1
|
Mukherjee AG, Gopalakrishnan AV. The mechanistic insights of the antioxidant Keap1-Nrf2 pathway in oncogenesis: a deadly scenario. Med Oncol 2023; 40:248. [PMID: 37480500 DOI: 10.1007/s12032-023-02124-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/06/2023] [Indexed: 07/24/2023]
Abstract
The Nuclear factor erythroid 2-related factor 2 (Nrf2) protein has garnered significant interest due to its crucial function in safeguarding cells and tissues. The Nrf2 protein is crucial in preserving tissue integrity by safeguarding cells against metabolic, xenobiotic and oxidative stress. Due to its various functions, Nrf2 is a potential pharmacological target for reducing the incidence of diseases such as cancer. However, mutations in Keap1-Nrf2 are not consistently favored in all types of cancer. Instead, they seem to interact with specific driver mutations of tumors and their respective tissue origins. The Kelch-like ECH-associated protein 1 (Keap1)-Nrf2 pathway mutations are a powerful cancer adaptation that utilizes inherent cytoprotective pathways, encompassing nutrient metabolism and ROS regulation. The augmentation of Nrf2 activity elicits significant alterations in the characteristics of neoplastic cells, such as resistance to radiotherapy and chemotherapy, safeguarding against apoptosis, heightened invasiveness, hindered senescence, impaired autophagy and increased angiogenesis. The altered activity of Nrf2 can arise from diverse genetic and epigenetic modifications that instantly impact Nrf2 regulation. The present study aims to showcase the correlation between the Keap1-Nrf2 pathway and the progression of cancers, emphasizing genetic mutations, metabolic processes, immune regulation, and potential therapeutic strategies. This article delves into the intricacies of Nrf2 pathway anomalies in cancer, the potential ramifications of uncontrolled Nrf2 activity, and therapeutic interventions to modulate the Keap1-Nrf2 pathway.
Collapse
Affiliation(s)
- Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
2
|
Yi-Bin W, Xiang L, Bing Y, Qi Z, Fei-Tong J, Minghong W, Xiangxiang Z, Le K, Yan L, Ping S, Yufei G, Ye X, Chun-Yan W. Inhibition of the CEBPβ-NFκB interaction by nanocarrier-packaged Carnosic acid ameliorates glia-mediated neuroinflammation and improves cognitive function in an Alzheimer's disease model. Cell Death Dis 2022; 13:318. [PMID: 35393391 PMCID: PMC8989877 DOI: 10.1038/s41419-022-04765-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/10/2022] [Accepted: 03/25/2022] [Indexed: 01/09/2023]
Abstract
Neuroinflammation occurs early in Alzheimer’s disease (AD). The initial stage of AD is related to glial dysfunction, which contributes to impairment of Aβ clearance and disruption of synaptic connection. CEBPβ, a member of the CCAAT-enhancer-binding protein (CEBP) family, modulates the expression of inflammation-associated genes, and its expression is elevated in brains undergoing degeneration and injured brains. However, the mechanism underlying CEBPβ-mediated chronic inflammation in AD is unclear. In this study, we observed that increases in the levels of nuclear CEBPβ facilitated the interaction of CEBPβ with the NFκB p65 subunit, increasing the transcription of proinflammatory cytokines in the APP/PS1 mouse brain. Oral administration of nanocarrier-packaged carnosic acid (CA) reduced the aberrant activation of microglia and astrocytes and diminished mature IL-1β, TNFα and IL-6 production in the APP/PS1 mouse brain. CA administration reduced β-amyloid (Aβ) deposition and ameliorated cognitive impairment in APP/PS1 mice. We observed that CA blocked the interaction of CEBPβ with NFκB p65, and chromatin immunoprecipitation revealed that CA reduced the transcription of the NFκB target genes TNFα and IL-6. We confirmed that CA alleviated inflammatory mediator-induced neuronal degeneration and reduced Aβ secretion by inhibiting the CEBPβ-NFκB signalling pathway in vitro. Sulfobutyl ether-beta-cyclodextrin (SBEβCD) was used as the encapsulation agent for the CA-loaded nanocarrier to overcome the poor water solubility and enhance the brain bioavailability of CA. The CA nanoparticles (NPs) had no obvious toxicity. We demonstrated a feasible SBEβCD-based nanodelivery system targeting the brain. Our data provide experimental evidence that CA-loaded NPs are potential therapeutic agents for AD treatment.
Collapse
Affiliation(s)
- Wang Yi-Bin
- Institute of Health Sciences, Key Laboratory of Medical Cell Biology of Ministry of Education, China Medical University, Shenyang, 110122, China
| | - Li Xiang
- Institute of Health Sciences, Key Laboratory of Medical Cell Biology of Ministry of Education, China Medical University, Shenyang, 110122, China
| | - Yang Bing
- Institute of Health Sciences, Key Laboratory of Medical Cell Biology of Ministry of Education, China Medical University, Shenyang, 110122, China
| | - Zhang Qi
- Institute of Health Sciences, Key Laboratory of Medical Cell Biology of Ministry of Education, China Medical University, Shenyang, 110122, China
| | - Jiao Fei-Tong
- Translational Medicine Laboratory, School of Basic Medical Sciences, Jilin Medical University, Jilin, 132013, China
| | - Wang Minghong
- Translational Medicine Laboratory, School of Basic Medical Sciences, Jilin Medical University, Jilin, 132013, China
| | - Zhang Xiangxiang
- Institute of Health Sciences, Key Laboratory of Medical Cell Biology of Ministry of Education, China Medical University, Shenyang, 110122, China
| | - Kang Le
- Institute of Health Sciences, Key Laboratory of Medical Cell Biology of Ministry of Education, China Medical University, Shenyang, 110122, China
| | - Li Yan
- Institute of Health Sciences, Key Laboratory of Medical Cell Biology of Ministry of Education, China Medical University, Shenyang, 110122, China
| | - Sui Ping
- Institute of Health Sciences, Key Laboratory of Medical Cell Biology of Ministry of Education, China Medical University, Shenyang, 110122, China
| | - Gao Yufei
- Institute of Health Sciences, Key Laboratory of Medical Cell Biology of Ministry of Education, China Medical University, Shenyang, 110122, China
| | - Xu Ye
- Translational Medicine Laboratory, School of Basic Medical Sciences, Jilin Medical University, Jilin, 132013, China.
| | - Wang Chun-Yan
- Institute of Health Sciences, Key Laboratory of Medical Cell Biology of Ministry of Education, China Medical University, Shenyang, 110122, China. .,Translational Medicine Laboratory, School of Basic Medical Sciences, Jilin Medical University, Jilin, 132013, China.
| |
Collapse
|
3
|
Kalinichenko SV, Korobko IV, Shepelev MV. Combination of ARE and HRE cis-Regulatory Elements Elevates the Activity of Tumor-Specific hTERT Promoter. Mol Biol 2021. [DOI: 10.1134/s0026893321030055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
4
|
Jiang Q, Tang G, Fu J, Yang J, Xu T, Tan CH, Wang Y, Chen YM. Lim Kinase1 regulates seizure activity via modulating actin dynamics. Neurosci Lett 2020; 729:134936. [DOI: 10.1016/j.neulet.2020.134936] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 03/10/2020] [Accepted: 03/26/2020] [Indexed: 10/24/2022]
|
5
|
Medina MV, Sapochnik D, Garcia Solá M, Coso O. Regulation of the Expression of Heme Oxygenase-1: Signal Transduction, Gene Promoter Activation, and Beyond. Antioxid Redox Signal 2020; 32:1033-1044. [PMID: 31861960 PMCID: PMC7153632 DOI: 10.1089/ars.2019.7991] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 12/20/2019] [Indexed: 02/06/2023]
Abstract
Significance: Heme oxygenase-1 (HO-1) is a ubiquitous 32-kDa protein expressed in many tissues and highly inducible. They catalyze the degradation of the heme group and the release of free iron, carbon monoxide, and biliverdin; the latter converted to bilirubin by biliverdin reductase. Its role in the regulation of cellular homeostasis is widely documented. Studying regulation of HO-1 expression is important not only to understand the life of healthy cells but also the unbalances in cell metabolism that lead to disease. Recent Advances: The regulation of its enzymatic activity depends heavily upon changes in expression studied mainly at the transcriptional level. Current knowledge regarding HO-1 gene expression focuses primarily on transcription factors such as Nrf2 (nuclear factor erythroid 2-related factor 2), AP-1 (activator protein-1), and hypoxia-inducible factor, which collect signal transduction pathway information at the HO-1 gene promoter. Understanding of gene expression regulation is not limited to transcription factor activity but also involves an extended range of post- or cotranscriptional regulated events. Critical Issues: In addition to the regulation of gene promoter activity, alternative splicing, alternative polyadenylation, and regulation of messenger RNA stability play critical roles in changes in HO-1 gene expression levels, involving specific factors, proteins, and microRNAs. All potential targets for diagnosis or treatment of diseases are related to HO-1 dysregulation. Future Directions: Unbalances in the tightly regulated gene expression mechanisms lead to cell transformation and cancer development. Knowledge of these events and signal transduction cascades triggered by oncogenes in which HO-1 plays a critical role is of upmost importance for research in this field.
Collapse
Affiliation(s)
- María Victoria Medina
- Departamento de Fisiología, Biología Molecular y Celular (FBMC), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Daiana Sapochnik
- Departamento de Fisiología, Biología Molecular y Celular (FBMC), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Martín Garcia Solá
- Departamento de Fisiología, Biología Molecular y Celular (FBMC), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Omar Coso
- Departamento de Fisiología, Biología Molecular y Celular (FBMC), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
6
|
Deng J, Xu T, Yang J, Zhang KM, Li Q, Yu XY, Li R, Fu J, Jiang Q, Ma JX, Chen YM. Sema7A, a brain immune regulator, regulates seizure activity in PTZ-kindled epileptic rats. CNS Neurosci Ther 2019; 26:101-116. [PMID: 31179640 PMCID: PMC6930824 DOI: 10.1111/cns.13181] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/15/2019] [Accepted: 05/21/2019] [Indexed: 12/11/2022] Open
Abstract
Aims Semaphorin7A (Sema7A) plays an important role in the immunoregulation of the brain. In our study, we aimed to investigate the expression patterns of Sema7A in epilepsy and further explore the roles of Sema7A in the regulation of seizure activity and the inflammatory response in PTZ‐kindled epileptic rats. Methods First, we measured the Sema7A expression levels in patients with temporal lobe epilepsy (TLE) and in rats of a PTZ‐kindled epilepsy rat model. Second, to explore the role of Sema7A in the regulation of seizure activity, we conducted epilepsy‐related behavioral experiments after knockdown and overexpression of Sema7A in the rat hippocampal dentate gyrus (DG). Possible Sema7A‐related brain immune regulators (eg, ERK phosphorylation, IL‐6, and TNF‐α) were also investigated. Additionally, the growth of mossy fibers was visualized by anterograde tracing using injections of biotinylated dextran amine (BDA) into the DG region. Results Sema7A expression was markedly upregulated in the brain tissues of TLE patients and rats of the epileptic model after PTZ kindling. After knockdown of Sema7A, seizure activity was suppressed based on the latency to the first epileptic seizure, number of seizures, and duration of seizures. Conversely, overexpression of Sema7A promoted seizures. Overexpression of Sema7A increased the expression levels of the inflammatory cytokines, IL‐6 and TNF‐α, ERK phosphorylation, and growth of mossy fibers in PTZ‐kindled epileptic rats. Conclusion Sema7A is upregulated in the epileptic brain and plays a potential role in the regulation of seizure activity in PTZ‐kindled epileptic rats, which may be related to neuroinflammation. Sema7A promotes the inflammatory cytokines TNF‐α and IL‐6 as well as the growth of mossy fibers through the ERK pathway, suggesting that Sema7A may promote seizures by increasing neuroinflammation and activating pathological neural circuits. Sema7A plays a critical role in epilepsy and could be a potential therapeutic target for this neurological disorder.
Collapse
Affiliation(s)
- Jing Deng
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chonqing, China.,Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chonqing, China
| | - Tao Xu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chonqing, China
| | - Juan Yang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chonqing, China
| | - Ke-Ming Zhang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chonqing, China
| | - Qi Li
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chonqing, China
| | - Xin-Yuan Yu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chonqing, China
| | - Rong Li
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chonqing, China
| | - Jie Fu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chonqing, China
| | - Qian Jiang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chonqing, China
| | - Jing-Xi Ma
- Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chonqing, China.,Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, China
| | - Yang-Mei Chen
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chonqing, China
| |
Collapse
|
7
|
Li QQ, Li LJ, Wang XY, Sun YY, Wu J. Research Progress in Understanding the Relationship Between Heme Oxygenase-1 and Intracerebral Hemorrhage. Front Neurol 2018; 9:682. [PMID: 30177908 PMCID: PMC6109777 DOI: 10.3389/fneur.2018.00682] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 07/30/2018] [Indexed: 01/14/2023] Open
Abstract
Intracerebral hemorrhage (ICH) is a fatal acute cerebrovascular disease, with a high morbidity and mortality. Following ICH, erythrocytes release heme and several of its metabolites, thereby contributing to brain edema and secondary brain damage. Heme oxygenase is the initial and rate-limiting enzyme of heme catabolism, and the expression of heme oxygenase-1 (HO-1) is rapidly induced following acute brain injury. As HO-1 exerts it effects via various metabolites, its role during ICH remains complex. Therefore, in-depth studies regarding the role of HO-1 in secondary brain damage following ICH may provide a theoretical basis for neuroprotective function after ICH. The present review aims to summarize recent key studies regarding the effects of HO-1 following ICH, as well as its influence on ICH prognosis.
Collapse
Affiliation(s)
- Qian-Qian Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Lan-Jun Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Xin-Yu Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Yu-Ying Sun
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Jun Wu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
8
|
Wen JJ, Porter C, Garg NJ. Inhibition of NFE2L2-Antioxidant Response Element Pathway by Mitochondrial Reactive Oxygen Species Contributes to Development of Cardiomyopathy and Left Ventricular Dysfunction in Chagas Disease. Antioxid Redox Signal 2017; 27:550-566. [PMID: 28132522 PMCID: PMC5567598 DOI: 10.1089/ars.2016.6831] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AIMS We investigated the effects of mitochondrial reactive oxygen species (mtROS) on nuclear factor (erythroid 2)-like 2 (NFE2L2) transcription factor activity during Trypanosoma cruzi (Tc) infection and determined whether enhancing the mtROS scavenging capacity preserved the heart function in Chagas disease. RESULTS C57BL/6 wild type (WT, female) mice infected with Tc exhibited myocardial loss of mitochondrial membrane potential, complex II (CII)-driven coupled respiration, and ninefold increase in mtROS production. In vitro and in vivo studies showed that Tc infection resulted in an ROS-dependent decline in the expression, nuclear translocation, antioxidant response element (ARE) binding, and activity of NFE2L2, and 35-99% decline in antioxidants' (gamma-glutamyl cysteine synthase [γGCS], heme oxygenase-1 [HO1], glutamate-cysteine ligase modifier subunit [GCLM], thioredoxin (Trx), glutathione S transferase [GST], and NAD(P)H dehydrogenase, quinone 1 [NQO1]) expression. An increase in myocardial and mitochondrial oxidative adducts, myocardial interventricular septum thickness, and left ventricle (LV) mass, a decline in LV posterior wall thickness, and disproportionate synthesis of collagens (COLI/COLIII), αSMA, and SM22α were noted in WT.Tc mice. Overexpression of manganese superoxide dismutase (MnSOD) in cultured cells (HeLa or cardiomyocytes) and MnSODtg mice preserved the NFE2L2 transcriptional activity and antioxidant/oxidant balance, and cardiac oxidative and fibrotic pathology were significantly decreased in MnSODtg.Tc mice. Importantly, echocardiography finding of a decline in LV systolic (stroke volume, cardiac output, ejection fraction) and diastolic (early/late peak filling ratio, myocardial performance index) function in WT.Tc mice was abolished in MnSODtg.Tc mice. Innovation and Conclusion: The mtROS inhibition of NFE2L2/ARE pathway constitutes a key mechanism in signaling the fibrotic gene expression and evolution of chronic cardiomyopathy. Preserving the NFE2L2 activity arrested the mitochondrial and cardiac oxidative stress, cardiac fibrosis, and heart failure in Chagas disease. Antioxid. Redox Signal. 27, 550-566.
Collapse
Affiliation(s)
- Jake Jianjun Wen
- 1 Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB) , Galveston, Texas
| | - Craig Porter
- 2 Metabolism Unit, Shriners Hospital for Children , Galveston, Texas.,3 Department of Surgery, University of Texas Medical Branch (UTMB) , Galveston, Texas
| | - Nisha Jain Garg
- 1 Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB) , Galveston, Texas.,4 Department of Pathology, University of Texas Medical Branch (UTMB) , Galveston, Texas.,5 Institute for Human Infections and Immunity, University of Texas Medical Branch (UTMB) , Galveston, Texas
| |
Collapse
|
9
|
Hou J, Hu X, Chen B, Chen X, Zhao L, Chen Z, Liu F, Liu Z. miR-155 targets Est-1 and induces ulcerative colitis via the IL-23/17/6-mediated Th17 pathway. Pathol Res Pract 2017; 213:1289-1295. [PMID: 28888763 DOI: 10.1016/j.prp.2017.08.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 07/12/2017] [Accepted: 08/15/2017] [Indexed: 01/19/2023]
Abstract
BACKGROUND Ulcerative colitis (UC) is a type of inflammatory bowel disease (IBD) affecting millions of people worldwide. miR-155 has been reported to be upregulated in various inflammatory diseases and is a positive regulator of the T-cell response. IL-17 secreting helper T (Th17) cells have been heavily implicated in tissue-specific immune pathology, including UC. METHODS AND RESULTS Therefore, we targeted miR-155 and investigated its expression levels in a DSS-induced UC mouse model, revealing increased expression. Est-1 expression was found to have decreased, but the levels of IL-23/17/6 were raised significantly and Th17 had experienced an obvious increase. We overexpressed miR-155 using a lentiviral treatment. Increased miR-155 expression induced a more severe damage to colon tissues. In this case, the level of Est-1 decreased even further, thereby enhancing IL-23/17/6-mediated Th17 differentiation. CONCLUSION miR-155 seems to target Est-1 and induces UC via the IL-23/17/6-mediated Th17 pathway.
Collapse
Affiliation(s)
- Jiangtao Hou
- Department of Gastroenterology, the First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Xueying Hu
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Bin Chen
- Department of Gastroenterology, the First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Xu Chen
- Department of Gastroenterology, the First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Lina Zhao
- Department of Gastroenterology, the First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Zhuoqun Chen
- Clinical Skills Center, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Fengbin Liu
- Department of Gastroenterology, the First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Zhihui Liu
- Department of Laboratory, the First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China.
| |
Collapse
|
10
|
Li J, Chen L, Wang N, Jiang G, Wu Y, Zhang Y. Effect of synaptic adhesion-like molecule 3 on epileptic seizures: Evidence from animal models. Epilepsy Behav 2017; 69:18-23. [PMID: 28222338 DOI: 10.1016/j.yebeh.2016.11.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 11/10/2016] [Accepted: 11/11/2016] [Indexed: 01/05/2023]
Abstract
Axonal sprouting and synaptic reorganization are the primary pathophysiological characteristics of epilepsy. Recent studies demonstrated that synaptic adhesion-like molecule 3 (SALM3) is highly expressed in the central nervous system and plays important roles in neurite outgrowth, branching, and axon guidance, mechanisms that are also observed in epilepsy. However, the expression of SALM3 in the epileptic brain and the effect of SALM3 in the pathogenesis of epilepsy remain unclear. The aims of this study were to investigate SALM3 expression in rat models of epilepsy and to explore the functional significance of SALM3 in epilepsy. We demonstrated that SALM3 was expressed at significantly higher levels in epileptic rats compared with controls. Inhibition of SALM3 by SALM3 shRNA inhibited status epilepticus in the acute stage of disease and decreased spontaneous recurrent seizures in the Lithium-pilocarpine model of chronic stages of epilepsy. Consistent with these findings, SALM3 shRNA significantly prolonged the latent period in the PTZ kindling model. Our study suggests that the overexpression of SALM3 might be associated with epileptogenesis and that selectively inhibiting SALM3 may have therapeutic potential in treating epilepsy.
Collapse
Affiliation(s)
- Jie Li
- Department of Neurology, Xinxiang Medical University, Weihui 453100, China.
| | - Ling Chen
- Department of Neurology, Kunming Medical University, Kunming 650032, China
| | - Na Wang
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou 450003, China
| | - Guohui Jiang
- Department of Neurology, North Sichuan Medical University, Nanchong 637000, China
| | - Yuqing Wu
- Department of Neurology, Xinxiang Medical University, Weihui 453100, China
| | - Yi Zhang
- Department of Neurology, Xinxiang Medical University, Weihui 453100, China
| |
Collapse
|
11
|
Tsai CY, Wen SY, Cheng SY, Wang CH, Yang YC, Viswanadha VP, Huang CY, Kuo WW. Nrf2 Activation as a Protective Feedback to Limit Cell Death in High Glucose-Exposed Cardiomyocytes. J Cell Biochem 2017; 118:1659-1669. [PMID: 27859591 DOI: 10.1002/jcb.25785] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 11/07/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Cheng-Yen Tsai
- Department of Pediatrics; China Medical University Beigang Hospital; Yunlin 651 Taiwan,ROC
- School of Chinese Medicine; College of Chinese Medicine; China Medical University; Taichung 40402 Taiwan
| | - Su-Ying Wen
- Department of Dermatology; Taipei City Hospital; Renai Branch; Taipei Taiwan
- Center for General Education; Mackay Junior College of Medicine; Nursing, and Management; Taipei Taiwan
| | - Shi-Yann Cheng
- Department of Medical Education and Research and Department of Obstetrics and Gynecology; China Medical University Beigang Hospital; Yunlin 651 Taiwan,ROC
- Department of Obstetrics and Gynecology; China Medical University An Nan Hospital; Yunlin 651 Taiwan,ROC
- Obstetrics and Gynecology; School of Medicine; China Medical University; Taichung Taiwan
| | - Chung-Hsing Wang
- Department of Pediatrics; China Medical University Hospital; Taichung 404 Taiwan,ROC
| | - Yao-Chih Yang
- Department of Biological Science and Technology; College of Biopharmaceutical and Food Sciences; China Medical University; Taichung 404 Taiwan,ROC
| | | | - Chih-Yang Huang
- Graduate Institute of Basic Medical Science; China Medical University; Taichung 404 Taiwan,ROC
- Department of Chinese Medicine; China Medical University Hospital; Taichung 404 Taiwan,ROC
- Department of Health and Nutrition Biotechnology; Asia University; Taichung 413 Taiwan,ROC
| | - Wei-Wen Kuo
- Department of Biological Science and Technology; College of Biopharmaceutical and Food Sciences; China Medical University; Taichung 404 Taiwan,ROC
| |
Collapse
|
12
|
Lentiviral Vector-Induced Overexpression of RGMa in the Hippocampus Suppresses Seizures and Mossy Fiber Sprouting. Mol Neurobiol 2016; 54:1379-1391. [PMID: 26843113 DOI: 10.1007/s12035-016-9744-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 01/22/2016] [Indexed: 10/22/2022]
Abstract
Repulsive guidance molecule a (RGMa) is a membrane-bound protein that inhibits axon outgrowth in the central nervous system. Temporal lobe epilepsy (TLE) is a common neurological disorder characterized by recurrent spontaneous seizures. To explore the role of RGMa in epilepsy, we investigated the expression of RGMa in patients with TLE, pilocarpine-induced rat model, and pentylenetetrazol kindling model of epilepsy, and then we performed behavioral, histological, and electrophysiological analysis by lentivirus-mediated overexpression of RGMa in the hippocampus of animal model. We found that RGMa was significantly decreased in TLE patients and in experimental rats from 6 h to 60 days after pilocarpine-induced seizures. In two types of epileptic animal models, pilocarpine-induced model and pentylenetetrazol kindling model, overexpression of RGMa in the hippocampus of rats exerted seizure-suppressant effects. The reduced spontaneous seizures were accompanied by attenuation of hippocampal mossy fiber sprouting. In addition, overexpression of RGMa inhibited hyperexcitability of hippocampal neurons via suppressing NMDAR-mediated currents in Mg2+-free-induced organotypic slice model. Collectively, these results demonstrate that overexpression of RGMa could be an alternative strategy for epilepsy therapy.
Collapse
|
13
|
Kuosmanen SM, Viitala S, Laitinen T, Peräkylä M, Pölönen P, Kansanen E, Leinonen H, Raju S, Wienecke-Baldacchino A, Närvänen A, Poso A, Heinäniemi M, Heikkinen S, Levonen AL. The Effects of Sequence Variation on Genome-wide NRF2 Binding--New Target Genes and Regulatory SNPs. Nucleic Acids Res 2016; 44:1760-75. [PMID: 26826707 PMCID: PMC4770247 DOI: 10.1093/nar/gkw052] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 01/16/2016] [Indexed: 12/11/2022] Open
Abstract
Transcription factor binding specificity is crucial for proper target gene regulation. Motif discovery algorithms identify the main features of the binding patterns, but the accuracy on the lower affinity sites is often poor. Nuclear factor E2-related factor 2 (NRF2) is a ubiquitous redox-activated transcription factor having a key protective role against endogenous and exogenous oxidant and electrophile stress. Herein, we decipher the effects of sequence variation on the DNA binding sequence of NRF2, in order to identify both genome-wide binding sites for NRF2 and disease-associated regulatory SNPs (rSNPs) with drastic effects on NRF2 binding. Interactions between NRF2 and DNA were studied using molecular modelling, and NRF2 chromatin immunoprecipitation-sequence datasets together with protein binding microarray measurements were utilized to study binding sequence variation in detail. The binding model thus generated was used to identify genome-wide binding sites for NRF2, and genomic binding sites with rSNPs that have strong effects on NRF2 binding and reside on active regulatory elements in human cells. As a proof of concept, miR-126–3p and -5p were identified as NRF2 target microRNAs, and a rSNP (rs113067944) residing on NRF2 target gene (Ferritin, light polypeptide, FTL) promoter was experimentally verified to decrease NRF2 binding and result in decreased transcriptional activity.
Collapse
Affiliation(s)
- Suvi M Kuosmanen
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, FIN-70211 Kuopio, Finland
| | - Sari Viitala
- School of Pharmacy, University of Eastern Finland, FIN-70211 Kuopio, Finland
| | - Tuomo Laitinen
- School of Pharmacy, University of Eastern Finland, FIN-70211 Kuopio, Finland
| | - Mikael Peräkylä
- School of Pharmacy, University of Eastern Finland, FIN-70211 Kuopio, Finland
| | - Petri Pölönen
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, FIN-70211 Kuopio, Finland Institute of Biomedicine, School of Medicine, University of Eastern Finland, FIN-70211 Kuopio, Finland
| | - Emilia Kansanen
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, FIN-70211 Kuopio, Finland
| | - Hanna Leinonen
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, FIN-70211 Kuopio, Finland
| | - Suresh Raju
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, FIN-70211 Kuopio, Finland
| | | | - Ale Närvänen
- School of Pharmacy, University of Eastern Finland, FIN-70211 Kuopio, Finland
| | - Antti Poso
- School of Pharmacy, University of Eastern Finland, FIN-70211 Kuopio, Finland
| | - Merja Heinäniemi
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, FIN-70211 Kuopio, Finland
| | - Sami Heikkinen
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, FIN-70211 Kuopio, Finland
| | - Anna-Liisa Levonen
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, FIN-70211 Kuopio, Finland
| |
Collapse
|
14
|
Manfredsson FP. Introduction to Viral Vectors and Other Delivery Methods for Gene Therapy of the Nervous System. Methods Mol Biol 2016; 1382:3-18. [PMID: 26611575 DOI: 10.1007/978-1-4939-3271-9_1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The use of gene therapy in neuroscience research has become common place in many laboratories across the world. However, contrary to common belief, the practical application of viral or non-viral gene therapy is not as straightforward as it may seem. All too often investigators see their experiments fail due to low-quality third-party vectors or due to a lack of knowledge regarding the proper use of these tools. For example, researchers often find themselves performing experiments using the wrong methodology (e.g., using the wrong type of vector or mishandling the vector to the point where the efficacy is significantly reduced) resulting in experiments that potentially fail to accurately answer a hypothesis, or the generation of irreproducible data. Thus, it is important for investigators that seek to utilize gene therapy approaches to gain a basic understanding of how to apply this technology. This includes understanding how to appropriately design and execute an experiment, understanding various delivery vehicles (e.g., what virus to use), delivery methods (e.g., systemic versus intracranial injections), what expression system to use, and the time course involved with a particular expression system. This chapter is intended to present an overview of this fundamental knowledge, providing the researcher with a decision tree upon which to build their gene therapy experiment.
Collapse
Affiliation(s)
- Fredric P Manfredsson
- Department of Translational Science & Molecular Medicine, Michigan State University, 333 Bostwick Avenue NE, Grand Rapids, MI, 49503-2532, USA.
- Hauenstein Neuroscience Center, Mercy Health Saint Mary's, Grand Rapids, MI, USA.
| |
Collapse
|
15
|
Kanninen KM, Pomeshchik Y, Leinonen H, Malm T, Koistinaho J, Levonen AL. Applications of the Keap1-Nrf2 system for gene and cell therapy. Free Radic Biol Med 2015; 88:350-361. [PMID: 26164630 DOI: 10.1016/j.freeradbiomed.2015.06.037] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 06/23/2015] [Accepted: 06/27/2015] [Indexed: 01/15/2023]
Abstract
Oxidative stress has been implicated to play a role in a number of acute and chronic diseases including acute injuries of the central nervous system, neurodegenerative and cardiovascular diseases, and cancer. The redox-activated transcription factor Nrf2 has been shown to protect many different cell types and organs from a variety of toxic insults, whereas in many cancers, unchecked Nrf2 activity increases the expression of cytoprotective genes and, consequently, provides growth advantage to cancerous cells. Herein, we discuss current preclinical gene therapy approaches to either increase or decrease Nrf2 activity with a special reference to neurological diseases and cancer. In addition, we discuss the role of Nrf2 in stem cell therapy for neurological disorders.
Collapse
Affiliation(s)
- Katja M Kanninen
- Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Finland
| | - Yuriy Pomeshchik
- Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Finland
| | - Hanna Leinonen
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Finland
| | - Tarja Malm
- Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Finland
| | - Jari Koistinaho
- Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Finland.
| | - Anna-Liisa Levonen
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Finland.
| |
Collapse
|
16
|
Negi G, Nakkina V, Kamble P, Sharma SS. Heme oxygenase-1, a novel target for the treatment of diabetic complications: focus on diabetic peripheral neuropathy. Pharmacol Res 2015; 102:158-67. [PMID: 26432957 DOI: 10.1016/j.phrs.2015.09.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 09/01/2015] [Accepted: 09/18/2015] [Indexed: 01/07/2023]
Abstract
Diabetic neuropathy is a complex disorder induced by long standing diabetes. Many signaling pathways and transcription factors have been proposed to be involved in the development and progression of related processes. Years of research points to critical role of oxidative stress, neuroinflammation and apoptosis in the pathogenesis of neuropathy in diabetes. Heme oxygenase-1 (HO-1) is heat-shock protein induced under conditions of different kinds of stress and has been implicated in cellular defense against oxidative stress. HO-1 degrades heme to biliverdin, carbon monoxide (CO) and free iron. Biliverdin and CO are gaining particular interest because these two have been found to mediate most of anti-inflammatory, antioxidant and anti-apoptotic effects of HO-1. Although extensively studied in different kinds of cancers and cardiovascular conditions, role of HO-1 in diabetic neuropathy is still under investigation. In this paper, we review the unique therapeutic potential of HO-1 and its role in mitigating various pathological processes that lead to diabetic neuropathy. This review also highlights the therapeutic approaches such as pharmacological and natural inducers of HO-1, gene delivery of HO-1 or its reaction products that in future, could lead to progression of HO-1 activators through the preclinical stages of drug development to clinical trials.
Collapse
Affiliation(s)
- Geeta Negi
- Molecular Neuropharmacology Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Punjab, India
| | - Vanaja Nakkina
- Molecular Neuropharmacology Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Punjab, India
| | - Pallavi Kamble
- Molecular Neuropharmacology Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Punjab, India
| | - Shyam S Sharma
- Molecular Neuropharmacology Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Punjab, India.
| |
Collapse
|
17
|
Laakkonen JP, Ylä-Herttuala S. Recent Advancements in Cardiovascular Gene Therapy and Vascular Biology. Hum Gene Ther 2015; 26:518-24. [DOI: 10.1089/hum.2015.095] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Johanna P. Laakkonen
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Seppo Ylä-Herttuala
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Department of Medicine, University of Eastern Finland, Kuopio, Finland
- Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
18
|
Wang L, Zhao B, Chen Y, Ma L, Chen EZ, Mao EQ. Biliary tract external drainage increases the expression levels of heme oxygenase-1 in rat livers. Eur J Med Res 2015. [PMID: 26199001 PMCID: PMC4511237 DOI: 10.1186/s40001-015-0152-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Background Heme oxygenase-1 (HO-1) protects cells by anti-oxidation, maintaining normal microcirculation and anti-inflammatory under stress. This study investigated the effects of biliary tract external drainage (BTED) on the expression levels of HO-1 in rat livers. Methods Biliary tract external drainage was performed by inserting a cannula into the bile duct. Sixty Sprague–Dawley rats were randomized to the following groups: sham 1 h group; BTED 1 h group; bile duct ligation (BDL) 1 h group; sham 6 h group and BTED 6 h group. The expression levels of HO-1 mRNA were analyzed using real-time RT-PCR. The expression levels of HO-1 were analyzed using immunohistochemistry. Results The expression levels of HO-1 mRNA in the liver of the BTED group increased significantly compared with the sham group 1 and 6 h after surgery (p < 0.05).The expression levels of HO-1 in the BTED group increased significantly compared with the sham group 1 and 6 h after surgery. The expression levels of HO-1 mRNA in the liver in the BDL group decreased significantly compared with the sham group 1 h after surgery (p < 0.05).The expression levels of HO-1 in the BDL group decreased significantly compared with the sham group at this time. Conclusion Biliary tract external drainages increase the expression levels of HO-1 in the liver.
Collapse
Affiliation(s)
- Lu Wang
- Department of Emergency Intensive Care Unit, Shanghai Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China.
| | - Bing Zhao
- Department of Emergency Intensive Care Unit, Shanghai Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China.
| | - Ying Chen
- Department of Emergency Intensive Care Unit, Shanghai Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China.
| | - Li Ma
- Department of Emergency Intensive Care Unit, Shanghai Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China.
| | - Er-Zhen Chen
- Department of Emergency Intensive Care Unit, Shanghai Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China.
| | - En-Qiang Mao
- Department of Emergency Intensive Care Unit, Shanghai Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China.
| |
Collapse
|
19
|
Leinonen HM, Kansanen E, Pölönen P, Heinäniemi M, Levonen AL. Role of the Keap1-Nrf2 pathway in cancer. Adv Cancer Res 2015; 122:281-320. [PMID: 24974185 DOI: 10.1016/b978-0-12-420117-0.00008-6] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Kelch-like ECH-associated protein 1 (Keap1)-nuclear factor E2-related factor 2 (Nrf2) pathway is one of the major signaling cascades involved in cell defense and survival against endogenous and exogenous stress. While Nrf2 and its target genes provide protection against various age-related diseases including tumorigenesis, constitutively active Nrf2 in cancer cells increases the expression of cytoprotective genes and, consequently, enhances proliferation via metabolic reprogramming and inhibition of apoptosis. Herein, we review the current understanding of the regulation of Nrf2 in normal cells as well as its dual role in cancer. Furthermore, the mechanisms of Nrf2 dysregulation in cancer, consequences of unchecked Nrf2 activity, and therapies targeting the Keap1-Nrf2 system are discussed.
Collapse
Affiliation(s)
- Hanna M Leinonen
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, Kuopio, Finland
| | - Emilia Kansanen
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, Kuopio, Finland
| | - Petri Pölönen
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, Kuopio, Finland; Institute of Biomedicine, School of Medicine, University of Eastern Finland, P.O. Box 1627, Kuopio, Finland
| | - Merja Heinäniemi
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, Kuopio, Finland; Institute of Biomedicine, School of Medicine, University of Eastern Finland, P.O. Box 1627, Kuopio, Finland
| | - Anna-Liisa Levonen
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, Kuopio, Finland.
| |
Collapse
|
20
|
Wang CY, Wang ZY, Xie JW, Cai JH, Wang T, Xu Y, Wang X, An L. CD36 upregulation mediated by intranasal LV-NRF2 treatment mitigates hypoxia-induced progression of Alzheimer's-like pathogenesis. Antioxid Redox Signal 2014; 21:2208-30. [PMID: 24702189 PMCID: PMC4224043 DOI: 10.1089/ars.2014.5845] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AIMS There is extensive evidence that oxidative stress induces cellular dysfunction in the brain and plays a critical role in Alzheimer's disease (AD) pathogenesis. Hypoxia increases factors involved in oxidative stress injury and contributes to the onset and progression of AD. Nuclear factor erythroid 2-related factor 2 (NRF2), a major component regulating antioxidant response, is attenuated in the AD brain. Importantly, NRF2 directly regulates the alternative first exons of CD36, an important participant in oxidative and inflammatory processes. To explore the effects of hypoxia-induced deterioration of AD-like pathogenesis and investigate the correlation between hypoxia-induced NRF2 signal alterations and CD36 expression, we examined the NRF2 signaling, CD36, and oxidative stress events in hypoxia-treated APPswe/PSEN1dE9 (APP/PS1) mice brain. RESULTS We observed that hypoxia treatment increased oxidative stress, exacerbated inflammation, and aggravated learning defects in aged APP/PS1 mice. Microglia from hypoxia-treated mice brain exhibited marked reduction in CD36 expression and inhibition of β-amyloid (Aβ) degradation. Accordingly, hypoxia treatment caused a decrease in transactivation of NRF2 target genes in the aging mouse brain. Intranasal administration with a lentiviral vector encoding human NRF2 increased CD36 expression, ameliorated the weak antioxidant response triggered by hypoxia, diminished Aβ deposition, and improved spatial memory defects. INNOVATION In this study, we demonstrated for the first time that NRF2 intranasal treatment-induced increases of CD36 could enhance Aβ clearance in AD transgenic mouse. CONCLUSION These results suggest that targeting NRF2-mediated CD36 expression might provide a beneficial intervention for cognitive impairment and oxidative stress in AD progression.
Collapse
Affiliation(s)
- Chun-Yan Wang
- 1 Key Laboratory of Medical Cell Biology of Ministry of Education of China, Department of Pathophysiology, China Medical University , Shenyang, China
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Savinainen JR, Kansanen E, Pantsar T, Navia-Paldanius D, Parkkari T, Lehtonen M, Laitinen T, Nevalainen T, Poso A, Levonen AL, Laitinen JT. Robust hydrolysis of prostaglandin glycerol esters by human monoacylglycerol lipase (MAGL). Mol Pharmacol 2014; 86:522-35. [PMID: 25140003 DOI: 10.1124/mol.114.094284] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The primary route of inactivation of the endocannabinoid 2-arachidonoylglycerol in the central nervous system is through enzymatic hydrolysis, mainly carried out by monoacylglycerol lipase (MAGL), along with a small contribution by the α/β-hydrolase domain (ABHD) proteins ABHD6 and ABHD12. Recent methodological progress allowing kinetic monitoring of glycerol liberation has facilitated substrate profiling of the human endocannabinoid hydrolases, and these studies have revealed that the three enzymes have distinct monoacylglycerol substrate and isomer preferences. Here, we have extended this substrate profiling to cover four prostaglandin glycerol esters, namely, 15-deoxy-Δ(12,14)-prostaglandin J2-2-glycerol (15d-PGJ2-G), PGD2-G, PGE2-G, and PGF2 α-G. We found that the three enzymes hydrolyzed the tested substrates, albeit with distinct rates and preferences. Although human ABHD12 (hABHD12) showed only marginal activity toward PGE2-G, hABHD6 preferentially hydrolyzed PGD2-G, and human MAGL (hMAGL) robustly hydrolyzed all four. This was particularly intriguing for MAGL activity toward 15d-PGJ2-G whose hydrolysis rate rivaled that of the best monoacylglycerol substrates. Molecular modeling studies combined with kinetic analysis supported favorable interaction with the hMAGL active site. Long and short MAGL isoforms shared a similar substrate profile, and hMAGL hydrolyzed 15d-PGJ2-G also in living cells. The ability of 15d-PGJ2-G to activate the canonical nuclear factor erythroid 2-related factor (Nrf2) signaling pathway used by 15d-PGJ2 was assessed, and these studies revealed for the first time that 15d-PGJ2 and 15d-PGJ2-G similarly activated Nrf2 signaling as well as transcription of target genes of this pathway. Our study challenges previous claims regarding the ability of MAGL to catalyze PG-G hydrolysis and extend the MAGL substrate profile beyond the classic monoacylglycerols.
Collapse
Affiliation(s)
- Juha R Savinainen
- School of Medicine, Institute of Biomedicine (J.R.S., D.N-P., Te.P., J.T.L.), A.I. Virtanen Institute for Molecular Sciences (E.K., A-L.L.), School of Pharmacy (Ta.P., Te.P., M.L., T.L., T.N., A.P.), Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Emilia Kansanen
- School of Medicine, Institute of Biomedicine (J.R.S., D.N-P., Te.P., J.T.L.), A.I. Virtanen Institute for Molecular Sciences (E.K., A-L.L.), School of Pharmacy (Ta.P., Te.P., M.L., T.L., T.N., A.P.), Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Tatu Pantsar
- School of Medicine, Institute of Biomedicine (J.R.S., D.N-P., Te.P., J.T.L.), A.I. Virtanen Institute for Molecular Sciences (E.K., A-L.L.), School of Pharmacy (Ta.P., Te.P., M.L., T.L., T.N., A.P.), Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Dina Navia-Paldanius
- School of Medicine, Institute of Biomedicine (J.R.S., D.N-P., Te.P., J.T.L.), A.I. Virtanen Institute for Molecular Sciences (E.K., A-L.L.), School of Pharmacy (Ta.P., Te.P., M.L., T.L., T.N., A.P.), Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Teija Parkkari
- School of Medicine, Institute of Biomedicine (J.R.S., D.N-P., Te.P., J.T.L.), A.I. Virtanen Institute for Molecular Sciences (E.K., A-L.L.), School of Pharmacy (Ta.P., Te.P., M.L., T.L., T.N., A.P.), Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Marko Lehtonen
- School of Medicine, Institute of Biomedicine (J.R.S., D.N-P., Te.P., J.T.L.), A.I. Virtanen Institute for Molecular Sciences (E.K., A-L.L.), School of Pharmacy (Ta.P., Te.P., M.L., T.L., T.N., A.P.), Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Tuomo Laitinen
- School of Medicine, Institute of Biomedicine (J.R.S., D.N-P., Te.P., J.T.L.), A.I. Virtanen Institute for Molecular Sciences (E.K., A-L.L.), School of Pharmacy (Ta.P., Te.P., M.L., T.L., T.N., A.P.), Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Tapio Nevalainen
- School of Medicine, Institute of Biomedicine (J.R.S., D.N-P., Te.P., J.T.L.), A.I. Virtanen Institute for Molecular Sciences (E.K., A-L.L.), School of Pharmacy (Ta.P., Te.P., M.L., T.L., T.N., A.P.), Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Antti Poso
- School of Medicine, Institute of Biomedicine (J.R.S., D.N-P., Te.P., J.T.L.), A.I. Virtanen Institute for Molecular Sciences (E.K., A-L.L.), School of Pharmacy (Ta.P., Te.P., M.L., T.L., T.N., A.P.), Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Anna-Liisa Levonen
- School of Medicine, Institute of Biomedicine (J.R.S., D.N-P., Te.P., J.T.L.), A.I. Virtanen Institute for Molecular Sciences (E.K., A-L.L.), School of Pharmacy (Ta.P., Te.P., M.L., T.L., T.N., A.P.), Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jarmo T Laitinen
- School of Medicine, Institute of Biomedicine (J.R.S., D.N-P., Te.P., J.T.L.), A.I. Virtanen Institute for Molecular Sciences (E.K., A-L.L.), School of Pharmacy (Ta.P., Te.P., M.L., T.L., T.N., A.P.), Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
22
|
Shen B, Wang W, Ma L, Wang S, Ding L, Chen Z, Sao Y, Shen H, Wei Z, Zhang W. RETRACTED: Sulforaphane restores oxidative stress induced by di-N-butylphthalate in testicular Leydig cells with low basal reactive oxygen species levels. Urology 2014; 84:850-6. [PMID: 25106942 DOI: 10.1016/j.urology.2014.06.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Revised: 05/13/2014] [Accepted: 06/06/2014] [Indexed: 10/24/2022]
Abstract
OBJECTIVE To investigate the role and therapeutic potential of Nuclear factor erythroid-related factor 2 (Nrf2) in oxidative stress induced by di-N-butylphthalate (DBP) in testicular Leydig cells. MATERIALS AND METHODS Levels of reactive oxygen species (ROS) and Nrf2 in testicles from offspring of mice fed with DBP were studied. Basal ROS and Nrf2 level in mouse TM3 testicular Leydig cells were studied. Cells were treated with silencing or overexpression of Nrf2 in the presence and absence of DBP. Oxidative profiles were examined. Expressions of antioxidant genes downstream of Nrf2 were studied. Therapeutic effect of Nrf2 inducer sulforaphane (SFN) was evaluated. RESULTS Leydig cells with low basal Nrf2 and ROS are more vulnerable to DBP. DBP-induced intracellular oxidative stress to a similar extent with Nrf2 knockdown. Nrf2 level was increased together with its target genes, hemeoxygenase 1, quinone 1, and peroxiredoxin 6, after DBP stimulation. Endogenous Nrf2 of Leydig cells was upregulated to battle against ROS. Upregulation of Nrf2 by SFN not only restored the intracellular oxidative toxicity but also cell proliferation and testosterone secretion in response to DBP. CONCLUSION SFN restores oxidative stress induced by DBP in testicular Leydig cells with low basal ROS.
Collapse
Affiliation(s)
- Baixin Shen
- Department of Urology, Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Wang
- Department of Urology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Long Ma
- Department of Urology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shangqian Wang
- Department of Urology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Liucheng Ding
- Department of Urology, Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhengsen Chen
- Department of Urology, Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yunpeng Sao
- Department of Urology, Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hua Shen
- Department of Urology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhongqing Wei
- Department of Urology, Second Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Wei Zhang
- Department of Urology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
23
|
Hsu WH, Lee BH, Pan TM. Monascin attenuates oxidative stress-mediated lung inflammation via peroxisome proliferator-activated receptor-gamma (PPAR-γ) and nuclear factor-erythroid 2 related factor 2 (Nrf-2) modulation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:5337-5344. [PMID: 24865672 DOI: 10.1021/jf501373a] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We speculated that peroxisome proliferator-activated receptor (PPAR)-γ agonists may modulate the oxidative stress pathway to ameliorate the development of airway inflammation. The effect of Monascus-fermented metabolite monascin (MS) and rosiglitazone (Rosi) on oxidative stress-induced lung inflammation was evaluated. Luciferase assay and DNA binding activity assay were used to point out that MS may be a novel PPAR-γ agonist and nuclear factor-erythroid 2 related factor 2 (Nrf-2) activator. We used hydrogen peroxide (H2O2) to induce inflammation in lung epithelial cells. MS and Rosi prevented H2O2-induced ROS generation in A549 epithelial cells through PPAR-γ translocation, avoiding inflammatory mediator expression via inhibiting nuclear factor (NF)-κB translocation. The regulatory ability of MS was abolished by siRNA against PPAR-γ. MS also elevated antioxidant enzyme expression via Nrf-2 activation. Both PPAR-γ and Nrf-2 might have benefits against lung inflammation. MS regulated PPAR-γ and Nrf-2 to improve lung oxidative inflammation.
Collapse
Affiliation(s)
- Wei-Hsuan Hsu
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University , No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | | | | |
Collapse
|
24
|
Shen B, Wang W, Ding L, Sao Y, Huang Y, Shen Z, Zhuo Y, Wei Z, Zhang W. Nuclear factor erythroid 2-related factor 2 rescues the oxidative stress induced by di-N-butylphthalate in testicular Leydig cells. Hum Exp Toxicol 2014; 34:145-52. [PMID: 24917652 DOI: 10.1177/0960327114530744] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Aim: This study aimed to determine whether nuclear factor erythroid 2-related factor 2 antagonized the oxidative stress induced by di- N-butylphthalate (DBP) in testicular Leydig cells. Methods: Mouse TM3 testicular Leydig cells were treated with Nrf2 knockdown (KD) or overexpression in the presence and absence of DBP. Oxidative profiles were examined. Nrf2 target antioxidant genes were studied, and the effects of Nrf2 inducer sulphoraphane (SFN) were tested. Results: DBP induced intracellular oxidative stress to a similar extent with Nrf2 KD. Expression and protein levels of Nrf2 were increased together with its target genes, namely heme oxygenase 1, nicotinamide adenine dinucleotide phosphate quinone oxidoreductase 1 and peroxiredoxin 6, following DBP stimulation. Use of SFN not only restored the intracellular oxidative toxicity but also cell proliferation and testosterone secretion in response to DBP. Conclusion: Increased Nrf2 activity, for example, by SFN can effectively antagonize the oxidative stress in testicular Leydig cells caused by DBP.
Collapse
Affiliation(s)
- B Shen
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - W Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - L Ding
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Y Sao
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Y Huang
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Z Shen
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Y Zhuo
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Z Wei
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - W Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| |
Collapse
|
25
|
Cheng MY, Lee IP, Jin M, Sun G, Zhao H, Steinberg GK, Sapolsky RM. An insult-inducible vector system activated by hypoxia and oxidative stress for neuronal gene therapy. Transl Stroke Res 2013; 2:92-100. [PMID: 21603078 DOI: 10.1007/s12975-010-0060-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Gene therapy has demonstrated the protective potential of a variety of genes against stroke. However, conventional gene therapy vectors are limited due to the inability to temporally control their expression, which can sometimes lead to deleterious side effects. Thus, an inducible vector that can be temporally controlled and activated by the insult itself would be advantageous. Using hypoxia responsive elements (HRE) and antioxidant responsive elements (ARE), we have constructed an insult-inducible vector activated by hypoxia and reactive oxygen species (ROS). In COS7 cells, the inducible ARE-HRE-luciferase vectors are highly activated by oxygen deprivation, hydrogen peroxide treatment, and the ROS-induced transcription factor NF-E2-related factor 2 (Nrf2). Using a defective herpes virus, the neuroprotective potential of this inducible vector was tested by over-expressing the transcription factor Nrf2. In primary cortical cultures, expression of the inducible ARE-HRE-Nrf2 protects against oxygen glucose deprivation, similar to that afforded by the constitutively expressed Nrf2. This ARE+HRE vector system is advantageous in that it allows the expression of a transgene to be activated not only during hypoxia but also maintained after reperfusion, thus prolonging the transgene expression during an ischemic insult. This insult-inducible vector system will be a valuable gene therapy tool for activating therapeutic/protective genes in cerebrovascular diseases.
Collapse
Affiliation(s)
- Michelle Y Cheng
- Department of Biology, Stanford University, 371 Serra Mall, Stanford, CA 94305-5020, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Policastro LL, Ibañez IL, Notcovich C, Duran HA, Podhajcer OL. The tumor microenvironment: characterization, redox considerations, and novel approaches for reactive oxygen species-targeted gene therapy. Antioxid Redox Signal 2013; 19:854-95. [PMID: 22794113 DOI: 10.1089/ars.2011.4367] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The tumor microenvironment is a complex system that involves the interaction between malignant and neighbor stromal cells embedded in a mesh of extracellular matrix (ECM) components. Stromal cells (fibroblasts, endothelial, and inflammatory cells) are co-opted at different stages to help malignant cells invade the surrounding ECM and disseminate. Malignant cells have developed adaptive mechanisms to survive under the extreme conditions of the tumor microenvironment such as restricted oxygen supply (hypoxia), nutrient deprivation, and a prooxidant state among others. These conditions could be eventually used to target drugs that will be activated specifically in this microenvironment. Preclinical studies have shown that modulating cellular/tissue redox state by different gene therapy (GT) approaches was able to control tumor growth. In this review, we describe the most relevant features of the tumor microenvironment, addressing reactive oxygen species-generating sources that promote a prooxidative microenvironment inside the tumor mass. We describe different GT approaches that promote either a decreased or exacerbated prooxidative microenvironment, and those that make use of the differential levels of ROS between cancer and normal cells to achieve tumor growth inhibition.
Collapse
Affiliation(s)
- Lucia Laura Policastro
- Department of Micro and Nanotechnology, National Atomic Energy Commission, Buenos Aires 1650, Argentina.
| | | | | | | | | |
Collapse
|
27
|
Jazwa A, Florczyk U, Jozkowicz A, Dulak J. Gene therapy on demand: Site specific regulation of gene therapy. Gene 2013; 525:229-38. [DOI: 10.1016/j.gene.2013.03.093] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 03/02/2013] [Accepted: 03/07/2013] [Indexed: 12/29/2022]
|
28
|
Kansanen E, Kuosmanen SM, Leinonen H, Levonen AL. The Keap1-Nrf2 pathway: Mechanisms of activation and dysregulation in cancer. Redox Biol 2013; 1:45-9. [PMID: 24024136 PMCID: PMC3757665 DOI: 10.1016/j.redox.2012.10.001] [Citation(s) in RCA: 1000] [Impact Index Per Article: 83.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 10/23/2012] [Indexed: 12/31/2022] Open
Abstract
The Keap1-Nrf2 pathway is the major regulator of cytoprotective responses to oxidative and electrophilic stress. Although cell signaling pathways triggered by the transcription factor Nrf2 prevent cancer initiation and progression in normal and premalignant tissues, in fully malignant cells Nrf2 activity provides growth advantage by increasing cancer chemoresistance and enhancing tumor cell growth. In this graphical review, we provide an overview of the Keap1-Nrf2 pathway and its dysregulation in cancer cells. We also briefly summarize the consequences of constitutive Nrf2 activation in cancer cells and how this can be exploited in cancer gene therapy.
Collapse
Affiliation(s)
- Emilia Kansanen
- Department of Biotechnology and Molecular Medicine, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FIN-70211, Kuopio, Finland
| | | | | | | |
Collapse
|
29
|
Branchetti E, Sainger R, Poggio P, Grau JB, Patterson-Fortin J, Bavaria JE, Chorny M, Lai E, Gorman RC, Levy RJ, Ferrari G. Antioxidant enzymes reduce DNA damage and early activation of valvular interstitial cells in aortic valve sclerosis. Arterioscler Thromb Vasc Biol 2012; 33:e66-74. [PMID: 23241403 DOI: 10.1161/atvbaha.112.300177] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Accumulation of reactive oxygen species (ROS) and remodeling of the microstructure of the cusp characterize aortic valve sclerosis, the early phase of calcific aortic valve disease. These events are associated with activation of valvular interstitial cells (VICs) toward an osteogenic-like phenotype. Because ROS cause DNA damage and transcriptional activation we investigated the relationship between ROS, DNA damage response, and transdifferentiation of VICs. METHODS AND RESULTS Human aortic valve cusps and patient-matched VICs were collected from 39 patients both with and without calcific aortic valve disease. VICs were exposed to hydrogen peroxide (0.1-1 mmol/L) after cell transduction with extracellular superoxide dismutase/catalase adenoviruses and characterized for DNA-damage response, osteogenic transdifferentiation, and calcification. ROS induce relocalization of phosphorylated γH2AX, MRE11, and XRCC1 proteins with expression of osteogenic signaling molecule RUNX2 via AKT. We report a sustained activation of γH2AX in aortic valve sclerosis-derived VICs suggesting their impaired ability to repair DNA damage. Adenovirus superoxide dismutase/catalase transduction decreases ROS-induced DNA damage and VIC transdifferentiation in aortic valve sclerosis-derived cells. Finally, adenoviral transduction with catalase reverts ROS-mediated calcification and cellular transdifferentiation. CONCLUSIONS We conclude that the ROS-induced DNA damage response is dysfunctional in early asymptomatic stages of calcific aortic valve disease. We unveiled an association among ROS, DNA-damage response, and cellular transdifferentiation, reversible by antioxidant enzymes delivery.
Collapse
Affiliation(s)
- Emanuela Branchetti
- Department of Surgery, Division of Cardiovascular Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19036, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Leinonen HM, Ruotsalainen AK, Määttä AM, Laitinen HM, Kuosmanen SM, Kansanen E, Pikkarainen JT, Lappalainen JP, Samaranayake H, Lesch HP, Kaikkonen MU, Ylä-Herttuala S, Levonen AL. Oxidative stress-regulated lentiviral TK/GCV gene therapy for lung cancer treatment. Cancer Res 2012; 72:6227-35. [PMID: 23041549 DOI: 10.1158/0008-5472.can-12-1166] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nuclear factor erythroid-2 related factor 2 (Nrf2) is a transcription factor that regulates protection against a wide variety of toxic insults to cells, including cytotoxic cancer chemotherapeutic drugs. Many lung cancer cells harbor a mutation in either Nrf2 or its inhibitor Keap1 resulting in permanent activation of Nrf2 and chemoresistance. In this study, we sought to examine whether this attribute could be exploited in cancer suicide gene therapy by using a lentiviral (LV) vector expressing herpes simplex virus thymidine kinase (HSV-TK/GCV) under the regulation of antioxidant response element (ARE), a cis-acting enhancer sequence that binds Nrf2. In human lung adenocarcinoma cells in which Nrf2 is constitutively overexpressed, ARE activity was found to be high under basal conditions. In this setting, ARE-HSV-TK was more effective than a vector in which HSV-TK expression was driven by a constitutively active promoter. In a mouse xenograft model of lung cancer, suicide gene therapy with LV-ARE-TK/GCV was effective compared with LV-PGK-TK/GCV in reducing tumor size. We conclude that ARE-regulated HSV-TK/GCV therapy offers a promising approach for suicide cancer gene therapy in cells with high constitutive ARE activity, permitting a greater degree of therapeutic targeting to those cells.
Collapse
Affiliation(s)
- Hanna M Leinonen
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FIN-70210 Kuopio, Finland
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Manfredsson FP, Bloom DC, Mandel RJ. Regulated protein expression for in vivo gene therapy for neurological disorders: progress, strategies, and issues. Neurobiol Dis 2012; 48:212-21. [PMID: 22426391 DOI: 10.1016/j.nbd.2012.03.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 01/28/2012] [Accepted: 03/01/2012] [Indexed: 01/16/2023] Open
Abstract
The field of in vivo gene therapy has matured to the point where there are numerous clinical trials underway including late-stage clinical trials. Several viral vectors are especially efficient and support lifetime protein expression in the brain and a number of clinical trials are underway for various progressive or chronic neurological disorders including Parkinson's disease, Alzheimer's disease, and Batten's disease. To date, however, none of the vectors in clinical use have any direct way to reverse or control their transgene product in the event continued protein expression should become problematic. Several schemes that use elements within the vector design have been developed that allow an external drug or pro-drug to alter ongoing protein expression after in vivo gene transfer. The most promising and most studied regulated protein expression methods for in vivo gene transfer are reviewed. In addition, potential scientific and clinical advantages of transgene regulation for gene therapy are discussed.
Collapse
Affiliation(s)
- Fredric P Manfredsson
- Department of Translational Science & Molecular Medicine, Van Andel Institute, Michigan State University, 333 Bostwick Ave NE, Grand Rapids, MI 49503, USA
| | | | | |
Collapse
|
32
|
Stepanichev MY. Current approaches and future directions of gene therapy in Alzheimer’s disease. NEUROCHEM J+ 2011. [DOI: 10.1134/s181971241103010x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
33
|
HIV-1 gp120 induces antioxidant response element-mediated expression in primary astrocytes: role in HIV associated neurocognitive disorder. Neurochem Int 2011; 61:807-14. [PMID: 21756955 DOI: 10.1016/j.neuint.2011.06.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 06/06/2011] [Accepted: 06/18/2011] [Indexed: 11/22/2022]
Abstract
HIV infection affects the central nervous system resulting in HIV associated neurocognitive disorder (HAND), which is characterized by depression, behavioral and motor dysfunctions. The HIV-1 viral envelope protein gp120 is known to induce the release of neurotoxic factors which lead to apoptotic cell death. Although the exact mechanisms involved in HIV-1 gp120-induced neurotoxicity are not completely understood, oxidative stress is suggested to play a vital role in the neuropathogenesis of HAND. Astrocytes represent major population of the non-neuronal cell type in the brain and play a critical role in the neuropathogenesis of HAND. Increased oxidative stress is known to induce nuclear factor erythroid derived 2-related factor 2 (Nrf2), a basic leucine zipper transcription factor which is known to regulate the antioxidant defensive mechanism. However, the role of Nrf2 in HAND has not been elucidated. We report that gp120 significantly upregulates Nrf2 in human astrocytes and is associated with stimulation of key antioxidant defensive enzymes Hemoxygenase (HO-1) and NAD(P)H dehydrogenase quinone1 (Nqo1). Pretreatment of the astrocytes with antioxidants or a specific calcium chelator BAPTA-AM, significantly blocked the upregulation of Nrf2, HO-1 and Nqo1. These results suggest a possible role of the intracellular calcium and oxidative stress in Nrf2 mediated antioxidant defense mechanism, which may have protective role in promoting cell survival.
Collapse
|
34
|
Kansanen E, Bonacci G, Schopfer FJ, Kuosmanen SM, Tong KI, Leinonen H, Woodcock SR, Yamamoto M, Carlberg C, Ylä-Herttuala S, Freeman BA, Levonen AL. Electrophilic nitro-fatty acids activate NRF2 by a KEAP1 cysteine 151-independent mechanism. J Biol Chem 2011; 286:14019-27. [PMID: 21357422 DOI: 10.1074/jbc.m110.190710] [Citation(s) in RCA: 162] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nitro-fatty acids (NO(2)-FAs) are electrophilic signaling mediators formed in vivo via nitric oxide (NO)- and nitrite (NO(2)(-))-dependent reactions. Nitro-fatty acids modulate signaling cascades via reversible covalent post-translational modification of nucleophilic amino acids in regulatory proteins and enzymes, thus altering downstream signaling events, such as Keap1-Nrf2-antioxidant response element (ARE)-regulated gene expression. In this study, we investigate the molecular mechanisms by which 9- and 10-nitro-octadec-9-enoic acid (OA-NO(2)) activate the transcription factor Nrf2, focusing on the post-translational modifications of cysteines in the Nrf2 inhibitor Keap1 by nitroalkylation and its downstream responses. Of the two regioisomers, 9-nitro-octadec-9-enoic acid was a more potent ARE inducer than 10-nitro-octadec-9-enoic acid. The most OA-NO(2)-reactive Cys residues in Keap1 were Cys(38), Cys(226), Cys(257), Cys(273), Cys(288), and Cys(489). Of these, Cys(273) and Cys(288) accounted for ∼50% of OA-NO(2) reactions in a cellular milieu. Notably, Cys(151) was among the least OA-NO(2)-reactive of the Keap1 Cys residues, with mutation of Cys(151) having no effect on net OA-NO(2) reaction with Keap1 or on ARE activation. Unlike many other Nrf2-activating electrophiles, OA-NO(2) enhanced rather than diminished the binding between Keap1 and the Cul3 subunit of the E3 ligase for Nrf2. OA-NO(2) can therefore be categorized as a Cys(151)-independent Nrf2 activator, which in turn can influence the pattern of gene expression and therapeutic actions of nitroalkenes.
Collapse
Affiliation(s)
- Emilia Kansanen
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, FIN-70211 Kuopio, Finland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Cheng X, Siow RCM, Mann GE. Impaired redox signaling and antioxidant gene expression in endothelial cells in diabetes: a role for mitochondria and the nuclear factor-E2-related factor 2-Kelch-like ECH-associated protein 1 defense pathway. Antioxid Redox Signal 2011; 14:469-87. [PMID: 20524845 DOI: 10.1089/ars.2010.3283] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Type 2 diabetes is an age-related disease associated with vascular pathologies, including severe blindness, renal failure, atherosclerosis, and stroke. Reactive oxygen species (ROS), especially mitochondrial ROS, play a key role in regulating the cellular redox status, and an overproduction of ROS may in part underlie the pathogenesis of diabetes and other age-related diseases. Cells have evolved endogenous defense mechanisms against sustained oxidative stress such as the redox-sensitive transcription factor nuclear factor E2-related factor 2 (Nrf2), which regulates antioxidant response element (ARE/electrophile response element)-mediated expression of detoxifying and antioxidant enzymes and the cystine/glutamate transporter involved in glutathione biosynthesis. We hypothesize that diminished Nrf2/ARE activity contributes to increased oxidative stress and mitochondrial dysfunction in the vasculature leading to endothelial dysfunction, insulin resistance, and abnormal angiogenesis observed in diabetes. Sustained hyperglycemia further exacerbates redox dysregulation, thereby providing a positive feedback loop for severe diabetic complications. This review focuses on the role that Nrf2/ARE-linked gene expression plays in regulating endothelial redox homeostasis in health and type 2 diabetes, highlighting recent evidence that Nrf2 may provide a therapeutic target for countering oxidative stress associated with vascular disease and aging.
Collapse
Affiliation(s)
- Xinghua Cheng
- Cardiovascular Division, School of Medicine, King's College London, London, United Kingdom
| | | | | |
Collapse
|
36
|
Cao J, Sodhi K, Inoue K, Quilley J, Rezzani R, Rodella L, Vanella L, Germinario L, Stec DE, Abraham NG, Kappas A. Lentiviral-human heme oxygenase targeting endothelium improved vascular function in angiotensin II animal model of hypertension. Hum Gene Ther 2011; 22:271-82. [PMID: 20836698 DOI: 10.1089/hum.2010.059] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We examined the hypothesis that vascular and renal dysfunction caused by angiotensin II (Ang II) through increased levels of blood pressure, inflammatory cytokines, and oxidative stress in Sprague-Dawley rats can be prevented by lentiviral-mediated delivery of endothelial heme oxygenase (HO)-1. We targeted the vascular endothelium using a lentiviral construct expressing human HO-1 under the control of the endothelium-specific promoter VE-cadherin (VECAD-HO-1) and examined the effect of long-term human HO-1 expression on blood pressure in Ang II-mediated increases in blood pressure and oxidant stress. A bolus injection of VECAD-HO-1 into the renal artery resulted in expression of human HO-1 for up to 6-9 weeks. Sprague-Dawley rats were implanted with Ang II minipumps and treated with lentivirus carrying either the HO-1 or green fluorescent protein. Renal tissue from VECAD-HO-1-transduced rats expresses human HO-1 mRNA and proteins without an effect on endogenous HO-1. Infusion of Ang II increased blood pressure (p < 0.001) but decreased vascular relaxation in response to acetylcholine, endothelial nitric oxide synthase (eNOS) and phosphorylated eNOS (peNOS) levels, and renal and plasma levels of adiponectin (p < 0.05); in contrast, plasma tumor necrosis factor-α and monocyte chemoattractant protein-1 levels increased. Ang II-treated animals had higher levels of superoxide anion and inducible nitric oxide synthase and increased urinary protein and plasma creatinine levels. Lentiviral transduction with the VECAD-HO-1 construct attenuated the increase in blood pressure (p < 0.05), improved vascular relaxation, increased plasma adiponectin, and prevented the elevation in urinary protein and plasma creatinine in Ang II-treated rats. Endothelial-specific expression of HO-1 also reduced oxidative stress and levels of inflammatory cytokines resulting in increased expression of the anti-apoptotic proteins phosphorylated AKT, phosphorylated AMP-activated protein kinase, peNOS, and eNOS. Collectively, these findings demonstrate that endothelial-specific increases in HO-1 expression attenuate Ang II hypertension and the associated vascular dysfunction that is associated with increases in adiponectin and peNOS and reductions in oxidative stress and levels of inflammatory cytokines.
Collapse
Affiliation(s)
- Jian Cao
- Department of Physiology and Pharmacology, The University of Toledo, Toledo, OH 43614, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Bhang SH, Kim JH, Yang HS, La WG, Lee TJ, Kim GH, Kim HA, Lee M, Kim BS. Combined gene therapy with hypoxia-inducible factor-1α and heme oxygenase-1 for therapeutic angiogenesis. Tissue Eng Part A 2010; 17:915-26. [PMID: 20979535 DOI: 10.1089/ten.tea.2010.0493] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Transfection with either hypoxia-inducible factor-1α (HIF-1α) or heme oxygenase-1 (HO-1) gene can induce neovascularization in ischemic tissues. Although expression of transfected HIF-1α gene occurs rapidly, the expressed HIF-1α protein degrades quickly, limiting its therapeutic efficacy. Meanwhile, expressed HO-1 protein does not rapidly undergo degradation, but gene expression occurs a couple of days after transfection, resulting in apoptosis and a delay in angiogenesis in ischemic tissues at the incipient period of HO-1 gene transfection. We hypothesize that combined delivery of HIF-1α and HO-1 gene will enhance antiapoptosis and neovascularization in ischemic tissue compared with HIF-1α or HO-1 single-gene therapy. To test this hypothesis, ischemic mouse hindlimbs were treated with HIF-1α and/or HO-1 gene therapy. The combined gene therapy proved superior to both single-gene therapies, resulting in rapid expression of HIF-1α gene and long-term maintenance of expressed HO-1 protein. The apoptosis in the ischemic region was significantly less, and angiogenic growth factor secretion and angiogenesis were greater in the combined gene therapy than in either of the single-gene therapies. Our results suggest that a combined gene therapy of HIF-1α and HO-1 enhances the transfection of both genes and improves angiogenesis compared with either single-gene therapy.
Collapse
Affiliation(s)
- Suk Ho Bhang
- School of Chemical and Biological Engineering, Seoul National University, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Intrahippocampal injection of a lentiviral vector expressing Nrf2 improves spatial learning in a mouse model of Alzheimer's disease. Proc Natl Acad Sci U S A 2009; 106:16505-10. [PMID: 19805328 DOI: 10.1073/pnas.0908397106] [Citation(s) in RCA: 235] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The amyloid hypothesis of Alzheimer's disease (AD) postulates that amyloid-beta (Abeta) deposition and neurotoxicity play a causative role in AD; oxidative injury is thought to be central in the pathogenesis. An endogenous defense system against oxidative stress is induced by binding of the transcription factor nuclear factor E2-related factor 2 (Nrf2) to the antioxidant response element (ARE) enhancer sequence. The Nrf2-ARE pathway is activated in response to reactive oxygen species to trigger the simultaneous expression of numerous protective enzymes and scavengers. To exploit the Nrf2-ARE pathway therapeutically, we delivered Nrf2 bilaterally into the hippocampus of 9-month-old transgenic AD mice (APP/PS1 mice) using a lentiviral vector encoding human Nrf2. The data indicate that significant reductions in spatial learning deficits of aged APP/PS1 mice in a Morris Water Maze can be achieved by modulating levels of Nrf2 in the brain. Memory improvement in APP/PS1 mice after Nrf2 transduction shifts the balance between soluble and insoluble Abeta toward an insoluble Abeta pool without concomitant change in total brain Abeta burden. Nrf2 gene transfer is associated with a robust reduction in astrocytic but not microglial activation and induction of Nrf2 target gene heme oxygenase 1, indicating overall activation of the Nrf2-ARE pathway in hippocampal neurons 6 months after injection. Results warrant further exploration of the Nrf2-ARE pathway for treatment of AD and suggest that the Nrf2-ARE pathway may represent a potential therapeutic strategy to pursue in AD in humans, particularly in view of the multiple mechanisms by which Nrf2 can exert its protective effects.
Collapse
|
39
|
Ryter SW, Choi AMK. Heme oxygenase-1/carbon monoxide: from metabolism to molecular therapy. Am J Respir Cell Mol Biol 2009; 41:251-60. [PMID: 19617398 DOI: 10.1165/rcmb.2009-0170tr] [Citation(s) in RCA: 236] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Heme oxygenase-1 (HO-1), a ubiquitous inducible stress-response protein, serves a major metabolic function in heme turnover. HO activity cleaves heme to form biliverdin-IXalpha, carbon monoxide (CO), and iron. Genetic experiments have revealed a central role for HO-1 in tissue homeostasis, protection against oxidative stress, and in the pathogenesis of disease. Four decades of research have witnessed not only progress in elucidating the molecular mechanisms underlying the regulation and function of this illustrious enzyme, but also have opened remarkable translational applications for HO-1 and its reaction products. CO, once regarded as a metabolic waste, can act as an endogenous mediator of cellular signaling and vascular function. Exogenous application of CO by inhalation or pharmacologic delivery can confer cytoprotection in preclinical models of lung/vascular injury and disease, based on anti-apoptotic, anti-inflammatory, and anti-proliferative properties. The bile pigments, biliverdin and bilirubin, end products of heme degradation, have also shown potential as therapeutics in vascular disease based on anti-inflammatory and anti-proliferative activities. Further translational and clinical trials research will unveil whether the HO-1 system or any of its reaction products can be successfully applied as molecular medicine in human disease.
Collapse
Affiliation(s)
- Stefan W Ryter
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | | |
Collapse
|
40
|
Vascular endothelial growth factor broadens lentivector distribution in the heart after neonatal injection. J Cardiol 2009; 54:245-54. [PMID: 19782262 DOI: 10.1016/j.jjcc.2009.05.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Revised: 05/15/2009] [Accepted: 05/20/2009] [Indexed: 01/08/2023]
Abstract
For some applications, the success of gene therapy depends on the efficiency of gene transfer into target organs, however, delivery to many tissues is limited. Efforts have been made to improve the efficiency of gene transfer into target organs such as the brain by using mannitol or vascular endothelial growth factor (VEGF) prior to gene delivery, since these treatments have been reported to increase vascular permeability in experimental animals. Here, we investigated the effect of VEGF pretreatment of neonatal mice on the ability of injected lentivirus (LV)--engineering expression of firefly luciferase (luc)--to enhance the transduction of various organs, including the brain and heart. LV/luc was delivered to VEGF-treated neonatal mice via the temporal vein. Whole-body bioluminescence imaging (WBLI) of luciferase expression showed that VEGF pretreatment does not diminish transgene expression over time since it remained steady for up to 12 weeks. Ex vivo imaging of the organs and assessments of organ luciferase activity showed that VEGF pretreatment resulted in significantly increased luciferase expression not only in the heart, but also in the brain, lung, and kidney. This study shows that VEGF may have therapeutic importance to enhance the efficiency of viral gene delivery to the heart, as well as to other target organs.
Collapse
|
41
|
Shinoda Y, Hieda K, Koyanagi Y, Suzuki Y. Efficient transduction of cytotoxic and anti-HIV-1 genes by a gene-regulatable lentiviral vector. Virus Genes 2009; 39:165-75. [DOI: 10.1007/s11262-009-0382-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2009] [Accepted: 06/12/2009] [Indexed: 01/25/2023]
|
42
|
Wu J, Hecker JG, Chiamvimonvat N. Antioxidant enzyme gene transfer for ischemic diseases. Adv Drug Deliv Rev 2009; 61:351-63. [PMID: 19233238 DOI: 10.1016/j.addr.2009.01.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Accepted: 01/28/2009] [Indexed: 02/07/2023]
Abstract
The balance of redox is pivotal for normal function and integrity of tissues. Ischemic insults occur as results of a variety of conditions, leading to an accumulation of reactive oxygen species (ROS) and an imbalanced redox status in the tissues. The oxidant stress may activate signaling mechanisms provoking more toxic events, and eventually cause tissue damage. Therefore, treatments with antioxidants, free radical scavengers and their mimetics, as well as gene transfer approaches to overexpress antioxidant genes represent potential therapeutic options to correct the redox imbalance. Among them, antioxidant gene transfer may enhance the production of antioxidant scavengers, and has been employed to experimentally prevent or treat ischemic injury in cardiovascular, pulmonary, hepatic, intestinal, central nervous or other systems in animal models. With improvements in vector systems and delivery approaches, innovative antioxidant gene therapy has conferred better outcomes for myocardial infarction, reduced restenosis after coronary angioplasty, improved the quality and function of liver grafts, as well as outcome of intestinal and cerebral ischemic attacks. However, it is crucial to be mindful that like other therapeutic armentarium, the efficacy of antioxidant gene transfer requires extensive preclinical investigation before it can be used in patients, and that it may have unanticipated short- or long-term adverse effects. Thus, it is critical to balance between the therapeutic benefits and potential risks, to develop disease-specific antioxidant gene transfer strategies, to deliver the therapy with an optimal time window and in a safe manner. This review attempts to provide the rationale, the most effective approaches and the potential hurdles of available antioxidant gene transfer approaches for ischemic injury in various organs, as well as the possible directions of future preclinical and clinical investigations of this highly promising therapeutic modality.
Collapse
|
43
|
Clark J, Simon DK. Transcribe to survive: transcriptional control of antioxidant defense programs for neuroprotection in Parkinson's disease. Antioxid Redox Signal 2009; 11:509-28. [PMID: 18717631 DOI: 10.1089/ars.2008.2241] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) is a progressive, primarily motor disorder that is characterized by loss of dopaminergic (DA) neurons within the substantia nigra (SN). Cell death in PD has been associated with impaired mitochondrial function and increased oxidative stress. Strategies to reduce the oxidative load in DA cells may be beneficial in slowing the progression of PD. The transcription factor nuclear factor-erythroid 2 (NF-E2) related factor 2 (NRF2) is emerging as a master regulator of antioxidant defense systems, which makes it an attractive target for manipulations that aim to increase cellular resistance to oxidative stress. Peroxisome proliferator-activated receptor gamma (PPARgamma) coactivator-1 alpha (PGC1alpha) is a regulator of mitochondrial biogenesis genes that simultaneously upregulates many genes known to protect against oxidative stress. Pgc-1alpha knockout mice show enhanced susceptibility to SN neuronal loss following MPTP exposure, whilst overexpression of Pgc-1alpha appears to protect against oxidative stress in vitro. This makes PGC-1alpha a highly attractive target for neuroprotective therapies in PD. This review will explore the mechanisms behind the induction of NRF2 and PGC-1alpha in response to oxidative stress and identify common pathways that may provide targets for upregulating antioxidant defense programs.
Collapse
Affiliation(s)
- Joanne Clark
- Beth Israel Deaconess Medical Center, Department of Neurology, Boston, Massachusetts 02215, USA.
| | | |
Collapse
|
44
|
Abstract
Activated glial cells in the dorsal spinal cord participate in the development and maintenance of pain after peripheral nerve injury. Our understanding of mechanisms involved in functional changes of spinal glia remains incomplete. Excepting drugs that completely disrupt glial function, pharmacological studies fail to target glia and to modify locally its function to really discriminate the function of neuronal versus glial cells in chronic pain. Lentivirus-derived vectors fulfill several criteria that make them potentially interesting for this preferential targeting of glial cells in the spinal cord. We showed that in vivo single microdelivery of vesicular stomatitis virus G pseudotyped lentiviral vectors into the rat dorsal spinal cord led to a highly preferential expression of transgenes in astrocytes and microglial cells. This local and glia-targeted intervention allowed, for instance, the blockade of intracellular nuclear factor kappaB signaling pathway leading then to downregulation of the enhanced expression of several markers related to inflammation and pain, and, finally, to prolonged antihyperalgesic and antiallodynic effects. Targeted modulation of the expression of gene of interest in glial cells, closely restricted to a particular region of the spinal cord, may thus represent an interesting approach to refine the understanding of mechanisms by which spinal glial cells participate in pain processing.
Collapse
|