1
|
Gigli M, Stolfo D, Merlo M, Sinagra G, Taylor MRG, Mestroni L. Pathophysiology of dilated cardiomyopathy: from mechanisms to precision medicine. Nat Rev Cardiol 2024:10.1038/s41569-024-01074-2. [PMID: 39394525 DOI: 10.1038/s41569-024-01074-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/20/2024] [Indexed: 10/13/2024]
Abstract
Dilated cardiomyopathy (DCM) is a complex disease with multiple causes and various pathogenic mechanisms. Despite improvements in the prognosis of patients with DCM in the past decade, this condition remains a leading cause of heart failure and premature death. Conventional treatment for DCM is based on the foundational therapies for heart failure with reduced ejection fraction. However, increasingly, attention is being directed towards individualized treatments and precision medicine. The ability to confirm genetic causality is gradually being complemented by an increased understanding of genotype-phenotype correlations. Non-genetic factors also influence the onset of DCM, and growing evidence links genetic background with concomitant non-genetic triggers or precipitating factors, increasing the extreme complexity of the pathophysiology of DCM. This Review covers the spectrum of pathophysiological mechanisms in DCM, from monogenic causes to the coexistence of genetic abnormalities and triggering environmental factors (the 'two-hit' hypothesis). The roles of common genetic variants in the general population and of gene modifiers in disease onset and progression are also discussed. Finally, areas for future research are highlighted, particularly novel therapies, such as small molecules, RNA and gene therapy, and measures for the prevention of arrhythmic death.
Collapse
Affiliation(s)
- Marta Gigli
- Cardiothoracovascular Department, Centre for Diagnosis and Treatment of Cardiomyopathies, European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart), Azienda Sanitaria Universitaria Giuliano-Isontina (ASUGI) and University of Trieste, Trieste, Italy
| | - Davide Stolfo
- Cardiothoracovascular Department, Centre for Diagnosis and Treatment of Cardiomyopathies, European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart), Azienda Sanitaria Universitaria Giuliano-Isontina (ASUGI) and University of Trieste, Trieste, Italy
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Marco Merlo
- Cardiothoracovascular Department, Centre for Diagnosis and Treatment of Cardiomyopathies, European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart), Azienda Sanitaria Universitaria Giuliano-Isontina (ASUGI) and University of Trieste, Trieste, Italy
| | - Gianfranco Sinagra
- Cardiothoracovascular Department, Centre for Diagnosis and Treatment of Cardiomyopathies, European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart), Azienda Sanitaria Universitaria Giuliano-Isontina (ASUGI) and University of Trieste, Trieste, Italy
| | - Matthew R G Taylor
- Adult Medical Genetics Program, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Luisa Mestroni
- Molecular Genetics Program, Cardiovascular Institute, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
2
|
Lazareva TE, Barbitoff YA, Nasykhova YA, Glotov AS. Major Causes of Conflicting Interpretations of Variant Pathogenicity in Rare Disease: A Systematic Analysis. J Pers Med 2024; 14:864. [PMID: 39202055 PMCID: PMC11355203 DOI: 10.3390/jpm14080864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/31/2024] [Accepted: 08/12/2024] [Indexed: 09/03/2024] Open
Abstract
The identification of the genetic causes of inherited disorders from next-generation sequencing (NGS) data remains a complicated process, in particular due to challenges in interpretation of the vast amount of generated data and hundreds of candidate variants identified. Inconsistencies in variant classification, where genetic centers classify the same variant differently, can hinder accurate diagnoses for rare diseases. Publicly available databases that collect data on human genetic variations and their association with diseases provide ample opportunities to discover conflicts in variant interpretation worldwide. In this study, we explored patterns of variant classification discrepancies using data from ClinVar, a public archive of variant interpretations. We found that 5.7% of variants have conflicting interpretations (COIs) reported, and the vast majority of interpretation conflicts arise for variants of uncertain significance (VUS). As many as 78% of clinically relevant genes harbor variants with COIs, and genes with high COI rates tended to have more exons and longer transcripts, with a greater proportion of genes linked to several distinct conditions. The enrichment analysis of COI-enriched genes revealed that the products of these genes are involved in cardiac disorders, muscle development, and function. To improve diagnoses, we believe that specific variant interpretation rules could be developed for such genes. Additionally, our findings underscore the need for the publication of variant pathogenicity evidence and the importance of considering every variant as VUS unless proven otherwise.
Collapse
Affiliation(s)
- Tatyana E. Lazareva
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynaecology, and Reproductology, Mendeleevskaya Line 3, 199034 St. Petersburg, Russia
| | - Yury A. Barbitoff
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynaecology, and Reproductology, Mendeleevskaya Line 3, 199034 St. Petersburg, Russia
- Bioinformatics Institute, Kantemirovskaya St. 2A, 197342 St. Petersburg, Russia
| | - Yulia A. Nasykhova
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynaecology, and Reproductology, Mendeleevskaya Line 3, 199034 St. Petersburg, Russia
| | - Andrey S. Glotov
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynaecology, and Reproductology, Mendeleevskaya Line 3, 199034 St. Petersburg, Russia
| |
Collapse
|
3
|
Lin L, Zhang Y, Pan H, Wang J, Qi Y, Ma Y. Inconsistencies between prenatal diagnostic and genetic testing laboratories on variant validation of rare monogenic diseases. Prenat Diagn 2024; 44:1053-1061. [PMID: 38898598 DOI: 10.1002/pd.6628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 05/14/2024] [Accepted: 06/10/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND The advent of next-generation sequencing (NGS) has enhanced the diagnostic efficacy for monogenic diseases, while presenting challenges in achieving consistent diagnoses. METHOD We retrospectively analyzed the concordance rate and reasons for the inconsistency between the original diagnostic result from the genetic testing laboratory and the variant validation result from the prenatal diagnostic center. The validation procedure comprised three stages: validation of variant detection, reevaluation of variant classification, and assessment of recurrence risk, which involved verifying the mode of inheritance and parental carriage. RESULT In total, 17 (6%) of the 286 families affected by rare monogenic diseases showed different results during the variant validation procedure. These cases comprised four (23.5%) with variant detection errors, 12 (70.5%) with inconsistent interpretation, and one (6%) with non-Mendelian inheritance patterns. False-positive NGS results confirmed by Sanger sequencing were related to pseudogenes and GC-rich regions. The classification of the 17 variants was altered in the 12 cases owing to various factors. The case with an atypical inheritance pattern was originally considered autosomal recessive inheritance, but was diagnosed as maternal uniparental disomy after additional genetic analysis. CONCLUSION We underscored the significance of variant validation by prenatal diagnostic centers. Families affected by monogenic diseases with reproductive plans should be referred to prenatal genetic centers as early as possible to avoid different results that may postpone subsequent prenatal diagnosis.
Collapse
Affiliation(s)
- Liling Lin
- Department of Central Laboratory, Peking University First Hospital, Beijing, China
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Beijing, China
| | - Ying Zhang
- Department of Central Laboratory, Peking University First Hospital, Beijing, China
| | - Hong Pan
- Department of Central Laboratory, Peking University First Hospital, Beijing, China
| | - Jingmin Wang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Yu Qi
- Department of Central Laboratory, Peking University First Hospital, Beijing, China
| | - Yinan Ma
- Department of Central Laboratory, Peking University First Hospital, Beijing, China
| |
Collapse
|
4
|
Hespe S, Gray B, Puranik R, Peters S, Sweeting J, Ingles J. The role of genetic testing in management and prognosis of individuals with inherited cardiomyopathies. Trends Cardiovasc Med 2024:S1050-1738(24)00053-7. [PMID: 39004295 DOI: 10.1016/j.tcm.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/23/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024]
Abstract
Inherited cardiomyopathies are a heterogeneous group of heart muscle conditions where disease classification has traditionally been based on clinical characteristics. However, this does not always align with genotype. While there are well described challenges of genetic testing, understanding the role of genotype in patient management is increasingly required. We take a gene-by-gene approach, reviewing current evidence for the role of genetic testing in guiding prognosis and management of individuals with inherited cardiomyopathies. In particular, focusing on causal variants in genes definitively associated with arrhythmogenic cardiomyopathy, dilated cardiomyopathy, and hypertrophic cardiomyopathy. This review identifies genotype-specific disease sub-groups with strong evidence supporting the use of genetics in clinical management and highlights that at present, the spectrum of clinical utility is not reflected in current guidelines. Of 13 guideline or expert consensus statements for management of cardiomyopathies, there are seven gene-specific therapeutic recommendations that have been published from four documents. Understanding how genotype influences phenotype provides evidence for the role of genetic testing for prognostic and therapeutic purposes, moving us closer to precision-medicine based care.
Collapse
Affiliation(s)
- Sophie Hespe
- Genomics and Inherited Disease Program, Garvan Institute of Medical Research, and UNSW Sydney, Sydney, Australia; Faculty of Medicine and Health, The University of Sydney, Australia
| | - Belinda Gray
- Faculty of Medicine and Health, The University of Sydney, Australia; Department of Cardiology, Royal Prince Alfred Hospital, Sydney, Australia
| | - Rajesh Puranik
- Faculty of Medicine and Health, The University of Sydney, Australia; Department of Cardiology, Royal Prince Alfred Hospital, Sydney, Australia
| | - Stacey Peters
- Department of Cardiology and Genomic Medicine, Royal Melbourne Hospital, Melbourne, Australia; Department of Medicine, University of Melbourne, Melbourne, Australia
| | - Joanna Sweeting
- Genomics and Inherited Disease Program, Garvan Institute of Medical Research, and UNSW Sydney, Sydney, Australia
| | - Jodie Ingles
- Genomics and Inherited Disease Program, Garvan Institute of Medical Research, and UNSW Sydney, Sydney, Australia; Faculty of Medicine and Health, The University of Sydney, Australia; Department of Cardiology, Royal Prince Alfred Hospital, Sydney, Australia.
| |
Collapse
|
5
|
Leung HT, Kwok SY, Kwong KY, Shih FY, Tsao S, Chung BHY. Prioritize Variant Reclassification in Pediatric Long QT Syndrome-Time to Revisit. Pediatr Cardiol 2024; 45:1023-1035. [PMID: 38565666 DOI: 10.1007/s00246-024-03461-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/26/2024] [Indexed: 04/04/2024]
Abstract
Congenital long QT syndrome (LQTS) is an inherited arrhythmia syndrome associated with sudden cardiac death. Accurate interpretation and classification of genetic variants in LQTS patients are crucial for effective management. All patients with LQTS with a positive genetic test over the past 18 years (2002-2020) in our single tertiary pediatric cardiac center were identified. Reevaluation of the reported variants in LQTS genes was conducted using the American College of Genetics and Genomics (ACMG) guideline after refinement by the US ClinGen SVI working group and guideline by Walsh et al. on genetic variant reclassification, under multidisciplinary input. Among the 59 variants identified. 18 variants (30.5%) were reclassified. A significant larger portion of variants of unknown significance (VUS) were reclassified compared to likely pathogenic (LP)/pathogenic (P) variants (57.7% vs 9.1%, p < 0.001). The rate of reclassification was significantly higher in the limited/disputed evidence group compared to the definite/moderate evidence group (p = 0.0006). All LP/P variants were downgraded in the limited/disputed evidence group (p = 0.0057). VUS upgrades are associated with VUS located in genes within the definite/moderate evidence group (p = 0.0403) and with VUS present in patients exhibiting higher corrected QT intervals (QTc) (p = 0.0445). A significant number of pediatric LQTS variants were reclassified, particularly for VUS. The strength of the gene-disease association of the genes influences the reclassification performance. The study provides important insights and guidance for pediatricians to seek for reclassification of "outdated variants" in order to facilitate contemporary precision medicine.
Collapse
Affiliation(s)
- Hei-To Leung
- Department of Paediatrics & Adolescent Medicine, Hong Kong Children's Hospital, 1 Shing Cheong Rd, Ngau Tau Kok, Hong Kong SAR, China
| | - Sit-Yee Kwok
- Department of Paediatrics & Adolescent Medicine, Hong Kong Children's Hospital, 1 Shing Cheong Rd, Ngau Tau Kok, Hong Kong SAR, China.
| | - Ka-Yee Kwong
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
| | - Fong-Ying Shih
- Clinical Genetics Service Unit, Hong Kong Children's Hospital, Kowloon Bay, Hong Kong SAR, China
| | - Sabrina Tsao
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
| | - Brian Hon-Yin Chung
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
| |
Collapse
|
6
|
Kwok SY, Kwong AKY, Shi JZ, Shih CFY, Lee M, Mak CCY, Chui M, Tsao S, Chung BHY. Whole genome sequencing in paediatric channelopathy and cardiomyopathy. Front Cardiovasc Med 2024; 11:1335527. [PMID: 38586174 PMCID: PMC10997036 DOI: 10.3389/fcvm.2024.1335527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/28/2024] [Indexed: 04/09/2024] Open
Abstract
Background Precision medicine in paediatric cardiac channelopathy and cardiomyopathy has a rapid advancement over the past years. Compared to conventional gene panel and exome-based testing, whole genome sequencing (WGS) offers additional coverage at the promoter, intronic regions and the mitochondrial genome. However, the data on use of WGS to evaluate the genetic cause of these cardiovascular conditions in children and adolescents are limited. Methods In a tertiary paediatric cardiology center, we recruited all patients diagnosed with cardiac channelopathy and cardiomyopathy between the ages of 0 and 18 years old, who had negative genetic findings with prior gene panel or exome-based testing. After genetic counselling, blood samples were collected from the subjects and both their parents for WGS analysis. Results A total of 31 patients (11 cardiac channelopathy and 20 cardiomyopathy) were recruited. Four intronic splice-site variants were identified in three cardiomyopathy patients, which were not identified in previous whole exome sequencing. These included a pathogenic variant in TAFAZZIN:c.284+5G>A (Barth syndrome), a variant of unknown significance (VUS) in MYBPC3:c.1224-80G>A and 2 compound heterozygous LP variants in LZTR1 (LZTR1:c.1943-256C>T and LZTR1:c1261-3C>G) in a patient with clinical features of RASopathy. There was an additional diagnostic yield of 1.94% using WGS for identification of intronic variants, on top of conventional gene testing. Conclusion WGS plays a role in identifying additional intronic splice-site variants in paediatric patients with isolated cardiomyopathy. With the demonstrated low extra yield of WGS albeit its ability to provide potential clinically important information, WGS should be considered in selected paediatric cases of cardiac channelopathy and cardiomyopathy in a cost-effective manner.
Collapse
Affiliation(s)
- Sit Yee Kwok
- Department of Paediatrics and Adolescent Medicine, Hong Kong Children’s Hospital, Hong Kong, Hong Kong SAR, China
| | - Anna Ka Yee Kwong
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Julia Zhuo Shi
- Department of Paediatrics and Adolescent Medicine, Hong Kong Children’s Hospital, Hong Kong, Hong Kong SAR, China
| | - Connie Fong Ying Shih
- Clinical Genetics Service Unit, Hong Kong Children’s Hospital, Hong Kong, Hong Kong SAR, China
| | - Mianne Lee
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Christopher C. Y. Mak
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Martin Chui
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Sabrina Tsao
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Brian Hon Yin Chung
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
7
|
Kurzlechner LM, Kishnani S, Chowdhury S, Atkins SL, Moya-Mendez ME, Parker LE, Rosamilia MB, Tadros HJ, Pace LA, Patel V, Chahal CAA, Landstrom AP. DiscoVari: A Web-Based Precision Medicine Tool for Predicting Variant Pathogenicity in Cardiomyopathy- and Channelopathy-Associated Genes. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2023; 16:317-327. [PMID: 37409478 PMCID: PMC10527712 DOI: 10.1161/circgen.122.003911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 05/30/2023] [Indexed: 07/07/2023]
Abstract
BACKGROUND With genetic testing advancements, the burden of incidentally identified cardiac disease-associated gene variants is rising. These variants may carry a risk of sudden cardiac death, highlighting the need for accurate diagnostic interpretation. We sought to identify pathogenic hotspots in sudden cardiac death-associated genes using amino acid-level signal-to-noise (S:N) analysis and develop a web-based precision medicine tool, DiscoVari, to improve variant evaluation. METHODS The minor allele frequency of putatively pathogenic variants was derived from cohort-based cardiomyopathy and channelopathy studies in the literature. We normalized disease-associated minor allele frequencies to rare variants in an ostensibly healthy population (Genome Aggregation Database) to calculate amino acid-level S:N. Amino acids with S:N above the gene-specific threshold were defined as hotspots. DiscoVari was built using JavaScript ES6 and using open-source JavaScript library ReactJS, web development framework Next.js, and JavaScript runtime NodeJS. We validated the ability of DiscoVari to identify pathogenic variants using variants from ClinVar and individuals clinically evaluated at the Duke University Hospitals with cardiac genetic testing. RESULTS We developed DiscoVari as an internet-based tool for S:N-based variant hotspots. Upon validation, a higher proportion of ClinVar likely pathogenic/pathogenic variants localized to DiscoVari hotspots (43.1%) than likely benign/benign variants (17.8%; P<0.0001). Further, 75.3% of ClinVar variants reclassified to likely pathogenic/pathogenic were in hotspots, compared with 41.3% of those reclassified as variants of uncertain significance (P<0.0001) and 23.4% of those reclassified as likely benign/benign (P<0.0001). Of the clinical cohort variants, 73.1% of likely pathogenic/pathogenic were in hotspots, compared with 0.0% of likely benign/benign (P<0.01). CONCLUSIONS DiscoVari reliably identifies disease-susceptible amino acid residues to evaluate variants by searching amino acid-specific S:N ratios.
Collapse
Affiliation(s)
| | - Sujata Kishnani
- Dept of Pediatrics, Division of Pediatric Cardiology, Durham, NC
| | - Shawon Chowdhury
- Dept of Pediatrics, Division of Pediatric Cardiology, Durham, NC
| | - Sage L. Atkins
- Dept of Pediatrics, Division of Pediatric Cardiology, Durham, NC
| | | | - Lauren E. Parker
- Dept of Pediatrics, Division of Pediatric Cardiology, Durham, NC
| | | | - Hanna J. Tadros
- Dept of Pediatrics, Section of Pediatric Cardiology, Baylor College of Medicine, Houston, TX
| | - Leslie A. Pace
- Dept of Pediatrics, Division of Pediatric Cardiology, Durham, NC
| | - Viraj Patel
- North West Thames Regional Genetics Service, St Mark’s Hospital, London, United Kingdom
| | - C. Anwar A. Chahal
- Center for Inherited Cardiovascular Diseases, WellSpan Health, Lancaster, PA
- Barts Heart Centre, St Bartholomew’s Hospital, Barts Health NHS Trust, London, United Kingdom
- Cardiac Electrophysiology, Cardiovascular Division, Hospital of the Univ of Pennsylvania, Philadelphia, PA
- Dept of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
| | - Andrew P. Landstrom
- Dept of Pediatrics, Division of Pediatric Cardiology, Durham, NC
- Dept of Cell Biology, Duke Univ School of Medicine, Durham, NC
| |
Collapse
|
8
|
Zukin E, Culver JO, Liu Y, Yang Y, Ricker CN, Hodan R, Sturgeon D, Kingham K, Chun NM, Rowe-Teeter C, Singh K, Zell JA, Ladabaum U, McDonnell KJ, Ford JM, Parmigiani G, Braun D, Kurian AW, Gruber SB, Idos GE. Clinical implications of conflicting variant interpretations in the cancer genetics clinic. Genet Med 2023; 25:100837. [PMID: 37057674 PMCID: PMC10416421 DOI: 10.1016/j.gim.2023.100837] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 04/15/2023] Open
Abstract
PURPOSE The aim of this study was to describe the clinical impact of commercial laboratories issuing conflicting classifications of genetic variants. METHODS Results from 2000 patients undergoing a multigene hereditary cancer panel by a single laboratory were analyzed. Clinically significant discrepancies between the laboratory-provided test reports and other major commercial laboratories were identified, including differences between pathogenic/likely pathogenic and variant of uncertain significance (VUS) classifications, via review of ClinVar archives. For patients carrying a VUS, clinical documentation was assessed for evidence of provider awareness of the conflict. RESULTS Fifty of 975 (5.1%) patients with non-negative results carried a variant with a clinically significant conflict, 19 with a pathogenic/likely pathogenic variant reported in APC or MUTYH, and 31 with a VUS reported in CDKN2A, CHEK2, MLH1, MSH2, MUTYH, RAD51C, or TP53. Only 10 of 28 (36%) patients with a VUS with a clinically significant conflict had a documented discussion by a provider about the conflict. Discrepant counseling strategies were used for different patients with the same variant. Among patients with a CDKN2A variant or a monoallelic MUTYH variant, providers were significantly more likely to make recommendations based on the laboratory-reported classification. CONCLUSION Our findings highlight the frequency of variant interpretation discrepancies and importance of clinician awareness. Guidance is needed on managing patients with discrepant variants to support accurate risk assessment.
Collapse
Affiliation(s)
- Elyssa Zukin
- City of Hope National Medical Center, Center for Precision Medicine, Duarte, CA; University of California, Irvine, Irvine, CA
| | - Julie O Culver
- University of Southern California, Keck School of Medicine, Los Angeles, CA
| | - Yuxi Liu
- Dana-Farber Cancer Institute, Boston, MA; Harvard T.H. Chan School of Public Health, Boston, MA
| | - Yunqi Yang
- Dana-Farber Cancer Institute, Boston, MA
| | - Charité N Ricker
- University of Southern California, Keck School of Medicine, Los Angeles, CA
| | - Rachel Hodan
- Stanford University School of Medicine, Stanford, CA
| | - Duveen Sturgeon
- City of Hope National Medical Center, Center for Precision Medicine, Duarte, CA
| | - Kerry Kingham
- Stanford University School of Medicine, Stanford, CA
| | | | | | | | | | - Uri Ladabaum
- Stanford University School of Medicine, Stanford, CA
| | - Kevin J McDonnell
- City of Hope National Medical Center, Center for Precision Medicine, Duarte, CA
| | - James M Ford
- Stanford University School of Medicine, Stanford, CA
| | - Giovanni Parmigiani
- Dana-Farber Cancer Institute, Boston, MA; Harvard T.H. Chan School of Public Health, Boston, MA
| | - Danielle Braun
- Dana-Farber Cancer Institute, Boston, MA; Harvard T.H. Chan School of Public Health, Boston, MA
| | | | - Stephen B Gruber
- City of Hope National Medical Center, Center for Precision Medicine, Duarte, CA
| | - Gregory E Idos
- City of Hope National Medical Center, Center for Precision Medicine, Duarte, CA.
| |
Collapse
|
9
|
Morales A, Goehringer J, Sanoudou D. Evolving cardiovascular genetic counseling needs in the era of precision medicine. Front Cardiovasc Med 2023; 10:1161029. [PMID: 37424912 PMCID: PMC10325680 DOI: 10.3389/fcvm.2023.1161029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/05/2023] [Indexed: 07/11/2023] Open
Abstract
In the era of Precision Medicine the approach to disease diagnosis, treatment, and prevention is being transformed across medical specialties, including Cardiology, and increasingly involves genomics approaches. The American Heart Association endorses genetic counseling as an essential component in the successful delivery of cardiovascular genetics care. However, with the dramatic increase in the number of available cardiogenetic tests, the demand, and the test result complexity, there is a need not only for a greater number of genetic counselors but more importantly, for highly specialized cardiovascular genetic counselors. Consequently, there is a pressing need for advanced cardiovascular genetic counseling training, along with innovative online services, telemedicine, and patient-facing digital tools, as the most effective way forward. The speed of implementation of these reforms will be of essence in the translation of scientific advancements into measurable benefits for patients with heritable cardiovascular disease and their families.
Collapse
Affiliation(s)
- Ana Morales
- Translational Health Sciences Program, School of Medicine and Health Sciences, The George Washington University, Washington, DC, United States
| | | | - Despina Sanoudou
- Clinical Genomics and Pharmacogenomics Unit, 4th Department of Internal Medicine, ‘Attikon’ Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Molecular Biology Division, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| |
Collapse
|
10
|
Lahiri S, Reys B, Wunder J, Pirzadeh-Miller S. Genetic variants with discordant classifications: An assessment of genetic counselor attitudes and practices. J Genet Couns 2023; 32:100-110. [PMID: 35978490 DOI: 10.1002/jgc4.1626] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 07/22/2022] [Accepted: 07/27/2022] [Indexed: 11/11/2022]
Abstract
Discordant variant classifications (DVCs) can impact patient care and pose challenges for clinicians. A survey-based study was conducted to examine genetic counselor (GC) attitudes and practices related to DVCs. Most GCs (202/229, 88%) in the study provide direct patient care across clinical specialties; review patients' genetic test results to determine if reported genetic variants have DVCs (176/202, 88%); and inform patients of known DVCs that impact medical management (165/202, 82%). DVC review, which takes 41 min (range: 5-240) on average per week, is typically prompted by the identification of a variant of uncertain significance (VUS) (160/176, 90%) and is primarily conducted using public databases (176/176, 100%). While most GCs felt it would not be ethical to knowingly provide different medical management recommendations to patients with the same genetic variant (152/229, 66%), they also stated they would rely on the variant classification on the test report (141/229, 61%) and/or the patient's personal/family history (188/229, 82%) to determine which classification to follow if a DVC is identified. Both factors are patient-specific and, inherently, could lead to differing recommendations. When posed with a hypothetical scenario in which two patients have the same genetic variant, but test reports show a DVC (pathogenic vs VUS), most GCs (179/229, 78.2%) stated they would make the same recommendation for both patients regardless of management guidelines. One-third (52/179, 29.1%) cited patient-specific factors, such as personal/family history, would impact their recommendations. Disagreements about whether the pathogenic or VUS classification should be used to make medical management recommendations were noted. Differing practices and opinions on how to manage patients with DVCs, as well as the fact that most GCs (209/229, 91.3%) have consulted with colleagues on this matter, highlight the need for more professional guidance to ensure equitable patient care.
Collapse
Affiliation(s)
- Sayoni Lahiri
- Cancer Genetics Program, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Brian Reys
- Cancer Genetics Program, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Julia Wunder
- Oncology-Abstraction, Tempus Labs, Inc., Chicago, Illinois, USA
| | | |
Collapse
|
11
|
"We've Opened Pandora's Box, Haven't We?" Clinical Geneticists' Views on Ethical Aspects of Genomic Testing in Neonatal Intensive Care. Balkan J Med Genet 2022; 25:5-12. [PMID: 36880043 PMCID: PMC9985353 DOI: 10.2478/bjmg-2022-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
The increasing use of genomic testing in neonatal intensive care units (NICU) gives rise to ethical issues. Yet little is known regarding what health professionals implementing the testing think about its ethical aspects. We therefore explored the views of Australian clinical geneticists towards ethical issues in the use of genomic testing in the Neonatal Intensive care Unit (NICU). Semi-structured interviews with 11 clinical geneticists were conducted, transcribed and analysed thematically. Four themes were identified: 1) Consent: the craft is in the conversation, which encapsulated the challenges in the consent process, and with pre-test counseling; 2) Whose autonomy and who decides? This illustrates the balancing of clinical utility and potentially harms the test, and how stakeholder interests are balanced; 3) The winds of change and ethical disruption, recognizing that while professional expertise is vital to clinical decision-making and oversight of mainstreaming, participants also expressed concern over the size of the genetics workforce and 4). Finding Solutions - the resources and mechanisms to prevent and resolve ethical dilemmas when they arise, such as quality genetic counseling, working as a team and drawing on external ethics and legal expertise. The findings highlight the ethical complexities associated with genomic testing in the NICU. They suggest the need for a workforce that has the necessary support and skills to navigate the ethical terrain, drawing on relevant ethical concepts and guidelines to balance the interests of neonates, their careers and health professionals.
Collapse
|
12
|
Berrios C, Hurley EA, Willig L, Thiffault I, Saunders C, Pastinen T, Goggin K, Farrow E. Challenges in genetic testing: clinician variant interpretation processes and the impact on clinical care. Genet Med 2021; 23:2289-2299. [PMID: 34257423 DOI: 10.1038/s41436-021-01267-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 01/24/2023] Open
Abstract
PURPOSE Efforts have been made to standardize laboratory variant interpretation, but clinicians are ultimately tasked with clinical correlation and application of genetic test results in patient care. This study aimed to explore processes clinicians utilize when reviewing and returning genetic test results, and how they impact patient care. METHODS Medical geneticists, genetic counselors, and nongenetics clinicians from two Midwestern states completed surveys (n = 98) and in-depth interviews (n = 29) on practices of reviewing and returning genetic test results. Retrospective chart review (n = 130) examined discordant interpretations and the impact on care. RESULTS Participants reported variable behaviors in both reviewing and returning results based on factors such as confidence, view of role, practice setting, and relationship with the lab. Providers did not report requesting changes to variant classifications from laboratories, but indicated relaying conflicting classifications to patients in some cases. Chart reviews revealed medically impactful differences in interpretation between laboratories and clinicians in 18 (13.8%) records. CONCLUSION Clinician practices for reviewing and integrating genetic test results into patient care vary within and between specialties and impact patient care. Strategies to better incorporate both laboratory and clinician expertise into interpretation of genetic results could result in improved care across providers and settings.
Collapse
Affiliation(s)
- Courtney Berrios
- Genomic Medicine Center, Children's Mercy Hospital, Kansas City, MO, USA. .,University of Missouri Kansas City School of Medicine, Kansas City, MO, USA.
| | - Emily A Hurley
- University of Missouri Kansas City School of Medicine, Kansas City, MO, USA.,Health Services and Outcomes Research, Children's Mercy Hospital, Kansas City, MO, USA.,University of Kansas Medical Center, Kansas City, MO, USA
| | - Laurel Willig
- Genomic Medicine Center, Children's Mercy Hospital, Kansas City, MO, USA.,University of Missouri Kansas City School of Medicine, Kansas City, MO, USA.,Nephrology, Children's Mercy Hospital, Kansas City, MO, USA
| | - Isabelle Thiffault
- Genomic Medicine Center, Children's Mercy Hospital, Kansas City, MO, USA.,University of Missouri Kansas City School of Medicine, Kansas City, MO, USA.,Department of Pathology and Laboratory Medicine, Children's Mercy Hospital, Kansas City, MO, USA
| | - Carol Saunders
- Genomic Medicine Center, Children's Mercy Hospital, Kansas City, MO, USA.,University of Missouri Kansas City School of Medicine, Kansas City, MO, USA.,Department of Pathology and Laboratory Medicine, Children's Mercy Hospital, Kansas City, MO, USA
| | - Tomi Pastinen
- Genomic Medicine Center, Children's Mercy Hospital, Kansas City, MO, USA.,University of Missouri Kansas City School of Medicine, Kansas City, MO, USA.,Pediatrics, Children's Mercy Hospital, Kansas City, MO, USA
| | - Kathy Goggin
- University of Missouri Kansas City School of Medicine, Kansas City, MO, USA.,Health Services and Outcomes Research, Children's Mercy Hospital, Kansas City, MO, USA.,University of Missouri Kansas City School of Pharmacy, Kansas City, MO, USA
| | - Emily Farrow
- Genomic Medicine Center, Children's Mercy Hospital, Kansas City, MO, USA.,University of Missouri Kansas City School of Medicine, Kansas City, MO, USA.,Pediatrics, Children's Mercy Hospital, Kansas City, MO, USA
| |
Collapse
|
13
|
Stiles MK, Wilde AAM, Abrams DJ, Ackerman MJ, Albert CM, Behr ER, Chugh SS, Cornel MC, Gardner K, Ingles J, James CA, Juang JMJ, Kääb S, Kaufman ES, Krahn AD, Lubitz SA, MacLeod H, Morillo CA, Nademanee K, Probst V, Saarel EV, Sacilotto L, Semsarian C, Sheppard MN, Shimizu W, Skinner JR, Tfelt-Hansen J, Wang DW. 2020 APHRS/HRS expert consensus statement on the investigation of decedents with sudden unexplained death and patients with sudden cardiac arrest, and of their families. J Arrhythm 2021; 37:481-534. [PMID: 34141003 PMCID: PMC8207384 DOI: 10.1002/joa3.12449] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 10/14/2020] [Indexed: 12/26/2022] Open
Abstract
This international multidisciplinary document intends to provide clinicians with evidence-based practical patient-centered recommendations for evaluating patients and decedents with (aborted) sudden cardiac arrest and their families. The document includes a framework for the investigation of the family allowing steps to be taken, should an inherited condition be found, to minimize further events in affected relatives. Integral to the process is counseling of the patients and families, not only because of the emotionally charged subject, but because finding (or not finding) the cause of the arrest may influence management of family members. The formation of multidisciplinary teams is essential to provide a complete service to the patients and their families, and the varied expertise of the writing committee was formulated to reflect this need. The document sections were divided up and drafted by the writing committee members according to their expertise. The recommendations represent the consensus opinion of the entire writing committee, graded by Class of Recommendation and Level of Evidence. The recommendations were opened for public comment and reviewed by the relevant scientific and clinical document committees of the Asia Pacific Heart Rhythm Society (APHRS) and the Heart Rhythm Society (HRS); the document underwent external review and endorsement by the partner and collaborating societies. While the recommendations are for optimal care, it is recognized that not all resources will be available to all clinicians. Nevertheless, this document articulates the evaluation that the clinician should aspire to provide for patients with sudden cardiac arrest, decedents with sudden unexplained death, and their families.
Collapse
Affiliation(s)
- Martin K Stiles
- Waikato Clinical School Faculty of Medicine and Health Science The University of Auckland Hamilton New Zealand
| | - Arthur A M Wilde
- Heart Center Department of Clinical and Experimental Cardiology Amsterdam University Medical Center University of Amsterdam Amsterdam the Netherlands
| | | | | | | | - Elijah R Behr
- Cardiovascular Clinical Academic Group, Molecular and Clinical Sciences Institute St George's University of London, and St George's University Hospitals NHS Foundation Trust London UK
| | | | - Martina C Cornel
- Amsterdam University Medical Center Vrije Universiteit Amsterdam Clinical Genetics Amsterdam Public Health Research Institute Amsterdam the Netherlands
| | | | - Jodie Ingles
- Agnes Ginges Centre for Molecular Cardiology at Centenary Institute The University of Sydney Sydney Australia
| | | | - Jyh-Ming Jimmy Juang
- Cardiovascular Center and Division of Cardiology Department of Internal Medicine National Taiwan University Hospital and National Taiwan University College of Medicine Taipei Taiwan
| | - Stefan Kääb
- Department of Medicine I University Hospital LMU Munich Munich Germany
| | | | | | | | - Heather MacLeod
- Data Coordinating Center for the Sudden Death in the Young Case Registry Okemos MI USA
| | | | - Koonlawee Nademanee
- Chulalongkorn University Faculty of Medicine, and Pacific Rim Electrophysiology Research Institute at Bumrungrad Hospital Bangkok Thailand
| | | | - Elizabeth V Saarel
- Cleveland Clinic Lerner College of Cardiology at Case Western Reserve University Cleveland OH USA
- St Luke's Medical Center Boise ID USA
| | - Luciana Sacilotto
- Heart Institute University of São Paulo Medical School São Paulo Brazil
| | - Christopher Semsarian
- Agnes Ginges Centre for Molecular Cardiology at Centenary Institute The University of Sydney Sydney Australia
| | - Mary N Sheppard
- Cardiovascular Clinical Academic Group, Molecular and Clinical Sciences Institute St George's University of London, and St George's University Hospitals NHS Foundation Trust London UK
| | - Wataru Shimizu
- Department of Cardiovascular Medicine Nippon Medical School Tokyo Japan
| | | | - Jacob Tfelt-Hansen
- Department of Forensic Medicine Faculty of Medical Sciences Rigshospitalet Copenhagen Denmark
| | - Dao Wu Wang
- The First Affiliated Hospital of Nanjing Medical University Nanjing China
| |
Collapse
|
14
|
Davies B, Bartels K, Hathaway J, Xu F, Roberts JD, Tadros R, Green MS, Healey JS, Simpson CS, Sanatani S, Steinberg C, Gardner M, Angaran P, Talajic M, Hamilton R, Arbour L, Seifer C, Fournier A, Joza J, Krahn AD, Lehman A, Laksman ZWM. Variant Reinterpretation in Survivors of Cardiac Arrest With Preserved Ejection Fraction (the Cardiac Arrest Survivors With Preserved Ejection Fraction Registry) by Clinicians and Clinical Commercial Laboratories. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2021; 14:e003235. [PMID: 33960826 DOI: 10.1161/circgen.120.003235] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Following an unexplained cardiac arrest, clinical genetic testing is increasingly becoming standard of care. Periodic review of variant classification is required, as reinterpretation can change the diagnosis, prognosis, and management of patients and their relatives. METHODS This study aimed to develop and validate a standardized algorithm to facilitate clinical application of the 2015 American College of Medical Genetics and Association for Molecular Pathology guidelines for the interpretation of genetic variants. The algorithm was applied to genetic results in the Cardiac Arrest Survivors With Preserved Ejection Fraction Registry, to assess the rate of variant reclassification over time. Variant classifications were then compared with the classifications of 2 commercial laboratories to determine the rate and identify sources of variant interpretation discordance. RESULTS Thirty-one percent of participants (40 of 131) had at least 1 genetic variant with a clinically significant reclassification over time. Variants of uncertain significance were more likely to be downgraded (73%) to benign than upgraded to pathogenic (27%; P=0.03). For the second part of the study, 50% (70 of 139) of variants had discrepant interpretations (excluding benign variants), provided by at least 1 team. CONCLUSIONS Periodic review of genetic variant classification is a key component of follow-up care given rapidly changing information in the field. There is potential for clinical care gaps with discrepant variant interpretations, based on the interpretation and application of current guidelines. The development of gene- and disease-specific guidelines and algorithms may provide an opportunity to further standardize variant interpretation reporting in the future. Registration: URL: https://www.clinicaltrials.gov; Unique identifier: NCT00292032.
Collapse
Affiliation(s)
- Brianna Davies
- Division of Cardiology, Department of Medicine (B.D., K.B., A.D.K., Z.W.M.L.), The University of British Columbia, Vancouver, Canada
| | - Kirsten Bartels
- Division of Cardiology, Department of Medicine (B.D., K.B., A.D.K., Z.W.M.L.), The University of British Columbia, Vancouver, Canada
| | | | - Fang Xu
- Prevention Genetics, Marshfield, WI (F.X.)
| | - Jason D Roberts
- Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, Western University, London, Ontario (J.D.R.)
| | - Rafik Tadros
- Department of Medicine, Cardiovascular Genetics Center, Montreal Heart Institute, Canada (R.T., M.T.)
| | | | | | | | | | - Christian Steinberg
- Institut Universitaire de Cardiologie et Pneumologie de Québec, Laval University (C. Steinberg)
| | | | - Paul Angaran
- St. Michael's Hospital, University of Toronto, Canada (P.A.)
| | - Mario Talajic
- Department of Medicine, Cardiovascular Genetics Center, Montreal Heart Institute, Canada (R.T., M.T.)
| | - Robert Hamilton
- hTe Hospital for Sick Children (SickKids), Toronto, Canada (R.H.)
| | - Laura Arbour
- Division of Medical Genetics, Island Health, Victoria, Canada (L.A.)
| | - Colette Seifer
- Section of Cardiology, Department of Internal Medicine, University of Manitoba, Winnipeg, Canada (C. Seifer)
| | - Anne Fournier
- Division of Pediatric Cardiology, CHU Sainte-Justine, Université de Montréal, QC (A.F.)
| | - Jacqueline Joza
- Division of Cardiology, McGill University Health Center, Montreal, Canada (J.J.)
| | - Andrew D Krahn
- Division of Cardiology, Department of Medicine (B.D., K.B., A.D.K., Z.W.M.L.), The University of British Columbia, Vancouver, Canada
| | - Anna Lehman
- Department of Medical Genetics (A.L.), The University of British Columbia, Vancouver, Canada
| | - Zachary W M Laksman
- Division of Cardiology, Department of Medicine (B.D., K.B., A.D.K., Z.W.M.L.), The University of British Columbia, Vancouver, Canada
| |
Collapse
|
15
|
Detection of a DNA Methylation Signature for the Intellectual Developmental Disorder, X-Linked, Syndromic, Armfield Type. Int J Mol Sci 2021; 22:ijms22031111. [PMID: 33498634 PMCID: PMC7865843 DOI: 10.3390/ijms22031111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 12/19/2022] Open
Abstract
A growing number of genetic neurodevelopmental disorders are known to be associated with unique genomic DNA methylation patterns, called episignatures, which are detectable in peripheral blood. The intellectual developmental disorder, X-linked, syndromic, Armfield type (MRXSA) is caused by missense variants in FAM50A. Functional studies revealed the pathogenesis to be a spliceosomopathy that is characterized by atypical mRNA processing during development. In this study, we assessed the peripheral blood specimens in a cohort of individuals with MRXSA and detected a unique and highly specific DNA methylation episignature associated with this disorder. We used this episignature to construct a support vector machine model capable of sensitive and specific identification of individuals with pathogenic variants in FAM50A. This study contributes to the expanding number of genetic neurodevelopmental disorders with defined DNA methylation episignatures, provides an additional understanding of the associated molecular mechanisms, and further enhances our ability to diagnose patients with rare disorders.
Collapse
|
16
|
Stiles MK, Wilde AAM, Abrams DJ, Ackerman MJ, Albert CM, Behr ER, Chugh SS, Cornel MC, Gardner K, Ingles J, James CA, Jimmy Juang JM, Kääb S, Kaufman ES, Krahn AD, Lubitz SA, MacLeod H, Morillo CA, Nademanee K, Probst V, Saarel EV, Sacilotto L, Semsarian C, Sheppard MN, Shimizu W, Skinner JR, Tfelt-Hansen J, Wang DW. 2020 APHRS/HRS expert consensus statement on the investigation of decedents with sudden unexplained death and patients with sudden cardiac arrest, and of their families. Heart Rhythm 2021; 18:e1-e50. [PMID: 33091602 PMCID: PMC8194370 DOI: 10.1016/j.hrthm.2020.10.010] [Citation(s) in RCA: 147] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 10/09/2020] [Indexed: 12/13/2022]
Abstract
This international multidisciplinary document intends to provide clinicians with evidence-based practical patient-centered recommendations for evaluating patients and decedents with (aborted) sudden cardiac arrest and their families. The document includes a framework for the investigation of the family allowing steps to be taken, should an inherited condition be found, to minimize further events in affected relatives. Integral to the process is counseling of the patients and families, not only because of the emotionally charged subject, but because finding (or not finding) the cause of the arrest may influence management of family members. The formation of multidisciplinary teams is essential to provide a complete service to the patients and their families, and the varied expertise of the writing committee was formulated to reflect this need. The document sections were divided up and drafted by the writing committee members according to their expertise. The recommendations represent the consensus opinion of the entire writing committee, graded by Class of Recommendation and Level of Evidence. The recommendations were opened for public comment and reviewed by the relevant scientific and clinical document committees of the Asia Pacific Heart Rhythm Society (APHRS) and the Heart Rhythm Society (HRS); the document underwent external review and endorsement by the partner and collaborating societies. While the recommendations are for optimal care, it is recognized that not all resources will be available to all clinicians. Nevertheless, this document articulates the evaluation that the clinician should aspire to provide for patients with sudden cardiac arrest, decedents with sudden unexplained death, and their families.
Collapse
Affiliation(s)
- Martin K Stiles
- Waikato Clinical School, Faculty of Medicine and Health Science, The University of Auckland, Hamilton, New Zealand
| | - Arthur A M Wilde
- Amsterdam University Medical Center, University of Amsterdam, Heart Center, Department of Clinical and Experimental Cardiology, Amsterdam, the Netherlands
| | | | | | | | - Elijah R Behr
- Cardiovascular Clinical Academic Group, Molecular and Clinical Sciences Institute, St George's, University of London, and St George's University Hospitals NHS Foundation Trust, London, United Kingdom
| | - Sumeet S Chugh
- Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Martina C Cornel
- Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Clinical Genetics, Amsterdam Public Health Research Institute, Amsterdam, the Netherlands
| | | | - Jodie Ingles
- Agnes Ginges Centre for Molecular Cardiology at Centenary Institute, The University of Sydney, Sydney, Australia
| | | | - Jyh-Ming Jimmy Juang
- Cardiovascular Center and Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Stefan Kääb
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany
| | | | - Andrew D Krahn
- The University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Heather MacLeod
- Data Coordinating Center for the Sudden Death in the Young Case Registry, Okemos, Michigan, USA
| | | | - Koonlawee Nademanee
- Chulalongkorn University, Faculty of Medicine, and Pacific Rim Electrophysiology Research Institute at Bumrungrad Hospital, Bangkok, Thailand
| | | | - Elizabeth V Saarel
- Cleveland Clinic Lerner College of Cardiology at Case Western Reserve University, Cleveland, Ohio, and St Luke's Medical Center, Boise, Idaho, USA
| | - Luciana Sacilotto
- Heart Institute, University of São Paulo Medical School, São Paulo, Brazil
| | - Christopher Semsarian
- Agnes Ginges Centre for Molecular Cardiology at Centenary Institute, The University of Sydney, Sydney, Australia
| | - Mary N Sheppard
- Cardiovascular Clinical Academic Group, Molecular and Clinical Sciences Institute, St George's, University of London, and St George's University Hospitals NHS Foundation Trust, London, United Kingdom
| | - Wataru Shimizu
- Department of Cardiovascular Medicine, Nippon Medical School, Tokyo, Japan
| | - Jonathan R Skinner
- Cardiac Inherited Disease Group, Starship Hospital, Auckland, New Zealand
| | - Jacob Tfelt-Hansen
- Department of Forensic Medicine, Faculty of Medical Sciences, Rigshospitalet, Copenhagen, Denmark
| | - Dao Wu Wang
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
17
|
Zheng J, Xu X, Zhang X, Wang X, Shu J, Cai C. Variants of CAPN3 cause limb-girdle muscular dystrophy type 2A in two Chinese families. Exp Ther Med 2020; 21:104. [PMID: 33335567 PMCID: PMC7739812 DOI: 10.3892/etm.2020.9536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 10/26/2020] [Indexed: 11/11/2022] Open
Abstract
Limb-girdle muscular dystrophies (LGMDs) are a group of neuromuscular diseases that are characterized by progressive muscle weakness. LGMD type 2A (LGMD2A), caused by variants in the calpain-3 (CAPN3) gene, is the most prevalent type. The present study aimed to analyze pathogenic CAPN3 gene variants in two pedigrees affected by LGMD2A. Each family contains three patients who are siblings and sought genetic counseling. Genomic DNA was extracted from the peripheral blood samples collected from the probands and family members and whole-exome sequencing (WES) was used to detect the pathogenic genes in the probands. Suspected variants were subsequently validated by Sanger sequencing. In family 1, WES revealed that the proband carried the compound heterogeneous variants c.1194-9A>G and c.1437C>T (p.Ser479=) in CAPN3 (NM_000070.2). In family 2, WES identified that the proband carried the compound heterogeneous variants c.632+4A>G and c.1468C>T (p.Arg490Trp) in CAPN3 (NM_000070.2). In conclusion, the present study indicated that the compound heterogeneous variants of the CAPN3 gene were most likely responsible for LGMD2A in the two Chinese families.
Collapse
Affiliation(s)
- Jie Zheng
- Graduate College, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Xiaowei Xu
- Tianjin Pediatric Research Institute, Tianjin Children's Hospital (Children's Hospital of Tianjin University), Tianjin 300134, P.R. China.,Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin 300134, P.R. China
| | - Xinjie Zhang
- Tianjin Pediatric Research Institute, Tianjin Children's Hospital (Children's Hospital of Tianjin University), Tianjin 300134, P.R. China.,Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin 300134, P.R. China
| | - Xuetao Wang
- Tianjin Pediatric Research Institute, Tianjin Children's Hospital (Children's Hospital of Tianjin University), Tianjin 300134, P.R. China.,Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin 300134, P.R. China
| | - Jianbo Shu
- Tianjin Pediatric Research Institute, Tianjin Children's Hospital (Children's Hospital of Tianjin University), Tianjin 300134, P.R. China.,Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin 300134, P.R. China
| | - Chunquan Cai
- Tianjin Pediatric Research Institute, Tianjin Children's Hospital (Children's Hospital of Tianjin University), Tianjin 300134, P.R. China.,Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin 300134, P.R. China.,Department of Neurosurgery, Tianjin Children's Hospital, Tianjin 300134, P.R. China
| |
Collapse
|
18
|
Amendola LM, Muenzen K, Biesecker LG, Bowling KM, Cooper GM, Dorschner MO, Driscoll C, Foreman AKM, Golden-Grant K, Greally JM, Hindorff L, Kanavy D, Jobanputra V, Johnston JJ, Kenny EE, McNulty S, Murali P, Ou J, Powell BC, Rehm HL, Rolf B, Roman TS, Van Ziffle J, Guha S, Abhyankar A, Crosslin D, Venner E, Yuan B, Zouk H, Jarvik GP, Jarvik GP. Variant Classification Concordance using the ACMG-AMP Variant Interpretation Guidelines across Nine Genomic Implementation Research Studies. Am J Hum Genet 2020; 107:932-941. [PMID: 33108757 DOI: 10.1016/j.ajhg.2020.09.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/29/2020] [Indexed: 12/31/2022] Open
Abstract
Harmonization of variant pathogenicity classification across laboratories is important for advancing clinical genomics. The two CLIA-accredited Electronic Medical Record and Genomics Network sequencing centers and the six CLIA-accredited laboratories and one research laboratory performing genome or exome sequencing in the Clinical Sequencing Evidence-Generating Research Consortium collaborated to explore current sources of discordance in classification. Eight laboratories each submitted 20 classified variants in the ACMG secondary finding v.2.0 genes. After removing duplicates, each of the 158 variants was annotated and independently classified by two additional laboratories using the ACMG-AMP guidelines. Overall concordance across three laboratories was assessed and discordant variants were reviewed via teleconference and email. The submitted variant set included 28 P/LP variants, 96 VUS, and 34 LB/B variants, mostly in cancer (40%) and cardiac (27%) risk genes. Eighty-six (54%) variants reached complete five-category (i.e., P, LP, VUS, LB, B) concordance, and 17 (11%) had a discordance that could affect clinical recommendations (P/LP versus VUS/LB/B). 21% and 63% of variants submitted as P and LP, respectively, were discordant with VUS. Of the 54 originally discordant variants that underwent further review, 32 reached agreement, for a post-review concordance rate of 84% (118/140 variants). This project provides an updated estimate of variant concordance, identifies considerations for LP classified variants, and highlights ongoing sources of discordance. Continued and increased sharing of variant classifications and evidence across laboratories, and the ongoing work of ClinGen to provide general as well as gene- and disease-specific guidance, will lead to continued increases in concordance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Gail P Jarvik
- Department of Medicine, Division of Medical Genetics, University of Washington Medical Center, Seattle, WA 98195, USA
| |
Collapse
|
19
|
VanDyke RE, Hashimoto S, Morales A, Pyatt RE, Sturm AC. Impact of variant reclassification in the clinical setting of cardiovascular genetics. J Genet Couns 2020; 30:503-512. [PMID: 33029862 DOI: 10.1002/jgc4.1336] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/25/2020] [Accepted: 08/30/2020] [Indexed: 01/06/2023]
Abstract
Genetic testing for cardiovascular disease (CVD) has advanced over the past ten years, but these advancements have posed new challenges in variant classification. To address these challenges, ACMG/AMP published guidelines for variant interpretation in 2015. This study aimed to determine what impact these guidelines have on variant classification in clinical cardiovascular genetics. A retrospective chart review identified patients who underwent clinical genetic testing and had a variant identified in a gene associated with CVD. For each variant, systematic evidence review was performed and ACMG guidelines were applied for classification. These classifications were compared to those provided on patients' genetic test reports. This study identified 223 unique variants in 237 patients. Seventy-nine (35%) of the variants had classifications that differed from their clinical reports. Twenty-eight (35%) of these reclassifications would have changed medical management recommendations for 38 patients. Application of these guidelines resulted in reclassification for approximately one-third of the variants in this study. Clinicians can have a more active role in the process of variant classification. Variant classifications should be updated over time in the clinical CVD setting due to the impact reclassifications can have on clinical screening recommendations.
Collapse
Affiliation(s)
- Rebecca E VanDyke
- Division of Human Genetics, The Ohio State University, Columbus, OH, USA
- Department of Clinical Genetics, Northwestern Medicine Central DuPage Hospital, Winfield, IL, USA
| | - Sayaka Hashimoto
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Ana Morales
- Division of Human Genetics, The Ohio State University, Columbus, OH, USA
| | - Robert E Pyatt
- Division of Human Genetics, The Ohio State University, Columbus, OH, USA
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
- New Jersey Center for Science, Technology, and Mathematics, Kean University, Union, NJ, USA
| | - Amy C Sturm
- Division of Human Genetics, The Ohio State University, Columbus, OH, USA
- Genomic Medicine Institute, Geisinger, Danville, PA, USA
| |
Collapse
|
20
|
Kellogg G, Thorsson B, Cai Y, Wisotzkey R, Pollock A, Akana M, Fox R, Jansen M, Gudmundsson EF, Patel B, Chang C, Jaremko M, Puig O, Gudnason V, Emilsson V. Molecular screening of familial hypercholesterolemia in Icelanders. Scandinavian Journal of Clinical and Laboratory Investigation 2020; 80:508-514. [DOI: 10.1080/00365513.2020.1795919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
| | | | - Ying Cai
- Phosphorus Diagnostics, New York, NY, USA
| | | | | | | | | | | | | | | | | | | | - Oscar Puig
- Phosphorus Diagnostics, New York, NY, USA
| | - Vilmundur Gudnason
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Valur Emilsson
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
21
|
Abstract
Cardiovascular genetic counselors provide guidance to people facing the reality or prospect of inherited cardiovascular conditions. Key activities in this role include discussing clinical cardiac screening for at-risk family members and offering genetic testing. Psychological factors often influence whether patients choose to have genetic testing and how they understand and communicate the results to at-risk relatives, so psychological counseling increases the impact of genetic education and medical recommendations. This work reviews the literature on the factors that influence patient decisions about cardiovascular genetic testing and the psychological impact of results on people who opt to test. It also models use of a psychological framework to apply themes from the literature to routine cardiovascular genetic counseling practice. Modifications of the framework are provided to show how it can be adapted to serve the needs of both new and experienced genetic counselors.
Collapse
Affiliation(s)
- Julia Platt
- Stanford Center for Inherited Cardiovascular Disease, Falk Cardiovascular Research Center, Stanford, California 94305, USA
| |
Collapse
|
22
|
Yin K, Liu Y, Lamichhane B, Sandbach JF, Patel G, Compagnoni G, Kanak RH, Rosen B, Ondrula DP, Smith L, Brown E, Gold L, Whitworth P, App C, Euhus D, Semine A, Dwight Lyons S, Lazarte MAC, Parmigiani G, Braun D, Hughes KS. Legacy Genetic Testing Results for Cancer Susceptibility: How Common are Conflicting Classifications in a Large Variant Dataset from Multiple Practices? Ann Surg Oncol 2020; 27:2212-2220. [PMID: 32342295 DOI: 10.1245/s10434-020-08492-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Indexed: 12/16/2022]
Abstract
PURPOSE The classification of germline variants may differ between labs and change over time. We apply a variant harmonization tool, Ask2Me VarHarmonizer, to map variants to ClinVar and identify discordant variant classifications in a large multipractice variant dataset. METHODS A total of 7496 variants sequenced between 1996 and 2019 were collected from 11 clinical practices. Variants were mapped to ClinVar, and lab-reported and ClinVar variant classifications were analyzed and compared. RESULTS Of the 4798 unique variants identified, 3699 (77%) were mappable to ClinVar. Among mappable variants, variants of unknown significance (VUS) accounted for 74% of lab-reported classifications and 60% of ClinVar classifications. Lab-reported and ClinVar discordances were present in 783 unique variants (21.2% of all mappable variants); 121 variants (2.5% of all unique variants) had within-practice lab-reported discordances; and 56 variants (1.2% of all unique variants) had lab-reported discordances across practices. The unmappable variants were associated with a higher proportion of lab-reported pathogenic classifications (50% vs. 21%, p < 0.0001) and a lower proportion of lab-reported VUS classifications (46% vs. 74%, p < 0.0001). CONCLUSIONS Our study shows that discordant variant classification occurs frequently, which may lead to inappropriate recommendations for prophylactic treatments or clinical management.
Collapse
Affiliation(s)
- Kanhua Yin
- Division of Surgical Oncology, Massachusetts General Hospital, Boston, MA, USA.,Department of Surgery, Harvard Medical School, Boston, MA, USA.,Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Yuxi Liu
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | | | | | - Gia Compagnoni
- Advanced Surgical Care of Northern Illinois, Advocate Health Care, Barrington, IL, USA
| | - Richard H Kanak
- Advanced Surgical Care of Northern Illinois, Advocate Health Care, Barrington, IL, USA
| | - Barry Rosen
- Advanced Surgical Care of Northern Illinois, Advocate Health Care, Barrington, IL, USA
| | - David P Ondrula
- Advanced Surgical Care of Northern Illinois, Advocate Health Care, Barrington, IL, USA
| | - Linda Smith
- New Mexico Comprehensive Breast Care, Albuquerque, NM, USA
| | - Eric Brown
- Comprehensive Breast Care, A Division of Michigan Healthcare Professionals, Troy, MI, USA
| | - Linsey Gold
- Comprehensive Breast Care, A Division of Michigan Healthcare Professionals, Troy, MI, USA
| | | | - Colleen App
- The Breast Health and Wellness Center, Grand Rapids, MI, USA
| | - David Euhus
- Johns Hopkins Hospital, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | | - Giovanni Parmigiani
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Danielle Braun
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, USA. .,Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Kevin S Hughes
- Division of Surgical Oncology, Massachusetts General Hospital, Boston, MA, USA.,Department of Surgery, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
23
|
Lee IH, Negron JA, Hernandez-Ferrer C, Alvarez WJ, Mandl KD, Kong SW. The Clinical Genome and Ancestry Report: An interactive web application for prioritizing clinically implicated variants from genome sequencing data with ancestry composition. Hum Mutat 2020; 41:387-396. [PMID: 31691385 PMCID: PMC7180092 DOI: 10.1002/humu.23942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/24/2019] [Accepted: 11/01/2019] [Indexed: 11/08/2022]
Abstract
Genome sequencing is positioned as a routine clinical work-up for diverse clinical conditions. A commonly used approach to highlight candidate variants with potential clinical implication is to search over locus- and gene-centric knowledge databases. Most web-based applications allow a federated query across diverse databases for a single variant; however, sifting through a large number of genomic variants with combination of filtering criteria is a substantial challenge. Here we describe the Clinical Genome and Ancestry Report (CGAR), an interactive web application developed to follow clinical interpretation workflows by organizing variants into seven categories: (1) reported disease-associated variants, (2) rare- and high-impact variants in putative disease-associated genes, (3) secondary findings that the American College of Medical Genetics and Genomics recommends reporting back to patients, (4) actionable pharmacogenomic variants, (5) focused reports for candidate genes, (6) de novo variant candidates for trio analysis, and (7) germline and somatic variants implicated in cancer risk, diagnosis, treatment and prognosis. For each variant, a comprehensive list of external links to variant-centric and phenotype databases are provided. Furthermore, genotype-derived ancestral composition is used to highlight allele frequencies from a matched population since some disease-associated variants show a wide variation between populations. CGAR is an open-source software and is available at https://tom.tch.harvard.edu/apps/cgar/.
Collapse
Affiliation(s)
- In-Hee Lee
- Computational Health Informatics Program, Boston Children’s Hospital, Boston, MA 02115
| | - Jose A. Negron
- Computational Health Informatics Program, Boston Children’s Hospital, Boston, MA 02115
| | | | | | - Kenneth D. Mandl
- Computational Health Informatics Program, Boston Children’s Hospital, Boston, MA 02115
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115
| | - Sek Won Kong
- Computational Health Informatics Program, Boston Children’s Hospital, Boston, MA 02115
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
24
|
Moody EW, Vagher J, Espinel W, Goldgar D, Hagerty KJ, Gammon A. Comparison of Somatic and Germline Variant Interpretation in Hereditary Cancer Genes. JCO Precis Oncol 2019; 3:1-8. [DOI: 10.1200/po.19.00144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE To compare the classification of genetic variants reported on tumor genomic profiling (TGP) reports with germline classifications on clinical test results and ClinVar. Results will help to inform germline testing discussions and decisions in patients with tumor variants in genes that are relevant to hereditary cancer risk. PATIENTS AND METHODS This study compared somatic and germline classifications of small nucleotide variants in the following genes: BRCA1, BRCA2, CHEK2, PALB2, ATM, MLH1, MSH2, MSH6, and PMS2. Somatic classifications were taken from reports from a single commercial TGP laboratory of tests ordered by providers at Huntsman Cancer Institute between March 2014 and June 2018. Somatic variant interpretations were compared with classifications from germline test results as well as with ClinVar interpretations. RESULTS Of the 623 variants identified on TGP, 353 had a definitive classification in ClinVar, and 103 were assayed with a germline test, with 66 of the variants tested observed in germline. Analysis of somatic variants of uncertain significance listed on TGP reports determined that 22% had a different interpretation compared with ClinVar and that 32% differed from the interpretation on a germline test result. Pathogenic variants on TGP test results were found to differ 13% and 5% of the time compared with ClinVar interpretations and germline test results, respectively. CONCLUSION These results suggest that TGP variants are often classified differently in a germline context. Differences may be due to different processes in variant interpretation between somatic and germline laboratories. These results are important for health care providers to consider when making decisions about additional testing for hereditary cancer risks.
Collapse
Affiliation(s)
| | - Jennie Vagher
- University of Utah, Salt Lake City, UT
- Huntsman Cancer Institute, Salt Lake City, UT
| | - Whitney Espinel
- University of Utah, Salt Lake City, UT
- Huntsman Cancer Institute, Salt Lake City, UT
| | - David Goldgar
- University of Utah, Salt Lake City, UT
- Huntsman Cancer Institute, Salt Lake City, UT
| | | | - Amanda Gammon
- University of Utah, Salt Lake City, UT
- Huntsman Cancer Institute, Salt Lake City, UT
| |
Collapse
|
25
|
Variant interpretation is a component of clinical practice among genetic counselors in multiple specialties. Genet Med 2019; 22:785-792. [PMID: 31754268 PMCID: PMC7127982 DOI: 10.1038/s41436-019-0705-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 11/07/2019] [Indexed: 12/27/2022] Open
Abstract
PURPOSE Genomic testing is routinely utilized across clinical settings and can have significant variant interpretation challenges. The extent of genetic counselor (GC) engagement in variant interpretation in clinical practice is unknown. This study aimed to explore clinical GCs' variant interpretation practice across specialties, understand outcomes of this practice, and identify resource and educational needs. METHODS An online survey was administered to National Society of Genetic Counselors members providing clinical counseling. RESULTS Respondents (n = 239) represented all major clinical specialties. The majority (68%) reported reviewing evidence documented by the laboratory for most (>60%) variants reported; 45.5% report seeking additional evidence. Prenatal GCs were less likely to independently assess reported evidence. Most respondents (67%) report having reached a different conclusion about a variant's classification than the testing laboratory, though infrequently. Time was the most commonly reported barrier (72%) to performing variant interpretation, though the majority (97%) indicated that this practice had an important impact on patient care. When presented with three hypothetical scenarios, evidence typically used for variant interpretation was generally applied correctly. CONCLUSION This study is the first to document variant interpretation practice broadly across clinical GC specialties. Our results suggest that variant interpretation should be considered a practice-based competency for GCs.
Collapse
|
26
|
A Review of the Emergence and Expansion of Cardiovascular Genetic Counseling. CURRENT CARDIOVASCULAR RISK REPORTS 2019. [DOI: 10.1007/s12170-019-0631-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
27
|
Rosenbaum AN, Agre KE, Pereira NL. Genetics of dilated cardiomyopathy: practical implications for heart failure management. Nat Rev Cardiol 2019; 17:286-297. [PMID: 31605094 DOI: 10.1038/s41569-019-0284-0] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/12/2019] [Indexed: 12/19/2022]
Abstract
Given the global burden of heart failure, strategies to understand the underlying cause or to provide prognostic information are critical to reducing the morbidity and mortality associated with this highly prevalent disease. Cardiomyopathies often have a genetic cause, and the field of heart failure genetics is progressing rapidly. Through a deliberate investigation, evaluation for a familial component of cardiomyopathy can lead to increased identification of pathogenic genetic variants. Much research has also been focused on identifying markers of risk in patients with cardiomyopathy with the use of genetic testing. Advances in our understanding of genetic variants have been slightly offset by an increased recognition of the heterogeneity of disease expression. Greater breadth of genetic testing can increase the likelihood of identifying a variant of uncertain significance, which is resolved only rarely by cellular functional validation and segregation analysis. To increase the use of genetics in heart failure clinics, increased availability of genetic counsellors and other providers with experience in genetics is necessary. Ultimately, through ongoing research and increased clinical experience in cardiomyopathy genetics, an improved understanding of the disease processes will facilitate better clinical decision-making about the therapies offered, exemplifying the implementation of precision medicine.
Collapse
Affiliation(s)
| | - Katherine E Agre
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
| | - Naveen L Pereira
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA. .,William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN, USA. .,Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
28
|
Iacocca MA, Chora JR, Carrié A, Freiberger T, Leigh SE, Defesche JC, Kurtz CL, DiStefano MT, Santos RD, Humphries SE, Mata P, Jannes CE, Hooper AJ, Wilemon KA, Benlian P, O'Connor R, Garcia J, Wand H, Tichy L, Sijbrands EJ, Hegele RA, Bourbon M, Knowles JW. ClinVar database of global familial hypercholesterolemia-associated DNA variants. Hum Mutat 2019; 39:1631-1640. [PMID: 30311388 PMCID: PMC6206854 DOI: 10.1002/humu.23634] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/02/2018] [Accepted: 08/28/2018] [Indexed: 12/14/2022]
Abstract
Accurate and consistent variant classification is imperative for incorporation of rapidly developing sequencing technologies into genomic medicine for improved patient care. An essential requirement for achieving standardized and reliable variant interpretation is data sharing, facilitated by a centralized open-source database. Familial hypercholesterolemia (FH) is an exemplar of the utility of such a resource: it has a high incidence, a favorable prognosis with early intervention and treatment, and cascade screening can be offered to families if a causative variant is identified. ClinVar, an NCBI-funded resource, has become the primary repository for clinically relevant variants in Mendelian disease, including FH. Here, we present the concerted efforts made by the Clinical Genome Resource, through the FH Variant Curation Expert Panel and global FH community, to increase submission of FH-associated variants into ClinVar. Variant-level data was categorized by submitter, variant characteristics, classification method, and available supporting data. To further reform interpretation of FH-associated variants, areas for improvement in variant submissions were identified; these include a need for more detailed submissions and submission of supporting variant-level data, both retrospectively and prospectively. Collaborating to provide thorough, reliable evidence-based variant interpretation will ultimately improve the care of FH patients.
Collapse
Affiliation(s)
- Michael A Iacocca
- Robarts Research Institute, Western University, London, Ontario, Canada
| | - Joana R Chora
- Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisbon, Portugal.,BioISI, University of Lisbon, Lisbon, Portugal
| | - Alain Carrié
- Hôpitaux Universitaires Pitié-Salpêtrière/Charles-Foix, Molecular and Chromosomal Genetics Center, Obesity and Dyslipidemia Genetics Unit, Assistance Publique-Hôpitaux de Paris, Paris, France.,Inserm, Institute of Cardiometabolism and Nutrition, Hôpital de la Pitié, Sorbonne Université, Paris, France
| | - Tomáš Freiberger
- Centre for Cardiovascular Surgery and Transplantation, Brno, Czech Republic.,Ceitec and Medical Faculty, Masaryk University, Brno, London
| | | | - Joep C Defesche
- Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - C Lisa Kurtz
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina
| | | | | | - Steve E Humphries
- Centre for Cardiovascular Genetics, University College of London, London, United Kingdom
| | - Pedro Mata
- Fundacion Hipercolesterolemia Familiar, Madrid, Spain
| | | | - Amanda J Hooper
- PathWest Laboratory Medicine, University of Western Australia, Perth, Australia
| | | | - Pascale Benlian
- CNRS, CHU Lille, UMR 8199 - Integrative Genomics and Metabolic Diseases Modeling, University of Lille, Lille, France
| | | | - John Garcia
- Invitae Corporation, San Francisco, California
| | - Hannah Wand
- Center for Inherited Cardiovascular Disease, Stanford University, Palo Alto, California
| | - Lukáš Tichy
- Center of Molecular Biology and Gene Therapy, University Hospital Brno, Brno, Czech Republic
| | - Eric J Sijbrands
- University Medical Center, Erasmus University, Rotterdam, Netherlands
| | - Robert A Hegele
- Robarts Research Institute, Western University, London, Ontario, Canada
| | - Mafalda Bourbon
- Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisbon, Portugal.,BioISI, University of Lisbon, Lisbon, Portugal
| | - Joshua W Knowles
- FH Foundation, Pasadena, California.,Center for Inherited Cardiovascular Disease, Stanford University, Palo Alto, California
| | | |
Collapse
|
29
|
Abstract
With rapid advances in genetics and genomics, the commercialization and access to new applications has become more widespread and omnipresent throughout biomedical research. Thus, increasingly, more patients will have personal genomic information they may share with primary care providers (PCPs) to better understand the clinical significance of the data. To be able to respond to patient inquiries about genomic data, variant interpretation, disease risk, and other issues, PCPs will need to be able to increase or refresh their awareness about genetics and genomics, and identify reliable resources to use or refer patients. While provider educational efforts have increased, with the rapid advances in the field, ongoing efforts will be needed to prepare PCPs to manage patient needs, integrate results into care, and refer as indicated.
Collapse
Affiliation(s)
- Susanne B Haga
- Center for Applied Genomics and Precision Medicine, Duke University School of Medicine, Durham, NC, 27708, USA.
| |
Collapse
|
30
|
Aref-Eshghi E, Bourque DK, Kerkhof J, Carere DA, Ainsworth P, Sadikovic B, Armour CM, Lin H. Genome-wide DNA methylation and RNA analyses enable reclassification of two variants of uncertain significance in a patient with clinical Kabuki syndrome. Hum Mutat 2019; 40:1684-1689. [PMID: 31268616 DOI: 10.1002/humu.23833] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 05/14/2019] [Accepted: 05/31/2019] [Indexed: 12/13/2022]
Abstract
Nontruncating sequence variants represent a major challenge in variant interpretation and classification. Here, we report a patient with features of Kabuki syndrome who carries two rare heterozygous variants in KMT2D: c.12935C>T, p.(Ser4312Phe) and c.15785-10T>G. The clinical significance of these variants were discordantly interpreted by different diagnostic laboratories. Parental testing showed that the missense variant was inherited from the father with a mild Kabuki phenotype and the intronic variant from the mother with mosaic status. Through genome-wide DNA methylation analysis of peripheral blood, we confirmed that the proband exhibited a previously described episignature of Kabuki syndrome. Parental samples had normal DNA methylation profiles, thus ruling out the involvement of the paternally inherited missense variant. RNA analysis revealed that the intronic change resulted in exon 49 skipping and frameshift, thereby providing a molecular diagnosis of Kabuki syndrome. This study demonstrates the utility of epigenomic and RNA analyses in resolving ambiguous clinical cases.
Collapse
Affiliation(s)
- Erfan Aref-Eshghi
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada.,Molecular Genetics Laboratory, Division of Molecular Diagnostics, Department of Pathology and Laboratory Medicine, London Health Sciences Centre, London, Ontario, Canada
| | - Danielle K Bourque
- Regional Genetics Unit, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - Jennifer Kerkhof
- Molecular Genetics Laboratory, Division of Molecular Diagnostics, Department of Pathology and Laboratory Medicine, London Health Sciences Centre, London, Ontario, Canada
| | - Deanna Alexis Carere
- Molecular Genetics Laboratory, Division of Molecular Diagnostics, Department of Pathology and Laboratory Medicine, London Health Sciences Centre, London, Ontario, Canada
| | - Peter Ainsworth
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada.,Molecular Genetics Laboratory, Division of Molecular Diagnostics, Department of Pathology and Laboratory Medicine, London Health Sciences Centre, London, Ontario, Canada
| | - Bekim Sadikovic
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada.,Molecular Genetics Laboratory, Division of Molecular Diagnostics, Department of Pathology and Laboratory Medicine, London Health Sciences Centre, London, Ontario, Canada
| | - Christine M Armour
- Regional Genetics Unit, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada.,Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Hanxin Lin
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada.,Molecular Genetics Laboratory, Division of Molecular Diagnostics, Department of Pathology and Laboratory Medicine, London Health Sciences Centre, London, Ontario, Canada
| |
Collapse
|
31
|
Rosenbaum AN, Pereira N. Updates on the Genetic Paradigm in Heart Failure. CURRENT TREATMENT OPTIONS IN CARDIOVASCULAR MEDICINE 2019; 21:37. [PMID: 31250202 DOI: 10.1007/s11936-019-0742-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW The rapidly evolving field of cardiovascular genetics has already improved the care of patients with heart failure and families. The purpose of the current review is to describe the most and provide the most pertinent updates in the field of heart failure genetics. RECENT FINDINGS Recent advanced in heart failure genetics have begun to not only increase the yield of testing through improving technology and use of whole exome or whole genome screening, but also enabled the improving technology and increasing use of whole exome or whole genome screening, but also enabled an enhanced understanding of the implications of results of genetic testing. For instance, new data have described differential responses to heart failure therapies based on genetic testing. Additionally, variant analysis by locus in genetic cardiomyopathies has facilitated a much-improved prognostic understanding of phenotype. Recent years have seen advancements in the understanding of the genetics of rare disorders, including pediatric-onset cardiomyopathies, previously under-investigated; restrictive cardiomyopathies; and non-compaction cardiomyopathy. The last few years have heralded not only a broader understanding of the scope of the genetics of heart failure, but have also provided notable leaps in mechanistic and prognostic understanding, which will serve as the foundation for clinical investigation and future genetic variant assessment.
Collapse
Affiliation(s)
- Andrew N Rosenbaum
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Naveen Pereira
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA. .,Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA. .,William J von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
32
|
Miller RJH, Heidary S, Pavlovic A, Schlachter A, Dash R, Fleischmann D, Ashley EA, Wheeler MT, Yang PC. Defining genotype-phenotype relationships in patients with hypertrophic cardiomyopathy using cardiovascular magnetic resonance imaging. PLoS One 2019; 14:e0217612. [PMID: 31199839 PMCID: PMC6568393 DOI: 10.1371/journal.pone.0217612] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/16/2019] [Indexed: 01/28/2023] Open
Abstract
PURPOSE HCM is the most common inherited cardiomyopathy. Historically, there has been poor correlation between genotype and phenotype. However, CMR has the potential to more accurately assess disease phenotype. We characterized phenotype with CMR in a cohort of patients with confirmed HCM and high prevalence of genetic testing. METHODS Patients with a diagnosis of HCM, who had undergone contrast-enhanced CMR were identified. Left ventricular mass index (LVMI) and volumes were measured from steady-state free precession sequences. Late gadolinium enhancement (LGE) was quantified using the full width, half maximum method. All patients were prospectively followed for the development of septal reduction therapy, arrhythmia or death. RESULTS We included 273 patients, mean age 51.2 ± 15.5, 62.9% male. Of those patients 202 (74.0%) underwent genetic testing with 90 pathogenic, likely pathogenic, or rare variants and 13 variants of uncertain significance identified. Median follow-up was 1138 days. Mean LVMI was 82.7 ± 30.6 and 145 patients had late gadolinium enhancement (LGE). Patients with beta-myosin heavy chain (MYH7) mutations had higher LV ejection fraction (68.8 vs 59.1, p<0.001) than those with cardiac myosin binding protein C (MYBPC3) mutations. Patients with MYBPC3 mutations were more likely to have LVEF < 55% (29.7% vs 4.9%, p = 0.005) or receive a defibrillator than those with MYH7 mutations (54.1% vs 26.8%, p = 0.020). CONCLUSIONS We found that patients with MYBPC3 mutations were more likely to have impaired ventricular function and may be more prone to arrhythmic events. Larger studies using CMR phenotyping may be capable of identifying additional characteristics associated with less frequent genetic causes of HCM.
Collapse
Affiliation(s)
- Robert J. H. Miller
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California, United States of America
| | - Shahriar Heidary
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California, United States of America
| | - Aleksandra Pavlovic
- Center for Inherited Cardiovascular Disease, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California, United States of America
| | - Audrey Schlachter
- Center for Inherited Cardiovascular Disease, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California, United States of America
| | - Rajesh Dash
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California, United States of America
| | - Dominik Fleischmann
- Department of Radiology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Euan A. Ashley
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California, United States of America
- Center for Inherited Cardiovascular Disease, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California, United States of America
| | - Matthew T. Wheeler
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California, United States of America
- Center for Inherited Cardiovascular Disease, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California, United States of America
| | - Phillip C. Yang
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
33
|
Bombard Y, Brothers KB, Fitzgerald-Butt S, Garrison NA, Jamal L, James CA, Jarvik GP, McCormick JB, Nelson TN, Ormond KE, Rehm HL, Richer J, Souzeau E, Vassy JL, Wagner JK, Levy HP. The Responsibility to Recontact Research Participants after Reinterpretation of Genetic and Genomic Research Results. Am J Hum Genet 2019; 104:578-595. [PMID: 30951675 PMCID: PMC6451731 DOI: 10.1016/j.ajhg.2019.02.025] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 02/25/2019] [Indexed: 11/16/2022] Open
Abstract
The evidence base supporting genetic and genomic sequence-variant interpretations is continuously evolving. An inherent consequence is that a variant's clinical significance might be reinterpreted over time as new evidence emerges regarding its pathogenicity or lack thereof. This raises ethical, legal, and financial issues as to whether there is a responsibility to recontact research participants to provide updates on reinterpretations of variants after the initial analysis. There has been discussion concerning the extent of this obligation in the context of both research and clinical care. Although clinical recommendations have begun to emerge, guidance is lacking on the responsibilities of researchers to inform participants of reinterpreted results. To respond, an American Society of Human Genetics (ASHG) workgroup developed this position statement, which was approved by the ASHG Board in November 2018. The workgroup included representatives from the National Society of Genetic Counselors, the Canadian College of Medical Genetics, and the Canadian Association of Genetic Counsellors. The final statement includes twelve position statements that were endorsed or supported by the following organizations: Genetic Alliance, European Society of Human Genetics, Canadian Association of Genetic Counsellors, American Association of Anthropological Genetics, Executive Committee of the American Association of Physical Anthropologists, Canadian College of Medical Genetics, Human Genetics Society of Australasia, and National Society of Genetic Counselors.
Collapse
Affiliation(s)
- Yvonne Bombard
- Social Issues Committee, American Society of Human Genetics, Rockville, MD 20852, USA; Institute of Health Policy, Management, and Evaluation, University of Toronto, Toronto, ON M5T 3M6, Canada; Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON M5B 1T8, Canada.
| | - Kyle B Brothers
- Social Issues Committee, American Society of Human Genetics, Rockville, MD 20852, USA; Department of Pediatrics, University of Louisville, Louisville, KY 40202, USA
| | - Sara Fitzgerald-Butt
- National Society of Genetic Counselors, Chicago, IL 60611, USA; Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Nanibaa' A Garrison
- Social Issues Committee, American Society of Human Genetics, Rockville, MD 20852, USA; Treuman Katz Center for Pediatric Bioethics, Seattle Children's Hospital and Research Institute, Seattle, WA 98101, USA; Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98101, USA
| | - Leila Jamal
- Social Issues Committee, American Society of Human Genetics, Rockville, MD 20852, USA; National Society of Genetic Counselors, Chicago, IL 60611, USA; National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Cynthia A James
- National Society of Genetic Counselors, Chicago, IL 60611, USA; Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Gail P Jarvik
- Executive Committee, American Society of Human Genetics, Rockville, MD 20852, USA; Departments of Medicine (Medical Genetics) and Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Jennifer B McCormick
- Social Issues Committee, American Society of Human Genetics, Rockville, MD 20852, USA; Department of Humanities, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA
| | - Tanya N Nelson
- Canadian College of Medical Geneticists, Kingston, ON K7K 1Z7, Canada; BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 2B5, Canada; Department of Pathology and Laboratory Medicine, BC Children's Hospital, Vancouver, BC V6H 3N1, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC V6H 3N1, Canada
| | - Kelly E Ormond
- Social Issues Committee, American Society of Human Genetics, Rockville, MD 20852, USA; Department of Genetics and Stanford Center for Biomedical Ethics, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Heidi L Rehm
- Department of Pathology, Harvard Medical School, Boston, MA 02115, USA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Medical and Populations Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Julie Richer
- Canadian College of Medical Geneticists, Kingston, ON K7K 1Z7, Canada; Department of Pediatrics, Children's Hospital of Eastern Ontario (CHEO), Ottawa, ON K1H 8L1, Canada; University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Emmanuelle Souzeau
- Canadian Association of Genetic Counsellors, Oakville, ON L6J 7N5, Canada; Department of Ophthalmology, Flinders University, Flinders Medical Centre, Adelaide, SA 5042, Australia
| | - Jason L Vassy
- Department of Pathology, Harvard Medical School, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA; VA Boston Healthcare System, Boston, MA 02130, USA
| | - Jennifer K Wagner
- Social Issues Committee, American Society of Human Genetics, Rockville, MD 20852, USA; Center for Translational Bioethics and Health Care Policy, Geisinger Health System, Danville, PA 17822, USA
| | - Howard P Levy
- Social Issues Committee, American Society of Human Genetics, Rockville, MD 20852, USA; Division of General Internal Medicine, Department of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
34
|
Lee JJY, van Karnebeek CDM, Wasserman WW. Development and user evaluation of a rare disease gene prioritization workflow based on cognitive ergonomics. J Am Med Inform Assoc 2019; 26:124-133. [PMID: 30535356 PMCID: PMC6339516 DOI: 10.1093/jamia/ocy153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 10/26/2018] [Indexed: 02/06/2023] Open
Abstract
Objective The clinical diagnosis of genetic disorders is undergoing transformation, driven by whole exome sequencing and whole genome sequencing (WES/WGS). However, such nucleotide-level resolution technologies create an interpretive challenge. Prior literature suggests that clinicians may employ characteristic cognitive processes during WES/WGS investigations to identify disruptions in genes causal for the observed disease. Based on cognitive ergonomics, we designed and evaluated a gene prioritization workflow that supported these cognitive processes. Materials and Methods We designed a novel workflow in which clinicians recalled known genetic diseases with similarity to patient phenotypes to inform WES/WGS data interpretation. This prototype-based workflow was evaluated against the common computational approach based on physician-specified sets of individual patient phenotypes. The evaluation was conducted as a web-based user study, in which 18 clinicians analyzed 2 simulated patient scenarios using a randomly assigned workflow. Data analysis compared the 2 workflows with respect to accuracy and efficiency in diagnostic interpretation, efficacy in collecting detailed phenotypic information, and user satisfaction. Results Participants interpreted genetic diagnoses faster using prototype-based workflows. The 2 workflows did not differ in other evaluated aspects. Discussion The user study findings indicate that prototype-based approaches, which are designed to model experts’ cognitive processes, can expedite gene prioritization and provide utility in synergy with common phenotype-driven variant/gene prioritization approaches. However, further research of the extent of this effect across diverse genetic diseases is required. Conclusion The findings demonstrate potential for prototype-based phenotype description to accelerate computer-assisted variant/gene prioritization through complementation of skills and knowledge of clinical experts via human–computer interaction.
Collapse
Affiliation(s)
- Jessica J Y Lee
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Clara D M van Karnebeek
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Pediatrics and Clinical Genetics, Emma Children's Hospital, Amsterdam University Medical Centres, Amsterdam, The Netherlands
| | - Wyeth W Wasserman
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
35
|
Wain KE, Palen E, Savatt JM, Shuman D, Finucane B, Seeley A, Challman TD, Myers SM, Martin CL. The value of genomic variant ClinVar submissions from clinical providers: Beyond the addition of novel variants. Hum Mutat 2018; 39:1660-1667. [PMID: 30311381 PMCID: PMC6190575 DOI: 10.1002/humu.23607] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/28/2018] [Accepted: 08/02/2018] [Indexed: 12/15/2022]
Abstract
With the increasing use of clinical genomic testing across broad medical disciplines, the need for data sharing and curation efforts to improve variant interpretation is paramount. The National Center for Biotechnology Information (NCBI) ClinVar database facilitates these efforts by serving as a repository for clinical assertions about genomic variants and associations with disease. Most variant submissions are from clinical laboratories, which may lack clinical details. Laboratories may also choose not to submit all variants. Clinical providers can contribute to variant interpretation improvements by submitting variants to ClinVar with their own assertions and supporting evidence. The medical genetics team at Geisinger's Autism & Developmental Medicine Institute routinely reviews the clinical significance of all variants obtained through clinical genomic testing, using published ACMG/AMP guidelines, clinical correlation, and post-test clinical data. We describe the submission of 148 sequence and 155 copy number variants to ClinVar as "provider interpretations." Of these, 192 (63.4%) were novel to ClinVar. Detailed clinical data were provided for 298 (98.3%), and when available, segregation data and follow-up clinical correlation or testing was included. This contribution marks the first large-scale submission from a neurodevelopmental clinical setting and illustrates the importance of clinical providers in collaborative efforts to improve variant interpretation.
Collapse
Affiliation(s)
- Karen E Wain
- Autism & Developmental Medicine Institute, Geisinger, Lewisburg, Pennsylvania
| | - Emily Palen
- Autism & Developmental Medicine Institute, Geisinger, Lewisburg, Pennsylvania
| | - Juliann M Savatt
- Autism & Developmental Medicine Institute, Geisinger, Lewisburg, Pennsylvania
| | - Devin Shuman
- Autism & Developmental Medicine Institute, Geisinger, Lewisburg, Pennsylvania
| | - Brenda Finucane
- Autism & Developmental Medicine Institute, Geisinger, Lewisburg, Pennsylvania
| | - Andrea Seeley
- Autism & Developmental Medicine Institute, Geisinger, Lewisburg, Pennsylvania
| | - Thomas D Challman
- Autism & Developmental Medicine Institute, Geisinger, Lewisburg, Pennsylvania
| | - Scott M Myers
- Autism & Developmental Medicine Institute, Geisinger, Lewisburg, Pennsylvania
| | - Christa Lese Martin
- Autism & Developmental Medicine Institute, Geisinger, Lewisburg, Pennsylvania
| |
Collapse
|
36
|
Landrum MJ, Kattman BL. ClinVar at five years: Delivering on the promise. Hum Mutat 2018; 39:1623-1630. [DOI: 10.1002/humu.23641] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 08/10/2018] [Accepted: 08/30/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Melissa J. Landrum
- National Center for Biotechnology InformationNational Library of MedicineNational Institutes of Health Bethesda Maryland
| | - Brandi L. Kattman
- National Center for Biotechnology InformationNational Library of MedicineNational Institutes of Health Bethesda Maryland
| |
Collapse
|
37
|
Yauy K, Baux D, Pegeot H, Van Goethem C, Mathieu C, Guignard T, Juntas Morales R, Lacourt D, Krahn M, Lehtokari VL, Bonne G, Tuffery-Giraud S, Koenig M, Cossée M. MoBiDiC Prioritization Algorithm, a Free, Accessible, and Efficient Pipeline for Single-Nucleotide Variant Annotation and Prioritization for Next-Generation Sequencing Routine Molecular Diagnosis. J Mol Diagn 2018; 20:465-473. [PMID: 29689380 DOI: 10.1016/j.jmoldx.2018.03.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 02/16/2018] [Accepted: 03/09/2018] [Indexed: 12/22/2022] Open
Abstract
Interpretation of next-generation sequencing constitutes the main limitation of molecular diagnostics. In diagnosing myopathies and muscular dystrophies, another issue is efficiency in predicting the pathogenicity of variants identified in large genes, especially TTN; current in silico prediction tools show limitations in predicting and ranking the numerous variants of such genes. We propose a variant-prioritization tool, the MoBiDiCprioritization algorithm (MPA). MPA is based on curated interpretation of data on previously reported variants, biological assumptions, and splice and missense predictors, and is used to prioritize all types of single-nucleotide variants. MPA was validated by comparing its sensitivity and specificity to those of dbNSFP database prediction tools, using a data set composed of DYSF, DMD, LMNA, NEB, and TTN variants extracted from expert-reviewed and ExAC databases. MPA obtained the best annotation rates for missense and splice variants. As MPA aggregates the results from several predictors, individual predictor errors are counterweighted, improving the sensitivity and specificity of missense and splice variant predictions. We propose a sequential use of MPA, beginning with the selection of variants with higher scores and followed by, in the absence of candidate pathologic variants, consideration of variants with lower scores. We provide scripts and documentation for free academic use and a validated annotation pipeline scaled for panel and exome sequencing to prioritize single-nucleotide variants from a VCF file.
Collapse
Affiliation(s)
- Kevin Yauy
- Laboratoire de Génétique Moléculaire, CHU Montpellier, Montpellier, France.
| | - David Baux
- Laboratoire de Génétique Moléculaire, CHU Montpellier, Montpellier, France
| | - Henri Pegeot
- Laboratoire de Génétique Moléculaire, CHU Montpellier, Montpellier, France
| | - Charles Van Goethem
- Laboratoire de Biopathologie Cellulaire et Tissulaire des Tumeurs, Hôpital Arnaud de Villeneuve, CHU Montpellier, Montpellier, France
| | - Charly Mathieu
- Laboratoire de Génétique Moléculaire, CHU Montpellier, Montpellier, France
| | - Thomas Guignard
- Plateforme Recherche de Microremaniements Chromosomiques-Centre de Référence Anomalies du Développement et Syndromes Malformatifs, Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, CHU Montpellier, Montpellier, France; Faculté de Médecine Montpellier-Nîmes, Université de Montpellier, Montpellier, France
| | | | - Delphine Lacourt
- Laboratoire de Génétique Moléculaire, CHU Montpellier, Montpellier, France
| | - Martin Krahn
- Unité de Génétique Médicale et Génomique Fonctionnelle INSERM UMRS910, Université d'Aix Marseille, Marseille, France; Département de Génétique Médicale, Hôpital Timone Enfants, Assistance Publique Hôpitaux de Marseille, Marseille, France
| | - Vilma-Lotta Lehtokari
- The Folkhalsan Institute of Genetics and the Department of Medical Genetics, Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Gisele Bonne
- Unité INSERM U974-Thérapie des Maladies du Muscle Striée, Center of Research in Myology, Institut de Myologie, Université Pierre et Marie Curie, Sorbonne Universités, Paris, France
| | - Sylvie Tuffery-Giraud
- Laboratoire de Génétique des Maladies Rares EA7402, Université de Montpellier, Montpellier, France
| | - Michel Koenig
- Laboratoire de Génétique Moléculaire, CHU Montpellier, Montpellier, France; Laboratoire de Génétique des Maladies Rares EA7402, Université de Montpellier, Montpellier, France
| | - Mireille Cossée
- Laboratoire de Génétique Moléculaire, CHU Montpellier, Montpellier, France; Laboratoire de Génétique des Maladies Rares EA7402, Université de Montpellier, Montpellier, France
| |
Collapse
|
38
|
Wain K. A Commentary on Opportunities for the Genetic Counseling Profession through Genomic Variant Interpretation: Reflections from an Ex-Lab Rat. J Genet Couns 2018. [PMID: 29525931 DOI: 10.1007/s10897-018-0247-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The genetic counseling profession continues to expand and respond to the changing landscape of genomic medicine. "Non-traditional" genetic counseling roles have become more commonplace and the transferability of the genetic counselor skill set has been widely acknowledged, particularly in genetic laboratory settings. As these expanding roles continue to mature, all genetic counselors can benefit by learning and adopting clinically relevant skills, such as genomic variant interpretation, which can be applied to direct patient care. These skills can enrich our patients' understanding of their test results, help ensure quality patient care, and could be useful in positioning genetic counselors as critical members in the medical team as we continue to fully transition into the genomic medicine era.
Collapse
Affiliation(s)
- Karen Wain
- Geisinger Health System, Autism & Developmental Medicine Institute, 120 Hamm Drive, Ste 2A, Lewisburg, PA, 17837, USA.
| |
Collapse
|