1
|
Kiarudi MY, Ghavami Shahri SH, Es'haghi A, Gharib B, Ansari-Astaneh MR. Applications of bupivacaine in the non-surgical treatments of strabismus: a review. Strabismus 2022; 30:204-208. [PMID: 36384422 DOI: 10.1080/09273972.2022.2135743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Bupivacaine (BUP) is an anesthetic from the family of aminoacyl anesthetics and has the highest myotoxicity among other groups of anesthetics. Intramuscular injection of BUP first causes acute libriform lysis and subsequently with the regeneration process, stronger myofibrils are formed within 3-4 weeks. Satellite cells, which are actually myogenic stem cells, are preserved in the early stage and during the destruction of muscle fibers. In fact, these cells are responsible for the subsequent regeneration of fibers. BUP is one of the few medicines that is able to increase muscle strength. In animal studies on rabbits, a decrease has been observed in the diameter of the global layer in the first week and an increase in type-I myosin occurs after 60 days, especially in the global muscle layer. There are numerous studies according to BUP injection for the non-surgical management of horizontal strabismus. To intensify the effects of the injection, botulinum toxin injection can also be used simultaneously in the antagonist muscles. In general, although the rate of improvement in strabismus varied among different studies, BUP injection alone corrects about 5-8 prism diopters. Together with botulinum toxin, BUP corrects about 15 prism diopters. The stability of this improvement is up to 10 years after injection. No significant difference has been observed in response rate between patients with esotropia and exotropia. Unlike the large molecule of botulinum toxin, which spreads slowly to its site of action, the BUP molecule is small and must be in direct contact with myofibrils before absorption into the bloodstream to exert its effect. Therefore, the injection volume should be about 3 cc with a concentration of 0.75 g per deciliter. Although BUP is promising non-surgical strabismus management, especially in small angle and residual horizontal strabismus, however, it has its own limitations. The need for direct infusion of a relatively large volume of BUP may be one of its major drawbacks that limits its usage in an office method.
Collapse
Affiliation(s)
| | | | - Acieh Es'haghi
- Eye Research Center, the Five Senses Health Institute, Rassoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Bahare Gharib
- Eye Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | |
Collapse
|
2
|
Nightingale H, Pfeffer G, Bargiela D, Horvath R, Chinnery PF. Emerging therapies for mitochondrial disorders. Brain 2016; 139:1633-48. [PMID: 27190030 PMCID: PMC4892756 DOI: 10.1093/brain/aww081] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 02/26/2016] [Indexed: 12/18/2022] Open
Abstract
Mitochondrial disorders are a diverse group of debilitating conditions resulting from nuclear and mitochondrial DNA mutations that affect multiple organs, often including the central and peripheral nervous system. Despite major advances in our understanding of the molecular mechanisms, effective treatments have not been forthcoming. For over five decades patients have been treated with different vitamins, co-factors and nutritional supplements, but with no proven benefit. There is therefore a clear need for a new approach. Several new strategies have been proposed acting at the molecular or cellular level. Whilst many show promise in vitro, the clinical potential of some is questionable. Here we critically appraise the most promising preclinical developments, placing the greatest emphasis on diseases caused by mitochondrial DNA mutations. With new animal and cellular models, longitudinal deep phenotyping in large patient cohorts, and growing interest from the pharmaceutical industry, the field is poised to make a breakthrough.
Collapse
Affiliation(s)
- Helen Nightingale
- Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Gerald Pfeffer
- Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK Department of Clinical Neurosciences, University of Calgary, Calgary, Canada Hotchkiss Brain Institute, at the University of Calgary, Calgary, Canada
| | - David Bargiela
- Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Rita Horvath
- Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Patrick F Chinnery
- Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK MRC-Mitochondrial Biology Unit, Cambridge Biomedical Campus, Cambridge, CB2 0XY, UK Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge, CB2 0QQ, UK
| |
Collapse
|
3
|
Abstract
Defects in mitochondrial genome can cause a wide range of clinical disorders, mainly neuromuscular diseases. Various strategies have been proposed to address these pathologies; unfortunately no efficient treatment is currently available. In some cases, defects may be rescued by targeting into mitochondria nuclear DNA-expressed counterparts of the affected molecules. Another strategy is based on the induced shift of the heteroplasmy, meaning that wild type and mutated mtDNA can coexist in a single cell. The occurrence and severity of the disease depend on the heteroplasmy level, therefore, several approaches have been recently proposed to selectively reduce the levels of mutant mtDNA. Here we describe the experimental systems used to study the molecular mechanisms of mitochondrial dysfunctions: the respiratory deficient yeast strains, mammalian trans-mitochondrial cybrid cells and mice models, and overview the recent advances in development of various therapeutic approaches.
Collapse
Affiliation(s)
- Yann Tonin
- UMR 7156, Université de Strasbourg-CNRS, 21, rue René Descartes, 67084 Strasbourg, France
| | - Nina Entelis
- UMR 7156, Université de Strasbourg-CNRS, 21, rue René Descartes, 67084 Strasbourg, France
| |
Collapse
|
4
|
Abstract
Patients with mitochondrial cytopathies often experience exercise intolerance and may have fixed muscle weakness, leading to impaired functional capacity and lower quality of life. Endurance exercise training increases Vo 2 max, respiratory chain enzyme activity, and improves quality of life. Resistance exercise training increases muscle strength and may lower mutational burden in patients with mitochondrial DNA deletions. Both modes of exercise appear to be well tolerated. Patients with mitochondrial cytopathy should consider alternating both types of exercise to derive the benefits from each (endurance = greater aerobic fitness; resistance = greater strength). Patients should start an exercise program at a low intensity and duration, gradually increasing duration and intensity. They should "listen to their body" and not exercise on days they have fever, superimposed illness, muscle pain, or cramps, and/or if they have fasted for more than 12 hours. Children often respond best to play-based exercise and tend to enjoy intermittent activity.
Collapse
Affiliation(s)
- Mark A Tarnopolsky
- From the Division of Neuromuscular and Neurometabolic Diseases, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
5
|
Jinnah HA, Berardelli A, Comella C, Defazio G, Delong MR, Factor S, Galpern WR, Hallett M, Ludlow CL, Perlmutter JS, Rosen AR. The focal dystonias: current views and challenges for future research. Mov Disord 2013; 28:926-43. [PMID: 23893450 PMCID: PMC3733486 DOI: 10.1002/mds.25567] [Citation(s) in RCA: 158] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Revised: 05/15/2013] [Accepted: 05/16/2013] [Indexed: 11/11/2022] Open
Abstract
The most common forms of dystonia are those that develop in adults and affect a relatively isolated region of the body. Although these adult-onset focal dystonias are most prevalent, knowledge of their etiologies and pathogenesis has lagged behind some of the rarer generalized dystonias, in which the identification of genetic defects has facilitated both basic and clinical research. This summary provides a brief review of the clinical manifestations of the adult-onset focal dystonias, focusing attention on less well understood clinical manifestations that need further study. It also provides a simple conceptual model for the similarities and differences among the different adult-onset focal dystonias as a rationale for lumping them together as a class of disorders while at the same time splitting them into subtypes. The concluding section outlines some of the most important research questions for the future. Answers to these questions are critical for advancing our understanding of this group of disorders and for developing novel therapeutics.
Collapse
Affiliation(s)
- H A Jinnah
- Department of Neurology, Emory University, Atlanta, Georgia 30322, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Wenz T, Williams SL, Bacman SR, Moraes CT. Emerging therapeutic approaches to mitochondrial diseases. ACTA ACUST UNITED AC 2011; 16:219-29. [PMID: 20818736 DOI: 10.1002/ddrr.109] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Mitochondrial diseases are very heterogeneous and can affect different tissues and organs. Moreover, they can be caused by genetic defects in either nuclear or mitochondrial DNA as well as by environmental factors. All of these factors have made the development of therapies difficult. In this review article, we will discuss emerging approaches to the therapy of mitochondrial disorders, some of which are targeted to specific conditions whereas others may be applicable to a more diverse group of patients.
Collapse
Affiliation(s)
- Tina Wenz
- Department of Neurology, University of Miami School of Medicine, 1095 NW 14th Terrace, Miami, FL 33136, USA
| | | | | | | |
Collapse
|
7
|
Ritchie AE, Griffiths PG, Chinnery PF, Davidson AW. Eye movement recordings to investigate a supranuclear component in chronic progressive external ophthalmoplegia: a cross-sectional study. Br J Ophthalmol 2010; 94:1165-8. [PMID: 20576783 PMCID: PMC4038492 DOI: 10.1136/bjo.2009.165639] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND It has been postulated that eye movement disorders in chronic progressive external ophthalmoplegia (CPEO) have a neurological as well as a myopathic component to them. AIM To investigate whether there is a supranuclear component to eye movement disorders in CPEO using eye movement recordings. METHODS Saccade and smooth pursuit (SP) characteristics together with vestibulo-ocular reflex (VOR) gain and VOR suppression (VORS) gain in 18 patients with CPEO and 34 normal patients were measured using Eyelink II video-oculography. RESULTS The asymptotic values of the peak velocity main sequence curves were reduced in the CPEO group compared to those of normal patients, with a mean of 161 degrees/s (95% CI 126 degrees/s to 197 degrees/s) compared with 453 degrees/s (95% CI 430 to 475 degrees/s), respectively. Saccadic latency was longer in CPEO (263 ms; 95% CI 250 to 278), compared to controls (185 ms; 95% CI 181 to 189). Smooth pursuit and VOR gains were impaired in CPEO, although this could be explained by non-supranuclear causes. VORS gain was identical in the two groups. CONCLUSIONS This study does not support a supranuclear component to the ophthalmoplegia of CPEO, although the increased latencies observed may warrant further investigation.
Collapse
Affiliation(s)
- A E Ritchie
- Department of Ophthalmology, The Royal Free Hospital, London, UK
| | | | | | | |
Collapse
|
8
|
Greaves LC, Yu-Wai-Man P, Blakely EL, Krishnan KJ, Beadle NE, Kerin J, Barron MJ, Griffiths PG, Dickinson AJ, Turnbull DM, Taylor RW. Mitochondrial DNA defects and selective extraocular muscle involvement in CPEO. Invest Ophthalmol Vis Sci 2010; 51:3340-6. [PMID: 20164463 DOI: 10.1167/iovs.09-4659] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE. Chronic progressive external ophthalmoplegia (CPEO) is a prominent, and often the only, presentation among patients with mitochondrial diseases. The mechanisms underlying the preferential involvement of extraocular muscles (EOMs) in CPEO were explored in a comprehensive histologic and molecular genetic study, to define the extent of mitochondrial dysfunction in EOMs compared with that in skeletal muscle from the same patient. METHODS. A well-characterized cohort of 13 CPEO patients harboring a variety of primary and secondary mitochondrial (mt)DNA defects was studied. Mitochondrial enzyme function was determined in EOM and quadriceps muscle sections with cytochrome c oxidase (COX)/succinate dehydrogenase (SDH) histochemistry, and the mutation load in single muscle fibers was quantified by real-time PCR and PCR-RFLP assays. RESULTS. CPEO patients with mtDNA deletions had more COX-deficient fibers in EOM (41.6%) than in skeletal muscle (13.7%, P > 0.0001), and single-fiber analysis revealed a lower mutational threshold for COX deficiency in EOM. Patients with mtDNA point mutations had a less severe ocular phenotype, and there was no significant difference in the absolute level of COX deficiency or mutational threshold between these two muscle groups. CONCLUSIONS. The more pronounced mitochondrial biochemical defect and lower mutational threshold in EOM compared with skeletal muscle fibers provide an explanation of the selective muscle involvement in CPEO. The data also suggest that tissue-specific mechanisms are involved in the clonal expansion and expression of secondary mtDNA deletions in CPEO patients with nuclear genetic defects.
Collapse
Affiliation(s)
- Laura C Greaves
- Mitochondrial Research Group, Institute for Ageing and Health, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Devries MC, Tarnopolsky MA. Muscle Physiology in Healthy Men and Women and Those with Metabolic Myopathies. Phys Med Rehabil Clin N Am 2009; 20:101-31, viii-ix. [DOI: 10.1016/j.pmr.2008.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Abstract
Research of patients with defects in cellular energy metabolism (mitochondrial disease) has led to a better understanding of mitochondrial biology in health and disease. The obtained knowledge is of increasing importance for physicians of all medical disciplines. It assists in enabling the development of rational treatment strategies for diseases or conditions caused by mitochondrial dysfunction. The still frequently used classical interventions with vitamins or co-factors are only beneficial in some rare mitochondrial disease conditions, like coenzyme Q biosynthesis defects. For that reason alternative strategies to correct disturbed energy metabolism have to be developed. New approaches in this direction include nutrition and exercise therapies, alternative gene expression, enzyme-replacement, scavenging of potentially toxic compounds and modulating cell signalling. The effect of some of these interventions has already been explored in humans whilst others are still at the level of single cell research. We review the state of the art of the development of mitochondrial treatment strategies and discuss what steps need to be taken to efficiently approach the huge burden of disease caused by dysfunctional mitochondria.
Collapse
Affiliation(s)
- S Koene
- Radboud University Nijmegen Medical Centre, Nijmegen Centre for Mitochondrial Disorders, Nijmegen, The Netherlands
| | | |
Collapse
|
11
|
Horvath R, Gorman G, Chinnery PF. How can we treat mitochondrial encephalomyopathies? Approaches to therapy. Neurotherapeutics 2008; 5:558-68. [PMID: 19019307 PMCID: PMC4514691 DOI: 10.1016/j.nurt.2008.07.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Mitochondrial disorders are a heterogeneous group of diseases affecting different organs (brain, muscle, liver, and heart), and the severity of the disease is highly variable. The chronicity and heterogeneity, both clinically and genetically, means that many patients require surveillance follow-up over their lifetime, often involving multiple disciplines. Although our understanding of the genetic defects and their pathological impact underlying mitochondrial diseases has increased over the past decade, this has not been paralleled with regards to treatment. Currently, no definitive pharmacological treatment exists for patients with mitochondrial dysfunction, except for patients with primary deficiency of coenzyme Q10. Pharmacological and nonpharmacological treatments increasingly being investigated include ketogenic diet, exercise, and gene therapy. Management is aimed primarily at minimizing disability, preventing complications, and providing prognostic information and genetic counseling based on current best practice. Here, we evaluate therapies used previously and review current and future treatment modalities for both adults and children with mitochondrial disease.
Collapse
Affiliation(s)
- Rita Horvath
- Mitochondrial Research Group, School of Neuroscience, University of Newcastle upon Tyne, UK
| | - Grainne Gorman
- Mitochondrial Research Group, School of Neuroscience, University of Newcastle upon Tyne, UK
| | - Patrick F. Chinnery
- Mitochondrial Research Group, School of Neuroscience, University of Newcastle upon Tyne, UK
| |
Collapse
|
12
|
Muscle Physiology in Healthy Men and Women and Those with Metabolic Myopathies. Neurol Clin 2008; 26:115-48; ix. [DOI: 10.1016/j.ncl.2007.11.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Abstract
Therapy of mitochondrial encephalomyopathies (defined restrictively as defects of the mitochondrial respiratory chain) is woefully inadequate, despite great progress in our understanding of the molecular bases of these disorders. In this review, we consider sequentially several different therapeutic approaches. Palliative therapy is dictated by good medical practice and includes anticonvulsant medication, control of endocrine dysfunction, and surgical procedures. Removal of noxious metabolites is centered on combating lactic acidosis, but extends to other metabolites. Attempts to bypass blocks in the respiratory chain by administration of electron acceptors have not been successful, but this may be amenable to genetic engineering. Administration of metabolites and cofactors is the mainstay of real-life therapy and is especially important in disorders due to primary deficiencies of specific compounds, such as carnitine or coenzyme Q10. There is increasing interest in the administration of reactive oxygen species scavengers both in primary mitochondrial diseases and in neurodegenerative diseases directly or indirectly related to mitochondrial dysfunction. Aerobic exercise and physical therapy prevent or correct deconditioning and improve exercise tolerance in patients with mitochondrial myopathies due to mitochondrial DNA (mtDNA) mutations. Gene therapy is a challenge because of polyplasmy and heteroplasmy, but interesting experimental approaches are being pursued and include, for example, decreasing the ratio of mutant to wild-type mitochondrial genomes (gene shifting), converting mutated mtDNA genes into normal nuclear DNA genes (allotopic expression), importing cognate genes from other species, or correcting mtDNA mutations with specific restriction endonucleases. Germline therapy raises ethical problems but is being considered for prevention of maternal transmission of mtDNA mutations. Preventive therapy through genetic counseling and prenatal diagnosis is becoming increasingly important for nuclear DNA-related disorders. Progress in each of these approaches provides some glimmer of hope for the future, although much work remains to be done.
Collapse
Affiliation(s)
- Salvatore DiMauro
- College of Physicians and Surgeons, Department of Neurology, Columbia University Medical Center, NewYork, NY 10032, USA.
| | | |
Collapse
|
14
|
Abstract
Therapy for mitochondrial diseases is woefully inadequate. However, lack of a cure does not equate with lack of treatment. Palliative therapy is dictated by good medical practice and includes anticonvulsant medication, control of endocrine dysfunction, and surgical procedures. Removal of noxious metabolites is centered on combating lactic acidosis, but extends to other metabolites. Attempts to bypass blocks in the respiratory chain by administration of electron acceptors have not been successful, but this may be amenable to genetic engineering. Administration of metabolites and cofactors is the mainstay of real-life therapy and is especially important in disorders due to primary deficiencies of specific compounds, such as carnitine or coenzyme Q10 (CoQ10). There is increasing interest in the administration of reactive oxygen radicals (ROS) scavengers, both in primary mitochondrial diseases and in neurodegenerative diseases. Gene therapy is a challenge because of polyplasmy and heteroplasmy, but novel experimental approaches are being pursued. One important strategy is to decrease the ratio of mutant to wild-type mitochondrial genomes ("gene shifting") by different means: (1) converting mutated mitochondrial DNA (mtDNA) genes into normal nuclear DNA genes ("allotopic expression"); (2) importing cognate genes from other species ("xenotopic expression"); (3) correcting mtDNA mutations by importing specific restriction endonucleases; (4) selecting for respiratory function; and (5) inducing muscle regeneration. Germline therapy raises ethical problems but is being considered for prevention of maternal transmission of mtDNA mutations. Preventive therapy through genetic counseling and prenatal diagnosis is becoming increasingly important for nuclear DNA-related disorders.
Collapse
Affiliation(s)
- Salvatore DiMauro
- Department of Neurology, Columbia University Medical Center, 4-420 College of Physicians and Surgeons, 630 West 168th Street, New York, New York 10032, USA.
| | | | | |
Collapse
|
15
|
Abstract
Despite recent epidemiological studies confirming that mitochondrial respiratory chain disorders due to mutations in either the mitochondrial or nuclear genome are amongst the most common inherited human diseases, realistic therapeutic strategies for these patients remain limited. The disappointing response to various vitamins, cofactors and electron acceptors that have been administered to patients in an attempt to bypass the underlying respiratory chain defect, coupled with the complexities of human mitochondrial genetics, means that novel and innovative means are required to offer realistic treatments. Several 'gene therapy' strategies have therefore been proposed to treat patients with pathogenic mitochondrial DNA mutations, and although these are not without their own inherent problems, several exciting approaches promise much in the near future. This review will provide a basic background to mitochondrial genetics and mitochondrial DNA disorders before introducing the various strategies being tested in vitro at present, in cell culture and animal models, and, in the example of therapeutic exercise, in patients themselves.
Collapse
Affiliation(s)
- Robert W Taylor
- University of Newcastle upon Tyne, Mitochondrial Research Group, School of Neurology, Neurobiology and Psychiatry, Newcastle upon Tyne, NE2 4HH, UK.
| |
Collapse
|
16
|
Shahwan A, Farrell M, Delanty N. Progressive myoclonic epilepsies: a review of genetic and therapeutic aspects. Lancet Neurol 2005; 4:239-48. [PMID: 15778103 DOI: 10.1016/s1474-4422(05)70043-0] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The progressive myoclonic epilepsies (PMEs) are a group of symptomatic generalised epilepsies caused by rare disorders, most of which have a genetic component, a debilitating course, and a poor outcome. Challenges with PME arise from difficulty with diagnosis, especially in the early stages of the illness, and further problems of management and drug treatment. Recent advances in molecular genetics have helped achieve better understanding of the different disorders that cause PME. We review the PMEs with emphasis on updated genetics, diagnosis, and therapeutic options.
Collapse
Affiliation(s)
- Amre Shahwan
- Department of Neurology and Neuroscience, Beaumont Hospital, Dublin, Ireland
| | | | | |
Collapse
|
17
|
Abstract
Therapy for mitochondrial diseases is woefully inadequate. How-ever, lack of cure does not equate with lack of treatment. In this review, we consider sequentially several different therapeutic approaches. Palliative therapy is dictated by good medical practice and includes anticonvulsant medication, control of endocrine dysfunction, and surgical procedures. Removal of noxious metabolites is centered on combating lactic acidosis, but it extends to other metabolites, such as thymidine in patients with the mitochondrial neurogastrointestinal encephalomyopathy syndrome. Attempts to bypass blocks in the respiratory chain by administration of artificial electron acceptors have not been successful, but this concept may be amenable to genetic engineering. Administration of metabolites and cofactors is the mainstay of real-life therapy and includes both components of the respiratory chain and other natural compounds. There is increasing interest in the administration of reactive oxygen species scavengers both in primary mitochondrial diseases and in neurodegenerative diseases directly or indirectly related to mitochondrial dysfunction. Aerobic exercise and physical therapy prevent or correct deconditioning and improve exercise tolerance in patients with mitochondrial myopathies due to mtDNA mutations. Gene therapy is a challenge because of polyplasmy and heteroplasmy, but interesting experimental approaches are being pursued and include, for example, decreasing the ratio of mutant to wild-type mitochondrial genomes (gene shifting), converting mutated mtDNA genes into normal nDNA genes (allotropic expression), importing cognate genes from other species, or correcting mtDNA mutations with specific restriction endonucleases. Germline therapy raises ethical problems but is being seriously considered to prevent maternal transmission of mtDNA mutations. Preventive therapy through genetic counseling and prenatal diagnosis is still limited for mtDNA-related disorders but is becoming increasingly important for nDNA-related disorders.
Collapse
Affiliation(s)
- Salvatore Dimauro
- Department of Neurology, Columbia University College of Physicians Surgeons, New York, New York 10032, USA.
| | | | | |
Collapse
|
18
|
Thyagarajan D, Byrne E. Mitochondrial disorders of the nervous system: clinical, biochemical, and molecular genetic features. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2003; 53:93-144. [PMID: 12512338 DOI: 10.1016/s0074-7742(02)53005-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
Affiliation(s)
- Dominic Thyagarajan
- Department of Neurology, Flinders Medical Centre, Bedford Park, South Australia 5042, Australia
| | | |
Collapse
|
19
|
Liolitsa D, Hanna MG. Models of mitochondrial disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2003; 53:429-66. [PMID: 12512349 DOI: 10.1016/s0074-7742(02)53016-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Danae Liolitsa
- Centre for Neuromuscular Disease, Institute of Neurology, Queen Square, London, WC1N 3BG, United Kingdom
| | | |
Collapse
|
20
|
Abstract
Chronic progressive external ophthalmoplegia (CPEO) is a descriptive term for a heterogenous group of disorders characterized by chronic, progressive, bilateral, and usually symmetric ocular motility deficit and ptosis. Significant pain, proptosis, or pupil involvement are not features of CPEO and should prompt evaluation for alternative etiologies. Mitochondrial DNA mutations are increasingly being recognized as the etiology for CPEO syndromes. Clinicians should recognize the specific syndromes associated with CPEO, characterized by variable systemic, neurologic, or other findings. Treatment is limited, but newer therapies are being investigated.
Collapse
Affiliation(s)
- Andrew G Lee
- Department of Ophthalmology, University of Iowa Hospitals and Clinics, 200 Hawkins Drive, PFP, Iowa City, IA 52242, USA.
| | | |
Collapse
|
21
|
Tanaka M, Borgeld HJ, Zhang J, Muramatsu SI, Gong JS, Yoneda M, Maruyama W, Naoi M, Ibi T, Sahashi K, Shamoto M, Fuku N, Kurata M, Yamada Y, Nishizawa K, Akao Y, Ohishi N, Miyabayashi S, Umemoto H, Muramatsu T, Furukawa K, Kikuchi A, Nakano I, Ozawa K, Yagi K. Gene therapy for mitochondrial disease by delivering restriction endonucleaseSmaI into mitochondria. J Biomed Sci 2002. [DOI: 10.1007/bf02254980] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
22
|
Abstract
Since the first reports of disorders associated with mitochondrial DNA (mtDNA) defects more than a decade ago, the small mtDNA circle has been a Pandora's box of pathogenic mutations associated with human diseases. The "morbidity map" of mtDNA has gone from one point mutation and a few deletions in 1988 to more than 110 point mutations as of September, 2001. Nuclear DNA defects affecting mitochondrial function and mtDNA replication and integrity have also been identified in the past few years and more are expected. As a result, human "mitochondrial" diseases have evolved beyond the novelty diagnoses of a decade ago into an important area of medicine, and thus, the diagnostic principles of these disorders ought to be familiar to the clinician. In this article, the authors, we summarize the principles of mitochondrial genetics and discuss the common phenotypes, general diagnostic approach, and possible therapeutic venues for these fascinating disorders.
Collapse
Affiliation(s)
- Tuan H Vu
- Department of Neurology, Columbia University College of Physicians & Surgeons, New York, NY, USA
| | | | | |
Collapse
|
23
|
Abstract
The small, maternally inherited mitochondrial DNA (mtDNA) has turned out to be a hotbed of pathogenic mutations: 13 years into the era of "mitochondrial medicine", over 100 pathogenic point mutations and countless rearrangements have been associated with a variety of multisystemic or tissue-specific human diseases. MtDNA-related disorders can be divided into two major groups: those due to mutations in genes affecting mitochondrial protein synthesis in toto and those due to mutations in specific protein-coding genes. Pathogenesis is only partially explained by the rules of mitochondrial genetics and remains largely uncharted territory. Therapy is still woefully inadequate, but a number of promising approaches are being developed.
Collapse
Affiliation(s)
- S DiMauro
- Department of Neurology, 4-420 Columbia University College of Physicians and Surgeons, 630 West 168th Street, New York, NY 10032, USA.
| |
Collapse
|
24
|
Abstract
The most relevant contribution to the elucidation of the molecular basis of mitochondrial disorders has come from the discovery of an impressive and ever expanding number of mutations of mitochondrial DNA. However, known mutations of mtDNA only account for a fraction of all the mitochondrial disorders in both infants and adults. A number of recent clinical and molecular observations indicate that many syndromes are caused by abnormalities in nuclear genes related to oxidative phosphorylation. Nuclear genes encode hundreds of proteins involved in mitochondrial biogenesis and oxidative phosphorylation. Nevertheless, the identification of the nuclear genes responsible for oxidative phosphorylation-related disorders has proceeded at a much slower pace, compared with the discovery and characterization of mtDNA mutations. The reasons for such a gap are numerous, including the rarity of the syndromes, their genetic heterogeneity, and our ignorance of this nuclear gene repertoire in humans. This scenario is rapidly changing, thanks to the discovery of several oxidative phosphorylation-related human genes, and to the identification in some of them of mutations responsible for different clinical syndromes. In addition, animal models have recently been generated, which will offer the opportunity to understand better the pathogenesis of specific oxidative phosphorylation defects, and to test in a rational and controlled fashion therapeutic strategies for the treatment of these disorders.
Collapse
Affiliation(s)
- M Zeviani
- Unit of Biochemistry and Genetics, National Neurological Institute C. Besta, Milan, Italy.
| | | |
Collapse
|
25
|
Abstract
Mitochondrial diseases are disorders of energy metabolism that include defects of pyruvate metabolism, Krebs cycle, respiratory chain (RC), and fatty acid oxidation (FAO). Treatment of pyruvate metabolism, Krebs cycle, and RC disorders is, in general, disappointing. Therapeutic approaches consist of electron acceptors, enzyme activators, vitamins, coenzymes, free-radical scavengers, dietary measures, and supportive therapy. These treatment assumptions are based on current understanding of the pathophysiology, on anecdotal clinical reports, and on a few controlled clinical trials, which have not been encouraging. Although it is difficult to perform clinical trials in these conditions due to their rarity and genotypic and phenotypic heterogeneity, there is a great need for well-performed double-blind placebo- controlled clinical trials with comparable groups of patients and with sufficient follow-up periods. Treatment options for FAO disorders are, in general, satisfactory and are mainly based on diet, lifestyle recommendations, and administration of L-carnitine and, in some cases, riboflavin. Special conditions that involve primary deficiencies of L-carnitine, coenzyme Q(10), and cofactor- and vitamin-responsive enzyme defects must be systematically considered, because supplementation with these substances may be curative or produce dramatic improvements. While awaiting more specific therapies for mitochondrial disorders, it is useful to reach a consensus regarding the management of these patients. The expected outcome is a slowing of the disease process and stabilization of the clinical syndrome. More definitive treatments hopefully will follow in the near future.
Collapse
Affiliation(s)
- Roser Pons
- Departments of Neurology and Pediatrics, Columbia University College of Physicians and Surgeons, 710 West 168th Street, New York, NY 10032, USA.
| | | |
Collapse
|
26
|
Abstract
Polymorphism in mitochondrial DNA necessitates careful scrutiny of potentially pathogenic mutations to establish their true pathogenic significance. Research on Leber hereditary optic neuropathy continues to provide insights into the pathogenesis of mitochondrial disease. Interest in the retinal manifestations of mitochondrial disease has highlighted the macular dystrophy of the 3243 mutation, particularly in association with the syndrome of maternally inherited diabetes and deafness. Mitochondrial encephalopathies present in a number of ways, but imaging predominantly shows abnormalities of myelin and grey-matter nuclei. The mitochondrial myopathies provide insights into interactions between nuclear and mitochondrial DNA mutations and parallels between mitochondrial diseases and aging.
Collapse
Affiliation(s)
- P Riordan-Eva
- Department of Ophthalmology, King's College Hospital, London, United Kingdom.
| |
Collapse
|