1
|
Chaturvedi S, Singh H, Agarwal V, Jaiswal A, Prasad N. Unravelling the role of Sildenafil and SB204741 in suppressing fibrotic potential of peritoneal fibroblasts obtained from PD patients. Front Pharmacol 2024; 14:1279330. [PMID: 38322704 PMCID: PMC10844479 DOI: 10.3389/fphar.2023.1279330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/20/2023] [Indexed: 02/08/2024] Open
Abstract
Introduction: Peritoneal fibrosis (PF) results in technique failure in peritoneal dialysis (PD) patients. Peritoneal fibroblasts are characterized by increase in the ACTA2 gene, responsible for alpha smooth muscle actin (α-SΜΑ), extracellular matrix (ECM) production, and inflammatory cytokines production, which are the are key mediators in the pathogenesis of PF. 5-hydroxytryptamine (5-HT; serotonin) induces ECM synthesis in fibroblasts in a transforming growth factor-beta 1 (TGF-β1) dependent manner. The purpose of our study was to identify the potential mechanism and role of sildenafil and 5HT2B receptor inhibitor (SB204741) combination in attenuating PD-associated peritoneal fibrosis. Methods: Studies were performed to determine the effect of TGF-β1, sildenafil, and SB204741 on human peritoneal fibroblasts (HPFBs) isolated from the parietal peritoneum of patients in long-term PD patients (n = 6) and controls (n = 6). HPFBs were incubated with TGF-β1 (10 ng/mL) for 1 h and later with TGF-β1 (10 ng/mL)/[sildenafil (10 µM) or SB204741 (1 µM)] and their combination for 24 h (post-treatment strategy). In the pre-treatment strategy, HPFBs were pre-treated with sildenafil (10 µM) or SB204741 (1 µM) and a combination of the two for 1 h and later with only TGF-β1 (10 ng/mL) for 24 h. Results: The anti-fibrotic effects of the combination of sildenafil and SB204741 were greater than that of each drug alone. In TGF-β1-stimulated HPFBs, pro-fibrotic genes (COL1A1, COL1A2, ACTA2, CTGF, FN1, and TGFB1) exhibited higher expression than in controls, which are crucial targets of sildenafil and SB204741 against peritoneal fibrosis. The synergistic approach played an anti-fibrotic role by regulating the pro- and anti-fibrotic gene responses as well as inflammatory cytokine responses. The combination treatment significantly attenuated peritoneal fibrosis, as evident by the almost complete amelioration of ACTA2 expression, restoration of anti-fibrotic genes (MMP2/TIMP1), and, at least, by reducing the expression of pro-inflammatory cytokines (IFN-γ, IL-4, IL-17, IL-1β, IL-6, TNF-α, and TGF-β1) along with an increase in IL-10 levels. Discussion: Taken together, the above research evidences that the combination of sildenafil and SB204741 may have therapeutic potential in suppressing peritoneal fibrosis due to peritoneal dialysis.
Collapse
Affiliation(s)
- Saurabh Chaturvedi
- Department of Clinical Immunology and Rheumatology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
- Department of Medical Laboratory Technology, School of Allied Health Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Harshit Singh
- Department of Clinical Immunology and Rheumatology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
- Immuno Biology Lab, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Vikas Agarwal
- Department of Clinical Immunology and Rheumatology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Akhilesh Jaiswal
- Department of Nephrology and Renal Transplantation, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Narayan Prasad
- Department of Nephrology and Renal Transplantation, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| |
Collapse
|
2
|
Su HY, Yang JJ, Zou R, An N, Chen XC, Yang C, Yang HJ, Yao CW, Liu HF. Autophagy in peritoneal fibrosis. Front Physiol 2023; 14:1187207. [PMID: 37256065 PMCID: PMC10226653 DOI: 10.3389/fphys.2023.1187207] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/03/2023] [Indexed: 06/01/2023] Open
Abstract
Peritoneal dialysis (PD) is a widely accepted renal replacement therapy for patients with end-stage renal disease (ESRD). Morphological and functional changes occur in the peritoneal membranes (PMs) of patients undergoing long-term PD. Peritoneal fibrosis (PF) is a common PD-related complication that ultimately leads to PM injury and peritoneal ultrafiltration failure. Autophagy is a cellular process of "self-eating" wherein damaged organelles, protein aggregates, and pathogenic microbes are degraded to maintain intracellular environment homeostasis and cell survival. Growing evidence shows that autophagy is involved in fibrosis progression, including renal fibrosis and hepatic fibrosis, in various organs. Multiple risk factors, including high-glucose peritoneal dialysis solution (HGPDS), stimulate the activation of autophagy, which participates in PF progression, in human peritoneal mesothelial cells (HPMCs). Nevertheless, the underlying roles and mechanisms of autophagy in PF progression remain unclear. In this review, we discuss the key roles and potential mechanisms of autophagy in PF to offer novel perspectives on future therapy strategies for PF and their limitations.
Collapse
|
3
|
Valipour F, Valioğlu F, Rahbarghazi R, Navali AM, Rashidi MR, Davaran S. Thermosensitive and biodegradable PCL-based hydrogels: potential scaffolds for cartilage tissue engineering. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023; 34:695-714. [PMID: 36745508 DOI: 10.1080/09205063.2022.2088530] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Due to a lack of sufficient blood supply and unique physicochemical properties, the treatment of injured cartilage is laborious and needs an efficient strategy. Unfortunately, most of the current therapeutic approaches are, but not completely, unable to restore the function of injured cartilage. Tissue engineering-based modalities are an alternative option to reconstruct the injured tissue. Considering the unique structure and consistency of cartilage tissue (osteochondral junction), it is mandatory to apply distinct biomaterials with unique properties slightly different from scaffolds used for soft tissues. PCL is extensively used for the fabrication of fine therapeutic scaffolds to accelerate the restorative process. Thermosensitive PCL hydrogels with distinct chemical compositions have paved the way for sophisticated cartilage regeneration. This review aimed to collect recent findings regarding the application of PCL in hydrogels blended with natural, synthetic materials in the context of cartilage healing.
Collapse
Affiliation(s)
- Fereshteh Valipour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.,Applied Drug Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ferzane Valioğlu
- Department of Molecular Biology, Faculty of Science, Hacettepe University, Ankara, Turkey
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mohammad Reza Rashidi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soodabeh Davaran
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.,Applied Drug Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
4
|
Huang Q, Xiao R, Lu J, Zhang Y, Xu L, Gao J, Sun J, Wang H. Endoglin aggravates peritoneal fibrosis by regulating the activation of TGF-β/ALK/Smads signaling. Front Pharmacol 2022; 13:973182. [PMID: 36210850 PMCID: PMC9537553 DOI: 10.3389/fphar.2022.973182] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Peritoneal fibrosis (PF) is an intractable complication in patients on long-term peritoneal dialysis (PD). Transforming growth factor-β (TGF-β) is a key pro-fibrogenic factor involved in PD-associated PF, and endoglin, as a coreceptor for TGF-β, plays a role in balancing the TGF-β signaling pathway. Here, we investigated whether endoglin could be a potential therapeutic target for PF.Methods:In vivo, we established PF model in SD rats by daily intraperitoneal injection of peritoneal dialysis fluids (PDF) containing 4.25% glucose for 6 weeks and downregulated endoglin expression by tail vein injection of AAV9-ENG on day 14 to assess the effect of endoglin on peritoneal morphology and markers related to fibrosis, angiogenesis, and epithelial-mesenchymal transition (EMT). In vitro, we treated human peritoneal mesothelial cells (HPMCs) transfected with ENG siRNA in high glucose medium to explore the potential mechanism of endoglin in PF.Results: Compared to control group, continuous exposure to biologically incompatible PDF induced exacerbated PF, accompanied by a significant increase in endoglin expression. Conversely, knockdown of endoglin ameliorated peritoneal injury characterized by increased peritoneal thickening and collagen deposition, angiogenesis, as well as EMT. Consistently, HPMCs cultured in high glucose medium underwent the EMT process and exhibited over-expression of fibronectin, collagen type I, vascular endothelial growth factor (VEGF), whereas these aforementioned alterations were alleviated after ENG siRNA transfection. In addition, we also found that ENG siRNA inhibited TGF-β-induced phosphorylation of Smad2/3 and Smad1/5/9 in HPMCs treated with high glucose (HG).Conclusion: Our findings confirmed for the first time that endoglin exacerbated PF by regulating the activation of TGF-β/ALK/Smads signaling, which will provide a novel potential therapeutic target in PF.
Collapse
Affiliation(s)
- Qian Huang
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Rui Xiao
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Jing Lu
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yao Zhang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Liang Xu
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jie Gao
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jing Sun
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, China
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- *Correspondence: Jing Sun, ; Haiping Wang,
| | - Haiping Wang
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, China
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- *Correspondence: Jing Sun, ; Haiping Wang,
| |
Collapse
|
5
|
Ding M, Huang Z, Wang X, Liu X, Xu L, Chen P, Liu J, Liu Y, Guan H, Chu Y, Liu H. Heparan sulfate proteoglycans-mediated targeted delivery of TGF-β1-binding peptide to liver for improved anti-liver fibrotic activity in vitro and in vivo. Int J Biol Macromol 2022; 209:1516-1525. [PMID: 35452701 DOI: 10.1016/j.ijbiomac.2022.04.085] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 04/11/2022] [Accepted: 04/11/2022] [Indexed: 11/05/2022]
Abstract
Elevated expressions of transforming growth factor β1 (TGF-β1) have been implicated in the pathogenesis of liver fibrosis, thus attenuating the excessive TGF-β1's activity by TGF-β1-binding peptide is an ideal strategy for the treatment of liver fibrosis. However, the application of small peptide as a pharmaceutical agent is obstacle due to difficult preparation and non-selective delivery. The I-plus sequences of circumsporozoite protein (CSP-I) possesses high affinity for heparan sulfate proteoglycans, which are primarily located on liver tissues. TGF-β1-binding peptide P15 holds specific ability of binding to TGF-β1. In this study, we describe an approach to efficiently preparing liver-targeting peptide P15-CSP-I, which is conjugation of the sequences of P15 to the N-terminus of CSP-I, from the cleavage of biological macromolecule SUMO-tagged P15-CSP-I. In vitro and ex vivo binding assay showed that P15-CSP-I specifically targeted to the hepatocytes and liver tissues. Moreover, P15-CSP-I inhibited cell proliferation, migration and invasion, and decreased fibrosis-related proteins expression in TGF-β1-activated HSCs in vitro. Furthermore, P15-CSP-I ameliorated liver morphology and decreased the fibrosis responses in vivo. Taken together, P15-CSP-I may be a potential candidate for targeting therapy on liver fibrosis due to its high efficient preparation, specific liver-targeting potential and improved anti-liver fibrotic activity.
Collapse
Affiliation(s)
- Minglu Ding
- Heilongjiang Province Key Laboratory for Anti-fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang 157011, PR China
| | - Zhen Huang
- Heilongjiang Province Key Laboratory for Anti-fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang 157011, PR China; Department of Pediatrics Nursing, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, PR China
| | - Xiaohua Wang
- Heilongjiang Province Key Laboratory for Anti-fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang 157011, PR China; Laboratory of Pathogenic Microbiology and Immunology, Mudanjiang Medical University, Mudanjiang 157011, PR China.
| | - Xiaohui Liu
- Heilongjiang Province Key Laboratory for Anti-fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang 157011, PR China
| | - Liming Xu
- Heilongjiang Province Key Laboratory for Anti-fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang 157011, PR China
| | - Peijian Chen
- Heilongjiang Province Key Laboratory for Anti-fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang 157011, PR China
| | - Jieting Liu
- Heilongjiang Province Key Laboratory for Anti-fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang 157011, PR China
| | - Yong Liu
- Medical Research Center, Mudanjiang Medical University, Mudanjiang 157011, PR China
| | - Huilin Guan
- Medical Research Center, Mudanjiang Medical University, Mudanjiang 157011, PR China
| | - Yanhui Chu
- Heilongjiang Province Key Laboratory for Anti-fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang 157011, PR China
| | - Haifeng Liu
- Heilongjiang Province Key Laboratory for Anti-fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang 157011, PR China; Laboratory of Pathogenic Microbiology and Immunology, Mudanjiang Medical University, Mudanjiang 157011, PR China.
| |
Collapse
|
6
|
Elucidating the Novel Mechanism of Ligustrazine in Preventing Postoperative Peritoneal Adhesion Formation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9226022. [PMID: 35308169 PMCID: PMC8930249 DOI: 10.1155/2022/9226022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/12/2021] [Accepted: 01/13/2022] [Indexed: 11/18/2022]
Abstract
Postoperative peritoneal adhesion (PPA) is a major clinical complication after open surgery or laparoscopic procedure. Ligustrazine is the active ingredient extracted from the natural herb Ligusticum chuanxiong Hort, which has promising antiadhesion properties. This study is aimed at revealing the underlying mechanisms of ligustrazine in preventing PPA at molecular and cellular levels. Both rat primary peritoneal mesothelial cells (PMCs) and human PMCs were used for analysis in vitro. Several molecular biological techniques were applied to uncover the potential mechanisms of ligustrazine in preventing PPA. And molecular docking and site-directed mutagenesis assay were used to predict the binding sites of ligustrazine with PPARγ. The bioinformatics analysis was further applied to identify the key pathway in the pathogenesis of PPA. Besides, PPA rodent models were prepared and developed to evaluate the novel ligustrazine nanoparticles in vivo. Ligustrazine could significantly suppress hypoxia-induced PMC functions, such as restricting the production of profibrotic cytokines, inhibiting the expression of migration and adhesion-associated molecules, repressing the expression of cytoskeleton proteins, restricting hypoxia-induced PMCs to obtain myofibroblast-like phenotypes, and reversing ECM remodeling and EMT phenotype transitions by activating PPARγ. The antagonist GW9662 of PPARγ could restore the inhibitory effects of ligustrazine on hypoxia-induced PMC functions. The inhibitor KC7F2 of HIF-1α could repress hypoxia-induced PMC functions, and ligustrazine could downregulate the expression of HIF-1α, which could be reversed by GW9662. And the expression of HIF-1α inhibited by ligustrazine was dramatically reversed after transfection with si-SMRT. The results showed that the benefit of ligustrazine on PMC functions is contributed to the activation of PPARγ on the transrepression of HIF-1α in an SMRT-dependent manner. Molecular docking and site-directed mutagenesis tests uncovered that ligustrazine bound directly to PPARγ, and Val 339/Ile 341 residue was critical for the binding of PPARγ to ligustrazine. Besides, we discovered a novel nanoparticle agent with sustained release behavior, drug delivery efficiency, and good tissue penetration in PPA rodent models. Our study unravels a novel mechanism of ligustrazine in preventing PPA. The findings indicated that ligustrazine is a potential strategy for PPA formation and ligustrazine nanoparticles are promising agents for preclinical application.
Collapse
|
7
|
Zhu M, Li S, Li S, Wang H, Xu J, Wang Y, Liang G. Strategies for Engineering Exosomes and Their Applications in Drug Delivery. J Biomed Nanotechnol 2021; 17:2271-2297. [PMID: 34974854 DOI: 10.1166/jbn.2021.3196] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Exosomes are representative of a promising vehicle for delivery of biomolecules. Despite their discovery nearly 40 years, knowledge of exosomes and extracellular vesicles (EVs) and the role they play in etiology of disease and normal cellular physiology remains in its infancy. EVs are produced in almost all cells, containing nucleic acids, lipids, and proteins delivered from donor cells to recipient cells. Consequently, they act as mediators of intercellular communication and molecular transfer. Recent studies have shown that, exosomes are associated with numerous physiological and pathological processes as a small subset of EVs, and they play a significant role in disease progression and treatment. In this review, we discuss several key questions: what are exosomes, why do they matter, and how do we repurpose them in their strategies and applications in drug delivery systems. In addition, opportunities and challenges of exosome-based theranostics are also described and directions for future research are presented.
Collapse
Affiliation(s)
- Mengxi Zhu
- School of Basic Medicine, Henan University of Science & Technology, Luoyang, 471023, China
| | - Shan Li
- School of Basic Medicine, Henan University of Science & Technology, Luoyang, 471023, China
| | - Sanqiang Li
- School of Basic Medicine, Henan University of Science & Technology, Luoyang, 471023, China
| | - Haojie Wang
- School of Basic Medicine, Henan University of Science & Technology, Luoyang, 471023, China
| | - Juanjuan Xu
- School of Basic Medicine, Henan University of Science & Technology, Luoyang, 471023, China
| | - Yili Wang
- School of Basic Medicine, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Gaofeng Liang
- School of Basic Medicine, Henan University of Science & Technology, Luoyang, 471023, China
| |
Collapse
|
8
|
Singh SK, Kumar U, Guleria A, Kumar D. A brief overview about the use of different bioactive liposome-based drug delivery systems in Peritoneal Dialysis and some other diseases. NANO EXPRESS 2021. [DOI: 10.1088/2632-959x/abfdd1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Abstract
Peritoneal dialysis (PD) is a promising way of treatment used for patients suffering from End-Stage Renal Failure (ESRF). Liposomes are nanocarriers comprised of lipid bilayers encapsulating an aqueous core. Liposomes are extensively used as drug delivery systems and several liposomal nanomedicines have been approved for clinical applications. Nanomedicine constitutes a new direction in peritonitis prevention using peritoneal dialysis (PD). In case of PD; there is a more risk of bacterial infection in the peritoneal cavity along with subcutaneous tunnel and catheter existing site. These infections are the most common complications associated with prolonged peritoneal dialysis (PD) therapy. To prevent such complications, patients used to treat with suitable antibiotic. Nanocarriers consist of assembly of nano-sized vehicles planned to deliver encapsulated/loaded bioactive(s) to the specific target (tissues or organs) and have provided prominent improved therapeutic efficacy for PD patients. The advantage of bioactive loaded nanocarrier has the efficient capacity to deliver at target specific site in PD. This review focuses mainly on the current use of different liposomal encapsulated bioactive compounds in drug delivery systems in the case of PD and other human diseases and briefly highlights the importance and use of different liposomal encapsulated antimicrobial agents to improve the PD technique.
Collapse
|
9
|
Luo XM, Yan C, Feng YM. Nanomedicine for the treatment of diabetes-associated cardiovascular diseases and fibrosis. Adv Drug Deliv Rev 2021; 172:234-248. [PMID: 33417981 DOI: 10.1016/j.addr.2021.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 12/25/2020] [Accepted: 01/01/2021] [Indexed: 02/08/2023]
Abstract
Cardiomyopathy and fibrosis are the main causes of heart failure in diabetes patients. For therapeutic purposes, a delivery system is required to enhance antidiabetic drug efficacy and specifically target profibrotic pathways in cardiomyocytes. Nanoparticles (NPs) have distinct advantages, including biocompatibility, bioavailability, targeting efficiency, and minimal toxicity, which make them ideal for antidiabetic treatment. In this review, we overview the latest information on the pathogenesis of cardiomyopathy and fibrosis in diabetes patients. We summarize how NP applications improve insulin and liraglutide efficacy and their sustained release upon oral administration. We provide a comprehensive review of the results of NP clinical trials in diabetes patients and of animal studies investigating the effects of NP-mediated anti-fibrotic treatments. Collectively, the application of advanced NP delivery systems in the treatment of cardiomyopathy and fibrosis in diabetes patients is a promising and innovative therapeutic strategy.
Collapse
|
10
|
Bai H, Sun P, Wei S, Xie B, Li M, Xu Y, Wang W, Liu Y, Zhang L, Wu H, Wang Z, Xing Y, Wang Z, Li J. A novel intramural TGF β 1 hydrogel delivery method to decrease murine abdominal aortic aneurysm and rat aortic pseudoaneurysm formation and progression. Biomed Pharmacother 2021; 137:111296. [PMID: 33545663 DOI: 10.1016/j.biopha.2021.111296] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/13/2021] [Accepted: 01/18/2021] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVES Aneurysms are generally the result of dilation of all 3 layers of the vessel wall, and pseudoaneurysms are the result of localized extravasation of blood that is contained by surrounding tissue. Since there is still no recommended protocol to decrease aneurysm formation and progression, we hypothesised that intramural delivery of TGF β1 hydrogel can decrease aneurysm and pseudoaneurysm formation and progression. MATERIALS Male C57BL/6 J mice (12-14 wk), SD rats (200 g) and pig abdominal aortas were used, and hydrogels were fabricated by the interaction of sodium alginate (SA), hyaluronic acid (HA) and CaCO3. METHODS A CaCl2 adventitial incubation model in mice and a decellularized human great saphenous vein patch angioplasty model in rats were used. TGF β1 hydrogel was intramurally delivered after CaCl2 incubation in mice; at day 7, the abdomen in some mice was reopened, and TGF β1 hydrogel was injected intramurally into the aorta. In rats, TGF β1 hydrogel was delivered intramurally after patch angioplasty completion. Tissues were harvested at day 14 and analysed by histology and immunohistochemistry staining. The pig aorta was also intramurally injected with hydrogel. RESULTS In mice, rhodamine hydrogel was still found between the medium and adventitia at day 14. In the mouse aneurysm model, there was a thicker wall and smaller amount of elastin breaks in the TGF β1 hydrogel-delivered groups both at day 0 and day 7 after CaCl2 incubation, and there were larger numbers of p-smad2- and TAK1-positive cells in the TGF β1 hydrogel-injected groups. In the rat decellularized human saphenous vein patch pseudoaneurysm model, there was a higher incidence of pseudoaneurysm formation when the patch was decellularized using 3% SDS, and delivery of TGF β1 hydrogel could effectively decrease the formation of pseudoaneurysm formation and increase p-smad2 and TAK1 expression. In pig aortas, hydrogels can be delivered between the medium and adventitia easily and successfully. CONCLUSIONS Intramural delivery of TGF β1 hydrogel can effectively decease aneurysm and pseudoaneurysm formation and progression in both mice and rats, and pig aortas can also be successfully intramurally injected with hydrogel. This technique may be a promising drug delivery method and therapeutic choice to decrease aneurysm and pseudoaneurysm formation and progression in the clinic.
Collapse
MESH Headings
- Aneurysm, False/metabolism
- Aneurysm, False/pathology
- Aneurysm, False/prevention & control
- Animals
- Aorta, Abdominal/drug effects
- Aorta, Abdominal/metabolism
- Aorta, Abdominal/pathology
- Aortic Aneurysm, Abdominal/metabolism
- Aortic Aneurysm, Abdominal/pathology
- Aortic Aneurysm, Abdominal/prevention & control
- Delayed-Action Preparations
- Dilatation, Pathologic
- Disease Models, Animal
- Disease Progression
- Drug Carriers
- Drug Compounding
- Hydrogels
- MAP Kinase Kinase Kinases/metabolism
- Male
- Mice, Inbred C57BL
- Phosphorylation
- Rats, Sprague-Dawley
- Smad2 Protein/metabolism
- Sus scrofa
- Transforming Growth Factor beta1/administration & dosage
- Mice
- Rats
Collapse
Affiliation(s)
- Hualong Bai
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Henan, China; Key Vascular Physiology and Applied Research Laboratory of Zhengzhou City, Henan, China.
| | - Peng Sun
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Henan, China
| | - Shunbo Wei
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Henan, China
| | - Boao Xie
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Henan, China
| | - Mingxing Li
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Henan, China
| | - Yanhua Xu
- Department of Internal Medicine, First Affiliated Hospital of Zhengzhou University, Henan, China
| | - Wang Wang
- Department of Physiology, Medical School of Zhengzhou University, Henan, China; Key Vascular Physiology and Applied Research Laboratory of Zhengzhou City, Henan, China
| | - Yuanfeng Liu
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Henan, China
| | - Liwei Zhang
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Henan, China
| | - Haoliang Wu
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Henan, China
| | - Zhiju Wang
- Department of Physiology, Medical School of Zhengzhou University, Henan, China; Key Vascular Physiology and Applied Research Laboratory of Zhengzhou City, Henan, China
| | - Ying Xing
- Department of Physiology, Medical School of Zhengzhou University, Henan, China; Key Vascular Physiology and Applied Research Laboratory of Zhengzhou City, Henan, China
| | - Zhiwei Wang
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Henan, China.
| | - Jing'an Li
- School of Material Science and Engineering & Henan Key Laboratory of Advanced Magnesium Alloy & Key Laboratory of Materials Processing and Mould Technology (Ministry of Education), Zhengzhou University, Henan, China.
| |
Collapse
|
11
|
Guo Y, Wang L, Gou R, Wang Y, Shi X, Zhang Y, Pang X, Tang L. Ameliorative role of SIRT1 in peritoneal fibrosis: an in vivo and in vitro study. Cell Biosci 2021; 11:79. [PMID: 33906673 PMCID: PMC8077771 DOI: 10.1186/s13578-021-00591-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 04/20/2021] [Indexed: 12/12/2022] Open
Abstract
Background Peritoneal fibrosis is one of the major complications induced by peritoneal dialysis (PD). Damaged integrity and function of peritoneum caused by peritoneal fibrosis not only limits the curative efficacy of PD and but affects the prognosis of patients. However, the detailed mechanisms underlying the process remain unclear and therapeutic strategy targeting TGF‐β is deficient. Transforming growth factor‐β (TGF‐β) signaling participates in the progression of peritoneal fibrosis through enhancing mesothelial-mesenchymal transition of mesothelial cells. Methods The study aims to demonstrate the regulatory role of Sirtuin1 (SIRT1) to the TGF‐β signaling mediated peritoneal fibrosis. SIRT1−/− mice were used to establish animal model. Masson’s staining and peritoneal equilibration assay were performed to evaluate the degree of peritoneal fibrosis. QRT-PCR assays were used to estimate the RNA levels of Sirt1 and matrix genes related to peritoneal fibrosis, and their protein levels were examined by Western blot assays. Results SIRT1 significantly decreased in vivo post PD treatment. SIRT1 knockout exacerbated peritoneal fibrosis both in vivo and vitro. Overexpression of SIRT1 efficiently inhibited peritoneal fibrosis by inhibiting the peritoneal inflammation and the activation of TGF‐β signaling. Conclusion SIRT1 ameliorated peritoneal fibrosis both in vivo and in vitro through inhibiting the expression of protein matrix induced by TGF‐β signaling.
Collapse
Affiliation(s)
- Yanhong Guo
- Department of Nephropathy, The First Affiliated Hospital of Zhengzhou University, No. 1 East Jianshe Road, Zhengzhou, 450052, Henan, China
| | - Liuwei Wang
- Department of Nephropathy, The First Affiliated Hospital of Zhengzhou University, No. 1 East Jianshe Road, Zhengzhou, 450052, Henan, China
| | - Rong Gou
- Department of Nephropathy, The First Affiliated Hospital of Zhengzhou University, No. 1 East Jianshe Road, Zhengzhou, 450052, Henan, China
| | - Yulin Wang
- Department of Nephropathy, The First Affiliated Hospital of Zhengzhou University, No. 1 East Jianshe Road, Zhengzhou, 450052, Henan, China
| | - Xiujie Shi
- Department of Nephropathy, Henan Provincial Hospital of Traditional Chinese Medicine (The Second Hospital Affiliated to Henan University of Chinese Medicine), NO. 6, Dongfeng Road, Jinshui District, Zhengzhou, 450002, Henan, China
| | - Yage Zhang
- Department of Nephropathy, Henan Provincial Hospital of Traditional Chinese Medicine (The Second Hospital Affiliated to Henan University of Chinese Medicine), NO. 6, Dongfeng Road, Jinshui District, Zhengzhou, 450002, Henan, China
| | - Xinxin Pang
- Department of Nephropathy, Henan Provincial Hospital of Traditional Chinese Medicine (The Second Hospital Affiliated to Henan University of Chinese Medicine), NO. 6, Dongfeng Road, Jinshui District, Zhengzhou, 450002, Henan, China.
| | - Lin Tang
- Department of Nephropathy, The First Affiliated Hospital of Zhengzhou University, No. 1 East Jianshe Road, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
12
|
Suppression of Peritoneal Fibrosis by Sonoporation of Hepatocyte Growth Factor Gene-Encoding Plasmid DNA in Mice. Pharmaceutics 2021; 13:pharmaceutics13010115. [PMID: 33477422 PMCID: PMC7829751 DOI: 10.3390/pharmaceutics13010115] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/15/2021] [Accepted: 01/15/2021] [Indexed: 12/14/2022] Open
Abstract
Gene therapy is expected to be used for the treatment of peritoneal fibrosis, which is a serious problem associated with long-term peritoneal dialysis. Hepatocyte growth factor (HGF) is a well-known anti-fibrotic gene. We developed an ultrasound and nanobubble-mediated (sonoporation) gene transfection system, which selectively targets peritoneal tissues. Thus, we attempted to treat peritoneal fibrosis by sonoporation-based human HGF (hHGF) gene transfection in mice. To prepare a model of peritoneal fibrosis, mice were intraperitoneally injected with chlorhexidine digluconate. We evaluated the preventive and curative effects of sonoporation-based hHGF transfection by analyzing the following factors: hydroxyproline level, peritoneum thickness, and the peritoneal equilibration test. The transgene expression characteristics of sonoporation were also evaluated using multicolor deep imaging. In early-stage fibrosis in mice, transgene expression by sonoporation was observed in the submesothelial layer. Sonoporation-based hHGF transfection showed not only a preventive effect but also a curative effect for early-stage peritoneal fibrosis. Sonoporation-based hHGF transfection may be suitable for the treatment of peritoneal fibrosis regarding the transfection characteristics of transgene expression in the peritoneum under fibrosis.
Collapse
|
13
|
Weng L, Funderburgh JL, Khandaker I, Geary ML, Yang T, Basu R, Funderburgh ML, Du Y, Yam GHF. The anti-scarring effect of corneal stromal stem cell therapy is mediated by transforming growth factor β3. EYE AND VISION 2020; 7:52. [PMID: 33292650 PMCID: PMC7607765 DOI: 10.1186/s40662-020-00217-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023]
Abstract
Background Corneal stromal stem cells (CSSC) reduce corneal inflammation, prevent fibrotic scarring, and regenerate transparent stromal tissue in injured corneas. These effects rely on factors produced by CSSC to block the fibrotic gene expression. This study investigated the mechanism of the scar-free regeneration effect. Methods Primary human CSSC (hCSSC) from donor corneal rims were cultivated to passage 3 and co-cultured with mouse macrophage RAW264.7 cells induced to M1 pro-inflammatory phenotype by treatment with interferon-γ and lipopolysaccharides, or to M2 anti-inflammatory phenotype by interleukin-4, in a Transwell system. The time-course expression of human transforming growth factor β3 (hTGFβ3) and hTGFβ1 were examined by immunofluorescence and qPCR. TGFβ3 knockdown for > 70% in hCSSC [hCSSC-TGFβ3(si)] was achieved by small interfering RNA transfection. Naïve CSSC and hCSSC-TGFβ3(si) were transplanted in a fibrin gel to mouse corneas, respectively, after wounding by stromal ablation. Corneal clarity and the expression of mouse inflammatory and fibrosis genes were examined. Results hTGFβ3 was upregulated by hCSSC when co-cultured with RAW cells under M1 condition. Transplantation of hCSSC to wounded mouse corneas showed significant upregulation of hTGFβ3 at days 1 and 3 post-injury, along with the reduced expression of mouse inflammatory genes (CD80, C-X-C motif chemokine ligand 5, lipocalin 2, plasminogen activator urokinase receptor, pro-platelet basic protein, and secreted phosphoprotein 1). By day 14, hCSSC treatment significantly reduced the expression of fibrotic and scar tissue genes (fibronectin, hyaluronan synthase 2, Secreted protein acidic and cysteine rich, tenascin C, collagen 3a1 and α-smooth muscle actin), and the injured corneas remained clear. However, hCSSC-TGFβ3(si) lost these anti-inflammatory and anti-scarring functions, and the wounded corneas showed intense scarring. Conclusion This study has demonstrated that the corneal regenerative effect of hCSSC is mediated by TGFβ3, inducing a scar-free tissue response.
Collapse
Affiliation(s)
- Lin Weng
- Department of Ophthalmology, University of Pittsburgh School of medicine, 203 Lothrop Street, Pittsburgh, PA, 15213, USA.,Shanghai Lanhe Optometry and Ophthalmology Clinic, Shanghai, 200032, People's Republic of China
| | - James L Funderburgh
- Department of Ophthalmology, University of Pittsburgh School of medicine, 203 Lothrop Street, Pittsburgh, PA, 15213, USA
| | - Irona Khandaker
- Department of Ophthalmology, University of Pittsburgh School of medicine, 203 Lothrop Street, Pittsburgh, PA, 15213, USA
| | - Moira L Geary
- Department of Ophthalmology, University of Pittsburgh School of medicine, 203 Lothrop Street, Pittsburgh, PA, 15213, USA
| | - Tianbing Yang
- Department of Ophthalmology, University of Pittsburgh School of medicine, 203 Lothrop Street, Pittsburgh, PA, 15213, USA
| | - Rohan Basu
- Department of Ophthalmology, University of Pittsburgh School of medicine, 203 Lothrop Street, Pittsburgh, PA, 15213, USA
| | - Martha L Funderburgh
- Department of Ophthalmology, University of Pittsburgh School of medicine, 203 Lothrop Street, Pittsburgh, PA, 15213, USA
| | - Yiqin Du
- Department of Ophthalmology, University of Pittsburgh School of medicine, 203 Lothrop Street, Pittsburgh, PA, 15213, USA
| | - Gary Hin-Fai Yam
- Department of Ophthalmology, University of Pittsburgh School of medicine, 203 Lothrop Street, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
14
|
Balzer MS. Molecular pathways in peritoneal fibrosis. Cell Signal 2020; 75:109778. [PMID: 32926960 DOI: 10.1016/j.cellsig.2020.109778] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 01/02/2023]
Abstract
Peritoneal dialysis (PD) is a renal replacement therapy for patients with end-stage renal disease that is equivalent to hemodialysis with respect to adequacy, mortality, and other outcome parameters, yet providing superior quality-of-life measures and cost savings. However, long-term usage of the patient's peritoneal membrane as a dialyzer filter is unphysiological and leads to peritoneal fibrosis, which is a major factor of patient morbidity and PD technique failure, resulting in a transfer to hemodialysis or death. Peritoneal fibrosis pathophysiology involves chronic inflammation and the fibrotic process itself. Frequently, inflammation precedes membrane fibrosis development, although a bidirectional relationship of one inducing the other exists. This review aims at highlighting the histopathological definition of peritoneal fibrosis, outlining the interplay of fibrosis, angiogenesis and epithelial-to-mesenchymal transition (EMT), delineating important fibrogenic pathways involving Smad-dependent and Smad-independent transforming growth factor-β (TGF-β) as well as connective tissue growth factor (CTGF) signaling, and summarizing historic and recent studies of inflammatory pathways involving NOD-like receptor protein 3 (NLRP3)/interleukin (IL)-1β, IL-6, IL-17, and other cytokines.
Collapse
Affiliation(s)
- Michael S Balzer
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
15
|
Curcumin ameliorates peritoneal fibrosis via inhibition of transforming growth factor-activated kinase 1 (TAK1) pathway in a rat model of peritoneal dialysis. Altern Ther Health Med 2019; 19:280. [PMID: 31647008 PMCID: PMC6813077 DOI: 10.1186/s12906-019-2702-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 10/09/2019] [Indexed: 01/14/2023]
Abstract
Background Peritoneal fibrosis (PF) remains a serious complication of long-term peritoneal dialysis (PD). The goal of this study was to investigate the anti-fibrotic effects of curcumin on the PF response to PD and its’ mechanism. Methods Male Sprague–Dawley rats were infused with 20 mL of 4.25% glucose-based standard PD fluid for 8 consecutive weeks to establish PF model and then divided into five groups: Control, received sham operation and 0.9% physiological saline; PD, received 4.25% standard PD fluid; Curcumin, PD rats injected intraperitoeally with curcumin for 8 weeks at doses of 10, 20 or 40 mg/kg. Masson’s staining was performed to evaluate the extent of PF. Peritoneal Equilibration Test (PET) was conducted to assess ultrafiltration volume (UFV) and mass transfer of glucose (MTG), quantitative RT-PCR, and immunohistochemistry or western blotting were performed to measure the expression levels of inflammation and fibrosis-associated factors. We also detected the TGF-β1 in peritoneal fluid by ELISA. Results Compared with the control group, the PD rats showed decreased UFV (2.54 ± 0.48 to 9.87 ± 0.78 mL, p < 0.05] and increased MTG (18.99 ± 0.86 to 10.85 ± 0.65 mmol/kg, p < 0.05) as well as obvious fibroproliferative response, with markedly increased peritoneal thickness (178.33 ± 4.42 to 25.26 ± 0.32um, p < 0.05) and higher expression of a-SMA, collagen I and TGF-β1. Treatment with curcumin significantly increased UFV, reduced MTG and peritoneal thickness of PD rats. The elevated TGF-β1 in peritoneal fluid of PD rats was significantly decreased by curcumin. It attenuated the increase in protein and mRNA of TGF-β1, α-SMA and collagen I in peritoneum of PD rats. The mRNA expressions of TAK1, JNK and p38, as well as the protein expressions of p-TAK1, p-JNK and p-p38 in peritoneum of PD rats were reduced by curcumin. Conclusions Present results demonstrate that curcumin showed a protective effect on PD-related PF and suggest an implication of TAK1, p38 and JNK pathway in mediating the benefical effects of curcumin.
Collapse
|
16
|
Li L, Shen N, Wang N, Wang W, Tang Q, Du X, Carrero JJ, Wang K, Deng Y, Li Z, Lin H, Wu T. Inhibiting core fucosylation attenuates glucose-induced peritoneal fibrosis in rats. Kidney Int 2018; 93:1384-1396. [DOI: 10.1016/j.kint.2017.12.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 11/25/2017] [Accepted: 12/21/2017] [Indexed: 12/22/2022]
|
17
|
Tamura R, Doi S, Nakashima A, Sasaki K, Maeda K, Ueno T, Masaki T. Inhibition of the H3K4 methyltransferase SET7/9 ameliorates peritoneal fibrosis. PLoS One 2018; 13:e0196844. [PMID: 29723250 PMCID: PMC5933785 DOI: 10.1371/journal.pone.0196844] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 04/20/2018] [Indexed: 11/18/2022] Open
Abstract
Transforming growth factor-β1 (TGF-β1) is a major mediator of peritoneal fibrosis and reportedly affects expression of the H3K4 methyltransferase, SET7/9. SET7/9-induced H3K4 mono-methylation (H3K4me1) critically activates transcription of fibrosis-related genes. In this study, we examined the effect of SET7/9 inhibition on peritoneal fibrosis in mice and in human peritoneal mesothelial cells (HPMCs). We also examined SET7/9 expression in nonadherent cells isolated from the effluent of peritoneal dialysis (PD) patients. Murine peritoneal fibrosis was induced by intraperitoneal injection of methylglyoxal (MGO) into male C57/BL6 mice over 21 days. Sinefungin, a SET7/9 inhibitor, was administered subcutaneously just before MGO injection (10 mg/kg). SET7/9 expression was elevated in both MGO-injected mice and nonadherent cells isolated from the effluent of PD patients. SET7/9 expression was positively correlated with dialysate/plasma ratio of creatinine in PD patients. Sinefungin was shown immunohistochemically to suppress expression of mesenchymal cells and collagen deposition, accompanied by decreased H3K4me1 levels. Peritoneal equilibration tests showed that sinefungin attenuated the urea nitrogen transport rate from plasma and the glucose absorption rate from the dialysate. In vitro, sinefungin suppressed TGF-β1-induced expression of fibrotic markers and inhibited H3K4me1. These findings suggest that inhibiting the H3K4 methyltransferase SET7/9 ameliorates peritoneal fibrosis.
Collapse
Affiliation(s)
- Ryo Tamura
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
| | - Shigehiro Doi
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
- * E-mail:
| | - Ayumu Nakashima
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
| | - Kensuke Sasaki
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
| | - Kazuya Maeda
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
| | - Toshinori Ueno
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
| | - Takao Masaki
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
| |
Collapse
|
18
|
Immunomodulation of Biomaterials by Controlling Macrophage Polarization. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1064:197-206. [PMID: 30471034 DOI: 10.1007/978-981-13-0445-3_12] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Macrophages are key players in innate immune responses to foreign substances. They participate in the phagocytosis of biomaterial-derived particles, angiogenesis, recruitment of fibroblasts, and formation of granulation tissues. Most macrophage functions are achieved through the release of various cytokines and chemokines; the release profile of cytokines is dependent on the phenotype of macrophages, namely proinflammatory M1 or antiinflammatory M2. M1 and M2 macrophages coexist during an inflammatory phase, and the M1/M2 ratio is considered to be an important factor for wound-healing or tissue regeneration. This ratio depends on the chemical and physical properties of biomaterials. To obtain a favorable foreign body reaction to biomaterials, the phenotypes of the macrophages can be modulated by cytokines, antibodies, small chemicals, and microRNAs. Geometrical surface fabrication of biomaterials can also be used for modulating the phenotype of macrophages.
Collapse
|
19
|
Zhou T, Li X, Li G, Tian T, Lin S, Shi S, Liao J, Cai X, Lin Y. Injectable and thermosensitive TGF-β1-loaded PCEC hydrogel system for in vivo cartilage repair. Sci Rep 2017; 7:10553. [PMID: 28874815 PMCID: PMC5585401 DOI: 10.1038/s41598-017-11322-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 08/22/2017] [Indexed: 02/05/2023] Open
Abstract
Chondral defects pose a great challenge for clinicians to manage owing to the limited capacity for self-healing. Various traditional approaches have been adopted for the repair of these defects with unsatisfactory results. Cartilage tissue engineering techniques have emerged as promising strategies to enhance regeneration and overcome these traditional shortcomings. The cell-homing based technique is considered the most promising owing to its unique advantages. Thermosensitive hydrogels have been applied as scaffolds for biomedical applications with smart sol-gel response for altering environmental temperature. Transforming growth factor (TGF)-β1 is considered to be capable of promoting chondrogenesis. In this study, a novel TGF-β1-loaded poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) (PCEC) hydrogel was fabricated using simple procedures. Hydrogel characterization, rheological testing, component analysis, and assessment of sol-gel transition, in vitro degradation, and TGF-β1 release confirmed that this material possesses a porous microstructure with favorable injectability and sustained drug release. Full-thickness cartilage defects were induced on rat knees for in vivo cartilage repair for eight weeks. Micro-CT and histological evaluation provided further evidence of the optimal capacity of this novel hydrogel for cartilage regeneration with respect to that of other methods. Moreover, our results demonstrated that the cell-free hydrogel is thermosensitive, injectable, biodegradable, and capable of in vivo cartilage repair and possesses high potential and benefits for acellular cartilage tissue engineering and clinical application in the future.
Collapse
Affiliation(s)
- Tengfei Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaolong Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Guo Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Taoran Tian
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shiyu Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Sirong Shi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jinfeng Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaoxiao Cai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
20
|
Igarashi Y, Hoshino T, Ookawara S, Ishibashi K, Morishita Y. Nano-sized carriers in gene therapy for peritoneal fibrosis in vivo. NANO REVIEWS & EXPERIMENTS 2017; 8:1331100. [PMID: 30410706 PMCID: PMC6167028 DOI: 10.1080/20022727.2017.1331100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 05/11/2017] [Indexed: 11/07/2022]
Abstract
Peritoneal fibrosis is a crucial complication in patients receiving peritoneal dialysis. It is a major pathological feature of peritoneal membrane failure, which leads to withdrawal of peritoneal dialysis. No specific therapy has yet been established for the treatment of peritoneal fibrosis. However, gene therapy may be a viable option, and various nano-sized carriers, including viral and non-viral vectors, have been shown to enhance the delivery and efficacy of gene therapy for peritoneal fibrosis in vivo. This review focuses on the use of nano-sized carriers in gene therapy of peritoneal fibrosis in vivo.
Collapse
Affiliation(s)
- Yusuke Igarashi
- Division of Nephrology, Department of Internal Medicine, Jichi Medical University, Tochigi, Japan
| | - Taro Hoshino
- Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Susumu Ookawara
- Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Kenichi Ishibashi
- Department of Medical Physiology, Meiji Pharmaceutical University, Tokyo, Japan
| | - Yoshiyuki Morishita
- Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| |
Collapse
|
21
|
Miyazawa H, Hirai K, Ookawara S, Ishibashi K, Morishita Y. Nano-sized carriers in gene therapy for renal fibrosis in vivo. NANO REVIEWS & EXPERIMENTS 2017; 8:1331099. [PMID: 30410705 PMCID: PMC6167027 DOI: 10.1080/20022727.2017.1331099] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Accepted: 05/12/2017] [Indexed: 12/28/2022]
Abstract
Renal fibrosis is the final common pathway leading to end-stage renal failure regardless of underlying initial nephropathies. No specific therapy has been established for renal fibrosis. Gene therapy is a promising strategy for the treatment of renal fibrosis. Nano-sized carriers including viral vectors and non-viral vectors have been shown to enhance the delivery and treatment effects of gene therapy for renal fibrosis in vivo. This review focuses on the mechanisms of renal fibrosis and the in vivo technologies and methodologies of nano-sized carriers in gene therapy for renal fibrosis. RESPONSIBLE EDITOR Alexander Seifalian Director of Nanotechnology & Regenerative Medicine Ltd., The London BioScience Innovation Centre, London, UNITED KINGDOM.
Collapse
Affiliation(s)
- Haruhisa Miyazawa
- Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Keiji Hirai
- Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Susumu Ookawara
- Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Kenichi Ishibashi
- Department of Medical Physiology, Meiji Pharmaceutical University, Tokyo, Japan
| | - Yoshiyuki Morishita
- Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| |
Collapse
|
22
|
Igarashi Y, Morishita Y, Yoshizawa H, Imai R, Imai T, Hirahara I, Akimoto T, Ookawara S, Ishibashi K, Muto S, Nagata D. The association between soluble intercellular adhesion molecule-1 levels in drained dialysate and peritoneal injury in peritoneal dialysis. Ren Fail 2017; 39:392-399. [PMID: 28201944 PMCID: PMC6014485 DOI: 10.1080/0886022x.2017.1287735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background: Chronic inflammation of the peritoneum causes peritoneal injury in patients on peritoneal dialysis. Intercellular adhesion molecule-1 and its circulating form, soluble intercellular adhesion molecule-1, play pivotal roles in inflammation. However, their role in peritoneal injury is unclear. Methods: We measured changes in intercellular adhesion molecule-1 expression in the peritoneum of a peritoneal injury model in rats. The associations between soluble intercellular adhesion molecule-1 levels in drained dialysate and the solute transport rate (D/P-Cr and D/D0-glucose) determined by the peritoneal equilibration test, and matrix metalloproteinase-2 levels in drained dialysate were investigated in 94 peritoneal drained dialysate samples. Results: Intercellular adhesion molecule-1 expression was increased in the peritoneum of rats with peritoneal injury. Soluble intercellular adhesion molecule-1 levels in drained dialysate were significantly positively correlated with D/P-Cr (r = .51, p < .01) and inversely correlated with D/D0-glucose (r = −.44, p < .01). They were also significantly positively correlated with matrix metalloproteinase-2 levels in drained dialysate (r = .86, p < .01). Conclusions: Intercellular adhesion molecule-1expression is increased in the peritoneum of a peritoneal injury model in the rat, and soluble intercellular adhesion molecule-1 levels in drained dialysate are associated with peritoneal injury in patients on peritoneal dialysis. These results suggest that soluble intercellular adhesion molecule-1 could be a novel biomarker of peritoneal injury in patients on peritoneal dialysis.
Collapse
Affiliation(s)
- Yusuke Igarashi
- a Division of Nephrology, Department of Internal Medicine , Jichi Medical University , Shimotsuke City , Tochigi , Japan
| | - Yoshiyuki Morishita
- b Division of Nephrology, Department of Integrated Medicine , Saitama Medical Center, Jichi Medical University , Omiya, Saitama City, Saitama , Japan
| | - Hiromichi Yoshizawa
- a Division of Nephrology, Department of Internal Medicine , Jichi Medical University , Shimotsuke City , Tochigi , Japan
| | - Reika Imai
- a Division of Nephrology, Department of Internal Medicine , Jichi Medical University , Shimotsuke City , Tochigi , Japan
| | - Toshimi Imai
- a Division of Nephrology, Department of Internal Medicine , Jichi Medical University , Shimotsuke City , Tochigi , Japan
| | - Ichiro Hirahara
- a Division of Nephrology, Department of Internal Medicine , Jichi Medical University , Shimotsuke City , Tochigi , Japan
| | - Tetsu Akimoto
- a Division of Nephrology, Department of Internal Medicine , Jichi Medical University , Shimotsuke City , Tochigi , Japan
| | - Susumu Ookawara
- b Division of Nephrology, Department of Integrated Medicine , Saitama Medical Center, Jichi Medical University , Omiya, Saitama City, Saitama , Japan
| | - Kenichi Ishibashi
- c Department of Medical Physiology , Meiji Pharmaceutical University , Kiyose , Tokyo , Japan
| | - Shigeaki Muto
- a Division of Nephrology, Department of Internal Medicine , Jichi Medical University , Shimotsuke City , Tochigi , Japan
| | - Daisuke Nagata
- a Division of Nephrology, Department of Internal Medicine , Jichi Medical University , Shimotsuke City , Tochigi , Japan
| |
Collapse
|
23
|
Cationic microRNA-delivering nanocarriers for efficient treatment of colon carcinoma in xenograft model. Gene Ther 2016; 23:829-838. [PMID: 27482839 DOI: 10.1038/gt.2016.60] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 06/19/2016] [Accepted: 07/11/2016] [Indexed: 12/21/2022]
Abstract
Manipulation of tumor microRNAs (miRNAs) may offer novel avenues for treatment of cancer. However, development of safe, robust, non-viral delivery methods remains a main challenge to obtain the promise of gene therapy. The miR-145 is dysregulated in many cancers, including colon carcer, and further in vitro investigation established antiproliferative and proapoptotic roles of miR-145. Herein, we study a PLGA/PEI (poly (d, l-lactide-co-glycolide)/polyethylenimine)-mediated miRNA vector delivery system; the validation of the method was carried out using a colon cancer xenograft model with miR-145 vector encoding for the expression of miR-145 (pDNA). First, high-molecular-weight PEI (25000 Da) was conjugated with cetyl to formulate reducible cetylated PEI (PEI-cet), and then PEI-cet was introduced to PLGA suspension. Next, PLGA/PEI-cet was crosslinked with hyaluronic acid (HA) to facilitate cellular uptake of miRNA plasmid vector via HA receptor-mediated endocytosis. After local administration of PLGA/PEI/HA complexes, intact miRNA plasmid vectors were delivered into HCT-116 colon cancer cells and xenograft tumor-bearing mice, and significant antitumor effects were achieved. The results show that the HA-based miR-145 nanocarrier could efficiently facilitate cellular uptake and significantly enhance miR-145 expression in HCT-116 cells. Consequently, the increased miR-145 induced G1 cell cycle arrest, reduced tumor proliferation and increased apoptosis, inhibited HCT-116 cell migration and suppressed c-MYC expressions, a regulatory target of miR-145. Of particular importance is the significant decrease in tumor growth in the mice model of colon cancer with the targeting miR-145 delivery system. The results in this work show that miR-145 has been effectively delivered to colon carcinomas through a PLGA/PEI/HA vehicle, indicating a promising miRNA replacement therapy strategy.
Collapse
|
24
|
Zhou Q, Bajo MA, Del Peso G, Yu X, Selgas R. Preventing peritoneal membrane fibrosis in peritoneal dialysis patients. Kidney Int 2016; 90:515-24. [PMID: 27282936 DOI: 10.1016/j.kint.2016.03.040] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 03/13/2016] [Accepted: 03/24/2016] [Indexed: 12/11/2022]
Abstract
Long-term peritoneal dialysis causes morphologic and functional changes in the peritoneal membrane. Although mesothelial-mesenchymal transition of peritoneal mesothelial cells is a key process leading to peritoneal fibrosis, and bioincompatible peritoneal dialysis solutions (glucose, glucose degradation products, and advanced glycation end products or a combination) are responsible for altering mesothelial cell function and proliferation, mechanisms underlying these processes remain largely unclear. Peritoneal fibrosis has 2 cooperative parts, the fibrosis process itself and the inflammation. The link between these 2 processes is frequently bidirectional, with each one inducing the other. This review outlines our current understanding about the definition and pathophysiology of peritoneal fibrosis, recent studies on key fibrogenic molecular machinery in peritoneal fibrosis, such as the role of transforming growth factor-β/Smads, transforming growth factor-β β/Smad independent pathways, and noncoding RNAs. The diagnosis of peritoneal fibrosis, including effluent biomarkers and the histopathology of a peritoneal biopsy, which is the gold standard for demonstrating peritoneal fibrosis, is introduced in detail. Several interventions for peritoneal fibrosis based on biomarkers, cytology, histology, functional studies, and antagonists are presented in this review. Recent experimental trials in animal models, including pharmacology and gene therapy, which could offer novel insights into the treatment of peritoneal fibrosis in the near future, are also discussed in depth.
Collapse
Affiliation(s)
- Qin Zhou
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - M-Auxiliadora Bajo
- Nephrology Service, Hospital Universitario La Paz, IdiPAZ, REDinREN, Fibroteam, IRSIN, Madrid, Spain
| | - Gloria Del Peso
- Nephrology Service, Hospital Universitario La Paz, IdiPAZ, REDinREN, Fibroteam, IRSIN, Madrid, Spain
| | - Xueqing Yu
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Rafael Selgas
- Nephrology Service, Hospital Universitario La Paz, IdiPAZ, REDinREN, Fibroteam, IRSIN, Madrid, Spain
| |
Collapse
|
25
|
Bone scaffolds loaded with siRNA-Semaphorin4d for the treatment of osteoporosis related bone defects. Sci Rep 2016; 6:26925. [PMID: 27254469 PMCID: PMC4890584 DOI: 10.1038/srep26925] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 05/03/2016] [Indexed: 12/25/2022] Open
Abstract
Osteoporosis is a prominent disorder affecting over 200 million people worldwide. Recently, semaphorins have been implicated in the cell-cell communication between osteoclasts and osteoblasts and have been associated with the progression of osteoporosis. Previously, we demonstrated that knockdown of semaphorin4d (Sema4d) using siRNA delivered with a bone-targeting system prevented bone loss in an osteoporotic animal model. Here, we used this bone-specific technology containing siRNA-Sema4d and fabricated a PLLA scaffold capable of enhancing bone repair following fracture. We investigated the ability of the implant to release siRNA-Sema4d into the surrounding tissues over time and to influence new bone formation in a 3 mm femur osteoporotic defect model in ovariectomized rats. Delivery of the bone-targeting system released from PLLA scaffolds began 2 hours post-implantation, peaked at 1 day, and was sustained over a 21 day period. μCT analysis demonstrated a significantly higher bone volume/total volume bone mineral density and number of osteoblasts in the rats that were transplanted with scaffolds loaded with siRNA-Sema4d. These results confirm the specific role of Sema4d in bone remodeling and demonstrate that significant increases in the speed and quality of new bone formation occur when siRNA-Sema4d is delivered via a PLLA scaffold.
Collapse
|
26
|
Morishita Y, Yoshizawa H, Watanabe M, Imai R, Imai T, Hirahara I, Akimoto T, Ookawara S, Muto S, Nagata D. MicroRNA expression profiling in peritoneal fibrosis. Transl Res 2016; 169:47-66. [PMID: 26616819 DOI: 10.1016/j.trsl.2015.10.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 10/28/2015] [Accepted: 10/29/2015] [Indexed: 12/22/2022]
Abstract
Peritoneal fibrosis (PF) is an intractable complication leading to peritoneal membrane failure in peritoneal dialysis (PD). The aim of this study was to identify microRNAs (miRNAs) involved in PF. Peritoneal tissue from a PF rat model was screened for miRNA expression using microarray analysis. The expression levels of differentially expressed miRNAs were evaluated in serum and drained dialysate and associated with peritoneal membrane functions, as measured by the peritoneal equilibrium test in 33 PD patients. Furthermore, an miRNA inhibitor (anti-miRNA-21-5p locked nucleic acid (LNA): anti-miRNA-21-LNA) was intraperitoneally injected to PF model mice to investigate its effects on PF. The initial profiling study of PF rat peritoneal tissue identified 6 miRNAs (miRNA-142-3p, miRNA-21-5p, miRNA-221-3p, miRNA-223-3p, miRNA-34a-5p, and miRNA-327) whose expression was increased more than 2-fold and no miRNAs whose expression was decreased more than half. Among them, serum levels of miRNA-21-5p, miRNA-221-3p, and miRNA-327 and drained dialysate levels of miRNA-221-3p and miRNA-34a-5p were significantly correlated with peritoneal membrane functions in PD patients. Anti-miRNA-21-LNA significantly inhibited miRNA-21-5p expression in the PF mouse peritoneum, inhibited peritoneal fibrous thickening, and maintained peritoneal membrane functions. These results suggest that several miRNAs are involved in PF and that they may be useful as novel diagnostic biomarkers and therapeutic targets for PF.
Collapse
Affiliation(s)
- Yoshiyuki Morishita
- Division of Nephrology, Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Omiya, Saitama, Japan.
| | - Hiromichi Yoshizawa
- Division of Nephrology, Department of Internal Medicine, Jichi Medical University, Shimotsuke City, Tochigi, Tochigi, Japan
| | - Minami Watanabe
- Division of Nephrology, Department of Internal Medicine, Jichi Medical University, Shimotsuke City, Tochigi, Tochigi, Japan
| | - Reika Imai
- Division of Nephrology, Department of Internal Medicine, Jichi Medical University, Shimotsuke City, Tochigi, Tochigi, Japan
| | - Toshimi Imai
- Division of Nephrology, Department of Internal Medicine, Jichi Medical University, Shimotsuke City, Tochigi, Tochigi, Japan
| | - Ichiro Hirahara
- Division of Nephrology, Department of Internal Medicine, Jichi Medical University, Shimotsuke City, Tochigi, Tochigi, Japan
| | - Tetsu Akimoto
- Division of Nephrology, Department of Internal Medicine, Jichi Medical University, Shimotsuke City, Tochigi, Tochigi, Japan
| | - Susumu Ookawara
- Division of Nephrology, Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Omiya, Saitama, Japan
| | - Shigeaki Muto
- Division of Nephrology, Department of Internal Medicine, Jichi Medical University, Shimotsuke City, Tochigi, Tochigi, Japan
| | - Daisuke Nagata
- Division of Nephrology, Department of Internal Medicine, Jichi Medical University, Shimotsuke City, Tochigi, Tochigi, Japan
| |
Collapse
|
27
|
Fan YP, Hsia CC, Tseng KW, Liao CK, Fu TW, Ko TL, Chiu MM, Shih YH, Huang PY, Chiang YC, Yang CC, Fu YS. The Therapeutic Potential of Human Umbilical Mesenchymal Stem Cells From Wharton's Jelly in the Treatment of Rat Peritoneal Dialysis-Induced Fibrosis. Stem Cells Transl Med 2015; 5:235-47. [PMID: 26718649 DOI: 10.5966/sctm.2015-0001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 10/08/2015] [Indexed: 11/16/2022] Open
Abstract
A major complication in continuous, ambulatory peritoneal dialysis in patients with end-stage renal disease who are undergoing long-term peritoneal dialysis (PD) is peritoneal fibrosis, which can result in peritoneal structural changes and functional ultrafiltration failure. Human umbilical mesenchymal stem cells (HUMSCs) in Wharton's jelly possess stem cell properties and are easily obtained and processed. This study focuses on the effects of HUMSCs on peritoneal fibrosis in in vitro and in vivo experiments. After 24-hour treatment with mixture of Dulbecco's modified Eagle's medium and PD solution at a 1:3 ratio, primary human peritoneal mesothelial cells became susceptible to PD-induced cell death. Such cytotoxic effects were prevented by coculturing with primary HUMSCs. In a rat model, intraperitoneal injections of 20 mM methylglyoxal (MGO) in PD solution for 3 weeks (the PD/MGO 3W group) markedly induced abdominal cocoon formation, peritoneal thickening, and collagen accumulation. Immunohistochemical analyses indicated neoangiogenesis and significant increase in the numbers of ED-1- and α-smooth muscle actin (α-SMA)-positive cells in the thickened peritoneum in the PD/MGO 3W group, suggesting that PD/MGO induced an inflammatory response. Furthermore, PD/MGO treatment for 3 weeks caused functional impairments in the peritoneal membrane. However, in comparison with the PD/MGO group, intraperitoneal administration of HUMSCs into the rats significantly ameliorated the PD/MGO-induced abdominal cocoon formation, peritoneal fibrosis, inflammation, neoangiogenesis, and ultrafiltration failure. After 3 weeks of transplantation, surviving HUMSCs were found in the peritoneum in the HUMSC-grafted rats. Thus, xenografts of HUMSCs might provide a potential therapeutic strategy in the prevention of peritoneal fibrosis. Significance: This study demonstrated that direct intraperitoneal transplantation of human umbilical mesenchymal stem cells into the rat effectively prevented peritoneal dialysis/methylglyoxal-induced abdominal cocoon formation, ultrafiltration failure, and peritoneal membrane alterations such as peritoneal thickening, fibrosis, and inflammation. These findings provide a basis for a novel approach for therapeutic benefits in the treatment of encapsulating peritoneal sclerosis.
Collapse
Affiliation(s)
- Yu-Pei Fan
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | - Ching-Chih Hsia
- Division of Nephrology, Department of Internal Medicine, Taipei City Hospital, Ren-Ai Branch, Taipei, Taiwan, Republic of China
| | - Kuang-Wen Tseng
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan, Republic of China
| | - Chih-Kai Liao
- School of Medicine, I-Shou University, Kaohsiung City, Taiwan, Republic of China
| | - Tz-Win Fu
- Laboratory Medicine Department, Taipei Veterans General Hospital, Taipei, Taiwan, Republic of China
| | - Tsui-Ling Ko
- Department of Optometry, Shu-Zen College of Medicine and Management, Kaohsiung City, Taiwan, Republic of China
| | - Mei-Miao Chiu
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang-Ming University, Taipei, Taiwan, Republic of China Department of Medicine, Mackay Medical College, New Taipei, Taiwan, Republic of China
| | - Yang-Hsin Shih
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan, Republic of China School of Medicine, Taipei Medical University, Taipei, Taiwan, Republic of China
| | - Pei-Yu Huang
- Institute of Physiology, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | - Yi-Chia Chiang
- Taipei Municipal Zhong Shan Girls High School, Taipei, Taiwan, Republic of China
| | - Chih-Ching Yang
- Department of Planning, Ministry of Health and Welfare, Executive Yuan, Taipei, Taiwan, Republic of China Department of Internal Medicine
| | - Yu-Show Fu
- Department of Anatomy and Cell Biology, School of Medicine, Department of Education and Research, Taipei City Hospital, Taipei, Taiwan, Republic of China
| |
Collapse
|
28
|
Jiang X, Chen Y, Zhu H, Wang B, Qu P, Chen R, Sun X. Sodium Tanshinone IIA Sulfonate Ameliorates Bladder Fibrosis in a Rat Model of Partial Bladder Outlet Obstruction by Inhibiting the TGF-β/Smad Pathway Activation. PLoS One 2015; 10:e0129655. [PMID: 26061047 PMCID: PMC4464658 DOI: 10.1371/journal.pone.0129655] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 05/12/2015] [Indexed: 01/07/2023] Open
Abstract
Transforming growth factor (TGF)-β1 is known to play a pivotal role in a diverse range of biological systems including modulation of fibrosis in several organs. The precise role of TGF-β/Smad signaling in the progression of bladder fibrosis secondary to partial bladder outlet obstruction (PBOO) is yet to be conclusively. Using a rat PBOO model, we investigated TGF-β1 expression and exaimined whether sodium tanshinone IIA sulfonate (STS) could inhibit TGF-β/Smad signaling pathway activation and ameliorate bladder fibrosis. Forty-eight female Sprague-Dawley rats were randomly divided into three groups: sham operation group (n = 16), PBOO operation without STS treatment group (n = 16) and PBOO operation with STS treatment group (n = 16). Thirty-two rats underwent the operative procedure to create PBOO and subsequently received intraperitoneal injections of STS (10 mg/kg/d; n = 16) or vehicle (n = 16) two days after the surgery. Sham surgery was conducted on 16 rats, which received intraperitoneal vehicle injection two days later. In each of the three groups, an equal number of rats were sacrificed at weeks 4 and 8 after the PBOO or sham operation. The TGF-β/Smad signaling pathway was analyzed using western blotting, immunohistochemical staining and reverse transcriptase polymerase chain reaction (RT-PCR). One-way analysis of variance was conducted to draw statistical inferences. At 4 and 8 weeks, the expression of TGF-β1 and phosphorylated Smad2 and Smad3 in STS-treated PBOO rats was significantly lower than in the PBOO rats not treated with STS. Alpha smooth muscle actin (α-SMA), collagen I and collagen III expression at 4 and 8 weeks post PBOO was lower in STS-treated PBOO rats when compared to that in PBOO rats not treated with STS. Our findings indicate that STS ameliorates bladder fibrosis by inhibiting TGF-β/Smad signaling pathway activation, and may prove to be a potential therapeutic measure for preventing bladder fibrosis secondary to PBOO operation.
Collapse
Affiliation(s)
- Xiaoxiao Jiang
- Xuzhou Medical College, Xuzhou, Jiangsu, China
- Department of Urologic Surgery, Yancheng City No.1 People’s Hospital, Yancheng, Jiangsu, China
| | - Yaping Chen
- Xuzhou Medical College, Xuzhou, Jiangsu, China
- Department of Oncology, Yancheng City No.1 People’s Hospital, Yancheng, Jiangsu, China
| | - Haitao Zhu
- Xuzhou Medical College, Xuzhou, Jiangsu, China
- Department of Urologic Surgery, the Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
- * E-mail: (XS); (HZ)
| | - Bo Wang
- Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Ping Qu
- Department of Urologic Surgery, Yancheng City No.1 People’s Hospital, Yancheng, Jiangsu, China
| | - Renfu Chen
- Department of Urologic Surgery, the Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Xiaoqing Sun
- Xuzhou Medical College, Xuzhou, Jiangsu, China
- Department of Urologic Surgery, the Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
- Department of Urologic Laboratory, Xuzhou Medical Affiliated Hospital, Xuzhou, Jiangsu, China
- * E-mail: (XS); (HZ)
| |
Collapse
|