1
|
Piccolo P, Brunetti-Pierri N. Current and Emerging Issues in Adeno-Associated Virus Vector-Mediated Liver-Directed Gene Therapy. Hum Gene Ther 2024. [PMID: 39714937 DOI: 10.1089/hum.2024.179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024] Open
Abstract
Adeno-associated virus (AAV) vectors have demonstrated safety and efficacy for gene transfer to hepatocytes in preclinical models, in various clinical trials and from a clinical experience with a growing number of approved gene therapy products. Although the exact duration is unknown, the expression of therapeutic genes in hepatocytes remains stable for several years after a single administration of the vector at clinically relevant doses in adult patients with hemophilia and other inherited metabolic disorders. However, clinical applications, especially for diseases requiring high AAV vector doses by intravenous administrations, have raised several concerns. These include the high prevalence of pre-existing immunity against the vector capsid, activation of the complement and the innate immunity with serious life-threatening complications, elevation of liver transaminases, liver growth associated with loss of transgene expression, underlying conditions negatively affecting AAV vector safety and efficacy. Despite these issues, the field is rapidly advancing with a better understanding of vector-host interactions and the development of new strategies to improve liver-directed gene therapy. This review provides an overview of the current and emerging challenges for AAV-mediated liver-directed gene therapy.
Collapse
Affiliation(s)
| | - Nicola Brunetti-Pierri
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
- Department of Translational Medicine, Federico II University of Naples, Naples, Italy
- Genomics and Experimental Medicine Program, Scuola Superiore Meridionale (SSM, School of Advanced Studies), Naples, Italy
| |
Collapse
|
2
|
Llanos-Ardaiz A, Lantero A, Neri L, Mauleón I, Ruiz de Galarreta M, Trigueros-Motos L, Weber ND, Ferrer V, Aldabe R, Gonzalez-Aseguinolaza G. In Vivo Selection of S/MAR Sequences to Favour AAV Episomal Maintenance in Dividing Cells. Int J Mol Sci 2024; 25:12734. [PMID: 39684442 DOI: 10.3390/ijms252312734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/22/2024] [Accepted: 11/24/2024] [Indexed: 12/18/2024] Open
Abstract
Adeno-associated viral (AAV) vector-mediated gene therapy has emerged as a promising alternative to liver transplantation for monogenic metabolic hepatic diseases. AAVs are non-integrative vectors that are maintained primarily as episomes in quiescent cells like adult hepatocytes. This quality, while advantageous from a safety perspective due to a decreased risk of insertional mutagenesis, becomes a disadvantage when treating dividing cells, as it inevitably leads to the loss of the therapeutic genome. This is a challenge for the treatment of hereditary liver diseases that manifest in childhood. One potential approach to avoid vector genome loss involves putting scaffold/matrix attachment regions (S/MARs) into the recombinant AAV (rAAV) genome to facilitate its replication together with the cellular genome. We found that the administration of AAVs carrying the human β-interferon S/MAR sequence to neonatal and infant mice resulted in the maintenance of higher levels of viral genomes. However, we also observed that its inclusion at the 3' end of the mRNA negatively impacted its stability, leading to reduced mRNA and protein levels. This effect can be partially attenuated by incorporating nonsense-mediated decay (NMD)-inhibitory sequences into the S/MAR containing rAAV genome, whose introduction may aid in the development of more efficient and longer-lasting gene therapy rAAV vectors.
Collapse
Affiliation(s)
- Andrea Llanos-Ardaiz
- Vivet Therapeutics S.L., 31008 Pamplona, Spain
- DNA & RNA Medicine Division, Centre for Applied Medical Research (CIMA), University of Navarra, 31009 Pamplona, Spain
| | | | - Leire Neri
- Vivet Therapeutics S.L., 31008 Pamplona, Spain
| | - Itsaso Mauleón
- DNA & RNA Medicine Division, Centre for Applied Medical Research (CIMA), University of Navarra, 31009 Pamplona, Spain
| | | | | | | | | | - Rafael Aldabe
- DNA & RNA Medicine Division, Centre for Applied Medical Research (CIMA), University of Navarra, 31009 Pamplona, Spain
| | - Gloria Gonzalez-Aseguinolaza
- Vivet Therapeutics S.L., 31008 Pamplona, Spain
- DNA & RNA Medicine Division, Centre for Applied Medical Research (CIMA), University of Navarra, 31009 Pamplona, Spain
| |
Collapse
|
3
|
Lyu P, Yadav MK, Yoo KW, Jiang C, Li Q, Atala A, Lu B. Gene therapy of Dent disease type 1 in newborn ClC-5 null mice for sustained transgene expression and gene therapy effects. Gene Ther 2024; 31:563-571. [PMID: 39322766 DOI: 10.1038/s41434-024-00490-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/16/2024] [Accepted: 09/20/2024] [Indexed: 09/27/2024]
Abstract
Dent disease type 1 is caused by changes in the chloride voltage-gated channel 5 (CLCN5) gene on chromosome X, resulting in the lack or dysfunction of chloride channel ClC-5. Individuals affected by Dent disease type 1 show proteinuria and hypercalciuria. Previously we found that lentiviral vector-mediated hCLCN5 cDNA supplementary therapy in ClC-5 null mice was effective only for three months following gene delivery, and the therapeutic effects disappeared four months after treatment, most likely due to immune responses to the ClC-5 proteins expressed in the treated cells. Here we tried two strategies to reduce possible immune responses: 1) confining the expression of ClC-5 expression to the tubular cells with tubule-specific Npt2a and Sglt2 promoters, and 2) performing gene therapy in newborn mutant mice whose immune system has not fully developed. We found that although Npt2a and Sglt2 promoters successfully drove ClC-5 expression in the kidneys of the mutant mice, the treatment did not ameliorate the phenotypes. However, gene delivery to the kidneys of newborn Clcn5 mutant mice enabled long-term transgene expression and phenotype improvement. Our data suggest that performing gene therapy on Dent disease affected subjects soon after birth could be a promising strategy to attenuate immune responses in Dent disease type 1 gene therapy.
Collapse
Affiliation(s)
- Pin Lyu
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Manish Kumar Yadav
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Kyung Whan Yoo
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Cuili Jiang
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Qingqi Li
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Baisong Lu
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
4
|
Nakamura S, Morohoshi K, Inada E, Sato Y, Watanabe S, Saitoh I, Sato M. Recent Advances in In Vivo Somatic Cell Gene Modification in Newborn Pups. Int J Mol Sci 2023; 24:15301. [PMID: 37894981 PMCID: PMC10607593 DOI: 10.3390/ijms242015301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Germline manipulation at the zygote stage using the CRISPR/Cas9 system has been extensively employed for creating genetically modified animals and maintaining established lines. However, this approach requires a long and laborious task. Recently, many researchers have attempted to overcome these limitations by generating somatic mutations in the adult stage through tail vein injection or local administration of CRISPR reagents, as a new strategy called "in vivo somatic cell genome editing". This approach does not require manipulation of early embryos or strain maintenance, and it can test the results of genome editing in a short period. The newborn is an ideal stage to perform in vivo somatic cell genome editing because it is immune-privileged, easily accessible, and only a small amount of CRISPR reagents is required to achieve somatic cell genome editing throughout the entire body, owing to its small size. In this review, we summarize in vivo genome engineering strategies that have been successfully demonstrated in newborns. We also report successful in vivo genome editing through the neonatal introduction of genome editing reagents into various sites in newborns (as exemplified by intravenous injection via the facial vein), which will be helpful for creating models for genetic diseases or treating many genetic diseases.
Collapse
Affiliation(s)
- Shingo Nakamura
- Division of Biomedical Engineering, National Defense Medical College Research Institute, Tokorozawa 359-8513, Japan;
| | - Kazunori Morohoshi
- Division of Biomedical Engineering, National Defense Medical College Research Institute, Tokorozawa 359-8513, Japan;
| | - Emi Inada
- Department of Pediatric Dentistry, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan;
| | - Yoko Sato
- Graduate School of Public Health, Shizuoka Graduate University of Public Health, Aoi-ku, Shizuoka 420-0881, Japan;
| | - Satoshi Watanabe
- Institute of Livestock and Grassland Science, NARO, Tsukuba 305-0901, Japan;
| | - Issei Saitoh
- Department of Pediatric Dentistry, Asahi University School of Dentistry, Mizuho 501-0296, Japan;
| | - Masahiro Sato
- Department of Genome Medicine, National Center for Child Health and Development, Setagaya-ku, Tokyo 157-8535, Japan;
| |
Collapse
|
5
|
Issa SS, Shaimardanova AA, Solovyeva VV, Rizvanov AA. Various AAV Serotypes and Their Applications in Gene Therapy: An Overview. Cells 2023; 12:785. [PMID: 36899921 PMCID: PMC10000783 DOI: 10.3390/cells12050785] [Citation(s) in RCA: 93] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/22/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023] Open
Abstract
Despite scientific discoveries in the field of gene and cell therapy, some diseases still have no effective treatment. Advances in genetic engineering methods have enabled the development of effective gene therapy methods for various diseases based on adeno-associated viruses (AAVs). Today, many AAV-based gene therapy medications are being investigated in preclinical and clinical trials, and new ones are appearing on the market. In this article, we present a review of AAV discovery, properties, different serotypes, and tropism, and a following detailed explanation of their uses in gene therapy for disease of different organs and systems.
Collapse
Affiliation(s)
- Shaza S. Issa
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Alisa A. Shaimardanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Valeriya V. Solovyeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Albert A. Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| |
Collapse
|
6
|
Li M, Chen J, Liu Y, Zhao J, Li Y, Hu Y, Chen YQ, Sun L, Shu Y, Feng F, Sun C. Rational design of AAVrh10-vectored ACE2 functional domain to broadly block the cell entry of SARS-CoV-2 variants. Antiviral Res 2022; 205:105383. [PMID: 35917969 PMCID: PMC9338828 DOI: 10.1016/j.antiviral.2022.105383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 07/03/2022] [Accepted: 07/12/2022] [Indexed: 11/19/2022]
Abstract
The frequently emerging SARS-CoV-2 variants have weakened the effectiveness of existing COVID-19 vaccines and neutralizing antibody therapy. Nevertheless, the infections of SARS-CoV-2 variants still depend on angiotensin-converting enzyme 2 (ACE2) receptor-mediated cell entry, and thus the soluble human ACE2 (shACE2) is a potential decoy for broadly blocking SARS-CoV-2 variants. In this study, we firstly generated the recombinant AAVrh10-vectored shACE2 constructs, a kind of adeno-associated virus (AAV) serotype with pulmonary tissue tropism, and then validated its inhibition capacity against SARS-CoV-2 infection. To further optimize the minimized ACE2 functional domain candidates, a comprehensive analysis was performed to clarify the interactions between the ACE2 orthologs from various species and the receptor binding domain (RBD) of SARS-CoV-2 spike (S) protein. Based on the key interface amino acids, we designed a series of truncated ACE2 orthologs, and then assessed their potential affinity to bind to SARS-CoV-2 variants RBD in silico. Of note, we found that the 24-83aa fragment of dog ACE2 (dACE224-83) had a higher affinity to the RBD of SARS-CoV-2 variants than that of human ACE2. Importantly, AAVrh10-vectored shACE2 or dACE224-83 constructs exhibited a broadly blockage breadth against SARS-CoV-2 prototype and variants in vitro and ex vivo. Collectively, these data highlighted a promising therapeutic strategy against SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Minchao Li
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Jiaoshan Chen
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Yajie Liu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Jin Zhao
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Yanjun Li
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Yunqi Hu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Yao-Qing Chen
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China
| | - Litao Sun
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China
| | - Yuelong Shu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China; NHC Key Laboratory of System Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, PR China.
| | - Fengling Feng
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China.
| | - Caijun Sun
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China.
| |
Collapse
|
7
|
Khoja S, Lambert J, Nitzahn M, Eliav A, Zhang Y, Tamboline M, Le CT, Nasser E, Li Y, Patel P, Zhuravka I, Lueptow LM, Tkachyova I, Xu S, Nissim I, Schulze A, Lipshutz GS. Gene therapy for guanidinoacetate methyltransferase deficiency restores cerebral and myocardial creatine while resolving behavioral abnormalities. Mol Ther Methods Clin Dev 2022; 25:278-296. [PMID: 35505663 PMCID: PMC9051621 DOI: 10.1016/j.omtm.2022.03.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/27/2022] [Indexed: 11/06/2022]
Abstract
Creatine deficiency disorders are inborn errors of creatine metabolism, an energy homeostasis molecule. One of these, guanidinoacetate N-methyltransferase (GAMT) deficiency, has clinical characteristics that include features of autism, self-mutilation, intellectual disability, and seizures, with approximately 40% having a disorder of movement; failure to thrive can also be a component. Along with low creatine levels, guanidinoacetic acid (GAA) toxicity has been implicated in the pathophysiology of the disorder. Present-day therapy with oral creatine to control GAA lacks efficacy; seizures can persist. Dietary management and pharmacological ornithine treatment are challenging. Using an AAV-based gene therapy approach to express human codon-optimized GAMT in hepatocytes, in situ hybridization, and immunostaining, we demonstrated pan-hepatic GAMT expression. Serial collection of blood demonstrated a marked early and sustained reduction of GAA with normalization of plasma creatine; urinary GAA levels also markedly declined. The terminal time point demonstrated marked improvement in cerebral and myocardial creatine levels. In conjunction with the biochemical findings, treated mice gained weight to nearly match their wild-type littermates, while behavioral studies demonstrated resolution of abnormalities; PET-CT imaging demonstrated improvement in brain metabolism. In conclusion, a gene therapy approach can result in long-term normalization of GAA with increased creatine in guanidinoacetate N-methyltransferase deficiency and at the same time resolves the behavioral phenotype in a murine model of the disorder. These findings have important implications for the development of a new therapy for this abnormality of creatine metabolism.
Collapse
Affiliation(s)
- Suhail Khoja
- Department of Surgery, UCLA, Los Angeles, CA 90025, USA
| | - Jenna Lambert
- Department of Surgery, UCLA, Los Angeles, CA 90025, USA
| | - Matthew Nitzahn
- Molecular Biology Institute, UCLA, Los Angeles, CA 90025, USA
| | - Adam Eliav
- Department of Surgery, UCLA, Los Angeles, CA 90025, USA
| | - YuChen Zhang
- Semel Institute for Neuroscience, UCLA, Los Angeles, CA 90025, USA
| | - Mikayla Tamboline
- Crump Institute for Molecular Imaging, UCLA, Los Angeles, CA 90025, USA.,Departments of Molecular and Medical Pharmacology, Universtiy of California, Los Angeles, CA 90025, USA
| | - Colleen T Le
- Department of Surgery, UCLA, Los Angeles, CA 90025, USA
| | - Eram Nasser
- Department of Surgery, UCLA, Los Angeles, CA 90025, USA
| | - Yunfeng Li
- Departments of Pathology and Laboratory Medicine, UCLA, Los Angeles, CA 90025, USA
| | - Puja Patel
- Department of Surgery, UCLA, Los Angeles, CA 90025, USA
| | - Irina Zhuravka
- Behavioral Testing Core, Department of Psychology, UCLA, Los Angeles, CA 90025, USA
| | - Lindsay M Lueptow
- Behavioral Testing Core, Department of Psychology, UCLA, Los Angeles, CA 90025, USA
| | - Ilona Tkachyova
- Research Institute, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Shili Xu
- Crump Institute for Molecular Imaging, UCLA, Los Angeles, CA 90025, USA.,Departments of Molecular and Medical Pharmacology, Universtiy of California, Los Angeles, CA 90025, USA.,Jonsson Comprehensive Cancer Center at UCLA, David Geffen School of Medicine at UCLA, Los Angeles, CA 90025, USA
| | - Itzhak Nissim
- Division of Metabolism and Human Genetics, Children's Hospital of Philadelphia, and the Department of Biochemistry and Biophysics, Perlman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andreas Schulze
- Department of Paediatrics, University of Toronto, Toronto, ON M5G 1X8, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON M5G 1X8, Canada.,Research Institute, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Gerald S Lipshutz
- Department of Surgery, UCLA, Los Angeles, CA 90025, USA.,Molecular Biology Institute, UCLA, Los Angeles, CA 90025, USA.,Semel Institute for Neuroscience, UCLA, Los Angeles, CA 90025, USA.,Departments of Molecular and Medical Pharmacology, Universtiy of California, Los Angeles, CA 90025, USA.,Intellectual and Developmental Disabilities Research Center, UCLA, Los Angeles, CA 90025, USA
| |
Collapse
|
8
|
Lundgren TS, Denning G, Stowell SR, Spencer HT, Doering CB. Pharmacokinetic analysis identifies a factor VIII immunogenicity threshold after AAV gene therapy in hemophilia A mice. Blood Adv 2022; 6:2628-2645. [PMID: 35286375 PMCID: PMC9043920 DOI: 10.1182/bloodadvances.2021006359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 02/28/2022] [Indexed: 11/20/2022] Open
Abstract
Advances in the development of novel treatment options for hemophilia A are prevalent. However, the anti-factor VIII (FVIII) neutralizing antibody (inhibitor) response to existing FVIII products remains a major treatment challenge. Although some novel products are designed to function in the presence of inhibitors, they do not specific address the immunogenicity risk or mechanistic causes of inhibitor development, which remain unclear. Furthermore, most preclinical studies supporting clinical gene therapy programs have reported immunogenicity signals in animal models, especially at higher vector doses and sometimes using multiple vector designs. In these settings, immunogenicity risk factor determination, comparative immunogenicity of competing vector designs, and the potential for obtaining meaningful prognostic data remain relatively unexplored. Additionally, there remains the opportunity to investigate clinical gene therapy as an alternative to standard immune tolerance induction therapy. The current study was designed to address these issues through longitudinal dose-response evaluation of 4 adeno-associated viral (AAV) vector candidates encoding 2 different FVIII transgenes in a murine model of hemophilia A. Plasma FVIII activity and anti-FVIII antibody data were used to generate a pharmacokinetic model that (1) identifies initial AAV-FVIII product expression kinetics as the dominant risk factor for inhibitor development, (2) predicts a therapeutic window where immune tolerance is achieved, and (3) demonstrates evidence of gene therapy-based immune tolerance induction. Although there are known limitations to the predictive value of preclinical immunogenicity testing, these studies can uncover or support the development of design principles that can guide the development of safe and effective genetic medicines.
Collapse
Affiliation(s)
- Taran S. Lundgren
- Graduate Program in Molecular and Systems Pharmacology, Laney Graduate School, Emory University, Atlanta, GA
| | | | - Sean R. Stowell
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; and
| | - H. Trent Spencer
- Expression Therapeutics, Inc., Tucker, GA
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA
| | - Christopher B. Doering
- Expression Therapeutics, Inc., Tucker, GA
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA
| |
Collapse
|
9
|
Ultrasound-mediated gene delivery of factor VIII plasmids for hemophilia A gene therapy in mice. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 27:916-926. [PMID: 35141050 PMCID: PMC8803955 DOI: 10.1016/j.omtn.2022.01.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/07/2022] [Indexed: 02/04/2023]
Abstract
Gene therapy offers great promises for a cure of hemophilia A resulting from factor VIII (FVIII) gene deficiency. We have developed and optimized a non-viral ultrasound-mediated gene delivery (UMGD) strategy. UMGD of reporter plasmids targeting mice livers achieved high levels of transgene expression predominantly in hepatocytes. Following UMGD of a plasmid encoding human FVIII driven by a hepatocyte-specific promoter/enhancer (pHP-hF8/N6) into the livers of hemophilia A mice, a partial phenotypic correction was achieved in treated mice. In order to achieve persistent and therapeutic FVIII gene expression, we adopted a plasmid (pHP-hF8-X10) encoding an FVIII variant with significantly increased FVIII secretion. By employing an optimized pulse-train ultrasound condition and immunomodulation, the treated hemophilia A mice achieved 25%–150% of FVIII gene expression on days 1–7 with very mild transient liver damage, as indicated by a small increase of transaminase levels that returned to normal within 3 days. Therapeutic levels of FVIII can be maintained persistently without the generation of inhibitors in mice. These results indicate that UMGD can significantly enhance the efficiency of plasmid DNA transfer into the liver. They also demonstrate the potential of this novel technology to safely and effectively treat hemophilia A.
Collapse
|
10
|
Zin EA, Han D, Tran J, Morisson-Welch N, Visel M, Kuronen M, Flannery JG. Outcomes of progranulin gene therapy in the retina are dependent on time and route of delivery. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 22:40-51. [PMID: 34485593 PMCID: PMC8390452 DOI: 10.1016/j.omtm.2021.05.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/19/2021] [Indexed: 11/25/2022]
Abstract
Neuronal ceroid lipofuscinosis (NCL) is a family of neurodegenerative diseases caused by mutations to genes related to lysosomal function. One variant, CNL11, is caused by mutations to the gene encoding the protein progranulin, which regulates neuronal lysosomal function. Absence of progranulin causes cerebellar atrophy, seizures, dementia, and vision loss. As progranulin gene therapies targeting the brain are developed, it is advantageous to focus on the retina, as its characteristics are beneficial for gene therapy development: the retina is easily visible through direct imaging, can be assessed through quantitative methods in vivo, and requires smaller amounts of adeno-associated virus (AAV). In this study we characterize the retinal degeneration in a progranulin knockout mouse model of CLN11 and study the effects of gene replacement at different time points. Mice heterologously expressing progranulin showed a reduction in lipofuscin deposits and microglia infiltration. While mice that receive systemic AAV92YF-scCAG-PGRN at post-natal day 3 or 4 show a reduction in retina thinning, mice injected intravitreally at months 1 and 6 with AAV2.7m8-scCAG-PGRN exhibit no improvement, and mice injected at 12 months of age have thinner retinas than do their controls. Thus, delivery of progranulin proves to be time sensitive and dependent on route of administration, requiring early delivery for optimal therapeutic benefit.
Collapse
Affiliation(s)
- Emilia A Zin
- Vision Science Group, School of Optometry, UC Berkeley, Berkeley, CA 94720, USA
| | - Daisy Han
- Department of Integrative Biology, UC Berkeley, Berkeley, CA 94720, USA
| | - Jennifer Tran
- School of Optometry, UC Berkeley, Berkeley, CA 94720, USA
| | | | - Meike Visel
- Helen Wills Neuroscience Institute, UC Berkeley, Berkeley, CA 94720, USA
| | - Mervi Kuronen
- Helen Wills Neuroscience Institute, UC Berkeley, Berkeley, CA 94720, USA
| | - John G Flannery
- Vision Science Group, School of Optometry, UC Berkeley, Berkeley, CA 94720, USA.,School of Optometry, UC Berkeley, Berkeley, CA 94720, USA.,Helen Wills Neuroscience Institute, UC Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
11
|
Zhou M, Hu Z, Zhang C, Wu L, Li Z, Liang D. Gene Therapy for Hemophilia A: Where We Stand. Curr Gene Ther 2020; 20:142-151. [PMID: 32767930 DOI: 10.2174/1566523220666200806110849] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/25/2020] [Accepted: 07/13/2020] [Indexed: 01/19/2023]
Abstract
Hemophilia A (HA) is a hereditary hemorrhagic disease caused by a deficiency of coagulation factor VIII (FVIII) in blood plasma. Patients with HA usually suffer from spontaneous and recurrent bleeding in joints and muscles, or even intracerebral hemorrhage, which might lead to disability or death. Although the disease is currently manageable via delivery of plasma-derived or recombinant FVIII, this approach is costly, and neutralizing antibodies may be generated in a large portion of patients, which render the regimens ineffective and inaccessible. Given the monogenic nature of HA and that a slight increase in FVIII can remarkably alleviate the phenotypes, HA has been considered to be a suitable target disease for gene therapy. Consequently, the introduction of a functional F8 gene copy into the appropriate target cells via viral or nonviral delivery vectors, including gene correction through genome editing approaches, could ultimately provide an effective therapeutic method for HA patients. In this review, we discuss the recent progress of gene therapy for HA with viral and nonviral delivery vectors, including piggyBac, lentiviral and adeno-associated viral vectors, as well as new raising issues involving liver toxicity, pre-existing neutralizing antibodies of viral approach, and the selection of the target cell type for nonviral delivery.
Collapse
Affiliation(s)
- Miaojin Zhou
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410078, China
| | - Zhiqing Hu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410078, China
| | - Chunhua Zhang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410078, China
| | - Lingqian Wu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410078, China
| | - Zhuo Li
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410078, China
| | - Desheng Liang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410078, China
| |
Collapse
|
12
|
Merlin S, Follenzi A. Escape or Fight: Inhibitors in Hemophilia A. Front Immunol 2020; 11:476. [PMID: 32265927 PMCID: PMC7105606 DOI: 10.3389/fimmu.2020.00476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/02/2020] [Indexed: 01/07/2023] Open
Abstract
Replacement therapy with coagulation factor VIII (FVIII) represents the current clinical treatment for patients affected by hemophilia A (HA). This treatment while effective is, however, hampered by the formation of antibodies which inhibit the activity of infused FVIII in up to 30% of treated patients. Immune tolerance induction (ITI) protocols, which envisage frequent infusions of high doses of FVIII to confront this side effect, dramatically increase the already high costs associated to a patient's therapy and are not always effective in all treated patients. Therefore, there are clear unmet needs that must be addressed in order to improve the outcome of these treatments for HA patients. Taking advantage of preclinical mouse models of hemophilia, several strategies have been proposed in recent years to prevent inhibitor formation and eradicate the pre-existing immunity to FVIII inhibitor positive patients. Herein, we will review some of the most promising strategies developed to avoid and eradicate inhibitors, including the use of immunomodulatory drugs or molecules, oral or transplacental delivery as well as cell and gene therapy approaches. The goal is to improve and potentiate the current ITI protocols and eventually make them obsolete.
Collapse
Affiliation(s)
- Simone Merlin
- Laboratory of Histology, Department of Health Sciences, Università degli Studi del Piemonte Orientale "A. Avogadro", Novara, Italy.,Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), Novara, Italy
| | - Antonia Follenzi
- Laboratory of Histology, Department of Health Sciences, Università degli Studi del Piemonte Orientale "A. Avogadro", Novara, Italy.,Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), Novara, Italy
| |
Collapse
|
13
|
Truong B, Allegri G, Liu XB, Burke KE, Zhu X, Cederbaum SD, Häberle J, Martini PGV, Lipshutz GS. Lipid nanoparticle-targeted mRNA therapy as a treatment for the inherited metabolic liver disorder arginase deficiency. Proc Natl Acad Sci U S A 2019; 116:21150-21159. [PMID: 31501335 PMCID: PMC6800360 DOI: 10.1073/pnas.1906182116] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Arginase deficiency is caused by biallelic mutations in arginase 1 (ARG1), the final step of the urea cycle, and results biochemically in hyperargininemia and the presence of guanidino compounds, while it is clinically notable for developmental delays, spastic diplegia, psychomotor function loss, and (uncommonly) death. There is currently no completely effective medical treatment available. While preclinical strategies have been demonstrated, disadvantages with viral-based episomal-expressing gene therapy vectors include the risk of insertional mutagenesis and limited efficacy due to hepatocellular division. Recent advances in messenger RNA (mRNA) codon optimization, synthesis, and encapsulation within biodegradable liver-targeted lipid nanoparticles (LNPs) have potentially enabled a new generation of safer, albeit temporary, treatments to restore liver metabolic function in patients with urea cycle disorders, including ARG1 deficiency. In this study, we applied such technologies to successfully treat an ARG1-deficient murine model. Mice were administered LNPs encapsulating human codon-optimized ARG1 mRNA every 3 d. Mice demonstrated 100% survival with no signs of hyperammonemia or weight loss to beyond 11 wk, compared with controls that perished by day 22. Plasma ammonia, arginine, and glutamine demonstrated good control without elevation of guanidinoacetic acid, a guanidino compound. Evidence of urea cycle activity restoration was demonstrated by the ability to fully metabolize an ammonium challenge and by achieving near-normal ureagenesis; liver arginase activity achieved 54% of wild type. Biochemical and microscopic data showed no evidence of hepatotoxicity. These results suggest that delivery of ARG1 mRNA by liver-targeted nanoparticles may be a viable gene-based therapeutic for the treatment of arginase deficiency.
Collapse
Affiliation(s)
- Brian Truong
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
| | - Gabriella Allegri
- Division of Metabolism and Children's Research Center, University Children's Hospital, 8032 Zurich, Switzerland
| | - Xiao-Bo Liu
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
| | | | | | - Stephen D Cederbaum
- Department of Psychiatry, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
- Intellectual and Developmental Disabilities Research Center at UCLA, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
- Semel Institute for Neuroscience, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
| | - Johannes Häberle
- Division of Metabolism and Children's Research Center, University Children's Hospital, 8032 Zurich, Switzerland
| | | | - Gerald S Lipshutz
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095;
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
- Department of Psychiatry, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
- Intellectual and Developmental Disabilities Research Center at UCLA, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
- Semel Institute for Neuroscience, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
| |
Collapse
|
14
|
Zhu YP, Li C, Wan XY, Yang Q, Xie GS, Huang J. Delivery of plasmid DNA to shrimp hemocytes by Infectious hypodermal and hematopoietic necrosis virus (IHHNV) nanoparticles expressed from a baculovirus insect cell system. J Invertebr Pathol 2019; 166:107231. [PMID: 31425685 DOI: 10.1016/j.jip.2019.107231] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 08/15/2019] [Accepted: 08/15/2019] [Indexed: 01/03/2023]
Abstract
Virus-like particles (VLPs) are potential containers for delivery of therapeutic agents at the nanoscale. In this study, the capsid protein of Infectious hypodermal and hematopoietic necrosis virus (IHHNV) was expressed in a baculovirus insect cell system. The 37-kDa recombinant protein containing the hexahistidine residues (His Tag) at N-terminal was purified using immobilized metal affinity chromatography (IMAC) and assembled into VLPs with a diameter of 23 ± 3 nm analyzed by transmission electron microscopy. We also verified that disassembly/reassembly of IHHNV-VLPs was controlled in the presence and absence of DTT. The efficiency of IHHNV-VLPs to encapsulate plasmid DNA was about 48.2%, and the VLPs encapsulating the pcDNA3.1(+)-EGFP plasmid DNA could recognize the primary shrimp hemocytes and deliver the loaded plasmid into cells by detection of expressed enhanced green fluorescent protein (EGFP). These results implied that the IHHNV-VLPs might be a good candidate for packaging and delivery of expressible plasmid DNA, and may produce an antiviral product in shrimp cells for gene therapy.
Collapse
Affiliation(s)
- Yan-Ping Zhu
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture, Chinese Academy of Fishery Sciences, Qingdao, China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Chinese Academy of Fishery Sciences, Qingdao, China; Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China; Precision Medicine Research Center, Binzhou Medical University, Yantai, Shandong Province 264003, China
| | - Chen Li
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture, Chinese Academy of Fishery Sciences, Qingdao, China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Chinese Academy of Fishery Sciences, Qingdao, China; Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.
| | - Xiao-Yuan Wan
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture, Chinese Academy of Fishery Sciences, Qingdao, China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Chinese Academy of Fishery Sciences, Qingdao, China; Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.
| | - Qian Yang
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture, Chinese Academy of Fishery Sciences, Qingdao, China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Chinese Academy of Fishery Sciences, Qingdao, China; Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Guo Si Xie
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture, Chinese Academy of Fishery Sciences, Qingdao, China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Chinese Academy of Fishery Sciences, Qingdao, China; Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.
| | - Jie Huang
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture, Chinese Academy of Fishery Sciences, Qingdao, China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Chinese Academy of Fishery Sciences, Qingdao, China; Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.
| |
Collapse
|
15
|
Xu L, Lau YS, Gao Y, Li H, Han R. Life-Long AAV-Mediated CRISPR Genome Editing in Dystrophic Heart Improves Cardiomyopathy without Causing Serious Lesions in mdx Mice. Mol Ther 2019; 27:1407-1414. [PMID: 31129119 PMCID: PMC6697345 DOI: 10.1016/j.ymthe.2019.05.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/27/2019] [Accepted: 05/01/2019] [Indexed: 12/26/2022] Open
Abstract
Previous studies from others and us have demonstrated that CRISPR genome editing could offer a promising therapeutic strategy to restore dystrophin expression and function in the skeletal muscle and heart of Duchenne muscular dystrophy (DMD) mouse models. However, the long-term efficacy and safety of CRISPR genome-editing therapy for DMD has not been well established. We packaged both SaCas9 and guide RNA (gRNA) together into one AAVrh.74 vector, injected two such vectors (targeting intron 20 and intron 23, respectively) into mdx pups at day 3 and evaluated the mice at 19 months. We found that AAVrh.74-mediated life-long CRISPR genome editing in mdx mice restored dystrophin expression and improved cardiac function without inducing serious adverse effects. PCR analysis and targeted deep sequencing showed that the DSBs were mainly repaired by the precise ligation of the two cut sites. Serological and histological examination of major vital organs did not reveal any signs of tumor development or other deleterious defects arising from CRISPR genome editing. These results support that in vivo CRISPR genome editing could be developed as a safe therapeutic treatment for DMD and potentially other diseases.
Collapse
MESH Headings
- Animals
- CRISPR-Cas Systems
- Cardiomyopathies/etiology
- Cardiomyopathies/metabolism
- Cardiomyopathies/pathology
- Cardiomyopathies/therapy
- DNA Repair
- Dependovirus/genetics
- Disease Models, Animal
- Dystrophin/genetics
- Dystrophin/metabolism
- Fluorescent Antibody Technique
- Gene Editing
- Gene Expression
- Genetic Therapy/methods
- Genetic Vectors/administration & dosage
- Genetic Vectors/genetics
- Mice
- Mice, Inbred mdx
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscular Dystrophy, Duchenne/complications
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/therapy
- RNA, Guide, CRISPR-Cas Systems/genetics
- Transduction, Genetic
Collapse
Affiliation(s)
- Li Xu
- Department of Surgery, Davis Heart and Lung Research Institute, Biomedical Sciences Graduate Program, Biophysics Graduate Program, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Yeh Siang Lau
- Department of Surgery, Davis Heart and Lung Research Institute, Biomedical Sciences Graduate Program, Biophysics Graduate Program, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Yandi Gao
- Department of Surgery, Davis Heart and Lung Research Institute, Biomedical Sciences Graduate Program, Biophysics Graduate Program, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Haiwen Li
- Department of Surgery, Davis Heart and Lung Research Institute, Biomedical Sciences Graduate Program, Biophysics Graduate Program, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Renzhi Han
- Department of Surgery, Davis Heart and Lung Research Institute, Biomedical Sciences Graduate Program, Biophysics Graduate Program, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| |
Collapse
|
16
|
van Lieshout LP, Soule G, Sorensen D, Frost KL, He S, Tierney K, Safronetz D, Booth SA, Kobinger GP, Qiu X, Wootton SK. Intramuscular Adeno-Associated Virus-Mediated Expression of Monoclonal Antibodies Provides 100% Protection Against Ebola Virus Infection in Mice. J Infect Dis 2019; 217:916-925. [PMID: 29365142 DOI: 10.1093/infdis/jix644] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 12/30/2017] [Indexed: 01/14/2023] Open
Abstract
The 2013-2016 West Africa outbreak demonstrated the epidemic potential of Ebola virus and highlighted the need for counter strategies. Monoclonal antibody (mAb)-based therapies hold promise as treatment options for Ebola virus infections. However, production of clinical-grade mAbs is labor intensive, and immunity is short lived. Conversely, adeno-associated virus (AAV)-mediated mAb gene transfer provides the host with a genetic blueprint to manufacture mAbs in vivo, leading to steady release of antibody over many months. Here we demonstrate that AAV-mediated expression of nonneutralizing mAb 5D2 or 7C9 confers 100% protection against mouse-adapted Ebola virus infection, while neutralizing mAb 2G4 was 83% protective. A 2-component cocktail, AAV-2G4/AAV-5D2, provided complete protection when administered 7 days prior to challenge and was partially protective with a 3-day lead time. Finally, AAV-mAb therapies provided sustained protection from challenge 5 months following AAV administration. AAV-mAb may be a viable alternative strategy for vaccination against emerging infectious diseases.
Collapse
Affiliation(s)
| | - Geoff Soule
- Zoonotic Diseases and Special Pathogens Program, Canada
| | - Debra Sorensen
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada
| | - Kathy L Frost
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada
| | - Shihua He
- Zoonotic Diseases and Special Pathogens Program, Canada
| | - Kevin Tierney
- Zoonotic Diseases and Special Pathogens Program, Canada
| | - David Safronetz
- Zoonotic Diseases and Special Pathogens Program, Canada.,Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada
| | - Stephanie A Booth
- Molecular Pathobiology, National Microbiology Laboratory, Public Health Agency of Canada, Canada
| | - Gary P Kobinger
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada.,Department of Microbiology and Immunology, Faculty of Medicine, Laval University, Québec City, Canada
| | - Xiangguo Qiu
- Zoonotic Diseases and Special Pathogens Program, Canada.,Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada
| | | |
Collapse
|
17
|
Nelson CE, Wu Y, Gemberling MP, Oliver ML, Waller MA, Bohning JD, Robinson-Hamm JN, Bulaklak K, Castellanos Rivera RM, Collier JH, Asokan A, Gersbach CA. Long-term evaluation of AAV-CRISPR genome editing for Duchenne muscular dystrophy. Nat Med 2019; 25:427-432. [PMID: 30778238 PMCID: PMC6455975 DOI: 10.1038/s41591-019-0344-3] [Citation(s) in RCA: 305] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 12/21/2018] [Indexed: 12/12/2022]
Abstract
Duchenne muscular dystrophy (DMD) is a monogenic disorder and a candidate for therapeutic genome editing. There have been several recent reports of genome editing in preclinical models of Duchenne muscular dystrophy1-6, however, the long-term persistence and safety of these genome editing approaches have not been addressed. Here we show that genome editing and dystrophin protein restoration is sustained in the mdx mouse model of Duchenne muscular dystrophy for 1 year after a single intravenous administration of an adeno-associated virus that encodes CRISPR (AAV-CRISPR). We also show that AAV-CRISPR is immunogenic when administered to adult mice7; however, humoral and cellular immune responses can be avoided by treating neonatal mice. Additionally, we describe unintended genome and transcript alterations induced by AAV-CRISPR that should be considered for the development of AAV-CRISPR as a therapeutic approach. This study shows the potential of AAV-CRISPR for permanent genome corrections and highlights aspects of host response and alternative genome editing outcomes that require further study.
Collapse
Affiliation(s)
- Christopher E Nelson
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - Yaoying Wu
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Matthew P Gemberling
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - Matthew L Oliver
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Matthew A Waller
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - Joel D Bohning
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - Jacqueline N Robinson-Hamm
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - Karen Bulaklak
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | | | - Joel H Collier
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Aravind Asokan
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Charles A Gersbach
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
- Center for Genomic and Computational Biology, Duke University, Durham, NC, USA.
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
18
|
Gao K, Kumar P, Cortez-Toledo E, Hao D, Reynaga L, Rose M, Wang C, Farmer D, Nolta J, Zhou J, Zhou P, Wang A. Potential long-term treatment of hemophilia A by neonatal co-transplantation of cord blood-derived endothelial colony-forming cells and placental mesenchymal stromal cells. Stem Cell Res Ther 2019; 10:34. [PMID: 30670078 PMCID: PMC6341603 DOI: 10.1186/s13287-019-1138-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 01/06/2019] [Accepted: 01/07/2019] [Indexed: 01/02/2023] Open
Abstract
Background Hemophilia A (HA) is an X-linked recessive disorder caused by mutations in the Factor VIII (FVIII) gene leading to deficient blood coagulation. As a monogenic disorder, HA is an ideal target for cell-based gene therapy, but successful treatment has been hampered by insufficient engraftment of potential therapeutic cells. Methods In this study, we sought to determine whether co-transplantation of endothelial colony-forming cells (ECFCs) and placenta-derived mesenchymal stromal cells (PMSCs) can achieve long-term engraftment and FVIII expression. ECFCs and PMSCs were transduced with a B domain deleted factor VIII (BDD-FVIII) expressing lentiviral vector and luciferase, green fluorescent protein or Td-Tomato containing lentiviral tracking vectors. They were transplanted intramuscularly into neonatal or adult immunodeficient mice. Results In vivo bioluminescence imaging showed that the ECFC only and the co-transplantation groups but not the PMSCs only group achieved long-term engraftment for at least 26 weeks, and the co-transplantation group showed a higher engraftment than the ECFC only group at 16 and 20 weeks post-transplantation. In addition, cell transplantation at the neonatal age achieved higher engraftment than at the adult age. Immunohistochemical analyses further showed that the engrafted ECFCs expressed FVIII, maintained endothelial phenotype, and generated functional vasculature. Next, co-transplantation of ECFCs and PMSCs into F8 knock-out HA mice reduced the blood loss volume from 562.13 ± 19.84 μl to 155.78 ± 44.93 μl in a tail-clip assay. Conclusions This work demonstrated that co-transplantation of ECFCs with PMSCs at the neonatal age is a potential strategy to achieve stable, long-term engraftment, and thus holds great promise for cell-based treatment of HA. Electronic supplementary material The online version of this article (10.1186/s13287-019-1138-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kewa Gao
- Department of Burns and Plastic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, People's Republic of China.,Surgical Bioengineering Laboratory, Department of Surgery, University of California Davis, Sacramento, CA, 95817, USA
| | - Priyadarsini Kumar
- Surgical Bioengineering Laboratory, Department of Surgery, University of California Davis, Sacramento, CA, 95817, USA.,Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Northern California, Sacramento, CA, 95817, USA
| | - Elizabeth Cortez-Toledo
- Department of Internal Medicine, Stem Cell Program and Institute for Regenerative Cures, University of California Davis, Sacramento, CA, 95817, USA
| | - Dake Hao
- Surgical Bioengineering Laboratory, Department of Surgery, University of California Davis, Sacramento, CA, 95817, USA.,Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Northern California, Sacramento, CA, 95817, USA
| | - Lizette Reynaga
- Surgical Bioengineering Laboratory, Department of Surgery, University of California Davis, Sacramento, CA, 95817, USA
| | - Melanie Rose
- Department of Internal Medicine, Stem Cell Program and Institute for Regenerative Cures, University of California Davis, Sacramento, CA, 95817, USA
| | - Chuwang Wang
- Department of Burns and Plastic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, People's Republic of China.,Surgical Bioengineering Laboratory, Department of Surgery, University of California Davis, Sacramento, CA, 95817, USA
| | - Diana Farmer
- Surgical Bioengineering Laboratory, Department of Surgery, University of California Davis, Sacramento, CA, 95817, USA.,Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Northern California, Sacramento, CA, 95817, USA
| | - Jan Nolta
- Department of Internal Medicine, Stem Cell Program and Institute for Regenerative Cures, University of California Davis, Sacramento, CA, 95817, USA
| | - Jianda Zhou
- Department of Burns and Plastic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, People's Republic of China.
| | - Ping Zhou
- Department of Internal Medicine, Stem Cell Program and Institute for Regenerative Cures, University of California Davis, Sacramento, CA, 95817, USA.
| | - Aijun Wang
- Surgical Bioengineering Laboratory, Department of Surgery, University of California Davis, Sacramento, CA, 95817, USA. .,Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Northern California, Sacramento, CA, 95817, USA. .,Department of Biomedical Engineering, University of California Davis, Davis, CA, 95616, USA.
| |
Collapse
|
19
|
Borsotti C, Follenzi A. New technologies in gene therapy for inducing immune tolerance in hemophilia A. Expert Rev Clin Immunol 2018; 14:1013-1019. [PMID: 30345839 DOI: 10.1080/1744666x.2018.1539667] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Conventional hemophilia treatment is based on repeated infusion of the missing clotting factor. This therapy is lifelong, expensive and can result in the formation of neutralizing antibodies, thus causing failure of the treatment and requiring higher doses of the replacement drug. Areas covered: Gene and cell therapies offer the advantage of providing a definitive and long-lasting correction of the mutated gene, promoting its physiological expression and preventing neutralizing antibody development. This review focuses on the most recent approaches that have been shown to prevent and even eradicate immune response toward the replaced factor. Expert commentary: Despite the encouraging data demonstrated by ongoing clinical trials and pre-clinical studies, more extensive investigations are necessary to establish the long-term safety and efficacy of gene therapy treatments in maintaining immune tolerance.
Collapse
Affiliation(s)
- Chiara Borsotti
- a Department of Health Sciences , Università del Piemonte Orientale , Novara , Italy
| | - Antonia Follenzi
- a Department of Health Sciences , Università del Piemonte Orientale , Novara , Italy
| |
Collapse
|
20
|
Duarte S, Matian P, Ma S, Busuttil RW, Coito AJ. Adeno-Associated Virus-Mediated Gene Transfer of Tissue Inhibitor of Metalloproteinases-1 Impairs Neutrophil Extracellular Trap Formation and Ameliorates Hepatic Ischemia and Reperfusion Injury. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:1820-1832. [PMID: 29870740 DOI: 10.1016/j.ajpath.2018.05.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 04/19/2018] [Accepted: 05/03/2018] [Indexed: 01/01/2023]
Abstract
Matrix metalloproteinase-9 (MMP-9) is abundantly expressed by infiltrating leukocytes and contributes to the pathogenesis of hepatic ischemia and reperfusion injury (IRI). On the other hand, its physiological inhibitor, the tissue inhibitor of metalloproteinases-1 (TIMP-1), is available in insufficient levels to hamper MMP-9 activity during hepatic IRI. In this study, we generated recombinant adeno-associated virus type 8 vectors (rAAV8) encoding mouse TIMP-1 driven by a liver-specific thyroxine-binding globulin promoter as a strategy to increase the levels of TIMP-1 during liver IRI. Biodistribution analysis confirmed selective overexpression of TIMP-1 in livers of rAAV8-TIMP-1 vector treated C57BL/6 mice. rAAV8-TIMP-1-treated mice showed reduced MMP-9 activity, diminished leukocyte trafficking and activation, lowered transaminase levels, and improved histology after liver IRI. Moreover, the rAAV8-TIMP-1 vector therapy enhanced significantly the 7-day survival rate of TIMP-1-/- mice subjected to hepatic IRI. Neutrophils are the first cells recruited to inflamed tissues and, once activated, they release nuclear DNA-forming web-like structures, known as neutrophil extracellular traps. It was found that TIMP-1 has the ability to reduce formation of neutrophil extracellular traps and, consequently, limit the impact of neutrophil extracellular trap-mediated cytotoxicity in hepatic IRI. This is the first report demonstrating that TIMP-1 overexpression is hepatoprotective in ischemia and reperfusion injury. Hence, TIMP-1 may represent a promising molecule for drug development to treat liver IRI.
Collapse
Affiliation(s)
- Sergio Duarte
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Patrick Matian
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Stacy Ma
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Ronald W Busuttil
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Ana J Coito
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California.
| |
Collapse
|
21
|
Sherman A, Biswas M, Herzog RW. Innovative Approaches for Immune Tolerance to Factor VIII in the Treatment of Hemophilia A. Front Immunol 2017; 8:1604. [PMID: 29225598 PMCID: PMC5705551 DOI: 10.3389/fimmu.2017.01604] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 11/07/2017] [Indexed: 01/19/2023] Open
Abstract
Hemophilia A (coagulation factor VIII deficiency) is a debilitating genetic disorder that is primarily treated with intravenous replacement therapy. Despite a variety of factor VIII protein formulations available, the risk of developing anti-dug antibodies (“inhibitors”) remains. Overall, 20–30% of patients with severe disease develop inhibitors. Current clinical immune tolerance induction protocols to eliminate inhibitors are not effective in all patients, and there are no prophylactic protocols to prevent the immune response. New experimental therapies, such as gene and cell therapies, show promising results in pre-clinical studies in animal models of hemophilia. Examples include hepatic gene transfer with viral vectors, genetically engineered regulatory T cells (Treg), in vivo Treg induction using immune modulatory drugs, and maternal antigen transfer. Furthermore, an oral tolerance protocol is being developed based on transgenic lettuce plants, which suppressed inhibitor formation in hemophilic mice and dogs. Hopefully, some of these innovative approaches will reduce the risk of and/or more effectively eliminate inhibitor formation in future treatment of hemophilia A.
Collapse
Affiliation(s)
- Alexandra Sherman
- Department of Pediatrics, University of Florida, Gainesville, FL, United States
| | - Moanaro Biswas
- Department of Pediatrics, University of Florida, Gainesville, FL, United States
| | - Roland W Herzog
- Department of Pediatrics, University of Florida, Gainesville, FL, United States
| |
Collapse
|
22
|
Selot R, Arumugam S, Mary B, Cheemadan S, Jayandharan GR. Optimized AAV rh.10 Vectors That Partially Evade Neutralizing Antibodies during Hepatic Gene Transfer. Front Pharmacol 2017; 8:441. [PMID: 28769791 PMCID: PMC5511854 DOI: 10.3389/fphar.2017.00441] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 06/20/2017] [Indexed: 12/12/2022] Open
Abstract
Of the 12 common serotypes used for gene delivery applications, Adeno-associated virus (AAV)rh.10 serotype has shown sustained hepatic transduction and has the lowest seropositivity in humans. We have evaluated if further modifications to AAVrh.10 at its phosphodegron like regions or predicted immunogenic epitopes could improve its hepatic gene transfer and immune evasion potential. Mutant AAVrh.10 vectors were generated by site directed mutagenesis of the predicted targets. These mutant vectors were first tested for their transduction efficiency in HeLa and HEK293T cells. The optimal vector was further evaluated for their cellular uptake, entry, and intracellular trafficking by quantitative PCR and time-lapse confocal microscopy. To evaluate their potential during hepatic gene therapy, C57BL/6 mice were administered with wild-type or optimal mutant AAVrh.10 and the luciferase transgene expression was documented by serial bioluminescence imaging at 14, 30, 45, and 72 days post-gene transfer. Their hepatic transduction was further verified by a quantitative PCR analysis of AAV copy number in the liver tissue. The optimal AAVrh.10 vector was further evaluated for their immune escape potential, in animals pre-immunized with human intravenous immunoglobulin. Our results demonstrate that a modified AAVrh.10 S671A vector had enhanced cellular entry (3.6 fold), migrate rapidly to the perinuclear region (1 vs. >2 h for wild type vectors) in vitro, which further translates to modest increase in hepatic gene transfer efficiency in vivo. More importantly, the mutant AAVrh.10 vector was able to partially evade neutralizing antibodies (~27-64 fold) in pre-immunized animals. The development of an AAV vector system that can escape the circulating neutralizing antibodies in the host will substantially widen the scope of gene therapy applications in humans.
Collapse
Affiliation(s)
- Ruchita Selot
- Department of Biological Sciences and Bioengineering, Indian Institute of TechnologyKanpur, India
| | - Sathyathithan Arumugam
- Department of Biological Sciences and Bioengineering, Indian Institute of TechnologyKanpur, India
| | - Bertin Mary
- Department of Biological Sciences and Bioengineering, Indian Institute of TechnologyKanpur, India
| | - Sabna Cheemadan
- Department of Hematology and Centre for Stem Cell Research (CSCR), Christian Medical CollegeVellore, India
| | - Giridhara R. Jayandharan
- Department of Biological Sciences and Bioengineering, Indian Institute of TechnologyKanpur, India
- Department of Hematology and Centre for Stem Cell Research (CSCR), Christian Medical CollegeVellore, India
| |
Collapse
|
23
|
Rescue of the Functional Alterations of Motor Cortical Circuits in Arginase Deficiency by Neonatal Gene Therapy. J Neurosci 2017; 36:6680-90. [PMID: 27335400 DOI: 10.1523/jneurosci.0897-16.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 05/11/2016] [Indexed: 01/28/2023] Open
Abstract
UNLABELLED Arginase 1 deficiency is a urea cycle disorder associated with hyperargininemia, spastic diplegia, loss of ambulation, intellectual disability, and seizures. To gain insight on how loss of arginase expression affects the excitability and synaptic connectivity of the cortical neurons in the developing brain, we used anatomical, ultrastructural, and electrophysiological techniques to determine how single-copy and double-copy arginase deletion affects cortical circuits in mice. We find that the loss of arginase 1 expression results in decreased dendritic complexity, decreased excitatory and inhibitory synapse numbers, decreased intrinsic excitability, and altered synaptic transmission in layer 5 motor cortical neurons. Hepatic arginase 1 gene therapy using adeno-associated virus rescued nearly all these abnormalities when administered to neonatal homozygous knock-out animals. Therefore, gene therapeutic strategies can reverse physiological and anatomical markers of arginase 1 deficiency and therefore may be of therapeutic benefit for the neurological disabilities in this syndrome. SIGNIFICANCE STATEMENT These studies are one of the few investigations to try to understand the underlying neurological dysfunction that occurs in urea cycle disorders and the only to examine arginase deficiency. We have demonstrated by multiple modalities that, in murine layer 5 cortical neurons, a gradation of abnormalities exists based on the functional copy number of arginase: intrinsic excitability is altered, there is decreased density in asymmetrical and perisomatic synapses, and analysis of the dendritic complexity is lowest in the homozygous knock-out. With neonatal administration of adeno-associated virus expressing arginase, there is near-total recovery of the abnormalities in neurons and cortical circuits, supporting the concept that neonatal gene therapy may prevent the functional abnormalities that occur in arginase deficiency.
Collapse
|
24
|
Neonatal Gene Therapy for Hemophilia B by a Novel Adenovirus Vector Showing Reduced Leaky Expression of Viral Genes. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2017; 6:183-193. [PMID: 28828393 PMCID: PMC5552065 DOI: 10.1016/j.omtm.2017.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 07/05/2017] [Indexed: 01/01/2023]
Abstract
Gene therapy during neonatal and infant stages is a promising approach for hemophilia B, a congenital disorder caused by deficiency of blood coagulation factor IX (FIX). An adenovirus (Ad) vector has high potential for use in neonatal or infant gene therapy for hemophilia B due to its superior transduction properties; however, leaky expression of Ad genes often reduces the transduction efficiencies by Ad protein-mediated tissue damage. Here, we used a novel Ad vector, Ad-E4-122aT, which exhibits a reduction in the leaky expression of Ad genes in liver, in gene therapy studies for neonatal hemophilia B mice. Ad-E4-122aT exhibited significantly higher transduction efficiencies than a conventional Ad vector in neonatal mice. In neonatal hemophilia B mice, a single neonatal injection of Ad-E4-122aT expressing human FIX (hFIX) (Ad-E4-122aT-AHAFIX) maintained more than 6% of the normal plasma hFIX activity levels for approximately 100 days. Sequential administration of Ad-E4-122aT-AHAFIX resulted in more than 100% of the plasma hFIX activity levels for more than 100 days and rescued the bleeding phenotypes of hemophilia B mice. In addition, immunotolerance to hFIX was induced by Ad-E4-122aT-AHAFIX administration in neonatal hemophilia B mice. These results indicated that Ad-E4-122aT is a promising gene delivery vector for neonatal or infant gene therapy for hemophilia B.
Collapse
|
25
|
Enhanced Proteolytic Processing of Recombinant Human Coagulation Factor VIII B-Domain Variants by Recombinant Furins. Mol Biotechnol 2017; 58:404-14. [PMID: 27126696 DOI: 10.1007/s12033-016-9939-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Recombinant human factor VIII (rFVIII) is used in replacement therapy for hemophilia A. Current research efforts are focused on bioengineering rFVIII molecules to improve its secretion efficiency and stability, limiting factors for its efficient production. However, high expression yield in mammalian cells of these rFVIII variants is generally associated with limited proteolytic processing. Non-processed single-chain polypeptides constitute non-natural FVIII molecule configurations with unpredictable toxicity and/or antigenicity. Our main objective was to demonstrate the feasibility of promoting full-proteolytic processing of an rFVIII variant retaining a portion of the B-domain, converting it into the smallest natural activatable form of rFVIII, while keeping its main advantage, i.e., improved secretion efficiency. We generated and employed a CHO-DG44 cell clone producing an rFVIII variant retaining a portion of the B-domain and the FVIII native cleavage site between Arg(1648) and Glu(1649). By bioengineering CHO-DG44 cells to express stably the recombinant human endoproteases PACE, PACE-SOL, PCSK5, PCSK6, or PCKS7, we were able to achieve complete intra- or extracellular proteolytic processing of this rFVIII variant. Additionally, our quantitative data indicated that removal of the B-domain segment by intracellular proteolytic processing does not interfere with this rFVIII variant secretion efficiency. This work also provides the first direct evidence of (1) intracellular cleavage at the Arg(1648) FVIII processing site promoted by wild-type PACE and PCSK7 and (2) proteolytic processing at the Arg(1648) FVIII processing site by PCSK6.
Collapse
|
26
|
Chamberlain K, Riyad JM, Weber T. Expressing Transgenes That Exceed the Packaging Capacity of Adeno-Associated Virus Capsids. Hum Gene Ther Methods 2016; 27:1-12. [PMID: 26757051 DOI: 10.1089/hgtb.2015.140] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Recombinant adeno-associated virus vectors (rAAV) are being explored as gene delivery vehicles for the treatment of various inherited and acquired disorders. rAAVs are attractive vectors for several reasons: wild-type AAVs are nonpathogenic, and rAAVs can trigger long-term transgene expression even in the absence of genome integration-at least in postmitotic tissues. Moreover, rAAVs have a low immunogenic profile, and the various AAV serotypes and variants display broad but distinct tropisms. One limitation of rAAVs is that their genome-packaging capacity is only ∼5 kb. For most applications this is not of major concern because the median human protein size is 375 amino acids. Excluding the ITRs, for a protein of typical length, this allows the incorporation of ∼3.5 kb of DNA for the promoter, polyadenylation sequence, and other regulatory elements into a single AAV vector. Nonetheless, for certain diseases the packaging limit of AAV does not allow the delivery of a full-length therapeutic protein by a single AAV vector. Hence, approaches to overcome this limitation have become an important area of research for AAV gene therapy. Among the most promising approaches to overcome the limitation imposed by the packaging capacity of AAV is the use of dual-vector approaches, whereby a transgene is split across two separate AAV vectors. Coinfection of a cell with these two rAAVs will then-through a variety of mechanisms-result in the transcription of an assembled mRNA that could not be encoded by a single AAV vector because of the DNA packaging limits of AAV. The main purpose of this review is to assess the current literature with respect to dual-AAV-vector design, to highlight the effectiveness of the different methodologies and to briefly discuss future areas of research to improve the efficiency of dual-AAV-vector transduction.
Collapse
Affiliation(s)
- Kyle Chamberlain
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai , New York, New York
| | - Jalish Mahmud Riyad
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai , New York, New York
| | - Thomas Weber
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai , New York, New York
| |
Collapse
|
27
|
Augmentation of transgene-encoded protein after neonatal injection of adeno-associated virus improves hepatic copy number without immune responses. Pediatr Res 2015; 78:239-246. [PMID: 26042522 PMCID: PMC4540625 DOI: 10.1038/pr.2015.109] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 03/02/2015] [Indexed: 12/18/2022]
Abstract
BACKGROUND Achieving persistent expression is a prerequisite for genetic therapies for inherited metabolic enzymopathies. Such disorders potentially could be treated with gene therapy shortly after birth to prevent pathology. However, rapid cell turnover leads to hepatic episomal vector loss, which diminishes effectiveness. The current studies assessed whether tolerance to transgene proteins expressed in the neonatal period is durable and if the expression may be augmented with subsequent adeno-associated virus (AAV) administration. METHODS AAV was administered to mice on day 2 with reinjection at 14 or at 14 and 42 d with examination of changes in hepatic copies and B and T cell-mediated immune responses. RESULTS Immune responses to the transgene protein and AAV were absent after neonatal administration. Reinjection at 14 or at 14 and 42 d resulted in augmented expression with greater hepatic genome copies. Unlike controls, immune responses to transgene proteins were not detected in animals injected as neonates and subsequently. However, while no immune response developed after neonatal administration, anticapsid immune responses developed with further injections suggesting immunological ignorance was the initial mechanism of unresponsiveness. CONCLUSIONS Persistence of transgene protein allows for tolerance induction permitting readministration of AAV to re-establish protein levels that decline with growth.
Collapse
|
28
|
Tai DS, Hu C, Lee CCI, Martinez M, Cantero G, Kim EH, Tarantal AF, Lipshutz GS. Development of operational immunologic tolerance with neonatal gene transfer in nonhuman primates: preliminary studies. Gene Ther 2015; 22:923-30. [PMID: 26333349 DOI: 10.1038/gt.2015.65] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Revised: 05/22/2015] [Accepted: 06/18/2015] [Indexed: 02/05/2023]
Abstract
Achieving persistent expression is a prerequisite for effective genetic therapies for inherited disorders. These proof-of-concept studies focused on adeno-associated virus (AAV) administration to newborn monkeys. Serotype rh10 AAV expressing ovalbumin and green fluorescent protein (GFP) was administered intravenously at birth and compared with vehicle controls. At 4 months postnatal age, a second injection was administered intramuscularly, followed by vaccination at 1 year of age with ovalbumin and GFP. Ovalbumin was highest 2 weeks post administration in the treated monkey, which declined but remained detectable thereafter; controls demonstrated no expression. Long-term AAV genome copies were present in myocytes. At 4 weeks, neutralizing antibodies to rh10 were present in the experimental animal only. With AAV9 administration at 4 months, controls showed transient ovalbumin expression that disappeared with the development of strong anti-ovalbumin and anti-GFP antibodies. In contrast, increased and maintained ovalbumin expression was noted in the monkey administered AAV at birth, without antibody development. After vaccination, the experimental monkey maintained levels of ovalbumin without antibodies, whereas controls demonstrated high levels of antibodies. These preliminary studies suggest that newborn AAV administration expressing secreted and intracellular xenogenic proteins may result in persistent expression in muscle, and subsequent vector administration can result in augmented expression without humoral immune responses.
Collapse
Affiliation(s)
- D S Tai
- Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - C Hu
- Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - C C I Lee
- California National Primate Research Center and Departments of Pediatrics and Cell Biology and Human Anatomy, University of California, Davis, CA, USA
| | - M Martinez
- California National Primate Research Center and Departments of Pediatrics and Cell Biology and Human Anatomy, University of California, Davis, CA, USA
| | - G Cantero
- Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - E H Kim
- Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - A F Tarantal
- California National Primate Research Center and Departments of Pediatrics and Cell Biology and Human Anatomy, University of California, Davis, CA, USA
| | - G S Lipshutz
- Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.,Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.,Department of Urology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.,Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.,Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.,Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| |
Collapse
|
29
|
Evaluation of transduction properties of an adenovirus vector in neonatal mice. BIOMED RESEARCH INTERNATIONAL 2015; 2015:685374. [PMID: 26075257 PMCID: PMC4444570 DOI: 10.1155/2015/685374] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 04/30/2015] [Indexed: 12/05/2022]
Abstract
In gene therapy for congenital disorders, treatments during neonate and infant stages are promising. Replication-incompetent adenovirus (Ad) vectors have been used in gene therapy studies of genetic disorders; however, the transduction properties of Ad vectors in neonates and infants have not been fully examined. Accordingly, this study examined the properties of Ad vector-mediated transduction in neonatal mice. A first-generation Ad vector containing a cytomegalovirus (CMV) promoter-driven luciferase expression cassette was administered to neonatal mice on the second day of life via retro-orbital sinus. The highest Ad vector genome copy numbers and transgene expression were found in the neonatal liver. The neonatal heart exhibited the second highest levels of transgene expression among the organs examined. There was an approximately 1500-fold difference in the transgene expression levels between the adult liver and heart, while the neonatal liver exhibited only an approximately 30-fold higher level of transgene expression than the neonatal heart. A liver-specific promoter for firefly luciferase expression conferred a more than 100-fold higher luciferase expression in the liver relative to the other organs. No apparent hepatotoxicity was observed in neonatal mice following Ad vector administration. These findings should provide valuable information for gene therapy using Ad vectors in neonates and infants.
Collapse
|
30
|
Hu C, Tai DS, Park H, Cantero-Nieto G, Chan E, Yudkoff M, Cederbaum SD, Lipshutz GS. Minimal ureagenesis is necessary for survival in the murine model of hyperargininemia treated by AAV-based gene therapy. Gene Ther 2015; 22:111-5. [PMID: 25474440 PMCID: PMC4320015 DOI: 10.1038/gt.2014.106] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 09/15/2014] [Accepted: 10/27/2014] [Indexed: 02/07/2023]
Abstract
Hyperammonemia is less severe in arginase 1 deficiency compared with other urea cycle defects. Affected patients manifest hyperargininemia and infrequent episodes of hyperammonemia. Patients typically suffer from neurological impairment with cortical and pyramidal tract deterioration, spasticity, loss of ambulation, seizures and intellectual disability; death is less common than with other urea cycle disorders. In a mouse model of arginase I deficiency, the onset of symptoms begins with weight loss and gait instability, which progresses toward development of tail tremor with seizure-like activity; death typically occurs at about 2 weeks of life. Adeno-associated viral vector gene replacement strategies result in long-term survival of mice with this disorder. With neonatal administration of vector, the viral copy number in the liver greatly declines with hepatocyte proliferation in the first 5 weeks of life. Although the animals do survive, it is not known from a functional standpoint how well the urea cycle is functioning in the adult animals that receive adeno-associated virus. In these studies, we administered [1-13C] acetate to both littermate controls and adeno-associated virus-treated arginase 1 knockout animals and examined flux through the urea cycle. Circulating ammonia levels were mildly elevated in treated animals. Arginine and glutamine also had perturbations. Assessment 30 min after acetate administration demonstrated that ureagenesis was present in the treated knockout liver at levels as low at 3.3% of control animals. These studies demonstrate that only minimal levels of hepatic arginase activity are necessary for survival and ureagenesis in arginase-deficient mice and that this level of activity results in control of circulating ammonia. These results may have implications for potential therapy in humans with arginase deficiency.
Collapse
Affiliation(s)
- Chuhong Hu
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Denise S. Tai
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Hana Park
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Gloria Cantero-Nieto
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Emily Chan
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Marc Yudkoff
- Division of Metabolic Disease, Department of Pediatrics, Children’s Hospital of Philadelphia
| | - Stephen D. Cederbaum
- Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, California
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, California
- Department of Psychiatry, David Geffen School of Medicine at UCLA, Los Angeles, California
- Department of Intellectual and Developmental Disabilities Research Center at UCLA, David Geffen School of Medicine at UCLA, Los Angeles, California
- The Semel Institute for Neuroscience, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Gerald S. Lipshutz
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California
- Department of Psychiatry, David Geffen School of Medicine at UCLA, Los Angeles, California
- Department of Intellectual and Developmental Disabilities Research Center at UCLA, David Geffen School of Medicine at UCLA, Los Angeles, California
- The Semel Institute for Neuroscience, David Geffen School of Medicine at UCLA, Los Angeles, California
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
- Department of Urology, David Geffen School of Medicine at UCLA, Los Angeles, California
- Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California
| |
Collapse
|
31
|
Abstract
Hemophilia is an X-linked inherited bleeding disorder consisting of two classifications, hemophilia A and hemophilia B, depending on the underlying mutation. Although the disease is currently treatable with intravenous delivery of replacement recombinant clotting factor, this approach represents a significant cost both monetarily and in terms of quality of life. Gene therapy is an attractive alternative approach to the treatment of hemophilia that would ideally provide life-long correction of clotting activity with a single injection. In this review, we will discuss the multitude of approaches that have been explored for the treatment of both hemophilia A and B, including both in vivo and ex vivo approaches with viral and nonviral delivery vectors.
Collapse
Affiliation(s)
- Geoffrey L Rogers
- University of Florida, Department of Pediatrics, Division of Cellular and Molecular Therapy, Gainesville, FL 32610
| | - Roland W Herzog
- University of Florida, Department of Pediatrics, Division of Cellular and Molecular Therapy, Gainesville, FL 32610
| |
Collapse
|
32
|
Hu C, Kasten J, Park H, Bhargava R, Tai DS, Grody WW, Nguyen QG, Hauschka SD, Cederbaum SD, Lipshutz GS. Myocyte-mediated arginase expression controls hyperargininemia but not hyperammonemia in arginase-deficient mice. Mol Ther 2014; 22:1792-802. [PMID: 24888478 DOI: 10.1038/mt.2014.99] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 05/18/2014] [Indexed: 12/15/2022] Open
Abstract
Human arginase deficiency is characterized by hyperargininemia and infrequent episodes of hyperammonemia that cause neurological impairment and growth retardation. We previously developed a neonatal mouse adeno-associated viral vector (AAV) rh10-mediated therapeutic approach with arginase expressed by a chicken β-actin promoter that controlled plasma ammonia and arginine, but hepatic arginase declined rapidly. This study tested a codon-optimized arginase cDNA and compared the chicken β-actin promoter to liver- and muscle-specific promoters. ARG1(-/-) mice treated with AAVrh10 carrying the liver-specific promoter also exhibited long-term survival and declining hepatic arginase accompanied by the loss of AAV episomes during subsequent liver growth. Although arginase expression in striated muscle was not expected to counteract hyperammonemia, due to muscle's lack of other urea cycle enzymes, we hypothesized that the postmitotic phenotype in muscle would allow vector genomes to persist, and hence contribute to decreased plasma arginine. As anticipated, ARG1(-/-) neonatal mice treated with AAVrh10 carrying a modified creatine kinase-based muscle-specific promoter did not survive longer than controls; however, their plasma arginine levels remained normal when animals were hyperammonemic. These data imply that plasma arginine can be controlled in arginase deficiency by muscle-specific expression, thus suggesting an alternative approach to utilizing the liver for treating hyperargininemia.
Collapse
Affiliation(s)
- Chuhong Hu
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Jennifer Kasten
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Hana Park
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Ragini Bhargava
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Denise S Tai
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Wayne W Grody
- 1] Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA [2] Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Quynh G Nguyen
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Stephen D Hauschka
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Stephen D Cederbaum
- 1] Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, California, USA [2] Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, California, USA [3] Department of Psychiatry, David Geffen School of Medicine at UCLA, Los Angeles, California, USA [4] The Intellectual and Developmental Disabilities Research Center at UCLA, David Geffen School of Medicine at UCLA, Los Angeles, California, USA [5] The Semel Institute for Neuroscience, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Gerald S Lipshutz
- 1] Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, USA [2] Department of Psychiatry, David Geffen School of Medicine at UCLA, Los Angeles, California, USA [3] The Intellectual and Developmental Disabilities Research Center at UCLA, David Geffen School of Medicine at UCLA, Los Angeles, California, USA [4] The Semel Institute for Neuroscience, David Geffen School of Medicine at UCLA, Los Angeles, California, USA [5] Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA [6] Department of Urology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA [7] Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| |
Collapse
|
33
|
Pseudotyped murine leukemia virus for schistosome transgenesis: approaches, methods and perspectives. Transgenic Res 2014; 23:539-56. [DOI: 10.1007/s11248-013-9779-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 12/19/2013] [Indexed: 10/25/2022]
|
34
|
Sen D, Balakrishnan B, Gabriel N, Agrawal P, Roshini V, Samuel R, Srivastava A, Jayandharan GR. Improved adeno-associated virus (AAV) serotype 1 and 5 vectors for gene therapy. Sci Rep 2013; 3:1832. [PMID: 23665951 PMCID: PMC3652085 DOI: 10.1038/srep01832] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 04/22/2013] [Indexed: 12/19/2022] Open
Abstract
Despite significant advancements with recombinant AAV2 or AAV8 vectors for liver directed gene therapy in humans, it is well-recognized that host and vector-related immune challenges need to be overcome for long-term gene transfer. To overcome these limitations, alternate AAV serotypes (1–10) are being rigorously evaluated. AAV5 is the most divergent (55% similarity vs. other serotypes) and like AAV1 vector is known to transduce liver efficiently. AAV1 and AAV5 vectors are also immunologically distinct by virtue of their low seroprevalence and minimal cross reactivity against pre-existing AAV2 neutralizing antibodies. Here, we demonstrate that targeted bio-engineering of these vectors, augment their gene expression in murine hepatocytes in vivo (up to 16-fold). These studies demonstrate the feasibility of the use of these novel AAV1 and AAV5 vectors for potential gene therapy of diseases like hemophilia.
Collapse
Affiliation(s)
- Dwaipayan Sen
- Department of Hematology, Christian Medical College, Vellore, Tamil Nadu, India
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Gedicke-Hornung C, Behrens-Gawlik V, Reischmann S, Geertz B, Stimpel D, Weinberger F, Schlossarek S, Précigout G, Braren I, Eschenhagen T, Mearini G, Lorain S, Voit T, Dreyfus PA, Garcia L, Carrier L. Rescue of cardiomyopathy through U7snRNA-mediated exon skipping in Mybpc3-targeted knock-in mice. EMBO Mol Med 2013; 5:1128-45. [PMID: 23716398 PMCID: PMC3721478 DOI: 10.1002/emmm.201202168] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 04/19/2013] [Accepted: 04/19/2013] [Indexed: 11/26/2022] Open
Abstract
Exon skipping mediated by antisense oligoribonucleotides (AON) is a promising therapeutic approach for genetic disorders, but has not yet been evaluated for cardiac diseases. We investigated the feasibility and efficacy of viral-mediated AON transfer in a Mybpc3-targeted knock-in (KI) mouse model of hypertrophic cardiomyopathy (HCM). KI mice carry a homozygous G>A transition in exon 6, which results in three different aberrant mRNAs. We identified an alternative variant (Var-4) deleted of exons 5–6 in wild-type and KI mice. To enhance its expression and suppress aberrant mRNAs we designed AON-5 and AON-6 that mask splicing enhancer motifs in exons 5 and 6. AONs were inserted into modified U7 small nuclear RNA and packaged in adeno-associated virus (AAV-U7-AON-5+6). Transduction of cardiac myocytes or systemic administration of AAV-U7-AON-5+6 increased Var-4 mRNA/protein levels and reduced aberrant mRNAs. Injection of newborn KI mice abolished cardiac dysfunction and prevented left ventricular hypertrophy. Although the therapeutic effect was transient and therefore requires optimization to be maintained over an extended period, this proof-of-concept study paves the way towards a causal therapy of HCM.
Collapse
Affiliation(s)
- Christina Gedicke-Hornung
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
AAV-based gene therapy prevents neuropathology and results in normal cognitive development in the hyperargininemic mouse. Gene Ther 2013; 20:785-96. [PMID: 23388701 PMCID: PMC3679314 DOI: 10.1038/gt.2012.99] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 10/12/2012] [Accepted: 12/07/2012] [Indexed: 11/08/2022]
Abstract
Complete arginase I deficiency is the least severe urea cycle disorder, characterized by hyperargininemia and infrequent episodes of hyperammonemia. Patients suffer from neurological impairment with cortical and pyramidal tract deterioration, spasticity, loss of ambulation, and seizures, and is associated with intellectual disability. In mice, onset is heralded by weight loss beginning around day 15; gait instability follows progressing to inability to stand and development of tail tremor with seizure-like activity and death. Here we report that hyperargininemic mice treated neonatally with an adeno-associated virus expressing arginase and followed long-term lack any presentation consistent with brain dysfunction. Behavioral and histopathological evaluation demonstrated that treated mice are indistinguishable from littermates and that putative compounds associated with neurotoxicity are diminished. In addition, treatment results in near complete resolution of metabolic abnormalities early in life; however there is the development of some derangement later with decline in transgene expression. Ammonium challenging revealed that treated mice are affected by exogenous loading much greater than littermates. These results demonstrate that AAV-based therapy for hyperargininemia is effective and prevents development of neurological abnormalities and cognitive dysfunction in a mouse model of hyperargininemia; however nitrogen challenging reveals that these mice remain impaired in the handling of waste nitrogen.
Collapse
|
37
|
Goodrich LR, Phillips JN, McIlwraith CW, Foti SB, Grieger JC, Gray SJ, Samulski RJ. Optimization of scAAVIL-1ra In Vitro and In Vivo to Deliver High Levels of Therapeutic Protein for Treatment of Osteoarthritis. MOLECULAR THERAPY-NUCLEIC ACIDS 2013; 2:e70. [PMID: 23385523 PMCID: PMC3586798 DOI: 10.1038/mtna.2012.61] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Osteoarthritis (OA) affects over 40 million people annually. We evaluated interleukin-1 receptor antagonist (IL-1ra) gene transfer in an equine model based on IL-1ra protein therapy which inhibits inflammation through blocking IL-1. Using the self-complementary adeno-associated virus (scAAV)IL-1ra equine gene as a starting construct, we optimized the transgene cassette by analyzing promoters (cytomegalovirus (CMV) versus chicken β-actin hybrid (CBh)), coding sequences (optimized versus unoptimized), vector capsid (serotype 2 versus chimeric capsid), and biological activity in vitro. AAV serotypes 2 and 2.5 CMV scAAVoptIL-1ra were tested in equine joints. We evaluated two doses of scAAVIL-1ra, scAAVGFP, and saline. We developed a novel endoscopy procedure and confirmed vector-derived transgene expression (GFP) in chondrocytes 6 months post-injection. AAVIL-1ra therapeutic protein levels were 200-800 ng/ml of synovial fluid over 23 and 186 days, respectively. No evidence of intra-articular toxicity was detected and no vector genomes were found in contralateral joints based on GFP fluorescence microscopy and quantitative PCR. Finally, we assayed vector-derived IL-1ra activity based on functional assays which supported anti-inflammatory activity of our protein. These studies represent the first large animal intra-articular gene transfer approach with a therapeutic gene using scAAV and demonstrate high levels of protein production over extended time supporting further clinical investigation using scAAV gene therapy for OA.Molecular Therapy - Nucleic Acids (2013) 2, e70; doi:10.1038/mtna.2012.61; published online 5 February 2013.
Collapse
Affiliation(s)
- Laurie R Goodrich
- Orthopaedic Research Center, College of Veterinary Medicine, Colorado State University, Fort Collins, Colorado, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Chandler RJ, Venditti CP. Pre-clinical efficacy and dosing of an AAV8 vector expressing human methylmalonyl-CoA mutase in a murine model of methylmalonic acidemia (MMA). Mol Genet Metab 2012; 107:617-9. [PMID: 23046887 PMCID: PMC3522145 DOI: 10.1016/j.ymgme.2012.09.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 09/18/2012] [Accepted: 09/19/2012] [Indexed: 11/20/2022]
Abstract
We demonstrate that human methylmalonyl-CoA mutase (MUT), delivered using an AAV serotype 8 vector, rescues the lethal phenotype displayed by mice with MMA and provides long-term phenotypic correction. In addition to defining a lower limit of effective dosing, our studies establish that neither a species barrier to mitochondrial processing nor an apparent immune response to MUT limits the murine model as an experimental platform to test the efficacy of human gene therapy vectors for MMA.
Collapse
Affiliation(s)
- Randy J Chandler
- Organic Acid Research Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
39
|
Generation of an optimized lentiviral vector encoding a high-expression factor VIII transgene for gene therapy of hemophilia A. Gene Ther 2012; 20:607-15. [PMID: 22996197 PMCID: PMC3552131 DOI: 10.1038/gt.2012.76] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We previously compared the expression of several human factor VIII (fVIII) transgene variants and demonstrated the superior expression properties of B domain-deleted porcine fVIII. Subsequently, a hybrid human/porcine fVIII molecule (HP-fVIII) comprising 91% human amino-acid sequence was engineered to maintain the high-expression characteristics of porcine fVIII. The bioengineered construct then was used effectively to treat knockout mice with hemophilia A. In the current study, we focused on optimizing self-inactivating (SIN) lentiviral vector systems by analyzing the efficacy of various lentiviral components in terms of virus production, transduction efficiency and transgene expression. Specifically, three parameters were evaluated: (1) the woodchuck hepatitis post-transcriptional regulatory element (WPRE), (2) HIV versus SIV viral vector systems and (3) various internal promoters. The inclusion of a WPRE sequence had negligible effects on viral production and HP-fVIII expression. HIV and SIV vectors were compared and found to be similar with respect to transduction efficiency in both K562s and HEK-293T cells. However, there was an enhanced expression of HP-fVIII by the SIV system, which was evident in both K562 and BHK-M cell lines. To further compare expression of HP-fVIII from an SIV-based lentiviral system, we constructed expression vectors containing the high expression transgene and a human elongation factor-1 alpha, cytomegalovirus (CMV) or phosphoglycerate kinase promoter. Expression was significantly greater from the CMV promoter, which also yielded therapeutic levels of HP-fVIII in hemophilia A mice. Based on these studies, an optimized vector contains the HP-fVIII transgene driven by a CMV internal promoter within a SIV-based lentiviral backbone lacking a WPRE.
Collapse
|
40
|
Lee EK, Hu C, Bhargava R, Rozengurt N, Stout D, Grody WW, Cederbaum SD, Lipshutz GS. Long-term survival of the juvenile lethal arginase-deficient mouse with AAV gene therapy. Mol Ther 2012; 20:1844-51. [PMID: 22760543 DOI: 10.1038/mt.2012.129] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Arginase deficiency is characterized by hyperargininemia and infrequent episodes of hyperammonemia. Human patients suffer from neurological impairment with spasticity, loss of ambulation, seizures, and severe mental and growth retardation. In a murine model, onset of the phenotypic abnormality is heralded by weight loss beginning around day 15 with death occurring typically by postnatal day 17 with hyperargininemia and markedly elevated ammonia. The goal of this study was to address the development of a gene therapy approach for arginase deficiency beginning in the neonatal period. Lifespan extension, body weight, circulating amino acids and ammonia levels were examined as outcome parameters after gene therapy with an adeno-associated viral vector expressing arginase was administered to mice on the second day of life (DOL). One-hundred percent of untreated arginase-deficient mice died by DOL 24, whereas 89% of the adeno-associated virus (AAV)-treated arginase deficient mice have survived for >8 months. While animals at 8 months demonstrate elevated glutamine levels, ammonia is less than three times that of controls and arginine levels are normal. These studies are the first to demonstrate that AAV-based therapy for arginase deficiency is effective and supports the development of gene therapy for this and the other urea cycle disorders.
Collapse
Affiliation(s)
- Eun K Lee
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California 90095-7054, USA
| | | | | | | | | | | | | | | |
Collapse
|