1
|
Zhou D, Luo Y, Ma Q, Xu Y, Yao X. The characteristics of TCR CDR3 repertoire in COVID-19 patients and SARS-CoV-2 vaccine recipients. Virulence 2024; 15:2421987. [PMID: 39468707 PMCID: PMC11540089 DOI: 10.1080/21505594.2024.2421987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/28/2024] [Accepted: 10/22/2024] [Indexed: 10/30/2024] Open
Abstract
The COVID-19 pandemic and large-scale administration of multiple SARS-CoV-2 vaccines have attracted global attention to the short-term and long-term effects on the human immune system. An analysis of the "traces" left by the body's T-cell immune response is needed, especially for the prevention and treatment of breakthrough infections and long COVID-19 and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant infections. T-cell receptor complementarity determining region 3 (TCR CDR3) repertoire serves as a target molecule for monitoring the effects, mechanisms, and memory of the T-cell response. Furthermore, it has been extensively applied in the elucidation of the infectious mechanism and vaccine refinement of hepatitis B virus (HBV), influenza virus, human immunodeficiency virus (HIV), and SARS-CoV. Laboratories worldwide have utilized high-throughput sequencing (HTS) and scTCR-seq to characterize, share, and apply the TCR CDR3 repertoire in COVID-19 patients and SARS-CoV-2 vaccine recipients. This article focuses on the comparative analysis of the diversity, clonality, V&J gene usage and pairing, CDR3 length, shared CDR3 sequences or motifs, and other characteristics of TCR CDR3 repertoire. These findings provide molecular targets for evaluating T-cell response effects and short-term and long-term impacts on the adaptive immune system following SARS-CoV-2 infection or vaccination and establish a comparative archive of T-cell response "traces."
Collapse
Affiliation(s)
- Dewei Zhou
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
- Department of Clinical Laboratory, The First People’s Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, China
| | - Yan Luo
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
| | - Qingqing Ma
- Department of Central Laboratory, Guizhou Aerospace Hospital, Zunyi, China
| | - Yuanyuan Xu
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
| | - Xinsheng Yao
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
| |
Collapse
|
2
|
Chuang HC, Li R, Huang H, Liu SW, Wan C, Chaudhuri S, Yue L, Wong T, Dominical V, Yen R, Ngo O, Bui N, Stoppler H, Yi T, Suthram S, Li L, Sun KH. Single-cell sequencing of full-length transcripts and T-cell receptors with automated high-throughput Smart-seq3. BMC Genomics 2024; 25:1127. [PMID: 39574011 PMCID: PMC11583680 DOI: 10.1186/s12864-024-11036-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 11/12/2024] [Indexed: 11/24/2024] Open
Abstract
We developed an automated high-throughput Smart-seq3 (HT Smart-seq3) workflow that integrates best practices and an optimized protocol to enhance efficiency, scalability, and method reproducibility. This workflow consistently produces high-quality data with high cell capture efficiency and gene detection sensitivity. In a rigorous comparison with the 10X platform using human primary CD4 + T-cells, HT Smart-seq3 demonstrated higher cell capture efficiency, greater gene detection sensitivity, and lower dropout rates. Additionally, when sufficiently scaled, HT Smart-seq3 achieved a comparable resolution of cellular heterogeneity to 10X. Notably, through T-cell receptor (TCR) reconstruction, HT Smart-seq3 identified a greater number of productive alpha and beta chain pairs without the need for additional primer design to amplify full-length V(D)J segments, enabling more comprehensive TCR profiling across a broader range of species. Taken together, HT Smart-seq3 overcomes key technical challenges, offering distinct advantages that position it as a promising solution for the characterization of single-cell transcriptomes and immune repertoires, particularly well-suited for low-input, low-RNA content samples.
Collapse
Affiliation(s)
- Hsiu-Chun Chuang
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, CA, 94403, USA
| | - Ruidong Li
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, CA, 94403, USA
| | - Huang Huang
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, CA, 94403, USA
| | - Szu-Wen Liu
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, CA, 94403, USA
| | - Christine Wan
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, CA, 94403, USA
| | - Subhra Chaudhuri
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, CA, 94403, USA
| | - Lili Yue
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, CA, 94403, USA
| | - Terence Wong
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, CA, 94403, USA
| | - Venina Dominical
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, CA, 94403, USA
| | - Randy Yen
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, CA, 94403, USA
| | - Olivia Ngo
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, CA, 94403, USA
| | - Nam Bui
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, CA, 94403, USA
| | - Hubert Stoppler
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, CA, 94403, USA
| | - Tangsheng Yi
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, CA, 94403, USA
| | - Silpa Suthram
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, CA, 94403, USA
| | - Li Li
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, CA, 94403, USA.
| | - Kai-Hui Sun
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, CA, 94403, USA.
| |
Collapse
|
3
|
Zhao T, Zhang Q, Wen Q, Liu S, Niu Z, Qu Y, Wang Y, Ding Q, Wei P, Li L, Kong T, Fu P, Qian S, Wang K, Wu X, Zheng J. Characteristics of T-Cell Receptor Repertoire for Differential Response to Methotrexate Treatment for Rheumatoid Arthritis. Immunol Invest 2024; 53:1113-1124. [PMID: 39140790 DOI: 10.1080/08820139.2024.2381078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
BACKGROUND Methotrexate (MTX) serves as the initial treatment for rheumatoid arthritis (RA). However, a substantial proportion of RA patients, estimated between 30% and 50%, do not respond positively to MTX. While the T-cell receptor (TCR) is crucial for the immune response during RA, its role in differentiating MTX responsiveness has not been thoroughly investigated. METHODS This study used next-generation sequencing to analyze the TCR β-chain complementary determining region sequences in peripheral blood mononuclear cells obtained from RA patients before MTX treatment. This study aimed to compare the characteristics of the TCR repertoire between the MTX responder and non-responder groups. RESULTS The study identified a significant difference in the TRBV6-6 gene (p = .003) concerning MTX treatment response. Additionally, a significant difference was found in the number of "3" nucleotide deletions at the 5'Jdels site (p = .023) in the VDJ rearrangement. CONCLUSION These findings suggest distinct TCR repertoire characteristics between MTX responder and non-responder groups among RA patients. This discovery offers new insights into understanding the variable responses of RA patients to MTX therapy.
Collapse
MESH Headings
- Humans
- Arthritis, Rheumatoid/drug therapy
- Arthritis, Rheumatoid/immunology
- Arthritis, Rheumatoid/genetics
- Methotrexate/therapeutic use
- Male
- Female
- Middle Aged
- Antirheumatic Agents/therapeutic use
- Antirheumatic Agents/pharmacology
- Adult
- High-Throughput Nucleotide Sequencing
- Aged
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Treatment Outcome
- Complementarity Determining Regions/genetics
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/metabolism
Collapse
Affiliation(s)
- Taowa Zhao
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences (CAS), Ningbo, China
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, China
| | - Qian Zhang
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences (CAS), Ningbo, China
| | - Qinwen Wen
- Department of Rheumatology and Immunology, Ningbo First Hospital, Ningbo, China
| | - Shuyin Liu
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences (CAS), Ningbo, China
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, China
| | - Zitong Niu
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences (CAS), Ningbo, China
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, China
| | - Yang Qu
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences (CAS), Ningbo, China
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, China
| | - Yiting Wang
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences (CAS), Ningbo, China
| | - Qiaojiao Ding
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences (CAS), Ningbo, China
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, China
| | - Pengyao Wei
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences (CAS), Ningbo, China
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, China
| | - Lin Li
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences (CAS), Ningbo, China
| | - Tong Kong
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences (CAS), Ningbo, China
| | - Pan Fu
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences (CAS), Ningbo, China
| | - Sihua Qian
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences (CAS), Ningbo, China
| | - Kaizhe Wang
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences (CAS), Ningbo, China
| | - Xiudi Wu
- Department of Rheumatology and Immunology, Ningbo First Hospital, Ningbo, China
| | - Jianping Zheng
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences (CAS), Ningbo, China
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, China
| |
Collapse
|
4
|
Simpson J, Starke CE, Ortiz AM, Ransier A, Darko S, Llewellyn-Lacey S, Fennessey CM, Keele BF, Douek DC, Price DA, Brenchley JM. Immunotoxin-mediated depletion of Gag-specific CD8+ T cells undermines natural control of SIV. JCI Insight 2024; 9:e174168. [PMID: 38885329 PMCID: PMC11383179 DOI: 10.1172/jci.insight.174168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 05/31/2024] [Indexed: 06/20/2024] Open
Abstract
Antibody-mediated depletion studies have demonstrated that CD8+ T cells are required for effective immune control of SIV. However, this approach is potentially confounded by several factors, including reactive CD4+ T cell proliferation, and provides no information on epitope specificity, a likely determinant of CD8+ T cell efficacy. We circumvented these limitations by selectively depleting CD8+ T cells specific for the Gag epitope CTPYDINQM (CM9) via the administration of immunotoxin-conjugated tetrameric complexes of CM9/Mamu-A*01. Immunotoxin administration effectively depleted circulating but not tissue-localized CM9-specific CD8+ T cells, akin to the bulk depletion pattern observed with antibodies directed against CD8. However, we found no evidence to indicate that circulating CM9-specific CD8+ T cells suppressed viral replication in Mamu-A*01+ rhesus macaques during acute or chronic progressive infection with a pathogenic strain of SIV. This observation extended to macaques with established infection during and after continuous antiretroviral therapy. In contrast, natural controller macaques experienced dramatic increases in plasma viremia after immunotoxin administration, highlighting the importance of CD8+ T cell-mediated immunity against CM9. Collectively, these data showed that CM9-specific CD8+ T cells were necessary but not sufficient for robust immune control of SIV in a nonhuman primate model and, more generally, validated an approach that could inform the design of next-generation vaccines against HIV-1.
Collapse
Affiliation(s)
- Jennifer Simpson
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Carly E Starke
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
- Stem Cell and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Alexandra M Ortiz
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Amy Ransier
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Sam Darko
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Sian Llewellyn-Lacey
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, United Kingdom
| | - Christine M Fennessey
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, NIH, Frederick, Maryland, USA
| | - Brandon F Keele
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, NIH, Frederick, Maryland, USA
| | - Daniel C Douek
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, United Kingdom
- Systems Immunity Research Institute, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, United Kingdom
| | - Jason M Brenchley
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| |
Collapse
|
5
|
Lin J, Wu X, Liu Z, Yang H, Chen Y, Li H, Yu Y, Tu Q, Chen Y. Identification, expression and molecular polymorphism of T-cell receptors α and β from the glacial relict Hucho bleekeri. FISH & SHELLFISH IMMUNOLOGY 2024; 148:109475. [PMID: 38447781 DOI: 10.1016/j.fsi.2024.109475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/01/2024] [Accepted: 03/03/2024] [Indexed: 03/08/2024]
Abstract
The T-cell receptor (TCR) is a specific molecule on the surface of all T cells that mediates cellular adaptive immune responses to antigens. Hucho bleekeri is a critically endangered species and is regarded as a glacial relict that has the lowest-latitude distribution compared with any Eurasian salmonid. In the present study, two TCR genes, namely, TCR α and β, were identified and characterized in H. bleekeri. Both TCR α and TCR β have typical TCR structures, including the IgV domain, IgC domain, connecting peptide, transmembrane and cytoplasmic domains. The two TCR genes were constitutionally expressed in various tissues, with the highest expression found in the spleen for TCR α and in the trunk kidney for TCR β. Challenge of H. bleekeri with LPS or poly(I:C) resulted in significant upregulation of both TCR α and β expression in headkidney and spleen primary cells, indicating their potential roles in the immune response. Molecular polymorphism analysis of the whole ORF regions of TCR α and β in different individuals revealed high diversity of IgV domains of these two genes, especially in complementarity-determining region (CDR) 3. The ratio of nonsynonymous substitution occurred at a significantly higher frequency than synonymous substitution in the CDR of TCR α and β, demonstrating the existence of positive selection. The results obtained in the present study enhance our understanding of TCR roles in regulating immune mechanisms and provide new information for the study of TCR lineage diversity in fish.
Collapse
Affiliation(s)
- Jue Lin
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu, 611730, China; Fish Resources and Environment in the Upper Reaches of the Yangtze River Observation and Research Station of Sichuan Province, Chengdu, 611730, China
| | - Xiaoyun Wu
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu, 611730, China; Fish Resources and Environment in the Upper Reaches of the Yangtze River Observation and Research Station of Sichuan Province, Chengdu, 611730, China
| | - Zhao Liu
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu, 611730, China; Fish Resources and Environment in the Upper Reaches of the Yangtze River Observation and Research Station of Sichuan Province, Chengdu, 611730, China
| | - Huanchao Yang
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu, 611730, China; Fish Resources and Environment in the Upper Reaches of the Yangtze River Observation and Research Station of Sichuan Province, Chengdu, 611730, China
| | - Yanling Chen
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu, 611730, China; Fish Resources and Environment in the Upper Reaches of the Yangtze River Observation and Research Station of Sichuan Province, Chengdu, 611730, China
| | - Hua Li
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu, 611730, China; Fish Resources and Environment in the Upper Reaches of the Yangtze River Observation and Research Station of Sichuan Province, Chengdu, 611730, China
| | - Yi Yu
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu, 611730, China; Fish Resources and Environment in the Upper Reaches of the Yangtze River Observation and Research Station of Sichuan Province, Chengdu, 611730, China
| | - Quanyu Tu
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu, 611730, China; Fish Resources and Environment in the Upper Reaches of the Yangtze River Observation and Research Station of Sichuan Province, Chengdu, 611730, China
| | - Yeyu Chen
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu, 611730, China; Fish Resources and Environment in the Upper Reaches of the Yangtze River Observation and Research Station of Sichuan Province, Chengdu, 611730, China.
| |
Collapse
|
6
|
Chang H, Ashlock DA, Graether SP, Keller SM. Anchor Clustering for million-scale immune repertoire sequencing data. BMC Bioinformatics 2024; 25:42. [PMID: 38273275 PMCID: PMC10809746 DOI: 10.1186/s12859-024-05659-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND The clustering of immune repertoire data is challenging due to the computational cost associated with a very large number of pairwise sequence comparisons. To overcome this limitation, we developed Anchor Clustering, an unsupervised clustering method designed to identify similar sequences from millions of antigen receptor gene sequences. First, a Point Packing algorithm is used to identify a set of maximally spaced anchor sequences. Then, the genetic distance of the remaining sequences to all anchor sequences is calculated and transformed into distance vectors. Finally, distance vectors are clustered using unsupervised clustering. This process is repeated iteratively until the resulting clusters are small enough so that pairwise distance comparisons can be performed. RESULTS Our results demonstrate that Anchor Clustering is faster than existing pairwise comparison clustering methods while providing similar clustering quality. With its flexible, memory-saving strategy, Anchor Clustering is capable of clustering millions of antigen receptor gene sequences in just a few minutes. CONCLUSIONS This method enables the meta-analysis of immune-repertoire data from different studies and could contribute to a more comprehensive understanding of the immune repertoire data space.
Collapse
Affiliation(s)
- Haiyang Chang
- Department of Mathematics and Statistics, University of Guelph, 50 Stone Rd E, Guelph, ON, N1G 2W1, Canada
| | - Daniel A Ashlock
- Department of Mathematics and Statistics, University of Guelph, 50 Stone Rd E, Guelph, ON, N1G 2W1, Canada
| | - Steffen P Graether
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd E, Guelph, ON, N1G 2W1, Canada
| | - Stefan M Keller
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA.
| |
Collapse
|
7
|
Isacchini G, Quiniou V, Barennes P, Mhanna V, Vantomme H, Stys P, Mariotti-Ferrandiz E, Klatzmann D, Walczak AM, Mora T, Nourmohammad A. Local and Global Variability in Developing Human T-Cell Repertoires. PRX LIFE 2024; 2:013011. [PMID: 39582620 PMCID: PMC11583800 DOI: 10.1103/prxlife.2.013011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
The adaptive immune response relies on T cells that combine phenotypic specialization with diversity of T-cell receptors (TCRs) to recognize a wide range of pathogens. TCRs are acquired and selected during T-cell maturation in the thymus. Characterizing TCR repertoires across individuals and T-cell maturation stages is important for better understanding adaptive immune responses and for developing new diagnostics and therapies. Analyzing a dataset of human TCR repertoires from thymocyte subsets, we find that the variability between individuals generated during the TCR V(D)J recombination is maintained through all stages of T-cell maturation and differentiation. The interindividual variability of repertoires of the same cell type is of comparable magnitude to the variability across cell types within the same individual. To zoom in on smaller scales than whole repertoires, we defined a distance measuring the relative overlap of locally similar sequences in repertoires. We find that the whole repertoire models correctly predict local similarity networks, suggesting a lack of forbidden T-cell receptor sequences. The local measure correlates well with distances calculated using whole repertoire traits and carries information about cell types.
Collapse
Affiliation(s)
- Giulio Isacchini
- Max Planck Institute for Dynamics and Self-organization, Am Faßberg 17, 37077 Göttingen, Germany
- Laboratoire de physique de l'école normale supérieure (PSL University), CNRS, Sorbonne Université, and Université de Paris, 75005 Paris, France
| | - Valentin Quiniou
- Sorbonne Université, INSERM, Immunology-Immunopathology-Immunotherapy (i3), F-75005 Paris, France
- AP-HP, Hôpital Pitié-Salpêtriére, Biotherapy (CIC-BTi), F-75651 Paris, France
| | - Pierre Barennes
- Sorbonne Université, INSERM, Immunology-Immunopathology-Immunotherapy (i3), F-75005 Paris, France
- AP-HP, Hôpital Pitié-Salpêtriére, Biotherapy (CIC-BTi), F-75651 Paris, France
| | - Vanessa Mhanna
- Sorbonne Université, INSERM, Immunology-Immunopathology-Immunotherapy (i3), F-75005 Paris, France
- AP-HP, Hôpital Pitié-Salpêtriére, Biotherapy (CIC-BTi), F-75651 Paris, France
| | - Hélène Vantomme
- Sorbonne Université, INSERM, Immunology-Immunopathology-Immunotherapy (i3), F-75005 Paris, France
- AP-HP, Hôpital Pitié-Salpêtriére, Biotherapy (CIC-BTi), F-75651 Paris, France
| | - Paul Stys
- Sorbonne Université, INSERM, Immunology-Immunopathology-Immunotherapy (i3), F-75005 Paris, France
| | | | - David Klatzmann
- Sorbonne Université, INSERM, Immunology-Immunopathology-Immunotherapy (i3), F-75005 Paris, France
- AP-HP, Hôpital Pitié-Salpêtriére, Biotherapy (CIC-BTi), F-75651 Paris, France
| | - Aleksandra M Walczak
- Laboratoire de physique de l'école normale supérieure (PSL University), CNRS, Sorbonne Université, and Université de Paris, 75005 Paris, France
| | - Thierry Mora
- Laboratoire de physique de l'école normale supérieure (PSL University), CNRS, Sorbonne Université, and Université de Paris, 75005 Paris, France
| | - Armita Nourmohammad
- Max Planck Institute for Dynamics and Self-organization, Am Faßberg 17, 37077 Göttingen, Germany
- Department of Physics, University of Washington, 3910 15th Avenue Northeast, Seattle, Washington 98195, USA
- Paul G. Allen School of Computer Science and Engineering, University of Washington, 85 E Stevens Way NE, Seattle, Washington 98195, USA
- Department of Applied Mathematics, University of Washington, 4182 W Stevens Way NE, Seattle, Washington 98105, USA
- Fred Hutchinson Cancer Center, 1241 Eastlake Ave E, Seattle, Washington 98102, USA
| |
Collapse
|
8
|
Fang Y, Shen B, Dai Q, Xie Q, Li X, Wu W, Wang M. Composition and diversity analysis of the TCR CDR3 repertoire in patients with idiopathic orbital inflammation using high-throughput sequencing. BMC Ophthalmol 2023; 23:491. [PMID: 38044453 PMCID: PMC10694961 DOI: 10.1186/s12886-023-03248-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 11/28/2023] [Indexed: 12/05/2023] Open
Abstract
BACKGROUND Idiopathic orbital inflammation (IOI) is a nonspecific orbital inflammatory disease with the third highest prevalence among orbital diseases, and its pathogenesis is associated with T-cell-mediated immune responses. This study aimed to investigate the differences in T-cell receptor (TCR) expression between IOI patients and healthy subjects by high-throughput sequencing and to characterize TCR expression in patients with IOI and with respect to glucocorticoid response. METHODS A total of 19 subjects were enrolled in this study and were divided into the idiopathic orbital inflammation group (IOI group, n = 13) and the healthy control group (HC group, n = 6), and within the IOI group were further divided into the glucocorticoid therapy sensitive group (IOI(EF) group, n = 6) and the glucocorticoid therapy ineffective group (IOI(IN) group, n = 7) based on the degree of effectiveness to glucocorticoid therapy. High-throughput TCR sequencing was performed on peripheral blood mononuclear cells of IOI patients and healthy control individuals using 5' RACE technology combined with Unique Identifier (UID) digital tag correction technology. The TCR CDR3 region diversity, sharing patterns, and differential sequences between the IOI and HC groups, and between the IOI(EF) and IOI(IN) groups were analyzed. RESULTS It was found that the diversity of TCR CDR3 in the IOI group was significantly lower than that in the HC group, and the frequency of V gene use was significantly different between groups. The diversity of TCR CDR3 in patients in the IOI(EF) group was significantly lower than that in patients in the IOI(IN) group, and the frequency of V and J gene use was significantly different between the IOI(EF) group and the IOI(IN) group. Additionally, we found 133 nucleotide sequences shared in all IOI samples and screened two sequences with higher expression from them. CONCLUSIONS Our results suggested that abnormal clonal expansion of specific T-cells exists in IOI patients and that TCR diversity may had an impact on the prognosis of glucocorticoid-treated IOI. This study may contribute to a better understanding of the immune status of IOI and provide new insights for T-cell -associated IOI pathogenesis, diagnosis and treatment prediction.
Collapse
Affiliation(s)
- Yenan Fang
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- Department of Ophthalmology, Children's Hospital of Fudan University, National Children's Medical Center, No. 399 Wanyuan Road, Shanghai, 201102, China
| | - Bingyan Shen
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Qin Dai
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Qiqi Xie
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Xinyu Li
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Wencan Wu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| | - Min Wang
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
9
|
Zhang J, Liu Z, Wang G, Yang X, Sui W, Guo H, Hou X. The dynamic TRβ/IGH CDR3 repertoire features in patients with liver transplantation. Transpl Immunol 2023; 81:101929. [PMID: 37683736 DOI: 10.1016/j.trim.2023.101929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 09/05/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023]
Abstract
OBJECTIVE At present, little is known about the immune mechanism of liver transplantation caused by decompensated cirrhosis. Lymphocytes play an essential important role in the immune rejection of liver transplantation. In this study, we aimed to comprehensively analyze changes in complementary determinant 3 (CDR3) repertoire of T cell receptor β chain (TRβ) and immunoglobulin heavy chain (IGH) in liver transplantation patients and healthy controls (HC). METHODS High-throughput sequencing technology was used to study the characteristics of TRβ/IGH CDR3 repertoire, and identify the amino acid sequences of TRβ and IGH associated with liver transplantation patients and HC. RESULTS We found that some TRβ and IGH CDR3 repertoire characteristics differed between liver transplant patients and HC. The diversity of TRβ CDR3 increased in the liver transplantation group. First and seven days after live transplantation patients showed a lower degree of T cell clone amplification compared to the HC group. The CDR3 repertoire of the TRβ/IGH chain was certainly biased in the use of some V, D, and J gene segments, TRβ/IGH V-J combined frequency was also skewed and TRβ CDR3 clonotypes were shared at a higher degree in the liver transplantation patients. Importantly, one amino acid sequence in the decompensated cirrhosis group was significantly higher than that in the healthy group. It should be noted that the frequency of some CDR3 sequences is closely correlated with the different stages of liver transplantation, and these sequences may play a key role in liver transplantation. CONCLUSION Based on the above results, we can better understand the dynamic changes of TCβ/IGH CDR3 repertoire in patients during liver transplantation.
Collapse
Affiliation(s)
- Junning Zhang
- Central Laboratory, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin 541199, China
| | - Zhenyu Liu
- Central Laboratory, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin 541199, China
| | - Guangyu Wang
- Central Laboratory, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin 541199, China
| | - Xueli Yang
- Central Laboratory, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin 541199, China
| | - Weiguo Sui
- Guangxi Key Laboratory of Metabolic Diseases Research, Guilin No.924 Hospital, Guilin, Guangxi 541002, PR China
| | - Haonan Guo
- Department of Clinical Laboratory, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, China.
| | - Xianliang Hou
- Central Laboratory, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin 541199, China.
| |
Collapse
|
10
|
Liu S, Wang W, Hu S, Jia B, Tuo B, Sun H, Wang Q, Liu Y, Sun Z. Radiotherapy remodels the tumor microenvironment for enhancing immunotherapeutic sensitivity. Cell Death Dis 2023; 14:679. [PMID: 37833255 PMCID: PMC10575861 DOI: 10.1038/s41419-023-06211-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/22/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023]
Abstract
Cancer immunotherapy has transformed traditional treatments, with immune checkpoint blockade being particularly prominent. However, immunotherapy has minimal benefit for patients in most types of cancer and is largely ineffective in some cancers (such as pancreatic cancer and glioma). A synergistic anti-tumor response may be produced through the combined application with traditional tumor treatment methods. Radiotherapy (RT) not only kills tumor cells but also triggers the pro-inflammatory molecules' release and immune cell infiltration, which remodel the tumor microenvironment (TME). Therefore, the combination of RT and immunotherapy is expected to achieve improved efficacy. In this review, we summarize the effects of RT on cellular components of the TME, including T cell receptor repertoires, different T cell subsets, metabolism, tumor-associated macrophages and other myeloid cells (dendritic cells, myeloid-derived suppressor cells, neutrophils and eosinophils). Meanwhile, non-cellular components such as lactate and extracellular vesicles are also elaborated. In addition, we discuss the impact of different RT modalities on tumor immunity and issues related to the clinical practice of combination therapy.
Collapse
Affiliation(s)
- Senbo Liu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
- Henan Institute of Interconnected Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Wenkang Wang
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Shengyun Hu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Bin Jia
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Baojing Tuo
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
- Henan Institute of Interconnected Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Haifeng Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Qiming Wang
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, 450001, Zhengzhou, China.
| | - Yang Liu
- Department of Radiotherapy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, 450001, Zhengzhou, China.
| | - Zhenqiang Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China.
- Henan Institute of Interconnected Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China.
| |
Collapse
|
11
|
Gurun B, Horton W, Murugan D, Zhu B, Leyshock P, Kumar S, Byrne KT, Vonderheide RH, Margolin AA, Mori M, Spellman PT, Coussens LM, Speed TP. An open protocol for modeling T Cell Clonotype repertoires using TCRβ CDR3 sequences. BMC Genomics 2023; 24:349. [PMID: 37365517 DOI: 10.1186/s12864-023-09424-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 05/31/2023] [Indexed: 06/28/2023] Open
Abstract
T cell receptor repertoires can be profiled using next generation sequencing (NGS) to measure and monitor adaptive dynamical changes in response to disease and other perturbations. Genomic DNA-based bulk sequencing is cost-effective but necessitates multiplex target amplification using multiple primer pairs with highly variable amplification efficiencies. Here, we utilize an equimolar primer mixture and propose a single statistical normalization step that efficiently corrects for amplification bias post sequencing. Using samples analyzed by both our open protocol and a commercial solution, we show high concordance between bulk clonality metrics. This approach is an inexpensive and open-source alternative to commercial solutions.
Collapse
Affiliation(s)
- Burcu Gurun
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA.
- School of Medicine, Oregon Health and Science University, Portland, OR, USA.
| | - Wesley Horton
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Dhaarini Murugan
- Department of Cell, Developmental & Cancer Biology and Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Biqing Zhu
- Computational Biology and Bioinformatics Program, Yale University, New Haven, CT, USA
| | - Patrick Leyshock
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Sushil Kumar
- Department of Cell, Developmental & Cancer Biology and Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Katelyn T Byrne
- Department of Cell, Developmental & Cancer Biology and Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert H Vonderheide
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Motomi Mori
- Department of Biostatistics, St. Jude's Children's Research Hospital, Memphis, TN, USA
| | - Paul T Spellman
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA.
| | - Lisa M Coussens
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA.
- Department of Cell, Developmental & Cancer Biology and Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA.
| | - Terence P Speed
- Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia.
- School of Mathematics and Statistics, University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
12
|
Shen Y, Voigt A, Leng X, Rodriguez AA, Nguyen CQ. A current and future perspective on T cell receptor repertoire profiling. Front Genet 2023; 14:1159109. [PMID: 37408774 PMCID: PMC10319011 DOI: 10.3389/fgene.2023.1159109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 06/12/2023] [Indexed: 07/07/2023] Open
Abstract
T cell receptors (TCR) play a vital role in the immune system's ability to recognize and respond to foreign antigens, relying on the highly polymorphic rearrangement of TCR genes. The recognition of autologous peptides by adaptive immunity may lead to the development and progression of autoimmune diseases. Understanding the specific TCR involved in this process can provide insights into the autoimmune process. RNA-seq (RNA sequencing) is a valuable tool for studying TCR repertoires by providing a comprehensive and quantitative analysis of the RNA transcripts. With the development of RNA technology, transcriptomic data must provide valuable information to model and predict TCR and antigen interaction and, more importantly, identify or predict neoantigens. This review provides an overview of the application and development of bulk RNA-seq and single-cell (SC) RNA-seq to examine the TCR repertoires. Furthermore, discussed here are bioinformatic tools that can be applied to study the structural biology of peptide/TCR/MHC (major histocompatibility complex) and predict antigenic epitopes using advanced artificial intelligence tools.
Collapse
Affiliation(s)
- Yiran Shen
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| | - Alexandria Voigt
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| | - Xuebing Leng
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Amy A. Rodriguez
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| | - Cuong Q. Nguyen
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, United States
- Center of Orphaned Autoimmune Diseases, University of Florida, Gainesville, FL, United States
| |
Collapse
|
13
|
Ramirez Valdez K, Nzau B, Dorey-Robinson D, Jarman M, Nyagwange J, Schwartz JC, Freimanis G, Steyn AW, Warimwe GM, Morrison LJ, Mwangi W, Charleston B, Bonnet-Di Placido M, Hammond JA. A Customizable Suite of Methods to Sequence and Annotate Cattle Antibodies. Vaccines (Basel) 2023; 11:1099. [PMID: 37376488 PMCID: PMC10302312 DOI: 10.3390/vaccines11061099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Studying the antibody response to infection or vaccination is essential for developing more effective vaccines and therapeutics. Advances in high-throughput antibody sequencing technologies and immunoinformatic tools now allow the fast and comprehensive analysis of antibody repertoires at high resolution in any species. Here, we detail a flexible and customizable suite of methods from flow cytometry, single cell sorting, heavy and light chain amplification to antibody sequencing in cattle. These methods were used successfully, including adaptation to the 10x Genomics platform, to isolate native heavy-light chain pairs. When combined with the Ig-Sequence Multi-Species Annotation Tool, this suite represents a powerful toolkit for studying the cattle antibody response with high resolution and precision. Using three workflows, we processed 84, 96, and 8313 cattle B cells from which we sequenced 24, 31, and 4756 antibody heavy-light chain pairs, respectively. Each method has strengths and limitations in terms of the throughput, timeline, specialist equipment, and cost that are each discussed. Moreover, the principles outlined here can be applied to study antibody responses in other mammalian species.
Collapse
Affiliation(s)
| | - Benjamin Nzau
- The Pirbright Institute, Pirbright GU24 0NF, UK
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, UK
| | | | | | - James Nyagwange
- The Pirbright Institute, Pirbright GU24 0NF, UK
- KEMRI-Wellcome Trust Research Programme CGMRC, Kilifi P.O. Box 230-80108, Kenya
| | | | | | | | - George M. Warimwe
- KEMRI-Wellcome Trust Research Programme CGMRC, Kilifi P.O. Box 230-80108, Kenya
| | - Liam J. Morrison
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, UK
| | | | | | | | | |
Collapse
|
14
|
Zong F, Long C, Hu W, Chen S, Dai W, Xiao ZX, Cao Y. Abalign: a comprehensive multiple sequence alignment platform for B-cell receptor immune repertoires. Nucleic Acids Res 2023:7173809. [PMID: 37207341 DOI: 10.1093/nar/gkad400] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/23/2023] [Accepted: 05/08/2023] [Indexed: 05/21/2023] Open
Abstract
The utilization of high-throughput sequencing (HTS) for B-cell receptor (BCR) immune repertoire analysis has become widespread in the fields of adaptive immunity and antibody drug development. However, the sheer volume of sequences generated by these experiments presents a challenge in data processing. Specifically, multiple sequence alignment (MSA), a critical aspect of BCR analysis, remains inadequate for handling massive BCR sequencing data and lacks the ability to provide immunoglobulin-specific information. To address this gap, we introduce Abalign, a standalone program specifically designed for ultrafast MSA of BCR/antibody sequences. Benchmark tests demonstrate that Abalign achieves comparable or even better accuracy than state-of-the-art MSA tools, and shows remarkable advantages in terms of speed and memory consumption, reducing the time required for high-throughput analysis from weeks to hours. In addition to its alignment capabilities, Abalign offers a broad range of BCR analysis features, including extracting BCRs, constructing lineage trees, assigning VJ genes, analyzing clonotypes, profiling mutations, and comparing BCR immune repertoires. With its user-friendly graphic interface, Abalign can be easily run on personal computers instead of computing clusters. Overall, Abalign is an easy-to-use and effective tool that enables researchers to analyze massive BCR/antibody sequences, leading to new discoveries in the field of immunoinformatics. The software is freely available at http://cao.labshare.cn/abalign/.
Collapse
Affiliation(s)
- Fanjie Zong
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, Chengdu, China
| | - Chenyu Long
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, Chengdu, China
| | - Wanxin Hu
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, Chengdu, China
| | - Shuang Chen
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Wentao Dai
- NHC Key Laboratory of Reproduction Regulation & Shanghai-MOST Key Laboratory of Health and Disease Genomics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Zhi-Xiong Xiao
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yang Cao
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, Chengdu, China
| |
Collapse
|
15
|
Skinner NE, Ogega CO, Frumento N, Clark KE, Paul H, Yegnasubramanian S, Schuebel K, Meyers J, Gupta A, Wheelan S, Cox AL, Crowe JE, Ray SC, Bailey JR. Convergent antibody responses are associated with broad neutralization of hepatitis C virus. Front Immunol 2023; 14:1135841. [PMID: 37033983 PMCID: PMC10080129 DOI: 10.3389/fimmu.2023.1135841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 03/13/2023] [Indexed: 04/11/2023] Open
Abstract
Introduction Early development of broadly neutralizing antibodies (bNAbs) targeting the hepatitis C virus (HCV) envelope glycoprotein E2 is associated with spontaneous clearance of infection, so induction of bNAbs is a major goal of HCV vaccine development. However, the molecular antibody features important for broad neutralization are not known. Methods To identify B cell repertoire features associated with broad neutralization, we performed RNA sequencing of the B cell receptors (BCRs) of HCV E2-reactive B cells of HCV-infected individuals with either high or low plasma neutralizing breadth. We then produced a monoclonal antibody (mAb) expressed by pairing the most abundant heavy and light chains from public clonotypes identified among clearance, high neutralization subjects. Results We found distinctive BCR features associated with broad neutralization of HCV, including long heavy chain complementarity determining region 3 (CDRH3) regions, specific VH gene usage, increased frequencies of somatic hypermutation, and particular VH gene mutations. Most intriguing, we identified many E2-reactive public BCR clonotypes (heavy and light chain clones with the same V and J-genes and identical CDR3 sequences) present only in subjects who produced highly neutralizing plasma. The majority of these public clonotypes were shared by two subjects who cleared infection. A mAb expressing the most abundant public heavy and light chains from these clearance, high neutralization subjects had features enriched in high neutralization clonotypes, such as increased somatic hypermutation frequency and usage of IGHV1-69, and was cross-neutralizing. Discussion Together, these results demonstrate distinct BCR repertoires associated with high plasma neutralizing capacity. Further characterization of the molecular features and function of these antibodies can inform HCV vaccine development.
Collapse
Affiliation(s)
- Nicole E. Skinner
- Center for Vaccines and Immunity, The Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Medicine, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Clinton O. Ogega
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Nicole Frumento
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Kaitlyn E. Clark
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Harry Paul
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | | | - Kornel Schuebel
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jennifer Meyers
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Anuj Gupta
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Sarah Wheelan
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Andrea L. Cox
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - James E. Crowe
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, United States
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Stuart C. Ray
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Justin R. Bailey
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
16
|
Jiang Y, Li SC. Deep autoregressive generative models capture the intrinsics embedded in T-cell receptor repertoires. Brief Bioinform 2023; 24:7031156. [PMID: 36752378 DOI: 10.1093/bib/bbad038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/07/2023] [Accepted: 01/18/2023] [Indexed: 02/09/2023] Open
Abstract
T-cell receptors (TCRs) play an essential role in the adaptive immune system. Probabilistic models for TCR repertoires can help decipher the underlying complex sequence patterns and provide novel insights into understanding the adaptive immune system. In this work, we develop TCRpeg, a deep autoregressive generative model to unravel the sequence patterns of TCR repertoires. TCRpeg largely outperforms state-of-the-art methods in estimating the probability distribution of a TCR repertoire, boosting the average accuracy from 0.672 to 0.906 measured by the Pearson correlation coefficient. Furthermore, with promising performance in probability inference, TCRpeg improves on a range of TCR-related tasks: profiling TCR repertoire probabilistically, classifying antigen-specific TCRs, validating previously discovered TCR motifs, generating novel TCRs and augmenting TCR data. Our results and analysis highlight the flexibility and capacity of TCRpeg to extract TCR sequence information, providing a novel approach for deciphering complex immunogenomic repertoires.
Collapse
Affiliation(s)
- Yuepeng Jiang
- Department of Computer science, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Shuai Cheng Li
- Department of Computer science, City University of Hong Kong, Kowloon Tong, Hong Kong
| |
Collapse
|
17
|
Gurun B, Horton W, Murugan D, Zhu B, Leyshock P, Kumar S, Byrne KT, Vonderheide RH, Margolin AA, Mori M, Spellman PT, Coussens LM, Speed TP. An open protocol for modeling T Cell Clonotype repertoires using TCRβ CDR3 sequences. RESEARCH SQUARE 2023:rs.3.rs-2140339. [PMID: 36824803 PMCID: PMC9949261 DOI: 10.21203/rs.3.rs-2140339/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
T cell receptor repertoires can be profiled using next generation sequencing (NGS) to measure and monitor adaptive dynamical changes in response to disease and other perturbations. Genomic DNA-based bulk sequencing is cost-effective but necessitates multiplex target amplification using multiple primer pairs with highly variable amplification efficiencies. Here, we utilize an equimolar primer mixture and propose a single statistical normalization step that efficiently corrects for amplification bias post sequencing. Using samples analyzed by both our open protocol and a commercial solution, we show high concordance between bulk clonality metrics. This approach is an inexpensive and open-source alternative to commercial solutions.
Collapse
|
18
|
Wang G, Sui W, Xue W, Zhang J, Yang X, Mo C, Pan X, Ou M, Hou X. Comprehensive analysis of B and T cell receptor repertoire in patients after kidney transplantation by high-throughput sequencing. Clin Immunol 2022; 245:109162. [DOI: 10.1016/j.clim.2022.109162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/08/2022] [Accepted: 10/09/2022] [Indexed: 11/03/2022]
|
19
|
Hou X, Hong X, Ou M, Meng S, Wang T, Liao S, He J, Yu H, Liu L, Yin L, Liu D, Tang D, Dai Y. Analysis of Gene Expression and TCR/B Cell Receptor Profiling of Immune Cells in Primary Sjögren's Syndrome by Single-Cell Sequencing. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:238-249. [PMID: 35705251 DOI: 10.4049/jimmunol.2100803] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 04/18/2022] [Indexed: 01/07/2023]
Abstract
Primary Sjögren's syndrome (pSS) is a chronic autoimmune disease that is estimated to affect 35 million people worldwide and is characterized by lymphocytic infiltration, elevated circulating autoantibodies, and proinflammatory cytokines. The key immune cell subset changes and the TCR/BCR repertoire alterations in pSS patients remain unclear. In this study, we sought to comprehensively characterize the transcriptional changes in PBMCs of pSS patients by single-cell RNA sequencing and single-cell V(D)J sequencing. Naive CD8+ T cells and mucosal-associated invariant T cells were markedly decreased but regulatory T cells were increased in pSS patients. There were a large number of differentially expressed genes shared by multiple subpopulations of T cells and B cells. Abnormal signaling pathways, including Ag processing and presentation, the BCR signaling pathway, the TCR signaling pathway, and Epstein-Barr virus infection, were highly enriched in pSS patients. Moreover, there were obvious differences in the CD30, FLT3, IFN-II, IL-1, IL-2, IL-6, IL-10, RESISTIN, TGF-β, TNF, and VEGF signaling networks between pSS patients and healthy controls. Single-cell TCR and BCR repertoire analysis showed that there was a lower diversity of T cells in pSS patients than in healthy controls; however, there was no significant difference in the degree of clonal expansion, CDR3 length distribution, or degree of sequence sharing. Notably, our results further emphasize the functional importance of αβ pairing in determining Ag specificity. In conclusion, our analysis provides a comprehensive single-cell map of gene expression and TCR/BCR profiles in pSS patients for a better understanding of the pathogenesis, diagnosis, and treatment of pSS.
Collapse
Affiliation(s)
- Xianliang Hou
- Department of Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China.,The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Xiaoping Hong
- Department of Rheumatology and Immunology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China
| | - Minglin Ou
- Central Laboratory, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin, China; and
| | - Shuhui Meng
- Department of Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China
| | - Tingting Wang
- Department of Rheumatology and Immunology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China
| | - Shengyou Liao
- Department of Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China
| | - Jingquan He
- Department of Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China
| | - Haiyan Yu
- Department of Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China
| | - Lixiong Liu
- Department of Rheumatology and Immunology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China
| | - Lianghong Yin
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Dongzhou Liu
- Department of Rheumatology and Immunology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China;
| | - Donge Tang
- Department of Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China;
| | - Yong Dai
- Department of Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China;
| |
Collapse
|
20
|
Comprehensive analysis of TCR repertoire of COVID-19 patients in different infected stage. Genes Genomics 2022; 44:813-822. [PMID: 35567717 PMCID: PMC9107015 DOI: 10.1007/s13258-022-01261-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 04/20/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND The current pandemic of coronavirus disease 2019 (COVID-19), transmitted person-to-person by the severe acute respiratory syndrome of coronavirus 2 (SARS-CoV-2), poses a threat to global public health. OBJECTIVE In this study, we performed the comprehensive analysis of the T cell receptor (TCR) repertoire may contribute to a more in-depth understanding of the pathogenesis of COVID-19. METHODS A comprehensive immunological analysis was performed to explore the features of the TCR repertoire and identified TCR sequences correlated with SARS-CoV-2 viral antigens. RESULTS we analyzed the COVID-19 patients' TCR repertoires in peripheral blood mononuclear cells (PBMC) which obtained before (baseline), during (acute), and after rehabilitation (convalescent) by ImmunoSEQ-technology, and found that repertoire features of TCRβ-chain (TCRβ) complementary-determining region 3 (CDR3) in COVID-19 patients were remarkable difference, including decreased TCR diversity, abnormal CDR3 length, difference of TRBV/J gene usage and higher TCR sequence overlap. Besides, we identified some COVID-19 disease-associated TCRβ clones, and the abundance of them changed with the progression of the disease. Importantly, these disease-associated TCRβ clones could be used to distinguish COVID-19 patients from healthy controls with high accuracy. CONCLUSIONS We provide a clear understanding of the TCR repertoire of COVID-19 patients, which lays the foundation for better diagnosis and treatment of COVID-19 patients.
Collapse
|
21
|
Chen Y, Ye Z, Zhang Y, Xie W, Chen Q, Lan C, Yang X, Zeng H, Zhu Y, Ma C, Tang H, Wang Q, Guan J, Chen S, Li F, Yang W, Yan H, Yu X, Zhang Z. A Deep Learning Model for Accurate Diagnosis of Infection Using Antibody Repertoires. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2675-2685. [PMID: 35606050 DOI: 10.4049/jimmunol.2200063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/11/2022] [Indexed: 06/15/2023]
Abstract
The adaptive immune receptor repertoire consists of the entire set of an individual's BCRs and TCRs and is believed to contain a record of prior immune responses and the potential for future immunity. Analyses of TCR repertoires via deep learning (DL) methods have successfully diagnosed cancers and infectious diseases, including coronavirus disease 2019. However, few studies have used DL to analyze BCR repertoires. In this study, we collected IgG H chain Ab repertoires from 276 healthy control subjects and 326 patients with various infections. We then extracted a comprehensive feature set consisting of 10 subsets of repertoire-level features and 160 sequence-level features and tested whether these features can distinguish between infected individuals and healthy control subjects. Finally, we developed an ensemble DL model, namely, DL method for infection diagnosis (https://github.com/chenyuan0510/DeepID), and used this model to differentiate between the infected and healthy individuals. Four subsets of repertoire-level features and four sequence-level features were selected because of their excellent predictive performance. The DL method for infection diagnosis outperformed traditional machine learning methods in distinguishing between healthy and infected samples (area under the curve = 0.9883) and achieved a multiclassification accuracy of 0.9104. We also observed differences between the healthy and infected groups in V genes usage, clonal expansion, the complexity of reads within clone, the physical properties in the α region, and the local flexibility of the CDR3 amino acid sequence. Our results suggest that the Ab repertoire is a promising biomarker for the diagnosis of various infections.
Collapse
Affiliation(s)
- Yuan Chen
- Center for Precision Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zhiming Ye
- Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Division of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yanfang Zhang
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Wenxi Xie
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Qingyun Chen
- Center for Precision Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Chunhong Lan
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xiujia Yang
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Huikun Zeng
- Center for Precision Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yan Zhu
- Center for Precision Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Cuiyu Ma
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Haipei Tang
- Center for Precision Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Qilong Wang
- Center for Precision Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Junjie Guan
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Sen Chen
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Fenxiang Li
- Department of Infectious Disease Control and Prevention, Center for Disease Control and Prevention of Southern Theatre Command, Guangzhou, China
| | - Wei Yang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Huacheng Yan
- Department of Infectious Disease Control and Prevention, Center for Disease Control and Prevention of Southern Theatre Command, Guangzhou, China
| | - Xueqing Yu
- Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China;
- Division of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zhenhai Zhang
- Center for Precision Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China;
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- State Key Laboratory of Organ Failure Research, Division of Nephrology, Southern Medical University, Guangzhou, China; and
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, China
| |
Collapse
|
22
|
Baldwin J, Piplani S, Sakala IG, Honda-Okubo Y, Li L, Petrovsky N. Rapid development of analytical methods for evaluating pandemic vaccines: a COVID-19 perspective. Bioanalysis 2021; 13:1805-1826. [PMID: 34645288 PMCID: PMC8516068 DOI: 10.4155/bio-2021-0096] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 09/28/2021] [Indexed: 12/24/2022] Open
Abstract
Vaccines are key in charting a path out of the COVID-19 pandemic. However, development of new vaccines is highly dependent on availability of analytical methods for their design and evaluation. This paper highlights the challenges presented in having to rapidly develop vaccine analytical tools during an ongoing pandemic, including the need to address progressive virus mutation and adaptation which can render initial assays unreliable or redundant. It also discusses the potential of new computational modeling techniques to model and analyze key viral proteins and their attributes to assist vaccine production and assay design. It then reviews the current range of analytical tools available for COVID-19 vaccine application, ranging from in vitro assays for immunogen characterization to assays to measure vaccine responses in vivo. Finally, it provides a future perspective for COVID-19 vaccine analytical tools and attempts to predict how the field might evolve over the next 5-10 years.
Collapse
Affiliation(s)
- Jeremy Baldwin
- Vaxine Pty Ltd, 11 Walkley Avenue, Adelaide, 5046, Australia
| | - Sakshi Piplani
- Vaxine Pty Ltd, 11 Walkley Avenue, Adelaide, 5046, Australia
- College of Medicine & Public Health, Flinders University, Adelaide, 5042, Australia
| | - Isaac G Sakala
- Vaxine Pty Ltd, 11 Walkley Avenue, Adelaide, 5046, Australia
- College of Medicine & Public Health, Flinders University, Adelaide, 5042, Australia
| | - Yoshikazu Honda-Okubo
- Vaxine Pty Ltd, 11 Walkley Avenue, Adelaide, 5046, Australia
- College of Medicine & Public Health, Flinders University, Adelaide, 5042, Australia
| | - Lei Li
- Vaxine Pty Ltd, 11 Walkley Avenue, Adelaide, 5046, Australia
- College of Medicine & Public Health, Flinders University, Adelaide, 5042, Australia
| | - Nikolai Petrovsky
- Vaxine Pty Ltd, 11 Walkley Avenue, Adelaide, 5046, Australia
- College of Medicine & Public Health, Flinders University, Adelaide, 5042, Australia
| |
Collapse
|
23
|
Hou X, Wang G, Fan W, Chen X, Mo C, Wang Y, Gong W, Wen X, Chen H, He D, Mo L, Jiang S, Ou M, Guo H, Liu H. T-cell receptor repertoires as potential diagnostic markers for patients with COVID-19. Int J Infect Dis 2021; 113:308-317. [PMID: 34688948 PMCID: PMC8530772 DOI: 10.1016/j.ijid.2021.10.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 09/25/2021] [Accepted: 10/15/2021] [Indexed: 12/23/2022] Open
Abstract
Objective Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is an ongoing global health emergency. T-cell receptors (TCRs) are crucial mediators of antiviral adaptive immunity. This study sought to comprehensively characterize the TCR repertoire changes in patients with COVID-19. Methods A large sample size multi-center randomized controlled trial was implemented to study the features of the TCR repertoire and identify COVID-19 disease-related TCR sequences. Results It was found that some T-cell receptor beta chain (TCRβ) features differed markedly between COVID-19 patients and healthy controls, including decreased repertoire diversity, longer complementarity-determining region 3 (CDR3) length, skewed utilization of the TCRβ variable gene/joining gene (TRBV/J), and a high degree of TCRβ sharing in COVID-19 patients. Moreover, this analysis showed that TCR repertoire diversity declines with aging, which may be a cause of the higher infection and mortality rates in elderly patients. Importantly, a set of TCRβ clones that can distinguish COVID-19 patients from healthy controls with high accuracy was identified. Notably, this diagnostic model demonstrates 100% specificity and 82.68% sensitivity at 0–3 days post diagnosis. Conclusions This study lays the foundation for immunodiagnosis and the development of medicines and vaccines for COVID-19 patients.
Collapse
Affiliation(s)
- Xianliang Hou
- Central Laboratory, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, the Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China
| | - Guangyu Wang
- College of Laboratory Medicine, Guilin Medical University, Guilin, 541199, China
| | - Wentao Fan
- Guangzhou Huayin Health Medical Group Co., Ltd, Guangzhou, China
| | - Xiaoyan Chen
- Department of State Owned Assets Management, Affiliated Hospital of Guilin Medical University, Guilin, 541001, China
| | - Chune Mo
- Central Laboratory, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, the Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China
| | - Yongsi Wang
- Guangzhou Huayin Health Medical Group Co., Ltd, Guangzhou, China
| | - Weiwei Gong
- Central Laboratory, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, the Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China
| | - Xuyan Wen
- Department of Pathology, Affiliated Hospital of Guilin Medical University, Guilin, 541001, China
| | - Hui Chen
- Guangzhou Huayin Health Medical Group Co., Ltd, Guangzhou, China
| | - Dan He
- Guangzhou Huayin Health Medical Group Co., Ltd, Guangzhou, China
| | - Lijun Mo
- Clinical Laboratory, the Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China
| | - Shaofeng Jiang
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, Guangxi, 541199, China
| | - Minglin Ou
- Central Laboratory, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, the Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China
| | - Haonan Guo
- Department of Clinical Laboratory, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, 541001, China.
| | - Hongbo Liu
- Department of Laboratory Medicine, the Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China.
| |
Collapse
|
24
|
Liu H, Pan W, Tang C, Tang Y, Wu H, Yoshimura A, Deng Y, He N, Li S. The methods and advances of adaptive immune receptors repertoire sequencing. Theranostics 2021; 11:8945-8963. [PMID: 34522220 PMCID: PMC8419057 DOI: 10.7150/thno.61390] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/09/2021] [Indexed: 12/13/2022] Open
Abstract
The adaptive immune response is a powerful tool, capable of recognizing, binding to, and neutralizing a vast number of internal and external threats via T or B lymphatic receptors with widespread sets of antigen specificities. The emergence of high-throughput sequencing technology and bioinformatics provides opportunities for research in the fields of life sciences and medicine. The analysis and annotation for immune repertoire data can reveal biologically meaningful information, including immune prediction, target antigens, and effective evaluation. Continuous improvements of the immunological repertoire sequencing methods and analysis tools will help to minimize the experimental and calculation errors and realize the immunological information to meet the clinical requirements. That said, the clinical application of adaptive immune repertoire sequencing requires appropriate experimental methods and standard analytical tools. At the population cell level, we can acquire the overview of cell groups, but the information about a single cell is not obtained accurately. The information that is ignored may be crucial for understanding the heterogeneity of each cell, gene expression and drug response. The combination of high-throughput sequencing and single-cell technology allows us to obtain single-cell information with low-cost and high-throughput. In this review, we summarized the current methods and progress in this area.
Collapse
Affiliation(s)
- Hongmei Liu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
| | - Wenjing Pan
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
| | - Congli Tang
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| | - Yujie Tang
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| | - Haijing Wu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hu-nan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Yan Deng
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
| | - Nongyue He
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| | - Song Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
| |
Collapse
|
25
|
Ma Y, Ou J, Lin T, Chen L, Chen J, Wang M. Next Generation Sequencing-Based Identification of T-Cell Receptors for Immunotherapy Against Hepatocellular Carcinoma. Hepatol Commun 2021; 5:1106-1119. [PMID: 34141993 PMCID: PMC8183181 DOI: 10.1002/hep4.1697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/19/2021] [Accepted: 02/04/2021] [Indexed: 01/02/2023] Open
Abstract
Hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) remains a global health concern, and HBV proteins may be ideal targets for T cell-based immunotherapy for HCC. There is a need for fast and efficient identification of HBV-specific T cell receptors (TCRs) for the development of TCR-transduced T (TCR-T) cell-based immunotherapy. Two widely employed TCR identification approaches, T cell clonal expansion and single-cell sequencing, involve a TCR singularization process for the direct identification of Vα and Vβ pairs of TCR chains. Clonal expansion of T cells is well known to have tedious time and effort requirements due to the use of T cell cultures, whereas single-cell sequencing is limited by the requirements of cell sorting and the preparation of a single-cell immune-transcriptome library as well as the massive cost of the whole procedure. Here, we present a next-generation sequencing (NGS)-based HBV-specific TCR identification that does not require the TCR singularization process. Conclusion: Two pairing strategies, ranking-based strategy and α-β chain mixture-based strategy, have proved to be useful for NGS-based TCR identification, particularly for polyclonal T cells purified by a peptide-major histocompatibility complex (pMHC) multimer-based approach. Functional evaluation confirmed the specificity and avidity of two identified HBV-specific TCRs, which may potentially be used to produce TCR-T cells to treat patients with HBV-related HCC.
Collapse
Affiliation(s)
- Yipeng Ma
- Department of Research and DevelopmentShenzhen Institute for Innovation and Translational MedicineShenzhen International Biological Valley-Life Science Industrial ParkShenzhenChina
| | - Jiayu Ou
- Department of Research and DevelopmentShenzhen Institute for Innovation and Translational MedicineShenzhen International Biological Valley-Life Science Industrial ParkShenzhenChina
| | - Tong Lin
- Department of Research and DevelopmentShenzhen Institute for Innovation and Translational MedicineShenzhen International Biological Valley-Life Science Industrial ParkShenzhenChina
| | - Lei Chen
- Department of Research and DevelopmentShenzhen Institute for Innovation and Translational MedicineShenzhen International Biological Valley-Life Science Industrial ParkShenzhenChina
| | - Junhui Chen
- Intervention and Cell Therapy CenterPeking University Shenzhen HospitalShenzhenChina
| | - Mingjun Wang
- Department of Research and DevelopmentShenzhen Institute for Innovation and Translational MedicineShenzhen International Biological Valley-Life Science Industrial ParkShenzhenChina
| |
Collapse
|
26
|
Hou X, Yang Y, Li P, Zeng Z, Hu W, Zhe R, Liu X, Tang D, Ou M, Dai Y. Integrating Spatial Transcriptomics and Single-Cell RNA-seq Reveals the Gene Expression Profling of the Human Embryonic Liver. Front Cell Dev Biol 2021; 9:652408. [PMID: 34095116 PMCID: PMC8173368 DOI: 10.3389/fcell.2021.652408] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/26/2021] [Indexed: 11/14/2022] Open
Abstract
The liver is one of vital organs of the human body, and it plays an important role in the metabolism and detoxification. Moreover, fetal liver is one of the hematopoietic places during ontogeny. Understanding how this complex organ develops during embryogenesis will yield insights into how functional liver replacement tissue can be engineered and how liver regeneration can be promoted. Here, we combine the advantages of single-cell RNA sequencing and Spatial Transcriptomics (ST) technology for unbiased analysis of fetal livers over developmental time from 8 post-conception weeks (PCW) and 17 PCW in humans. We systematically identified nine cell types, and defined the developmental pathways of the major cell types. The results showed that human fetal livers experienced blood rapid growth and immigration during the period studied in our experiments, and identified the differentially expressed genes, and metabolic changes in the developmental process of erythroid cells. In addition, we focus on the expression of liver disease related genes, and found that 17 genes published and linked to liver disease mainly expressed in megakaryocyte and endothelial, hardly expressed in any other cell types. Together, our findings provide a comprehensive and clear understanding of the differentiation processes of all main cell types in the human fetal livers, which may provide reference data and information for liver disease treatment and liver regeneration.
Collapse
Affiliation(s)
- Xianliang Hou
- Department of Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China.,The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Yane Yang
- Shenzhen Far-East Women & Children Hospital, Shenzhen, China
| | - Ping Li
- Shenzhen Far-East Women & Children Hospital, Shenzhen, China
| | - Zhipeng Zeng
- Department of Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China
| | - Wenlong Hu
- Department of Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China
| | - Ruilian Zhe
- Department of Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China
| | - Xinqiong Liu
- Department of Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China
| | - Donge Tang
- Department of Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China
| | - Minglin Ou
- Central Laboratory, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Yong Dai
- Department of Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China.,Guangxi Key Laboratory of Metabolic Disease Research, Central Laboratory, Nephrology Department of Guilin No. 924 Hospital, Guilin, China
| |
Collapse
|
27
|
Isacchini G, Walczak AM, Mora T, Nourmohammad A. Deep generative selection models of T and B cell receptor repertoires with soNNia. Proc Natl Acad Sci U S A 2021; 118:e2023141118. [PMID: 33795515 PMCID: PMC8040596 DOI: 10.1073/pnas.2023141118] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Subclasses of lymphocytes carry different functional roles to work together and produce an immune response and lasting immunity. Additionally to these functional roles, T and B cell lymphocytes rely on the diversity of their receptor chains to recognize different pathogens. The lymphocyte subclasses emerge from common ancestors generated with the same diversity of receptors during selection processes. Here, we leverage biophysical models of receptor generation with machine learning models of selection to identify specific sequence features characteristic of functional lymphocyte repertoires and subrepertoires. Specifically, using only repertoire-level sequence information, we classify CD4+ and CD8+ T cells, find correlations between receptor chains arising during selection, and identify T cell subsets that are targets of pathogenic epitopes. We also show examples of when simple linear classifiers do as well as more complex machine learning methods.
Collapse
Affiliation(s)
- Giulio Isacchini
- Statistical Physics of Evolving Systems, Max Planck Institute for Dynamics and Self-Organization, 37077 Göttingen, Germany
- Laboratoire de Physique de l'Ecole Normale Supérieure, Paris Sciences & Lettres (PSL) University, CNRS, Sorbonne Université and Université de Paris, 75005 Paris, France
| | - Aleksandra M Walczak
- Laboratoire de Physique de l'Ecole Normale Supérieure, Paris Sciences & Lettres (PSL) University, CNRS, Sorbonne Université and Université de Paris, 75005 Paris, France;
| | - Thierry Mora
- Laboratoire de Physique de l'Ecole Normale Supérieure, Paris Sciences & Lettres (PSL) University, CNRS, Sorbonne Université and Université de Paris, 75005 Paris, France;
| | - Armita Nourmohammad
- Statistical Physics of Evolving Systems, Max Planck Institute for Dynamics and Self-Organization, 37077 Göttingen, Germany;
- Department of Physics, University of Washington, Seattle, WA 98195
- Herbold Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| |
Collapse
|
28
|
Sex-Related Differences in Allelic Frequency of the Human Beta T Cell Receptor SNP rs1800907: A Retrospective Analysis from Milan Metropolitan Area. Vaccines (Basel) 2021; 9:vaccines9040333. [PMID: 33915945 PMCID: PMC8066715 DOI: 10.3390/vaccines9040333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/01/2021] [Accepted: 03/18/2021] [Indexed: 11/30/2022] Open
Abstract
This paper aims at retrospectively re-analyzing the different distribution, between males and females, in the allelic frequency of the human β T cell receptor (TCR β) single nucleotide polymorphism (SNPs) rs1800907 in Caucasian patients in the Milan metropolitan area. The allelic frequency significantly differed between sexes. Females showed higher frequency of C/C genotype than males, but lower T/C genotype (p < 0.0001). Heterozygous (T/C) versus homozygous (T/T + C/C) genotypes resulted in a different distribution of frequencies in males than in females, the latter possessing higher homozygosis (p < 0.0001). Within the limitations of this work (small number of included studies that concerned just a specific geographical area), allelic distribution according to sex might account the role of TCRβ-related SNPs in autoimmune diseases and further investigations are required to explain better this genetic background, in the perspective of a sex-related T cell immune responsiveness and auto-immunity.
Collapse
|
29
|
Granadier D, Iovino L, Kinsella S, Dudakov JA. Dynamics of thymus function and T cell receptor repertoire breadth in health and disease. Semin Immunopathol 2021; 43:119-134. [PMID: 33608819 PMCID: PMC7894242 DOI: 10.1007/s00281-021-00840-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/12/2021] [Indexed: 12/26/2022]
Abstract
T cell recognition of unknown antigens relies on the tremendous diversity of the T cell receptor (TCR) repertoire; generation of which can only occur in the thymus. TCR repertoire breadth is thus critical for not only coordinating the adaptive response against pathogens but also for mounting a response against malignancies. However, thymic function is exquisitely sensitive to negative stimuli, which can come in the form of acute insult, such as that caused by stress, infection, or common cancer therapies; or chronic damage such as the progressive decline in thymic function with age. Whether it be prolonged T cell deficiency after hematopoietic cell transplantation (HCT) or constriction in the breadth of the peripheral TCR repertoire with age; these insults result in poor adaptive immune responses. In this review, we will discuss the importance of thymic function for generation of the TCR repertoire and how acute and chronic thymic damage influences immune health. We will also discuss methods that are used to measure thymic function in patients and strategies that have been developed to boost thymic function.
Collapse
Affiliation(s)
- David Granadier
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Medical Scientist Training Program, University of Washington, Seattle, WA, USA
- Department of Molecular and Cellular Biology, University of Washington, Seattle, WA, USA
| | - Lorenzo Iovino
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Sinéad Kinsella
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Jarrod A Dudakov
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
- Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
- Department of Immunology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
30
|
Hou X, Chen W, Zhang X, Wang G, Chen J, Zeng P, Fu X, Zhang Q, Liu X, Diao H. Preselection TCR repertoire predicts CD4 + and CD8 + T-cell differentiation state. Immunology 2020; 161:354-363. [PMID: 32875554 DOI: 10.1111/imm.13256] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 07/15/2020] [Accepted: 08/12/2020] [Indexed: 02/06/2023] Open
Abstract
T cells must display diversity regarding both the cell state and T-cell receptor (TCR) repertoire to provide effective immunity against pathogens; however, the generation and evolution of cellular T-cell heterogeneity in the adaptive immune system remains unclear. In the present study, a combination of multiplex PCR and immune repertoire sequencing (IR-seq) was used for a standardized analysis of the TCR β-chain repertoire of CD4+ naive, CD4+ memory, CD8+ naive and CD8+ memory T cells. We showed that the T-cell subsets could be distinguished from each another with regard to the TCR β-chain (TCR-β) diversity, CDR3 length distribution and TRBV usage, which could be observed both in the preselection and in the post-selection repertoire. Moreover, the Dβ-Jβ and Vβ-Dβ combination patterns at the initial recombination step, template-independent insertion of nucleotides and inter-subset overlap were consistent between the pre- and post-selection repertoires, with a remarkably positive correlation. Taken together, these results support differentiation of the CD4+ and CD8+ T-cell subsets prior to thymic selection, and these differences survived both positive and negative selection. In conclusion, these findings provide deeper insight into the generation and evolution of TCR repertoire generation.
Collapse
Affiliation(s)
- Xianliang Hou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Central Laboratory, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Wenbiao Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xujun Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Guangyu Wang
- Central Laboratory, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Jianing Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ping Zeng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xuyan Fu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Qiong Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xiangdong Liu
- College of Materials and Textile, Zhejiang Sci-Tech University, Xiasha Higher Education Zone, Hangzhou, China
| | - Hongyan Diao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
31
|
Ye X, Wang Z, Ye Q, Zhang J, Huang P, Song J, Li Y, Zhang H, Song F, Xuan Z, Wang K. High-Throughput Sequencing-Based Analysis of T Cell Repertoire in Lupus Nephritis. Front Immunol 2020; 11:1618. [PMID: 32849548 PMCID: PMC7423971 DOI: 10.3389/fimmu.2020.01618] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 06/17/2020] [Indexed: 12/22/2022] Open
Abstract
T cell receptor (TCR)-mediated immune functions are closely related to autoimmune diseases, such as systemic lupus erythematosus (SLE). However, technical challenges used to limit the accurate profiling of TCR diversity in SLE and the characteristics of SLE patients remain largely unknown. In this study, we collected peripheral blood samples from 10 SLE patients with lupus nephritis (LN) who were confirmed by renal biopsy, as well as 10 healthy controls. The TCR repertoire of each sample was assessed by high-throughput sequencing to examine the distinction between SLE subjects and healthy controls. Our results showed statistically significant differences in TCR diversity and usage of TRBV/TRBJ genes between the two groups. A set of signature V–J combinations enabled efficient identification of SLE cases, yielding an area under the curve (AUC) of 0.89 (95% CI: 0.74–1.00). Taken together, our results revealed the potential correlation between the TCR repertoire and SLE status, which may facilitate the development of novel immune biomarkers.
Collapse
Affiliation(s)
- Xiaolan Ye
- Department of Pharmacy, People's Hospital of Hangzhou Medical College, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Zhe Wang
- National Engineering Research Center for Protein Drugs, Beijing, China.,GS Medical (Beijing) Technology Development LLC, Beijing, China.,JITRI Applied Adaptome Immunology Institute, Nanjing, China
| | - Qiang Ye
- Department of Pharmacy, People's Hospital of Hangzhou Medical College, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Jing Zhang
- National Engineering Research Center for Protein Drugs, Beijing, China.,GS Medical (Beijing) Technology Development LLC, Beijing, China
| | - Ping Huang
- Department of Pharmacy, People's Hospital of Hangzhou Medical College, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Jingying Song
- Department of Nephrology, Changed Central Hospital, Chengde, China
| | - Yiwen Li
- Department of Nephrology, People's Hospital of Hangzhou Medical College, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Hongjuan Zhang
- Department of Nephrology, People's Hospital of Hangzhou Medical College, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Feifeng Song
- Department of Pharmacy, People's Hospital of Hangzhou Medical College, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Zixue Xuan
- Department of Pharmacy, People's Hospital of Hangzhou Medical College, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Kejian Wang
- Lin He's Academician Workstation of New Medicine and Clinical Translation at The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
32
|
Clonotypic heterogeneity in cutaneous T-cell lymphoma (mycosis fungoides) revealed by comprehensive whole-exome sequencing. Blood Adv 2020; 3:1175-1184. [PMID: 30967393 DOI: 10.1182/bloodadvances.2018027482] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 02/26/2019] [Indexed: 12/24/2022] Open
Abstract
Mycosis fungoides (MF), the most common type of cutaneous T-cell lymphoma, is believed to represent a clonal expansion of a transformed skin-resident memory T cell. T-cell receptor (TCR) clonality (ie, identical sequences of rearranged TCRα, TCRβ, and TCRγ), the key premise of this hypothesis, has been difficult to document conclusively because malignant cells are not readily distinguishable from the tumor-infiltrating reactive lymphocytes that contribute to the TCR clonotypic repertoire of MF. Here, we have successfully adopted targeted whole-exome sequencing (WES) to identify the repertoire of rearranged TCR genes in tumor-enriched samples from patients with MF. Although some of the investigated MF biopsies had the expected frequency of monoclonal rearrangements of TCRγ corresponding to that of tumor cells, the majority of the samples presented multiple TCRγ, TCRα, and TCRβ clonotypes by WES. Our findings are compatible with the model in which the initial malignant transformation in MF does not occur in mature memory T cells but rather at the level of T-lymphocyte progenitors before TCRβ or TCRα rearrangements. We have also shown that WES can be combined with whole-transcriptome sequencing in the same sample, which enables comprehensive characterization of the TCR repertoire in relation to tumor content. WES/whole-transcriptome sequencing might be applicable to other types of T-cell lymphomas to determine clonal dominance and clonotypic heterogeneity in these malignancies.
Collapse
|
33
|
Ni Q, Zhang J, Zheng Z, Chen G, Christian L, Grönholm J, Yu H, Zhou D, Zhuang Y, Li QJ, Wan Y. VisTCR: An Interactive Software for T Cell Repertoire Sequencing Data Analysis. Front Genet 2020; 11:771. [PMID: 32849789 PMCID: PMC7416706 DOI: 10.3389/fgene.2020.00771] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 06/29/2020] [Indexed: 11/13/2022] Open
Abstract
Recent progress in high throughput sequencing technologies has provided an opportunity to probe T cell receptor (TCR) repertoire, bringing about an explosion of TCR sequencing data and analysis tools. For easier and more heuristic analysis TCR sequencing data, we developed a client-based HTML program (VisTCR). It has a data storage module and a data analysis module that integrate multiple cutting-edge analysis algorithms in a hierarchical fashion. Researchers can group and re-group samples for different analysis purposes by customized "Experiment Design File." Moreover, the VisTCR provides a user-friendly interactive interface, by all the TCR analysis methods and visualization results can be accessed and saved as tables or graphs in the process of analysis. The source code is freely available at https://github.com/qingshanni/VisTCR.
Collapse
Affiliation(s)
- Qingshan Ni
- Biomedical Analysis Center, Army Medical University, Chongqing, China.,Chongqing Key Laboratory of Cytomics, Chongqing, China
| | - Jianyang Zhang
- Biomedical Analysis Center, Army Medical University, Chongqing, China.,Chongqing Key Laboratory of Cytomics, Chongqing, China
| | | | - Gang Chen
- Biomedical Analysis Center, Army Medical University, Chongqing, China.,Chongqing Key Laboratory of Cytomics, Chongqing, China
| | - Laura Christian
- Department of Immunology, Duke University Medical Center, Durham, NC, United States
| | - Juha Grönholm
- Molecular Development of the Immune System Section, NIAID Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Haili Yu
- Biomedical Analysis Center, Army Medical University, Chongqing, China.,Chongqing Key Laboratory of Cytomics, Chongqing, China
| | - Daxue Zhou
- Biomedical Analysis Center, Army Medical University, Chongqing, China.,Chongqing Key Laboratory of Cytomics, Chongqing, China
| | - Yuan Zhuang
- Department of Immunology, Duke University Medical Center, Durham, NC, United States
| | - Qi-Jing Li
- Department of Immunology, Duke University Medical Center, Durham, NC, United States
| | - Ying Wan
- Biomedical Analysis Center, Army Medical University, Chongqing, China.,Chongqing Key Laboratory of Cytomics, Chongqing, China
| |
Collapse
|
34
|
Teraguchi S, Saputri DS, Llamas-Covarrubias MA, Davila A, Diez D, Nazlica SA, Rozewicki J, Ismanto HS, Wilamowski J, Xie J, Xu Z, Loza-Lopez MDJ, van Eerden FJ, Li S, Standley DM. Methods for sequence and structural analysis of B and T cell receptor repertoires. Comput Struct Biotechnol J 2020; 18:2000-2011. [PMID: 32802272 PMCID: PMC7366105 DOI: 10.1016/j.csbj.2020.07.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/08/2020] [Accepted: 07/08/2020] [Indexed: 02/07/2023] Open
Abstract
B cell receptors (BCRs) and T cell receptors (TCRs) make up an essential network of defense molecules that, collectively, can distinguish self from non-self and facilitate destruction of antigen-bearing cells such as pathogens or tumors. The analysis of BCR and TCR repertoires plays an important role in both basic immunology as well as in biotechnology. Because the repertoires are highly diverse, specialized software methods are needed to extract meaningful information from BCR and TCR sequence data. Here, we review recent developments in bioinformatics tools for analysis of BCR and TCR repertoires, with an emphasis on those that incorporate structural features. After describing the recent sequencing technologies for immune receptor repertoires, we survey structural modeling methods for BCR and TCRs, along with methods for clustering such models. We review downstream analyses, including BCR and TCR epitope prediction, antibody-antigen docking and TCR-peptide-MHC Modeling. We also briefly discuss molecular dynamics in this context.
Collapse
Affiliation(s)
- Shunsuke Teraguchi
- Immunology Frontier Research Center, Osaka University, 3-1 Yamadaoka, Suita, Japan
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Japan
| | - Dianita S. Saputri
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Japan
| | - Mara Anais Llamas-Covarrubias
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Japan
- Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Mexico
| | - Ana Davila
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Japan
| | - Diego Diez
- Immunology Frontier Research Center, Osaka University, 3-1 Yamadaoka, Suita, Japan
| | - Sedat Aybars Nazlica
- Immunology Frontier Research Center, Osaka University, 3-1 Yamadaoka, Suita, Japan
| | - John Rozewicki
- Immunology Frontier Research Center, Osaka University, 3-1 Yamadaoka, Suita, Japan
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Japan
| | - Hendra S. Ismanto
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Japan
| | - Jan Wilamowski
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Japan
| | - Jiaqi Xie
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Japan
| | - Zichang Xu
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Japan
| | | | - Floris J. van Eerden
- Immunology Frontier Research Center, Osaka University, 3-1 Yamadaoka, Suita, Japan
| | - Songling Li
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Japan
| | - Daron M. Standley
- Immunology Frontier Research Center, Osaka University, 3-1 Yamadaoka, Suita, Japan
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Japan
| |
Collapse
|
35
|
Chen H, Zhang Y, Ye AY, Du Z, Xu M, Lee CS, Hwang JK, Kyritsis N, Ba Z, Neuberg D, Littman DR, Alt FW. BCR selection and affinity maturation in Peyer's patch germinal centres. Nature 2020; 582:421-425. [PMID: 32499646 PMCID: PMC7478071 DOI: 10.1038/s41586-020-2262-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 02/28/2020] [Indexed: 12/23/2022]
Abstract
The antigen-binding variable regions of the B cell receptor (BCR) and of antibodies are encoded by exons that are assembled in developing B cells by V(D)J recombination1. The BCR repertoires of primary B cells are vast owing to mechanisms that create diversity at the junctions of V(D)J gene segments that contribute to complementarity-determining region 3 (CDR3), the region that binds antigen1. Primary B cells undergo antigen-driven BCR affinity maturation through somatic hypermutation and cellular selection in germinal centres (GCs)2,3. Although most GCs are transient3, those in intestinal Peyer's patches (PPs)-which depend on the gut microbiota-are chronic4, and little is known about their BCR repertoires or patterns of somatic hypermutation. Here, using a high-throughput assay that analyses both V(D)J segment usage and somatic hypermutation profiles, we elucidate physiological BCR repertoires in mouse PP GCs. PP GCs from different mice expand public BCR clonotypes (clonotypes that are shared between many mice) that often have canonical CDR3s in the immunoglobulin heavy chain that, owing to junctional biases during V(D)J recombination, appear much more frequently than predicted in naive B cell repertoires. Some public clonotypes are dependent on the gut microbiota and encode antibodies that are reactive to bacterial glycans, whereas others are independent of gut bacteria. Transfer of faeces from specific-pathogen-free mice to germ-free mice restored germ-dependent clonotypes, directly implicating BCR selection. We identified somatic hypermutations that were recurrently selected in such public clonotypes, indicating that affinity maturation occurs in mouse PP GCs under homeostatic conditions. Thus, persistent gut antigens select recurrent BCR clonotypes to seed chronic PP GC responses.
Collapse
Affiliation(s)
- Huan Chen
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- The Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
| | - Yuxiang Zhang
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- The Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
| | - Adam Yongxin Ye
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- The Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
| | - Zhou Du
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- The Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
| | - Mo Xu
- Molecular Pathogenesis Program, The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY, USA
- The Howard Hughes Medical Institute, New York University School of Medicine, New York, NY, USA
| | - Cheng-Sheng Lee
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- The Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
| | - Joyce K Hwang
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- The Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
| | - Nia Kyritsis
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- The Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
| | - Zhaoqing Ba
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- The Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
| | - Donna Neuberg
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Dan R Littman
- Molecular Pathogenesis Program, The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY, USA
- The Howard Hughes Medical Institute, New York University School of Medicine, New York, NY, USA
| | - Frederick W Alt
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
- The Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
36
|
Adaptive immune receptor repertoires, an overview of this exciting field. Immunol Lett 2020; 221:49-55. [PMID: 32113899 DOI: 10.1016/j.imlet.2020.02.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/19/2020] [Accepted: 02/26/2020] [Indexed: 12/30/2022]
Abstract
The adaptive immune response in jawed vertebrates relies on the huge diversity and specificity of the B cell and T cell antigen receptors, the immunoglobulins (IG) or antibodies and the T cell receptors (TR), respectively. The high level of diversity has represented a barrier to a comprehensive analysis of the adaptive immune response before the emergence of high-throughput sequencing (HTS) technologies. The size and complexity of HTS data requires the generation of novel computational and analytical approaches, which are transforming how the adaptive immune responses are deciphered to understand the clonal dynamics and properties of antigen-specific B and T cells in response to different kind of antigens. This exciting and rapidly evolving field is not only impacting human and clinical immunology but also comparative immunology. We are now closer to understanding the evolution of adaptive immune response in jawed vertebrates. This review provides an overview about classical and current strategies developed to assess the IG/TR diversity and their applications in basic and clinical immunology.
Collapse
|
37
|
Holec PV, Berleant J, Bathe M, Birnbaum ME. A Bayesian framework for high-throughput T cell receptor pairing. Bioinformatics 2020; 35:1318-1325. [PMID: 30215679 DOI: 10.1093/bioinformatics/bty801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 08/29/2018] [Accepted: 09/11/2018] [Indexed: 01/01/2023] Open
Abstract
MOTIVATION The study of T cell receptor (TCR) repertoires has generated new insights into immune system recognition. However, the ability to robustly characterize these populations has been limited by technical barriers and an inability to reliably infer heterodimeric chain pairings for TCRs. RESULTS Here, we describe a novel analytical approach to an emerging immune repertoire sequencing method, improving the resolving power of this low-cost technology. This method relies upon the distribution of a T cell population across a 96-well plate, followed by barcoding and sequencing of the relevant transcripts from each T cell. Multicell Analytical Deconvolution for High Yield Paired-chain Evaluation (MAD-HYPE) uses Bayesian inference to more accurately extract TCR information, improving our ability to study and characterize T cell populations for immunology and immunotherapy applications. AVAILABILITY AND IMPLEMENTATION The MAD-HYPE algorithm is released as an open-source project under the Apache License and is available from https://github.com/birnbaumlab/MAD-HYPE. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Patrick V Holec
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Joseph Berleant
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mark Bathe
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Michael E Birnbaum
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
38
|
Wang L, Zhang P, Li J, Lu H, Peng L, Ling J, Zhang X, Zeng X, Zhao Y, Zhang W. High-throughput sequencing of CD4 + T cell repertoire reveals disease-specific signatures in IgG4-related disease. Arthritis Res Ther 2019; 21:295. [PMID: 31856905 PMCID: PMC6923942 DOI: 10.1186/s13075-019-2069-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 11/25/2019] [Indexed: 12/20/2022] Open
Abstract
Background CD4+ T cells play critical roles in the pathogenesis of IgG4-related disease (IgG4-RD). The aim of this study was to investigate the TCR repertoire of peripheral blood CD4+ T cells in IgG4-RD. Methods The peripheral blood was collected from six healthy controls and eight IgG4-RD patients. TCR β-chain libraries of CD4+ T cells were constructed by 5′-rapid amplification of cDNA ends (5′-RACE) and sequenced by Illumina Miseq platform. The relative similarity of TCR repertoires between samples was evaluated according to the total frequencies of shared clonotypes (metric F), correlation of frequencies of shared clonotypes (metric R), and total number of shared clonotypes (metric D). Results The clonal expansion and diversity of CD4+ T cell repertoire were comparable between healthy controls and IgG4-RD patients, while the proportion of expanded and coding degenerated clones, as an indicator of antigen-driven clonal expansion, was significantly higher in IgG4-RD patients. There was no significant difference in TRBV and TRBJ gene usage between healthy controls and IgG4-RD patients. The complementarity determining region 3 (CDR3) length distribution was skewed towards longer fragments in IgG4-RD. Visualization of relative similarity of TCR repertoires by multi-dimensional scaling analysis showed that TCR repertoires of IgG4-RD patients were separated from that of healthy controls in F and D metrics. We identified 11 IgG4-RD-specific CDR3 amino acid sequences that were expanded in at least 2 IgG4-RD patients, while not detected in healthy controls. According to TCR clonotype networks constructed by connecting all the CDR3 sequences with a Levenshtein distance of 1, 3 IgG4-RD-specific clusters were identified. We annotated the TCR sequences with known antigen specificity according to McPAS-TCR database and found that the frequencies of TCR sequences associated with each disease or immune function were comparable between healthy controls and IgG4-RD patients. Conclusion According to our study of CD4+ T cells from eight IgG4-RD patients, TCR repertoires of IgG4-RD patients were different from that of healthy controls in the proportion of expanded and coding degenerated clones and CDR3 length distribution. In addition, IgG4-RD-specific TCR sequences and clusters were identified in our study.
Collapse
Affiliation(s)
- Liwen Wang
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, No.41 Da Mu Cang, Western District, Beijing, 100032, People's Republic of China.,Department of General Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Panpan Zhang
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, No.41 Da Mu Cang, Western District, Beijing, 100032, People's Republic of China
| | - Jieqiong Li
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, No.41 Da Mu Cang, Western District, Beijing, 100032, People's Republic of China
| | - Hui Lu
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, No.41 Da Mu Cang, Western District, Beijing, 100032, People's Republic of China
| | - Linyi Peng
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, No.41 Da Mu Cang, Western District, Beijing, 100032, People's Republic of China
| | - Jing Ling
- Tsinghua University School of Medicine, Beijing, China
| | - Xuan Zhang
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, No.41 Da Mu Cang, Western District, Beijing, 100032, People's Republic of China
| | - Xiaofeng Zeng
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, No.41 Da Mu Cang, Western District, Beijing, 100032, People's Republic of China
| | - Yan Zhao
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, No.41 Da Mu Cang, Western District, Beijing, 100032, People's Republic of China.
| | - Wen Zhang
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, No.41 Da Mu Cang, Western District, Beijing, 100032, People's Republic of China.
| |
Collapse
|
39
|
No difference in TCRβ repertoire of CD4+ naive T cell between patients with primary biliary cholangitis and healthy control subjects. Mol Immunol 2019; 116:167-173. [PMID: 31698163 DOI: 10.1016/j.molimm.2019.09.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 08/14/2019] [Accepted: 09/24/2019] [Indexed: 01/21/2023]
Abstract
Primary biliary cholangitis (PBC) is considered as a model of organ-specific autoimmune disease based on the serological findings of anti-mitochondrial antibodies (AMA), infiltrates of T cells, and selective destruction of epithelial cells in the liver. T-cell-mediated autoimmune mechanisms are considered to be involved in the pathogenesis of primary biliary cholangitis (PBC). In this context, we used a combination of multiplex-PCR, Illumina sequencing and IMGT/HighV-QUEST for a standardized analysis of the T cell receptor β-chain (TCRβ) repertoire of CD4+naive T cells in PBC patients compared with healthy volunteers. Nonfunctional TCRs were used to study the pre-selection TCR repertoire, as they are not subject to functional selection (positive and negative selection). Functional TCRs were used to study the post-selection TCR repertoire. The results showed that there was not significant difference between PBC patients and healthy volunteers in TCRβ diversity, CDR3 length distributions, degree of sequence sharing, and usage frequency of TRBV and TRBJ segments, no matter in Pre-selection or Post-selection repertoires. In conclusion, early events in thymic T cell development and repertoire generation are not abnormality in PBC patients. The breakdown of self-tolerance to autoantigen may be derived from other immunological dysregulation or environmental agents.
Collapse
|
40
|
Miyasaka A, Yoshida Y, Wang T, Takikawa Y. Next-generation sequencing analysis of the human T-cell and B-cell receptor repertoire diversity before and after hepatitis B vaccination. Hum Vaccin Immunother 2019; 15:2738-2753. [PMID: 30945971 PMCID: PMC6930056 DOI: 10.1080/21645515.2019.1600987] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The hepatitis B (HB) vaccine effectively prevents the incidence of hepatitis B virus (HBV) infection. However, vaccine failure occurs in 5-10% of the recipients. The precise mechanisms leading to responsiveness to the HB vaccine are poorly understood. High-throughput sequencing (HTS) may help clarify the immune response to the HB vaccine, so we applied this method to investigate whether the HB vaccine induced a specific change in the T-cell receptor (TCR) and B-cell receptor (BCR) repertoires. We conducted HTS of the TCR β chain and BCR IgG heavy (H) chain complementary determining region 3 (CDR3) repertoires in five volunteers before and after the second and third immunizations with the HB vaccine. The HB surface antibody (HBsAb) levels were >10 mIU/ml after the third vaccination in all five participants. The TCR β chain CDR3 repertoire diversity significantly increased, while the BCR IgG H chain CDR3 repertoire diversity significantly decreased after the second vaccination. Although there was no marked inter-individual variation in terms of the numbers of unique reads, it is possible that the TCR β chain and BCR IgG H chain CDR3 repertoires may have changed within the same numbers of unique reads. Our data failed to identify the specific dominant clones that responded to the HB vaccine. In summary, the TCR β chain CDR3 repertoire diversity significantly increased, while the BCR IgG H chain CDR3 repertoire diversity significantly decreased, after the second HB vaccination. These diversity changes might be associated with a better response to the HB vaccine.
Collapse
Affiliation(s)
- Akio Miyasaka
- Division of Hepatology, Department of Internal Medicine, Iwate Medical University School of Medicine, Morioka, Japan
| | - Yuichi Yoshida
- Division of Hepatology, Department of Internal Medicine, Iwate Medical University School of Medicine, Morioka, Japan
| | - Ting Wang
- Division of Hepatology, Department of Internal Medicine, Iwate Medical University School of Medicine, Morioka, Japan
| | - Yasuhiro Takikawa
- Division of Hepatology, Department of Internal Medicine, Iwate Medical University School of Medicine, Morioka, Japan
| |
Collapse
|
41
|
Hou X, Yang Y, Chen J, Jia H, Zeng P, Lv L, Lu Y, Liu X, Diao H. TCRβ repertoire of memory T cell reveals potential role for Escherichia coli in the pathogenesis of primary biliary cholangitis. Liver Int 2019; 39:956-966. [PMID: 30721553 DOI: 10.1111/liv.14066] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/19/2018] [Accepted: 11/28/2018] [Indexed: 12/24/2022]
Abstract
BACKGROUND Primary biliary cholangitis (PBC) is an organ-specific, T cell-mediated autoimmune disease which is characterized by the breakdown of self-tolerance to the highly conserved pyruvate dehydrogenase complex, especially the pyruvate dehydrogenase E2 complex (PDC-E2). However, the molecular mechanism of breakdown of self-tolerance is still unclear. METHODS A combination of multiplex-PCR and immune repertoire sequencing (IR-seq) was used for a standardized analysis of memory T cell receptor (TCR) β-chain repertoire of PBC patient and healthy volunteers. In vitro induction and expansion of human PDC-E2163-176 (human PDC-E2)-specific T cells and E coli PDC-E231-44/134-147/235-248 (E coli PDC-E2)-specific T cells, and identified the human (and E coli) PDC-E2-specific TCRβ repertoire by IR-seq. RESULTS Primary biliary cholangitis patients have shorter complementarity-determining region 3s (CDR3s), and higher degree of sequence overlap in the TCRβ repertoire of memory T cell. Moreover, altered insertion patterns and skewed TRBV segment usage were observed in PBC patients. With regard to the pathogenesis, the concentration of E coli was higher in PBC patients' faecal. The frequency of E coli (and human)-specific TCRs was higher in the memory TCRβ repertoire of PBC patients compared with healthy controls. Importantly, the TCRβ repertoire characteristics were almost identical between E coli PDC-E2-related TCRs and human PDC-E2-related TCRs, including the patterns of TRBV usage, CDR3 length and amino acid composition. CONCLUSION Our findings comprehensively revealed the TCRβ repertoire characterization of PBC patients, and provided a TCR molecular basis to understand the mechanism of cross-recognition between human PDC-E2 and E coli PDC-E2, and the imbalance of immune tolerance in PBC.
Collapse
Affiliation(s)
- Xianliang Hou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yida Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jianing Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Hongyu Jia
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ping Zeng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Longxian Lv
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yingfeng Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xiangdong Liu
- College of Materials and Textile, Zhejiang Sci-Tech University, Xiasha Higher Education Zone, Hangzhou, China
| | - Hongyan Diao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
42
|
López-Santibáñez-Jácome L, Avendaño-Vázquez SE, Flores-Jasso CF. The Pipeline Repertoire for Ig-Seq Analysis. Front Immunol 2019; 10:899. [PMID: 31114573 PMCID: PMC6503734 DOI: 10.3389/fimmu.2019.00899] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 04/08/2019] [Indexed: 11/22/2022] Open
Abstract
With the advent of high-throughput sequencing of immunoglobulin genes (Ig-Seq), the understanding of antibody repertoires and their dynamics among individuals and populations has become an exciting area of research. There is an increasing number of computational tools that aid in every step of the immune repertoire characterization. However, since not all tools function identically, every pipeline has its unique rationale and capabilities, creating a rich blend of useful features that may appear intimidating for newcomer laboratories with the desire to plunge into immune repertoire analysis to expand and improve their research; hence, all pipeline strengths and differences may not seem evident. In this review we provide a practical and organized list of the current set of computational tools, focusing on their most attractive features and differences in order to carry out the characterization of antibody repertoires so that the reader better decides a strategic approach for the experimental design, and computational pathways for the analyses of immune repertoires.
Collapse
Affiliation(s)
- Laura López-Santibáñez-Jácome
- Consorcio de Metabolismo de RNA, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
- Maestría en Ciencia de Datos, Instituto Tecnológico Autónomo de México, Mexico City, Mexico
| | | | | |
Collapse
|
43
|
Scott DE. Assuring immune globulin potency in a world of changing pathogen challenges. Transfusion 2019; 58 Suppl 3:3121-3124. [PMID: 30536433 DOI: 10.1111/trf.15051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 10/29/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Dorothy E Scott
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| |
Collapse
|
44
|
Hou X, Zeng P, Zhang X, Chen J, Liang Y, Yang J, Yang Y, Liu X, Diao H. Shorter TCR β-Chains Are Highly Enriched During Thymic Selection and Antigen-Driven Selection. Front Immunol 2019; 10:299. [PMID: 30863407 PMCID: PMC6399399 DOI: 10.3389/fimmu.2019.00299] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 02/05/2019] [Indexed: 02/05/2023] Open
Abstract
The adaptive immune system uses several strategies to generate a repertoire of T cell receptors (TCR) with sufficient diversity to recognize the universe of potential pathogens. However, it remains unclear how differences in the T cell receptor (TCR) contribute to heterogeneity in T cell state. In this study, we used polychromatic flow cytometry to isolate highly pure CD4+/CD8+ naive and memory T cells, and applied deep sequencing to characterize corresponding TCR β-chain (TCRβ) complementary-determining region 3 (CDR3) repertoires. We find that shorter TCRβ CDR3s with fewer insertions were highly enriched during thymic selection. Antigen-experienced T cells (memory T cells) harbor shorter CDR3s vs. naive T cells. Moreover, the public TCRβ CDR3 clonotypes within cell subsets or interindividual tend to have shorter CDR3 length and a significantly larger size compared with “private” clonotypes. Taken together, shorter CDR3s highly enriched during thymic selection and antigen-driven selection, and further enriched in public T-cell responses. These results indicated that it may be evolutionary pressures drive short CDR3s to recognize most of antigen in nature.
Collapse
Affiliation(s)
- Xianliang Hou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ping Zeng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xujun Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jianing Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yan Liang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jiezuan Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yida Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xiangdong Liu
- College of Materials and Textile, Zhejiang Sci-Tech University, Hangzhou, China
| | - Hongyan Diao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
45
|
Uddin I, Joshi K, Oakes T, Heather JM, Swanton C, Chain B. An Economical, Quantitative, and Robust Protocol for High-Throughput T Cell Receptor Sequencing from Tumor or Blood. Methods Mol Biol 2019; 1884:15-42. [PMID: 30465193 DOI: 10.1007/978-1-4939-8885-3_2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The T cell receptor repertoire provides a window to the cellular adaptive immune response within a tumor, and has the potential to identify specific and personalized biomarkers for tracking host responses during cancer therapy, including immunotherapy. We describe a protocol for amplifying, sequencing, and analyzing T cell receptors which is economical, robust, sensitive, and versatile. The key experimental step is the ligation of a single-stranded oligonucleotide to the 3' end of the T cell receptor cDNA, which allows easy amplification of all possible rearrangements using only a single set of primers per locus, while simultaneously introducing a unique molecular identifier to label each starting cDNA molecule. After sequencing, this molecular identifier can be used to correct both sequence errors and the effects of differential PCR amplification efficiency, thus producing a more accurate measure of the true T cell receptor frequency within the sample. This method has been applied to the analysis of unfractionated human tumor lysates, subpopulations of tumor-infiltrating lymphocytes, and peripheral blood samples from patients with a variety of solid tumors.
Collapse
MESH Headings
- Antineoplastic Agents, Immunological/therapeutic use
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/immunology
- Biomarkers, Tumor/metabolism
- High-Throughput Nucleotide Sequencing/economics
- High-Throughput Nucleotide Sequencing/instrumentation
- High-Throughput Nucleotide Sequencing/methods
- Humans
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Neoplasms/blood
- Neoplasms/drug therapy
- Neoplasms/immunology
- Neoplasms/pathology
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Treatment Outcome
Collapse
Affiliation(s)
- Imran Uddin
- Division of Infection and Immunity, UCL, London, UK
| | - Kroopa Joshi
- Cancer Immunology Unit, UCL Cancer Institute, UCL, London, UK
| | - Theres Oakes
- Division of Infection and Immunity, UCL, London, UK
| | | | - Charles Swanton
- Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, UCL, London, UK
- Translational Cancer Therapeutics Laboratory, The Francis Crick Institute, London, UK
| | - Benny Chain
- Division of Infection and Immunity, UCL, London, UK.
| |
Collapse
|
46
|
Rettig TA, Pecaut MJ, Chapes SK. A comparison of unamplified and massively multiplexed PCR amplification for murine antibody repertoire sequencing. FASEB Bioadv 2019; 1:6-17. [PMID: 32123808 PMCID: PMC6996338 DOI: 10.1096/fba.1017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/09/2018] [Accepted: 08/17/2018] [Indexed: 11/26/2022] Open
Abstract
Sequencing antibody repertoires has steadily become cheaper and easier. Sequencing methods usually rely on some form of amplification, often a massively multiplexed PCR prior to sequencing. To eliminate potential biases and create a data set that could be used for other studies, our laboratory compared unamplified sequencing results from the splenic heavy-chain repertoire in the mouse to those processed through two commercial applications. We also compared the use of mRNA vs total RNA, reverse transcriptase, and primer usage for cDNA synthesis and submission. The use of mRNA for cDNA synthesis resulted in higher read counts but reverse transcriptase and primer usage had no statistical effects on read count. Although most of the amplified data sets contained more antibody reads than the unamplified data set, we detected more unique variable (V)-gene segments in the unamplified data set. Although unique CDR3 detection was much lower in the unamplified data set, RNASeq detected 98% of the high-frequency CDR3s. We have shown that unamplified profiling of the antibody repertoire is possible, detects more V-gene segments, and detects high-frequency clones in the repertoire.
Collapse
Affiliation(s)
| | - Michael J. Pecaut
- Division of Biomedical Engineering Sciences (BMES)Loma Linda UniversityLoma LindaCalifornia
| | | |
Collapse
|
47
|
Heather JM, Ismail M, Oakes T, Chain B. High-throughput sequencing of the T-cell receptor repertoire: pitfalls and opportunities. Brief Bioinform 2018; 19:554-565. [PMID: 28077404 PMCID: PMC6054146 DOI: 10.1093/bib/bbw138] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 11/21/2016] [Indexed: 02/06/2023] Open
Abstract
T-cell specificity is determined by the T-cell receptor, a heterodimeric protein coded for by an extremely diverse set of genes produced by imprecise somatic gene recombination. Massively parallel high-throughput sequencing allows millions of different T-cell receptor genes to be characterized from a single sample of blood or tissue. However, the extraordinary heterogeneity of the immune repertoire poses significant challenges for subsequent analysis of the data. We outline the major steps in processing of repertoire data, considering low-level processing of raw sequence files and high-level algorithms, which seek to extract biological or pathological information. The latest generation of bioinformatics tools allows millions of DNA sequences to be accurately and rapidly assigned to their respective variable V and J gene segments, and to reconstruct an almost error-free representation of the non-templated additions and deletions that occur. High-level processing can measure the diversity of the repertoire in different samples, quantify V and J usage and identify private and public T-cell receptors. Finally, we discuss the major challenge of linking T-cell receptor sequence to function, and specifically to antigen recognition. Sophisticated machine learning algorithms are being developed that can combine the paradoxical degeneracy and cross-reactivity of individual T-cell receptors with the specificity of the overall T-cell immune response. Computational analysis will provide the key to unlock the potential of the T-cell receptor repertoire to give insight into the fundamental biology of the adaptive immune system and to provide powerful biomarkers of disease.
Collapse
Affiliation(s)
| | | | | | - Benny Chain
- Division of Infection and Immunity, University College of London, Bloomsbury, UK
| |
Collapse
|
48
|
Devulapally PR, Bürger J, Mielke T, Konthur Z, Lehrach H, Yaspo ML, Glökler J, Warnatz HJ. Simple paired heavy- and light-chain antibody repertoire sequencing using endoplasmic reticulum microsomes. Genome Med 2018; 10:34. [PMID: 29703216 PMCID: PMC5921987 DOI: 10.1186/s13073-018-0542-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 04/12/2018] [Indexed: 12/21/2022] Open
Abstract
Existing methods for paired antibody heavy- and light-chain repertoire sequencing rely on specialized equipment and are limited by their commercial availability and high costs. Here, we report a novel simple and cost-effective emulsion-based single-cell paired antibody repertoire sequencing method that employs only basic laboratory equipment. We performed a proof-of-concept using mixed mouse hybridoma cells and we also showed that our method can be used for discovery of novel antigen-specific monoclonal antibodies by sequencing human CD19+ B cell IgM and IgG repertoires isolated from peripheral whole blood before and seven days after Td (Tetanus toxoid/Diphtheria toxoid) booster immunization. We anticipate broad applicability of our method for providing insights into adaptive immune responses associated with various diseases, vaccinations, and cancer immunotherapies.
Collapse
Affiliation(s)
- Praneeth Reddy Devulapally
- Otto Warburg Laboratory Gene Regulation and Systems Biology of Cancer, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Jörg Bürger
- Microscopy and Cryo-Electron Microscopy Service Group, Max Planck Institute for Molecular Genetics, Berlin, Germany.,Institut für Medizinische Physik und Biophysik, Charité-Universitätsmedizin, Berlin, Germany
| | - Thorsten Mielke
- Microscopy and Cryo-Electron Microscopy Service Group, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Zoltán Konthur
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Hans Lehrach
- Alacris Theranostics GmbH, Berlin, Germany.,Dahlem Centre for Genome Research and Medical Systems Biology, Berlin, Germany
| | - Marie-Laure Yaspo
- Otto Warburg Laboratory Gene Regulation and Systems Biology of Cancer, Max Planck Institute for Molecular Genetics, Berlin, Germany.,Alacris Theranostics GmbH, Berlin, Germany
| | - Jörn Glökler
- Department of Molecular Biotechnology and Functional Genomics, Institute of Applied Biosciences, Technical University of Applied Sciences Wildau, Wildau, Brandenburg, Germany
| | - Hans-Jörg Warnatz
- Otto Warburg Laboratory Gene Regulation and Systems Biology of Cancer, Max Planck Institute for Molecular Genetics, Berlin, Germany.
| |
Collapse
|
49
|
Ou M, Zheng F, Zhang X, Liu S, Tang D, Zhu P, Qiu J, Dai Y. Integrated analysis of B‑cell and T‑cell receptors by high‑throughput sequencing reveals conserved repertoires in IgA nephropathy. Mol Med Rep 2018; 17:7027-7036. [PMID: 29568935 PMCID: PMC5928659 DOI: 10.3892/mmr.2018.8793] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 02/01/2018] [Indexed: 01/12/2023] Open
Abstract
Immunoglobulin A nephropathy (IgAN) is a type of glomerular disorder associated with immune dysregulation, and understanding B‑/T‑cell receptors (BCRs/TCRs) may be valuable for the development of specific immunotherapeutic interventions. In the present study, B and T cells were isolated from IgAN patients and healthy controls, and the composition of the BCR/TCR complementarity‑determining region (CDR)3 was analyzed by multiplex polymerase chain reaction, high‑throughput sequencing and bioinformatics. The present results revealed that the BCR/TCR CDR3 clones were expressed at very low frequencies, and the composition of clone types in patients with IgAN was skewed; the majority of clones were unique, and only 12 BCR and 228 TCR CDR3 clones were public ones, of which 16 were expressed at a significantly higher frequency in patients with IgAN (P<0.001). There were also certain conserved amino acid residues between unique clones or groups, and the residues GMDV, EQY and EQF were recurring only in the IgAN group. In addition, some VDJ gene recombinations indicated great variation between groups, including 4 high‑frequency VDJ gene recombinations in the IgAN patients (P<0.001). Immune repertoires provide novel information, and conserved BCR/TCR CDR3 clones and VDJ gene recombinations with great variation may be potential therapeutic targets for IgAN patients.
Collapse
Affiliation(s)
- Minglin Ou
- Clinical Medical Research Center of Second Clinical Medical College, Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| | - Fengping Zheng
- Clinical Medical Research Center of Second Clinical Medical College, Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| | - Xinzhou Zhang
- Clinical Medical Research Center of Second Clinical Medical College, Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| | - Song Liu
- Clinical Medical Research Center of Second Clinical Medical College, Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| | - Donge Tang
- Clinical Medical Research Center of Second Clinical Medical College, Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| | - Peng Zhu
- Lab Center of Shenzhen Pingshan People's Hospital, Shenzhen, Guangdong 518118, P.R. China
| | - Jingjun Qiu
- Lab Center of Shenzhen Pingshan People's Hospital, Shenzhen, Guangdong 518118, P.R. China
| | - Yong Dai
- Clinical Medical Research Center of Second Clinical Medical College, Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| |
Collapse
|
50
|
Abstract
Somatic assembly of T cell receptor and B cell receptor (BCR) genes produces a vast diversity of lymphocyte antigen recognition capacity. The advent of efficient high-throughput sequencing of lymphocyte antigen receptor genes has recently generated unprecedented opportunities for exploration of adaptive immune responses. With these opportunities have come significant challenges in understanding the analysis techniques that most accurately reflect underlying biological phenomena. In this regard, sample preparation and sequence analysis techniques, which have largely been borrowed and adapted from other fields, continue to evolve. Here, we review current methods and challenges of library preparation, sequencing and statistical analysis of lymphocyte receptor repertoire studies. We discuss the general steps in the process of immune repertoire generation including sample preparation, platforms available for sequencing, processing of sequencing data, measurable features of the immune repertoire, and the statistical tools that can be used for analysis and interpretation of the data. Because BCR analysis harbors additional complexities, such as immunoglobulin (Ig) (i.e., antibody) gene somatic hypermutation and class switch recombination, the emphasis of this review is on Ig/BCR sequence analysis.
Collapse
Affiliation(s)
- Neha Chaudhary
- Division of Rheumatology, Department of Medicine, Immunology and Allergy, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Duane R. Wesemann
- Division of Rheumatology, Department of Medicine, Immunology and Allergy, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|