1
|
Radzevičiūtė-Valčiukė E, Gečaitė J, Balevičiūtė A, Szewczyk A, Želvys A, Lekešytė B, Malyško-Ptašinskė V, Mickevičiūtė E, Malakauskaitė P, Kulbacka J, Novickij V. Effects of buffer composition and plasmid toxicity on electroporation-based non-viral gene delivery in mammalian cells using bursts of nanosecond and microsecond pulses. Front Bioeng Biotechnol 2024; 12:1430637. [PMID: 39050682 PMCID: PMC11266100 DOI: 10.3389/fbioe.2024.1430637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/17/2024] [Indexed: 07/27/2024] Open
Abstract
Gene electrotransfer (GET) is non-viral gene delivery technique, also known as electroporation-mediated gene delivery or electrotransfection. GET is a method used to introduce foreign genetic material (such as DNA or RNA) into cells by applying external pulsed electric fields (PEFs) to create temporary pores in the cell membrane. This study was undertaken to examine the impact of buffer composition on the efficiency of GET in mammalian cells Also, we specifically compared the effectiveness of high-frequency nanosecond (ns) pulses with standard microsecond (µs) pulses. For the assessment of cell transfection efficiency and viability, flow cytometric analysis, luminescent assays, and measurements of metabolic activity were conducted. The efficiency of electrotransfection was evaluated using two different proteins encoding plasmids (pEGFP-N1 and Luciferase-pcDNA3). The investigation revealed that the composition of the electroporation buffer significantly influences the efficacy of GET in CHO-K1 cell line. The different susceptibility of cell lines to the electric field and the plasmid cytotoxicity were reported. It was also shown that electroporation with nanosecond duration PEF protocols ensured equivalent or even better transfection efficiency than standard µsPEF. Additionally, we successfully performed long-term transfection of the murine 4T1 cell line using high-frequency nanosecond PEFs and confirmed its' applicability in an in vivo model. The findings from the study can be applied to optimize electrotransfection conditions.
Collapse
Affiliation(s)
- Eivina Radzevičiūtė-Valčiukė
- State Research Institute Centre for Innovative Medicine, Department of Immunology and Bioelectrochemistry, Vilnius, Lithuania
- Faculty of Electronics, Vilnius Gediminas Technical University, Vilnius, Lithuania
| | - Jovita Gečaitė
- State Research Institute Centre for Innovative Medicine, Department of Immunology and Bioelectrochemistry, Vilnius, Lithuania
| | - Austėja Balevičiūtė
- State Research Institute Centre for Innovative Medicine, Department of Immunology and Bioelectrochemistry, Vilnius, Lithuania
| | - Anna Szewczyk
- State Research Institute Centre for Innovative Medicine, Department of Immunology and Bioelectrochemistry, Vilnius, Lithuania
- Faculty of Pharmacy, Department of Molecular and Cellular Biology, Wroclaw Medical University, Wroclaw, Poland
| | - Augustinas Želvys
- State Research Institute Centre for Innovative Medicine, Department of Immunology and Bioelectrochemistry, Vilnius, Lithuania
- Faculty of Electronics, Vilnius Gediminas Technical University, Vilnius, Lithuania
| | - Barbora Lekešytė
- State Research Institute Centre for Innovative Medicine, Department of Immunology and Bioelectrochemistry, Vilnius, Lithuania
- Faculty of Electronics, Vilnius Gediminas Technical University, Vilnius, Lithuania
| | | | - Eglė Mickevičiūtė
- State Research Institute Centre for Innovative Medicine, Department of Immunology and Bioelectrochemistry, Vilnius, Lithuania
- Faculty of Electronics, Vilnius Gediminas Technical University, Vilnius, Lithuania
| | - Paulina Malakauskaitė
- State Research Institute Centre for Innovative Medicine, Department of Immunology and Bioelectrochemistry, Vilnius, Lithuania
- Faculty of Electronics, Vilnius Gediminas Technical University, Vilnius, Lithuania
| | - Julita Kulbacka
- State Research Institute Centre for Innovative Medicine, Department of Immunology and Bioelectrochemistry, Vilnius, Lithuania
- Faculty of Pharmacy, Department of Molecular and Cellular Biology, Wroclaw Medical University, Wroclaw, Poland
| | - Vitalij Novickij
- State Research Institute Centre for Innovative Medicine, Department of Immunology and Bioelectrochemistry, Vilnius, Lithuania
- Faculty of Electronics, Vilnius Gediminas Technical University, Vilnius, Lithuania
| |
Collapse
|
2
|
de Caro A, Talmont F, Rols MP, Golzio M, Kolosnjaj-Tabi J. Therapeutic perspectives of high pulse repetition rate electroporation. Bioelectrochemistry 2024; 156:108629. [PMID: 38159429 DOI: 10.1016/j.bioelechem.2023.108629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 01/03/2024]
Abstract
Electroporation, a technique that uses electrical pulses to temporarily or permanently destabilize cell membranes, is increasingly used in cancer treatment, gene therapy, and cardiac tissue ablation. Although the technique is efficient, patients report discomfort and pain. Current strategies that aim to minimize pain and muscle contraction rely on the use of pharmacological agents. Nevertheless, technical improvements might be a valuable tool to minimize adverse events, which occur during the application of standard electroporation protocols. One recent technological strategy involves the use of high pulse repetition rate. The emerging technique, also referred as "high frequency" electroporation, employs short (micro to nanosecond) mono or bipolar pulses at repetition rate ranging from a few kHz to a few MHz. This review provides an overview of the historical background of electric field use and its development in therapies over time. With the aim to understand the rationale for novel electroporation protocols development, we briefly describe the physiological background of neuromuscular stimulation and pain caused by exposure to pulsed electric fields. Then, we summarize the current knowledge on electroporation protocols based on high pulse repetition rates. The advantages and limitations of these protocols are described from the perspective of their therapeutic application.
Collapse
Affiliation(s)
- Alexia de Caro
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Franck Talmont
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Marie-Pierre Rols
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Muriel Golzio
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France.
| | - Jelena Kolosnjaj-Tabi
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
3
|
Komel T, Bosnjak M, Sersa G, Cemazar M. Expression of GFP and DsRed fluorescent proteins after gene electrotransfer of tumour cells in vitro. Bioelectrochemistry 2023; 153:108490. [PMID: 37356264 DOI: 10.1016/j.bioelechem.2023.108490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/15/2023] [Accepted: 06/17/2023] [Indexed: 06/27/2023]
Abstract
Fluorescent reporter genes are widely used to study the transfection of various types of primary cells and cell lines. The aim of our research was to investigate the expression dynamics of GFP and DsRed reporter genes individually and combined after gene electrotransfer of plasmids with two different electroporation protocols in B16F10 and CT26 cells in vitro. The cytotoxicity after gene electrotransfer of both plasmids was first determined. Second, the intensity of fluorescence and the percentage of cells transfected with both plasmids individually and in combination were monitored in real time. The results show that the percentage of viability after gene electrotransfer of plasmids using the EP2 pulses was significantly higher compared to the EP1 pulses. In contrast, the percentage of transfected cells and fluorescence intensity were higher after gene electrotransfer with the EP1 pulse protocol. Moreover, the percentage of transfected cells was higher and started earlier in the B16F10 cell line than in the CT26 cell line. However, fluorescence intensity was higher in CT26 cells. Co-expression of fluorescent proteins was achieved only in a small number of cells. In conclusion, this study elucidated some of the dynamics of reporter gene expression in cancer cell lines after gene electrotransfer.
Collapse
Affiliation(s)
- Tilen Komel
- Institute of Oncology Ljubljana, Department of Experimental Oncology, Zaloska 2, SI-1000 Ljubljana, Slovenia; University of Ljubljana, Faculty of Medicine, Vrazov trg 2, SI-1000 Ljubljana, Slovenia
| | - Masa Bosnjak
- Institute of Oncology Ljubljana, Department of Experimental Oncology, Zaloska 2, SI-1000 Ljubljana, Slovenia
| | - Gregor Sersa
- Institute of Oncology Ljubljana, Department of Experimental Oncology, Zaloska 2, SI-1000 Ljubljana, Slovenia; University of Ljubljana, Faculty of Health Sciences, Zdravstvena pot 5, SI - 1000 Ljubljana, Slovenia
| | - Maja Cemazar
- Institute of Oncology Ljubljana, Department of Experimental Oncology, Zaloska 2, SI-1000 Ljubljana, Slovenia; University of Primorska, Faculty of Health Sciences, Polje 42, SI - 6310 Izola, Slovenia.
| |
Collapse
|
4
|
Komel T, Omerzel M, Kamensek U, Znidar K, Lampreht Tratar U, Kranjc Brezar S, Dolinar K, Pirkmajer S, Sersa G, Cemazar M. Gene Immunotherapy of Colon Carcinoma with IL-2 and IL-12 Using Gene Electrotransfer. Int J Mol Sci 2023; 24:12900. [PMID: 37629081 PMCID: PMC10454179 DOI: 10.3390/ijms241612900] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/12/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Gene immunotherapy has become an important approach in the treatment of cancer. One example is the introduction of genes encoding immunostimulatory cytokines, such as interleukin 2 and interleukin 12, which stimulate immune cells in tumours. The aim of our study was to determine the effects of gene electrotransfer of plasmids encoding interleukin 2 and interleukin 12 individually and in combination in the CT26 murine colon carcinoma cell line in mice. In the in vitro experiment, the pulse protocol that resulted in the highest expression of IL-2 and IL-12 mRNA and proteins was used for the in vivo part. In vivo, tumour growth delay and also complete response were observed in the group treated with the plasmid combination. Compared to the control group, the highest levels of various immunostimulatory cytokines and increased immune infiltration were observed in the combination group. Long-term anti-tumour immunity was observed in the combination group after tumour re-challenge. In conclusion, our combination therapy efficiently eradicated CT26 colon carcinoma in mice and also generated strong anti-tumour immune memory.
Collapse
Affiliation(s)
- Tilen Komel
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska 2, SI-1000 Ljubljana, Slovenia; (T.K.); (M.O.); (U.K.); (K.Z.); (U.L.T.); (S.K.B.); (G.S.)
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000 Ljubljana, Slovenia
| | - Masa Omerzel
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska 2, SI-1000 Ljubljana, Slovenia; (T.K.); (M.O.); (U.K.); (K.Z.); (U.L.T.); (S.K.B.); (G.S.)
| | - Urska Kamensek
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska 2, SI-1000 Ljubljana, Slovenia; (T.K.); (M.O.); (U.K.); (K.Z.); (U.L.T.); (S.K.B.); (G.S.)
| | - Katarina Znidar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska 2, SI-1000 Ljubljana, Slovenia; (T.K.); (M.O.); (U.K.); (K.Z.); (U.L.T.); (S.K.B.); (G.S.)
| | - Ursa Lampreht Tratar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska 2, SI-1000 Ljubljana, Slovenia; (T.K.); (M.O.); (U.K.); (K.Z.); (U.L.T.); (S.K.B.); (G.S.)
| | - Simona Kranjc Brezar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska 2, SI-1000 Ljubljana, Slovenia; (T.K.); (M.O.); (U.K.); (K.Z.); (U.L.T.); (S.K.B.); (G.S.)
| | - Klemen Dolinar
- Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Zaloska 4, SI-1000 Ljubljana, Slovenia; (K.D.); (S.P.)
| | - Sergej Pirkmajer
- Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Zaloska 4, SI-1000 Ljubljana, Slovenia; (K.D.); (S.P.)
| | - Gregor Sersa
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska 2, SI-1000 Ljubljana, Slovenia; (T.K.); (M.O.); (U.K.); (K.Z.); (U.L.T.); (S.K.B.); (G.S.)
- Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, SI-1000 Ljubljana, Slovenia
| | - Maja Cemazar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska 2, SI-1000 Ljubljana, Slovenia; (T.K.); (M.O.); (U.K.); (K.Z.); (U.L.T.); (S.K.B.); (G.S.)
- Faculty of Health Sciences, University of Primorska, Polje 42, SI-6310 Izola, Slovenia
| |
Collapse
|
5
|
Tellado M, De Robertis M, Montagna D, Giovannini D, Salgado S, Michinski S, Signori E, Maglietti F. Electrochemotherapy Plus IL-2+IL-12 Gene Electrotransfer in Spontaneous Inoperable Stage III-IV Canine Oral Malignant Melanoma. Vaccines (Basel) 2023; 11:1033. [PMID: 37376422 DOI: 10.3390/vaccines11061033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Electrochemotherapy (ECT) is a standard of care in veterinary and human oncology. The treatment induces a well-characterized local immune response which is not able to induce a systemic response. In this retrospective cohort study, we evaluated the addition of gene electrotransfer (GET) of canine IL-2 peritumorally and IL-12 intramuscularly to enhance the immune response. Thirty canine patients with inoperable oral malignant melanoma were included. Ten patients received ECT+GET as the treatment group, while twenty patients received ECT as the control group. Intravenous bleomycin for the ECT was used in both groups. All patients had compromised lymph nodes which were surgically removed. Plasma levels of interleukins, local response rate, overall survival, and progression-free survival were evaluated. The results show that IL-2 and IL-12 expression peaked around days 7-14 after transfection. Both groups showed similar local response rates and overall survival times. However, progression-free survival resulted significantly better in the ECT+GET group, which is a better indicator than overall survival, as it is not influenced by the criterion used for performing euthanasia. We can conclude that the combination of ECT+GET using IL-2 and IL-12 improves treatment outcomes by slowing down tumoral progression in stage III-IV inoperable canine oral malignant melanoma.
Collapse
Affiliation(s)
- Matías Tellado
- VetOncologia, Veterinary Oncology Clinic, Buenos Aires 1408, Argentina
| | - Mariangela De Robertis
- Department of Biosciences, Biotechnology and Environment, University of Bari 'A. Moro', 70125 Bari, Italy
| | - Daniela Montagna
- Instituto de Medicina Experimental (IMEX-CONICET), Academia Nacional de Medicina, Buenos Aires 1425, Argentina
| | - Daniela Giovannini
- ENEA SSPT-TECS-TEB, Casaccia Research Center, Division of Health Protection Technology (TECS), Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), 00123 Rome, Italy
- Laboratory of Molecular Pathology and Experimental Oncology, Institute of Translational Pharmacology, CNR, Rome 0133, Italy
| | - Sergio Salgado
- CREOVet, Veterinary Oncology Clinic, Lima 04, Peru
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Peruana Cayetano Heredia, Lima 31, Peru
| | - Sebastián Michinski
- Instituto de Física Interdsiciplinaria y Aplicada (INFINA), Facultad de Cs Exactas y Naturales, UBA-CONICET, Buenos Aires 1428, Argentina
| | - Emanuela Signori
- Laboratory of Molecular Pathology and Experimental Oncology, Institute of Translational Pharmacology, CNR, Rome 0133, Italy
| | - Felipe Maglietti
- Instituto Universitario de Ciencias de la Salud, Fundación Barceló-CONICET, Buenos Aires 1117, Argentina
| |
Collapse
|
6
|
Mahdi AK, Medrano JF, Ross PJ. Single-Step Genome Editing of Small Ruminant Embryos by Electroporation. Int J Mol Sci 2022; 23:ijms231810218. [PMID: 36142132 PMCID: PMC9499182 DOI: 10.3390/ijms231810218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/17/2022] Open
Abstract
We investigated the possibility of single-step genome editing in small ruminants by CRISPR-Cas9 zygote electroporation. We targeted SOCS2 and PDX1 in sheep embryos and OTX2 in goat embryos, utilizing a dual sgRNA approach. Gene editing efficiency was compared between microinjection and three different electroporation settings performed at four different times of embryo development. Electroporation of sheep zygotes 6 h after fertilization with settings that included short high-voltage (poring) and long low-voltage (transfer) pulses was efficient at producing SOCS2 knock-out blastocysts. The mutation rate after CRISPR/Cas9 electroporation was 95.6% ± 8%, including 95.4% ± 9% biallelic mutations; which compared favorably to 82.3% ± 8% and 25% ± 10%, respectively, when using microinjection. We also successfully disrupted the PDX1 gene in sheep and the OTX2 gene in goat embryos. The biallelic mutation rate was 81 ± 5% for PDX1 and 85% ± 6% for OTX2. In conclusion, using single-step CRISPR-Cas9 zygote electroporation, we successfully introduced biallelic deletions in the genome of small ruminant embryos.
Collapse
|
7
|
Trotovšek B, Djokić M, Čemažar M, Serša G. New era of electrochemotherapy in treatment of liver tumors in conjunction with immunotherapies. World J Gastroenterol 2021; 27:8216-8226. [PMID: 35068866 PMCID: PMC8717013 DOI: 10.3748/wjg.v27.i48.8216] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 10/28/2021] [Accepted: 12/22/2021] [Indexed: 02/06/2023] Open
Abstract
Electrochemotherapy is a local ablative therapy that increases the cytotoxicity of either bleomycin or cisplatin by applying electric pulses (electroporation) to tumors. It has already been widely used throughout Europe for the treatment of various types of human and veterinary cutaneous tumors, with an objective response rate ranging from 70%-90%, depending on the tumor histotype. Recently, electrochemotherapy was introduced for the treatment of primary liver tumors, such as hepatocellular carcinoma (HCC). The complete response rate was 85% per treated lesion, with a durable response. Therefore, electrochemotherapy could become a treatment of choice for HCC, especially after achieving a transition from an open surgery approach to a percutaneous approach that uses dedicated electrodes. Electrochemotherapy elicits a local immune response and can be considered an in situ vaccination. HCC, among others, is a potentially immunogenic tumor; thus, electrochemotherapy could boost adjuvant immunotherapy to achieve a better and longer-lasting antitumor response. Therefore, therapeutic strategies that combine electrochemotherapy with immune checkpoint inhibitors or adjuvant treatment with cytokines are indicated for HCC. Immunogene therapy using electroporation as a delivery system for plasmid DNA coding for interleukin-12 is a highly promising approach. This electroporation approach has shown efficacy in preclinical settings and veterinary oncology and is awaiting translation for the treatment of liver tumors, i.e., HCC.
Collapse
Affiliation(s)
- Blaž Trotovšek
- Department of Abdominal Surgery, University Medical Centre Ljubljana, Ljubljana 1000, Slovenia
- Medical Faculty Ljubljana, University of Ljubljana, Ljubljana 1000, Slovenia
| | - Mihajlo Djokić
- Department of Abdominal Surgery, University Medical Centre Ljubljana, Ljubljana 1000, Slovenia
- Medical Faculty Ljubljana, University of Ljubljana, Ljubljana 1000, Slovenia
| | - Maja Čemažar
- Department of Experimental Oncology, Institute of Oncology, Ljubljana 1000, Slovenia
- Faculty of Health Sciences, University of Primorska, Izola 6310, Slovenia
| | - Gregor Serša
- Department of Experimental Oncology, Institute of Oncology, Ljubljana 1000, Slovenia
- Faculty of Health Sciences, University of Ljubljana, Ljubljana 1000, Slovenia
| |
Collapse
|
8
|
Meglič SH, Pavlin M. The impact of impaired DNA mobility on gene electrotransfer efficiency: analysis in 3D model. Biomed Eng Online 2021; 20:85. [PMID: 34419072 PMCID: PMC8379608 DOI: 10.1186/s12938-021-00922-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 08/09/2021] [Indexed: 11/21/2022] Open
Abstract
Background Gene electrotransfer is an established method that enables transfer of DNA into cells with electric pulses. Several studies analyzed and optimized different parameters of gene electrotransfer, however, one of main obstacles toward efficient electrotransfection in vivo is relatively poor DNA mobility in tissues. Our aim was to analyze the effect of impaired mobility on gene electrotransfer efficiency experimentally and theoretically. We applied electric pulses with different durations on plated cells, cells grown on collagen layer and cells embedded in collagen gel (3D model) and analyzed gene electrotransfer efficiency. In order to analyze the effect of impaired mobility on gene electrotransfer efficiency, we applied electric pulses with different durations on plated cells, cells grown on collagen layer and cells embedded in collagen gel (3D model) and analyzed gene electrotransfer efficiency. Results We obtained the highest transfection in plated cells, while transfection efficiency of embedded cells in 3D model was lowest, similarly as in in vivo. To further analyze DNA diffusion in 3D model, we applied DNA on top or injected it into 3D model and showed, that for the former gene electrotransfer efficiency was similarly as in in vivo. The experimental results are explained with theoretical analysis of DNA diffusion and electromobility. Conclusion We show, empirically and theoretically that DNA has impaired electromobility and especially diffusion in collagen environment, where the latter crucially limits electrotransfection. Our model enables optimization of gene electrotransfer in in vitro conditions.
Collapse
Affiliation(s)
- Saša Haberl Meglič
- Faculty of Electrical Engineering, Laboratory of Biocybernetics, University of Ljubljana, Tržaška 25, 1000, Ljubljana, Slovenia
| | - Mojca Pavlin
- Faculty of Medicine, Institute of Biophysics, University of Ljubljana, Vrazov trg 2, 1000, Ljubljana, Slovenia. .,Faculty of Electrical Engineering, Group for Nano and Biotechnological Applications, University of Ljubljana, Tržaška 25, 1000, Ljubljana, Slovenia.
| |
Collapse
|
9
|
Komel T, Bosnjak M, Kranjc Brezar S, De Robertis M, Mastrodonato M, Scillitani G, Pesole G, Signori E, Sersa G, Cemazar M. Gene electrotransfer of IL-2 and IL-12 plasmids effectively eradicated murine B16.F10 melanoma. Bioelectrochemistry 2021; 141:107843. [PMID: 34139572 DOI: 10.1016/j.bioelechem.2021.107843] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 05/05/2021] [Accepted: 05/13/2021] [Indexed: 12/18/2022]
Abstract
Gene therapy has become an important approach for treating cancer, and electroporation represents a technology for introducing therapeutic genes into a cell. An example of cancer gene therapy relying on gene electrotransfer is the use of immunomodulatory cytokines, such as interleukin 2 (IL-2) and 12 (IL-12), which directly stimulate immune cells at the tumour site. The aim of our study was to determine the effects of gene electrotransfer with two plasmids encoding IL-2 and IL-12 in vitro and in vivo. Two different pulse protocols, known as EP1 (600 V/cm, 5 ms, 1 Hz, 8 pulses) and EP2 (1300 V/cm, 100 µs, 1 Hz, 8 pulses), were assessed in vitro for application in subsequent in vivo experiments. In the in vivo experiment, gene electrotransfer of pIL-2 and pIL-12 using the EP1 protocol was performed in B16.F10 murine melanoma. Combined treatment of tumours using pIL2 and pIL12 induced significant tumour growth delay and 71% complete tumour regression. Furthermore, in tumours coexpressing IL-2 and IL-12, increased accumulation of dendritic cells and M1 macrophages was obtained along with the activation of proinflammatory signals, resulting in CD4 + and CD8 + T-lymphocyte recruitment and immune memory development in the mice. In conclusion, we demonstrated high antitumour efficacy of combined IL-2 and IL-12 gene electrotransfer protocols in low-immunogenicity murine B16.F10 melanoma.
Collapse
Affiliation(s)
- T Komel
- Institute of Oncology Ljubljana, Department of Experimental Oncology, Zaloska 2, SI-1000 Ljubljana, Slovenia; University of Ljubljana, Faculty of Medicine, Vrazov trg 2, SI-1000 Ljubljana, Slovenia
| | - M Bosnjak
- Institute of Oncology Ljubljana, Department of Experimental Oncology, Zaloska 2, SI-1000 Ljubljana, Slovenia
| | - S Kranjc Brezar
- Institute of Oncology Ljubljana, Department of Experimental Oncology, Zaloska 2, SI-1000 Ljubljana, Slovenia; University of Ljubljana, Faculty of Medicine, Vrazov trg 2, SI-1000 Ljubljana, Slovenia
| | - M De Robertis
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Via Orabona 4, 70126 Bari, Italy
| | - M Mastrodonato
- Department of Biology, University of Bari, Via Orabona 4, 70126 Bari, Italy
| | - G Scillitani
- Department of Biology, University of Bari, Via Orabona 4, 70126 Bari, Italy
| | - G Pesole
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Via Orabona 4, 70126 Bari, Italy; National Research Council-Institute of Biomembrane, Bioenergetics, and Molecular Biotechnology (CNR-IBIOM), Via Amendola 122 O, 70126, Bari, Italy
| | - E Signori
- National Research Council-Institute of Translational Pharmacology (CNR-IFT), Via Fosso del Cavaliere 100, Rome, Italy
| | - G Sersa
- Institute of Oncology Ljubljana, Department of Experimental Oncology, Zaloska 2, SI-1000 Ljubljana, Slovenia; University of Ljubljana, Faculty of Health Sciences, Zdravstvena pot 5, SI - 1000 Ljubljana, Slovenia
| | - M Cemazar
- Institute of Oncology Ljubljana, Department of Experimental Oncology, Zaloska 2, SI-1000 Ljubljana, Slovenia; University of Primorska, Faculty of Health Sciences, Polje 42, SI - 6310 Izola, Slovenia.
| |
Collapse
|
10
|
SOX1 Is a Backup Gene for Brain Neurons and Glioma Stem Cell Protection and Proliferation. Mol Neurobiol 2021; 58:2634-2642. [PMID: 33481176 DOI: 10.1007/s12035-020-02240-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 11/25/2020] [Indexed: 12/15/2022]
Abstract
Failed neuroprotection leads to the initiation of several diseases. SOX1 plays many roles in embryogenesis, oncogenesis, and male sex determination, and can promote glioma stem cell proliferation, invasion, and migration due to its high expression in glioblastoma cells. The functional versatility of the SOX1 gene in malignancy, epilepsy, and Parkinson's disease, as well as its adverse effects on dopaminergic neurons, makes it an interesting research focus. Hence, we collate the most important discoveries relating to the neuroprotective effects of SOX1 in brain cancer and propose hypothesis worthy of SOX1's role in the survival of senescent neuronal cells, its roles in fibroblast cell proliferation, and cell fat for neuroprotection, and the discharge of electrical impulses for homeostasis. Increase in electrical impulses transmitted by senescent cells affects the synthesis of neurotransmitters, which will modify the brain cell metabolism and microenvironment.
Collapse
|
11
|
Heller R, Shi G. Controlled Delivery of Plasmid DNA to Melanoma Tumors by Gene Electrotransfer. Methods Mol Biol 2021; 2265:635-644. [PMID: 33704744 DOI: 10.1007/978-1-0716-1205-7_43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Gene electrotransfer (GET) is a reliable and effective physical method for in vivo delivery of plasmid DNA (pDNA). Several preclinical and clinical studies have utilized GET to deliver plasmids encoding immune stimulating genes for treatment of melanoma and other tumor types. Intratumor delivery of plasmids encoding cytokines directly to tumors can induce not only a local immune response, but a systemic one as well. To obtain an effective immune response, it is critical to achieve the appropriate expression pattern of the delivered transgene. Expression pattern (levels and kinetics) can be modified by manipulating the electrotransfer parameters. These parameters include the tissue target and the electric pulse parameters of pulse width, electric field, and pulse number. We have found that to induce a robust immune response, we needed only low to moderately elevated expression levels compared to controls. When developing a therapeutic protocol, it is important to establish what expression profile will enable the appropriate response. In this chapter we describe how to determine the appropriate GET protocol to achieve the expression profile that can result in the desired clinical response.
Collapse
Affiliation(s)
- Richard Heller
- Department of Medical Engineering, Colleges of Medicine and Engineering, University of South Florida, Tampa, FL, USA.
| | - Guilan Shi
- Department of Medical Engineering, Colleges of Medicine and Engineering, University of South Florida, Tampa, FL, USA
| |
Collapse
|
12
|
Shirley SA, Lundberg CG, Heller R. Electrotransfer of IL-15/IL-15Rα Complex for the Treatment of Established Melanoma. Cancers (Basel) 2020; 12:cancers12103072. [PMID: 33096755 PMCID: PMC7589551 DOI: 10.3390/cancers12103072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/12/2020] [Accepted: 10/19/2020] [Indexed: 01/20/2023] Open
Abstract
Simple Summary The stimulation of the immune system through the administration of immunomodulatory agents such as cytokines has the potential to be an effective anti-cancer therapy. Obtaining the correct dose is an important aspect with respect to minimizing toxicity and obtaining the desired effect. A method to decrease the toxicity of this type of treatment is to replace the high-dose recombinant protein injections by using DNA expressing genes for one or more of these anti-cancer agents. In this current study, we have evaluated the delivery of interleukin-15 and its receptor in the form of plasmid DNA in a mouse melanoma model. We utilize a delivery approach that can deliver plasmid DNA in a manner that results in the desired level of expression being produced and induces a potent anti-tumor response as well as an immune memory response. Abstract Gene electrotransfer (GET) is a safe, reliable, and effective method of delivering plasmid DNA (pDNA) to solid tumors. GET has been previously used to deliver interleukin-15 (IL-15) to mouse melanoma, resulting in long-term tumor regression and the survival of a percentage of treated animals after challenge. To enhance this effect, we evaluated modulating the expression levels of IL-15 and co-expressing its receptor, IL-15Rα. GET was used to deliver plasmids encoding IL-15 and IL-15Rα to established B16.F10 tumors on days 0, 4, and 7. Two delivery protocols that yielded different expression profiles were utilized. Mice that were tumor-free for 50 days were then challenged with B16.F10 cells on the opposite flank and monitored for an additional 50 days. The amount of IL-15 expressed and the presence or absence of IL-15Rα in the treated tumors did not significantly affect the tumor regression and long-term survival. Upon challenge, however, low levels of IL-15 were more protective and resulted in a greater production of anti-tumor cytokines such as IFN-γ and MIP-1β and a greater amount of CD11b+ and CD3e+ cells infiltrating tumors. While mice with high levels of IL-15 showed CD11b+ and CD3e+ cell infiltrate, there was a substantial presence of NK cells that was absent in other treated groups. We can conclude that the level of IL-15 expressed in tumors after GET is an important determinant of the therapeutic outcome, a finding that will help us finetune this type of therapy.
Collapse
Affiliation(s)
- Shawna A. Shirley
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA; (S.A.S.); (C.G.L.)
| | - Cathryn G. Lundberg
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA; (S.A.S.); (C.G.L.)
| | - Richard Heller
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA; (S.A.S.); (C.G.L.)
- Department of Medical Engineering, University of South Florida, Tampa, FL 33512, USA
- Correspondence: ; Tel.: +01-813-974-1221
| |
Collapse
|
13
|
Jacobs L, De Smidt E, Geukens N, Declerck P, Hollevoet K. DNA-Based Delivery of Checkpoint Inhibitors in Muscle and Tumor Enables Long-Term Responses with Distinct Exposure. Mol Ther 2020; 28:1068-1077. [PMID: 32101701 DOI: 10.1016/j.ymthe.2020.02.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 02/08/2020] [Indexed: 12/17/2022] Open
Abstract
Checkpoint-inhibiting antibodies elicit impressive clinical responses, but still face several issues. The current study evaluated whether DNA-based delivery can broaden the application of checkpoint inhibitors, specifically by pursuing cost-efficient in vivo production, facilitating combination therapies, and exploring administration routes that lower immune-related toxicity risks. We therefore optimized plasmid-encoded anti-CTLA-4 and anti-PD-1 antibodies, and studied their pharmacokinetics and pharmacodynamics when delivered alone and in combination via intramuscular or intratumoral electroporation in mice. Intramuscular electrotransfer of these DNA-based antibodies induced complete regressions in a subcutaneous MC38 tumor model, with plasma concentrations up to 4 and 14 μg/mL for anti-CTLA-4 and anti-PD-1 antibodies, respectively, and antibody detection for at least 6 months. Intratumoral antibody gene electrotransfer gave similar anti-tumor responses as the intramuscular approach. Antibody plasma levels, however, were up to 70-fold lower and substantially more transient, potentially improving biosafety of the expressed checkpoint inhibitors. Intratumoral delivery also generated a systemic anti-tumor response, illustrated by moderate abscopal effects and prolonged protection of cured mice against a tumor rechallenge. In conclusion, intramuscular and intratumoral DNA-based delivery of checkpoint inhibitors both enabled long-term anti-tumor responses despite distinct systemic antibody exposure, highlighting the potential of the tumor as delivery site for DNA-based therapeutics.
Collapse
Affiliation(s)
- Liesl Jacobs
- Laboratory for Therapeutic and Diagnostic Antibodies, KU Leuven - University of Leuven, Leuven, Belgium
| | - Elien De Smidt
- Laboratory for Therapeutic and Diagnostic Antibodies, KU Leuven - University of Leuven, Leuven, Belgium; PharmAbs - The KU Leuven Antibody Center, KU Leuven - University of Leuven, Leuven, Belgium
| | - Nick Geukens
- PharmAbs - The KU Leuven Antibody Center, KU Leuven - University of Leuven, Leuven, Belgium
| | - Paul Declerck
- Laboratory for Therapeutic and Diagnostic Antibodies, KU Leuven - University of Leuven, Leuven, Belgium; PharmAbs - The KU Leuven Antibody Center, KU Leuven - University of Leuven, Leuven, Belgium.
| | - Kevin Hollevoet
- Laboratory for Therapeutic and Diagnostic Antibodies, KU Leuven - University of Leuven, Leuven, Belgium.
| |
Collapse
|
14
|
Kranjc Brezar S, Kranjc M, Čemažar M, Buček S, Serša G, Miklavčič D. Electrotransfer of siRNA to Silence Enhanced Green Fluorescent Protein in Tumor Mediated by a High Intensity Pulsed Electromagnetic Field. Vaccines (Basel) 2020; 8:E49. [PMID: 32012775 PMCID: PMC7157195 DOI: 10.3390/vaccines8010049] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/10/2020] [Accepted: 01/23/2020] [Indexed: 02/07/2023] Open
Abstract
The contactless high intensity pulsed electromagnetic field (HI-PEMF)-induced increase of cell membrane permeability is similar to conventional electroporation, with the important difference of inducing an electric field non-invasively by exposing a treated tissue to a time-varying magnetic field. Due to the limited number of studies in the field of electroporation induced by HI-PEMF, we designed experiments to explore the feasibility of such a contactless delivery technique for the gene electrotransfer of nucleic acids in tissues in vivo. By using HI-PEMF for gene electrotransfer, we silenced enhanced green fluorescent protein (EGFP) with siRNA molecules against EGFP in B16F10-EGFP tumors. Six days after the transfer, the fluorescent tumor area decreased by up to 39% as determined by fluorescence imaging in vivo. In addition, the silencing of EGFP to the same extent was confirmed at the mRNA and protein level. The results obtained in the in vivo mouse model demonstrate the potential use of HI-PEMF-induced cell permeabilization for gene therapy and DNA vaccination. Further studies are thus warranted to improve the equipment, optimize the protocols for gene transfer and the HI-PEMF parameters, and demonstrate the effects of HI-PEMF on a broader range of different normal and tumor tissues.
Collapse
Affiliation(s)
- Simona Kranjc Brezar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloška 2, 1000 Ljubljana, Slovenia; (S.K.B.); (M.Č.); (G.S.)
| | - Matej Kranjc
- Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, 1000 Ljubljana, Slovenia;
| | - Maja Čemažar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloška 2, 1000 Ljubljana, Slovenia; (S.K.B.); (M.Č.); (G.S.)
- Faculty of Health Sciences, University of Primorska, Polje 42, 6310 Izola, Slovenia
| | - Simon Buček
- Department of Cytopathology, Institute of Oncology Ljubljana, Zaloška 2, 1000 Ljubljana, Slovenia;
| | - Gregor Serša
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloška 2, 1000 Ljubljana, Slovenia; (S.K.B.); (M.Č.); (G.S.)
- Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, 1000 Ljubljana, Slovenia
| | - Damijan Miklavčič
- Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, 1000 Ljubljana, Slovenia;
| |
Collapse
|
15
|
Forjanic T, Markelc B, Marcan M, Bellard E, Couillaud F, Golzio M, Miklavci D. Electroporation-Induced Stress Response and Its Effect on Gene Electrotransfer Efficacy: In Vivo Imaging and Numerical Modeling. IEEE Trans Biomed Eng 2019; 66:2671-2683. [DOI: 10.1109/tbme.2019.2894659] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
16
|
Tumor cell death after electrotransfer of plasmid DNA is associated with cytosolic DNA sensor upregulation. Oncotarget 2018; 9:18665-18681. [PMID: 29721152 PMCID: PMC5922346 DOI: 10.18632/oncotarget.24816] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 02/27/2018] [Indexed: 12/19/2022] Open
Abstract
Cytosolic DNA sensors are a subgroup of pattern recognition receptors (PRRs) and are activated by the abnormal presence of the DNA in the cytosol. Their activation leads to the upregulation of pro-inflammatory cytokines and chemokines and can also induce cell death. The presence of cytosolic DNA sensors and inflammatory cytokines in TS/A murine mammary adenocarcinoma and WEHI 164 fibrosarcoma cells was demonstrated using real time reverse transcription polymerase chain reaction (RT-PCR), western blotting and enzyme-linked immunosorbent assay (ELISA). After electrotransfer of plasmid DNA (pDNA) using two pulse protocols, the upregulation of DNA-depended activator of interferon regulatory factor or Z-DNA binding protein 1 (DAI/ZBP1), DEAD (Asp-Glu-Ala-Asp) box polypeptide 60 (DDX60) and interferon-inducible protein 204 (p204) mRNAs was observed in both tumor cell lines, but their expression was pulse protocol dependent. A decrease in cell survival was also observed; it was cell type, DNA concentration and pulse protocol dependent. Furthermore, the different protocols of electrotransfer led to different cell death outcomes, necrosis and apoptosis, as indicated by an annexin V and 7AAD assays. The obtained data provide new insights on the presence of cytosolic DNA sensors in tumor cells and the activation of different types of cells death after electrotransfer of pDNA. These observations have important implications on the planning of gene therapy or DNA vaccination protocols.
Collapse
|
17
|
Tamošiūnas M, Kadikis R, Saknite I, Baltušnikas J, Kilikevičius A, Lihachev A, Petrovska R, Jakovels D, Šatkauskas S. Noninvasive optical diagnostics of enhanced green fluorescent protein expression in skeletal muscle for comparison of electroporation and sonoporation efficiencies. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:45003. [PMID: 27129126 DOI: 10.1117/1.jbo.21.4.045003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 04/12/2016] [Indexed: 06/05/2023]
Abstract
We highlight the options available for noninvasive optical diagnostics of reporter gene expression in mouse tibialis cranialis muscle. An in vivo multispectral imaging technique combined with fluorescence spectroscopy point measurements has been used for the transcutaneous detection of enhanced green fluorescent protein (EGFP) expression, providing information on location and duration of EGFP expression and allowing quantification of EGFP expression levels. For EGFP coding plasmid (pEGFP-Nuc Vector, 10 μg/50 ml 10 μg/50 ml ) transfection, we used electroporation or ultrasound enhanced microbubble cavitation [sonoporation (SP)]. The transcutaneous EGFP fluorescence in live mice was monitored over a period of one year using the described parameters: area of EGFP positive fibers, integral intensity, and mean intensity of EGFP fluorescence. The most efficient transfection of EGFP coding plasmid was achieved, when one high voltage and four low voltage electric pulses were applied. This protocol resulted in the highest short-term and long-term EGFP expression. Other electric pulse protocols as well as SP resulted in lower fluorescence intensities of EGFP in the transfected area. We conclude that noninvasive multispectral imaging technique combined with fluorescence spectroscopy point measurements is a suitable method to estimate the dynamics and efficiency of reporter gene transfection in vivo.
Collapse
Affiliation(s)
- Mindaugas Tamošiūnas
- Vytautas Magnus University, Biophysical Research Group, Faculty of Natural Sciences, Vileikos 8, Kaunas LT-44404, LithuaniabVytautas Magnus University, Department of Biochemistry, Faculty of Natural Sciences, Vileikos 8, Kaunas LT-44404, Lithuania
| | - Roberts Kadikis
- Institute of Electronics and Computer Science, 14 Dzerbenes Street, Riga LV-1006, Latvia
| | - Inga Saknite
- University of Latvia, Institute of Atomic Physics and Spectroscopy, 19 Rainis Boulevard, Riga LV-1586, Latvia
| | - Juozas Baltušnikas
- Lithuanian Sports University, Institute of Sports Sciences and Innovation, Sporto 6, LT-44221 Kaunas, Lithuania
| | - Audrius Kilikevičius
- Lithuanian Sports University, Institute of Sports Sciences and Innovation, Sporto 6, LT-44221 Kaunas, Lithuania
| | - Alexey Lihachev
- University of Latvia, Institute of Atomic Physics and Spectroscopy, 19 Rainis Boulevard, Riga LV-1586, Latvia
| | - Ramona Petrovska
- Latvian Biomedical Research and Study Centre, Ratsupites iela 1, Riga LV-1067, Latvia
| | - Dainis Jakovels
- University of Latvia, Institute of Atomic Physics and Spectroscopy, 19 Rainis Boulevard, Riga LV-1586, Latvia
| | - Saulius Šatkauskas
- Vytautas Magnus University, Biophysical Research Group, Faculty of Natural Sciences, Vileikos 8, Kaunas LT-44404, Lithuania
| |
Collapse
|
18
|
Lee PC, Peng CL, Shieh MJ. Combining the single-walled carbon nanotubes with low voltage electrical stimulation to improve accumulation of nanomedicines in tumor for effective cancer therapy. J Control Release 2016; 225:140-51. [PMID: 26812005 DOI: 10.1016/j.jconrel.2016.01.038] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 01/15/2016] [Accepted: 01/21/2016] [Indexed: 12/26/2022]
Abstract
Effective delivery of biomolecules or functional nanoparticles into target sites has always been the primary objective for cancer therapy. We demonstrated that by combining single-walled carbon nanotubes (SWNTs) with low-voltage (LV) electrical stimulation, biomolecule delivery can be effectively enhanced through reversible electroporation (EP). Clear pore formation in the cell membrane is observed due to LV (50V) pulse electrical stimulation amplified by SWNTs. The cell morphology remains intact and high cell viability is retained. This modality of SWNT + LV pulses can effectively transfer both small molecules and macromolecules into cells through reversible EP. The results of animal studies also suggest that treatment with LV pulses alone cannot increase vascular permeability in tumors unless after the injection of SWNTs. The nanoparticles can cross the permeable vasculature, which enhances their accumulation in the tumor tissue. Therefore, in cancer treatment, both SWNT + LV pulse treatment followed by the injection of LIPO-DOX® and SWNT/DOX + LV pulse treatment can increase tumor inhibition and delay tumor growth. This novel treatment modality applied in a human cancer xenograft model can provide a safe and effective therapy using various nanomedicines in cancer treatment.
Collapse
Affiliation(s)
- Pei-Chi Lee
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei 100, Taiwan
| | - Cheng-Liang Peng
- Isotope Application Division, Institute of Nuclear Energy Research, P.O. Box 3-27, Longtan, Taoyuan 325, Taiwan.
| | - Ming-Jium Shieh
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei 100, Taiwan; Department of Oncology, National Taiwan University Hospital and College of Medicine, #7, Chung-Shan South Road, Taipei 100, Taiwan.
| |
Collapse
|
19
|
Sersa G, Teissie J, Cemazar M, Signori E, Kamensek U, Marshall G, Miklavcic D. Electrochemotherapy of tumors as in situ vaccination boosted by immunogene electrotransfer. Cancer Immunol Immunother 2015; 64:1315-27. [PMID: 26067277 PMCID: PMC4554735 DOI: 10.1007/s00262-015-1724-2] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 05/26/2015] [Indexed: 12/21/2022]
Abstract
Electroporation is a platform technology for drug and gene delivery. When applied to cell in vitro or tissues in vivo, it leads to an increase in membrane permeability for molecules which otherwise cannot enter the cell (e.g., siRNA, plasmid DNA, and some chemotherapeutic drugs). The therapeutic effectiveness of delivered chemotherapeutics or nucleic acids depends greatly on their successful and efficient delivery to the target tissue. Therefore, the understanding of different principles of drug and gene delivery is necessary and needs to be taken into account according to the specificity of their delivery to tumors and/or normal tissues. Based on the current knowledge, electrochemotherapy (a combination of drug and electric pulses) is used for tumor treatment and has shown great potential. Its local effectiveness is up to 80 % of local tumor control, however, without noticeable effect on metastases. In an attempt to increase systemic antitumor effectiveness of electrochemotherapy, electrotransfer of genes with immunomodulatory effect (immunogene electrotransfer) could be used as adjuvant treatment. Since electrochemotherapy can induce immunogenic cell death, adjuvant immunogene electrotransfer to peritumoral tissue could lead to locoregional effect as well as the abscopal effect on distant untreated metastases. Therefore, we propose a combination of electrochemotherapy with peritumoral IL-12 electrotransfer, as a proof of principle, using electrochemotherapy boosted with immunogene electrotransfer as in situ vaccination for successful tumor treatment.
Collapse
Affiliation(s)
- Gregor Sersa
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska 2, 1000, Ljubljana, Slovenia,
| | | | | | | | | | | | | |
Collapse
|
20
|
Ceolato R, Golzio M, Riou C, Orlik X, Riviere N. Spectral degree of linear polarization of light from healthy skin and melanoma. OPTICS EXPRESS 2015; 23:13605-12. [PMID: 26074609 DOI: 10.1364/oe.23.013605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
A non-invasive optical technique, based on a supercontinuum laser source and hyperspectral sensors, is established to measure the spectral degree of linear polarization (DOLP) in a broad spectral range from 525 nm to 1000 nm. Several biomaterials of interest, such as healthy and cancerous skins, are considered. The spectral DOLP of melanoma, from 5 mm to 9 mm diameter, are measured and analyzed. An increase of the spectral DOLP is reported for 100% of the melanoma samples compared to healthy skin samples. The spectral DOLP of a given melanoma appears to be correlated to the stage of its development: the larger the melanoma, the higher the DOLP. Such trend could be explained by a decrease of the surface roughness along the evolution of the disease. In addition, a significant spectral dependence of the DOLP is reported for melanoma samples as it exhibits a decrease in the near infrared from 750 nm to 1000 nm.
Collapse
|
21
|
Pavlin M, Kandušer M. New insights into the mechanisms of gene electrotransfer--experimental and theoretical analysis. Sci Rep 2015; 5:9132. [PMID: 25778848 PMCID: PMC5390920 DOI: 10.1038/srep09132] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 02/11/2015] [Indexed: 01/14/2023] Open
Abstract
Gene electrotransfer is a promising non-viral method of gene delivery. In our in vitro study we addressed open questions about this multistep process: how electropermeabilization is related to electrotransfer efficiency; the role of DNA electrophoresis for contact and transfer across the membrane; visualization and theoretical analysis of DNA-membrane interaction and its relation to final transfection efficiency; and the differences between plated and suspended cells. Combinations of high-voltage and low-voltage pulses were used. We obtained that electrophoresis is required for the insertion of DNA into the permeabilized membrane. The inserted DNA is slowly transferred into the cytosol, and nuclear entry is a limiting factor for optimal transfection. The quantification and theoretical analysis of the crucial parameters reveals that DNA-membrane interaction (NDNA) increases with higher DNA concentration or with the addition of electrophoretic LV pulses while transfection efficiency reaches saturation. We explain the differences between the transfection of cell suspensions and plated cells due to the more homogeneous size, shape and movement of suspended cells. Our results suggest that DNA is either translocated through the stable electropores or enters by electo-stimulated endocytosis, possibly dependent on pulse parameters. Understanding of the mechanisms enables the selection of optimal electric protocols for specific applications.
Collapse
Affiliation(s)
- Mojca Pavlin
- Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, 1000 Ljubljana, Slovenia
| | - Maša Kandušer
- Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, 1000 Ljubljana, Slovenia
| |
Collapse
|
22
|
Osborn JL, Greer SF. Metastatic melanoma cells evade immune detection by silencing STAT1. Int J Mol Sci 2015; 16:4343-61. [PMID: 25690042 PMCID: PMC4346960 DOI: 10.3390/ijms16024343] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 02/11/2015] [Indexed: 12/31/2022] Open
Abstract
Transcriptional activation of major histocompatibility complex (MHC) I and II molecules by the cytokine, interferon γ (IFN-γ), is a key step in cell-mediated immunity against pathogens and tumors. Recent evidence suggests that suppression of MHC I and II expression on multiple tumor types plays important roles in tumor immunoevasion. One such tumor is malignant melanoma, a leading cause of skin cancer-related deaths. Despite growing awareness of MHC expression defects, the molecular mechanisms by which melanoma cells suppress MHC and escape from immune-mediated elimination remain unknown. Here, we analyze the dysregulation of the Janus kinase (JAK)/STAT pathway and its role in the suppression of MHC II in melanoma cell lines at the radial growth phase (RGP), the vertical growth phase (VGP) and the metastatic phase (MET). While RGP and VGP cells both express MHC II, MET cells lack not only MHC II, but also the critical transcription factors, interferon response factor (IRF) 1 and its upstream activator, signal transducer and activator of transcription 1 (STAT1). Suppression of STAT1 in vitro was also observed in patient tumor samples, suggesting STAT1 silencing as a global mechanism of MHC II suppression and immunoevasion.
Collapse
Affiliation(s)
- JoDi Lynn Osborn
- Division of Cellular Biology and Immunology, Department of Biology, Georgia State University, Atlanta, GA 30303, USA.
| | - Susanna F Greer
- Division of Cellular Biology and Immunology, Department of Biology, Georgia State University, Atlanta, GA 30303, USA.
| |
Collapse
|
23
|
Targeted electro-delivery of oligonucleotides for RNA interference: siRNA and antimiR. Adv Drug Deliv Rev 2015; 81:161-8. [PMID: 24819217 DOI: 10.1016/j.addr.2014.05.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 04/18/2014] [Accepted: 05/01/2014] [Indexed: 12/11/2022]
Abstract
For more than a decade, the understanding of RNA interference (RNAi) has been a growing field of interest. Micro-RNAs (miRNAs) are small regulatory RNAs that play an important role in disease development and progression and therefore represent a potential new class of therapeutic targets. However, delivery of RNAi-based oligonucleotides is one of the most challenging hurdles to RNAi-based drug development. Electropermeabilization (EP) is recognized as a successful non-viral method to transfer nucleic acids into living cells both in vitro and in vivo. EP is the direct application of electric pulses to cells or tissues that transiently permeabilize plasma membranes, allowing the efficient delivery of exogenous molecules. The present review focused on the mechanism of RNAi-based oligonucleotides electrotransfer, from cellular uptake to intracellular distribution. Biophysical theories on oligonucleotide electrotransfer will be also presented. The advantages and few drawbacks of EP-mediated delivery will also be discussed.
Collapse
|
24
|
Abstract
Electroporation has been used extensively to transfer DNA to bacteria, yeast, and mammalian cells in culture for the past 30 years. Over this time, numerous advances have been made, from using fields to facilitate cell fusion, delivery of chemotherapeutic drugs to cells and tissues, and most importantly, gene and drug delivery in living tissues from rodents to man. Electroporation uses electrical fields to transiently destabilize the membrane allowing the entry of normally impermeable macromolecules into the cytoplasm. Surprisingly, at the appropriate field strengths, the application of these fields to tissues results in little, if any, damage or trauma. Indeed, electroporation has even been used successfully in human trials for gene delivery for the treatment of tumors and for vaccine development. Electroporation can lead to between 100 and 1000-fold increases in gene delivery and expression and can also increase both the distribution of cells taking up and expressing the DNA as well as the absolute amount of gene product per cell (likely due to increased delivery of plasmids into each cell). Effective electroporation depends on electric field parameters, electrode design, the tissues and cells being targeted, and the plasmids that are being transferred themselves. Most importantly, there is no single combination of these variables that leads to greatest efficacy in every situation; optimization is required in every new setting. Electroporation-mediated in vivo gene delivery has proven highly effective in vaccine production, transgene expression, enzyme replacement, and control of a variety of cancers. Almost any tissue can be targeted with electroporation, including muscle, skin, heart, liver, lung, and vasculature. This chapter will provide an overview of the theory of electroporation for the delivery of DNA both in individual cells and in tissues and its application for in vivo gene delivery in a number of animal models.
Collapse
Affiliation(s)
- Jennifer L Young
- Department of Pediatrics, University of Rochester, Rochester, NY, USA
| | - David A Dean
- Departments of Pediatrics and Biomedical Engineering, University of Rochester, Rochester, NY, USA
| |
Collapse
|
25
|
Mcam Silencing With RNA Interference Using Magnetofection has Antitumor Effect in Murine Melanoma. MOLECULAR THERAPY-NUCLEIC ACIDS 2014; 3:e205. [PMID: 25350580 PMCID: PMC4217080 DOI: 10.1038/mtna.2014.56] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 09/09/2014] [Indexed: 01/27/2023]
Abstract
The melanoma cell adhesion molecule (MCAM) is involved in melanoma development and its progression, including invasiveness, metastatic potential and angiogenesis. Therefore, MCAM represents a potential target for gene therapy of melanoma, whose expression could be hindered with posttranscriptional specific gene silencing with RNA interference technology. In this study, we constructed a plasmid DNA encoding short hairpin RNA against MCAM (pMCAM) to explore the antitumor and antiangiogenic effects. The experiments were performed in vitro on murine melanoma and endothelial cells, as well as in vivo on melanoma tumors in mice. The antiproliferative, antimigratory, antiangiogenic and antitumor effects were examined after gene therapy with pMCAM. Gene delivery was performed by magnetofection, and its efficacy compared to gene electrotransfer. Gene therapy with pMCAM has proved to be an effective approach in reducing the proliferation and migration of melanoma cells, as well as having antiangiogenic effect in endothelial cells and antitumor effect on melanoma tumors. Magnetofection as a developing nonviral gene delivery system was effective in the transfection of melanoma cells and tumors with pMCAM, but less efficient than gene electrotransfer in in vivo tumor gene therapy due to the lack of antiangiogenic effect after silencing Mcam by magnetofection.
Collapse
|
26
|
Spanggaard I, Snoj M, Cavalcanti A, Bouquet C, Sersa G, Robert C, Cemazar M, Dam E, Vasseur B, Attali P, Mir LM, Gehl J. Gene electrotransfer of plasmid antiangiogenic metargidin peptide (AMEP) in disseminated melanoma: safety and efficacy results of a phase I first-in-man study. HUM GENE THER CL DEV 2014; 24:99-107. [PMID: 23980876 DOI: 10.1089/humc.2012.240] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Antiangiogenic metargidin peptide (AMEP) is a novel anticancer agent exerting antiproliferative and antiangiogenic effects by binding to αvβ3 and α5β1 integrins. Electrotransfer designates the use of electric pulses (electroporation) to transfer plasmid DNA into tissues. This first-in-man phase I study investigated safety and tolerability of intratumoral plasmid AMEP electrotransfer into cutaneous metastatic melanoma. Secondary objectives were efficacy and pharmacokinetics. Five patients with disseminated melanoma without further treatment options were treated at two dose levels (1 and 2 mg DNA). In each patient, two cutaneous lesions were identified (one treated and one control). At day 1 and day 8, plasmid AMEP was injected intratumorally followed by electrotransfer. Patients were monitored weekly until day 29, and at day 64. Local efficacy was assessed at day 29 by direct measurement, and posttreatment biopsies for AMEP mRNA levels were evaluated by reverse transcriptase quantitative polymerase chain reaction. Plasmid copy number in blood and urine was determined by quantitative polymerase chain reaction. Minimal systemic toxicity was observed, including transient fever and transitory increase in C-reactive protein. No related serious adverse events occurred. Plasmid AMEP was detected in plasma but not in urine. AMEP mRNA was found in three of five treated lesions and none of the control lesions. At day 29, all five treated lesions were stable in diameter, whereas four of five control lesions increased more than 20%. No response occurred in distant lesions. This first-in-man study on electrotransfer of plasmid AMEP into cutaneous melanoma shows that the procedure and drug are safe and that local transfection was obtained.
Collapse
Affiliation(s)
- Iben Spanggaard
- 1 Department of Oncology, Center for Experimental Drug and Gene Electrotransfer, Copenhagen University Hospital Herlev , Herlev 2730, Denmark
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Mali B, Zulj S, Magjarevic R, Miklavcic D, Jarm T. Matlab-based tool for ECG and HRV analysis. Biomed Signal Process Control 2014. [DOI: 10.1016/j.bspc.2014.01.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
28
|
Abstract
Electroporation is a safe, efficient, and inexpensive method to transfer naked plasmid DNA into various tissues. For electroporation-mediated gene transfer to the mouse lung, a plasmid solution is delivered to the lungs via the trachea. Immediately after plasmid delivery, eight square wave pulses are delivered by two pre-gelled electrodes placed on each side of the chest. An optimal field strength in mice is 200 V/cm, with a pulse duration of 10 ms each and a 1 s interval between pulses. High level gene expression can be achieved within 24 h in all cell types in the lung with very little inflammation and no apparent trauma.
Collapse
Affiliation(s)
- Jennifer L Young
- Division of Neonatology, Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
| | | | | |
Collapse
|
29
|
Chopinet L, Batista-Napotnik T, Montigny A, Rebersek M, Teissié J, Rols MP, Miklavčič D. Nanosecond electric pulse effects on gene expression. J Membr Biol 2013; 246:851-9. [PMID: 23831956 PMCID: PMC3825134 DOI: 10.1007/s00232-013-9579-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 06/22/2013] [Indexed: 01/25/2023]
Abstract
Gene electrotransfection using micro- or millisecond electric pulses is a well-established method for safe gene transfer. For efficient transfection, plasmid DNA has to reach the nucleus. Shorter, high-intensity nanosecond electric pulses (nsEPs) affect internal cell membranes and may contribute to an increased uptake of plasmid by the nucleus. In our study, nsEPs were applied to Chinese hamster ovary (CHO) cells after classical gene electrotransfer, using micro- or millisecond pulses with a plasmid coding the green fluorescent protein (GFP). Time gaps between classical gene electrotransfer and nsEPs were varied (0.5, 2, 6 and 24 h) and three different nsEP parameters were used: 18 ns-10 kV/cm, 10 ns-40 kV/cm and 15 ns-60 kV/cm. Results analyzed by either fluorescence microscopy or flow cytometry showed that neither the percentage of electrotransfected cells nor the amount of GFP expressed was increased by nsEP. All nsEP parameters also had no effects on GFP fluorescence intensity of human colorectal tumor cells (HCT-116) with constitutive expression of GFP. We thus conclude that nsEPs have no major contribution to gene electrotransfer in CHO cells and no effect on constitutive GFP expression in HCT-116 cells.
Collapse
Affiliation(s)
- Louise Chopinet
- CNRS, IPBS - UMR 5089, 205 route de Narbonne, BP 64182, 31077 Toulouse Cedex 4, France
- UT1, UTM, LAAS, ITAV, UPS, INSA, INP, ISAE, Université de Toulouse, 31077 Toulouse Cedex 4, France
| | | | - Audrey Montigny
- CNRS, IPBS - UMR 5089, 205 route de Narbonne, BP 64182, 31077 Toulouse Cedex 4, France
- UT1, UTM, LAAS, ITAV, UPS, INSA, INP, ISAE, Université de Toulouse, 31077 Toulouse Cedex 4, France
| | - Matej Rebersek
- Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Justin Teissié
- CNRS, IPBS - UMR 5089, 205 route de Narbonne, BP 64182, 31077 Toulouse Cedex 4, France
- UT1, UTM, LAAS, ITAV, UPS, INSA, INP, ISAE, Université de Toulouse, 31077 Toulouse Cedex 4, France
| | - Marie-Pierre Rols
- CNRS, IPBS - UMR 5089, 205 route de Narbonne, BP 64182, 31077 Toulouse Cedex 4, France
- UT1, UTM, LAAS, ITAV, UPS, INSA, INP, ISAE, Université de Toulouse, 31077 Toulouse Cedex 4, France
| | - Damijan Miklavčič
- Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
30
|
Chabot S, Pelofy S, Teissié J, Golzio M. Delivery of RNAi-Based Oligonucleotides by Electropermeabilization. Pharmaceuticals (Basel) 2013; 6:510-21. [PMID: 24276121 PMCID: PMC3816695 DOI: 10.3390/ph6040510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 03/19/2013] [Accepted: 03/27/2013] [Indexed: 11/16/2022] Open
Abstract
For more than a decade, understanding of RNA interference (RNAi) has been a growing field of interest. The potent gene silencing ability that small oligonucleotides have offers new perspectives for cancer therapeutics. One of the present limits is that many biological barriers exist for their efficient delivery into target cells or tissues. Electropermeabilization (EP) is one of the physical methods successfully used to transfer small oligonucleotides into cells or tissues. EP consists in the direct application of calibrated electric pulses to cells or tissues that transiently permeabilize the plasma membranes, allowing efficient in vitro and in vivo cytoplasmic delivery of exogenous molecules. The present review reports on the type of therapeutic RNAi-based oligonucleotides that can be electrotransferred, the mechanism(s) of their electrotransfer and the technical settings for pre-clinical purposes.
Collapse
Affiliation(s)
- Sophie Chabot
- Centre National de la Recherche Scientifique (CNRS), Institut de Pharmacologie et de Biologie Structurale (IPBS) BP 64182, 205 route de Narbonne, Toulouse F-31077, France; E-Mails: (S.C.); (S.P.); (J.T.)
- Université Paul Sabatier de Toulouse, IPBS, Toulouse F-31077, France
| | - Sandrine Pelofy
- Centre National de la Recherche Scientifique (CNRS), Institut de Pharmacologie et de Biologie Structurale (IPBS) BP 64182, 205 route de Narbonne, Toulouse F-31077, France; E-Mails: (S.C.); (S.P.); (J.T.)
- Université Paul Sabatier de Toulouse, IPBS, Toulouse F-31077, France
| | - Justin Teissié
- Centre National de la Recherche Scientifique (CNRS), Institut de Pharmacologie et de Biologie Structurale (IPBS) BP 64182, 205 route de Narbonne, Toulouse F-31077, France; E-Mails: (S.C.); (S.P.); (J.T.)
- Université Paul Sabatier de Toulouse, IPBS, Toulouse F-31077, France
| | - Muriel Golzio
- Centre National de la Recherche Scientifique (CNRS), Institut de Pharmacologie et de Biologie Structurale (IPBS) BP 64182, 205 route de Narbonne, Toulouse F-31077, France; E-Mails: (S.C.); (S.P.); (J.T.)
- Université Paul Sabatier de Toulouse, IPBS, Toulouse F-31077, France
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +33-561-175-811; Fax: +33-561-175-994
| |
Collapse
|
31
|
Cell-specific targeting strategies for electroporation-mediated gene delivery in cells and animals. J Membr Biol 2013; 246:737-44. [PMID: 23525583 DOI: 10.1007/s00232-013-9534-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 03/08/2013] [Indexed: 01/19/2023]
Abstract
The use of electroporation to facilitate gene transfer is an extremely powerful and useful method for both in vitro and in vivo applications. One of its great strengths is that it induces functional destabilization and permeabilization of cell membranes throughout a tissue leading to widespread gene transfer to multiple cells and cell types within the electric field. While this is a strength, it can also be a limitation in terms of cell-specific gene delivery. The ability to restrict gene delivery and expression to particular cell types is of paramount importance for many types of gene therapy, since ectopic expression of a transgene could lead to deleterious host inflammatory responses or dysregulation of normal cellular functions. At present, there are relatively few ways to obtain cell-specific targeting of nonviral vectors, molecular probes, small molecules, and imaging agents. We have developed a novel means of restricting gene delivery to desired cell types based on the ability to control the transport of plasmids into the nuclei of desired cell types. In this article, we discuss the mechanisms of this approach and several applications in living animals to demonstrate the benefits of the combination of electroporation and selective nuclear import of plasmids for cell-specific gene delivery.
Collapse
|
32
|
Sedlar A, Kranjc S, Dolinsek T, Cemazar M, Coer A, Sersa G. Radiosensitizing effect of intratumoral interleukin-12 gene electrotransfer in murine sarcoma. BMC Cancer 2013; 13:38. [PMID: 23360213 PMCID: PMC3562515 DOI: 10.1186/1471-2407-13-38] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 01/24/2013] [Indexed: 11/15/2022] Open
Abstract
Background Interleukin-12 (IL-12) based radiosensitization is an effective way of tumor treatment. Local cytokine production, without systemic shedding, might provide clinical benefit in radiation treatment of sarcomas. Therefore, the aim was to stimulate intratumoral IL-12 production by gene electrotransfer of plasmid coding for mouse IL-12 (mIL-12) into the tumors, in order to explore its radiosensitizing effect after single or multiple intratumoral gene electrotransfer. Methods Solid SA-1 fibrosarcoma tumors, on the back of A/J mice, were treated intratumorally by mIL-12 gene electrotransfer and 24 h later irradiated with a single dose. Treatment effectiveness was measured by tumor growth delay and local tumor control assay (TCD50 assay). With respect to therapeutic index, skin reaction in the radiation field was scored. The tumor and serum concentrations of cytokines mIL-12 and mouse interferon γ (mIFNγ) were measured. Besides single, also multiple intratumoral mIL-12 gene electrotransfer before and after tumor irradiation was evaluated. Results Single intratumoral mIL-12 gene electrotransfer resulted in increased intratumoral but not serum mIL-12 and mIFNγ concentrations, and had good antitumor (7.1% tumor cures) and radiosensitizing effect (21.4% tumor cures). Combined treatment resulted in the radiation dose-modifying factor of 2.16. Multiple mIL-12 gene electrotransfer had an even more pronounced antitumor (50% tumor cures) and radiosensitizing (86.7% tumor cures) effect. Conclusions Single or multiple intratumoral mIL-12 gene electrotransfer resulted in increased intratumoral mIL-12 and mIFNγ cytokine level, and may provide an efficient treatment modality for soft tissue sarcoma as single or adjuvant therapy to tumor irradiation.
Collapse
Affiliation(s)
- Ales Sedlar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | | | | | | | | | | |
Collapse
|
33
|
Chabot S, Orio J, Castanier R, Bellard E, Nielsen SJ, Golzio M, Teissié J. LNA-based oligonucleotide electrotransfer for miRNA inhibition. Mol Ther 2012; 20:1590-8. [PMID: 22617110 DOI: 10.1038/mt.2012.95] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Micro-RNAs (miRNAs) are small regulatory RNAs that play an important role in disease development and progression and therefore represent a potential new class of therapeutic targets. However, an effective and safe clinical approach for miRNA inhibition remains elusive, primarily due to the lack of effective delivery methods. We proposed to inhibit miRNA by electrotransferring an antisense DNA oligomer containing locked nucleic acids (LNAs) (LNA/DNA oligomer). We observed that electropulsation (EP) led to a strong cellular uptake of LNA/DNA oligomer. The LNA/DNA oligomer electrotransfer mechanism and intracellular localization were visually investigated in real time at the single-cell level. Cyanine 5-labeled oligonucleotide entered exclusively during pulse application on the side of the permeabilized cell membrane facing the cathode, driven by electrophoretic forces. Minutes after the electrotransfer, the LNA/DNA oligomer diffused into the nucleus. EP provided the anti-miRNA oligomer with immediate and direct access to its cytoplasmic mature miRNA target and/or its nuclear precursor miRNA target. We then demonstrated using a LNA/DNA oligomer anti-miR34a that LNA/DNA oligomer electrotransfer decreased the level of the miR34a target and induced its functional inhibition. Our findings show that using the electrotransfer technique for LNA-based oligonucleotide delivery is a promising therapeutic strategy to silence deleterious miRNAs overexpressed in diseases.
Collapse
Affiliation(s)
- Sophie Chabot
- Centre National de la Recherche Scientifique, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France
| | | | | | | | | | | | | |
Collapse
|
34
|
Bureau MF, Wasungu L, Jugé L, Scherman D, Rols MP, Mignet N. Investigating relationship between transfection and permeabilization by the electric field and/or the Pluronic® L64 in vitro and in vivo. J Gene Med 2012; 14:204-15. [DOI: 10.1002/jgm.2610] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
35
|
Prijic S, Prosen L, Cemazar M, Scancar J, Romih R, Lavrencak J, Bregar VB, Coer A, Krzan M, Znidarsic A, Sersa G. Surface modified magnetic nanoparticles for immuno-gene therapy of murine mammary adenocarcinoma. Biomaterials 2012; 33:4379-91. [PMID: 22429983 DOI: 10.1016/j.biomaterials.2012.02.061] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 02/16/2012] [Indexed: 11/27/2022]
Abstract
Cancer immuno-gene therapy is an introduction of nucleic acids encoding immunostimulatory proteins, such as cytokine interleukin 12 (IL-12), into somatic cells to stimulate an immune response against a tumor. Various methods can be used for the introduction of nucleic acids into cells; magnetofection involves binding of nucleic acids to magnetic nanoparticles with subsequent exposure to an external magnetic field. Here we show that surface modified superparamagnetic iron oxide nanoparticles (SPIONs) with a combination of polyacrylic acid (PAA) and polyethylenimine (PEI) (SPIONs-PAA-PEI) proved to be safe and effective for magnetofection of cells and tumors in mice. Magnetofection of cells with plasmid DNA encoding reporter gene using SPIONs-PAA-PEI was superior in transfection efficiency to commercially available SPIONs. Magnetofection of murine mammary adenocarcinoma with plasmid DNA encoding IL-12 using SPIONs-PAA-PEI resulted in significant antitumor effect and could be further refined for cancer immuno-gene therapy.
Collapse
Affiliation(s)
- Sara Prijic
- Kolektor Group, Nanotesla Institute, Ljubljana, Slovenia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Chabot S, Orio J, Schmeer M, Schleef M, Golzio M, Teissié J. Minicircle DNA electrotransfer for efficient tissue-targeted gene delivery. Gene Ther 2012; 20:62-8. [DOI: 10.1038/gt.2011.215] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
37
|
Kandušer M, Pavlin M. Gene Electrotransfer. ADVANCES IN PLANAR LIPID BILAYERS AND LIPOSOMES VOLUME 15 2012. [DOI: 10.1016/b978-0-12-396533-2.00001-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
38
|
Cemazar M, Golzio M, Sersa G, Escoffre JM, Coer A, Vidic S, Teissie J. Hyaluronidase and collagenase increase the transfection efficiency of gene electrotransfer in various murine tumors. Hum Gene Ther 2011; 23:128-37. [PMID: 21797718 DOI: 10.1089/hum.2011.073] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
One of the applications of electroporation/electropulsation in biomedicine is gene electrotransfer, the wider use of which is hindered by low transfection efficiency in vivo compared with viral vectors. The aim of our study was to determine whether modulation of the extracellular matrix in solid tumors, using collagenase and hyaluronidase, could increase the transfection efficiency of gene electrotransfer in histologically different solid subcutaneous tumors in mice. Tumors were treated with enzymes before electrotransfer of plasmid DNA encoding either green fluorescent protein or luciferase. Transfection efficiency was determined 3, 9, and 15 days posttransfection. We demonstrated that pretreatment of tumors with a combination of enzymes significantly increased the transfection efficiency of electrotransfer in tumors with a high extracellular matrix area (LPB fibrosarcoma). In tumors with a smaller extracellular matrix area and less organized collagen lattice, the increase was not so pronounced (SA-1 fibrosarcoma and EAT carcinoma), whereas in B16 melanoma, in which only traces of collagen are present, pretreatment of tumors with hyaluronidase alone was more efficient than pretreatment with both enzymes. In conclusion, our results suggest that modification of the extracellular matrix could improve distribution of plasmid DNA in solid subcutaneous tumors, demonstrated by an increase in transfection efficiency, and thus have important clinical implications for electrogene therapy.
Collapse
Affiliation(s)
- Maja Cemazar
- Department of Experimental Oncology, Institute of Oncology Ljubljana , SI-1000 Ljubljana, Slovenia.
| | | | | | | | | | | | | |
Collapse
|
39
|
Markelc B, Tevz G, Cemazar M, Kranjc S, Lavrencak J, Zegura B, Teissie J, Sersa G. Muscle gene electrotransfer is increased by the antioxidant tempol in mice. Gene Ther 2011; 19:312-20. [PMID: 21716301 PMCID: PMC3298856 DOI: 10.1038/gt.2011.97] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Electropermeabilization (EP) is an effective method of gene transfer into different tissues. During EP, reactive oxygen species (ROS) are formed, which could affect transfection efficiency. The role of generated ROS and the role of antioxidants in electrotransfer in myoblasts in vitro and in Musculus tibialis cranialis in mice were, therefore, investigated. We demonstrate in the study that during EP of C2C12 myoblasts, ROS are generated on the surface of the cells, which do not induce long-term genomic DNA damage. Plasmid DNA for transfection (pEGFP-N1), which is present outside the cells during EP, neutralizes the generated ROS. The ROS generation is proportional to the amplitude of the electric pulses and can be scavenged by antioxidants, such as vitamin C or tempol. When antioxidants were used during gene electrotransfer, the transfection efficiency of C2C12 myoblasts was statistically significantly increased 1.6-fold with tempol. Also in vivo, the transfection efficiency of M. tibialis cranialis in mice was statistically significantly increased 1.4-fold by tempol. The study indicates that ROS are generated on cells during EP and can be scavenged by antioxidants. Specifically, tempol can be used to improve gene electrotransfer into the muscle and possibly also to other tissues.
Collapse
Affiliation(s)
- B Markelc
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Goepfert C, Gazdhar A, Frey FJ, Frey BM. Effect of electroporation-mediated diphtheria toxin A expression on PSA positive human prostate xenograft tumors in SCID mice. Prostate 2011; 71:872-80. [PMID: 21456069 DOI: 10.1002/pros.21303] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Accepted: 10/05/2010] [Indexed: 12/20/2022]
Abstract
BACKGROUND Current therapies to treat prostate cancer are often limited. Since it has been shown that very low concentrations of diphtheria toxin A (DT-A) result in abrogation of protein synthesis and apoptosis of cells, DT-A might serve as an efficient killer in cancer gene therapy. For this purpose we investigated in a quantitative manner using a stereological approach the apoptotic effect of DT-A in androgen receptor (AR) and prostate specific antigen (PSA) expressing cells after tumor formation in both flanks of SCID mice. METHODS First, DT-A plasmid transfection was evaluated, using the lipid formulation DMRIE-C in C4-2 prostate cancer xenografts. After detection of an overall high rate of apoptosis by DMRIE-C alone, plasmid delivery was performed in a second study by electroporation. Finally this method was used to specifically target the AR and PSA expressing cell line C4-2 using pDT-A driven by a prostate specific promoter and enhancer (PSE/PSA). PC-3 cells, being AR and PSA negative, served as controls. RESULTS The experiments revealed evidence of a reduced growth rate of AR and PSA expressing C4-2 cells in vitro and in vivo compared to the AR and PSA negative prostate cancer cell line PC-3. The electroporation technology favored the response compared to DMRIE-C. CONCLUSION These results suggest that the local delivery of DT-A plasmid by electroporation might present a favorable factor to treat prostate cancer.
Collapse
Affiliation(s)
- Christine Goepfert
- Department of Nephrology and Hypertension, University of Berne, Berne, Switzerland
| | | | | | | |
Collapse
|
41
|
Yao S, Gutierrez DL, Ring S, Liu D, Wise GE. Electroporation to deliver plasmid DNA into rat dental tissues. J Gene Med 2011; 12:981-9. [PMID: 21157822 DOI: 10.1002/jgm.1521] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Delivery of DNA into the target tissues is an important technique in gene function studies and gene therapy. Surgical treatment of tooth eruption disorders, such as impacted third molars, is a major healthcare cost. Because the dental follicle (DF) is essential for regulating tooth eruption, establishment of local gene transfer protocols is needed to determine the effect of various genes on eruption and to develop gene therapy approaches for inducing the eruption of impacted molars. METHODS Plasmids containing lacZ reporter gene were injected into rat mandibles and then electroporated at the designated settings. Mandibles were collected 24 h after electroporation for X-gal staining to evaluate the transfection efficiency. Tissues were collected at various days post-electroporation to determine the expression of the transgene. RESULTS For the DF, depth of injection and pulse number appear to be important. Six pulses can achieve above 80% transfection of the DF at 50 V or 120 V. For alveolar bone (AB) transfection, voltages are important, with 120 V being optimal. Regarding pulse durations, we determined that durations of 20 and 30 ms achieve the maximum transfection in AB and DF, respectively. CONCLUSIONS The present study demonstrates for the first time the feasibility of electroporation to locally deliver plasmids into dental tissues. Parameters affecting electroporation to deliver plasmids into the dental tissues were optimized. This protocol could be used to deliver short hairpin RNA or genes of interest into the dental tissues to regulate tooth eruption. Thus, it may be possible to develop nonsurgical treatments for inducing the eruption of impacted teeth.
Collapse
Affiliation(s)
- Shaomian Yao
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA.
| | | | | | | | | |
Collapse
|
42
|
Jarm T, Cemazar M, Miklavcic D, Sersa G. Antivascular effects of electrochemotherapy: implications in treatment of bleeding metastases. Expert Rev Anticancer Ther 2011; 10:729-46. [PMID: 20470005 DOI: 10.1586/era.10.43] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Solid tumors of various etiologies can be treated efficiently by electrochemotherapy (ECT), a combined use of electroporation (EP) and chemotherapeutic drugs, such as bleomycin and cisplatin. EP alone and ECT in particular, induce a profound reduction in tumor blood flow, which contributes to the antitumor effect. After EP and ECT, the time course of blood flow changes and follows the same two-phase pattern. The first rapid and short-lived vasoconstriction phase is followed by the second much longer-lived phase resulting from disrupted cytoskeletal structures and a compromised barrier function of the microvascular endothelium. In the case of ECT, however, tumor vascular endothelial cells are also affected by the chemotherapeutic drug, which leads to irrecoverable damage to tumor vessels and to a further decrease in tumor blood flow within hours after application of ECT. Tumor cells surviving the direct effects of ECT are consequently exposed to lack of oxygen and nutrients and are pushed into the secondary cascade of induced cell death. Clinically, the antitumor effectiveness of ECT has been proven extensively in the treatment of melanoma metastases, with 70-80% complete responses. The antivascular effects of ECT were also exploited for palliative treatment of bleeding melanoma metastases, with immediate cessation of bleeding and very good antitumor effectiveness. The antivascular effect of ECT is of utmost importance for translation of ECT into the treatment of deep-seated tumors, especially in well vascularized organs, such as the liver, where it prevents bleeding of the treated area.
Collapse
Affiliation(s)
- Tomaz Jarm
- University of Ljubljana, Faculty of Electrical Engineering, Trzaska 25, SI-1000 Ljubljana, Slovenia
| | | | | | | |
Collapse
|
43
|
Zupanic A, Corovic S, Miklavcic D, Pavlin M. Numerical optimization of gene electrotransfer into muscle tissue. Biomed Eng Online 2010; 9:66. [PMID: 21050435 PMCID: PMC2990758 DOI: 10.1186/1475-925x-9-66] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Accepted: 11/04/2010] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Electroporation-based gene therapy and DNA vaccination are promising medical applications that depend on transfer of pDNA into target tissues with use of electric pulses. Gene electrotransfer efficiency depends on electrode configuration and electric pulse parameters, which determine the electric field distribution. Numerical modeling represents a fast and convenient method for optimization of gene electrotransfer parameters. We used numerical modeling, parameterization and numerical optimization to determine the optimum parameters for gene electrotransfer in muscle tissue. METHODS We built a 3D geometry of muscle tissue with two or six needle electrodes (two rows of three needle electrodes) inserted. We performed a parametric study and optimization based on a genetic algorithm to analyze the effects of distances between the electrodes, depth of insertion, orientation of electrodes with respect to muscle fibers and applied voltage on the electric field distribution. The quality of solutions were evaluated in terms of volumes of reversibly (desired) and irreversibly (undesired) electroporated muscle tissue and total electric current through the tissue. RESULTS Large volumes of reversibly electroporated muscle with relatively little damage can be achieved by using large distances between electrodes and large electrode insertion depths. Orienting the electrodes perpendicular to muscle fibers is significantly better than the parallel orientation for six needle electrodes, while for two electrodes the effect of orientation is not so pronounced. For each set of geometrical parameters, the window of optimal voltages is quite narrow, with lower voltages resulting in low volumes of reversibly electroporated tissue and higher voltages in high volumes of irreversibly electroporated tissue. Furthermore, we determined which applied voltages are needed to achieve the optimal field distribution for different distances between electrodes. CONCLUSION The presented numerical study of gene electrotransfer is the first that demonstrates optimization of parameters for gene electrotransfer on tissue level. Our method of modeling and optimization is generic and can be applied to different electrode configurations, pulsing protocols and different tissues. Such numerical models, together with knowledge of tissue properties can provide useful guidelines for researchers and physicians in selecting optimal parameters for in vivo gene electrotransfer, thus reducing the number of animals used in studies of gene therapy and DNA vaccination.
Collapse
Affiliation(s)
- Anze Zupanic
- University of Ljubljana, Faculty of Electrical Engineering, Trzaska cesta 25, SI-1000 Ljubljana, Slovenia
| | - Selma Corovic
- University of Ljubljana, Faculty of Electrical Engineering, Trzaska cesta 25, SI-1000 Ljubljana, Slovenia
| | - Damijan Miklavcic
- University of Ljubljana, Faculty of Electrical Engineering, Trzaska cesta 25, SI-1000 Ljubljana, Slovenia
| | - Mojca Pavlin
- University of Ljubljana, Faculty of Electrical Engineering, Trzaska cesta 25, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
44
|
Optimization of gene delivery to HEK293T cells by microporation using a central composite design methodology. Biotechnol Lett 2010; 32:1393-9. [DOI: 10.1007/s10529-010-0327-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Accepted: 06/07/2010] [Indexed: 10/19/2022]
|
45
|
Faurie C, Rebersek M, Golzio M, Kanduser M, Escoffre JM, Pavlin M, Teissie J, Miklavcic D, Rols MP. Electro-mediated gene transfer and expression are controlled by the life-time of DNA/membrane complex formation. J Gene Med 2010; 12:117-25. [PMID: 19941315 DOI: 10.1002/jgm.1414] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Electroporation is a physical method used to transfer molecules into cells and tissues. Clinical applications have been developed for antitumor drug delivery. Clinical trials of gene electrotransfer are under investigation. However, knowledge about how DNA enters cells is not complete. By contrast to small molecules that have direct access to the cytoplasm, DNA forms a long lived complex with the plasma membrane and is transferred into the cytoplasm with a considerable delay. METHODS To increase our understanding of the key step of DNA/membrane complex formation, we investigated the dependence of DNA/membrane interaction and gene expression on electric pulse polarity and repetition frequency. RESULTS We observed that both are affected by reversing the polarity and by increasing the repetition frequency of pulses. The results obtained in the present study reveal the existence of two classes of DNA/membrane interaction: (i) a metastable DNA/membrane complex from which DNA can leave and return to external medium and (ii) a stable DNA/membrane complex, where DNA cannot be removed, even by applying electric pulses of reversed polarity. Only DNA belonging to the second class leads to effective gene expression. CONCLUSIONS The life-time of DNA/membrane complex formation is of the order of 1 s and has to be taken into account to improve protocols of electro-mediated gene delivery.
Collapse
Affiliation(s)
- Cécile Faurie
- CNRS, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Gene electrotransfer: from biophysical mechanisms to in vivo applications : Part 2 - In vivo developments and present clinical applications. Biophys Rev 2009; 1:185. [PMID: 28510026 DOI: 10.1007/s12551-009-0019-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Accepted: 10/19/2009] [Indexed: 10/20/2022] Open
Abstract
Gene electrotransfer can be obtained not just on single cells in diluted suspension. For more than 10 years, this is a quasi routine strategy in tissue on the living animal and a few clinical trials have now been approved. New problems have been brought by the close contacts of cells in tissue both on the local field distribution and on the access of DNA to target cells. They need to be solved to provide a further improvement in the efficacy and safety of protein expression. There is a competition between gene transfer and cell destruction. Nevertheless, present results are indicative that electrotransfer is a promising approach for gene therapy. High level and long-lived expression of proteins can be obtained in muscles. This is used for a successful method of electrovaccination.
Collapse
|