specimens of mouse cartilage were divided into control and ANS-induced groups. Safranin O staining of the cartilage tissues was performed to evaluate the extracellular matrix. Reverse transcription-polymerase chain reaction was performed using these tissues to investigate messenger RNA expressions of type II collagen, aggrecan, MMP13, and ADAM metallopeptidase with thrombospondin type 1 motif 5. Phosphorylated (p)-P38, p-CREB, and MMP13 were evaluated by Western blot analysis. Anisomycin was used to activate P38, and p-P38, p-CREB, and MMP13 were evaluated by immunofluorescence and Western blot analysis. Results Safranin O staining showed that the extracellular matrix degraded in humans with OA and ANS-induced mouse cartilage samples. The expressions of p-P38, p-CREB, and MMP13 were all upregulated in osteoarthritic cartilage or anisomycin-induced chondrocytes, suggesting that the P38/CREB/MMP13 axis may play a role in the progression of OA. Conclusions The P38/CREB/MMP13 axis is active in osteoarthritic chondrocytes and may cause the degeneration of cartilage. Effective new therapy directed against this pathway could be developed.
Collapse
Affiliation(s)
- Bin Ji
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang Province 310016, People's Republic of China.,Department of Orthopaedic Surgery, First Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang Province 314000, People's Republic of China
| | - Yan Ma
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang Province 310016, People's Republic of China
| | - Haimin Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang Province 310016, People's Republic of China.,Orthopedics Department, Taizhou Bo Ai Hospital, Taizhou, Zhejiang Province 318050, People's Republic of China
| | - Xiangqian Fang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang Province 310016, People's Republic of China
| | - Peihua Shi
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang Province 310016, People's Republic of China
| |
Collapse
|
11
|
Yan S, Jiang C, Li H, Li D, Dong W. FAM3A protects chondrocytes against interleukin-1β-induced apoptosis through regulating PI3K/Akt/mTOR pathway. Biochem Biophys Res Commun 2019; 516:209-214. [PMID: 31208715 DOI: 10.1016/j.bbrc.2019.06.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 06/03/2019] [Indexed: 10/26/2022]
Abstract
Chondrocyte death due to apoptosis is central for osteoarthritis (OA) pathogenesis. The family with sequence similarity 3A (FAM3A) is a mitochondrial protein that plays an important role for cellular adaptation to stress and cell survival. Yet, whether FAM3A is associated with chondrocyte apoptosis and OA pathogenesis remains uncharacterized. In this study, we found that FAM3A expression was downregulated in cartilage tissue from an experimental OA mouse model. Besides, FAM3A expression was also reduced in chondrocytes treated with interleukin-1β (IL-1β), an inflammatory cytokine that promotes cartilage degradation. Moreover, we discovered that FAM3A attenuated chondrocyte apoptosis induced by IL-1β treatment in vitro, suggesting a protective effect of FAM3A against chondrocyte apoptosis. Moreover, mechanistically, FAM3A activated PI3K/Akt/mTOR pathway in IL-1β-treated chondrocytes, and blockade of PI3K/Akt/mTOR pathway with specific inhibitors, wortmannin and LY294002, diminished FAM3A effect on IL-1β-induced chondrocyte apoptosis, hence demonstrating that FAM3A attenuates IL-1β-induced chondrocyte apoptosis through activating the pro-survival PI3K/Akt/mTOR pathway. In conclusion, our study may identify FAM3A as a potential regulator of chondrocyte apoptosis involved in OA pathogenesis.
Collapse
Affiliation(s)
- Song Yan
- Bone and Joint Surgery, Shenzhen Baoan Shiyan People's Hospital, China
| | - Changqing Jiang
- Department of Sports Medicine, Peking University Shenzhen Hospital, China
| | - Hong Li
- Department of General Surgery, People's Hospital of Baoan District, China
| | - Deyan Li
- Bone and Joint Surgery, Shenzhen Baoan Shiyan People's Hospital, China
| | - Wei Dong
- Bone and Joint Surgery, Shenzhen Baoan Shiyan People's Hospital, China.
| |
Collapse
|
12
|
Hu K, Jiang W, Sun H, Li Z, Rong G, Yin Z. Long noncoding RNA ZBED3‐AS1 induces the differentiation of mesenchymal stem cells and enhances bone regeneration by repressing IL‐1β via Wnt/β‐catenin signaling pathway. J Cell Physiol 2019; 234:17863-17875. [DOI: 10.1002/jcp.28416] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/01/2019] [Accepted: 02/14/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Kongzu Hu
- Department of Orthopaedics The First Affiliated Hospital of Anhui Medical University Hefei Anhui P. R. China
| | - Wei Jiang
- Department of Orthopaedics The First Affiliated Hospital of Anhui Medical University Hefei Anhui P. R. China
| | - Heyan Sun
- Department of Orthopaedics The First Affiliated Hospital of Anhui Medical University Hefei Anhui P. R. China
| | - Zhenwei Li
- Department of Orthopaedics The First Affiliated Hospital of Anhui Medical University Hefei Anhui P. R. China
| | - Genxiang Rong
- Department of Orthopaedics The First Affiliated Hospital of Anhui Medical University Hefei Anhui P. R. China
| | - Zongsheng Yin
- Department of Orthopaedics The First Affiliated Hospital of Anhui Medical University Hefei Anhui P. R. China
| |
Collapse
|
13
|
Jenei-Lanzl Z, Meurer A, Zaucke F. Interleukin-1β signaling in osteoarthritis - chondrocytes in focus. Cell Signal 2018; 53:212-223. [PMID: 30312659 DOI: 10.1016/j.cellsig.2018.10.005] [Citation(s) in RCA: 259] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 10/07/2018] [Accepted: 10/08/2018] [Indexed: 12/20/2022]
Abstract
Osteoarthritis (OA) can be regarded as a chronic, painful and degenerative disease that affects all tissues of a joint and one of the major endpoints being loss of articular cartilage. In most cases, OA is associated with a variable degree of synovial inflammation. A variety of different cell types including chondrocytes, synovial fibroblasts, adipocytes, osteoblasts and osteoclasts as well as stem and immune cells are involved in catabolic and inflammatory processes but also in attempts to counteract the cartilage loss. At the molecular level, these changes are regulated by a complex network of proteolytic enzymes, chemokines and cytokines (for review: [1]). Here, interleukin-1 signaling (IL-1) plays a central role and its effects on the different cell types involved in OA are discussed in this review with a special focus on the chondrocyte.
Collapse
Affiliation(s)
- Zsuzsa Jenei-Lanzl
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Orthopaedic University Hospital Friedrichsheim, Frankfurt/Main, Germany
| | - Andrea Meurer
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Orthopaedic University Hospital Friedrichsheim, Frankfurt/Main, Germany
| | - Frank Zaucke
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Orthopaedic University Hospital Friedrichsheim, Frankfurt/Main, Germany.
| |
Collapse
|
14
|
Ha YJ, Choi YS, Han DW, Kang EH, Yoo IS, Kim JH, Kang SW, Lee EY, Song YW, Lee YJ. PIM-1 kinase is a novel regulator of proinflammatory cytokine-mediated responses in rheumatoid arthritis fibroblast-like synoviocytes. Rheumatology (Oxford) 2018; 58:154-164. [DOI: 10.1093/rheumatology/key261] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Indexed: 12/27/2022] Open
Affiliation(s)
- You-Jung Ha
- Division of Rheumatology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Yong Seok Choi
- Medical Science Research Institute, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Dong Woo Han
- Department of Translational Medicine, College of Medicine, Seoul National University, Seoul, Korea
| | - Eun Ha Kang
- Division of Rheumatology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - In Seol Yoo
- Daejeon Rheumatoid & Degenerative Arthritis Center, Chungnam National University Hospital, Daejeon, Korea
| | - Jin Hyun Kim
- Daejeon Rheumatoid & Degenerative Arthritis Center, Chungnam National University Hospital, Daejeon, Korea
| | - Seong Wook Kang
- Daejeon Rheumatoid & Degenerative Arthritis Center, Chungnam National University Hospital, Daejeon, Korea
| | - Eun Young Lee
- Department of Internal Medicine, Medical Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Yeong Wook Song
- Department of Internal Medicine, Medical Research Institute, Seoul National University College of Medicine, Seoul, Korea
- WCU Department of Molecular Medicine and Biopharmaceutical Sciences, Medical Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Yun Jong Lee
- Division of Rheumatology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Translational Medicine, College of Medicine, Seoul National University, Seoul, Korea
- Department of Internal Medicine, Medical Research Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
15
|
Singh P, Marcu KB, Goldring MB, Otero M. Phenotypic instability of chondrocytes in osteoarthritis: on a path to hypertrophy. Ann N Y Acad Sci 2018; 1442:17-34. [PMID: 30008181 DOI: 10.1111/nyas.13930] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/11/2018] [Accepted: 06/21/2018] [Indexed: 12/24/2022]
Abstract
Articular chondrocytes are quiescent, fully differentiated cells responsible for the homeostasis of adult articular cartilage by maintaining cellular survival functions and the fine-tuned balance between anabolic and catabolic functions. This balance requires phenotypic stability that is lost in osteoarthritis (OA), a disease that affects and involves all joint tissues and especially impacts articular cartilage structural integrity. In OA, articular chondrocytes respond to the accumulation of injurious biochemical and biomechanical insults by shifting toward a degradative and hypertrophy-like state, involving abnormal matrix production and increased aggrecanase and collagenase activities. Hypertrophy is a necessary, transient developmental stage in growth plate chondrocytes that culminates in bone formation; in OA, however, chondrocyte hypertrophy is catastrophic and it is believed to initiate and perpetuate a cascade of events that ultimately result in permanent cartilage damage. Emphasizing changes in DNA methylation status and alterations in NF-κB signaling in OA, this review summarizes the data from the literature highlighting the loss of phenotypic stability and the hypertrophic differentiation of OA chondrocytes as central contributing factors to OA pathogenesis.
Collapse
Affiliation(s)
- Purva Singh
- HSS Research Institute, Hospital for Special Surgery, New York, New York
| | - Kenneth B Marcu
- Biochemistry and Cell Biology Department, Stony Brook University, Stony Brook, New York
| | - Mary B Goldring
- HSS Research Institute, Hospital for Special Surgery, New York, New York.,Department of Cell and Developmental Biology, Weill Cornell Medical College and Weill Cornell Graduate School of Medical Sciences, New York, New York
| | - Miguel Otero
- HSS Research Institute, Hospital for Special Surgery, New York, New York
| |
Collapse
|
16
|
Colliou N, Ge Y, Sahay B, Gong M, Zadeh M, Owen JL, Neu J, Farmerie WG, Alonzo F, Liu K, Jones DP, Li S, Mohamadzadeh M. Commensal Propionibacterium strain UF1 mitigates intestinal inflammation via Th17 cell regulation. J Clin Invest 2017; 127:3970-3986. [PMID: 28945202 PMCID: PMC5663347 DOI: 10.1172/jci95376] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 08/02/2017] [Indexed: 12/21/2022] Open
Abstract
Consumption of human breast milk (HBM) attenuates the incidence of necrotizing enterocolitis (NEC), which remains a leading and intractable cause of mortality in preterm infants. Here, we report that this diminution correlates with alterations in the gut microbiota, particularly enrichment of Propionibacterium species. Transfaunation of microbiota from HBM-fed preterm infants or a newly identified and cultured Propionibacterium strain, P. UF1, to germfree mice conferred protection against pathogen infection and correlated with profound increases in intestinal Th17 cells. The induction of Th17 cells was dependent on bacterial dihydrolipoamide acetyltransferase (DlaT), a major protein expressed on the P. UF1 surface layer (S-layer). Binding of P. UF1 to its cognate receptor, SIGNR1, on dendritic cells resulted in the regulation of intestinal phagocytes. Importantly, transfer of P. UF1 profoundly mitigated induced NEC-like injury in neonatal mice. Together, these results mechanistically elucidate the protective effects of HBM and P. UF1-induced immunoregulation, which safeguard against proinflammatory diseases, including NEC.
Collapse
Affiliation(s)
- Natacha Colliou
- Department of Infectious Diseases and Immunology
- Division of Gastroenterology, Hepatology & Nutrition, Department of Medicine
| | - Yong Ge
- Department of Infectious Diseases and Immunology
- Division of Gastroenterology, Hepatology & Nutrition, Department of Medicine
| | - Bikash Sahay
- Department of Infectious Diseases and Immunology
| | - Minghao Gong
- Department of Infectious Diseases and Immunology
- Division of Gastroenterology, Hepatology & Nutrition, Department of Medicine
| | - Mojgan Zadeh
- Department of Infectious Diseases and Immunology
- Division of Gastroenterology, Hepatology & Nutrition, Department of Medicine
| | | | - Josef Neu
- Division of Neonatology, Department of Pediatrics, and
| | - William G. Farmerie
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, Florida, USA
| | - Francis Alonzo
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| | - Ken Liu
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Dean P. Jones
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Shuzhao Li
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Mansour Mohamadzadeh
- Department of Infectious Diseases and Immunology
- Division of Gastroenterology, Hepatology & Nutrition, Department of Medicine
| |
Collapse
|
17
|
SOCS1 Regulates Apoptosis and Inflammation by Inhibiting IL-4 Signaling in IL-1 β-Stimulated Human Osteoarthritic Chondrocytes. BIOMED RESEARCH INTERNATIONAL 2017; 2017:4601959. [PMID: 28373981 PMCID: PMC5360958 DOI: 10.1155/2017/4601959] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 02/02/2017] [Accepted: 02/15/2017] [Indexed: 12/20/2022]
Abstract
Recently, Suppressor of Cytokine Signaling 1 (SOCS1) was identified as a potential therapeutic target for osteoarthritis (OA) treatment. However, the mechanisms and signaling pathways of SOCS1 in the regulation of OA development are unclear. The purpose of the current study was to investigate whether interleukin- (IL-) 4 was involved in regulatory mechanism of SOCS1 in human osteoarthritic chondrocytes. First, IL-1β was used to stimulate human osteoarthritic chondrocytes isolated from the articular cartilage of OA patients undergoing total knee replacement. The protein and mRNA expression levels of SOCS1 were upregulated in IL-1β-stimulated human osteoarthritic chondrocytes compared with control cells. The knockdown of SOCS1 increased cell viability and inhibited cell apoptosis. It was also found that IL-4 expression was increased by SOCS1 silencing. Additionally, knockdown of IL-4 reduced cell viability and increased cell apoptosis of osteoarthritic chondrocytes transfected with SOCS1 siRNA. Moreover, the decreased expression of inflammatory factors induced by SOCS1 was enhanced by IL-4 knockdown. In conclusion, IL-4 signaling plays a crucial role in the regulatory functions of SOCS1 in apoptosis and inflammation in human osteoarthritic chondrocytes. These findings provide a potential therapeutic target for the clinical treatment of OA.
Collapse
|