1
|
Li X, Xu W, Jing T. Mechanism of KLF2 in young mice with pneumonia induced by Streptococcus pneumoniae. J Cardiothorac Surg 2024; 19:509. [PMID: 39223627 PMCID: PMC11367914 DOI: 10.1186/s13019-024-02995-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Streptococcus pneumoniae (Spn) is a major causative agent of pneumonia, which can disseminate to the bloodstream and brain. Pneumonia remains a leading cause of death among children aged 1-59 months worldwide. This study aims to investigate the role of Kruppel-like factor 2 (KLF2) in lung injury caused by Spn in young mice. METHODS Young mice were infected with Spn to induce pneumonia, and the bacterial load in the bronchoalveolar lavage fluid was quantified. KLF2 expression in lung tissues was analyzed using real-time quantitative polymerase chain reaction and Western blotting assays. Following KLF2 overexpression, lung tissues were assessed for lung wet-to-dry weight ratio and Myeloperoxidase activity. The effects of KLF2 on lung injury and inflammation were evaluated through hematoxylin and eosin staining and enzyme-linked immunosorbent assay. Chromatin immunoprecipitation and dual-luciferase assay were conducted to examine the binding of KLF2 to the promoter of microRNA (miR)-222-3p and cyclin-dependent kinase inhibitor 1B (CDKN1B), as well as the binding of miR-222-3p to CDKN1B. Levels of miR-222-3p and CDKN1B in lung tissues were also determined. RESULTS In young mice with pneumonia, KLF2 and CDKN1B were downregulated, while miR-222-3p was upregulated in lung tissues. Overexpression of KLF2 reduced lung injury and inflammation, evidenced by decreased bacterial load, reduced lung injury, and lower levels of proinflammatory factors. Co-transfection of miR-222-3p-WT and oe-KLF2 significantly reduced luciferase activity, suggesting that KLF2 binds to the promoter of miR-222-3p and suppresses its expression. Transfection of CDKN1B-WT with miR-222-3p mimics significantly reduced luciferase activity, indicating that miR-222-3p binds to CDKN1B and downregulates its expression. Overexpression of miR-222-3p or downregulation of CDKN1B increased bacterial load in BALF, lung wet/dry weight ratio, MPO activity, and inflammation, thereby reversing the protective effect of KLF2 overexpression on lung injury in young mice with pneumonia. CONCLUSIONS KLF2 alleviates lung injury in young mice with Spn-induced pneumonia by transcriptional regulation of the miR-222-3p/CDKN1B axis.
Collapse
Affiliation(s)
- Xiaoshuang Li
- Department of Emergency, Anhui Provincial Children's Hospital, No. 39 Wangjiang East Road, Hefei, Anhui Province, 230022, China.
| | - Weihua Xu
- Department of Emergency, Anhui Provincial Children's Hospital, No. 39 Wangjiang East Road, Hefei, Anhui Province, 230022, China
| | - Tao Jing
- Department of Emergency, Anhui Provincial Children's Hospital, No. 39 Wangjiang East Road, Hefei, Anhui Province, 230022, China
| |
Collapse
|
2
|
Barnes EA, Ito R, Che X, Alvira CM, Cornfield DN. Loss of prolyl hydroxylase 1 and 2 in SM22α-expressing cells prevents Hypoxia-Induced pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 2023; 325:L741-L755. [PMID: 37847687 PMCID: PMC11068430 DOI: 10.1152/ajplung.00428.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 09/21/2023] [Accepted: 10/11/2023] [Indexed: 10/19/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a disease characterized by increased vasoconstriction and vascular remodeling. Pulmonary artery smooth muscle cells (PASMCs) highly express the transcription factor hypoxia-inducible factor-1α (HIF-1α), yet the role of PASMC HIF-1α in the development of PAH remains controversial. To study the role of SMC HIF-1α in the pulmonary vascular response to acute and chronic hypoxia, we used a gain-of-function strategy to stabilize HIF-1α in PASMC by generating mice lacking prolyl hydroxylase domain (PHD) 1 and 2 in SM22α-expressing cells. This strategy increased HIF-1α expression and transcriptional activity under conditions of normoxia and hypoxia. Acute hypoxia increased right ventricular systolic pressure (RVSP) in control, but not in SM22α-PHD1/2-/- mice. Chronic hypoxia increased RVSP and vascular remodeling more in control SM22α-PHD1/2+/+ than in SM22α-PHD1/2-/- mice. In vitro studies demonstrated increased contractility and myosin light chain phosphorylation in isolated PHD1/2+/+ compared with PHD1/2-/- PASMC under both normoxic and hypoxic conditions. After chronic hypoxia, there was more p27 and less vascular remodeling in SM22α-PHD1/2-/- compared with SM22α-PHD1/2+/+ mice. Hypoxia increased p27 in PASMC isolated from control patients, but not in cells from patients with idiopathic pulmonary arterial hypertension (IPAH). These findings highlight an SM22α-expressing cell-specific role for HIF-1α in the inhibition of pulmonary vasoconstriction and vascular remodeling. Modulating HIF-1α expression in PASMC may represent a promising preventative and therapeutic strategy for patients with PAH.NEW & NOTEWORTHY In a mouse model wherein hypoxia-inducible factor 1 alpha (HIF-1α) is stabilized in vascular smooth muscle cells, we found that HIF-1α regulates vasoconstriction by limiting phosphorylation of myosin light chain and regulates vascular remodeling through p27 induction. These findings highlight a cell-specific role for HIF-1α in the inhibition of pulmonary vasoconstriction and vascular remodeling.
Collapse
Affiliation(s)
- Elizabeth A Barnes
- Department of Pediatrics, Center for Excellence in Pulmonary Biology, Stanford University, School of Medicine, Stanford, California, United States
| | - Reiji Ito
- Department of Pediatrics, Center for Excellence in Pulmonary Biology, Stanford University, School of Medicine, Stanford, California, United States
| | - Xibing Che
- Department of Pediatrics, Center for Excellence in Pulmonary Biology, Stanford University, School of Medicine, Stanford, California, United States
| | - Cristina M Alvira
- Department of Pediatrics, Center for Excellence in Pulmonary Biology, Stanford University, School of Medicine, Stanford, California, United States
| | - David N Cornfield
- Department of Pediatrics, Center for Excellence in Pulmonary Biology, Stanford University, School of Medicine, Stanford, California, United States
| |
Collapse
|
3
|
Yuan R, Liu M, Cheng Y, Yan F, Zhu X, Zhou S, Dong M. Biomimetic Nanoparticle-Mediated Target Delivery of Hypoxia-Responsive Plasmid of Angiotensin-Converting Enzyme 2 to Reverse Hypoxic Pulmonary Hypertension. ACS NANO 2023; 17:8204-8222. [PMID: 37071566 DOI: 10.1021/acsnano.2c12190] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Hypoxic pulmonary hypertension (HPH) is characterized by pulmonary vascular sustained constriction and progressive remodeling, which are initiated by hypoxia then with hypoxia-induced additive factors including pulmonary vascular endothelium injury, intrapulmonary angiotension system imbalance, and inflammation. Now HPH is still an intractable disease lacking effective treatments. Gene therapy has a massive potential for HPH but is hindered by a lack of efficient targeted delivery and hypoxia-responsive regulation systems for transgenes. Herein, we constructed the hypoxia-responsive plasmid of angiotensin-converting enzyme 2 (ACE2) with endothelial-specific promoter Tie2 and a hypoxia response element and next prepared its biomimetic nanoparticle delivery system, named ACE2-CS-PRT@PM, by encapsulating the plasmid of ACE2 with protamine and chondroitin sulfate as the core then coated it with a platelet membrane as a shell for targeting the injured pulmonary vascular endothelium. ACE2-CS-PRT@PM has a 194.3 nm diameter with a platelet membrane-coating core-shell structure and a negatively charged surface, and it exhibits higher delivery efficiency targeting to pulmonary vascular endothelium and hypoxia-responsive overexpression of ACE2 in endothelial cells in a hypoxia environment. In vitro, ACE2-CS-PRT@PM significantly inhibited the hypoxia-induced proliferation of pulmonary smooth muscle cells. In vivo, ACE2-CS-PRT@PM potently ameliorated the hemodynamic dysfunction and morphological abnormality and largely reversed HPH via inhibiting the hypoxic proliferation of pulmonary artery smooth muscle cells, reducing pulmonary vascular remodeling, restoring balance to the intrapulmonary angiotension system, and improving the inflammatory microenvironment without any detectable toxicity. Therefore, ACE2-CS-PRT@PM is promising for the targeted gene therapy of HPH.
Collapse
Affiliation(s)
- Rui Yuan
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, P.R. China
| | - Manling Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fourth Military Medical University, Xi'an 710032, P.R. China
| | - Ying Cheng
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, P.R. China
| | - Fang Yan
- Geriatric Diseases Institute of Chengdu, Center for Medicine Research and Translation, Chengdu Fifth People's Hospital, Chengdu, Sichuan Province 611137, P.R. China
| | - Xiaoquan Zhu
- Medical Research Department, Air Force Medical Center, Haidian District, Beijing 100142, P.R. China
| | - Siyuan Zhou
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, P.R. China
| | - Mingqing Dong
- Geriatric Diseases Institute of Chengdu, Center for Medicine Research and Translation, Chengdu Fifth People's Hospital, Chengdu, Sichuan Province 611137, P.R. China
| |
Collapse
|
4
|
Yu W, Xu G, Chen H, Xiao L, Liu G, Hu P, Li S, Kasim V, Zeng C, Tong X. The substitution of SERCA2 redox cysteine 674 promotes pulmonary vascular remodeling by activating IRE1 α/XBP1s pathway. Acta Pharm Sin B 2022; 12:2315-2329. [PMID: 35646520 PMCID: PMC9136575 DOI: 10.1016/j.apsb.2021.12.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/14/2021] [Accepted: 12/29/2021] [Indexed: 11/16/2022] Open
Abstract
Pulmonary hypertension (PH) is a life-threatening disease characterized by pulmonary vascular remodeling, in which hyperproliferation of pulmonary artery smooth muscle cells (PASMCs) plays an important role. The cysteine 674 (C674) in the sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2 (SERCA2) is the critical redox regulatory cysteine to regulate SERCA2 activity. Heterozygous SERCA2 C674S knock-in mice (SKI), where one copy of C674 was substituted by serine to represent partial C674 oxidative inactivation, developed significant pulmonary vascular remodeling resembling human PH, and their right ventricular systolic pressure modestly increased with age. In PASMCs, substitution of C674 activated inositol requiring enzyme 1 alpha (IRE1α) and spliced X-box binding protein 1 (XBP1s) pathway, accelerated cell cycle and cell proliferation, which reversed by IRE1α/XBP1s pathway inhibitor 4μ8C. In addition, suppressing the IRE1α/XBP1s pathway prevented pulmonary vascular remodeling caused by substitution of C674. Similar to SERCA2a, SERCA2b is also important to restrict the proliferation of PASMCs. Our study articulates the causal effect of C674 oxidative inactivation on the development of pulmonary vascular remodeling and PH, emphasizing the importance of C674 in restricting PASMC proliferation to maintain pulmonary vascular homeostasis. Moreover, the IRE1α/XBP1s pathway and SERCA2 might be potential targets for PH therapy.
Collapse
Affiliation(s)
- Weimin Yu
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
- Institute of Health Biological Chemical Medication, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Gang Xu
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
- Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing 400038, China
| | - Hui Chen
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Li Xiao
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Gang Liu
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
- Henan Key Laboratory of Medical Tissue Regeneration, College of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
| | - Pingping Hu
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Siqi Li
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Vivi Kasim
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, China
| | - Xiaoyong Tong
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
- Corresponding author.
| |
Collapse
|
5
|
Liu ML, Xing SJ, Liang XQ, Luo Y, Zhang B, Li ZC, Dong MQ. Reversal of Hypoxic Pulmonary Hypertension by Hypoxia-Inducible Overexpression of Angiotensin-(1-7) in Pulmonary Endothelial Cells. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 17:975-985. [PMID: 32426413 PMCID: PMC7225382 DOI: 10.1016/j.omtm.2020.04.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 04/13/2020] [Indexed: 12/30/2022]
Abstract
Hypoxia-induced pulmonary vascular constriction and structure remodeling are the main causes of hypoxic pulmonary hypertension. In the present study, an adeno-associated virus vector, containing Tie2 promoter and hypoxia response elements, was designed and named HTSFcAng(1-7). Its targeting, hypoxic inducibility, and vascular relaxation were examined in vitro, and its therapeutic effects on hypobaric hypoxia-induced pulmonary hypertension were examined in rats. Transfection of HTSFcAng(1-7) specifically increased the expression of angiotensin-(1-7) in endothelial cells in normoxia. Hypoxia increased the expression of angiotensin-(1-7) in HTSFcAng(1-7)-transfected endothelial cells. The condition medium from HTSFcAng(1-7)-transfected endothelial cells inhibited the hypoxia-induced proliferation of pulmonary artery smooth muscle cells, relaxed the pulmonary artery rings, totally inhibited hypoxia-induced early contraction, enhanced maximum relaxation, and reversed phase II constriction to sustained relaxation. In hypoxic pulmonary hypertension rats, treatment with HTSFcAng(1-7) by nasal drip adeno-associated virus significantly reversed hypoxia-induced hemodynamic changes and pulmonary artery-wall remodeling, accompanied by the concomitant overexpression of angiotensin-(1-7), mainly in the endothelial cells in the lung. Therefore, hypoxia-inducible overexpression of angiotensin-(1-7) in pulmonary endothelial cells may be a potential strategy for the gene therapy of hypoxic pulmonary hypertension.
Collapse
Affiliation(s)
- Man-Ling Liu
- Department of Physiology and Pathophysiology, Air Force Military Medical University (Fourth Military Medical University), Xi’an 710032, Shaanxi, PR China
| | - Shu-Juan Xing
- Xi’an International University, Xi’an 710077, Shaanxi, PR China
| | - Xiao-Qing Liang
- Xi’an International University, Xi’an 710077, Shaanxi, PR China
| | - Ying Luo
- Department of Physiology and Pathophysiology, Air Force Military Medical University (Fourth Military Medical University), Xi’an 710032, Shaanxi, PR China
| | - Bo Zhang
- Department of Physiology and Pathophysiology, Air Force Military Medical University (Fourth Military Medical University), Xi’an 710032, Shaanxi, PR China
| | - Zhi-Chao Li
- School of Basic Medical Sciences, Northwest University, Xi’an 710069, Shaanxi, PR China
| | - Ming-Qing Dong
- Xi’an International University, Xi’an 710077, Shaanxi, PR China
- Corresponding author Ming-Qing Dong, PhD, Xi’an International University, Xi’an 710077, Shaanxi, PR China.
| |
Collapse
|
6
|
Wilson JL, Wang L, Zhang Z, Hill NS, Polgar P. Participation of PLK1 and FOXM1 in the hyperplastic proliferation of pulmonary artery smooth muscle cells in pulmonary arterial hypertension. PLoS One 2019; 14:e0221728. [PMID: 31437238 PMCID: PMC6705859 DOI: 10.1371/journal.pone.0221728] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 08/13/2019] [Indexed: 01/25/2023] Open
Abstract
Vascular smooth muscle cells from the pulmonary arteries (HPASMC) of subjects with pulmonary arterial hypertension (PAH) exhibit hyperplastic growth. The PAH HPASMC display an increased sensitivity to fetal bovine serum (FBS) and undergo growth at a very low, 0.2%, FBS concentration. On the other hand, normal HPASMC (obtained from non-PAH donors) do not proliferate at low FBS (0.2%). A previous genomic study suggested that the nuclear factor, FOXM1 and the polo like kinase 1 (PLK1) are involved in promoting this hyperplastic growth of the PAH HPASMC. Here we find that limiting the action of FOXM1 or PLK1 not only restricts the hyperplastic proliferation of the PAH HPASMC but also modulates the FBS stimulated growth of normal HPASMC. The PAH HPASMC exhibit significantly elevated PLK1 and FOXM1 expression and decreased p27 (quiescence protein) levels compared to normal HPASMC. Regulation of the expression of FOXM1 and PLK1 is accompanied by the regulation of downstream expression of cell cycle components, Aurora B, cyclin B1 and cyclin D1. Expression of these cell cycle components is reversed by the knockdown of FOXM1 or PLK1 expression/activity. Furthermore, the knockdown of PLK1 expression lowers the protein level of FOXM1. On the other hand, inhibiting the action of FOXO1, a growth inhibitor, further increases the expression of FOXM1 in PAH HPASMC. Although PLK1 and FOXM1 clearly participate in PAH HPASMC hyperplasia, at this time it is not clear whether their increased activity is the primary driver of the hyperplastic behavior of the PAH HPASMC or merely a component of the pathway(s) leading to this response.
Collapse
Affiliation(s)
- Jamie L. Wilson
- Tupper Research Institute and Pulmonary, Critical Care, and Sleep Division, Tufts Medical Center, Boston, Massachusetts, United States of America
| | - Lizhen Wang
- Tupper Research Institute and Pulmonary, Critical Care, and Sleep Division, Tufts Medical Center, Boston, Massachusetts, United States of America
- Department of Pulmonary and Critical Care Medicine, Guangdong Second Provincial General Hospital, Guangdong Province, Guangzhou, China
| | - Zeyu Zhang
- Tupper Research Institute and Pulmonary, Critical Care, and Sleep Division, Tufts Medical Center, Boston, Massachusetts, United States of America
- Postdoctoral Research Station of Clinical Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Nicholas S. Hill
- Tupper Research Institute and Pulmonary, Critical Care, and Sleep Division, Tufts Medical Center, Boston, Massachusetts, United States of America
| | - Peter Polgar
- Tupper Research Institute and Pulmonary, Critical Care, and Sleep Division, Tufts Medical Center, Boston, Massachusetts, United States of America
| |
Collapse
|
7
|
Zhu XD, Lei XP, Dong WB. Resveratrol as a potential therapeutic drug for respiratory system diseases. DRUG DESIGN DEVELOPMENT AND THERAPY 2017; 11:3591-3598. [PMID: 29290681 PMCID: PMC5736354 DOI: 10.2147/dddt.s148868] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Respiratory system diseases are common and major ailments that seriously endanger human health. Resveratrol, a polyphenolic phytoalexin, is considered an anti-inflammatory, antioxidant, and anticancer agent. Thanks to its wide range of biological activities, resveratrol has become a hotspot in many fields, including respiratory system diseases. Indeed, research has demonstrated that resveratrol is helpful to relieve pulmonary function in the general population. Meanwhile, growing evidence indicates that resveratrol plays a protective role in respiratory system diseases. This review aimed to summarize the main protective effects of resveratrol in respiratory system diseases, including its anti-inflammatory, antiapoptotic, antioxidant, antifibrotic, antihypertensive, and anticancer activities. We found that resveratrol plays a protective role in the respiratory system through a variety of mechanisms, and so it may become a new drug for the treatment of respiratory system diseases.
Collapse
Affiliation(s)
- Xiao-Dan Zhu
- Department of Newborn Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Xiao-Ping Lei
- Department of Newborn Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Wen-Bin Dong
- Department of Newborn Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| |
Collapse
|
8
|
García-Álvarez A, Pereda D, García-Lunar I, Sanz-Rosa D, Fernández-Jiménez R, García-Prieto J, Nuño-Ayala M, Sierra F, Santiago E, Sandoval E, Campelos P, Agüero J, Pizarro G, Peinado VI, Fernández-Friera L, García-Ruiz JM, Barberá JA, Castellá M, Sabaté M, Fuster V, Ibañez B. Beta-3 adrenergic agonists reduce pulmonary vascular resistance and improve right ventricular performance in a porcine model of chronic pulmonary hypertension. Basic Res Cardiol 2016; 111:49. [PMID: 27328822 PMCID: PMC4916192 DOI: 10.1007/s00395-016-0567-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 06/06/2016] [Indexed: 11/27/2022]
Abstract
Beta-3 adrenergic receptor (β3AR) agonists have been shown to produce vasodilation and prevention of ventricular remodeling in different conditions. Given that these biological functions are critical in pulmonary hypertension (PH), we aimed to demonstrate a beneficial effect of β3AR agonists in PH. An experimental study in pigs (n = 34) with chronic PH created by pulmonary vein banding was designed to evaluate the acute hemodynamic effect and the long-term effect of β3AR agonists on hemodynamics, vascular remodeling and RV performance in chronic PH. Ex vivo human experiments were performed to explore the expression of β3AR mRNA and the vasodilator response of β3AR agonists in pulmonary arteries. Single intravenous administration of the β3AR agonist BRL37344 produced a significant acute reduction in PVR, and two-weeks treatment with two different β3AR selective agonists, intravenous BRL37344 or oral mirabegron, resulted in a significant reduction in PVR (median of −2.0 Wood units/m2 for BRL37344 vs. +1.5 for vehicle, p = 0.04; and −1.8 Wood units/m2 for mirabegron vs. +1.6 for vehicle, p = 0.002) associated with a significant improvement in magnetic resonance-measured RV performance. Histological markers of pulmonary vascular proliferation (p27 and Ki67) were significantly attenuated in β3AR agonists-treated pigs. β3AR was expressed in human pulmonary arteries and β3AR agonists produced vasodilatation. β3AR agonists produced a significant reduction in PVR and improved RV performance in experimental PH, emerging as a potential novel approach for treating patients with chronic PH.
Collapse
Affiliation(s)
- Ana García-Álvarez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain. .,Hospital Clínic, IDIBAPS, Barcelona, Spain.
| | - Daniel Pereda
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.,Hospital Clínic, IDIBAPS, Barcelona, Spain
| | - Inés García-Lunar
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.,Hospital Universitario Quirón Madrid, UEM, Madrid, Spain
| | - David Sanz-Rosa
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Rodrigo Fernández-Jiménez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.,Hospital Clínico San Carlos, Madrid, Spain
| | - Jaime García-Prieto
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Mario Nuño-Ayala
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Federico Sierra
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | | | | | | | - Jaume Agüero
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Gonzalo Pizarro
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.,Hospital Universitario Quirón Madrid, UEM, Madrid, Spain
| | - Víctor I Peinado
- Hospital Clínic, IDIBAPS, Barcelona, Spain.,Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Respiratorias, Barcelona, Spain
| | - Leticia Fernández-Friera
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.,Hospital Universitario Montepríncipe, Madrid, Spain
| | - José M García-Ruiz
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.,Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Joan A Barberá
- Hospital Clínic, IDIBAPS, Barcelona, Spain.,Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Respiratorias, Barcelona, Spain
| | | | | | - Valentín Fuster
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.,Zena and Michael A. Wiener Cardiovascular Institute, Mount Sinai School of Medicine, New York, USA
| | - Borja Ibañez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain. .,Department of Cardiology, IIS-Fundación Jiménez Díaz, Madrid, Spain.
| |
Collapse
|
9
|
Sun R, Xu F, Wang C, Dong E. NSFC spurs significant basic research progress of respiratory medicine in China. CLINICAL RESPIRATORY JOURNAL 2015; 11:271-284. [PMID: 26176299 PMCID: PMC7159156 DOI: 10.1111/crj.12351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 07/10/2015] [Accepted: 07/13/2015] [Indexed: 12/24/2022]
Abstract
Over the years, research in respiratory medicine has progressed rapidly in China. This commentary narrates the role of the National Natural Science Foundation of China (NSFC) in supporting the basic research of respiratory medicine, summarizes the major progress of respiratory medicine in China, and addresses the main future research directions sponsored by the NSFC.
Collapse
Affiliation(s)
- Ruijuan Sun
- Department of Health Sciences, National Natural Science Foundation of China, Beijing, China
| | - Feng Xu
- Department of Health Sciences, National Natural Science Foundation of China, Beijing, China.,Department of Infectious Diseases, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chen Wang
- Department of Respiratory and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Erdan Dong
- Department of Health Sciences, National Natural Science Foundation of China, Beijing, China
| |
Collapse
|