1
|
Wu M, Fletcher EL, Chinnery HR, Downie LE, Mueller SN. Redefining our vision: an updated guide to the ocular immune system. Nat Rev Immunol 2024; 24:896-911. [PMID: 39215057 DOI: 10.1038/s41577-024-01064-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2024] [Indexed: 09/04/2024]
Abstract
Balanced immune responses in the eyes are crucial to preserve vision. The ocular immune system has long been considered distinct, owing to the so-called 'immune privilege' of its component tissues. More recently, intravital imaging and transcriptomic techniques have reshaped scientific understanding of the ocular immune landscape, such as revealing the specialization of immune cell populations in the various tissues of the eye. As knowledge of the phenotypes of corneal and retinal immune cells has evolved, links to both the systemic immune system, and the central and peripheral nervous systems, have been identified. Using intravital imaging, T cells have recently been found to reside in, and actively patrol, the healthy human cornea. Disease-associated retinal microglia with links to retinal degeneration have also been identified. This Review provides an updated guide to the ocular immune system, highlighting current knowledge of the immune cells that are present in steady-state and specific diseased ocular tissues, as well as evidence for their relationship to systemic disease. In addition, we discuss emerging intravital imaging techniques that can be used to visualize immune cell morphology and dynamics in living human eyes and how these could be applied to advance understanding of the human immune system.
Collapse
Affiliation(s)
- Mengliang Wu
- Department of Optometry and Vision Sciences, The University of Melbourne, Carlton, Victoria, Australia
- Department of Microbiology and Immunology, The University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Erica L Fletcher
- Department of Anatomy and Physiology, The University of Melbourne, Carlton, Victoria, Australia
| | - Holly R Chinnery
- Department of Optometry and Vision Sciences, The University of Melbourne, Carlton, Victoria, Australia.
- Lions Eye Institute, Nedlands, Western Australia, Australia.
- Optometry, The University of Western Australia, Crawley, Western Australia, Australia.
| | - Laura E Downie
- Department of Optometry and Vision Sciences, The University of Melbourne, Carlton, Victoria, Australia.
| | - Scott N Mueller
- Department of Microbiology and Immunology, The University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia.
| |
Collapse
|
2
|
Dabouz R, Abram P, Rivera JC, Chemtob S. Mast cells promote choroidal neovascularization in a model of age-related macular degeneration. J Neuroinflammation 2024; 21:247. [PMID: 39354493 PMCID: PMC11443945 DOI: 10.1186/s12974-024-03229-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 09/10/2024] [Indexed: 10/03/2024] Open
Abstract
'Wet' age-related macular degeneration (AMD) is characterized by pathologic choroidal neovascularization (CNV) that destroys central vision. Abundant evidence points to inflammation and immune cell dysfunction in the progression of CNV in AMD. Mast cells are resident immune cells that control the inflammatory response. Mast cells accumulate and degranulate in the choroid of patients with AMD, suggesting they play a role in CNV. Activated mast cells secrete various biologically active mediators, including inflammatory cytokines and proteolytic enzymes such as tryptase. We investigated the role of mast cells in AMD using a model of CNV. Conditioned media from activated mast cells exerts proangiogenic effects on choroidal endothelial cells and choroidal explants. Laser-induced CNV in vivo was markedly attenuated in mice genetically depleted of mast cells (KitW-sh/W-sh) and in wild-type mice treated with mast cell stabilizer, ketotifen fumarate. Tryptase was found to elicit pronounced choroidal endothelial cell sprouting, migration and tubulogenesis; while tryptase inhibition diminished CNV. Transcriptomic analysis of laser-treated RPE/choroid complex revealed collagen catabolism and extracellular matrix (ECM) reorganization as significant events correlated in clusters of mast cell activation. Consistent with these analyses, compared to wildtype mice choroids of laser-treated mast cell-deficient mice displayed less ECM remodelling evaluated using collagen hybridizing peptide tissue binding. Findings herein provide strong support for mast cells as key players in the progression of pathologic choroidal angiogenesis and as potential therapeutic targets to prevent pathological neovascularization in 'wet' AMD.
Collapse
Affiliation(s)
- Rabah Dabouz
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada.
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Centre, Montreal, QC, Canada.
| | - Pénélope Abram
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Centre, Montreal, QC, Canada
- Department of Pharmacology, University of Montreal, Montreal, QC, Canada
| | - Jose Carlos Rivera
- CHU-Sainte Justine Research Center, Montreal, QC, Canada
- Department of Ophthalmology, University of Montreal, Montreal, QC, Canada
| | - Sylvain Chemtob
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada.
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Centre, Montreal, QC, Canada.
- Department of Ophthalmology, University of Montreal, Montreal, QC, Canada.
| |
Collapse
|
3
|
Etebar F, Whatmore P, Harkin DG, Dando SJ. Tissue-Specific Immune Transcriptional Signatures in the Bordering Tissues of the Mouse Retina and Brain. Invest Ophthalmol Vis Sci 2024; 65:42. [PMID: 39466230 PMCID: PMC11514940 DOI: 10.1167/iovs.65.12.42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/25/2024] [Indexed: 10/29/2024] Open
Abstract
Purpose Bordering the central nervous system (CNS) parenchyma are the choroid (underlying the retina) and the leptomeninges (the inner layers of the meninges enveloping the brain). Although near the neural parenchyma, the choroid and leptomeninges are external to the immune privileged environment of the retina and brain and thus are distinct immune compartments. This study aimed to characterize the transcriptomic signatures of immune cells within the choroid and leptomeninges bordering the healthy adult mouse CNS. Methods Eyes and brains were obtained from 7-week-old C57Bl/6J mice. Choroid and leptomeninges were processed for isolation of CD45+ immune cells and single cell RNA-sequencing. Additionally, single cell RNA-sequencing was performed on immune cells isolated from choroid obtained from human donor eye tissue. Immunostaining and confocal microscopy of wholemount tissue were used to validate selected immune cell populations in situ. Results A total of 3606 cells were sequenced from mouse tissues, including 2125 CD45+ cells from choroid and 1481 CD45+ cells from leptomeninges. Clustering and differential gene expression analysis revealed heterogeneous subtypes of monocytes/macrophages, dendritic cells, T cells, and B cells. Whereas some clusters were common to both choroid and leptomeninges, others exhibited tissue-specific gene expression profiles and potential functional specializations. Analysis of 6501 CD45+ cells sequenced from human choroid identified similar immune cell populations to mouse choroid. Conclusions This study provides a detailed characterization of the molecular signatures of immune cells within the vascular connective tissues bordering the healthy retina and brain, and their potential roles in immune protection.
Collapse
Affiliation(s)
- Fazeleh Etebar
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia
| | - Paul Whatmore
- eResearch Office, Research Infrastructure, Queensland University of Technology, Brisbane, Australia
| | - Damien G. Harkin
- Centre for Vision and Eye Research, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia
| | - Samantha J. Dando
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia
- Centre for Vision and Eye Research, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
4
|
Gill K, Yoo HS, Chakravarthy H, Granville DJ, Matsubara JA. Exploring the role of granzyme B in subretinal fibrosis of age-related macular degeneration. Front Immunol 2024; 15:1421175. [PMID: 39091492 PMCID: PMC11291352 DOI: 10.3389/fimmu.2024.1421175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/02/2024] [Indexed: 08/04/2024] Open
Abstract
Age-related macular degeneration (AMD), a prevalent and progressive degenerative disease of the macula, is the leading cause of blindness in elderly individuals in developed countries. The advanced stages include neovascular AMD (nAMD), characterized by choroidal neovascularization (CNV), leading to subretinal fibrosis and permanent vision loss. Despite the efficacy of anti-vascular endothelial growth factor (VEGF) therapy in stabilizing or improving vision in nAMD, the development of subretinal fibrosis following CNV remains a significant concern. In this review, we explore multifaceted aspects of subretinal fibrosis in nAMD, focusing on its clinical manifestations, risk factors, and underlying pathophysiology. We also outline the potential sources of myofibroblast precursors and inflammatory mechanisms underlying their recruitment and transdifferentiation. Special attention is given to the potential role of mast cells in CNV and subretinal fibrosis, with a focus on putative mast cell mediators, tryptase and granzyme B. We summarize our findings on the role of GzmB in CNV and speculate how GzmB may be involved in the pathological transition from CNV to subretinal fibrosis in nAMD. Finally, we discuss the advantages and drawbacks of animal models of subretinal fibrosis and pinpoint potential therapeutic targets for subretinal fibrosis.
Collapse
Affiliation(s)
- Karanvir Gill
- Department of Ophthalmology and Visual Sciences, University of British Columbia (UBC), Vancouver, BC, Canada
| | - Hyung-Suk Yoo
- Department of Ophthalmology and Visual Sciences, University of British Columbia (UBC), Vancouver, BC, Canada
| | - Harshini Chakravarthy
- Department of Ophthalmology and Visual Sciences, University of British Columbia (UBC), Vancouver, BC, Canada
| | - David J. Granville
- International Collaboration on Repair Discoveries (ICORD), Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Joanne A. Matsubara
- Department of Ophthalmology and Visual Sciences, University of British Columbia (UBC), Vancouver, BC, Canada
| |
Collapse
|
5
|
Zhang W, Kaser-Eichberger A, Fan W, Platzl C, Schrödl F, Heindl LM. The structure and function of the human choroid. Ann Anat 2024; 254:152239. [PMID: 38432349 DOI: 10.1016/j.aanat.2024.152239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
In this manuscript, the structure of the human choroid is reviewed with emphasis of the macro- and microscopic anatomy including Bruch's membrane, choriocapillaris, Sattler's and Haller's layer, and the suprachoroid. We here discuss the development of the choroid, as well as the question of choroidal lymphatics, and further the neuronal control of this tissue, as well as the pathologic angiogenesis. Wherever possible, functional aspects of the various structures are included and reviewed.
Collapse
Affiliation(s)
- Weina Zhang
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Alexandra Kaser-Eichberger
- Center for Anatomy and Cell Biology, Institute of Anatomy and Cell Biology -Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Wanlin Fan
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Christian Platzl
- Center for Anatomy and Cell Biology, Institute of Anatomy and Cell Biology -Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Falk Schrödl
- Center for Anatomy and Cell Biology, Institute of Anatomy and Cell Biology -Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Ludwig M Heindl
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.
| |
Collapse
|
6
|
Ribatti D, Dammacco R. Mast cells in human choroid and their role in age-related macular degeneration (AMD). Clin Exp Med 2024; 24:98. [PMID: 38727918 PMCID: PMC11087330 DOI: 10.1007/s10238-024-01361-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024]
Abstract
The role of mast cells in physiologic and pathological processes extends far beyond the allergy processes: they are involved in wound healing, chronic inflammation, and tumor growth. This short article emphasizes the role played by mast cells in age-related macular degeneration (AMD). Mast cells can induce angiogenesis and are present around Bruch's membrane during the early and late stages of choroidal neovascularization in AMD. Proteolytic enzymes released by mast cells lead to thinning of the choroid in AMD as well as degradation of vascular basement membranes and Bruch's membrane, which in turn could result in retinal pigment epithelial death and choriocapillaris degeneration in geographical atrophy and exudative AMD.
Collapse
Affiliation(s)
- Domenico Ribatti
- Department of Translational Biomedicine and Neuroscience, University of Bari Medical School, Bari, Italy.
| | - Rosanna Dammacco
- Department of Translational Biomedicine and Neuroscience, University of Bari Medical School, Bari, Italy
| |
Collapse
|
7
|
Scuderi L, Fragiotta S, Di Pippo M, Abdolrahimzadeh S. The Role of Diabetic Choroidopathy in the Pathogenesis and Progression of Diabetic Retinopathy. Int J Mol Sci 2023; 24:10167. [PMID: 37373315 DOI: 10.3390/ijms241210167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Diabetic choroidopathy was first described on histopathological specimens of diabetic eyes. This alteration was characterized by the accumulation of PAS-positive material within the intracapillary stroma. Inflammation and polymorphonuclear neutrophils (PMNs) activation are crucial elements in choriocapillaris impairment. The evidence of diabetic choroidopathy in vivo was confirmed with multimodal imaging, which provides key quantitative and qualitative features to characterize the choroidal involvement. The choroid can be virtually affected in each vascular layer, from Haller's layer to the choriocapillaris. However, the damage on the outer retina and photoreceptor cells is essentially driven by a choriocapillaris deficiency, which can be assessed through optical coherence tomography angiography (OCTA). The identification of characteristic features of diabetic choroidopathy can be significant for understanding the potential pathogenic and prognostic implications in diabetic retinopathy.
Collapse
Affiliation(s)
- Luca Scuderi
- Department of Sense Organs, Sapienza University of Rome, 00161 Rome, Italy
| | - Serena Fragiotta
- Ophthalmology Unit, Neurosciences, Mental Health, and Sensory Organs (NESMOS) Department, Sapienza University of Rome, Via di Grottarossa 1035/1039, 00189 Rome, Italy
- UOC Ophthalmology, Department of Surgical Areas, S.M. Goretti Hospital, 04100 Latina, Italy
| | - Mariachiara Di Pippo
- Ophthalmology Unit, Neurosciences, Mental Health, and Sensory Organs (NESMOS) Department, Sapienza University of Rome, Via di Grottarossa 1035/1039, 00189 Rome, Italy
| | - Solmaz Abdolrahimzadeh
- Ophthalmology Unit, Neurosciences, Mental Health, and Sensory Organs (NESMOS) Department, Sapienza University of Rome, Via di Grottarossa 1035/1039, 00189 Rome, Italy
- St. Andrea Hospital, Via di Grottarossa 1035/1039, 00189 Rome, Italy
| |
Collapse
|
8
|
Bai A, Sharma A, Chiang MY. Proliferative Vitreoretinopathy Following Transscleral Diode Cyclophotocoagulation. J Glaucoma 2023; 32:e66-e68. [PMID: 37054434 DOI: 10.1097/ijg.0000000000002222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/18/2023] [Indexed: 04/15/2023]
Abstract
PRCIS Transscleral diode laser cyclophotocoagulation may trigger the development of proliferative vitreoretinopathy. Our article demonstrates one such case leading to tractional macula-off retinal detachment in a child with aphakic glaucoma. PURPOSE The purpose of this article is to describe a case of proliferative vitreoretinopathy (PVR) developing subsequent to transscleral diode laser cyclophotocoagulation (cyclodiode) in a pediatric patient with aphakic glaucoma. PVR most commonly occurs following rhegmatogenous retinal detachment repair; however, to the best of our knowledge, it has never been reported to appear after cyclodiode. METHODS Retrospective evaluation of case presentation and intraoperative findings. RESULTS A 13-year-old girl with aphakic glaucoma presented 4 months after cyclodiode of the right eye with a retrolental fibrovascular membrane and anterior PVR. The PVR extended posteriorly over the next month, after which the patient developed a tractional macula-off retinal detachment. Pars Plana vitrectomy was performed, confirming dense anterior and posterior PVR. A review of the literature suggests that an inflammatory cascade, similar to that seen in PVR development following rhegmatogenous retinal detachment, may occur from the destruction of the ciliary body by cyclodiode. As a result, fibrous transformation may occur, likely accounting for the cause of PVR development in this case. CONCLUSION The pathophysiology of PVR development remains unclear. This case demonstrates that PVR may occur following cyclodiode and should be considered during postoperative monitoring after this procedure.
Collapse
Affiliation(s)
- Amelia Bai
- Queensland Children's Hospital, 501 Stanley Street, South Brisbane, Australia
| | | | | |
Collapse
|
9
|
Innate immunity dysregulation in aging eye and therapeutic interventions. Ageing Res Rev 2022; 82:101768. [PMID: 36280210 DOI: 10.1016/j.arr.2022.101768] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/29/2022] [Accepted: 10/20/2022] [Indexed: 01/31/2023]
Abstract
The prevalence of eye diseases increases considerably with age, resulting in significant vision impairment. Although the pathobiology of age-related eye diseases has been studied extensively, the contribution of immune-related changes due to aging remains elusive. In the eye, tissue-resident cells and infiltrating immune cells regulate innate responses during injury or infection. But due to aging, these cells lose their protective functions and acquire pathological phenotypes. Thus, dysregulated ocular innate immunity in the elderly increases the susceptibility and severity of eye diseases. Herein, we emphasize the impact of aging on the ocular innate immune system in the pathogenesis of infectious and non-infectious eye diseases. We discuss the role of age-related alterations in cellular metabolism, epigenetics, and cellular senescence as mechanisms underlying altered innate immune functions. Finally, we describe approaches to restore protective innate immune functions in the aging eye. Overall, the review summarizes our current understanding of innate immune functions in eye diseases and their dysregulation during aging.
Collapse
|
10
|
Szczepan M, Llorián-Salvador M, Chen M, Xu H. Immune Cells in Subretinal Wound Healing and Fibrosis. Front Cell Neurosci 2022; 16:916719. [PMID: 35755781 PMCID: PMC9226489 DOI: 10.3389/fncel.2022.916719] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/16/2022] [Indexed: 11/22/2022] Open
Abstract
The subretinal space is devoid of any immune cells under normal conditions and is an immune privileged site. When photoreceptors and/or retinal pigment epithelial cells suffer from an injury, a wound healing process will be initiated. Retinal microglia and the complement system, as the first line of retinal defense, are activated to participate in the wound healing process. If the injury is severe or persists for a prolonged period, they may fail to heal the damage and circulating immune cells will be summoned leading to chronic inflammation and abnormal wound healing, i.e., subretinal or intraretinal fibrosis, a sight-threatening condition frequently observed in rhematogenous retinal detachment, age-related macular degeneration and recurrent uveoretinitis. Here, we discussed the principles of subretinal wound healing with a strong focus on the conditions whereby the damage is beyond the healing capacity of the retinal defense system and highlighted the roles of circulating immune cells in subretinal wound healing and fibrosis.
Collapse
Affiliation(s)
- Manon Szczepan
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - María Llorián-Salvador
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Mei Chen
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Heping Xu
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom,Aier Institute of Optometry and Vision Science, Changsha, China,*Correspondence: Heping Xu,
| |
Collapse
|
11
|
Lee EJ, Napier RJ, Vance EE, Lashley SJ, Truax AD, Ting JP, Rosenzweig HL. The innate immune receptor Nlrp12 suppresses autoimmunity to the retina. J Neuroinflammation 2022; 19:69. [PMID: 35313917 PMCID: PMC8939070 DOI: 10.1186/s12974-022-02425-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 02/27/2022] [Indexed: 12/23/2022] Open
Abstract
Background Nod-like receptors (NLRs) are critical to innate immune activation and induction of adaptive T cell responses. Yet, their role in autoinflammatory diseases of the central nervous system (CNS) remains incompletely defined. The NLR, Nlrp12, has been reported to both inhibit and promote neuroinflammation in an animal model of multiple sclerosis (experimental autoimmune encephalomyelitis, EAE), where its T cell-specific role has been investigated. Uveitis resulting from autoimmunity of the neuroretina, an extension of the CNS, involves a breach in immune privilege and entry of T cells into the eye. Here, we examined the contribution of Nlrp12 in a T cell-mediated model of uveitis, experimental autoimmune uveitis (EAU). Methods Mice were immunized with interphotoreceptor retinoid-binding protein peptide 1–20 (IRBP1–20) emulsified in Complete Freund’s adjuvant, CFA. Uveitis was evaluated by clinical and histopathological scoring, and comparisons were made in WT vs. Nlrp12−/− mice, lymphopenic Rag1−/− mice reconstituted with WT vs. Nlrp12−/− CD4+ T cells, or among bone marrow (BM) chimeric mice. Antigen-specific Th-effector responses were evaluated by ELISA and intracellular cytokine staining. Cellular composition of uveitic eyes from WT or Nlrp12−/− mice was compared using flow cytometry. Expression of Nlrp12 and of cytokines/chemokines within the neuroretina was evaluated by immunoblotting and quantitative PCR. Results Nlrp12−/− mice developed exacerbated uveitis characterized by extensive vasculitis, chorioretinal infiltrates and photoreceptor damage. Nlrp12 was dispensable for T cell priming and differentiation of peripheral Th1 or Th17 cells, and uveitis in immunodeficient mice reconstituted with either Nlrp12−/− or WT T cells was similar. Collectively, this ruled out T cells as the source of Nlrp12-mediated protection to EAU. Uveitic Nlrp12−/− eyes had more pronounced myeloid cell accumulation than uveitic WT eyes. Transplantation of Nlrp12−/− BM resulted in increased susceptibility to EAU regardless of host genotype, but interestingly, a non-hematopoietic origin for Nlrp12 function was also observed. Indeed, Nlrp12 was found to be constitutively expressed in the neuroretina, where it suppressed chemokine/cytokine induction. Conclusions Our data identify a combinatorial role for Nlrp12 in dampening autoimmunity of the neuroretina. These findings could provide a pathway for development of therapies for uveitis and potentially other autoinflammatory/autoimmune diseases of the CNS. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02425-x.
Collapse
Affiliation(s)
- Ellen J Lee
- VA Portland Health Care System, Portland, OR, USA.,Dept. of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR, USA
| | - Ruth J Napier
- VA Portland Health Care System, Portland, OR, USA.,Dept. of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR, USA
| | - Emily E Vance
- VA Portland Health Care System, Portland, OR, USA.,Dept. of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR, USA
| | | | - Agnieszka D Truax
- Lineberger Comprehensive Cancer Center, University North Carolina, Chapel Hill, NC, USA
| | - Jenny P Ting
- Lineberger Comprehensive Cancer Center, Depts. Genetics and Microbiology-Immunology, University of North Carolina, Chapel Hill, NC, USA
| | - Holly L Rosenzweig
- VA Portland Health Care System, Portland, OR, USA. .,Dept. of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR, USA. .,Oregon Health & Science University, VA Portland Health Care System, 3710 SW US Veterans Hospital Rd., Bldg 103, Room E-222, Mail stop: VA R&D-14, Portland, OR, 97239, USA.
| |
Collapse
|
12
|
Nizawa T, Bhutto IA, Tiwari A, Grebe RR, Alt J, Rais R, Edwards MM, Lutty GA. Topical Ketotifen Fumarate Inhibits Choroidal Mast Cell Degranulation and Loss of Retinal Pigment Epithelial Cells in Rat Model for Geographic Atrophy. Transl Vis Sci Technol 2021; 10:37. [PMID: 34967831 PMCID: PMC8727493 DOI: 10.1167/tvst.10.14.37] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose This study evaluates whether topical ketotifen fumarate (KTF) can prevent geographic atrophy (GA)-like phenotypes in a rat model. Methods Pharmacokinetics (PKs) of KTF after topical administration twice daily for 5 days was analyzed in rat retina, retinal pigment epithelium (RPE)/choroid/sclera, and in plasma by an liquid chromatography tandem mass spectrometry (LC-MS/MS) method. Rats were then given hydrogel implants +/- 48/80 in the superior subconjunctival space and topically treated with 1% and 0.25% of KTF or phosphate buffer saline (PBS) twice daily. Rats were euthanized at 1, 2, 4, and 8 weeks postinjection. Choroidal mast cells (MCs) were stained with nonspecific esterase and the RPE monolayer was labeled with RPE65 and ZO-1 in whole mount choroids. Retinal and choroidal areas were determined in cryosections stained with picrosirius red. Dark-adapted electroretinogram (ERG) was also performed to evaluate retinal function. Results PK results showed the highest level of KTF (average 5.6 nM/mg) in the RPE/choroid/sclera in rats given topical 1% KTF. Topical 1% KTF significantly reduced choroidal MC degranulation at 1 week and 2 weeks (both P < 0.001) and RPE loss at 4 weeks (P < 0.001) as well as retinal and choroidal thinning (both P < 0.001) and reduction in ERG amplitude at 8 weeks (P < 0.05) compared to PBS. Similar results were obtained with 0.25% KTF. Conclusions Both 1% and 0.25% KTF eye drops effectively reduced MC degranulation, RPE loss, and retinal and choroidal thinning while preventing the decline of ERG amplitude in a GA-like rat model. These data suggest that topical KTF might be a new therapeutic drug for treating GA. Translational Relevance The results of this study demonstrate that topical KTF successfully reduced GA-like phenotypes in a rat model and may provide a novel therapy for GA.
Collapse
Affiliation(s)
- Tomohiro Nizawa
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Imran A Bhutto
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anupama Tiwari
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rhonda R Grebe
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jesse Alt
- Brain Science Institute, Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rana Rais
- Brain Science Institute, Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Malia M Edwards
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Gerard A Lutty
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
13
|
Wang J, Rattner A, Nathans J. A transcriptome atlas of the mouse iris at single-cell resolution defines cell types and the genomic response to pupil dilation. eLife 2021; 10:e73477. [PMID: 34783308 PMCID: PMC8594943 DOI: 10.7554/elife.73477] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/25/2021] [Indexed: 01/02/2023] Open
Abstract
The iris controls the level of retinal illumination by controlling pupil diameter. It is a site of diverse ophthalmologic diseases and it is a potential source of cells for ocular auto-transplantation. The present study provides foundational data on the mouse iris based on single nucleus RNA sequencing. More specifically, this work has (1) defined all of the major cell types in the mouse iris and ciliary body, (2) led to the discovery of two types of iris stromal cells and two types of iris sphincter cells, (3) revealed the differences in cell type-specific transcriptomes in the resting vs. dilated states, and (4) identified and validated antibody and in situ hybridization probes that can be used to visualize the major iris cell types. By immunostaining for specific iris cell types, we have observed and quantified distortions in nuclear morphology associated with iris dilation and clarified the neural crest contribution to the iris by showing that Wnt1-Cre-expressing progenitors contribute to nearly all iris cell types, whereas Sox10-Cre-expressing progenitors contribute only to stromal cells. This work should be useful as a point of reference for investigations of iris development, disease, and pharmacology, for the isolation and propagation of defined iris cell types, and for iris cell engineering and transplantation.
Collapse
Affiliation(s)
- Jie Wang
- Department of Molecular Biology and Genetics, Johns Hopkins University School of MedicineBaltimoreUnited States
- Howard Hughes Medical Institute, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Amir Rattner
- Department of Molecular Biology and Genetics, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Jeremy Nathans
- Department of Molecular Biology and Genetics, Johns Hopkins University School of MedicineBaltimoreUnited States
- Howard Hughes Medical Institute, Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Neuroscience, Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Ophthalmology, Johns Hopkins University School of MedicineBaltimoreUnited States
| |
Collapse
|
14
|
Grisé KN, Coles BLK, Bautista NX, van der Kooy D. Activation of adult mammalian retinal stem cells in vivo via antagonism of BMP and sFRP2. Stem Cell Res Ther 2021; 12:560. [PMID: 34717744 PMCID: PMC8557620 DOI: 10.1186/s13287-021-02630-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/17/2021] [Indexed: 11/15/2022] Open
Abstract
Background The adult mammalian retina does not have the capacity to regenerate cells lost due to damage or disease. Therefore, retinal injuries and blinding diseases result in irreversible vision loss. However, retinal stem cells (RSCs), which participate in retinogenesis during development, persist in a quiescent state in the ciliary epithelium (CE) of the adult mammalian eye. Moreover, RSCs retain the ability to generate all retinal cell types when cultured in vitro, including photoreceptors. Therefore, it may be possible to activate endogenous RSCs to induce retinal neurogenesis in vivo and restore vision in the adult mammalian eye. Methods To investigate if endogenous RSCs can be activated, we performed combinatorial intravitreal injections of antagonists to BMP and sFRP2 proteins (two proposed mediators of RSC quiescence in vivo), with or without growth factors FGF and Insulin. We also investigated the effects of chemically-induced N-methyl-N-Nitrosourea (MNU) retinal degeneration on RSC activation, both alone and in combination withthe injected factors. Further, we employed inducible Msx1-CreERT2 genetic lineage labeling of the CE followed by stimulation paradigms to determine if activated endogenous RSCs could migrate into the retina and differentiate into retinal neurons. Results We found that in vivo antagonism of BMP and sFRP2 proteins induced CE cells in the RSC niche to proliferate and expanded the RSC population. BMP and sFRP2 antagonism also enhanced CE cell proliferation in response to exogenous growth factor stimulation and MNU-induced retinal degeneration. Furthermore, Msx1-CreERT2 genetic lineage tracing revealed that CE cells migrated into the retina following stimulation and/or injury, where they expressed markers of mature photoreceptors and retinal ganglion cells. Conclusions Together, these results indicate that endogenous adult mammalian RSCs may have latent regenerative potential that can be activated by modulating the RSC niche and hold promise as a means for endogenous retinal cell therapy to repair the retina and improve vision. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02630-0.
Collapse
Affiliation(s)
- Kenneth N Grisé
- Department of Molecular Genetics, University of Toronto, Donnelly Centre Rm 1110, 160 College Street, Toronto, ON, M5S 3E1, Canada.
| | - Brenda L K Coles
- Department of Molecular Genetics, University of Toronto, Donnelly Centre Rm 1110, 160 College Street, Toronto, ON, M5S 3E1, Canada
| | - Nelson X Bautista
- Department of Molecular Genetics, University of Toronto, Donnelly Centre Rm 1110, 160 College Street, Toronto, ON, M5S 3E1, Canada
| | - Derek van der Kooy
- Department of Molecular Genetics, University of Toronto, Donnelly Centre Rm 1110, 160 College Street, Toronto, ON, M5S 3E1, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, M5S 1A8, Canada
| |
Collapse
|
15
|
Brinks J, van Dijk EHC, Klaassen I, Schlingemann RO, Kielbasa SM, Emri E, Quax PHA, Bergen AA, Meijer OC, Boon CJF. Exploring the choroidal vascular labyrinth and its molecular and structural roles in health and disease. Prog Retin Eye Res 2021; 87:100994. [PMID: 34280556 DOI: 10.1016/j.preteyeres.2021.100994] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/04/2021] [Accepted: 07/07/2021] [Indexed: 12/14/2022]
Abstract
The choroid is a key player in maintaining ocular homeostasis and plays a role in a variety of chorioretinal diseases, many of which are poorly understood. Recent advances in the field of single-cell RNA sequencing have yielded valuable insights into the properties of choroidal endothelial cells (CECs). Here, we review the role of the choroid in various physiological and pathophysiological mechanisms, focusing on the role of CECs. We also discuss new insights regarding the phenotypic properties of CECs, CEC subpopulations, and the value of measuring transcriptomics in primary CEC cultures derived from post-mortem eyes. In addition, we discuss key phenotypic, structural, and functional differences that distinguish CECs from other endothelial cells such as retinal vascular endothelial cells. Understanding the specific clinical and molecular properties of the choroid will shed new light on the pathogenesis of the broad clinical range of chorioretinal diseases such as age-related macular degeneration, central serous chorioretinopathy and other diseases within the pachychoroid spectrum, uveitis, and diabetic choroidopathy. Although our knowledge is still relatively limited with respect to the clinical features and molecular pathways that underlie these chorioretinal diseases, we summarise new approaches and discuss future directions for gaining new insights into these sight-threatening diseases and highlight new therapeutic strategies such as pluripotent stem cell‒based technologies and gene therapy.
Collapse
Affiliation(s)
- J Brinks
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands
| | - E H C van Dijk
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands
| | - I Klaassen
- Ocular Angiogenesis Group, Departments of Ophthalmology and Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - R O Schlingemann
- Ocular Angiogenesis Group, Departments of Ophthalmology and Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands; Department of Ophthalmology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands; Department of Ophthalmology, University of Lausanne, Jules Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland
| | - S M Kielbasa
- Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, Leiden, the Netherlands
| | - E Emri
- Department of Clinical Genetics, Section of Ophthalmogenetics, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - P H A Quax
- Department of Vascular Surgery, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - A A Bergen
- Department of Clinical Genetics, Section of Ophthalmogenetics, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - O C Meijer
- Department of Medicine, Division of Endocrinology and Metabolism, Leiden University Medical Center, Leiden, the Netherlands
| | - C J F Boon
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands; Department of Ophthalmology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
16
|
Hysa E, Cutolo CA, Gotelli E, Paolino S, Cimmino MA, Pacini G, Pizzorni C, Sulli A, Smith V, Cutolo M. Ocular microvascular damage in autoimmune rheumatic diseases: The pathophysiological role of the immune system. Autoimmun Rev 2021; 20:102796. [PMID: 33722750 DOI: 10.1016/j.autrev.2021.102796] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 01/13/2021] [Indexed: 02/07/2023]
Abstract
Pathological eye involvement represents a quite common finding in a broad spectrum of autoimmune rheumatic diseases (ARDs). Ocular signs, often occur as early manifestations in ARDs, ranging from symptoms related to the mild dry eye disease to sight-threatening pathologies, linked to the immune response against retinal and choroidal vessels. Retinovascular damage driven by markedly inflammatory reactivity need a prompt diagnosis and treatment. Immune-complexes formation, complement activation and antibody-mediated endothelial damage seem to play a key role, particularly, in microvascular damage and ocular symptoms, occurring in systemic lupus erythematosus (SLE), rheumatoid arthritis (RA) and Sjögren's syndrome (SS). Conversely, early alterations of retinal and choroidal vessels in the asymptomatic patient, often detectable coincidentally, might be indicators of widespread vascular injury in other connective tissue diseases. Particularly, endothelin-induced hypoperfusion and pathological peri-choroidal extracellular matrix deposition, might be responsible for the micro-architectural alterations and loss of capillaries detected in systemic sclerosis (SSc). Instead, interferon alpha-mediated microvascular rarefaction, combined with endothelial lesions caused by specific autoantibodies and immune-complexes, appear to play a significant role in retinal vasculopathy associated to inflammatory idiopathic myopathies (IIM). The immuno-pathophysiological mechanisms of ocular microcirculatory damage associated with the major ARDs will be discussed under the light of the most recent achievements.
Collapse
Affiliation(s)
- Elvis Hysa
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine, University of Genoa, Italy - IRCCS Rheumatology Unit San Martino Polyclinic, Genoa, Italy.
| | - Carlo Alberto Cutolo
- Ophtalmology Clinic DiNOGMI, University of Genoa, IRCCS San Martino Polyclinic, Genoa, Italy.
| | - Emanuele Gotelli
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine, University of Genoa, Italy - IRCCS Rheumatology Unit San Martino Polyclinic, Genoa, Italy.
| | - Sabrina Paolino
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine, University of Genoa, Italy - IRCCS Rheumatology Unit San Martino Polyclinic, Genoa, Italy.
| | - Marco Amedeo Cimmino
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine, University of Genoa, Italy - IRCCS Rheumatology Unit San Martino Polyclinic, Genoa, Italy.
| | - Greta Pacini
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine, University of Genoa, Italy - IRCCS Rheumatology Unit San Martino Polyclinic, Genoa, Italy.
| | - Carmen Pizzorni
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine, University of Genoa, Italy - IRCCS Rheumatology Unit San Martino Polyclinic, Genoa, Italy.
| | - Alberto Sulli
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine, University of Genoa, Italy - IRCCS Rheumatology Unit San Martino Polyclinic, Genoa, Italy.
| | - Vanessa Smith
- Department of Internal Medicine, Ghent University, Ghent, Belgium; Department of Rheumatology, Ghent University Hospital, Corneel Heymanslaan 10, Ghent, Belgium; Unit for Molecular Immunology and Inflammation, VIB Inflammation Research Center (IRC), Corneel Heymanslaan 10, 9000 Ghent, Belgium.
| | - Maurizio Cutolo
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine, University of Genoa, Italy - IRCCS Rheumatology Unit San Martino Polyclinic, Genoa, Italy.
| |
Collapse
|
17
|
Edwards M, Lutty GA. Bruch's Membrane and the Choroid in Age-Related Macular Degeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1256:89-119. [PMID: 33847999 DOI: 10.1007/978-3-030-66014-7_4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A healthy choroidal vasculature is necessary to support the retinal pigment epithelium (RPE) and photoreceptors, because there is a mutualistic symbiotic relationship between the components of the photoreceptor/retinal pigment epithelium (RPE)/Bruch's membrane (BrMb)/choriocapillaris (CC) complex. This relationship is compromised in age-related macular degeneration (AMD) by the dysfunction or death of the choroidal vasculature. This chapter will provide a basic description of the human Bruch's membrane and choroidal anatomy and physiology and how they change in AMD.The choriocapillaris is the lobular, fenestrated capillary system of choroid. It lies immediately posterior to the pentalaminar Bruch's membrane (BrMb). The blood supply for this system is the intermediate blood vessels of Sattler's layer and the large blood vessels in Haller's layer.In geographic atrophy (GA), an advanced form of dry AMD, large confluent drusen form on BrMb, and hyperpigmentation (presumably dysfunction in RPE) appears to be the initial insult. The resorption of these drusen and loss of RPE (hypopigmentation) can be predictive for progression of GA. The death and dysfunction of CC and photoreceptors appear to be secondary events to loss in RPE. The loss of choroidal vasculature may be the initial insult in neovascular AMD (nAMD). We have observed a loss of CC with an intact RPE monolayer in nAMD, by making RPE hypoxic. These hypoxic cells then produce angiogenic substances like vascular endothelial growth factor (VEGF), which stimulate growth of new vessels from CC, resulting in choroidal neovascularization (CNV). Reduction in blood supply to the CC, often stenosis of intermediate and large blood vessels, is associated with CC loss.The polymorphisms in the complement system components are associated with AMD. In addition, the environment of the CC, basement membrane and intercapillary septa, is a proinflammatory milieu with accumulation of proinflammatory molecules like CRP and complement components during AMD. In this toxic milieu, CC die or become dysfunctional even early in AMD. The loss of CC might be a stimulus for drusen formation since the disposal system for retinal debris and exocytosed material from RPE would be limited. Ultimately, the photoreceptors die of lack of nutrients, leakage of serum components from the neovascularization, and scar formation.Therefore, the mutualistic symbiotic relationship of the photoreceptor/RPE/BrMb/CC complex is lost in both forms of AMD. Loss of this functionally integrated relationship results in death and dysfunction of all of the components in the complex.
Collapse
Affiliation(s)
- Malia Edwards
- Wilmer Ophthalmological Institute, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Gerard A Lutty
- Wilmer Ophthalmological Institute, Johns Hopkins Hospital, Baltimore, MD, USA.
| |
Collapse
|
18
|
Reekie IR, Sharma S, Foers A, Sherlock J, Coles MC, Dick AD, Denniston AK, Buckley CD. The Cellular Composition of the Uveal Immune Environment. Front Med (Lausanne) 2021; 8:721953. [PMID: 34778287 PMCID: PMC8586083 DOI: 10.3389/fmed.2021.721953] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 10/05/2021] [Indexed: 12/26/2022] Open
Abstract
The uveal tract consists of the iris, the ciliary body and the choroid; these three distinct tissues form a continuous layer within the eye. Uveitis refers to inflammation of any region of the uveal tract. Despite being grouped together anatomically, the iris, ciliary body and choroid are distinct functionally, and inflammatory diseases may affect only one part and not the others. Cellular structure of tissues direct their function, and understanding the cellular basis of the immune environment of a tissue in health, the "steady state" on which the perturbations of disease are superimposed, is vital to understanding the pathogenesis of those diseases. A contemporary understanding of the immune system accepts that haematopoietic and yolk sac derived leukocytes, though vital, are not the only players of importance. An array of stromal cells, connective tissue cells such as fibroblasts and endothelial cells, may also have a role in the inflammatory reaction seen in several immune-mediated diseases. In this review we summarise what is known about the cellular composition of the uveal tract and the roles these disparate cell types have to play in immune homeostasis. We also discuss some unanswered questions surrounding the constituents of the resident leukocyte population of the different uveal tissues, and we look ahead to the new understanding that modern investigative techniques such as single cell transcriptomics, multi-omic data integration and highly-multiplexed imaging techniques may bring to the study of the uvea and uveitis, as they already have to other immune mediated inflammatory diseases.
Collapse
Affiliation(s)
- Ian R. Reekie
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Srilakshmi Sharma
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
- Oxford University Hospitals National Health Service (NHS) Foundation Trust, Oxford Eye Hospital, Oxford, United Kingdom
| | - Andrew Foers
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Jonathan Sherlock
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Mark C. Coles
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Andrew D. Dick
- School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
- National Institute for Health Research Biomedical Research Centre, Institute of Ophthalmology, Moorfields Eye Hospital, University College London, London, United Kingdom
| | - Alastair K. Denniston
- Institute for Inflammation and Ageing, College of Medical and Dental Sciences, Queen Elizabeth Hospital, University of Birmingham, Birmingham, United Kingdom
| | - Christopher D. Buckley
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
- Institute for Inflammation and Ageing, College of Medical and Dental Sciences, Queen Elizabeth Hospital, University of Birmingham, Birmingham, United Kingdom
- *Correspondence: Christopher D. Buckley
| |
Collapse
|
19
|
Immunological Aspects of Age-Related Macular Degeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1256:143-189. [PMID: 33848001 DOI: 10.1007/978-3-030-66014-7_6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Increasing evidence over the past two decades points to a pivotal role for immune mechanisms in age-related macular degeneration (AMD) pathobiology. In this chapter, we will explore immunological aspects of AMD, with a specific focus on how immune mechanisms modulate clinical phenotypes of disease and severity and how components of the immune system may serve as triggers for disease progression in both dry and neovascular AMD. We will briefly review the biology of the immune system, defining the role of immune mechanisms in chronic degenerative disease and differentiating from immune responses to acute injury or infection. We will explore current understanding of the roles of innate immunity (especially macrophages), antigen-specific immunity (T cells, B cells, and autoimmunity), immune amplifications systems, especially complement activity and the NLRP3 inflammasome, in the pathogenesis of both dry and neovascular AMD, reviewing data from pathology, experimental animal models, and clinical studies of AMD patients. We will also assess how interactions between the immune system and infectious pathogens could potentially modulate AMD pathobiology via alterations in in immune effector mechanisms. We will conclude by reviewing the paradigm of "response to injury," which provides a means to integrate various immunologic mechanisms along with nonimmune mechanisms of tissue injury and repair as a model to understand the pathobiology of AMD.
Collapse
|
20
|
Eye lymphatic defects induced by bone morphogenetic protein 9 deficiency have no functional consequences on intraocular pressure. Sci Rep 2020; 10:16040. [PMID: 32994463 PMCID: PMC7524742 DOI: 10.1038/s41598-020-71877-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 08/18/2020] [Indexed: 11/08/2022] Open
Abstract
Aqueous humor drainage is essential for the regulation of intraocular pressure (IOP), a major risk factor for glaucoma. The Schlemm's canal and the non-conventional uveoscleral pathway are known to drain aqueous humor from the eye anterior chamber. It has recently been reported that lymphatic vessels are involved in this process, and that the Schlemm's canal responds to some lymphatic regulators. We have previously shown a critical role for bone morphogenetic protein 9 (BMP9) in lymphatic vessel maturation and valve formation, with repercussions in drainage efficiency. Here, we imaged eye lymphatic vessels and analyzed the consequences of Bmp9 (Gdf2) gene invalidation. A network of lymphatic vessel hyaluronan receptor 1 (LYVE-1)-positive lymphatic vessels was observed in the corneolimbus and the conjunctiva. In contrast, LYVE-1-positive cells present in the ciliary bodies were belonging to the macrophage lineage. Although enlarged conjunctival lymphatic trunks and a reduced valve number were observed in Bmp9-KO mice, there were no morphological differences in the Schlemm's canal compared to wild type animals. Moreover, there were no functional consequences on IOP in both basal control conditions and after laser-induced ocular hypertonia. Thus, the BMP9-activated signaling pathway does not constitute a wise target for new glaucoma therapeutic strategies.
Collapse
|
21
|
Ogura S, Baldeosingh R, Bhutto IA, Kambhampati SP, Scott McLeod D, Edwards MM, Rais R, Schubert W, Lutty GA. A role for mast cells in geographic atrophy. FASEB J 2020; 34:10117-10131. [PMID: 32525594 DOI: 10.1096/fj.202000807r] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/08/2020] [Accepted: 05/12/2020] [Indexed: 02/06/2023]
Abstract
Mast cells (MCs) are the initial responders of innate immunity and their degranulation contribute to various etiologies. While the abundance of MCs in the choroid implies their fundamental importance in the eye, little is known about the significance of MCs and their degranulation in choroid. The cause of geographic atrophy (GA), a progressive dry form of age-related macular degeneration is elusive and there is currently no therapy for this blinding disorder. Here we demonstrate in both human GA and a rat model for GA, that MC degranulation and MC-derived tryptase are central to disease progression. Retinal pigment epithelium degeneration followed by retinal and choroidal thinning, characteristic phenotypes of GA, were driven by continuous choroidal MC stimulation and activation in a slow release fashion in the rat. Genetic manipulation of MCs, pharmacological intervention targeting MC degranulation with ketotifen fumarate or inhibition of MC-derived tryptase with APC 366 prevented all of GA-like phenotypes following MC degranulation in the rat model. Our results demonstrate the fundamental role of choroidal MC involvement in GA disease etiology, and will provide new opportunities for understanding GA pathology and identifying novel therapies targeting MCs.
Collapse
Affiliation(s)
- Shuntaro Ogura
- Wilmer Ophthalmological Institute, Johns Hopkins Hospital, Baltimore, MD, USA
| | | | - Imran A Bhutto
- Wilmer Ophthalmological Institute, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Siva P Kambhampati
- Wilmer Ophthalmological Institute, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Donald Scott McLeod
- Wilmer Ophthalmological Institute, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Malia M Edwards
- Wilmer Ophthalmological Institute, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Rana Rais
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Gerard A Lutty
- Wilmer Ophthalmological Institute, Johns Hopkins Hospital, Baltimore, MD, USA
| |
Collapse
|
22
|
Lehmann GL, Hanke-Gogokhia C, Hu Y, Bareja R, Salfati Z, Ginsberg M, Nolan DJ, Mendez-Huergo SP, Dalotto-Moreno T, Wojcinski A, Ochoa F, Zeng S, Cerliani JP, Panagis L, Zager PJ, Mullins RF, Ogura S, Lutty GA, Bang J, Zippin JH, Romano C, Rabinovich GA, Elemento O, Joyner AL, Rafii S, Rodriguez-Boulan E, Benedicto I. Single-cell profiling reveals an endothelium-mediated immunomodulatory pathway in the eye choroid. J Exp Med 2020; 217:e20190730. [PMID: 32196081 PMCID: PMC7971135 DOI: 10.1084/jem.20190730] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 12/27/2019] [Accepted: 02/19/2020] [Indexed: 12/14/2022] Open
Abstract
The activity and survival of retinal photoreceptors depend on support functions performed by the retinal pigment epithelium (RPE) and on oxygen and nutrients delivered by blood vessels in the underlying choroid. By combining single-cell and bulk RNA sequencing, we categorized mouse RPE/choroid cell types and characterized the tissue-specific transcriptomic features of choroidal endothelial cells. We found that choroidal endothelium adjacent to the RPE expresses high levels of Indian Hedgehog and identified its downstream target as stromal GLI1+ mesenchymal stem cell-like cells. In vivo genetic impairment of Hedgehog signaling induced significant loss of choroidal mast cells, as well as an altered inflammatory response and exacerbated visual function defects after retinal damage. Our studies reveal the cellular and molecular landscape of adult RPE/choroid and uncover a Hedgehog-regulated choroidal immunomodulatory signaling circuit. These results open new avenues for the study and treatment of retinal vascular diseases and choroid-related inflammatory blinding disorders.
Collapse
Affiliation(s)
- Guillermo L. Lehmann
- Department of Ophthalmology, Margaret Dyson Vision Research Institute, Weill Cornell Medicine, New York, NY
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY
| | - Christin Hanke-Gogokhia
- Department of Ophthalmology, Margaret Dyson Vision Research Institute, Weill Cornell Medicine, New York, NY
| | - Yang Hu
- Caryl and Israel Englander Institute for Precision Medicine, Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY
| | - Rohan Bareja
- Caryl and Israel Englander Institute for Precision Medicine, Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY
| | - Zelda Salfati
- Department of Ophthalmology, Margaret Dyson Vision Research Institute, Weill Cornell Medicine, New York, NY
| | | | | | - Santiago P. Mendez-Huergo
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Tomas Dalotto-Moreno
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Alexandre Wojcinski
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY
| | | | - Shemin Zeng
- The University of Iowa Institute for Vision Research and Department of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, IA
| | - Juan P. Cerliani
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | | | - Patrick J. Zager
- Department of Ophthalmology, Margaret Dyson Vision Research Institute, Weill Cornell Medicine, New York, NY
| | - Robert F. Mullins
- The University of Iowa Institute for Vision Research and Department of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, IA
| | - Shuntaro Ogura
- Wilmer Ophthalmological Institute, Johns Hopkins Hospital, Baltimore, MD
| | - Gerard A. Lutty
- Wilmer Ophthalmological Institute, Johns Hopkins Hospital, Baltimore, MD
| | - Jakyung Bang
- Department of Dermatology, Weill Cornell Medicine and New York-Presbyterian Hospital, New York, NY
| | - Jonathan H. Zippin
- Department of Dermatology, Weill Cornell Medicine and New York-Presbyterian Hospital, New York, NY
| | | | - Gabriel A. Rabinovich
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Olivier Elemento
- Caryl and Israel Englander Institute for Precision Medicine, Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY
| | - Alexandra L. Joyner
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Shahin Rafii
- Ansary Stem Cell Institute, Department of Medicine, Division of Regenerative Medicine, Weill Cornell Medicine, New York, NY
| | - Enrique Rodriguez-Boulan
- Department of Ophthalmology, Margaret Dyson Vision Research Institute, Weill Cornell Medicine, New York, NY
| | - Ignacio Benedicto
- Department of Ophthalmology, Margaret Dyson Vision Research Institute, Weill Cornell Medicine, New York, NY
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| |
Collapse
|
23
|
McMenamin PG, Saban DR, Dando SJ. Immune cells in the retina and choroid: Two different tissue environments that require different defenses and surveillance. Prog Retin Eye Res 2018; 70:85-98. [PMID: 30552975 DOI: 10.1016/j.preteyeres.2018.12.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 12/03/2018] [Accepted: 12/11/2018] [Indexed: 01/04/2023]
Abstract
In the eye immune defenses must take place in a plethora of differing microenvironments ranging from the corneal and conjunctival epithelia facing the external environment to the pigmented connective tissue of the uveal tract containing smooth muscle, blood vessels and peripheral nerves to the innermost and highly protected neural retina. The extravascular environment of the neural retina, like the brain parenchyma, is stringently controlled to maintain conditions required for neural transmission. The unique physiological nature of the neural retina can be attributed to the blood retinal barriers (BRB) of the retinal vasculature and the retinal pigment epithelium, which both tightly regulate the transport of small molecules and restrict passage of cells and macromolecules from the circulation into the retina in a similar fashion to the blood brain barrier (BBB). The extracellular environment of the neural retina differs markedly from that of the highly vascular, loose connective tissue of the choroid, which lies outside the BRB. The choroid hosts a variety of immune cell types, including macrophages, dendritic cells (DCs) and mast cells. This is in marked contrast to the neural parenchyma of the retina, which is populated almost solely by microglia. This review will describe the current understanding of the distribution, phenotype and physiological role of ocular immune cells behind or inside the blood-retinal barriers and those in closely juxtaposed tissues outside the barrier. The nature and function of these immune cells can profoundly influence retinal homeostasis and lead to disordered immune function that can lead to vision loss.
Collapse
Affiliation(s)
- Paul G McMenamin
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.
| | - Daniel R Saban
- Department of Ophthalmology, Department of Immunology, Duke University School of Medicine, Durham, NC, USA
| | - Samantha J Dando
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
24
|
Schuh JCL. Letter to the Editor Regarding “Spontaneous Findings in the Eyes of Cynomolgus Monkeys (Macaca fascicularis) of Mauritian Origin” by Woicke et al. (Toxicol Pathol 46, 273–282, 2018). Toxicol Pathol 2018; 46:719-720. [DOI: 10.1177/0192623318791524] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
25
|
Tong X, Chen S, Zheng H, Huang S, Lu F. Increased IL-27/IL-27R expression in association with the immunopathology of murine ocular toxoplasmosis. Parasitol Res 2018; 117:2255-2263. [PMID: 29779048 DOI: 10.1007/s00436-018-5914-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 05/09/2018] [Indexed: 01/09/2023]
Abstract
Interleukin 27 (IL-27) is a member of the IL-6/IL-12 family, and IL-27 receptor (IL-27R) consists of WSX-1 (the IL-27Rα subunit) and the signal-transducing subunit gp130. Human and mouse mast cells (MCs) express the IL-27R. To explore the expressions of IL-27/IL-27R subunits (WSX-1 and gp130) during acute ocular toxoplasmosis (OT), we established mouse model by intraocular injection of 500 Toxoplasma gondii RH strain tachyzoites. Histopathological changes were analyzed, MCs were counted by toluidine blue staining, and tryptase+/IL-27+ MCs were examined by immunofluorescence double-staining in the eyes and cervical lymph nodes (CLNs) of T. gondii-infected mice. The mRNA expressions of IL-27p28, WSX-1, gp130, and tachyzoite specific surface antigen 1 (SAG1) in the eyes and CLNs of T. gondii-infected mice, and the expressions of WSX-1 and gp130 in the murine mastocytoma cell line P815 infected with T. gondii tachyzoites in vitro were examined by using quantitative real-time reverse transcription-polymerase chain reaction. Our results showed that, after T. gondii infection, severe histopathological changes, increased numbers of total MCs and degranulated MCs, elevated expressions of IL-27p28, WSX-1, and gp130 were found in the eyes and CLNs, and significant correlations between the levels of IL-27 and SAG1 existed in the eyes and CLNs of T. gondii-infected mice. In addition, increased levels of WSX-1 and gp130 were examined in T. gondii-infected P815 cells. Our data suggested that IL-27/IL-27R expression induced by T. gondii infection may regulate MC-mediated immune response during acute OT in mouse model.
Collapse
Affiliation(s)
- Xinxin Tong
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.,Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, 510080, China
| | - Shengjie Chen
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.,Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, 510080, China
| | - Huanqin Zheng
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.,Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, 510080, China
| | - Shiguang Huang
- School of Stomatology, Jinan University, Guangzhou, Guangdong, 510632, China.
| | - Fangli Lu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China. .,Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, 510080, China.
| |
Collapse
|
26
|
Vizcaino MA, Eberhart CG, Rodriguez FJ. Hemophagocytic Lymphohistiocytosis in Adults with Intraocular Involvement: Clinicopathologic Features of 3 Cases. Ocul Oncol Pathol 2018; 4:1-11. [PMID: 29344491 DOI: 10.1159/000475551] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 03/30/2017] [Indexed: 01/15/2023] Open
Abstract
Background/Aims Hemophagocytic lymphohistiocytosis (HLH) is an infrequent inflammatory multisystemic syndrome. Only rare cases with ophthalmic involvement describing their pathologic features have been previously reported. Methods We report 3 cases of adult-onset HLH with bilateral ocular involvement and describe their clinicopathologic features. Results Three adult males - 2 with a history of viral infection - developed persistent fever, fatigue, bone marrow abnormalities, and irreversible multiorgan failure. Visual impairment was also documented in 2 cases. Complete autopsies were performed. Ophthalmic pathology demonstrated a bilateral histiocytic infiltrate with scant lymphocytes affecting the uvea. Focal extension to the retina, optic nerve, and trabecular meshwork were also identified, as well as hemophagocytosis in 1 case. Macrophages showed strong immunoreactivity for CD163 antibody and lacked BRAF p.V600E mutant protein. Conclusion HLH is an unusual disorder associated with several systemic conditions. Histologic features in the eye are poorly documented, with prior reports restricted to children. Our 3 adult cases are reported using updated criteria and, despite the difference in age, show changes similar to those observed in the pediatric population.
Collapse
Affiliation(s)
- M Adelita Vizcaino
- Division of Neuropathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Cellular and Tissue Biology, Faculty of Medicine, UNAM, Mexico City, Mexico
| | - Charles G Eberhart
- Division of Neuropathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Sydney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Fausto J Rodriguez
- Division of Neuropathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Sydney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
27
|
McLeod DS, Bhutto I, Edwards MM, Gedam M, Baldeosingh R, Lutty GA. Mast Cell-Derived Tryptase in Geographic Atrophy. Invest Ophthalmol Vis Sci 2017; 58:5887-5896. [PMID: 29164232 PMCID: PMC5699534 DOI: 10.1167/iovs.17-22989] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 10/14/2017] [Indexed: 11/25/2022] Open
Abstract
Purpose Our previous study demonstrated significantly more degranulating mast cells (MCs) in choroids from subjects with age-related macular degeneration compared to aged controls. This study examined the immunolocalization of tryptase, the most abundant MC secretory granule-derived serine protease, in aged control eyes and eyes with geographic atrophy (GA). Methods Postmortem human eyes with and without GA were obtained from the National Disease Research Interchange. Tissue was fixed, cryopreserved, sectioned, and immunostained with a monoclonal antibody against tryptase. Sections were imaged on a Zeiss 710 Confocal Microscope. Results In the posterior pole of all aged control eyes, tryptase was confined to choroidal MCs, which were located primarily in Sattler's layer. In eyes with GA, many MCs were located in the inner choroid near choriocapillaris and Bruch's membrane (BM). Tryptase was found not only in MCs but also diffusely around them in stroma, suggesting they had degranulated. In contrast with aged control eyes, eyes with GA also had strong tryptase staining in BM. Tryptase was observed within BM in regions of RPE atrophy, at the border of atrophy, and extending well into the nonatrophic region. Conclusions Our results demonstrate that tryptase, released during choroidal MC degranulation, binds to BM in GA in advance of RPE atrophy. Tryptase activates MMPs that can degrade extracellular matrix (ECM) and basement membrane components found in BM. ECM modifications are likely to have a profound effect on the function and health of RPE and choroidal thinning in GA.
Collapse
Affiliation(s)
- D. Scott McLeod
- Wilmer Ophthalmological Institute, Johns Hopkins Hospital, Baltimore, Maryland, United States
| | - Imran Bhutto
- Wilmer Ophthalmological Institute, Johns Hopkins Hospital, Baltimore, Maryland, United States
| | - Malia M. Edwards
- Wilmer Ophthalmological Institute, Johns Hopkins Hospital, Baltimore, Maryland, United States
| | - Manasee Gedam
- Wilmer Ophthalmological Institute, Johns Hopkins Hospital, Baltimore, Maryland, United States
| | - Rajkumar Baldeosingh
- Wilmer Ophthalmological Institute, Johns Hopkins Hospital, Baltimore, Maryland, United States
| | - Gerard A. Lutty
- Wilmer Ophthalmological Institute, Johns Hopkins Hospital, Baltimore, Maryland, United States
| |
Collapse
|
28
|
Ocular antigen does not cause disease unless presented in the context of inflammation. Sci Rep 2017; 7:14226. [PMID: 29079770 PMCID: PMC5660195 DOI: 10.1038/s41598-017-14618-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 10/11/2017] [Indexed: 12/14/2022] Open
Abstract
Ocular antigens are sequestered behind the blood-retina barrier and the ocular environment protects ocular tissues from autoimmune attack. The signals required to activate autoreactive T cells and allow them to cause disease in the eye remain in part unclear. In particular, the consequences of peripheral presentation of ocular antigens are not fully understood. We examined peripheral expression and presentation of ocular neo-self-antigen in transgenic mice expressing hen egg lysozyme (HEL) under a retina-specific promoter. High levels of HEL were expressed in the eye compared to low expression throughout the lymphoid system. Adoptively transferred naïve HEL-specific CD4+ T cells proliferated in the eye draining lymph nodes, but did not induce uveitis. By contrast, systemic infection with a murine cytomegalovirus (MCMV) engineered to express HEL induced extensive proliferation of transferred naïve CD4+ T cells, and significant uveoretinitis. In this model, wild-type MCMV, lacking HEL, did not induce overt uveitis, suggesting that disease is mediated by antigen-specific peripherally activated CD4+ T cells that infiltrate the retina. Our results demonstrate that retinal antigen is presented to T cells in the periphery under physiological conditions. However, when the same antigen is presented during viral infection, antigen-specific T cells access the retina and autoimmune uveitis ensues.
Collapse
|
29
|
Kaser-Eichberger A, Trost A, Strohmaier C, Bogner B, Runge C, Bruckner D, Hohberger B, Jünemann A, Kofler B, Reitsamer HA, Schrödl F. Distribution of the neuro-regulatory peptide galanin in the human eye. Neuropeptides 2017; 64:85-93. [PMID: 27914762 DOI: 10.1016/j.npep.2016.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 11/22/2016] [Accepted: 11/22/2016] [Indexed: 02/07/2023]
Abstract
Galanin (GAL) is a neuro-regulatory peptide involved in many physiological and pathophysiological processes. While data of GAL origin/distribution in the human eye are rather fragmentary and since recently the presence of GAL-receptors in the normal human eye has been reported, we here systematically search for sources of ocular GAL in the human eye. Human eyes (n=14) were prepared for single- and double-immunohistochemistry of GAL and neurofilaments (NF). Cross- and flat-mount sections were achieved; confocal laser-scanning microscopy was used for documentation. In the anterior eye, GAL-immunoreactivity (GAL-IR) was detected in basal layers of corneal epithelium, endothelium, and in nerve fibers and keratinocytes of the corneal stroma. In the conjunctiva, GAL-IR was seen throughout all epithelial cell layers. In the iris, sphincter and dilator muscle and endothelium of iris vessels displayed GAL-IR. It was also detected in stromal cells containing melanin granules, while these were absent in others. In the ciliary body, ciliary muscle and pigmented as well as non-pigmented ciliary epithelium displayed GAL-IR. In the retina, GAL-IR was detected in cells associated with the ganglion cell layer, and in endothelial cells of retinal blood vessels. In the choroid, nerve fibers of the choroidal stroma as well as fibers forming boutons and surrounding choroidal blood vessels displayed GAL-IR. Further, the majority of intrinsic choroidal neurons were GAL-positive, as revealed by co-localization-experiments with NF, while a minority displayed NF- or GAL-IR only. GAL-IR was also detected in choroidal melanocytes, as identified by the presence of intracellular melanin-granules, as well as in cells lacking melanin-granules, most likely representing macrophages. GAL-IR was detected in numerous cells and tissues throughout the anterior and posterior eye and might therefore be an important regulatory peptide for many aspects of ocular control. Upcoming studies in diseased tissue will help to clarify the role of GAL in ocular homeostasis.
Collapse
Affiliation(s)
- Alexandra Kaser-Eichberger
- University Clinic of Ophthalmology and Optometry, Research Program for Experimental Ophthalmology and Glaucoma Research, Paracelsus Medical University/SALK, Salzburg, Austria.
| | - Andrea Trost
- University Clinic of Ophthalmology and Optometry, Research Program for Experimental Ophthalmology and Glaucoma Research, Paracelsus Medical University/SALK, Salzburg, Austria
| | - Clemens Strohmaier
- University Clinic of Ophthalmology and Optometry, Research Program for Experimental Ophthalmology and Glaucoma Research, Paracelsus Medical University/SALK, Salzburg, Austria
| | - Barbara Bogner
- University Clinic of Ophthalmology and Optometry, Research Program for Experimental Ophthalmology and Glaucoma Research, Paracelsus Medical University/SALK, Salzburg, Austria
| | - Christian Runge
- University Clinic of Ophthalmology and Optometry, Research Program for Experimental Ophthalmology and Glaucoma Research, Paracelsus Medical University/SALK, Salzburg, Austria
| | - Daniela Bruckner
- University Clinic of Ophthalmology and Optometry, Research Program for Experimental Ophthalmology and Glaucoma Research, Paracelsus Medical University/SALK, Salzburg, Austria
| | - Bettina Hohberger
- Dept. of Ophthalmology, University Erlangen-Nuremberg, Erlangen, Germany
| | - Anselm Jünemann
- Dept. of Ophthalmology, University Rostock, Rostock, Germany
| | - Barbara Kofler
- Laura-Bassi Centre of Expertise, THERAPEP, Research Program of Receptor Biochemistry and Tumor Metabolism, Dept. of Pediatrics, Paracelsus Medical University/SALK, Salzburg, Austria
| | - Herbert A Reitsamer
- University Clinic of Ophthalmology and Optometry, Research Program for Experimental Ophthalmology and Glaucoma Research, Paracelsus Medical University/SALK, Salzburg, Austria; Director of the Research Program for Experimental Ophthalmology and Glaucoma Research, Paracelsus Medical University/SALK, Salzburg, Austria
| | - Falk Schrödl
- University Clinic of Ophthalmology and Optometry, Research Program for Experimental Ophthalmology and Glaucoma Research, Paracelsus Medical University/SALK, Salzburg, Austria; Dept. of Anatomy, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
30
|
Effects of Secreted Mast Cell Mediators on Retinal Pigment Epithelial Cells: Focus on Mast Cell Tryptase. Mediators Inflamm 2017; 2017:3124753. [PMID: 28751819 PMCID: PMC5511656 DOI: 10.1155/2017/3124753] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 03/02/2017] [Accepted: 03/15/2017] [Indexed: 11/22/2022] Open
Abstract
Numerous mast cells are present in the choroid, but the effects of mast cell mediators on retinal pigment epithelial (RPE) cells are not well understood. We investigated the influence of mast cell mediators on RPE cells in vitro, focusing on tryptase. Expression of receptors was examined by the reverse transcription polymerase chain reaction. We also assessed production of interleukin 8 and vascular endothelial growth factor (VEGF) after RPE cells were stimulated with mast cell mediators by using an antibody array and enzyme-linked immunosorbent assay. Furthermore, we investigated the influence of tryptase on RPE cell migration and integrity by the scratch assay and the transepithelial resistance. RPE cells expressed protease-activated receptor 2 (PAR2), histamine receptor 1, tumor necrosis factor-α (TNF-α) receptor 1, and CCR 1, 3, 4, 8, and 11. Tryptase, PAR2 agonists, histamine, and TNF-α all enhanced interleukin 8 production by RPE cells, while only tryptase enhanced VEGF production. Tryptase also enhanced expression of phosphorylated extracellular signal-regulated kinases 1/2, resulting in increased migration of RPE cells. However, tryptase did not alter epithelial integrity or the expression of zonula occludens-1 and junctional adhesion molecule-A by RPE cells. Mast cell mediators, especially tryptase, may influence RPE cell inflammation.
Collapse
|
31
|
Kelly MEM, Lehmann C, Zhou J. The Endocannabinoid System in Local and Systemic Inflammation. ACTA ACUST UNITED AC 2017. [DOI: 10.4199/c00151ed1v01y201702isp074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
32
|
Chinnery HR, McMenamin PG, Dando SJ. Macrophage physiology in the eye. Pflugers Arch 2017; 469:501-515. [DOI: 10.1007/s00424-017-1947-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 01/29/2017] [Accepted: 01/31/2017] [Indexed: 10/20/2022]
|
33
|
Wang JW, Vu C, Poloso NJ. A Prostacyclin Analog, Cicaprost, Exhibits Potent Anti-Inflammatory Activity in Human Primary Immune Cells and a Uveitis Model. J Ocul Pharmacol Ther 2017; 33:186-192. [PMID: 28072560 DOI: 10.1089/jop.2016.0167] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
PURPOSE To investigate the therapeutic potential of a prostacyclin (IP) receptor agonist for ocular inflammation and the effect on immune cells. METHODS The anti-inflammatory activities of cicaprost were determined in primary human monocyte-derived macrophages and human monocyte-derived dendritic cells (MoDC), as well as a lipopolysaccharides (LPS)-induced rat uveitis model. Multiple cytokine release was measured by utilizing Luminex Technology. Prostacyclin (IP) Receptor expression was detected by reverse transcription-polymerase chain receptor. Leukocyte infiltration and protein exudation in the rat uveitis model were measured using a hemocytometer and protein concentration by a NanoDrop instrument. RESULTS Cicapost, an IP receptor agonist, potently inhibits proinflammatory chemokines/cytokine production not only from LPS- or TNFα (tumor necrosis factor-alpha)-induced primary human monocyte-derived macrophages, but also from LPS-stimulated MoDC. While constitutively expressed in macrophages, the IP receptor was inducible by LPS stimulation in MoDCs. In a LPS-induced rat uveitis model, cicaprost efficaciously prevents ocular inflammatory cell and protein leakage, as well as inflammatory cytokine release. CONCLUSION The IP receptor agonist cicaprost is a potent anti-inflammatory agent, implicating that the tightly controlled PGI2/IP signaling pathway is important in regulating inflammation. This response could be harnessed in ocular inflammatory disease where steroids are currently the standard of care.
Collapse
Affiliation(s)
- Jenny W Wang
- Department of Biological Sciences, Allergan , Irvine, California
| | - Chau Vu
- Department of Biological Sciences, Allergan , Irvine, California
| | - Neil J Poloso
- Department of Biological Sciences, Allergan , Irvine, California
| |
Collapse
|
34
|
Abu-Asab MS, Yeung IYL, Ardeljan C, Gonzalez AN, Sidransky E, Chan CC. Ocular Implications of Gaucher Disease. ESSENTIALS IN OPHTHALMOLOGY 2017. [DOI: 10.1007/978-4-431-56511-6_29] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
35
|
Theodoropoulou S, Copland DA, Liu J, Wu J, Gardner PJ, Ozaki E, Doyle SL, Campbell M, Dick AD. Interleukin-33 regulates tissue remodelling and inhibits angiogenesis in the eye. J Pathol 2016; 241:45-56. [PMID: 27701734 PMCID: PMC5683707 DOI: 10.1002/path.4816] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 09/04/2016] [Accepted: 09/21/2016] [Indexed: 01/20/2023]
Abstract
Age‐related macular degeneration (AMD) is the leading cause of central vision loss worldwide. Loss of retinal pigment epithelium (RPE) is a major pathological hallmark in AMD with or without pathological neovascularization. Although activation of the immune system is implicated in disease progression, pathological pathways remain diverse and unclear. Here, we report an unexpected protective role of a pro‐inflammatory cytokine, interleukin‐33 (IL‐33), in ocular angiogenesis. IL‐33 and its receptor (ST2) are expressed constitutively in human and murine retina and choroid. When RPE was activated, IL‐33 expression was markedly elevated in vitro. We found that IL‐33 regulated tissue remodelling by attenuating wound‐healing responses, including reduction in the migration of choroidal fibroblasts and retinal microvascular endothelial cells, and inhibition of collagen gel contraction. In vivo, local administration of recombinant IL‐33 inhibited murine choroidal neovascularization (CNV) formation, a surrogate of human neovascular AMD, and this effect was ST2‐dependent. Collectively, these data demonstrate IL‐33 as a potential immunotherapy and distinguishes pathways for subverting AMD pathology. © 2016 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Sofia Theodoropoulou
- Academic Unit of Ophthalmology, School of Clinical Sciences, University of Bristol, Bristol, UK
| | - David A Copland
- Academic Unit of Ophthalmology, School of Clinical Sciences, University of Bristol, Bristol, UK
| | - Jian Liu
- Academic Unit of Ophthalmology, School of Clinical Sciences, University of Bristol, Bristol, UK
| | - Jiahui Wu
- Academic Unit of Ophthalmology, School of Clinical Sciences, University of Bristol, Bristol, UK
| | - Peter J Gardner
- University College London-Institute of Ophthalmology, London, UK
| | - Ema Ozaki
- Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Sarah L Doyle
- Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Matthew Campbell
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Andrew D Dick
- Academic Unit of Ophthalmology, School of Clinical Sciences, University of Bristol, Bristol, UK.,University College London-Institute of Ophthalmology, London, UK.,National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital and University College London Institute of Ophthalmology, London, UK
| |
Collapse
|
36
|
Toguri JT, Caldwell M, Kelly MEM. Turning Down the Thermostat: Modulating the Endocannabinoid System in Ocular Inflammation and Pain. Front Pharmacol 2016; 7:304. [PMID: 27695415 PMCID: PMC5024674 DOI: 10.3389/fphar.2016.00304] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 08/26/2016] [Indexed: 11/13/2022] Open
Abstract
The endocannabinoid system (ECS) has emerged as an important regulator of both physiological and pathological processes. Notably, this endogenous system plays a key role in the modulation of pain and inflammation in a number of tissues. The components of the ECS, including endocannabinoids, their cognate enzymes and cannabinoid receptors, are localized in the eye, and evidence indicates that ECS modulation plays a role in ocular disease states. Of these diseases, ocular inflammation presents a significant medical problem, given that current clinical treatments can be ineffective or are associated with intolerable side-effects. Furthermore, a prominent comorbidity of ocular inflammation is pain, including neuropathic pain, for which therapeutic options remain limited. Recent evidence supports the use of drugs targeting the ECS for the treatment of ocular inflammation and pain in animal models; however, the potential for therapeutic use of cannabinoid drugs in the eye has not been thoroughly investigated at this time. This review will highlight evidence from experimental studies identifying components of the ocular ECS and discuss the functional role of the ECS during different ocular inflammatory disease states, including uveitis and corneal keratitis. Candidate ECS targeted therapies will be discussed, drawing on experimental results obtained from both ocular and non-ocular tissue(s), together with their potential application for the treatment of ocular inflammation and pain.
Collapse
Affiliation(s)
- James T. Toguri
- Department of Pharmacology, Dalhousie University, HalifaxNS, Canada
| | - Meggie Caldwell
- Department of Pharmacology, Dalhousie University, HalifaxNS, Canada
| | - Melanie E. M. Kelly
- Department of Pharmacology, Dalhousie University, HalifaxNS, Canada
- Department of Ophthalmology and Visual Sciences, Dalhousie University, HalifaxNS, Canada
- Anesthesia, Pain Management & Perioperative Medicine, Dalhousie University, HalifaxNS, Canada
| |
Collapse
|
37
|
Sinha DP, Cartwright ME, Johnson RC. Incidental Mononuclear Cell Infiltrate in the Uvea of Cynomolgus Monkeys. Toxicol Pathol 2016; 34:148-51. [PMID: 16537293 DOI: 10.1080/01926230500531779] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Mononuclear cell infiltrate (MCI) in the uvea was observed in naïve, untreated (control group) cynomolgus monkeys in approximately 25% of drug safety evaluation studies. The total incidence of MCI in the choroid and the ciliary body was 29% of 342 males and 25% of 306 female monkeys. In the studies in which MCI was present in the ciliary body or choroid, the incidence was as high as 75%. There were no other ocular histopathologic findings in these monkeys. All monkeys were clinically healthy and the eyes were not remarkable when examined ophthalmoscopically.
Collapse
Affiliation(s)
- Dinesh P Sinha
- Department of Drug Safety and Metabolism, Schering-Plough Research Institute, Lafayette, New Jersey 07848, USA.
| | | | | |
Collapse
|
38
|
Bhutto IA, McLeod DS, Jing T, Sunness JS, Seddon JM, Lutty GA. Increased choroidal mast cells and their degranulation in age-related macular degeneration. Br J Ophthalmol 2016; 100:720-6. [PMID: 26931413 DOI: 10.1136/bjophthalmol-2015-308290] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 02/08/2016] [Indexed: 11/04/2022]
Abstract
BACKGROUND/AIMS Inflammation has been implicated in age-related macular degeneration (AMD). This study investigates the association of mast cells (MCs), a resident choroidal inflammatory cell, with pathological changes in AMD. METHODS Human donor eyes included aged controls (n=10), clinically diagnosed with early AMD (n=8), geographic atrophy (GA, n=4) and exudative AMD (n=11). The choroids were excised and incubated for alkaline phosphatase (APase; blood vessels) and non-specific esterase activities (MCs). Degranulated (DG) and non-degranulated MCs in four areas of posterior choroid (nasal, non-macular, paramacular and submacular) were counted in flat mounts (4-6 fields/area). Choroids were subsequently embedded in JB-4 and sectioned for histological analyses. RESULTS The number of MCs was significantly increased in all choroidal areas in early AMD (p=0.0006) and in paramacular area in exudative AMD (139.44±55.3 cells/mm(2); p=0.0091) and GA (199.08±82.0 cells/mm(2); p=0.0019) compared with the aged controls. DG MCs were also increased in paramacular (p=0.001) and submacular choroid (p=0.02) in all forms of AMD. Areas with the greatest numbers of DG MCs had loss of choriocapillaris (CC). Sections revealed that the MCs were widely distributed in Sattler's and Haller's layer in the choroidal stroma in aged controls, whereas MCs were frequently found in close proximity with CC in GA and exudative AMD and in choroidal neovascularisation (CNV). CONCLUSION Increased MC numbers and degranulation were observed in all AMD choroids. These results suggest that MC degranulation may contribute to the pathogenesis of AMD: death of CC and retinal pigment epithelial and CNV formation. The proteolytic enzymes released from MC granules may result in thinning of AMD choroid.
Collapse
Affiliation(s)
- Imran A Bhutto
- Department of Ophthalmology, Wilmer Ophthalmological Institute, Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - D Scott McLeod
- Department of Ophthalmology, Wilmer Ophthalmological Institute, Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Tian Jing
- Biostatistics Consulting Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Janet S Sunness
- Hoover Low Vision Rehabilitation Services, Greater Baltimore Medical Center, Baltimore, Maryland, USA Department of Ophthalmology and Visual Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Johanna M Seddon
- Ophthalmic Epidemiology and Genetics Service, New England Eye Center, Boston, Massachusetts, USA Department of Ophthalmology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Gerard A Lutty
- Department of Ophthalmology, Wilmer Ophthalmological Institute, Johns Hopkins Hospital, Baltimore, Maryland, USA
| |
Collapse
|
39
|
de Andrade FA, Fiorot SHS, Benchimol EI, Provenzano J, Martins VJ, Levy RA. The autoimmune diseases of the eyes. Autoimmun Rev 2016; 15:258-71. [DOI: 10.1016/j.autrev.2015.12.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 11/27/2015] [Indexed: 02/06/2023]
|
40
|
Sano Y, Matsuda K, Okamoto M, Takehana K, Hirayama K, Taniyama H. Distribution of CD163-positive cell and MHC class II-positive cell in the normal equine uveal tract. J Vet Med Sci 2015; 78:287-91. [PMID: 26537548 PMCID: PMC4785119 DOI: 10.1292/jvms.15-0406] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Antigen-presenting cells (APCs) in the uveal tract participate in ocular immunity including immune
homeostasis and the pathogenesis of uveitis. In horses, although uveitis is the most common ocular disorder,
little is known about ocular immunity, such as the distribution of APCs. In this study, we investigated the
distribution of CD163-positive and MHC II-positive cells in the normal equine uveal tract using an
immunofluorescence technique. Eleven eyes from 10 Thoroughbred horses aged 1 to 24 years old were used.
Indirect immunofluorescence was performed using the primary antibodies CD163, MHC class II (MHC II) and CD20.
To demonstrate the site of their greatest distribution, positive cells were manually counted in 3 different
parts of the uveal tract (ciliary body, iris and choroid), and their average number was assessed by
statistical analysis. The distribution of pleomorphic CD163- and MHC II-expressed cells was detected
throughout the equine uveal tract, but no CD20-expressed cells were detected. The statistical analysis
demonstrated the distribution of CD163- and MHC II-positive cells focusing on the ciliary body. These results
demonstrated that the ciliary body is the largest site of their distribution in the normal equine uveal tract,
and the ciliary body is considered to play important roles in uveal and/or ocular immune homeostasis. The data
provided in this study will help further understanding of equine ocular immunity in the normal state and might
be beneficial for understanding of mechanisms of ocular disorders, such as equine uveitis.
Collapse
Affiliation(s)
- Yuto Sano
- Department of Veterinary Pathology, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| | | | | | | | | | | |
Collapse
|
41
|
Taurone S, Ripandelli G, Pacella E, Bianchi E, Plateroti AM, De Vito S, Plateroti P, Grippaudo FR, Cavallotti C, Artico M. Potential regulatory molecules in the human trabecular meshwork of patients with glaucoma: immunohistochemical profile of a number of inflammatory cytokines. Mol Med Rep 2014; 11:1384-90. [PMID: 25351602 DOI: 10.3892/mmr.2014.2772] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 05/02/2014] [Indexed: 11/06/2022] Open
Abstract
Glaucoma occurs when there are imbalances between the production and the drainage of the eye liquid. The vast majority of the aqueous humor leaves the eye through the trabecular meshwork (TM). The cause of hypertonicity may be due to an alteration in the thickness of the TM. In the majority of cases the molecular changes that determine primary open‑angle glaucoma (POAG) are unclear. However, it has been hypothesized that the significant increase in the extracellular matrix (ECM) of the fibrillary bands in the TM is associated with possible inflammatory conditions. In this study the tissue distribution of interleukin (IL)‑6, IL‑1β, transforming growth factor-β1 (TGF‑β1), vascular endothelial growth factor (VEGF) and tumor necrosis factor α (TNF‑α) was analyzed in TM samples from patients with POAG by immunohistochemistry. Seven specimens from patients with POAG and three control tissues were analyzed by immunohistochemistry using specific antibodies against these cytokines. Morphological changes in the TM, such as increased cell content, macrophages, fibrosis and accumulation of neutrophils, were observed by transmission electron microscopy. In human TM tissues, an evident immunoreactivity for IL‑6, IL‑1β and TNF‑α was observed in patients with POAG when compared with the control subjects, indicating that these cytokines may be correlated with disease activity. TM endothelial cells secrete a number of factors and cytokines that modulate the functions of the cells and the ECM of the conventional outflow pathway. In the TM in glaucoma, macrophages produce cytokines, including IL‑6, IL‑1β and TNF‑α, leading to an acute inflammatory response and recruitment of other immune cells, including T lymphocytes. In addition, TGF‑β1 regulates and induces the expression of IL‑6 in TM that indirectly induces angiogenesis by stimulating VEGF expression. The present results support previous evidence that suggests that growth factors and cytokines can induce ECM remodelling and alter cytoskeletal interactions in the TM.
Collapse
Affiliation(s)
- Samanta Taurone
- Department of Sensory Organs, Sapienza University of Rome, Rome 00161, Italy
| | | | - Elena Pacella
- Department of Sensory Organs, Sapienza University of Rome, Rome 00161, Italy
| | - Enrica Bianchi
- Department of Sensory Organs, Sapienza University of Rome, Rome 00161, Italy
| | | | - Stefania De Vito
- Department of Anatomical, Histological, Medico‑legal and Locomotor System Sciences, Rome 00161, Italy
| | - Pasquale Plateroti
- Department of Sensory Organs, Sapienza University of Rome, Rome 00161, Italy
| | - Francesca Romana Grippaudo
- Department of Neurosciences, Mental Health and Sensory Organs, II Faculty of Medicine and Surgery, Sapienza University of Rome, Rome 00189, Italy
| | - Carlo Cavallotti
- Department of Anatomical, Histological, Medico‑legal and Locomotor System Sciences, Rome 00161, Italy
| | - Marco Artico
- Department of Sensory Organs, Sapienza University of Rome, Rome 00161, Italy
| |
Collapse
|
42
|
Kumar A, Zhao L, Fariss RN, McMenamin PG, Wong WT. Vascular associations and dynamic process motility in perivascular myeloid cells of the mouse choroid: implications for function and senescent change. Invest Ophthalmol Vis Sci 2014; 55:1787-96. [PMID: 24458147 DOI: 10.1167/iovs.13-13522] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
PURPOSE Immune and vascular alterations in the choroid are implicated in age-related macular degeneration (AMD). As choroidal immune cells are incompletely understood with regard to their physiology and interactions with choroidal vessels, we examined the associations between myeloid and vascular components of the choroid in young and aged mice. METHODS Albino CX3CR1(GFP/+) transgenic mice, whose choroidal myeloid cells possess green fluorescence, were perfused intraluminally with the vital dye DiI to label choroidal vessels. The distribution, morphology, behavior, and vascular associations of resident myeloid cells were examined using time-lapse live confocal imaging and immunohistochemical analysis. RESULTS Dendritiform myeloid cells, comprising most of the resident immune cell population in the choroid, were widely distributed across the choroid and demonstrated close associations with choroidal vessels that varied with their position in the vascular tree. Notably, myeloid cells associated with choroidal arteries and arterioles appeared as elongated cells flanking the long axes of vessels, whereas those associated with the choriocapillaris were distributed as a layer of stellate cells on the scleral but not vitreal choriocapillaris surface. While stationary in position, dendritiform myeloid cells demonstrated the rapid process dynamism well suited to comprehensive immunosurveillance of the perivascular space. Myeloid cells also increased in density as a function of aging, correlating locally with greater choroidal vascular attenuation. CONCLUSIONS Resident myeloid cells demonstrated close but dynamic physical interactions with choroidal vessels, indicative of constitutive immune-vascular interactions in the normal choroid. These interactions may alter progressively with aging, providing a basis for understanding age-related choroidal dysfunction underlying AMD.
Collapse
Affiliation(s)
- Anil Kumar
- Unit on Neuron-Glia Interactions in Retinal Disease, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | | | | | | | | |
Collapse
|
43
|
Abstract
Topical ocular drug delivery has always been a challenging area due to poor ocular bioavailability. Improved drug delivery systems such as liposomes are capable of entrapping both the lipophilic and hydrophilic substances. Therefore, they are effective formulations for drug delivery to targeted structure. PEGylated-liposomes are known to have stealth properties due to their ability of resisting removal by phagocytic cells. This study compares ability of PEGylated-and nonPEGylated-liposomes in delivering lipophilic fluorescent dye, Dil, to several ocular tissues. Sprague-Dawley rats (190-250g) were divided into 2 groups that received unilateral topical application of single drop of PEGylated-liposome (PEG-Lip) or nonPEGylated-liposome (Lip). Contralateral eyes served as control and received no treatment. Animals were sacrificed at several time points, post-instillation, and eyeballs were enucleated. Cryostat sectioning was done and sections were viewed with fluorescence microscope. Fluorescence intensity (FI) was calculated and quantified. In treated eyes, nonPEGylated-liposomes showed faster corneal permeation compared to PEGylated-liposomes. NonPEGylated-liposomes also showed faster availability in ciliary body and retina of treated eyes, possibly a consequence of faster corneal permeation. Their higher engulfment by macrophages and subsequent localization in vascular tissue may also be a contributing factor. In contralateral eyes, both groups showed dye distribution indicating their significant systemic distribution. Higher availability of non-PEGylated-liposomes in contralateral eyes also indicated that they are more likely to undergo phagocytosis and consequently faster removal. In conclusion, PEG-lip showed slower corneal permeation in the treated eyes. Both types of liposomes undergo significant systemic absorption. Since, PEG-lip are more resistant to phagocytosis, they may provide more sustained drug delivery.
Collapse
|
44
|
Sheth V, Gottlob I, Mohammad S, McLean RJ, Maconachie GDE, Kumar A, Degg C, Proudlock FA. Diagnostic potential of iris cross-sectional imaging in albinism using optical coherence tomography. Ophthalmology 2013; 120:2082-90. [PMID: 23725737 DOI: 10.1016/j.ophtha.2013.03.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 03/12/2013] [Accepted: 03/12/2013] [Indexed: 11/16/2022] Open
Abstract
PURPOSE To characterize in vivo anatomic abnormalities of the iris in albinism compared with healthy controls using anterior segment optical coherence tomography (AS-OCT) and to explore the diagnostic potential of this technique for albinism. We also investigated the relationship between iris abnormalities and other phenotypical features of albinism. DESIGN Prospective cross-sectional study. PARTICIPANTS A total of 55 individuals with albinism and 45 healthy controls. METHODS We acquired 4.37×4.37-mm volumetric scans (743 A-scans, 50 B-scans) of the nasal and temporal iris in both eyes using AS-OCT (3-μm axial resolution). Iris layers were segmented and thicknesses were measured using ImageJ software. Iris transillumination grading was graded using Summers and colleagues' classification. Retinal OCT, eye movement recordings, best-corrected visual acuity (BCVA), visual evoked potential (VEP), and grading of skin and hair pigmentation were used to quantify other phenotypical features associated with albinism. MAIN OUTCOME MEASURES Iris AS-OCT measurements included (1) total iris thickness, (2) stroma/anterior border (SAB) layer thickness, and (3) posterior epithelial layer (PEL) thickness. Correlation with other phenotypical measurements, including (1) iris transillumination grading, (2) retinal layer measurements at the fovea, (3) nystagmus intensity, (4) BCVA, (5) VEP asymmetry, (6) skin pigmentation, and (7) hair pigmentation (of head hair, lashes, and brows). RESULTS The mean iris thickness was 10.7% thicker in controls (379.3 ± 44.0 μm) compared with the albinism group (342.5 ± 52.6 μm; P>0.001), SAB layers were 5.8% thicker in controls (315.1 ± 43.8 μm) compared with the albinism group (297.7 ± 50.0 μm; P=0.044), and PEL was 44.0% thicker in controls (64.1 ± 11.7 μm) compared with the albinism group (44.5 ± 13.9 μm; P<0.0001). The most ciliary quartile of the PEL yielded a sensitivity of 85% and specificity of 78% for detecting albinism. Phenotypic features of albinism, such as skin and hair pigmentation, BCVA, and nystagmus intensity, were significantly correlated to AS-OCT iris thickness measurements. CONCLUSIONS We have characterized in vivo abnormalities of the iris associated with albinism for the first time and show that PEL thickness is particularly affected. We demonstrate that PEL thickness has diagnostic potential for detecting iris abnormalities in albinism. Anterior segment OCT iris measurements are significantly correlated to BCVA and nystagmus intensity in contrast to iris transillumination grading measurements that were not. FINANCIAL DISCLOSURE(S) The author(s) have no proprietary or commercial interest in any materials discussed in this article.
Collapse
Affiliation(s)
- Viral Sheth
- Ophthalmology Group, University of Leicester, Faculty of Medicine & Biological Sciences, Leicester Royal Infirmary, Leicester, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Forrester JV, Steptoe RJ, Klaska IP, Martin-Granados C, Dua HS, Degli-Esposti MA, Wikstrom ME. Cell-based therapies for ocular inflammation. Prog Retin Eye Res 2013; 35:82-101. [PMID: 23542232 DOI: 10.1016/j.preteyeres.2013.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 01/31/2013] [Accepted: 02/01/2013] [Indexed: 12/13/2022]
Abstract
Since the plasticity and the potential for re-programming cells has become widely accepted, there has been great interest in cell-based therapies. These are being applied to a range of diseases, not least ocular diseases, where it is assumed that there is a reduced risk of immune rejection although this may be more perceived than real. There are two broad classes of cell-based therapies: those aimed at restoring structure and function of specific tissues and cells; and those directed towards restoring immunological homeostasis by controlling the damaging effects of inflammatory disease. Stem cells of all types represent the first group and prototypically have been used with the aim of regenerating failing cells. In contrast, immune cells have been suggested as potential modulators of inflammation. However, there is functional overlap in these two applications, with some types of stem cells, such as mesenchymal stem cells, demonstrating a potent immunomodulatory effect. This review summarises recent information on cell based therapies for ocular disease, with special emphasis on ocular inflammatory disease, and explores current uses, potential and limitations.
Collapse
Affiliation(s)
- John V Forrester
- Immunology Program, Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, Western Australia, Australia.
| | | | | | | | | | | | | |
Collapse
|
46
|
McMenamin PG, Polla E. Mast cells are present in the choroid of the normal eye in most vertebrate classes. Vet Ophthalmol 2013; 16 Suppl 1:73-8. [PMID: 23433398 DOI: 10.1111/vop.12035] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECTIVE Mast cells are bone marrow-derived tissue-homing leukocytes, which have traditionally been regarded as effector cells in allergic disorders, responses against parasites, and regulation of blood flow, but a broader perspective of their functional heterogeneity, such as immunomodulation, angiogenesis, tissue repair, and remodeling after injury, is now emerging. The persistence of mast cells in connective tissues throughout the evolution of vertebrates is evidence of strong selective pressure suggesting that these cells must have multiple beneficial and important roles in normal homeostasis. While mast cells are present within the uveal tract of eutherian mammals, there is little known about their presence in the choroid of other vertebrate classes. ANIMALS STUDIED Eye tissues from a range of vertebrate species (fish, amphibian, reptiles, birds, marsupials, monotreme, and eutherian mammals) were investigated. Tissues were fixed in either 2% glutaraldehyde, 2% paraformaldehyde or a mixture of both and processed for resin embedding. Semi-thin sections of the retina and choroid were cut and stained with toluidine blue. RESULTS AND CONCLUSIONS Mast cells were identified in the choroid of all classes of vertebrates investigated except sharks. Their morphology, location, and staining characteristics were remarkably similar from teleost fish through to eutherian mammals and bore close morphological resemblance to mammalian connective tissue mast cells. The similar morphology and distribution of mast cells in the choroid of all vertebrate classes studied suggest a basic physiological function that has been retained since the evolution of the vertebrate eye.
Collapse
Affiliation(s)
- Paul Gerard McMenamin
- Department of Anatomy & Developmental Biology, School of Biomedical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Wellington Road, Clayton, VIC 3800, Australia.
| | | |
Collapse
|
47
|
Zinkernagel MS, Chinnery HR, Ong ML, Petitjean C, Voigt V, McLenachan S, McMenamin PG, Hill GR, Forrester JV, Wikstrom ME, Degli-Esposti MA. Interferon γ-dependent migration of microglial cells in the retina after systemic cytomegalovirus infection. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 182:875-85. [PMID: 23313136 DOI: 10.1016/j.ajpath.2012.11.031] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Revised: 11/19/2012] [Accepted: 11/26/2012] [Indexed: 02/06/2023]
Abstract
Microglial cells are the resident macrophages of the central nervous system and participate in both innate and adaptive immune responses but can also lead to exacerbation of neurodegenerative pathologies after viral infections. Microglia in the outer layers of the retina and the subretinal space are thought to be involved in retinal diseases where low-grade chronic inflammation and oxidative stress play a role. This study investigated the effect of systemic infection with murine cytomegalovirus on the distribution and dynamics of retinal microglia cells. Systemic infection with murine cytomegalovirus elicited a significant increase in the number of microglia in the subretinal space and an accumulation of iris macrophages, along with morphological signs of activation. Interferon γ (IFN-γ)-deficient mice failed to induce changes in microglia distribution. Bone marrow chimera experiments confirmed that microglial cells in the subretinal space were not recruited from the circulating monocyte pool, but rather represented an accumulation of resident microglial cells from within the retina. Our results demonstrate that a systemic viral infection can lead to IFN-γ-mediated accumulation of microglia into the outer retinal layers and offer proof of concept that systemic viral infections alter the ocular microenvironment and therefore, may influence the course of diseases such as macular degeneration, diabetic retinopathy, or autoimmune uveitis, where low-grade inflammation is implicated.
Collapse
Affiliation(s)
- Martin S Zinkernagel
- Ocular Immunology Program, Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Chang JH, McCluskey PJ, Wakefield D. Recent advances in Toll-like receptors and anterior uveitis. Clin Exp Ophthalmol 2012; 40:821-8. [PMID: 22429223 DOI: 10.1111/j.1442-9071.2012.02797.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Uveitis involves acute, recurrent or chronic inflammation of the uvea, and occurs when the normal state of ocular immune privilege has broken down. Accumulating evidence implicates the role of microbial triggers in the development of various forms of immune-mediated uveitis in addition to its causative role in infectious uveitis. Toll-like receptors (TLRs) are the most important pattern-recognition receptors of the innate immune system that recognize pathogen-associated molecular patterns of microbes. Activation of TLRs by pathogen-associated molecular patterns leads to the induction of an inflammatory cascade and activation of both innate and adaptive arms of the immune response. TLRs have been implicated in the pathogenesis of various inflammatory diseases, including uveitis. This review provides an update on recent progress in TLR research and uveitis, specifically summarizing new evidence for the role of TLRs in anterior uveitis. There have been important observations from studies involving human ocular tissue, clinical uveitis and from experimental animal models of uveitis, such as endotoxin-induced uveitis. The 'Toll rush' has certainly gained momentum, and future advances in this field have the potential for selectively targeting the TLR pathway and ultimately translating into better therapies for patients with sight-threatening uveitis.
Collapse
Affiliation(s)
- John H Chang
- Inflammatory Eye Diseases Research Unit, School of Medical Sciences, University of NSW, Sydney, New South Wales, Australia.
| | | | | |
Collapse
|
49
|
T cell responses in experimental viral retinitis: Mechanisms, peculiarities and implications for gene therapy with viral vectors. Prog Retin Eye Res 2011; 30:275-84. [DOI: 10.1016/j.preteyeres.2011.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 04/17/2011] [Accepted: 04/18/2011] [Indexed: 11/20/2022]
|
50
|
Braun JS. Ecto-5′-Nucleotidase-Positive Cells in the Choroid and Ciliary Body of the Rat Eye. Anat Rec (Hoboken) 2010; 293:379-82. [DOI: 10.1002/ar.21080] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|